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Abstract

Model Checking is a formal method to verify the correctness of hardware or soft-
ware systems. From these a mathematical model is derived and some specifications,
expressed in a logical formalism, are checked to be true. The advantage over the
canonical testing is that it is possible to have an automatic and exhaustive verifica-
tion of the adherence of the requirements to the model. Specifications are usually
expressed using formulas of temporal logics. In this thesis the Precedence Oriented
Temporal Logic (POTL) is discussed as valid means of describing properties for model
checking. It is based on Operator Precedence Languages (OPLs), a class of languages
studied in the sixties and then recently resumed due to some interesting feautures: the
high expressiveness, their monadic second order characterization, the decididability
of the emptiness problem, the property of closure under intersection, the suitability
to represent the syntax of programming langauges. Then the Precedence Oriented
Model Checker (POMC), a model checking tool developed in Politecnico di Milano,
is presented and his behavior briefly described. Based on POTL logic and Operator
Precedence Automaton (OPA), it receives as input a program and a POTL formula
expressing a property and it return an affirmative answer if the property is verified
for all the possible executions of the program, a negative one if it is not and eventu-
ally a counterexample is returned as proof. Due to the nature of the model checking
algorithm of POMC the counterexamples could contain ellipsis or omitted parts. Our
work has been that of improving the process of counterexample extraction showing
completed traces.
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Chapter 1

Introduction

Validation and verification are fundamental parts of the software development cycle:
a software not fulfilling his requirements is completely useless and sometimes could
reveal also dangerous. That’s why we are interested in a method to check the correct-
ness of a program and eventually, if it’s not correct, find a proof of the bad behaviour,
for example an invalid execution.

In the last years, beside the classic testing, model checking has received a lot of
attention because it is showing itself very advantageous respect to the canonical ap-
proach. This strategy consists of:

• the conversion of the software to a mathematically unambiguous model

• the description of his properties by a logical formalism

• the exploration of the state-space of the model to confirm correctness or, con-
versely, find an error

The main benefits are that the exhaustive and complete exploration of the possible
state can certify the absence of bugs and not only the presence of them as happens
with testing, the process presents an high level of automation and requires the user
only to define the model and the properties to check. At first the formalism adopted
to implement the validation process was by means of Transition Systems (TSs) and
Finite-State Automaton (FSA) for what concerns the model, Linear Temporal Logic
(LTL) for what concern properties’ definition [11]. The latter operates on a linear
sequence of discrete steps that could be seen as a program run.

Anyway with modern programs we usually want to check more complex spec-
ifications, such as Hoare style pre/post conditions [7] and stack inspection [8], that
can’t be formulated with LTL, capable of expressing only the First-Order Logic (FOL)
definable fragment of regular languages. As subsequent step the class of Visibly Push-
down Languages (VPLs) [1] is introduced because of his member languages’ condition
of being a middle ground between context-free and regular languages: their logical
characterization could be in terms of Monadic Second-Order (MSO), they are closed
under union, intersection, complementation, concatenation and Kleene*, they present
a visible structure in the syntax tree. In fact their terminator symbols are partitioned
in the three categories call, internal and return. Internal symbols are surrounded by
call and return symbols that can be seen like matching parenthesis. This allow within
a program to simulate related events like call-return of a function or throw-catch
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of an exception. Nevertheless also this family of languages has his critical issues:
the relation between symbols could be only one-to-one (we wish one-to-many and
many-to-one) and the development of a word could be ambigous.

So to cope with these problems the last step is to introduce the Operator Prece-
dence Languages (OPLs) [10], a class of languages more powerful than VPL. It was
born to be applied to efficient parsing [6] but recently it revealed robust enough for
model checking due to his characteristics: their languages are closed by Boolean op-
erations [5], concatenation and Kleene* [4], language inclusion and emptiness are
decidable problems. The peculiarity of these languages is that non-terminal symbols
are associated by a binary relation of precedence: we will see that this permits to cre-
ate a hierarchy and an association between symbols that could be also one-to-many
and many-to-one and to develop the Syntax Tree in an unambigous way. OPL can be
recognized by a specific variation of Pushdown Automata called Operator Precedence
Automaton (OPA), while the logic that could express it is called Precedence Oriented
Temporal Logic (POTL).

Both these elements are the basis of the model checker tool Precedence Oriented
Model Checker (POMC) [3].The tool acts in this way: it receives a program and a
property to check expressed in POTL, it creates the corresponding OPAs and resolve
the emptiness problem, trying to search if a word recognizable by the intersection
automaton between program and property exists or not. In the case it doesn’t, the
property is fulfilled, otherwise it’s false. It’s interesting in the latter case to receive
as output the word in the OPL that refutes the property checked: this correspond to
an incorrect run of the program and could be useful during the phase of debugging.
We can discover under which condition the integrity of our program is compromised
and which path violates a property that we want true for all its possible execution, in
order to later fix it.

POMC return a useful counterexample in case of violation, but due to the nature
of the exploring-state algorithm sometimes it can be shown only a partial trace with
some omitted moves replaced by a construct called “Summary”. The aim of the work
discussed in this thesis has been to review the counterexample system of POMC, im-
plementing new functions and allowing to show a complete counterexample trace
substituting summaries with the corresponding real moves.

1.1 Structure of the Thesis
This thesis is structured in six parts:

• Chapter 2 introduces the theoretical notion of Operator Precedence Languages
and Operator Precedence Automata that are at the basis of the POMC tool

• Chapter 3 describes POTL logic in his syntax and semantic

• Chapter 4 briefly describes the theory and the implementation of POMC intro-
ducing the concepts of counterexample

• Chapter 5 explains the procedure implemented to complete counterexample
trace

• Chapter 6 shows the experimental results where the new functionality is ap-
plied

• Chapter 7 conclude the thesis giving some cues for the future

10



Chapter 2

Operator Precedence
Languages

In this chapter the main theoretical notion of Operation Precedence Languages is
presented.

2.1 Introduction to OPL

Firstly, we recall some notions and notations from formal language theory.

Definition 2.1 (Context-Free Grammar (CFG)). A Context-Free Grammar (CFG) G
is a tuple (V,Σ, P, S) where:

• VN (nonterminal alphabet) andΣ (terminal alphabet) are two disjoint finite sets
of characters: their union VN ∪ Σ is called V

• P is a finite set of rules of the form A → α, with A ∈ VN being the left-hand
side (lhs) and α ∈ V being the right-hand side (rhs)

• S ∈ VN is the start symbol or axiom

The following naming conventions are adopted, unless otherwise specified: up-
percase Latin letters A, B, ... denote nonterminal characters; lowercase letters a, b, ...
at the beginning of the Latin alphabet denote terminal characters; lowercase letters x,
y, ... at the end of the Latin alphabet denote terminal strings; lowercase Greek letters
α, β, ... denote strings over V , with the letter ε indicating the empty string.

Direct derivation is denoted as α ⇒ β, meaning that α = α1α2α3, β = α1α
′
2α3,

and α → α′
2 ∈ P . Derivation, that is the reflective and transitive closure of the ⇒

relation, is denoted by ∗⇒. The language generated by a a grammar G is thus defined
as LG = {x ∈ Σ∗ | S ∗⇒ x}

Definition 2.2. A production rule is in operator form if its rhs has no consecutive
non-terminals. An operator grammar only contains rules in operator form.

Let’s do an example of a particular Operator Grammar:
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Figure 2.1: Syntax tree of a word derived according to grammar Gcall.

Example 2.3. Grammar Gcall = ({S,E},Σcall, Pcall, S), with Σcall = {call, ret,
han, exc}, has the following production rules:

S → S callS ret E → S callE

S → S hanS exc E → ε

S → ε

Gcall is made only of rules in operator form, so it’s an operator grammar. This gram-
mar ideally can represent the execution trace of a procedural program with excep-
tions:

call represents the fact that a procedure call occurs

ret represents the fact that a procedure terminates normally and returns to its caller

exc represents the fact that an exception is raised

han represents the fact that an exception handler is installed.

In figure 2.1 it’s showed the syntax tree of a possible derivation of the grammar. Every
function call is enclosed in the call − ret pair of the caller and the calls terminated
by an exception are enclosed in its han− exc pair.

Input symbols in OPLs are realated by a precedence relation that consists of three
possibilities: yelds precedence, equal in precedence, takes precedence. This relation
drives the parsing from the final word to the axiom and permit to have an unambigu-
ous syntax tree, so an unique derivation. That’s why in the beginning OPLs where
used for bottom-up parsing. The three Precedence Relations (PRs) are denoted by the
following symbols:

• yelds precedence→ ⋖

• equal in precedence→ .
=

• take precedence → ⋗
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They must not be confused with the symbols of equality and inequality with which
they not share their typical ordering and equivalence properties. Intuitively, given
two input characters a, b belonging to a grammar’s terminal alphabet separated by at
most one non-terminal, a ⋖ b iff in some grammar derivation b is the first terminal
character of a grammar’s rhs following awhether the grammar’s rule contains a non-
terminal character before b or not; a .

= b iff a and b occur consecutively in some rhs,
possibly separated by one non-terminal; a⋗b iff a is the last terminal in a rhs, whether
followed or not by a non-terminal, and b follows that rhs in some derivation. Here is
the mathematical formulation of precedence relation:

Definition 2.4 (Precedence Relations). LetG = (V,Σ, P, S) be an operator grammar,
and A ∈ V . Its left and right terminal sets are:

LG(A) := {a ∈ Σ | A⇒∗
G Baα} RG(A) := {a ∈ Σ | A⇒∗

G αaB}

with B ∈ V ∪ {ε} and α ∈ (V ∪ Σ)∗.
For any a, b ∈ Σ, and for some α, β ∈ (V ∪ Σ)∗, we have

• a⋖ b iff (A→ αaDβ) ∈ P for some D ∈ V such that b ∈ LG(D);

• a .
= b iff (A→ αaBbβ) ∈ P for some B ∈ V ∪ {ε};

• a⋗ b iff (A→ αDbβ) ∈ P for some D ∈ V such that a ∈ RG(D).

Left and right terminal sets in the example 2.3 for each nonterminal symbol are:

L(S) = L(E) = {call,han} R(S) = {ret, exc} R(E) = {call}

Now, we can give a grammar-based definition of OPL:

Definition 2.5 (Operator Precedence Language (OPL)). A grammar G is an operator
precedence—or Floyd—grammar (OPG) iff at most one PR holds between any pair of
terminals in Σ. Formally, for any a, b ∈ Σ if a π1 b and a π2 b then π1 = π2 (with
π1, π2 ∈ {⋖, .=,⋗}). An operator precedence language is any language generated by
an Operator Precedence Grammar (OPG).

PRs between all pairs of terminals can be gathered in a matrix which, as we shall
see, contains all the information needed to determine a string’s context-free structure.

Definition 2.6 (Operator Precedence Matrix (OPM)). An OPMM over Σ is a partial
function (Σ ∪ {#})2 → {⋖, .=,⋗}, that, for each ordered pair (a, b), defines the PR
M(a, b) holding between a and b. If the function is total we say that M is complete.
We call the pair (Σ,M) an operator precedence alphabet.

In the following, strings will be surrounded by a pair of# delimiters. By conven-
tion, the initial # can only yield precedence, and other symbols take precedence on
the ending #. IfM(a, b) = π, where π ∈ {⋖, .=,⋗}, we write a π b. For u, v ∈ Σ+

we write u π v if u = xa and v = by with a π b.

Altough OPMs may be defined containing multiple PRs in each cell, here we only
consider those containing at most one, which are generated by OPLs.
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call ret han exc
call ⋖ .

= ⋖ ⋗
ret ⋗ ⋗ ⋗ ⋗
han ⋖ ⋗ ⋖ .

=
exc ⋗ ⋗ ⋗ ⋗

Figure 2.2: The OPMMcall.

2.2 Chains
Parsing a OPL word we notice that we can recognize patterns of the form a ⋖ c1

.
=

· · · .= cℓ ⋗ b and that we can reduce them to a non-terminal character. We call this
type of pattern chains, and we formalize them as follows:

Definition 2.7 (Simple chain). A simple chain c0 [c1c2 . . . cℓ]
cℓ+1 is a string c0c1c2 . . . cℓcℓ+1,

such that: c0, cℓ+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ℓ (ℓ ≥ 1), and
c0 ⋖ c1

.
= c2 . . . cℓ−1

.
= cℓ ⋗ cℓ+1.

Definition 2.8 (Composed chain). A composed chain is a string c0s0c1s1c2 . . . cℓsℓcℓ+1,
where c0 [c1c2 . . . cℓ]

cℓ+1 is a simple chain, and si ∈ Σ∗ is either the empty string or is
such that ci [si]

ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , ℓ (ℓ ≥ 1).
Such a composed chain will be written as c0 [s0c1s1c2 . . . cℓsℓ]

cℓ+1 . c0 (resp. cℓ+1) is
called its left (resp. right) context; all terminals between them are called its body.

Definition 2.9 (Compatible words). A finite word w over Σ is compatible with an
OPMM iff for each pair of letters c, d, consecutive in w,M(c, d) is defined and, for
each substring x of#w# which is a chain of the form a[y]b,M(a, b) is defined.

Example 2.10. Let’s take a word generated by the grammar of example 2.3 and let’s
add# delimiters:

wex = #call han call call call exc call ret call ret ret#

Here is the same word but with chains composing it shown in brackets:

wex = #[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

2.3 OPAs
Operator Precedence Automata (OPAs) are a special kind of Pushdown Automata that
recognize OPLs. Every move of this type of automata is driven by the existing prece-
dence relation between topmost stack symbol and next symbol to be read. If they are
in the⋖ relation next input symbol is pushed; if they are in the .= relation the topmost
one symbol is updated with the new one; if they are in⋗ relation the topmost symbol
is popped. More formally:

Definition 2.11 (Operator Precedence Automaton (OPA)). An OPA is a tuple A =
(Σ,M,Q, I, F, δ) where: (Σ,M) is an operator precedence alphabet,Q is a finite set
of states (disjoint from Σ), I ⊆ Q is the set of initial states, F ⊆ Q is the set of final
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·

call ·

·

·

han ·

call ·

call ·

call

exc

call ret

call ret

ret

# #

Figure 2.3: The ST corresponding to word wex . Dots represent non-terminals.

states, δ ⊆ Q× (Σ∪Q)×Q is the transition relation, which is the union of the three
disjoint relations δshift ⊆ Q× Σ×Q, δpush ⊆ Q× Σ×Q, and δpop ⊆ Q×Q×Q.

An OPA is deterministic iff I is a singleton, and all three components of δ are,
possibly partial, functions.

To define the semantics of OPAs, we need some new notations. Letters p, q, pi,
qi, . . . denote states in Q. We use q0

a−→ q1 for (q0, a, q1) ∈ δpush , q0
a

99K q1 for
(q0, a, q1) ∈ δshift , q0

q2
=⇒ q1 for (q0, q2, q1) ∈ δpop , and q0

w; q1, if the automaton
can read w ∈ Σ∗ going from q0 to q1. Let Γ be Σ×Q and Γ′ = Γ ∪ {⊥} be the stack
alphabet; we denote symbols in Γ as [a, q]. We set smb([a, q]) = a, smb(⊥) = #,
and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ , n ≥ 0, we set
smb(γ) = smb(γn) if n ≥ 1, and smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = ⟨w, q, γ⟩, where w ∈ Σ∗#, q ∈ Q,
and γ ∈ Γ∗⊥. A computation or run is a finite sequence c0 ⊢ c1 ⊢ . . . ⊢ cn of
moves or transitions ci ⊢ ci+1. As mentioned previously, there are three kinds of
moves, depending on the PR between the symbol on top of the stack and the next
input symbol:

push move if smb(γ)⋖ a then ⟨ax, p, γ⟩ ⊢ ⟨x, q, [a, p]γ⟩, with (p, a, q) ∈ δpush ;

shift move if a .
= b then ⟨bx, q, [a, p]γ⟩ ⊢ ⟨x, r, [b, p]γ⟩, with (q, b, r) ∈ δshift ;

pop move if a⋗ b then ⟨bx, q, [a, p]γ⟩ ⊢ ⟨bx, r, γ⟩, with (q, p, r) ∈ δpop .

Shift and pop moves are not performed when the stack contains only ⊥. Push
moves put a new element on top of the stack consisting of the input symbol together
with the current state of the OPA. Shift moves update the top element of the stack by
changing its input symbol only. Pop moves remove the element on top of the stack,
and update the state of the OPA according to δpop on the basis of the current state
and the state in the removed stack symbol. They do not consume the input symbol,
which is used only as a look-ahead to establish the ⋗ relation. The OPA accepts the
language L(A) = {x ∈ Σ∗ | ⟨x#, qI , ⊥⟩ ⊢∗ ⟨#, qF , ⊥⟩, qI ∈ I, qF ∈ F} .

OPAs also rely on the OPM to parse words. The relationship between their runs
and parsing is highlighted by supports:
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Definition 2.12. LetA be anOPA. We call a support for simple chain c0 [c1c2 . . . cℓ]
cℓ+1

any path in A of the form q0
c1−→ q1 99K . . . 99K qℓ−1

cℓ
99K qℓ

q0
=⇒ qℓ+1. The label of

the last (and only) pop is exactly q0, i.e. the first state of the path; this pop is executed
because of relation cℓ ⋗ cℓ+1.

We call a support for the composed chain c0 [s0c1s1c2 . . . cℓsℓ]
cℓ+1 any path inA of

the form q0
s0; q′0

c1−→ q1
s1; q′1

c2
99K . . .

cℓ
99K qℓ

sℓ; q′ℓ
q′0=⇒ qℓ+1 where, for every

i = 0, 1, . . . , ℓ: if si ̸= ε, then qi
si; q′i is a support for the chain ci [si]

ci+1 , else q′i = qi.

Chains fully determine the parsing structure of any OPA over (Σ,M). If the OPA
performs the computation ⟨sb, qi, [a, qj ]γ⟩ ⊢∗ ⟨b, qk, γ⟩, then a[s]b is necessarily a
chain over (Σ,M), and there exists a support like the one abovewith s = s0c1 . . . cℓsℓ
and qℓ+1 = qk . This corresponds to the parsing of the string s0c1 . . . cℓsℓ within the
context a, b, which contains all information needed to build the subtree whose frontier
is that string.

Theorem 2.13. Given two OPAs A1 and A2 on Operator Precedence (OP) alphabet
(Σ,M), it is possible to effectively build the following OPAs:

• A∩ such that L(A∩) = L(A1) ∩ L(A2);

• A∪ such that L(A∪) = L(A1) ∪ L(A2);

• A1 such that L(A1) = Σ∗ \ L(A1).

The proof is shown in [2] The property about the construction of the intersection
OPA is fundamental for what concerns the creation of the exploration-state of the
model checker POMC.

Here in this section has been presented the main background of OPAs recognizing
finite words i.e. strings with a finite length, that in our context represent finite runs
of a programme. This theory can be extended to infinite words, called also ω-words,
that represent infinite runs of a programme, but we won’t go deeper into this topic.
From here on we will treat only the finite case (finite OP words, finite OPAs).

2.4 Modeling Programs with OPA
Let’s show how OPAs can naturally model procedural programming languages. The
OP alphabet is represented by (P(AP ),MAP ), whereAP is the set of atomic proposi-
tions that describe events and states of the program andMAP is the OPM concerning
APs. The set of AP could be partitioned into two sets: a set of normal proposi-
tional labels (in round font) and a set of structural labels (in bold). Structural labels
define the OP structure of the word: MAP is only defined for subsets of AP con-
taining exactly one structural label, so that given two structural labels l1, l2, for any
a, a′, b, b′ ∈ P(AP ) s.t. l1 ∈ a, a′ and l2 ∈ b, b′ we haveMAP (a, b) = MAP (a

′, b′).
In this way, it is possible to define an OPM on the entire P(AP ) by only giving the
relations between structural labels, as we did forMcall.

Figure 2.4 shows how to model a procedural program with an OPA. The OPA
simulates the program’s behaviorwith respect to the stack, by expressing its execution
traces with four event kinds: call corresponds to a function call, ret to a return from a
function, han to the installation of an exception handler by a try statement and exc
to the raising of an exception. OPM Mcall defines the context-free structure of the
word, which is strictly linked with the programming language semantics: the ⋖ PR
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pA() {
A0: try {
A1: pB();
A2: } catch {
A3: pErr();
A4: pErr();

}
Ar: }

pB() {
B0: pC();
Br: }

pC() {
C0: if (*) {
C1: throw;
C2: } else {
C3: pC();

}
Cr: }

M0 A0 A1 B0 C0

A2A3ErArAr’Mr

A4

call

pA

han

try
call

pB

call

pC

callpC

A1, B0, C0
exc

A0call

pErr

retpErr

A3call

pErr

A4ret

pA

M0

Figure 2.4: Example procedural program (top) and the derived OPA (bottom). Push,
shift, pop moves are shown by, resp., solid, dashed and double arrows.

causes nesting (e.g., calls can be nested into other calls), and the .= PR implies a one-
to-one relation, e.g. between a call and the ret of the same function, and a han and
the exc it catches.

Each OPA state represents a line in the source code. First, procedure pA is called
by the program loader (M0), and [{call,pA},M0] is pushed onto the stack, to track
the program state before the call. Then, the try statement at line A0 of pA installs
a handler. All subsequent calls to pB and pC push new stack symbols on top of the
one pushed with han. pC may only call itself recursively, or throw an exception, but
never return normally. This is reflected by exc being the only transition leading from
state C0 to the accepting state Mr, and pB and pC having no way to a normal ret.
The OPA has a look-ahead of one input symbol, so when it encounters exc, it must
pop all symbols in the stack, corresponding to active function frames, until it finds
the one with han in it, which cannot be popped because han

.
= exc. Notice that

such behavior cannot be modeled by Visibly Pushdown Automata (VPAs), because
they need to read an input symbol for each pop move. Thus, han protects the parent
function from the exception. Since the state contained in han’s stack symbol is A0,
the execution resumes in the catch clause of pA. pA then calls twice the library error-
handling function pErr , which ends regularly both times, and returns. The string of
Figure 2.2 is accepted by this OPA.

In this example, we only model the stack behavior for simplicity, but other state-
ments, such as assignments, and other behaviors, such as continuations, could be
modeled by a different choice of the OPM, and other aspects of the program’s state
by appropriate abstractions [9].

17



18



Chapter 3

Precedence Oriented
Temporal Logic (POTL)

In this chapter we describe in a complete and formal way POTL for finite word OPLs

3.1 Some introductory concepts
The peculiarity of POTL is that symbols in a word are adressed by the position defined
by the word structure and the positions are bound by a one-to-many or many-to-one
relation called chain relation. More formally:

Definition 3.1 (Word Structure). A word structure (or OP word) is a tuple (U,<
,MAP , P ) where

• U = {0, 1, . . . , n, n+ 1}, with n ∈ N is a set of word positions;

• < is linear order on U ;

• MAP is an operator precedence matrix on P(AP )

• P : AP → P(U) is a function associating each atomic proposition with the set
of positions in which it holds, with 0, (n+ 1) ∈ P (#)

Given two position i, j and a PR π, we write i π j to say a π b, where a = {p | i ∈
P (p)}, and b = {p | j ∈ P (p)}

Definition 3.2 (Chain relation). The chain relation χ ⊆ U × U so that χ(i, j) holds
between two positions i, j iff i < j − 1, and i and j are respectively the left and right
contexts of the same chain. Given i, j ∈ U , relation χ has the following properties:

1. It never crosses itself: if χ(i, j) and χ(h, k), for any h, k ∈ U , then we have
i < h < j =⇒ k ≤ j and i < k < j =⇒ i ≤ h.

2. If χ(i, j), then i⋖ i+ 1 and j − 1⋗ j.

3. Consider all positions (if any) i1 < i2 < · · · < in s.t. χ(ip, j) for all 1 ≤ p ≤ n.
We have i1 ⋖ j or i1

.
= j and, if n > 1, iq ⋗ j for all 2 ≤ q ≤ n.
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# ⋖ call ⋖ han ⋖ call ⋖ call ⋖ call ⋗ exc ⋗ call
.
= ret ⋗ call

.
= ret ⋗ ret ⋗ #

pA pB pC pC pErr pErr pErr pErr pA
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.1: The example word wex from Chapter 2 as an OP word. Chains are high-
lighted by arrows joining their contexts.

·

call1 ·

·

·

han2 ·

call3 ·

call4 ·

call5

exc6

call7 ret8

call9 ret10

ret11

#0 #12

Figure 3.2: The ST of word wex (the same as Figure 2.3, but with position numbers).
Dots represent non-terminals.

4. Consider all positions (if any) j1 < j2 < · · · < jn s.t. χ(i, jp) for all 1 ≤ p ≤ n.
We have i⋗ jn or i .= jn and, if n > 1, i⋖ jq for all 1 ≤ q ≤ n− 1.

Figure 3.1 shows the example string of 2.10 highlighting chains through arrows
between their left and right context. Note that Structural Labels, whose precedence
with each other is given by the OPM, are in bold, while other atomic propositions
are shown below them. When interpreting this string as an execution trace over a
generic procedural program, the other atomic proposition denote function names,
while structural labels have the usual meaning of function call (call), installing an
exception handler on the stack (han), function returning (ret), and exception raising
(exc). We can see here how the Chain Relation substitutes matching paranthesis of
the Paranthesis grammar and augments their expressive power by allowing a many-
to-one and one-to-many relation with composed chains. Looking at the Syntax Tree
(ST) of figure 3.2, we say that the right context j of a chain is at the same level as the
left one i when i .= j, at a lower level when i⋖ j, at a higher level if i⋗ j.

3.2 POTL syntax and operators
Given a finite set of atomic propositions AP , let a ∈ AP , and t ∈ {d, u}. The syntax
of POTL is the following:

φ ::= a | ¬φ | φ ∨ φ | #t φ | ⊖t φ | χt
F φ | χt

P φ | φ U t
χ φ | φ St

χ φ

| #t
H φ | ⊖t

H φ | φ U t
H φ | φ St

H φ
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The truth of POTL formulas is defined with respect to a single word position.
Let w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a iff i ∈ P (a). Operators such as ∧ and ¬ have the usual semantics from
propositional logic, 2 and♢ have the same meaning as in LTL. Next we will give the
formal semantics of POTL operators. Let w be a OP word and i ∈ U a word position
in w:

Next/back operators The downward next and back operators #d and ⊖d are like
their LTL counterparts, but they impose an additional requirement on the precedence
relation between the current (resp. preceding) and the next (resp. current) position.

• #d and⊖d require the (resp. current) position to be at a lower or equal ST level
than the current (resp. preceding) one.

• #u and ⊖u require the (resp. current) position to be at a higher or equal ST
level than the current (resp. preceding) one.

Formally:
• (w, i) |= #d φ iff (w, i+ 1) |= φ and i⋖ (i+ 1) or i .= (i+ 1), and

• (w, i) |= ⊖d φ iff (w, i− 1) |= φ, and (i− 1)⋖ i or (i− 1)
.
= i.

• (w, i) |= #u φ iff (w, i+ 1) |= φ and i⋗ (i+ 1) or i .= (i+ 1), and

• (w, i) |= ⊖u φ iff (w, i− 1) |= φ, and (i− 1)⋗ i or (i− 1)
.
= i.

Chain Next/Back The chain next and back operators χt
F and χt

P are similar to #t

and ⊖t, but, instead of the next element, they impose requirements on respectively
future and past positions in the chain relation with the current one. The downward
(resp. upward ) variant only considers chains whose right context goes down (resp.
up) or remains at the same level in the ST. Formally:

• (w, i) |= χd
F φ iff there exists a position j > i such that χ(i, j), i ⋖ j or i .= j,

and (w, j) |= φ.

• (w, i) |= χd
P φ iff there exists a position j < i such that χ(j, i), j ⋖ i or j .= i,

and (w, j) |= φ.

• (w, i) |= χd
F φ iff there exists a position j > i such that χ(i, j), i ⋗ j or i .= j,

and (w, j) |= φ.

• (w, i) |= χd
P φ iff there exists a position j < i such that χ(j, i), j ⋗ i or j .= i,

and (w, j) |= φ.

(Summary) Until/Since operators The summary until ψ U t
χ θ (resp. since ψ St

χ θ)
operator is obtained by inductively applying the #t and χt

F (resp. ⊖t and χt
P ) oper-

ators. Formally, (w, i) |= ψ U t
χ θ iff either:

• (w, i) |= θ or

• (w, i) |= ψ and either (w, i) |= #t(ψ U t
χ θ) or χt

F (ψ U t
χ θ)

On the other hand (w, i) |= ψ St
χ θ iff either:

• (w, i) |= θ or

• (w, i) |= ψ and either (w, i) |= ⊖t(ψ St
χ θ) or χt

P (ψ St
χ θ)
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Hierarchical next and back operators The same position may be the left or right
context of multiple chains, thus having more than one right or left context. Hierar-
chical next and back operators allow to specify properties on other positions in the
chain relation with the same position with respect to the current one. In particular,
#u

H and ⊖u
H , holding on the right context of a chain, allow to specify properties

on the other positions which are right contexts and have the same left context as the
current one. Respectively, #d

H and⊖d
H say something on other left contexts which

have the same right context as the current one. Formally:

• (w, i) |= #u
H φ iff there exist a position h < i s.t. χ(h, i) and h⋖i and a position

j = min{k | i < k ∧ χ(h, k) ∧ h⋖ k} and (w, j) |= φ;

• (w, i) |= ⊖u
H φ iff there exist a position h < i s.t. χ(h, i) and h⋖i and a position

j = max{k | k < i ∧ χ(h, k) ∧ h⋖ k} and (w, j) |= φ;

• (w, i) |= #d
H φ iff there exist a position h > i s.t. χ(i, h) and i⋗h and a position

j = min{k | i < k ∧ χ(k, h) ∧ k ⋗ h} and (w, j) |= φ;

• (w, i) |= ⊖d
H φ iff there exist a position h > i s.t. χ(i, h) and i⋗h and a position

j = max{k | k < i ∧ χ(k, h) ∧ k ⋗ h} and (w, j) |= φ.

Hierarchical until and since operators The U↓ and S↑ are obtained by iterating
the #⋗

H and ⊖⋗
H operators, similarly to how the Summary Until and Since are de-

fined with respect to the Precedence and Chain operators. Formally, (w, i) |= ψ Uu
H θ

if and only if one of the following conditions holds:

• (w, i) |= θ and there exists a position h < i such that χ(h, i) and h⋖ i

• (w, i) |= ψ and (w, i) |= #u
H ψUu

Hθ

(w, i) |= ψ Su
H θ if and only if one of the following conditions holds:

• (w, i) |= θ and there exists a position h < i such that χ(h, i) and h⋖ i

• (w, i) |= ψ and (w, i) |= ⊖u
H ψSu

Hθ

(w, i) |= ψ Ud
H θ if and only if one of the following conditions holds:

• (w, i) |= θ and there exists a position h > i such that χ(i, h) and i⋗ h

• (w, i) |= ψ and (w, i) |= #d
H ψUd

Hθ

(w, i) |= ψ Sd
H θ if and only if one of the following conditions holds:

• (w, i) |= θ and there exists a position h > i such that χ(i, h) and i⋗ h

• (w, i) |= ψ and (w, i) |= ⊖d
H ψSd

Hθ
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Chapter 4

POMC, sketch of theory and
practical implementation

In this chapter we briefly expose the theory behind POMC, the model checker tools
that uses POTL and OPAs, in the context of finite words. Subsequently we explain
how POMC is implemented in practice.

4.1 Bulding the OPA
Let’s present firstly the formulation of the model checking problem for POTL:

Definition 4.1 (OP Model Checking Problem). Given an OPAA and a POTL formula
φ, establish whether A |= φ.

We define Words(φ) as the set of strings that satisfy POTL formula φ, i.e. the
language L(φ), andAP s the set of Atomic Propositions. Given a OPAA and a POTL
formula φ, we can say:

Definition 4.2 (Semantics of POTL over OPAs). A |= φ if and only if L(A) ⊆
Words(φ)

and then we can derive that:

Definition 4.3 (Satisfaction relation). A |= φ
iif L(A) ⊆Words(φ)
iif L(A) ∩ (2AP )∗ \Words(φ) = ∅
iff L(A) ∩Words(¬φ) = ∅
Hence, for OPA A¬φ with L(A¬φ) = Words(¬φ) we have: A |= φ if and only if
L(A) ∩ L(A¬φ) = ∅

This means that a POTL formula φ is satisfied and therefore the model checking
problem successful if the language accepted by the automaton A intersected with
the language expressed by the negated formula φ is the empty set. Furthermore we
can say that φ is satisfied if the language accepted by the automaton A intersected
with the language accepted by the automaton associated to negated φ is the empty
set. So given an OP alphabet (P(AP ),MAP ), where AP is a finite set of atomic
propositions, a formula φ defined on the same alphabet to be checked against an OPA
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A, the procedure generates the OPA A¬φ = ⟨P(AP ),MAP , Q, I, F, δ⟩ associated
with the negation of φ, builds the Intersection Automaton A⊕ = A ⊗ A¬φ, and
determines whether the language of A⊕ is empty, that is a decidable problem. We
will see below in part the construction rules to build the necessary automatons, only
to give an idea of it. For the complete explanation see [2].

4.1.1 Closure
We first introduce Cl(φ), the closure of φ, containing all subformulas of φ, plus a few
auxiliary operators. Initially, Cl(φ) is the smallest set such that

1. φ ∈ Cl(φ),

2. AP ⊆ Cl(φ),

3. if ψ ∈ Cl(φ) and ψ ̸= ¬θ, then ¬ψ ∈ Cl(φ) (we identify ¬¬ψ with ψ);

4. if ¬ψ ∈ Cl(φ), then ψ ∈ Cl(φ);

5. if any of ψ ∧ θ or ψ ∨ θ is in Cl(φ), then ψ ∈ Cl(φ) and θ ∈ Cl(φ);

6. if any of the unary temporal operators (such as #d, χd
F , ...) is in Cl(φ), and ψ

is its argument, then ψ ∈ Cl(φ);

7. if any of the until- and since-like operators is in Cl(φ), and ψ and θ are its
operands, then ψ, θ ∈ Cl(φ).

4.1.2 Atom and state’s form
The set Atoms(φ) contains all consistent subsets of Cl(φ), i.e. all Φ ⊆ Cl(φ) s.t.

1. for every ψ ∈ Cl(φ), ψ ∈ Φ iff ¬ψ /∈ Φ;

2. ψ ∧ θ ∈ Φ, iff ψ ∈ Φ and θ ∈ Φ;

3. ψ ∨ θ ∈ Φ, iff ψ ∈ Φ or θ ∈ Φ, or both.

The set of states ofAφ isQ = Atoms(φ)2, and its elements, whichwe denote with
Greek capital letters, are of the form Φ = (Φc,Φp), where Φc, called the current part
of Φ, is the set of formulas that hold in the current position, and Φp, or the pending
part of Φ, is the set of temporal obligations. The latter keep track of arguments of
temporal operators that must be satisfied after a chain body, skipping it. The way
they do so depends on the transition relation δ, which we also define incrementally.
Each automaton state is associated to word positions. So, for (Φ, a,Ψ) ∈ δpush/shift ,
with Φ ∈ Atoms(φ)2 and a ∈ P(AP ), we have Φc ∩AP = a (by Φc ∩AP we mean
the set of atomic propositions in Φc). Pop moves do not read input symbols, and
the automaton remains stuck at the same position when performing them: for any
(Φ,Θ,Ψ) ∈ δpop we impose Φc = Ψc. The initial set I contains states of the form
(Φc,Φp), with φ ∈ Φc, and the final set F states of the form (Ψc,Ψp), s.t.Ψc∩AP =
{#} and Ψc contains no future operators. Φp and Ψp may contain only operators
according to specific rules (some of that stated in the following). The consistency
constraints on Atoms(φ) and transition relation δ are defined incrementally by the
construction rules.
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input state stack PR move

1 call hanexc ret#
Φ0

c = {call, χd
F ret, χ

.
=
F ret},

Φ0
p = {χL}

⊥ #⋖ call push

2 hanexc ret# Φ1 = ({han}, {χ
.
=
F ret, χL}) [call,Φ0]⊥ call⋖ han push

3 exc ret# Φ2 = ({exc}, ∅) [han,Φ1][call,Φ0]⊥ han
.
= exc shift

4 ret# Φ3 = ({ret}, ∅) [exc,Φ1][call,Φ0]⊥ exc⋗ ret pop
5 ret# Φ4 = ({ret}, {χ

.
=
F ret}) [call,Φ0]⊥ call

.
= ret shift

6 # Φ5 = ({#}, ∅) [ret,Φ0]⊥ ret⋗# pop
7 # Φ5 = ({#}, ∅) ⊥ – –

Figure 4.1: Example accepting run of the automaton for χd
F ret.

4.1.3 Some example of construction rules

Next/Back operators Let #d ∈ Cl(φ): then ψ ∈ Cl(φ). Let (Φ, a,Ψ) ∈ δpush ∪
δshift , with Φ,Ψ ∈ Atoms(φ)2 , a ∈ P(AP ), and let b = Ψc ∩ AP : we have
#d ψ ∈ Φc iff ψ ∈ Ψc and either a ⋖ b or a = b. The constraints introduced for the
⊖d operator are symmetric, and for their upward counterparts it suffices to replace⋖
with ⋗.

Chain Next operator To handle this operator, we add into Cl(φ) the auxiliary
symbol χL , which forces the current position to be the first one of a chain body. Let
the current state of the OPA be Φ ∈ Atoms(φ)2 : χL ∈ Φp iff the next transition
(i.e. the one reading the current position) is a push. Formally, if (Φ, a,Ψ) ∈ δshift or
(Φ,Θ,Ψ) ∈ δpop , for any Φ,Θ,Ψ and a, then χL /∈ Φp . If (Φ, a,Ψ) ∈ δpush , then
χL ∈ Φp . For any initial state (Φc,Φp) ∈ I , we have χL ∈ Φp iff # /∈ Φc.

If χd
Fψ ∈ Cl(φ), we add the following constraints on δ.

1. Let (Φ, a,Ψ) ∈ δpush/shift : then χd
Fψ ∈ Φc iff χd

Fψ, χL ∈ Ψp;

2. Let (Φ,Θ,Ψ) ∈ δpop : then χd
Fψ /∈ Φp, and χd

Fψ ∈ Θp iff either (a) χd
Fψ ∈ Ψp

or (b) ψ ∈ Φc and χLψ ∈ Ψp;

3. Let (Φ, a,Ψ) ∈ δshift : then χd
Fψ ∈ Φp iff ψ ∈ Φc

χu
Fψ is allowed in the pending part of initial states.

On the other hand, if χu
Fψ ∈ Cl(φ), we add the following constraints:

4. Let (Φ, a,Ψ) ∈ δpush/shift : then χu
Fψ ∈ Φc iff χu

Fψ, χL ∈ Ψp;

5. Let (Φ,Θ,Ψ) ∈ δpop : χu
Fψ ∈ Θp iff χu

Fψ ∈ Ψp, and χu
Fψ ∈ Ψp iff ψ ∈ Ψc

6. Let Let (Φ, a,Ψ) ∈ δshift : then χu
Fψ ∈ Φp iff ψ ∈ Φc

This is only a sketch of construction rules to give an idea. For the complete rules
consult [2].

4.2 POMC in practice

In this section the main implementations and algorithms being part of POMC are
showed, with a focus on the counterexample return system.
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opa: initials = 0;
finals = (4 10);
deltaPush =

(0, (call pa), 1),
(1, (han), 2),
(2, (call pb), 3),
(3, (call pc), 4),
(4, (call pc), 4),

deltaShift =
(4, (exc), 5),
(7, (ret perr), 7),

deltaPop =
(4, 2, 4),
(5, 1, 6),
(7, 8, 9),
(11, 0, 10),

program:
var foo;
pa() {

foo = false;
try { pb(); }
catch { pc(); }

}
pb() {

if (foo) { throw; }
else {}

}
pc() { }

Figure 4.2: Explicit definition of OPA (left) and a MiniProc program (right).

4.2.1 Overview

The tool has been developed in Haskell: an advanced, purely functional, statically
typed programming language with lazy evaluation. This last feature means that the
evaluation of an expression is deferred until his result is needed by other computa-
tions. In this way arguments are not evaluated before they are passed to a function,
but only when their values are actually used. Laziness permits so to save computa-
tional power and memory, in our case it’s useful during the construction and the state
exploration of the OPA.

POMC requires as input an OPA and a POTL specification, his negation is trans-
formed into OPA and intersected by cartesian product method with the input OPA. At
this point the emptiness algorithm is applied to find if there exists an accepted word
or not. The emptiness check exploits a reachability algorithm that check if a particu-
lar configuration is reachable by means of a modified Depth-First Search (DFS) of the
transition relation. The creation of the state-space is on-the-fly, that is to say that a
state is generated only before it is visited, coping the problem of space-state explosion.

Another artifice to improve performance is that of early termination: if during the
DFS the emptiness of the OPA is refuted because a counterexample is found, the visit
of the states is interrupted because it is no more necessary to continue. Only when
the emptiness problem is true we have a complete exploration of states.

As we said earlier, POMC tool requires as input:

• an Operator Precedence Matrix

• a POTL formula

• an OPA

The last one could be derived from two possible source, chosen by the user:

• explicit definition: transitions of the OPA are defined in an explicit way

• miniproc: a simple C-like language to model little programs with only global
variables, function without parameters and throw-catch exception
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4.2.2 Reachability Algorithm
The reachability algorithm finds if a semiconfiguration is reachable from a specific
state and stack symbol. For semiconfiguration of an OPA we mean a pair (q, g), in-
cluding a state of the OPA and a stack symbol. So formally a semiconfiguration is an
element ofC = Q×ΓwhereQ is the set of states and Γ = Σ×Q∪{⊥} the cartesian
product between the stack alphabet and the set of states, plus the bottom symbol that
means empty stack. To solve the emptiness problem wecall the reachability algorithm
passing as parameters the set of initial states and we check if from each of them it is
possible to reach the final semiconfiguration QR = F and ΓR = {⊥}, where F is
the set of final states and ΓR represent the empty stack. The algorithm halts when
the final semiconfiguration is found to be reachable or all the state-space has been
explored. To avoid infinite loop and improve performances the procedure makes use
of Summaries: during the exploration it could happen that a semiconfiguration at
the beginning of a chain that has been already visited is met again. Then knowing
that a chain brings always to the same semiconfiguration we can completely skip its
body and jump to the corresponding exit state and stack condition. Virtually we add
additional edges in the OPA’s transition graph, which we call summary edges.

Initial and final semiconfigurations of a chain, when visited, are stored respec-
tively in SupportStart and SupportEnd with all the information to skip the exploration
and resuming to the end of chain. Here below the pseudocode for the reachability al-
gorithm is presented (Algorithm 1). Its arguments are a state q ∈ Q, a stack symbol
g ∈ Γ, a character c ∈ Σ and a look-ahead l ∈ Σ ∪ {∗}. If l = ∗, then any character
in Σ may be used as a look-ahead. Algorithm 2 shows how to solve the emptiness
problem, posing QR = F and ΓR = {⊥}, and calling Reach(q,⊥,#, ∗) for each
q ∈ I .

Algorithm 1 OPA semi-configuration reachability
1: function Reach(q, g, c, ℓ)
2: if (q, g, ℓ) ∈ V ∨ (q, g, ∗) ∈ V then return false
3: V := V ∪ (q, g, ℓ)
4: if q ∈ QR ∧ g ∈ ΓR then return true
5: a := smb(g)
6: for all (q, b, p) ∈ δpush s.t. a⋖ b ∧ (b = ℓ ∨ ℓ = ∗) do
7: SupportStarts := SupportStarts ∪ {(q, g, c)}
8: if Reach(p, [b, q], b, ∗) then return true
9: for all (s, q, c′, ℓ′) ∈ SupportEnds s.t. a⋖ c′ do
10: if Reach(s, g, c, ℓ′) then return true
11: if g ̸= ⊥ then
12: [a, r] := g
13: for all (q, b, p) ∈ δshift s.t. a

.
= b ∧ (b = ℓ ∨ ℓ = ∗) do

14: if Reach(p, [b, r], c, ∗) then return true
15: for all (q, r, p) ∈ δpop , b ∈ Σ ∪ {#} s.t. a⋗ b ∧ (b = ℓ ∨ ℓ = ∗) do
16: SupportEnds := SupportEnds ∪ {(p, r, c, b)}
17: for all (r, g′, c′) ∈ SupportStarts s.t. smb(g′)⋖ c do
18: if Reach(p, g′, c′, b) then return true
19: return false

27



Algorithm 2 OPA emptiness check
1: function IsEmpty(A)
2: (Σ,MΣ, Q, I, F, (δpush , δshift , δpop)) := A
3: V := SupportStarts := SupportEnds := ∅
4: QR = F
5: ΓR = {⊥}
6: for all q ∈ I do
7: if Reach(q,⊥,#, ∗) then return false
8: return true

In practice these algorithms are a little more complex and they are implemented
in the Satisfiability.hs module of the program.

4.2.3 Sketch of OPA practical construction

Before introducing counterexample traces let’s see very sketchily how an OPA can
model a Miniproc program. Every state of the OPA represent a state of the program
to which POMC randomly assigns an integer Id. Every transition from a state to
another is labeled with boolean expression guards that must be true to be performed.
Anyway every instruction or operational block within the Miniproc program has a
corresponding translation as transition of the OPA: a function call corresponds to a
push move with pushing the relative atomic propositon onto the stack, a return from
that function corresponds to a popmove popping the relative Atomic Proposition (AP)
from the stack. An exception thrown in the same way corresponds to a pop move,
while an handler that catches an exception is represented with shift moves. Figure 4.3
shows an example of Miniproc with the corresponding derived OPA.

program:
var foo;
pa() {

foo = false;
try { pb(); }
catch { pc(); }

}
pb() {

if (foo) { throw; }
else {}

}
pc() { }

M0

M1

A0 A2 A3 B0 B1 B2 A4 C0 C1

A5A6M2A1

call
pA

foo

call
pA

stm

stm
foo
A0,A1 han

foo

call
pB

foo
A3 exc

foo
A2

call
pC

foo

ret
pC

foo

A3ret
pA

foo

M0,M1

Figure 4.3: MiniProc toy program (top) and the OPA derived by it (bottom).
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4.2.4 Counterexamples
Let us remark that model checking an OPAmeans to verify if the emptiness problem is
true or not, namely to check if the intersection of the program’s OPA and the negated
POTL formula’s OPA has at least a word in his language. POMC returns TRUE if
emptiness problem is true, false and a counterexample trace if an accepted word is
found. It’s interesting to have a proof of a path in the OPA that does not comply with
the specification, and the first found by the DFS is returned.

A trace in POMC, for the finite case, is in the form:

trace = t0t1t2t3 . . . tn

where every component corresponds to a performed transition relation in the DFS.
The frame of a trace component is the following: (q, [ap1, ap2 . . . ]) where q ∈ Q
represent the starting state of the transition and apn ∈ 2AP represent the atomic
propositions true on that transition.
Example 4.4. Here the trace from the example 37-generic-medium, a test from the
generic-medium set evaluated in section 6.1:

[(0, [”call”]), (1, [”call”]), (2, [”...”]), (13, [”ret”]), (15, [”han”]), (19, [”call”]),
(3, [”...”]), (20, [”exc”]), (23, [”call”]), (10, [”...”]), (12, [”ret”]), (21, [”ret”]),
(8, [”#”])]

We can notice for example that the first element (0, [”call”]) means that the first
transaction performed started from 0 state and call was an active AP (a push move
has been performed), in the last one (8, [”#”]) 8 is a final state and the active symbol
# means that the stack is empty and we reached the end of the word, in (2, [”. . .”])
means that the algorithm has skipped an entire part of a chain starting from state 2.
This is an element of type Summary and we will come back on it later. This final trace
is reworked from another trace that corresponds to the recording of all the transition
moves performed during the DFS. This is implemented in the Satisfiability.hs
module within the Reachability function.

Everytime a move is performed, before the algorithm passes to examine a new
state, the move is chained to the previous ones and so on until the final move. The
frame of an element of this support trace is (moveType, state, stack symbol) where:

• state: is the state from where the transition move started

• stack symbol: is the combination of the active AP in the state just visited and
the last state pushed. It represents the head of the stack in the moment of tran-
sition.

• movetype: is the type of transition move performed. It could be:

– Found if we are arrived at the end of the DFS, and so in a final state with
the empty stack.

– Push if a push move is performed and so a new stack symbol is pushed in
the stack

– Shift if a shift move is performed
– Pop if a pop move is performed and so a stack symbol is popped from the

stack
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– Summary if the algorithm as explained in section 4.2.2 has to skip a part
of visit because it has already visited a state or it is falling in an infinite
loop.

This support trace when completed is manipulated firstly by removing Pop moves
because they do not contribute to the final OP word and secondly extracting the
atomic formula valid for each move, obtaining so the final form of example 4.4. We
can say that we don’t have always a complete trace because of the presence of Sum-
mary movetype: it introduces omissions that suggests us only the starting state of the
chain skipped, but what’s inside is hidden: it could be only a pair of push-pop moves
or a very long and deep serie of moves. The aim of the work done has been to unwrap
the summary moves to obtain the corresponding coherent serie of moves performed
by the reachability algorithm and so to output finally a complete trace without any
omission. The procedure is presented in the next chapter of this paper.
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Chapter 5

Completing the
counterexamples

In this chapter we explain the procedure to complete the counterexample trace re-
turned after checking a property on anOPA. To do this themodule Satisfiability.hs
has been slightly modified and the newmodule Trace.hs has been created to contain
all data types and functions to handle trace elements.

5.1 Recap of support trace in practical details
As previously explained in addition to the final track, real counterexample of the
checked property, POMCmakes use of a support trace whose element are in the form
(moveType, starting state, stack symbol). Everytime during the DFS a transition is
performed the move is recorded and attached to the serie of the previous ones. This
happen in every subroutine of the reachability algorithm:

reachPush where push are performed

reachShift where shift are performed

reachPop where pop are performed

During the state-space exploration every visited state is marked and whenever it
is encountered again the research stops on that path. Meeting a previously visited
state means we can fall in a potential endless loop. Nevertheless it could happen that
another path of exploration pass directly through that previously visited state: if it
arrive there from another semiconfiguration, with another symbol in head of stack. To
avoid that this potential valid path interrupts, the algorithm permits to jump directly
to the end of the route where the visited node of the OPA would have brought. Since
from every already found state a push type transition is performed, we can say that
jumping to the end of the path means skipping the entire chain body starting from
that state and arriving to the state subsequent to the pop.

A chain has a fixed outcome i.e. after his examination we arrive always in the
same state and with the same head of the stack as before the initial push. That’s why
reachability algorithm stores the OPA’s semi-configurationwhenever it enters or exits
a chain support, respectively in the sets SupportStarts and SupportEnds. SupportStarts
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1. Push→ Pop

2. Push→ Shift → Shift → Pop

3. Push→ Push → Pop→ Pop

4. Push→ Push → Shift → Pop→ Shift → Pop

5. Push→ Push → Push → Shift → Pop → Shift → Pop→ Pop

Figure 5.1: Possible series of move that a Summary can contain.

is used to shorten the process of exploration of chains in reachPop function. Suppor-
tEnds instead contains, for every push state, the possible arrival states at the end of
the chain. The algorithm so, when it finds a visited push state, jumps directly to the
arrival corresponding states maintaining the previous stack head and resumes the ex-
ploration from that point. This operation is performed in the reachPush function and
this special transition move generate an element to be attached to the support trace
that has Summary as movetype.

The frame of a summary element of support trace is (Summary, q, g), where Sum-
mary obviously denote the Summary type of move, q denote the state where the first
push of the chain is performed and g denote the symbol on top of the stack. From the
new arrival state from the pop move of the chain and the symbol g the exploration
will be resumed. From here on the word summary could denote either the element of
trace of type summary or the entire unknown body of a chain, the meaning could be
inferred by the context.

When the final counterexample trace present a summary element we know for
sure that the OPA path corresponding to that summary passes through a starting
push from the state of the summary, where that state is pushed into the stack, and a
final pop where that state is popped from the stack. What is inside these two extremes
is unknown. We don’t know if the summary chain is composed only by a single push-
pop couple: if it contains also shift moves, if it has inside other subordinate push-pop
couples. In the next section we will see the procedure to resolve the summary ele-
ments in the trace substituting themwith the corresponding paths that the automaton
actually travelled.

5.2 Resolving summaries

During the state-space exploration of the OPA, when a summary move is performed
the entire body of a chain already explored is skipped and the exploration is resumed
at the end of it. Resolving a summary means to get the series of moves performed
when that chain was visited the first time. To achieve this result we implement the
procedure in two phases:

1. Recording phase: all the moves performed during the exploration of the automa-
ton are registered in a specific data structure

2. Reconstruction phase: all the previously registered moves are assembled in a
consistent way to find the actual trace of a summary
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Let’s introduce some preparatory concept and subsequently let’s explain how the two
phases are implemented.

5.2.1 Preliminary concepts

To achieve summary resolutionwe created a newmodule called Trace.hs. It contains
all functions and data types that concerns trace implementation, visualization and
debugging. Due to the fact that it is necessary to save data in some specific structures
and update them we need an artifice to transcend the pure functional code of Haskell.
Fortunately the ST monad can help us: it’s a monad that permits to write code in a
procedural way chaining sequentially some actions that are seen by the rest of the
code if they were functional. Almost all the functions in Trace.hsmodule make use
of ST monad, returning an object of type ST.ST s (Object to return).

The data types created to represent the trace are the following:

• data TraceType = Push | Shift | Pop | Summary | Found deriving
(Eq, Ord, Show): it’s the data type representing the type of move that the
OPA can perform in a transition. The meaning of each one has been explained
in section 4.2.4.

• type TraceId state = [(TraceType, StateId state, Stack state)]:
it’s the data type representing the support trace, it consists of a list of elements
whose meaning has been explained in section 4.2.4.

• type TraceChunk state = [(TraceType, StateId state, Stack state,
StateId state)]: it’s the data type representing in his entirety a transaction.
It consists of a list of element of this type: (move type, current state, stack sym-
bol, future state) where the first three elements are the same of TraceId, while
the fourth represent the future state, i.e. the state of arrival of a the performed
transaction. It will be useful to link consistent element of the trace when re-
constructing it.

Elements of traceId and traceChunk from here on will be called also tuples, denoting
the fundamental unit of the trace.

The data structure created to store the tuples registered in the first phase is called
TraceMap and has the following header: type TraceMap s state = MV.MVector
s (TraceChunk state, TraceChunk state, TraceChunk state). TraceMap
is built on a MutableVector, an array with not fixed size but expandable length run-
ning in the ST monad. Each element of the mutable vector, indexed by an integer,
contains a triple of traceChunk (we will explain during recording phase explanation
how they have to be interpreted). Let’s now explain the two phases of the procedure
to resolve summaries.

5.2.2 Recording phase

Firstly we have, during the exploration of the OPA, to register all the transitions that
are performed in the context of each chain encountered. Every chain and every simple
move within it can be indexed by the starting state of the chain i.e. the state from
where the push, the initial move, is performed: indeed when a push is executed the
starting state is pushed into the head of the stack and all the subsequent shift and pop
transactions will have that state in the top stack symbol. Also a Summary move could
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be indexed by the starting state of the corresponding chain and can be considered as a
Shift move: both of these transaction change the state from the starting to the arrival
one maintaining the symbol on top of the stack.

The implementation of the pratically recording is the following: the reachability
function of POMC has been modified so that, during the visit of the states of the OPA,
every tuple representing the transaction performed is inserted into the TraceMap data
structure indexed in this way:

• by the current state if the algorithm is performing a Push inside the reachPush
subroutine

• by the state at top of the stack if the algorithm is performing a Shift inside
the reachShift subroutine, a Pop inside the reachPop subroutine or a Summary
inside the reachPush subroutine

When we say that a state indexes a memory space in the TraceMap data structure
we mean that the memory space is referred by the integer Id of that state, accessible
by the function getId. The tuples saved representing the transaction are elements
of TraceChunk type, so they are in the form (move type, current state, stack sym-
bol, future state) where move type is the action performed by the transition, current
state is the state from which the transition started, stack symbol is the head of the
stack before the transition composed by (qProps, stack state), respectively the atomic
propositions active in the current state and the last state pushed, and future state is
the state of arrival of the transition.

Let’s recall that an element of TraceMap is of type (TraceChunk state, TraceChunk
state, TraceChunk state), so it’s a triple of list of tuple of actions performed. We
name these list respectively (push, shift, pop). So when an action is performed it is in-
serted into TraceMap indexed by the right state, being attached to the list of the right
category according to the move type:

push for Push move type

shift for Shift and Summary move type (as previously depicted this two moves could
be seen similarly)

pop for Pop move type

A tuple is inserted in TraceMap only once, there is a check that prevents duplicates.
Example 5.1. Let’s have these plausible tuples:

• (Push, 58, (qProps, 30), 67): the move type Push suggests to save in the push
TraceChunk indexed by the current state 58, so 58 → ((Push, 58, (qProps, 30),
67) + push ,shift,pop)

• (Shift, 67, (qProps, 58), 75): the move type Shift suggests to save in the shift
TraceChunk indexed by the state on top of the stack 58, so 58 → (push ,(Shift,
67, (qProps, 58), 75) + shift,pop)

• (Summary, 75, (qProps, 58), 89): the move type Push suggests to save in the shift
TraceChunk indexed by the state on top of the stack 58, so 58 → (push ,(Shift,
75, (qProps, 58), 89) + shift,pop)

• (Pop, 89, (qProps, 58), 34): the move type Push suggests to save in the pop
TraceChunk indexed by the state on top of the stack 58, so 58 → (push , shift,
(Pop, 89, (qProps, 58), 34) + pop)
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The recording phase is followed by the reconstruction that is decribed in the next
section.

5.2.3 Reconstruction phase
The reconstruction phase consists of, taken the counterexample processed by the
reachability algorithm, substituting all his summary tupleswith coherent trace chunks
obtained assembling the move tuples saved in TraceMap data structure during the
OPA’s exploration. Indeed the trace returned by the reachability algorithm, that
from here on we will call OPA trace, is of TraceId type (see section 5.2.1) and could
contain summary moves. Simply stated, the algorithm, by means of the function
unrollTrace, scans the OPA trace, transformed into traceChunk trace, and tries
to solve each summary that it finds one by one, possibly recursively if in turn it con-
tains other summaries. Each summary is resolved by the function resolveSummary
that, consulting TraceMap, tries to find out all the possible corrisponding sequences
of tuples attaching them like domino cards. The correspondence happens matching
the future state of the previous tuple with the current state of the next one. All the
discovered eligible sequences are examined to find if there is one closed i.e. that do
not contains other summary tuples. If it’s found it’s the real substitute of the sum-
mary and than it’s returned, if it’s not every trace is in turn tried to be solved until a
closed sequence is achieved.

The procedure’s pseudocode is presented below:

Algorithm 3 Function unrollTrace
1: function unrollTrace(opaTrace)
2: tcTrace := traceToChunk (opaTrace)
3: solvedTrace := browseTrace (tcTrace, ∅)
4: return solvedTrace

Algorithm 4 Function browseTrace
1: function browseTrace(tcTrace, visitedTpl)
2: realTrace := ∅
3: for tuple@(moveType, current_state, stack_symbol, future_state) in tcTrace
4: if moveType = Summary then
5: solvedSummary := resolveSummary (tuple, visitedTpl)
6: if solvedSummary = ∅ then return ∅
7: realTrace := realTrace ⊕ solvedSummary
8: else
9: realTrace := realTrace ⊕ tuple
10: return realTrace

where the operation ⊕ represents string concatenation.

ResolveSummary finds a set of possible replacement trace chunks of a specific Sum-
mary tuple and it returns the first closed one that it finds if present. If it’s not present
it means that all the trace chunks found contain other Summary tuples that must be
solved. BrowseTrace is so executed on all the elements of the set of consistentCom-
bination. Let’s note so that the research of the solution is depth-first: the first element
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Algorithm 5 Function resolveSummary
1: function resolveSummary(tuple, visitedTpl)
2: (moveType, current_state, stack_symbol, future_state) := tuple
3: if current_state ∈ visitedTpl then return ∅
4: else
5: push, shift, pop) := getRecordedTransition (current_state, TraceMap)
6: allCombination := findCompletion ((push, shift, pop),1)
7: consistentCombination := filterConsistent (allCombination)
8: if consistentCombination = ∅ then return ∅
9: else
10: closedTrace := takeClosedTrace (consistentCombination)
11: if closedTrace = ∅ then return ∅
12: else
13: traces = ∅
14: for traces in consistentCombination
15: traces = traces ∪ browseTrace (trace, tuple ∪ visitedTpl)
16: return shortestTrace (traces)

of consistentCombination is expanded with all his children and grandchildren and so
on exploring possible chunk trace until the presence of a solution or the absence of a
valid one is assessed, then it’s the turn of the second one, then the third. . .
The algorithm indeed goes always deeper and interrupts only if it finds a valid replace-
ment trace, if it tries to resolve a summary already encountered (going ahead explor-
ing would mean an infinite loop) or if it finds an empty set of consistent possible re-
placement traces. When all the elements of consistentCombination have been explored
the shortest trace chunk is taken as valid trace. The function filterConsistent
eliminates from the rough set of candidate trace chunks those that aren’t consistent,
namely those that don’t respect the following rules:

• every tuple must have a current state equal to the future state of the previous
tuple

• if a tuple has moveType = Push its current state must be equal to the state of
stack symbol of the successor

• if a tuple has moveType = Shift or moveType = Summary its state of stack sym-
bol must be equal to the state of stack symbol of the successor

Let’s now explain how the construction of all the possible trace chunks is per-
formed. We have to compose in a consistent way the transitions that we have recorded
during the OPA exploration. Every chain start with a push move and terminate with
a pop move. The most simple chain that we can have is of the form:
Push → (Shift | Summary)∗ → Pop
with only an initial push and a final pop. More complex chains can have nested Push-
Pop couples in the form:
Pushn → (Shift | Summary)∗ → Popn or also
Pushn → (Shift | Summary)∗ → Pop1 → (Shift | Summary)∗ → Pop2 → · · · → (Shift
| Summary)∗ → popn.
While the simple chain can be closed consulting TraceMap only in the context of the
current state of the initial push, for the other chain the procedure is more complex. To
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construct the possible trace chunk, tuples recorded during exploration are attached
like domino cards: a tuple can be attached to another one if its current state is equal
to the future state of the latter. So starting from the initial push move different trace
chunks are created with the compatible recorded tuples extracted from TraceMap.
Being the OPA non deterministic a tuple can be associated to more subsequent tuples.
All the moves combinations discovered are closed by a pop, found in TraceMap in the
context of the corresponding push state. The procedure to construct all the possible
trace chunks is implemented on progressive levels: before are found trace chunks of
the form Push→ (Shift | Summary)∗ → Pop (level 1), if there isn’t anyone consistent
it proceeds to find that of the form Push1 → Push2 → (Shift | Summary)∗ → Pop1 →
Pop2 (level 2), then Push1 → Push2 → Push3 → (Shift | Summary)∗ → Pop1 →
(Shift | Summary)∗ → Pop2 → (Shift | Summary)∗ → Pop3 (level 3) and so on. To
every level corresponds a number of pushes and pops. In this way we evaluate before
the most simple trace chunks constituted by one push and then eventually the more
complex ones. This allows us to save memory and computational power due to the
fact that most of the summaries to solve are composed by a simple chain, so exploring
only at level 1 is really more convenient than creating all the possible combinations
in one shot.

Here follows the pseudocode of the procedure:

Algorithm 6 Function findCompletion
1: function findCompletion((push, shift, pop), level)
2: pushSet := ∅
3: for pushTuple in push
4: newTrChunk := completePush (pushTuple, level)
5: pushSet = pushSet ∪ newTrChunk
6: shiftSet := ∅
7: for pushTrace in pushSet
8: newTrChunk := completeShift (pushTrace)
9: shiftSet := shiftSet ∪ newTrChunk
10: popSet := ∅
11: for shiftTrace in shiftSet
12: newTrChunk := completePop (shiftTrace)
13: popSet := popSet ∪ newTrChunk
14: consistentCombination := filterConsistent (popSet)
15: if consistentCombination = ∅ then
16: return findCompletion ((push,shift,pop), level+1)
17: else
18: return consistentCombination
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Algorithm 7 Function completePush
1: function completePush(pushTuple, level)
2: if level = 1 then return pushTuple
3: else
4: (moveType, current_state, stack_symbol, future_state) := pushTuple
5: (push, _, _) := getRecordedTransition (future_state, TraceMap)
6: if push = ∅ then return pushTuple
7: else
8: pushSet := ∅
9: for nextpushTuple in push
10: newTrChunk := completePush (nextpushTuple, level −1)
11: pushSet = pushSet ∪ (pushTuple ⊕ newTrChunk)
12: return pushTuple

Algorithm 8 Function completeShift
1: function completeShift(pushTrace)
2: (moveType, push_current_state, push_stack_symbol, push_future_state) :=

last (pushTrace)
3: (_, shift, _) := getRecordedTransition (push_current_state, TraceMap)
4: if shift = ∅ then return pushTrace
5: else
6: shiftSet := ∅
7: for shiftTuple in shift
8: newTrChunk := completeSingleShift (shiftTuple, shift)
9: shiftSet := shiftSet ∪ (shiftTuple ⊕ newTrChunk)
10: return shiftSet
11: function completeSingleShift(shiftTuple, shift)
12: (_, _, _, shiftTuple_future_state) := shiftTuple
13: matchingTuples := searchTupleByState (shift, shiftTuple_future_state)
14: if matchingTuples = ∅ then return shiftTuple
15: else
16: shiftSet := ∅
17: for shiftTuple in matchingTuples
18: newTrChunk := completeSingleShift (shiftTuple, shift)
19: shiftSet := shiftSet ∪ (shiftTuple ⊕ newTrChunk)
20: return shiftSet
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Algorithm 9 Function completePop
1: function completePop(shiftTrace)
2: pushAcc := reverse (takePush (shiftTrace))
3: (_ , push_current_state, _, _) := head (pushAcc)
4: (_, _, _, shift_future_state) := last (shiftTrace)
5: (_, _, pops) := getRecordedTransition (push_current_state, TraceMap)
6: matchingTuples := searchTupleByState (pops, shift_future_state)
7: popSet := ∅
8: for popTuple in matchingTuples
9: newTrChunk := completePopFindShift (popTuple, tail (pushAcc))
10: popSet := popSet ∪ (shiftTrace ⊕ newTrChunk)
11: return popSet
12: function completePopFindShift(popTuple, pushAcc)
13: if pushAcc = ∅ then return popTuple
14: else
15: popShift := completeShift(popTuple)
16: popShiftSet := ∅
17: for popShiftTrace in popShift
18: newTrChunk := findShiftPopComb (popShiftTrace, pushAcc)
19: popShiftSet := popShiftSet ∪ newTrChunk
20: return popShiftSet
21: function findShiftPopComb(popShiftTrace, pushAcc)
22: (_ , push_current_state, _, _) := head (pushAcc)
23: (_, _, _, shift_future_state) := last (shiftTrace)
24: (_, _, pops) := getRecordedTransition (push_current_state, TraceMap)
25: matchingTuples := searchTupleByState (pops, shift_future_state)
26: if matchingTuples = ∅ then return ∅
27: else
28: popSet := ∅
29: for popTuple in matchingTuples
30: newTrChunk := completePopFindShift (popTuple, tail (pushAcc))
31: popSet := popSet ∪ (popShiftTrace ⊕ newTrChunk)
32: return popSet

The function searchtuplebystate, given a set of traceChunk elements and a
future state, finds all the tuples within the set that have the current state correspond-
ing to the future state.

So summarizing, function completePop finds the first part of Summary trace ag-
gregating push tuples working on a level system: on level 1 will return only piece
of trace with one push (push), on level 2 with the combination of two pushes (push-
push) and so on. Every push tuple will be extracted from TraceMap indexed by the
forward state of the previous considered tuple. Function completeShift takes as
input a first piece of trace composed by only push moves and the shift set obtained
consulting TraceMap indexed by the current state of the last push (the most internal).
It tries, taken a trace, to add at every step a compatible shift tuple until no more ad-
ditions are possible. CompleteShift returns a piece of trace composed by push and
shift moves. Function completePop closes the game finding for every partial trace the
corresponding pop moves. Every pop move to find has a corresponding push move in
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opa:
initials = 0;
finals = (2 8 10);

deltaPush =
(0, (call pa), 1),
(1, (call pb), 2),
(2, (call pc), 3),
(2, (han), 4),
(3, (call pb), 2),
(4, (call pc), 3),
(7, (exc eb), 8),
(9, (call perr), 10),
(10, (call perr), 10),
(15, (han), 19),
(19, (call pc), 3),
(23, (call perr), 10),
(8, (call), 8);

deltaPop =
(3, 2, 5),
(3, 4, 9),
(3, 19, 20),
(5, 1, 6),
(5, 3, 18),
(6, 0, 7),
(8, 7, 8),
(9, 2, 9),
(11, 10, 12),
(11, 9, 13),
(11, 23, 21),
(14, 1, 15),
(14, 3, 16),
(17, 4, 17),
(17, 2, 13),
(17, 19, 21),
(18, 2, 5),
(18, 4, 9),
(18, 19, 20),
(22, 0, 8),
(23, 15, 23),
(8, 8, 8);

deltaShift =
(9, (exc), 9),
(10, (ret perr), 11),
(12, (ret perr), 11),
(13, (ret pb), 14),
(16, (ret pc), 17),
(20, (exc), 23),
(21, (ret pa), 22),
(8, (ret), 8);

Figure 5.2: Explicit automaton of 32-generic-medium example

the partial trace, so they must be the same number, and every pop move is extracted
from TraceMap in the context of the corresponding push move. CompletePop in-
cludes the function completeShift to discover the shift moves interleaved between
pop moves, for example in the situation Push→ Push→ Shift→ Pop→ Shift→ Shift
→ Pop.

5.2.4 A practical example

Let’s use POMC on 32-generic-medium.pomc example to verify a formula. The au-
tomaton expressed in explicit way is shown in figure 5.2. The POTL formula to be
checked is the following:

2((call ∧ pa) ⇒ ¬ (#u exc ∨ χu
F exc))

Let’s launch the console command: stack exec – pomc 32-generic-medium.pomc –
finite
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Model Checking
Formula: G (("call" And "pa") –> ( ((PNu "exc") Or (XNu "exc"))))
Input OPA state count: 24
Result: False
Counterexample: [(0, [”call”, ”pa”]), (1, [”call”]), (2, [”...”]), (7, [”exc”]), (8, [”#”])]
Elapsed time: 253.4 ms

We see that our trace is [(0, [”call”, ”pa”]), (1, [”call”]), (2, [”...”]), (7, [”exc”]), (8, [”#”])]
and there is Summary = (2, [”. . .”]) to solve. The support trace of counterexample is
the following:

(Push,StateId getId = 26, getState = MCState 0,Nothing,StateId getId = 2307,
getState = MCState 1),
(Push,StateId getId = 2307, getState = MCState 1,(EncodedAtom [12]34,StateId
getId = 26, getState = MCState 0),StateId getId = 2415, getState = MCState 2),
(Summary,StateId getId = 2415, getState =MCState 2,(EncodedAtom[12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 3078, getState = MCState 5),
(Pop,StateId getId = 3078, getState = MCState 5,(EncodedAtom [12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 4397, getState = MCState 6),
(Pop,StateId getId = 4397, getState = MCState 6,(EncodedAtom [12]34,StateId
getId = 26, getState = MCState 0),StateId getId = 4402, getState = MCState 7),
(Push,StateId getId = 4402, getState = MCState 7,Nothing,StateId getId = 4403,
getState = MCState 8),
(Pop,StateId getId = 4403, getState = MCState 8,(EncodedAtom [12]16,StateId
getId = 4402, getState = MCState 7),StateId getId = 4451, getState = MCState 8),
(Found,StateId getId = 4451, getState =MCState 8,Nothing,StateId getId = 4451,
getState = MCState 8)

where the tuples in this example are represented in the usual way: (moveType, id
of current state, (encoded propositions, state of stack), id of future state)

The id of the summary’s state is 2415. The scan of the trace by browseTrace spots
the summary tuple and launches the function resolveSummary on it. ResolveSummary
first checks that the state of the summary has been already visited. In this case not
because it’s the first time we launch resolveSummary and the set of bad tuples is
void. Now the algorithm consults the TraceMap with id = 2415 to find all the push,
shift, summary and pop tuples to create all the possible replacement traces. Here is
the list of all pushes recorded during the OPA exploration performed from state 2415,
each one of these is a possible starting point for a solving trace:

(Push,StateId getId = 2415, getState = MCState 2, (EncodedAtom [12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 2471, getState = MCState 3)
(Push,StateId getId = 2415, getState = MCState 2, (EncodedAtom [12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 2470, getState = MCState 3)
(Push,StateId getId = 2415, getState = MCState 2, (EncodedAtom [12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 2469, getState = MCState 3)

Subsequently findCompletion is launched, the procedure combines all the tuples
to obtain a set of consistent traces. The procedure return only one possible replace-
ment trace after findCompletion and filtering , that is shown here:
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Trace 1: (Push,StateId getId = 2415, getState =MCState 2,(EncodedAtom[12]2,StateId
getId = 2307, getState = MCState 1),StateId getId = 2469, getState = MCState 3),
(Summary,StateId getId = 2469, getState =MCState 3,(EncodedAtom[12]2,StateId
getId = 2415, getState =MCState 2),StateId getId = 3102, getState =MCState 18),
(Pop,StateId getId = 3102, getState = MCState 18,(EncodedAtom [12]2,StateId
getId = 2415, getState = MCState 2),StateId getId = 3078, getState = MCState 5)

The trace is checked: it is not a closed trace i.e. it contains other Summary tuples.
It must be solved too. browseTrace is launched on it again and this time we obtain
the following two coherent traces:

Trace 1.1: (Push,StateId getId = 2469, getState =MCState 3,(EncodedAtom[12]2,StateId
getId = 2415, getState = MCState 2),StateId getId = 2417, getState = MCState
2),(Summary,StateId getId = 2417, getState =MCState 2,(EncodedAtom[12]2,StateId
getId = 2469, getState = MCState 3),StateId getId = 3078, getState = MCState
5),(Pop,StateId getId = 3078, getState =MCState 5,Just (EncodedAtom [12]2,StateId
getId = 2469, getState =MCState 3),StateId getId = 3102, getState = MCState 18)
Trace 1.2: (Push,StateId getId = 2469, getState =MCState 3,(EncodedAtom[12]2,StateId
getId = 2415, getState = MCState 2),StateId getId = 2415, getState = MCState
2),(Summary,StateId getId = 2415, getState =MCState 2,(EncodedAtom[12]2,StateId
getId = 2469, getState = MCState 3),StateId getId = 3078, getState = MCState
5),(Pop,StateId getId = 3078, getState =MCState 5,(EncodedAtom [12]2,StateId
getId = 2469, getState =MCState 3),StateId getId = 3102, getState = MCState 18)

Now both of the traces are checked: none of them is closed i.e. they both con-
tains other Summary tuples. They must be solved too. Due to the fact that the al-
gorithm proceedes in a depth-first manner, the first trace is tried to be solved with
eventually its subtraces if they contains summary tuples, and then the second trace.
BrowseTrace is launched on the Trace 1.1 to spot the summary that has state id =
2417 and then resolveSummary. The set of already visited state is updated adding
state = 2415 (the external summary). After findCompletionwe obtain the following
two traces:

Trace 1.1.1: (Push,StateId getId = 2469, getState = MCState 3,(EncodedAtom
[12]2,StateId getId = 2415, getState =MCState 2),StateId getId = 2417, getState =
MCState 2),(Summary,StateId getId = 2417, getState =MCState 2,(EncodedAtom
[12]2,StateId getId = 2469, getState = MCState 3),StateId getId = 3078, getState
= MCState 5),(Pop,StateId getId = 3078, getState = MCState 5,(EncodedAtom
[12]2,StateId getId = 2469, getState = MCState 3),StateId getId = 3102, getState
= MCState 18)
Trace 1.1.2: (Push,StateId getId = 2469, getState = MCState 3,(EncodedAtom
[12]2,StateId getId = 2415, getState =MCState 2),StateId getId = 2415, getState =
MCState 2),(Summary,StateId getId = 2415, getState =MCState 2,(EncodedAtom
[12]2,StateId getId = 2469, getState = MCState 3),StateId getId = 3078, getState
= MCState 5),(Pop,StateId getId = 3078, getState = MCState 5,(EncodedAtom
[12]2,StateId getId = 2469, getState = MCState 3),StateId getId = 3102, getState
= MCState 18)

Both the traces contain summary tuples, so the procedure goes on: Trace 1.1.1 is
resolved. After findCompletion we find only one eligible trace:
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Trace 1.1.1.1: (Push,StateId getId = 2417, getState = MCState 2,(EncodedAtom
[12]2,StateId getId = 2469, getState =MCState 3),StateId getId = 2553, getState =
MCState 3),(Pop,StateId getId = 2553, getState =MCState 3,Just (EncodedAtom
[12]2,StateId getId = 2417, getState = MCState 2),StateId getId = 3078, getState
= MCState 5)

It’s consistent and it doesn’t contain summaries, so it’s returned. Although we have
probably found the right replacement trace, the procedure doesn’t stop here because
there is pending the resolution of Trace 1.1.2 and then of Trace 1.2. browseTrace is
launched on Trace 1.1.2 and then resolveSummary. Firstly it checks that the state of
the summary is a new state never visited. The state id of the summary tuple is 2415,
the same of the state id of original trace’s summary. The function doesn’t go on and
returns void. Also Trace 1.2 has a summary with state id equal to 2415. For the same
reason void is returned. There are no more traces to examine and from the procedure
we obtained a coherent trace that is Trace 1.1.1.1. It is inserted into the original trace
replacing the summary. The new trace is returned and the procedure stops.

New trace: (Push,StateId getId = 26, getState =MCState 0,Nothing,StateId getId
= 2307, getState = MCState 1),(Push,StateId getId = 2307, getState = MCState
1,(EncodedAtom [12]34,StateId getId = 26, getState = MCState 0),StateId getId
= 2415, getState = MCState 2),(Push,StateId getId = 2469, getState = MCState
3,(EncodedAtom [12]2,StateId getId = 2415, getState =MCState 2),StateId getId
= 2417, getState = MCState 2),(Push,StateId getId = 2469, getState = MCState
3,(EncodedAtom [12]2,StateId getId = 2415, getState =MCState 2),StateId getId
= 2417, getState = MCState 2),(Push,StateId getId = 2417, getState = MCState
2,(EncodedAtom [12]2,StateId getId = 2469, getState =MCState 3),StateId getId
= 2553, getState = MCState 3),(Pop,StateId getId = 2553, getState = MCState
3,Just (EncodedAtom [12]2,StateId getId = 2417, getState = MCState 2),StateId
getId = 3078, getState = MCState 5),(Pop,StateId getId = 3078, getState = MC-
State 5,(EncodedAtom [12]2,StateId getId = 2469, getState =MCState 3),StateId
getId = 3102, getState = MCState 18),(Pop,StateId getId = 3078, getState = MC-
State 5,Just (EncodedAtom [12]2,StateId getId = 2469, getState =MCState 3),StateId
getId = 3102, getState = MCState 18),(Pop,StateId getId = 3078, getState = MC-
State 5,(EncodedAtom [12]2,StateId getId = 2307, getState =MCState 1),StateId
getId = 4397, getState = MCState 6),(Pop,StateId getId = 4397, getState = MC-
State 6,(EncodedAtom [12]34,StateId getId = 26, getState = MCState 0),StateId
getId = 4402, getState = MCState 7),(Push,StateId getId = 4402, getState = MC-
State 7,Nothing,StateId getId = 4403, getState =MCState 8),(Pop,StateId getId =
4403, getState =MCState 8,(EncodedAtom [12]16,StateId getId = 4402, getState
= MCState 7),StateId getId = 4451, getState = MCState 8),(Found,StateId getId
= 4451, getState = MCState 8,Nothing,StateId getId = 4451, getState = MCState
8)

that is presented to the final user in this way:
Counterexample: [(0, [”call”, ”pa”]), (1, [”call”]), (2, [”call”]), (3, [”call”]),
(2, [”call”]), (7, [”exc”]), (8, [”#”])]

43



44



Chapter 6

Experimental results

6.1 Experimental Evaluation
The new functionality resolving summaries has been tried on a benchmark formulated
for the test of the original POMC tool. The tests have been executed on laptop with
processor 2.7 GHzAMD®A6-4400m, 8 GiB of RAM running Ubuntu 22.04.2 LTS. Here
follows the table with the comparisons, the part of trace found by the new algorithm is
highlighted in bold. We selected only tests whose results are false and which contain
summaries in their counterexample traces.

Generic-medium series
Generic-medium benchmark is a set of 44 tests evaluated on the same medium-sized
OPA on different formulas. The explicit OPA it is shown in figure 5.2: it’s the same
used for the example in Subsection 5.2.4. The formulas checked for every test are
shown in the numbered list below, while in table 6.1 is shown for every test the exe-
cution time and trace before and after the summary resolution.

1. χd
F perr

2. T Ud
χ exc

3. #d(#d(T Ud
χ exc))

4. ¬ (T Ud
χ exc)

5. ¬ (T Uu
χ exc)

6. ¬ (χd
F (#d (⊖u call)))

7. ⋄ (#d
H pb)

8. ⋄ (pa ∧ (callUd
H pc))

9. ⋄ (pc ∧ (callSd
H pa))

10. 2 ((pc ∧ (χu
F exc)) ⇒ ((¬ pa)Sd

H pb))

11. 2 ((call ∧ pa) ⇒ ¬ (#u exc ∨ χu
F exc))
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12. 2 ((call ∧ pb ∧ (T Sd
H (call ∧ pa))) ⇒ (#u exc ∨ χu

F exc))

13. 2 (han ⇒ χu
F ret)

14. T Ud
H exc

15. #d (#d (#d (T Uu
χ exc

16. 2 (call ∧ pc⇒ (T Uu
χ (exc ∧ χd

P han)))

17. #d (#d ((call ∨ exc)Uu
χ ret))

We can notice analyzing summary solving POMC’s times that they are proportional
to those of original POMC. This is due to the fact that in original POMC times grow
obviously proportionally to the size of state-space, but primarily with the capillar-
ity of the exploration of the state-space and so in new POMC: more state are visited
more transitions are registered in TraceMap and have to be combined to find the true
summary replacement. Anyway for most of the tests in this set, which they share the
same medium-sized OPA, exploration is not so spread in the state-space and so also
trace reconstruction is easy with low times. Most of the times summary solving needs
to aggregate tuples at level 1. Only generic-medium-14 requires level 2 of aggregation
but time anyway doesn’t rise significantly. Generic-medium-19 and generic-medium-
20 are an exception: in this two tests state-space exploration is very large, so times
bump up a lot. Summary solving can take up to seven times the property check be-
cause of the huge amount of transitions’ tuples registered: they could be more than
two thousand for state and so combining them all to find the right trace chunk it’s
very costly.

Generic-small series

Generic-medium benchmark is a set of 44 tests evaluated on the same small-sized OPA
on different formulas. The explicit OPA it is shown in figure 6.1. The formulas checked
for every test are shown in the numbered list below, while in table 6.2 is shown for
every test the execution time and trace before and after the summary resolution.

opa:
initials = 0;
finals = (4 10);

deltaPush =
(0, (call pa), 1),
(1, (han), 2),
(2, (call pb), 3),
(3, (call pc), 4),
(4, (call pc), 4),
(6, (call perr), 7),
(8, (call perr), 7),
(10, (call), 10);

deltaPop =
(4, 2, 4),
(4, 3, 4),
(4, 4, 4),
(5, 1, 6),
(7, 6, 8),
(7, 8, 9),
(11, 0, 10),
(10, 10, 10);

deltaShift =
(4, (exc), 5),
(7, (ret perr), 7),
(9, (ret pa), 11),
(10, (ret), 10);

Figure 6.1: Explicit automaton of generic-small set
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1. ¬ (T Ud
χ exc)

2. T Ud
χ exc

3. ⋄ (pa ∧ (callUd
H pc))

4. ⋄ (pc ∧ (callSd
H pa))

5. 2 (call ⇒ χd
F ret)

6. 2 (han ⇒ χu
F ret)

7. T Uu
χ exc

Here the results are coherent with the previous ones: times are low and tests are
easy-solvable due to the small size of the OPA.
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Table 6.1: Results of the evaluation on the benchmark generic-medium.

# Benchmark
name

Original POMC trace Time
(ms)

New POMC trace Time
(ms)

1 2-generic-
medium

[(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(9,["exc"]),(9,["call"]),
(10,["call"]),(10,["call"]),(10,["ret"]),
(12,["ret"]),(13,["ret"]),(16,["ret"]),
(13,["ret"]),(15,["han"]),(19,["call"]),
(20,["exc"]),(23,["call"]),(10,["..."]),
(12,["ret"]),(21,["ret"]),(8,["#"])]

69,45 [(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(9,["exc"]),(9,["call"]),
(10,["call"]),(10,["call"]),(10,["ret"]),
(12,["ret"]),(13,["ret"]),(16,["ret"]),
(13,["ret"]),(15,["han"]),(19,["call"]),
(20,["exc"]),(23,["call"]),(10,["call"]),
(10,["ret"]),(12,["ret"]),(21,["ret"]),
(8,["#"])]

93,32

2 6-generic-
medium

[(0,["call"]),(1,["..."]),(7,["exc"]),
(8,["#"])]

2,977 [(0,["call"]),(1,["call"]),(2,["call"]),
(7,["exc"]),(8,["#"])]

6,186

3 7-generic
medium

[(0,["call"]),(1,["..."]),(7,["exc"]),
(8,["#"])]

5,186 [(0,["call"]),(1,["call"]),(2,["call"]),
(7,["exc"]),(8,["#"])]

11,08

4 8-generic-
medium

(0,["call"]),(1,["call"]),(2,["..."]),
(9,["..."]),(13,["ret"]),(15,["han"]),
(19,["call"]),(3,["..."]),(20,["exc"]),
(23,["call"]),(10,["..."]),(12,["ret"]),
(21,["ret"]),(8,["#"])]

39,11 [(0,["call"]),(1,["call"]),(2,["han"]),
(4,["call"]),(9,["exc"]),(9,["call"]),
(10,["ret"]),(13,["ret"]),(15,["han"]),
(19,["call"]),(3,["call"]),(2,["call"]),
(20,["exc"]),(23,["call"]),(10,["call"]),
(10,["ret"]),(12,["ret"]),(21,["ret"]),
(8,["#"])]

63,00

5 9-generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(7,["exc"]),(8,["#"])]

60,02 [(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(7,["exc"]),
(8,["#"])]

68,93

6 14-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(9,["exc"]),
(9,["call"]),(10,["call"]),(10,["call"]),
(10,["call"]),(10,["call"]),(10,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(12,["ret"]),(13,["ret"]),(16,["ret"]),
(13,["ret"]),(15,["han"]),(19,["call"]),
(3,["..."]),(20,["exc"]),(23,["call"]),
(10,["ret"]),(21,["ret"]),(8,["#"])]

36,44 [(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(3,["call"]),
(2,["call"]),(3,["call"]),(2,["han"]),
(4,["call"]),(3,["call"]),(2,["call"]),
(3,["call"]),(2,["call"]),(9,["exc"]),
(9,["call"]),(10,["call"]),(10,["call"]),
(10,["call"]),(10,["call"]),(10,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(12,["ret"]),(13,["ret"]),(16,["ret"]),
(13,["ret"]),(15,["han"]),(19,["call"]),
(3,["call"]),(2,["call"]),(20,["exc"]),
(23,["call"]),(10,["ret"]),(21,["ret"]),
(8,["#"])]

50,74
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7 16-
generic-
medium

[(0,["call"]),(1,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["han"]),(4,["call"]),
(9,["exc"]),(9,["call"]),(10,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(13,["pb","ret"]),(16,["ret"]),
(13,["pb","ret"]),(15,["han"]),
(19,["call"]),(20,["exc"]),
(23,["call"]),(10,["..."]),(12,["ret"]),
(21,["ret"]),(8,["#"])]

17,05 [(0,["call"]),(1,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["han"]),(4,["call"]),
(9,["exc"]),(9,["call"]),(10,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(13,["pb","ret"]),(16,["ret"]),
(13,["pb","ret"]),(15,["han"]),
(19,["call"]),(20,["exc"]),(23,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(21,["ret"]),(8,["#"])]

63,00

8 18-
generic-
medium

[(0,["call","pa"]),(1,["call"]),(2,["..."])
,(7,["exc"]),(8,["#"])]

1943 [(0,["call","pa"]),(1,["call"]),
(2,["call","pc"]),(7,["exc"]),(8,["#"])]

2372

9 19-
generic-
medium

[(0,["call","pa"]),(1,["call"]),(2,["..."]),
(13,["ret"]),(15,["han"]),(19,["..."]),
(20,["exc"]),(23,["call"]),(10,["ret"]),
(21,["pa","ret"]),(8,["#"])]

2006 [(0,["call","pa"]),(1,["call"]),
(2,["call","pc"]),(3,["call"]),
(2,["han"]),(4,["call","pc"]),
(9,["exc"]),(9,["call"]),(10,["ret"]),
(13,["ret"]),(16,["pc","ret"]),
(13,["ret"]),(15,["han"]),
(19,["call","pc"]),(20,["exc"]),
(23,["call"]),(10,["ret"]),
(21,["pa","ret"]),(8,["#"])]

15980

10 20-
generic-
medium

[(0,["call","pa"]),(1,["call","pb"]),
(2,["..."]),(13,["pb","ret"]),(15,["han"]),
(19,["..."]),(20,["exc"]),(23,["call"]),
(10,["ret"]),(21,["pa","ret"]),(8,["#"])]

64250 [(0,["call","pa"]),(1,["call","pb"]),
(2,["call","pc"]),(3,["call","pb"]),
(2,["han"]),(4,["call","pc"]),
(3,["call","pb"]),(2,["call","pc"]),
(9,["exc"]),(9,["call"]),(10,["ret"]),
(13,["pb","ret"]),(16,["pc","ret"]),
(13,["pb","ret"]),(15,["han"]),
(19,["call","pc"]),(20,["exc"]),
(23,["call"]),(10,["ret"]),
(21,["pa","ret"]),(8,["#"])]

332700

11 32-
generic-
medium

[(0,["call","pa"]),(1,["call"]),(2,["..."]),
(7,["exc"]),(8,["#"])]

179,7 [(0,["call","pa"]),(1,["call"]),
(2,["call"]),(3,["call"]),(2,["call"]),
(7,["exc"]),(8,["#"])]

217,8

12 34-
generic-
medium

[(0,["call","pa"]),(1,["call","pb"]),
(2,["call"]),(3,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["han"]),
(4,["call"]),(3,["call","pb"]),
(2,["han"]),(4,["..."]),(9,["exc"]),
(9,["call"]),(10,["..."]),(12,["ret"]),
(13,["pb","ret"]),(16,["ret"]),
(13,["pb","ret"]),(15,["han"]),
(19,["call"]),(3,["..."]),(20,["exc"]),
(23,["call"]),(10,["..."]),(12,["ret"]),
(21,["pa","ret"]),(8,["#"])]

165,6 [(0,["call","pa"]),(1,["call","pb"]),
(2,["call"]),(3,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["call"]),
(3,["call","pb"]),(2,["han"]),
(4,["call"]),(3,["call","pb"]),
(2,["han"]),(4,["call"]),
(3,["call","pb"]),(2,["call"]),
(9,["exc"]),(9,["call"]),(10,["call"]),
(10,["ret"]),(12,["ret"]),
(13,["pb","ret"]),(16,["ret"]),
(13,["pb","ret"]),(15,["han"]),
(19,["call"]),(3,["call","pb"]),
(2,["call"]),(20,["exc"]),(23,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(21,["pa","ret"]),(8,["#"])]

245,3

13 36-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(9,["..."]),(13,["ret"]),(15,["han"]),
(19,["..."]),(20,["exc"]),(23,["call"]),
(10,["ret"]),(21,["ret"]),(8,["#"])]

56,39 [(0,["call"]),(1,["call"]),(2,["han"]),
(4,["call"]),(9,["exc"]),(9,["call"]),
(10,["ret"]),(13,["ret"]),(15,["han"]),
(19,["call"]),(20,["exc"]),(23,["call"]),
(10,["ret"]),(21,["ret"]),(8,["#"])]

72,96

14 37-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(13,["ret"]),(15,["han"]),(19,["call"]),
(3,["..."]),(20,["exc"]),(23,["call"]),
(10,["..."]),(12,["ret"]),(21,["ret"]),
(8,["#"])]

42,74 [(0,["call"]),(1,["call"]),(2,["call"]),
(3,["call"]),(2,["han"]),(4,["call"]),
(9,["exc"]),(9,["call"]),(10,["ret"]),
(13,["ret"]),(16,["ret"]),(13,["ret"]),
(15,["han"]),(19,["call"]),(3,["call"]),
(2,["call"]),(20,["exc"]),(23,["call"]),
(10,["call"]),(10,["ret"]),(12,["ret"]),
(21,["ret"]),(8,["#"])]

91,32
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15 39-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(7,["exc"]),(8,["#"])]

798,9 [(0,["call"]),(1,["call"]),
(2,["call"]),(7,["exc"]),(8,["#"])]
71,486

883,5

16 40-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(7,["exc"]),(8,["#"])]

255,7 [(0,["call"]),(1,["call"]),
(2,["call","pc"]),(7,["exc"]),
(8,["#"])]

323,1

17 43-
generic-
medium

[(0,["call"]),(1,["call"]),(2,["..."]),
(7,["exc"]),(8,["#"])]

224,3 [(0,["call"]),(1,["call"]),
(2,["call"]),(7,["exc"]),(8,["#"])]

254,6

Table 6.2: Results of the evaluation on the benchmark generic-small

# Benchmark
name

Original POMC trace Time
(ms)

New POMC trace Time
(ms)

1 7-generic-
small

[(0,["call"]),(1,["han"]),(2,["call"]),
(3,["..."]),(4,["exc"]),(6,["call"]),
(7,["ret"]),(8,["call"]),(7,["ret"]),
(9,["ret"]),(10,["#"])]

7,404 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

13,06

2 8-generic-
small

[(0,["call"]),(1,["han"]),(2,["call"]),
(3,["..."]),(4,["exc"]),(6,["call"]),
(7,["ret"]),(8,["call"]),(7,["ret"]),
(9,["ret"]),(10,["#"])]

3,720 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

7,291

3 18-
generic-
small

[(0,["call"]),(1,["han"]),(2,["call"]),
(3,["..."]),(4,["exc"]),(6,["call"]),
(7,["ret"]),(8,["call"]),(7,["ret"]),
(9,["ret"]),(10,["#"])]

233,8 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

319,5

4 19-
generic-
small

[(0,["call","pa"]),(1,["han"]),
(2,["..."]),(4,["exc"]),(6,["call"]),
(7,["ret"]),(8,["call"]),(7,["ret"]),
(9,["pa","ret"]),(10,["#"])]

304,3 [(0,["call","pa"]),(1,["han"]),
(2,["call"]),(3,["call","pc"]),
(4,["exc"]),(6,["call"]),(7,["ret"]),
(8,["call"]),(7,["ret"]),
(9,["pa","ret"]),(10,["#"])]

884,5

5 30-
generic-
small

[(0,["call"]),(1,["han"]),(2,["..."]),
(4,["exc"]),(6,["call"]),(7,["ret"]),
(8,["call"]),(7,["ret"]),(9,["ret"]),
(10,["#"])]

12,53 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

18,06

6 36-
generic-
small

[(0,["call"]),(1,["han"]),(2,["..."]),
(4,["exc"]),(6,["call"]),(7,["ret"]),
(8,["call"]),(7,["ret"]),(9,["ret"]),
(10,["#"])]

9,631 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

14,83

7 37-
generic-
small

[(0,["call"]),(1,["han"]),(2,["call"]),
(3,["..."]),(4,["exc"]),(6,["call"]),
(7,["ret"]),(8,["call"]),(7,["ret"]),
(9,["ret"]),(10,["#"])]

6,800 [(0,["call"]),(1,["han"]),(2,["call"]),
(3,["call"]),(4,["call"]),(4,["exc"]),
(6,["call"]),(7,["ret"]),(8,["call"]),
(7,["ret"]),(9,["ret"]),(10,["#"])]

13,63
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Chapter 7

Conclusions

In this paper we have discussed how OPL and POTL can represent a program and a
formal property to verify and we have presented the realization of a model checker
based on these two elements, POMC, in a new guise. The improvement of the coun-
terexample return system permits to have a more complete vision of violations of the
property checked, helping in troubleshooting phase and debugging. The counterex-
ample procedure implemented is at its first version and it could be improved: though
most of traces could be solved easily, sometimes finding all the possible combination
matching push, shift and pop tuples could be very costly from the point of view of
memory and computational power. This is due to the exponential complexity of the
algorithm. Some benchmark test showed that the time for the solving of summary
tuples could be up to three times that of the resolution of emptiness problem that has
exponential complexity too. So the first work to do in the future will be that of lighten
the procedure.

POMC now can resolve problems in the context of infinite runs of a program
managing omega-words, but for the moment it doesn’t return counterexamples. The
next step is therefore the implementation of the counterexample system in omega-
context that consist in finding an acceptance path that is repeated infinitely often.
The implementation of the summary solving module has been absolutely not trivial,
that’s why we decided to stop here and leave this ideas as suggests for a future work.
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Index of Acronyms

AP Atomic Proposition

CFG Context-Free Grammar

CFL Context-Free Language

DFS Depth-First Search

FOL First-Order Logic

FO First-Order

FSA Finite-State Automaton

lhs left-hand side

LTL Linear Temporal Logic

MC Model Checking

MSOL Monadic Second-Order Logic

MSO Monadic Second-Order

OPA Operator Precedence Automaton

OPG Operator Precedence Grammar

OPL Operator Precedence Language

OPM Operator Precedence Matrix

OP Operator Precedence

PDS Pushdown System

POMC Precedence Oriented Model Checker

POTL Precedence Oriented Temporal Logic

PR Precedence Relation

rhs right-hand side

ST Syntax Tree

TS Transition System
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VPA Visibly Pushdown Automaton

VPL Visibly Pushdown Language
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