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Abstract

Many company interactions can be described by the usage of network structure, as for
example the Board of Directors network or the ownership network. To get a wider grasp of
the looks of the environment composed by firms, these interactions have to be taken into
account together. With this purpose, a multi layer network is constructed between com-
panies listed in the italian stock exchange. Four different layers are built between those
companies, each one based either on interlocks, ownership ties or a ownership similarity
index. The ownership similarity index links together firms that present similar equity
distribution across shareholders. The analysis first studies the different layers indepen-
dently, trying to describe the topology of the graphs and identifying the most important
companies in it according to several centrality measures. Afterwards, the layers are consid-
ered together in order to analyse the overall structure and to make a comparison between
them. The results show all layers to complement each other and present very few overlaps.
Moreover, no relevant correlation is found between interlocks and strongly concentrated
ownership. The majority number of ties happens more for firms with dispersed equity.
Interlocks and ownership ties are the features that lead to the most similar results. The
overlaps between those two are mainly composed by firms sharing a physical person or an
institutional investor as common shareholder.
Keywords: network, graph, layer, interlocking, ownership





Abstract in lingua italiana

Molte interazioni tra aziende possono essere descritte attraverso l’utilizzo di reti sociali.
Un esempio possono essere le reti derivanti da connessioni all’interno delle varie strutture
di Governance, piuttosto che da legami nell’ambito della composizione dell’azionariato.
Per compredere come questi diversi aspetti caratterizzino un mercato, e come ed in quali
modalità interagiscano e si influenzino a vicenda, è utile considerarli insieme. A questo
scopo, all’interno della presente tesi viene construita una rete sociale a più strati, avente
come oggetto diverse società quotate presso la borsa ialiana. Vengono introdotte quat-
tro reti differenti, ognuna composta a partire da uno tra i due dataset a disposizione,
riguardanti rispettivamente la composizione del CdA e dell’azionariato delle società quo-
tate. Per costruire le diverse reti, vengono presi in considerazione casi in cui ci sia la
presenza di un consigliere (interlocking), piuttosto che un azionista, in comune tra due
aziende, e casi di somiglianza della distribuzione del capitale sociale tra le diverse società.
Le reti vengono analizzate d’apprima singolarmente al fine di descriverne i principali as-
petti topologici e identificare all’interno di esse i nodi (i.e. le società) più importanti. In
un secondo momento, queste vengono considerate assieme, componendo una rete sociale
a più strati con l’obiettivo di confrontare i singoli layer. I risultati ottenuti mostrano
come le diverse reti tendano a mostrare un aspetto complementare e presentino poche
sovrapposizioni. Non è stata identificata nessuna correlazione rilevante tra casi di inter-
locking e una particolare tipologia di struttura societaria. La maggior parte delle aziende
aventi almeno un azionista in comune invece è rappresentata da società caratterizzate da
una distribuzione più equa del capitale sociale tra i diversi azionisti. In generale, le reti
che sovrappongono di più sono quelle derivanti dallo studio della composizione dei diversi
CdA e quella che tiene conto di possibili azionisti in comune tra le società.
Parole chiave: network, reti sociali, grafi, interlocking, struttura azionariato
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Introduction

This thesis focuses on the ownership structure and presence of interlocks among several
companies listed in the italian stock exchange. It aims to study the relationship between
those features across firms by introducing a multi layer network representation of the
market. This is done by creating and analysing different graphs, each one build from
either data regarding ownership composition of firms or their Board of Directors structure.
Those graphs show the different interconnetions taking place between companies in the
italian market, and each of them gives a different representation of the overall market and
of its players by displaying the degrees of connections tighting it up and the importance
of each company in it. In particular, four different graphs are created; two of them
consider interlocks for their creations, while the others focus on the presence of ownership
ties or on the degree of similarity between companies’ownership structure. These graphs
are first studied independently with the aim of identifying their general topology and
the most relevant companies in them. For this purpose different centrality measures are
introduced, as closeness, eccentricity and betweenness centrality. The graphs are then
studied together, by constructing multi layer networks. These are studied throughout
different representations of them, also allowing for the comparison between the layers.
Measures as edge overlap, layer contribution, graph distance and structural reducibility
are here used for understanding the relationships between the layers.
The thesis is structured as follows: the first chapter gives an overview of the literature
about the subjects introduced, what has been already studied and the results shown.
The second chapter is a description of the mathematical concepts used in this thesis for
carrying on with the analysis. An introduction to graph theory and networks analysis is
given here. The third chapter focuses on the dataset of interest by describing its main
features. Chapter four describes the methods introduced for constructing the different
layers. Chapters five and six respectively report the studies and results about the different
layers by first considering them independently and then together. Finally, chapter seven
highlights and comments the results.
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1| Literature review

The presence of interlocks within different italian firms’ Board of Directors is a common
feature [1]. The term Interlocking refers to the situation in which a certain person sits
simultaneously on the board of two or more companies. There are different reasons as
why this happens and why companies aspire to create those links. Indeed, in general, the
main scope of a firm is to mitigate the level of uncertainty around its future performance
[2]. In an uncertain environment as the one in which we live in today, it is fundamental
for firms to maximise the amount of information at their disposal in order to make better
decisions.
Joanna Szalacha in [2] lists four main reasons why firms should benefit from interlocking
directorates. The first two motivations are to establish both horizontal and vertical coor-
dination with other firms. Horizontal coordination refers to the situation in which a firm
has the possibility to comunicate with other companies belonging to the same industry.
This condition would allow companies to discuss for example the pricing of the services
they provide. Vertical coordination on the other hand is the process of coordination that
takes place within firms that do not necessarely belong to the same industry, but that are
part of the same chain process running from the initial avaliable resources to the delivery
of the final good or service. Having the possibility to communicate vertically with other
companies could result in better accords for the supplies that a firm needs or delivers. A
third reason for interlocking to take place comes from the need of expertise. The know
how and problem solving abilities that a professional learns with his or her work by being
employed in a different firm are skills that company eagerly search for. Finally, having a
well known, respected person sitting on its board of directors would allow the company to
benefit in terms of reputation, helping to paint a positive picture of the firm. This claim
is also supported by Sapinski et al. in [3].
Both in [1] and [2] an interesting point is also made about the possible connection between
interlocking and corporate control. Ghezzi and Picciau in [1] state that, for the case of
Italy, interlocking is a “mechanism to secure the control of the biggest privately owned
corporations across different sectors as well as a defensive tool against hostile takeovers.”.
On the same line of reasoning, Szlacha in [2] states that companies might engage in in-
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terlocks with the aim of gaining control of a firm, through a cheaper and less structured
operation with respect to a merge or acquisition.
An important consequence of interlocks is the possible rising of conflict of interest. In-
deed, this may take place when a member of the board also serves as a member at another
firm. In theory, the actions and decisions that he takes should aim to improve the overall
firm’s condition. As he sits on more that one board, this accounts for all the companies he
works for. It might just happen then that one or more of those action he could undertake
will not benefit, but possibly even damage, one of the other firms [1].
The presence of interlocks can also have some relevant consequences on the industry as
a whole. In [1], the authors point out how the creation of interlocks, especially within
the same industry, might reduce competition and lead to a more quiet life equilibrium,
facilitating the establishment. These are actually among the reasons behind why Italy, in
2011, introduced an interlocking ban within the banking, insurance and financial sector.
Related to this problem is also the one regarding a possible “loss of autonomy”, meaning
that a company would not be able to function successfully without several business links
represented by interlocks [2].
In literature it is also possible to find several studies that tried to understand the conse-
quences that interlocking directorates have on firm performance. In [4] the authors present
a study that supports the claim that the presence of interlocks positively affects firms’
ROE. They ascribe this relationship to the fact that interlocks reduce uncertainty and
help in detecting threats and possible opportunities from the market. On the other hand,
Kaczmarek et al. in [5] found that, relatively to different UK-listed firms, the presence of
interlocks had a negative effect on companies perfomance (computed through Tobins’Q
). They used this result to support the claim that, “ when used in excess, interlocking is
likely to compromise the attention of directors on the focal company board”.

The other main argument that this thesis considers for the analysis of a network be-
tween listed firms regards company ownership structure. Many articles can be found in
literature concerning the composition of the companies’ ownership and its consequences
on firms’ performance. Knowing who owns the different firms and how they perform in
their role is indeed a relevant issue [6]. Information of interest concerns mainly the cate-
gories to which shareholders belong to and the level of concentration of ownership, that
is how the total amount of shares is split out among the different shareholders. In [6]
relevant descriptive statistics are presented regarding these subjects for the 10000 largest
listed companies of 54 different markets. Those firms all together account for more than
90% of global market capitalisation. In this study, shareholders are divided into four
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main categories: private corporations, public owners, individuals or family owners and
finally institutional investors. Private corporations are represented by private companies,
their subsidiaries and joint ventures. Public sector owners are on the other hand mainly
represented by central and local governments. Institutional investors are mainly funds
and asset management companies.
Institutional investors are the predominant class of investors worldwide, but the situation
varies a lot with respect to which region of the world is considered. In the US for example
they account for more than 72% of the market cap. In Europe on the other hand the
situation is different, as nearly 38% of market cap is managed by institutional investors.
In Italy, institutional investors represent the second largest investor class, owning more
than 20% of the market cap.
When it comes to trying to understand the effect of institutional investors on corporate
governance and firm performance, according to Lund in [7], institutional investors tend
to support management proposals, rather than shareholders’ ones when it comes to dis-
cussing decisions. In [14], Mizuno et al. found that, cosidering several listed japanese
firms, the ones characterised by a higher institutional ownership percentage showed bet-
ter performances. In [9], Dakhlallh et al. recovered that, in a study based on Jordanian
public companies, institutional ownership have a significant positive effect on firm’s To-
bin’s Q.
Another category of interest when it comes to the global market is public ownership. Also
in this case, the percentage of shared owned by the public sector differs from country to
country. In asian countries, especially in China and Saudi Arabia, public ownership are
the most relevant. In Italy on the other hand, they account for a little more than 10% of
the market capitalisation, and are mainly concentrated in the energy sector [6].
For what concerns the consequences of main public investors on firms’ performance, [8]
conducted a study in 2021 that showed how, on average, government owned firms outper-
formed other ownership types.
Some relevant information can also be retrieved for what concerns company ownership
concentration. The dataset presented by De La Cruz et al. in [6] tells that dispersed own-
ership is globally a rare phenomenon; around 50% of the considered companies have their
largest owners controlling more than 30% of the individual firms’ equity. Furthermore,
the three largest owners hold combined more than 49% of a firm’s equity.
Data regarding ownership structure is also important because it provides knowledge about
who is actively controlling the firm and how it is possible to gain control of the company
[15]. When it comes to company control, a relevant threshold is usually set to 50%; in
this sense, a shareholder has total control of a company if he owns more than 50% of its
shares. In Italy, more than half of the traded companies are controlled solely by their
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largest shareholders, and almost 3 out of 4 companies are controlled solely by their three
largest shareholders [6].
Several studies have also been conducted in order to see if the degree of ownership con-
centration affects a company’s performance. Neven et al. in [10] found that block holders
positively impact firms in MENA countries. On the other hand, Bele et al. in [11] found
no particular relationship between those variables when considering US listed firms.

Because of the impact that both interlocking and company ownership have on firm per-
formance and on corporate control, it is matter of interest to understand if those two
arguments are correlated or independent with each other. Related to this subject is the
work brought on by Auvrail and Ossard in [12]. They conducted a study over french listed
companies appearing in the CAC40 index across a nineteen years period between 1997
and 2006. They found out that overlapping directors and the network of shareholding
linkages are highly correlated. Concerning the connections based on ownership composi-
tion of firms, they linked two firms whenever those had a common shareholder, of if one
of the companies was investing in the other (ownership tie).
Van Lidth de Jeude et al. in [13] conducted another study on those matters considering
german, british and irish firms. They introduced a multilayer structure in order to create
different networks among the firms. They constructed four different layers based on own-
ership ties, directors interlocking, R&D collaboration and stock correlations. What they
concluded was that they were able to construct non overlapping layers that managed to
complement each other. Also in this case, shareholding network was constructed following
a criterion similar to the one used by Auvral and Ossard in [12].
Despite those examples, when it comes to constructing a network that takes into account
both interlocking as well as ownership composition in general (and not only focusing on
ownership ties), literature is rather scarce. This thesis tries to consider both those ar-
guments together in order to understand if those subjects are related. Does a company
that present a strongly concentrated ownership structure have on average fewer interlocks
with other companies, as it is already heavily controlled by its owners? Do companies
that are controlled by important institutions present many interlocks, as in general the
components of the BoD tend to reflect the choice of the main shareholders [12] ? Is it
possible to witness a correlation between dispersed ownerships and interlocks? Does the
category to which main shareholders belong to affect the composition of the Board of
Directors?
This thesis will try to adress these questions by following a similar approach to the one
introduced by Van Lidth de Jeude et al in [13].
Four different layers will be created regarding interlocks and ownership structure; they
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will be analised in depth both individually and together. The layer taking into account
interlocks will be construvted in two different ways, considering first "direct" and then
also "indirect" interlocks. The layers based on ownership structure will focus one on the
general characteristics of shareholders and one on possible ownership ties.
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2| Network Theory and Similarity

Indices

Several real world situations can be described by a set of nodes representing entities and a
collection of edges connecting them that enahance the presence of a relationship existing
between them. Social networks are the easiest example. The intricated web connecting
all different users can be conveniently represented by a graph were the nodes stand for
the users and an edge is created between two nodes in case the relative users are friends
on the social network.
But a graph can also be used to represent connection of cities through highways, rather
than airports and the presence of direct flights between them. Any feature that can be
decomposed in singular objects and relevant relationships between those is eligible to be
modelled through a graph. In this thesis graphs will be used to represent the different
companies listed in the Italian Stock Exchange and the relationship and similarites occur-
ring among them. Four different graphs will be created in order to represent two networks.
In all of them the nodes will embody the listed firms. The first two graphs will have edges
connecting companies within which interlocking occurs, while in the third and last one
edges will connect firms that present a similar overall ownership structureor an ownerhsip
tie. Those networks is studied both separately and together.
In the following chapter a basic graph theory review is given, focusing mostly on the
subjects, definitions and theorems that will be used when constructing and analising the
networks. Before that, an overview of the concepts of distance and similarity are given.
Those will come in hand when constructing the links among the different companies in
the two layers.

2.1. Metrics and Similarity indices

For th elayer considering ownership structure similarity, a similarity index is constructed,
that associates to every couple of companies a real number that quantifies the degree of
affinity of their respective ownership structure. A link among those firms is created in
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the network if this number exeeds a certain minimal threshold. The concept of similarity
index can be related to the one of distance among elements. Moreover, this last notion
is also important when it comes to either quantify the difference among graphs or by
computing the length of a path (i.e. set of edges) connecting two nodes in a layer. For
those reasons, this chapter will briefly summarise those notions.

Def 1. Given a set S, a metric (or distance) on S is a function

d : S × S → R

that satisfies the following properties ∀x, y, z ∈ S:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

the couple (S, d) is called metric space, while the inequality present in property number
4 is referred to as triangular inequality.

If the set taken into consideration is S = Rn, n ∈ N, then several notable distances can
be introduced. In the following, some of those are presented. Given x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Rn:

• Euclidian Distance: dE(x, y) =
√∑n

i=1(xi − yi)2

• Minkowski Distances: drM(x, y) =
(∑n

i=1(xi − yi)
r
) 1

r , r ∈ {N ∪∞}. For r = ∞ the
Minkowski distance is set as

d∞M(x, y) = max
i=1,...,n

|xi − yi|

Note that if r = 2 then d2M = dE.
Opposite to metrics which do have a strict mathematical definition, similarity indices are
defined in different ways according to the authors. In [19], the authors define a similarity
index on a set S as the function:

s : S × S → R

such that, ∀x, y ∈ S:

1. 0 ≤ s(x, y) ≤ 1
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2. s(x, y) = 1 ⇔ x = y

3. s(x, y) = s(y, x)

Similarity indices can be easily constructed through the usage of distances. Indeed, if
for example there exists a distance d on the set S that is unitary, in the sense that
d(x, y) ≤ 1 ∀x, y ∈ S, then a similarity index on S can just be constructed as s = 1− d.
Such a function satisfies properties 1, 2, 3 and is thus a similarity index. Note that a
similarity index does not satisfy, obviously, the triangular inequality, but more than that,
to construct one throughout the method just described, it is not even needed that the
operator d satisfies it.

2.2. Graph Teory Basics

Mathematically speaking, the definition of a graph is the following:

Def 2. Given a set V of n ∈ N elements and a set E ⊂ V × V , a graph G is defined
as G = (V,E). The elements v ∈ V are called nodes of the graph while the elements
e = (u,w) ∈ E are called edges of the graph.

To a graph G it’s possible to associate an incidence function ψG that associates to each
edge of G a pair of vertices. Mathematically,

ψG : E → V × V

e 7→ ψ(e) = (u,w)

Given a graph G = (V,E) of n ∈ N elements, the set of nodes V can be written as
V = {v1, . . . , vn}. The edge connecting the nodes vi to the node vj, i, j ∈ {1, . . . , n}, if
existing, will be indicated with eij, thus eij = (vi, vj).

For a graph G = (V,E), a subgraph Gsub is a graph Gsub = (Vsub, Esub) such that
Vsub ⊂ V and Esub ⊂ E. A graph is said to be directed if the set E is composed by
ordered pairs, while it is undirected if the pairs are unordered. In un undirected graph,
if a link exists between nodes vi and vj, there is no distinction between the edges eij and
eji. The separation between these categories allows to differentiate between the existence
of mutual and one-way relationships.
Graphs can be graphically represented with dots embodying the nodes and lines connect-
ing them embodying the edges. For directed graphs, arrows are used instead of arcs in
order to depict the direction of the connections. The following picture shows an example
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of two graphs belonging to the two classes respectively.

Figure 2.1: Undirected (left) and directed (right) graphs

A graph is said to be weighted if for every edge e ∈ E there exists a positive number
we ∈ R+ that represents the weight of the edge. Weighted graphs are used when the rela-
tionships between different nodes are not on the same level but can be more or less strong.

A useful way of representing a graph is through its adjacency Matrix:

Def 3. Given a graph G = (V,E) composed by n nodes, the adjacency Matrix associated
with G is the n × n matrix A such that:

A(i, j) = 1 if eij ∈ E

A(i, j) = 0 if eij /∈ E

In other words, the entry A(i, j) is equal to 1 if and only if the edge eij exists. For
undirected graphs the adjacency matrix is symmetric.
A weighted graph can be represented in a more precise way by using the n × n Weight

Matrix W defined as:

W (i, j) = wij, where

wij = weij , if A(i, j) = 1

wij = 0, if A(i, j) = 0

From now on, statements will be given for undirected graphs in order to ease up the
notation; moreover, graphs are going to be assumed to be unweighted unless specified
otherwise.

Given a graph G = (V,E), a walk w of length k is a sequence of edges (e1, . . . , ek)



2| Network Theory and Similarity Indices 13

for which there exist a sequence of vertices (v1, . . . , vk+1) such that ψ(ei) = (vi, vi+1) for
i = 1, . . . , k. If the graph is weighted, the length of the walk can be computed by assigning
a cost to each edge, representing the distance between the nodes at the end of the arc.
The cost of an edge can be computed in various ways; if it is not already given, it can be
computed as the inverse of the weight. The length of the walk is thus just the sum of the
costs of the edges composing the walk.
A walk is closed if the starting node coincide with the ending one. A walk is called a path

if all the nodes besides the first and the last one (thus also all edges) in it are distinct.
If a path presents the same starting and ending node it is called a closed path.
A node is said to be reachable from another node if there exist a path connecting them,
while it is said to be isolated if it is not reachable from any node. A network is said to
be connected if there exist a path connecting every single node to another. A connected

component is a maximal connected subgraph. In a connected graph G = (V,E), the
distance dij between the two nodes vi,vj is defined as the length of the shortest path
connecting them.
The operator d : V × V → R associating to each couple of vertices the distance between
them trivially defines a distance over the set V . The diameter D of a connected graph of
n edges on the other hand is given by the maximum among all the distances. In formulas:

D = max
i,j∈{1,...,n}

{dij}

2.2.1. Single node Indices

When referring to a single node of a graph, some measures can give information about its
importance in the network. Indeed, depending on the relative relationships a node has
with all the others in the network of study, it bears different caratheristics. In literature,
the notion of "importance" of a node is by no means unambiguous, and there is no
common accepted definition for it [18]. Following each one a different specific criterion for
indicating a node as important, those measures (often called indices) aim to intruduce an
order of importance on the vertices or edges of a graph by assigning real values to them.
One idea is that the more links a node has, the more it can be regarded as relevant.
But also a node that has few links but that with its presence allows the network to be
connected could be of particular interest. In order to properly quantify those features,
different measures are introduced. The most basic among those are the concepts of degree
and strength.
Given a graph of n nodes characterised by the adjacency matrix A, the degree ki of the
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i− th node, for i = 1, . . . , n is defined as

ki =
n∑

j=1

aij =
n∑

i=1

aij

where aij = A(i, j). The degree of a node gives information about how many links it has
inside the graph of interest. The degree can take all integer values from 0 to n.
For a weighted graph it is also possible to define the strength of a node, which takes
into account not only the number of edges a node is part of, but also the total weight of
those. For every node vi ∈ V the strenght si is defined as:

si =
n∑

j=1

wij =
n∑

i=1

wij

where wij = W (i, j) and W is the graph’s weight matrix. A network can also have some
regions of local density (clusters), meaning that some nodes are very interconnected with
each other while others are not. The clustering coefficient of a node tries to give a measure
of the extent to which a node belongs to such a cluster. Given an undirected network
G = (V,E) of n nodes, the clustering coefficient ci of node vi, for i = 1, . . . , n is
calculated as:

cli =
#triangles including vi

#unordered connected triplets centered in vi(vj, vi, vl)
j, l = 1, . . . , n, j ̸= l

Looking at the following example can help understand this definition:

Figure 2.2: A connected graph

In the graph presented above, node w for instance belongs to 2 different triangles, the one
composed by nodes (w, x, u) and the one composed by (w, v, u). The number of unordered
triplets it belongs to is equal to 3 ( triples (x,w, u), (x,w, v) and (u,w, v)). The clustering
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coefficient for node w is thus 2
3
.

The clustering coefficient can take values in [0,1], where 1 indicates that all nodes that
are connected to a given node also present an edge linking them, while 0 represents the
situation in which a node does not belong to any triangle. For a graph G = (V,E)

composed by n nodes, the clustering coefficient can be written as

cl(vi) =
#triangles including vi

ki(ki − 1)/2
i = 1, . . . , n

as one can choose the first node belonging to a triplet including vi in ki different ways
and choose the last one among ki − 1 other nodes. As the triplets are unordered, this
quantity has to be divided by 2. In case the denumerator were to be 0, that is if the
node considered is isolated, then the respective clustering coefficient is set to 0 as well.
A global clustering coefficient can also be defined for the overall graph G, as simply the
average of all clustering coefficients over all the nodes. In formulas:

C =
1

n

n∑
i=1

ci

Other measures try to grasp the visual concept of a node being somehow "central" in the
network of study. In one sense of this word, the node regaded as most central is the one
for which the distance to the furthest vertex is minimal.
Given a graph G = (V,E) of n nodes, the eccentricity centrality index for a node
vi ∈ V is computed as:

cE(vi) =
1

e(vi)
=

1

maxj=1,...,n{dij}

the denumerator e(vi) is defined as the eccentricity of node vi.
Another centrality measure that on the other hand regards as more central the nodes that
are overall closest to all others is closeness centrality. For node vi this defined as:

cC(vi) =
1∑n

j=1 dij

So while eccentricity centrality assignes bigger values to nodes with smaller maximum
distance, closeness centrality takes into account the total distance of all vertices from the
node considered. These measures can not be computed if the node taken into consideration
is not connected to every other node. As this might not be always the case, it is possible
to adjust these indices in order for them to not lose sense in these situations. One way is
to only consider the reachable nodes and to adjust the indices by a dumping factor taking
into account the fact that some nodes are not reachable. The adjusted indices are the
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following:

cE(vi) =

(
#rvi
n− 1

)2

· 1

maxvj∈rvi{dij}
cC(vi) =

(
#rvi
n− 1

)2

· 1∑
vj∈rvi

dij

where rvi is the set of reachable nodes from vi (not counting vi).
A node’s importance can also depend on the fraction of times it belongs to a shotest path
connecting all the other nodes to eachother. For this purpose, the betweenness centrality
index is defined. Always considering a graph of n nodes G = (V,E), for a node vi ∈ V it
is possible to define the following ratio:

δj,l(vi) =
σj,l(vi)

σj,l
j, l ∈ {1, . . . , n}, j, l ̸= i, j ̸= l

Here σj,l(vi) represents the number of shortest paths connecting nodes vj and vl passing
through vi, while σj,l is the number of shortest paths connecting nodes vj and vl. If this
were to be 0 then δj,l(vi) is set to 0 as well. The betweenness centrality index for node
vi is calulated as:

cB(vi) =

(
n∑

j=1,j ̸=i

n∑
l=1,j ̸=i,l ̸=j

δj,l(vi)

)
/2

The maximum betweenness a node can reach is in case all shortest paths between all
other nodes pass through the vertex being considered. In case of a network composed by
n nodes, this is equal to (n− 1) · (n− 2)/2.

Figure 2.3

This index is useful to describe a graph as the one presented in 2.3. In this situation, the
vertices in the center of the graph will present a higher betweenness centrality index with
respect to the remaining ones.

2.3. Network Analysis

Since this thesis will construct different layers across the companies listed in the Italian
Stock Exchange, it is useful to introduce an approach and a coherent notation for the
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study of multiple layers.

2.3.1. Multilayer Representation

Formally, a multilayer network is defined as follows:

Def 4. A multilayer network is a pair M = (G, C) where G = {Gα, α ∈ {1, . . . ,M}} is
a family of (directed or indirected, weighted or unweighted) graphs Gα = (Vα, Eα) called
layers of M and

C = {Eαβ ⊂ Vα × Vβ|α, β ∈ {1, . . . ,M}}

is a set of interconnections between nodes of different layers Gα and Gβ. The elements of C
are called crossed layers, while the elements of each Eα are called interlayer connections.

Note that in this definition the different layers do not need to be composed by the same
nodes. For the sake of this thesis, the set C, when considered, will simply be represented
by the crossed edges connecting the same nodes over the different layers. That is,

Eαβ = {(u, v) ∈ Vα × Vβ : u = v}

For each layer α ∈ {1, . . . ,M}, the set of nodes Vα is written as Vα = {vα1 , . . . , vαNα
}. The

Nα ×Nα adjacency matrix Aαrepresenting layer α (i.e. graph Gα) is

A[α](i, j) = aαij =

 1 if (vαi , v
α
j ) ∈ Eα

0 otherwise

This represents the interlayer adjacency matrix. To practically write the adjacency matrix
given by intralayer connections between two layers α and β ∈ {1, . . . ,M} one writes:

A[α][β](i, j) = aαβij =

 1 if (vαi , v
α
j ) ∈ Eαβ

0 otherwise

A[α][β] is a Nα ×Nβ-matrix.
This definition can be extended to include weighted multilayers. In this case, to each edge
and crossed layer edge it is assigned a (positive) real number representing the weight of
the edge. In formulas:

W [α](i, j) = wα
ij =

> 0 if (vαi , v
α
j ) ∈ Eα

0 otherwise
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For intralayer connections

W [α][β](i, j) = wαβ
ij =

> 0 if (vαi , v
α
j ) ∈ Eαβ

0 otherwise

When it comes to studying the caractheristics of the nodes composing the multilayer, it
is useful to simplify the notation and develop another representation of the network on
which each layer is augmented in its nodes. That is, in order to simplify the notation, V
=
⋃M

α=1 Vα is substituted to each Vα. We write the elements of V as V = {v1, . . . , vN}
where N = #V . As a consequence, also the different adjacency matrices and intralayer
connection matrices change in the following:

A[α](i, j) = aαij =

 1 if (vi, vj) ∈ Eα

0 otherwise

and

A[α][β](i, j) = a
[α][β]
ij =

 1 if (vi, vj) ∈ Eαβ

0 otherwise

Both A[α] and A[α][β] are N ×N matrices. The difference from the notation above is only
in the labelling of the nodes. By merging the set of nodes and considering each graph
on the overall set V , the relevant adjacency matrices mantain the same structure, in the
sense that they represent the same edges linking the same nodes as before, but modify
their representation because of the set on which they are defined.
The three dimentional matrix A = {A[1], . . . , A[M ]} completely defines the multilayer
structure. For a given layer α, the degree of node i ∈ {1, . . . , N} is

k
[α]
i =

N∑
j=1

a
[α]
ij

where aαij = A[α](i, j). The vector ki = {k[1]i , . . . , k
[M ]
i } keeps track of the degrees of node

i across all layers. The sum of this vector represents the total number of edges to which
vertex vi belongs to. The tensor A and the vector ki, i = 1, . . . , N are useful to store the
total information about the nodes, separating edges stemming from different networks.
To consider the number of times two nodes are directly linked in the network, the matrix
O is defined, whose entries are:

oij =
M∑
α=1

a
[α]
ij
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This matrix can be interpreted as the weight matrix of the aggretate network that rises
when merging the different network layers. Summing over all indices i, j ∈ {1, . . . , N}
bears the following

N∑
i=1

N∑
j=1

oij = 2O

where O represents the sum of all the edges of the aggretate network.
For weighted networks, given a set of M different layers on N different vertices, the
notation can be exteded by defining the matrices W [α] representing each one the weight
matrix of layer α. One gets

W [α](i, j) =

w
[α]
ij if(vi, vj) ∈ Eα

0 otherwise

as for the interlayer weight matrices

W [α][β](i, j) =

w
[α]
ij if(vi, vj) ∈ Eαβ

0 otherwise

The three dimentional matrix W = (W [1], . . . ,W [M ]) stores all the information regarding
the weights in all layers. The strength of node i in layer α is written as s[α]i =

∑N
j=1wij =∑N

j=1wji and this can be defined for each layer, thus allowing to compose the following
variable:

si = (s
[1]
i , . . . , s

[M ]
i )

For what concerns the aggregate weight matrix O, similarly to the unweighted case, its
entries are defined as

oij =
M∑
α

wα
ij

The sum over all entries of this matrix
∑N

i,j=1 oij = 2O computes O that is the overall
size of the weighted multiplex.

Besides those first node and mean network measures, some interesting indices can also
be introduced in order to measure the similarity of the different layers composing the
network. Indeed, one of the aims of the thesis is to understand the extend to which the
layers stemming from different data, either governance or ownership structure, bear com-
mon features. In this direction it is possible to introduce several notions that quantify
those information: the edge overlap, the graph distance and the mean entropy.
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Given a multilayer network M = (G, C) composed by M layers such that each set of nodes
V1, . . . , VM = V is the same, the edge overlap index of layers α = {α1, . . . , αnα} on layers
β = {β1, . . . , βnβ

} ( β ⊂ α) is given by the fraction:

EO(α,β) =

∑N
i,j=1 a

α1
ij · ... · aαnα

ij∑N
i,j=1 a

β1

ij · ... · a
βnβ

ij

The edge overlap between two set of layers α and β takes value in [0, 1], where 0 means
that there is no edge belonging simultaneously to all layers in α, while 1 represents the
situation in which all links belonging to all layers in β are also present in all layers in α.

Other indices similar to this one aim to quantify the degree to which a layer (or set
of layers) contributes to the whole structure. These are for example the contribution and
structural reducibility indices. These will be presented in the following paragraphs, as
other relevant mathematical definition must be given before them in order to define them.

The other topic that can be introduced is the concept of a distance between graphs.
This can be used to quantify how similar the structures of different layers in a network
are. The authors describe in [22] the construction of a specific distance between connected
graphs that is based on the distances between their respective nodes. This can be easily
extended to disconnected layers as well.

Theorem 2.1. Let G be the set of all undirected, connected graphs insisting on a set of
N nodes V . Then the function d̃ : G × G → R defined as

d̃(G1, G2) =
∑

{u,v}∈G1×G2

|dG1(u, v)− dG2(u, v)|

where dG1 , dG2 : V × V → R are the usual distances over the set V on the graphs G1 and
G2, is a distance over the set G.

The definition of the distance d̃ can be easily extended to disconnected graphs in case un
unweighted edges. It is possible to define the operator d : G × G → R over the cartesian
product of the set of undirected, possibly disconnected graphs of N nodes G with itself
as:

d(G1, G2) =
∑

{u,v}∈E1∩E2

|dG1(u, v)− dG2(u, v)|+
∑

{u,v}∈E1\E2

|N − dG1(u, v)|+
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+
∑

{u,v}∈E2\E1

|N − dG2(u, v)|

The extension from d̃ to d follows the intuitive idea of imagining to consider disconnected
nodes as if they were connected by a path of length N . Transforming the graphs into
connected ones, it is possible to recover the old distance definition.
The proof of that d is a distance can be found in the appendix.

Another useful tool to analyse the different layers composing a network is throughout what
is referred to as mean entropy. This is a measure of how the overall degree (strength)
of the nodes composing the network is spread across the different layers. Considering
a multilayer structure M of M layers, each one insisting on the same set of nodes, in
order to describe for each node the distribution of its degree among all the M layers, it is
possible to introduce the following quantity:

Hi = −
M∑
α=1

k
[α]
i

oi
ln
(k[α]i

oi

)
where oi =

∑N
j=1 oij and N is the number of nodes, and regular algebra is extended to

infinite values according to the conventions that 0 · ∞ = 0 and 0
0
= 0. This quantity

is called Entropy1 and takes value zero if all links for the i − th node are in one layer,
while it takes higher values the more the links are equally distributed across the different
layers. This quantity helps to understand the extent to which a nodes importance in the
multiplex structure is distributed among the different layers.
The mean of these values over all nodes bears the final result

H =
1

N

N∑
i=1

Hi

The same definition can be given for weighted networks, substituting the vectors k with
s and updating the definition of the vectors o accordingly. In formulas

Hi = −
M∑
α=1

s
[α]
i

oi
ln
(s[α]i

oi

)
and

H =
1

N

N∑
i=1

Hi

1see appendix for details.
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2.3.2. Network Projection

Another way of studying a multiplex is by assigning a matrix to it, by either projecting
or flattening the network. The projected network is important when there is no need
to discern between different layers. Sometimes, it is useful indeed to aggretate these
information in order to study the graph that would appear if all networks were to be
merged in one. In this direction, indicate with MN(N,M) the set of (possibly weighted)
multi networks composed by N nodes and M layers. Then, the projection of order
m ∈ 1, . . . ,M of layers α = {α1, . . . , αm} is the operator πα such that:

πα :
MN(N,M) →MN(N, 1)

M 7→ πα(M)

where the network πα(M) is completely identified by the adjacency matrix Aπα whose
entries are

aπα
ij =

 1 if ∃α ∈ {α1, . . . , αm} : a
[α]
ij = 1

0 otherwise
i, j = 1, . . . , N

and, in case of a weighted network, by the matrix Wπα whose entries are:

Wπα(i, j) = wπα
ij =

∑
α∈{α1,...,αm}

w
[α]
ij

Given this notation, considering a network M of N nodes and M layers, the aggregate
projection matrix Ap = (apij)

N
i,j=1 is defined as the adjacency matrix of the 1 layer network

πp(M) := π{α1,...,αM}(M). The degree of node vi in the aggregate network is

kpi =
N∑
j=1

apij =
N∑
j=1

apji

summing over all nodes leads to
N∑
i=1

kpi = 2Kp

where Kp represents the total number of links present in the final structure. Note that
this construction does not consider if different nodes are linked multiple times in the ini-
tial networks. In this sense, some information is lost when considering only the aggregate
structures Ap and Kp.
If the multinetwork M is weighted, then the projected weight matrix Wp is the weight
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matrix of the 1 layer projected network πp(M). Once the matrices Ap and Wp are con-
structed, it is possible to carry one with the single layer analysis presented in the previous
chapters in order to understand which are the most important nodes in the projected layer.

This notation is helpful when introducing a new index that aims to quantify the de-
gree to which a layer affects the overall structure. This one is the contribution index.
Considering a multilayer M of M different layers insisting on the same set of N nodes V ,
the contribution of a set of m layers α to a set of n layers β, with α ⊂ β and m ≤ n,
is given by the following index:

COA(α,β) =

∑N
i,j=1 a

πβ(M)
ij − a

πγ(M)
ij∑N

i,j=1 a
πβ(M)
ij

where πγ(M) represents the projection of the layers γ = β\α onto one single graph. This
quantity ranges in the set [0, 1], indicating the fraction of the number of links to witch
the layers α contribute uniquely to build. It is equal to 0 when taking also into account
layers α does not lead to new edges in the projected layer πβ(M) with respect to πγ(M).
In case of a weighted network M, the same definition can be given:

COB(α,β) =

∑N
i,j=1w

πβ(M)
ij − w

πγ(M)
ij∑N

i,j=1w
πβ(M)
ij

Again, COB(α,β) takes values in [0, 1].

Another useful usage that can be made of this network representation is for comput-
ing the importance of a layer in the overall structure. The index quantifying this feature
is linked to what is reffered to as structural reducibility measure. This index helps
in understanding if different layers can be aggregated in case they bear similar informa-
tion. It is computed by means of the Von Neuman entropy. This concept must not
be confused with the one of entropy presented in the previous pharagraph. This quan-
tity, rather than computing the distribution of the different node’s degrees (or strengths)
across layers, calculates the distribution of the degrees (or strengths) of all nodes in a
sigle layer. Given a graph G = (V,E) of N nodes, the Von Neuman entropy hV N of the
graph is given by:

hV N = −Tr(LG · log2(LG))

where the operator Tr is the trace operator, that is Tr(B) =
∑N

i=1 bii, and LG is the
rescaled laplacian matrix associated with the graph G. Recall that LG = c · (D − A)
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where D is a diagonal matrix, having as diagonal entrances the degrees of the nodes, A
is the adjacency matrix and c = 1/

∑N
i,j=1 aij is a rescaling factor.

Note that, while Hi is a quantity related to a single node, computed over a network, hV N

is a measure associated to a layer, computed over all its nodes.
Assuming now to consider a network M of M layers across N nodes, it is possible to
extend the concept of Von Neumann entropy to the whole network. This is given by the
following quantity:

HV N(M) =
1

M

M∑
α=1

h
[α]
V N

where h[α]V N is the Von Neumann entropy for layer α. This quantity can now be used
in order to calculate structural reducibility. Structural reducibility calculates the VN
entropy between a given network and its aggregate, projected representation. Structural
reducibility aims to find the best representation R of the network M that maximises the
quantity:

q(R) = 1− HV N(R)

HV N(πp(M))

In this notation, R is a multilayer network composed by m layers, m ∈ {1, . . . ,M}, each
one being either an original layer of M or the result of a projection of some of those onto
one layer. That is, each layer Rβ of R, β = 1, . . . ,m is given by one of the two following
statements:

∃α ∈ {1, . . . ,M} st Cβ = Mα

or
∃n ∈ {1, . . . ,M −m},α = {α1, . . . , αn} ⊂ {1, . . . ,M} st Cβ = πα(M)

where Mα represents layer α of the network M. It is important to notice that each
original layer of M can be used to construct one and only one layer of R.
The index q(R) is called structural reducibility quantity. It calculates the relative en-
tropy between an aggregate representation R of M and the projected network πM(M).
The larger q, the more distinguishable the layer is from the projected one. For example,
supposing that the multilayer R is composed by n identical layers, then q(R) = 0 as
the projected graph πM(M) and the network R bear the same entropy. The best rep-
resentation of M is the one maximising q, and this is because an increase in q usually
corresponds to the merge of layers having very similar structure [23]. Thus, by maximis-
ing this quantity, one tends to avoid using a representation that might contain redundant
layers. In case then argmax(q) = M, this would mean that all layers bring relevant
different information. In other cases, the merging of different layers implies that those are
similar to each other and contribute likewise to the final information provided.
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2.3.3. Network Flattening

Another way of representing the same network throughout a single layer is by constructing
the flattened matrix Af . This description of the networks differs from the one just
described, because it does not neglect the difference of the layers by projecting them on the
same adjacency matrix. Given a network M of M layers, each one insisting on the same
set of N nodes V = {v1, . . . , vN}, the flatten adjacency matrix Af is an NM ×NM block
matrix. The diagonal entries, i.e. M different N×N matrices, are the adjacency matrices
of the M different layers. The off diagonal entries are on the other hand represented by
the N × N Identity matrices. These represent the interlayer connection between nodes.
Those interlayer edges connect the same nodes over the different layers. The block matrix
Af is given thus by:

Af =



A1 Id · · · · · · Id

Id A2 Id · · · Id
... Id

. . . ...
...

... . . . Id

Id Id · · · Id AM


whre Id represents the N ×N identity matrix. The construction of Af is perfectly in line
with the first original network definition, were the interlayer edges are used to match the
same nodes over the different layers. It is also possible to extend this definition to weighted
graphs, however the flattened representation is more useful when thought in terms of cost
of an edge, rather than weight of it. Recall that the cost of an edge is a positive real
number that is assigned to that edge, representing the "price" to pay, the distance to
travel in order to move from one node to another. Given the same network structure as
before, but assigning moreover to each layer an N ×N cost matrix Ci, i = 1, . . . ,M , the
overall flattened cost block NM ×NM matrix is defined as:

Cf =



C1 0 · · · · · · 0

0 C2 0 · · · 0
... 0

. . . ...
...

... . . . 0

0 0 · · · 0 CM


where 0 represent the null N × N matrix. Once such a matrix has been introduced
then it is again possible to complute the classical single layer centrality measures. It is
important to notice that in this case, as the off diagonal entries of the block matrix Cf
are the null matrices, there is no cost in moving from one layer to the other. In other
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words, there is no difference in thinking of a node as belonging to one layer rather than
to another. One point has to be highlighted when considering both the projected and
flattened representations of a network. The matrices Ap and Af represent the same multi
layer structure, but bear different features. The first one projects all layers on a single one;
moreover one node is associated with only one column (row) of the matrix. In the second
representation on the other hand, to one original node correspond M different columns
(rows). For these reasons, also the analysis that are going to be brought on them might
lead to different results, for example in identifying the most important node according to
a specific centrality measure.
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3| Dataset Review

The dataset considered regards companies listed in the italian stock exchange, the Borsa
Italiana. Borsa Italiana was founded in 1998 after the privatization of stock exchanges in
Italy; its role is to attend to the organisation and management of the financial market in
Italy. Since the 29th of April 2021 it has been part of the Euronext Group that regulates
markets in Milan as well as in Amsterdam, Bruxelles, Dublin, Lisbon, Oslo and Paris.
According to the official website of Borsa Italiana, there were 326 listed companies in 2020
at the Italian Stock Exchange, considering MTA and the companies admitted to Global
Equity Market [16]. In 2020 the overall market capitalization reached more than 600000
million Euros and accounted for around 37% of the italian GDP [16].
Out of the 326 listed firms, the dataset collects information for 234 companies for which
data is avaliable regarding either ownership structure or BoD composition. Information
regarding BoD composition was collected either from the private websites of the different
companies or directly from the Borsa Italiana web page. The dataset concerning owner-
ship structure was retreived from the official website of CONSOB, the italian authority
for the vigilance of financial markets. All information are to be considered as of end of
2020. It is worth noticing that, considering the major listed companies in terms of market
capitalization, the dataset does not include the holding Exor N.V. and associated com-
panies like Stellantis N.V , Ferrari S.p.A., CNH Industrial N.V. nor the companies
Campari Group and Tenaris S.A. for which no data was found online.

3.1. Board composition

The dataset regarding the composition of the Board of Directors was collected by looking
through the reports of corporate governance and the reports on remuneration and com-
pensation paid. Out of the 234 companies for which information was retrieved, it was
possible to find data regarding BoD for 201 different companies.
For each company, the dataset shows the composition of the Board of Directors as of end
of 2020 or latest information avaliable; for every director basic personal data are reported
as name, gender and age. It was also possible to retrieve information about the profes-
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sional position that they represent as for example their role in the BoD, if they classify
as independent, the number of Committees they are member of and their yearly remu-
neration. For companies that adopt a two-tier system1, rather than a one-tier system2,
the members of the Management Board were considered as directors. For the aim of this
thesis and for the creation of a network among the considered companies based on the
presence of possible interlocking between them, the solely information of interest is the
name of the different directors. In the following lines, a small descriptive analysis of the
dataset is given in order to grasp the main features about it.
The average number of directors sitting on a board is 9,8. The company that presents
the smallest BoD, composed by only 2 members, is S. S. Lazio, which is also the only
company adopting a two tier system. The maximum number of directors sitting on a
board is 19. The company presenting the most numerous BoD is Unipol Group S.p.A..
The following bar plot shows the number of directors composing the boards across the
different firms.

Figure 3.1: Board of Director composition across firms

For what concerns the people involved, 1780 different persons span over 1971 different
director positions. That means that, on average, a director sits on 1,1 different boards.
Out of the 1780 different persons, 163 occupy more than one position across the considered
companies and thus account for creating an interlock between firms; in percentage this
means that a little more than 9% of the directors hold more than one position. The
maximum amount of roles taken by the same person is 5. The following pie chart helps
in visualizing these informations.

1a two-tier system is a type of company governance structure in which the management and supervisory
tasks are separated across two different boards.

2a one-tier system is a type of company governance structure composed by only one board of directors.
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Figure 3.2: Shareholders’ occupied positions

As it can be seen, the majority of directors only sit on one board among the ones considered
in the dataset.

3.2. Ownership structure

For what concerns the ownership structure of the different companies, it was possible
to retrieve information for all the 234 companies but D′amico S.p.A. and IV S Group,
two companies working in the maritime transportation and food service sectors respec-
tively. For both firms though, information about BoD composition was avaliable. For
every company, the dataset shows, among other info, the name of the different relevant
shareholders along with the percentage of shares they hold. A relevant shareholder is one
whose percentage of shares is above 2%. It also shows the shareholders’ societary form
(for example if it is a fund, a public traded company, a bank etc).
By looking through the dataset, a few features pop up that are worth noticing: first of
all, it turns out that the average percentage of shares hold by a relevant shareholder is
around 50%. At the same time, 134 companies, close to 58% of the sample, present their
most relevant shareholder to hold more than 50% of the total shares. This information is
in line with the one presented in [6] that showed how, in Italy, around half of the compa-
nies are fully controlled by their major shareholder. The following histograms show how
the percentages of shares hold by relevant shareholders are distributed across the firms
considered in the dataset.
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(a) Ownership distribution (b) Cumulative ownership distribution

Figure 3.3: Main sharelholders’ ownership distribution

In (b) it appears clear how over 50% of the relevant shareholders hold more than half of
the tradable shares, while from (a) we can retrieve how overall relevant shareholders tend
to own a considerate amount of tradable shares. Moreover, relevant shareholders hold
a combined overall percentage of shares for each company above 50% in 187 companies,
that is around 80% of the sample. Also this index is in line with what was found in [6].
The average combined percentage of shares hold by relevant shareholders is little more
than 65%, and the average number of relevant shareholders for each company is 2,6, with
a standard deviation of 1,8. The following histograms visualise those information while
showing once again the marginal and cumulative distribution of the sum of all relevant
shareholders owned equity for single firms.

(a) Ownership distribution (b) Cumulative ownership distribution

Figure 3.4: Combined relevant shareholders’ ownership distribution
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For what concerns the number of relevant investors, the company with the highest number
of them (9) isHera S.p.A., a multi-utility company founded in Bologna. For this company,
the relevant shareholders are mainly represented by public investors. The graph below
shows the distribution of the number of relevant shareholders for each firm.

Figure 3.5: Number of relevant shareholders’ distribution

Considering the category to which different shareholders can belong to, again in line with
what [6] found, it turns out that the majority of shareholders are private investors. The
dataset separates between 14 different categories to which a shareholder can belong to.
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Categories Shortening
Bank BAN

Cooperative COP
Fundation FOND

Fund FP/GR
Insurance ASS

Other entity EV
Private investor PF
Public entity EP

Società in Accomandita per Azioni SAPA
Società in Accomandita Semplice SAS

Società in Nome Collettivo SNC
Società per Azioni SPA
Società Semplice SS
Trust company TRUST

Table 3.1: Different Shareholders categories

The table above summarises all the possible categories. In this dataset, around 84% of
the firms have as their first owner either a single person, a public traded company, an
entity belonging to the public sector or an SRL firm. Below the number of companies
divided with respect to the category of their first shareholder.

Figure 3.6: First shareholder category distribution
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This chapter will present the methodology followed for constructing the different layers.
When considering interlocking directorates, the construction of links among companies
does not require a similarity index. The construction of the layer based on ownership
similarity on the other hand is based on one. For each dataset, two types of layers will
be constructed. Concerning the BoD composition, we consider two typers of interlokcing:
a direct and an indirect one. The latter relaxes the definition of interlock, and allows for
more links to be born in the final layer. As for what concerns the dataset on companies’
ownership structure, the first layer aggregates those companies that present a similar
shareholder composition. This is done by introducing a similarity index. That means
that firms whose equity is distributed across shareholders in a similar way are regarded
linked. The relevant information does not consider who is controlling firms, but how
the shareholders structure looks like. In this, the similarity index tries to differentiate f.e.
among heavily controlled companies rather than ones that do not have a big major owner.
Finally, the last layer takes into account what are referred to as ownership ties; in other
words, it links firms that have a shareholder in common. The following pages present the
construction of the different adjacency and weight matrices representing the layers.

4.1. Interlocking network construction

For the construction of the first layers based on possible interlocking among companies,
the dataset regarding the different Boards of Directors composition is considered. In this
chapter, direct and indirect interlocks are presented. For the sake of notation, let V be
the set of all companies present in this dataset and n = #V the number of all firms taken
into account.

4.1.1. Direct Interlocking

Indicate with vi ∈ V , i ∈ {1, . . . , n} a general company, and with di = {di,1, . . . , di,mi
} the

mi directors sitting on its board. When considering only direct interlocking, the adjacency
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matrix A is constructed as follows:

Adi(i, j) =

 1 if #{di ∩ dj} ≥ 1

0 if #{di ∩ dj} = 0
i, j = 1, . . . , n i ̸= j

In this case interlocking occurs only if two different companies share a director. The
correspondent weight matrix W is the following:

Wdi(i, j) =
#{di ∩ dj}

M
i, j = 1, . . . , n i ̸= j

where M = maxi ̸=j{#{di ∩ dj}}. By definition, W (i, j) ≤ 1 for every i, j.

Indirect Interlocking

In literature [21], another more broad definition rather than the one just presented is given
for identifying an interlock. Under this conception, for an interlock to occur it just needs
to happen that directors of different firms also sit, together, on a board. For example,
imagine that a is a member of the BoD of company A and b is a member of the BoD of
company B. Suppose that both a and b also sit on the BoD of a third company, C. In
this situation, a link will be created between A and B (and, of course, also between A

and C and B and C). Mathematically speaking, this can be modelled as follows:

Aii(i, j) =

 1 if ∃k ∈ {1, . . . , n}, l ∈ {1, . . . ,mi}, h ∈ {1, . . . ,mj} : di,l, dj,h ∈ dk

0 otherwise

i, j = 1, . . . , n i ̸= j

As for the direct interlocking case, the weight matrix is constructed as:

Wii(i, j) =
χij

maxij χij

where:

χij = (1− δij) ·#{k ∈ {1, . . . , n} : ∃l ∈ {1, . . . ,mi}, h ∈ {1, . . . ,mj} : di,l, dj,h ∈ dk}

and δij is the Kronecker’s delta, i.e.

δij =

 1 if i = j

0 otherwise



4| Network construction 35

4.2. Ownership similarity index

The construction of the first ownership layer, as said before, is based on the definition of a
similarity index, which is deduced from a distance measure. According to how this index
is constructed, the final layer presents different features. The second layer takes into ac-
count possible ownership ties. The following paragraphs highlight the guidelines followed
for leading this procedure. Consider again the notation of the previous paragraphs for
the set of n companies V .

4.2.1. Ownership Similarity

From the dataset regarding the ownership structure, the information taken into account
for constructing this layer are: the percentage of equity owned by the biggest shareholder
(ps1), the percentage of combined equity hold by relevant shareholders (prs), the number
of relevant shareholders (nrs) and finally the category to which a relevant shareholder can
belong to (c). Recall that a shareholder is regarded to as "relevant" if the percentage
of equity he/she owns is greater than or equal to 2%. The final distance between two
companies will be constructed as a weigthed average between the marginal distances of
the two in the aforementioned aspects. As the numbers ps1 and prs, indicated as fractions,
are real numbers belonging to the interval [0,02 1] it is possible to compute the distance of
two firms in terms of those information using simply the d∞ distance. If the set of n firms
is V = {V1, . . . , Vn}, then the distances in terms of equity percentage of main shareholder
and relevant shareholders between the firms vi, vj ∈ are respectively:

d̃s1(vi, vj) = |pis1 − pjs1| i, j ∈ {1, . . . , n}

and
d̃rs(vi, vj) = |pirs − pjrs| i, j ∈ {1, . . . , n}

where the apices in this and the following notations represent the indices identifying the
companies considered. When considering percentage of shares, an important threshold is
usually set to 50%[15]. Indeed, this is the percentage of equity that is usually needed to
gain full control of a company. That means that there is a relevant difference between
holding an amount that is more rather than less than the half of traded shares. This is why
both those distances are adjusted by a factor that takes into account this consideration.
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The distance measured between two companies thus results in:

ds1(vi, vj) = 1{Aij}(p
i
s1, p

j
s1) + d̃s1(ci, cj) · 1{Ac

ij}(p
i
s1, p

j
s1)

and
drs(vi, vj) = 1{Bij}(p

i
rs, p

j
rs) + d̃rs(ci, cj) · 1{Bc

ij}(p
i
rs, p

j
rs)

where Aij and Bij are respectively given by

Aij = {(pis1, p
j
s1) ∈ [0, 1]× [0, 1] | (pis1 > 0, 5 ∧ pjs1 ≤ 0, 5) ∨ (pis1 ≥ 0, 5) ∧ pjs1 < 0, 5)}

Bij = {(pirs, pjrs) ∈ [0, 1]× [0, 1] | (pirs > 0, 5 ∧ pjrs ≤ 0, 5) ∨ (pirs ≥ 0, 5) ∧ pjrs < 0, 5)}

and the complementary is taken with respect to the set [0, 1]× [0, 1]. This basically means
that the distance ds1 (respectively drs) among two companies is 1 if one is completely
controlled by its first main shareholder (respectively relevant shareholders) and the other
one is not. If this is not the case, then ds1 (respectively drs) is just given by the absolute
value of the difference of the amount of shares owned by the first shareholder (respectively
relevant shareholders).
When considering the number of relevant shareholders, the distance between two firms vi
and vj according to this criterion can be computed as |ni

rs − nj
rs| normalised by a scaling

factor. In formulas

dnrs(vi, vj) =
|ni

rs − nj
rs|

maxi ni
rs −mini ni

rs

i, j ∈ {1, . . . , n}

As for what concerns the category to which the most relevant shareholder belongs to, in
this sense the distance considered has a binary form as defined below:

dc(vi, vj) = 1{vi=vj}(vi, vj) i, j ∈ {1, . . . , n}

To compute the overall distance among companies while taking into account all these
information, one can sum up the squares of those quantites and taking the root of the
final score.

d(vi, vj) =
√
ds1(vi, vj)2 + drs(vi, vj)2 + dnrs(vi, vj)

2 + dc(vi, vj)2 i, j ∈ {1, . . . , n}

Because of the normalizations imposed, d(vi, vj) ∈ [0, 1]. Finally, the similarity index s is
thus defined as

s(vi, vj) = 1− d(vi, vj) i, j ∈ {1, . . . , n}
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Once such an index is introduced, it is rather straightforward to define the weight and
adjacency matrices for the set of companies V . In order to avoid to build a fully connected
network, what is missing to be identified is the minimum threshold t that the similarity
value must reach in order for a link to be born. The weight and adjacency matrices will
thus be defined as

W (i, j) =


s(vi,vj)−t

1−t
if i ̸= j ∧ s(vi, vj) > t

0 otherwise

and

A(i, j) =

 1 if s(vi, vj) > t ∧ i ̸= j

0 otherwise

The choice of the threshold has a great impact on the network. Indeed, choosing low
levels of t would result in a fully connected network, while values for t close to 1 would
lead to a graph with very few (if any) edges.

4.2.2. Ownership Ties

The next layer concerns again the ownership structure of listed firms and it regards what
are usually referred to as ownership ties [15]. Those arise between two firms when either
one of them is holding an amount of shares in the other that is greater than 2%, or
if the two companies present a shareholder in common. In this freamework, the links
are undirected, thus there is made no distinction between which company is investing
in which. Because of this, the resulting adjacency and weight matrices are of course
symmetric. Given a set of n companies V = {v1, . . . , vn}, the n×nmatrixNot is calculated
as follows:

Not(i, j) = #{Si ∩ Sj}+ 1{Si}(vj) + 1{Sj}(vi)

where Si and Sj represents the set of main shareholders of companies vi and vj respectively.
Not represents the number of links that bound all companies. From this matrix, the weight
and adjacency matrices Wot and Aot are computed as:

Wot(i, j) =
Not(i, j)

maxij Not(i, j)

Aot(i, j) =

 1 if Wot(i, j) > 0

0 otherwise
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This chapter presents the analysis of the 4 introduced layers. Those are here studied
singularly and independently. For each layer, few main features about its structure are
presented, as the average values of the most relevant indices and centrality measures.
Afterwards, a more in depth analysis is brought on by trying to identify which are the
main components of the layer and the most relevant nodes according to different measures.
The graphs representing the different layers have been plotted using the software Gephi,
while all other computations, as for example the creation of the adjacency matrices or the
centrality measures have been implemented in MATLAB and Excel.

5.1. Interlocking Layers

201 companies out of the 234 that compose the dataset of study present information
regarding the composition of their Board of Directors. To each of those, a unique number
is assigned in order to properly identify it. Writing this in terms of the mathematical
notation previously introduced, the set of companies is the set V = {v1, . . . , v201}.

5.1.1. Direct Interlocking

The 201×201 weight and adjacency matricesWdi,Adi built following the procedure exposed
in the previous chapter considering direct interlocking completely identify the final layer.
The graph is presented in the following picture:
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Figure 5.1: Direct Interlocking layer

The layer is composed by 201 nodes and 269 edges. The nodes’ color and size reflect the
degrees of the correspondent companies. Bigger nodes are the ones that present more
connection in this layer. Companies depicted in pink are the ones that do not ingage in
interlocks. Out of 201, 38 firms are the ones that are not connected to any other, that is
around 19% of the total sample. First thing to notice is that the layer presents one giant
component, a few disconnected components and then, as said before, 38 isolated nodes.
148 firms, around 73% of the ones considered belong to the giant component. In order
to capture other basic features of this first layer, the average values of the main node
measures are reported in the following table.
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Measure Average Value
Degree 2,67

Strength 0,33
Clustering 0,26
Closeness 6,2·10−4

Eccentricity 5,7 ·10−3

Betweenness 1,89·102

Diameter 99

Table 5.1: Average layer measures

While betweenness is difficult to interpret when it comes to average layer values, other
quantities are useful. The average degree and strength show how the layer is far from
being highly connected. The clustering coefficient, which by definition ranges in the
interval [0 1], shows that not many local clusters arise. As for closeness and eccentricity
centrality, a node present the highest scores in these measures when it is connected with
every other node and the edges present the less possible cost. As the cost is here computed
as the inverse of the weight, and given the fact that the maximum weight is 1, the smallest
distance between two nodes is 1. Thus, in such a layer composed by n nodes, the maximum
closeness and eccentricity scores are respectively 1

n−1
and 1. Again, the average scores

presented in table 5.1 shows how the layer generally presents few and light edges. The
company presenting the most edges connecting it to the rest of the layer is OV S S.p.A.,
with 13 different interlocks. The degree distribution across all firms is shown below:

Figure 5.2: Degree distribution

The majority of the companies present less then 4 links. As for the degree distribution,
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it is shown in the following bar plot:

Figure 5.3: Strength distribution

The histogram plots the different strength that a node can take in this layer against the
number of occurrencies. The maximum strength is less than 1,6 as nodes tend to belong
to few edges. Again, the maximum strength is hold by OV S S.p.A.

The clustering coefficient and the betweenness centrality measure for all nodes are pre-
sented in the following histograms.

(a) Clustering distribution (b) Betweenness distribution

Figure 5.4: Centrality distributions

Histogram (a) shows how the nodes belonging to local clusters are not the majority of
them all. Beside 17 companies that present the maximum reachable clustering coefficient,
other companies tend to present very low levels for this index. Picture (b) plotting the
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betweenness centrality measure has been normalised for the greatest value reached by a
node for this quantity. It shows that the most relevant firms according to this index is
again OV S Group.

(a) Closeness distribution (b) Eccentricity distribution

Figure 5.5: Centrality distributions

Figure 5.5 shows the distribution of closeness and eccentricity centrality over the layer,
again normalised so to fit in the interval [0 1]. The two measures present a similar trend,
although eccentricity is more concentrated in fewer values. This is a consequence of its
definition that takes into account the maximum of the distances of node instead of the
overall sum. According to closeness centrality OV S Group is once again the most relevant
node. This is also true when considering eccentricity, but in this case along with other 8
companies.

5.1.2. Indirect Interlocking

The layer structure stemming from the construction of indirect interlocks is the following:
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Figure 5.6: Indirect Interlocking

Exactly as in the prior case, a giant component is present to which the majority of
the firms belong to. This is composed by the same 163 firms that composed the giant
component in the prior layer. Moreover, the same 38 firms that were isolated in the prior
layer are isolated in this structure as well. The number of total edges though changes
drastically; in fact, from 268 edges for the direct interlocking layer, the number of links
among companies raises to 1020. This difference is underlined by the following average
measures:
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Measure Average Value
Degree 10,15

Strength 2,19
Clustering 0,62
Closeness 1,1 ×10−3

Eccentricity 1,8 ×10−2

Betweenness 81,00
Diameter 29,75

Table 5.2: Average layer measures

Indeed, mean degree and strength take higher values due to the higher number of connec-
tions. Also closeness and eccentricity tend to show smaller values on average. Clustering
coefficient raises to almost the double of its prior value, showing how more local clusters
arise. The following bar plots show again the distribution of those measures across all
nodes.

Figure 5.7: Main layer measures’ distribution

The node regarded as the most important according to degree, strength, closeness and
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eccentricity measures is again OV S S.p.A.. On the other hand, betweeneess centrality
indicates Atlantia S.p.A. as the most relevant node in the layer. Both companies present
a clustering coefficient smaller than 0,3 indicating that for both firms less than 30% of
companies to which they are linked are directly joined to each other.

5.2. Ownership Layer

The study of the layer based on ownership data regards 232 companies. 33 new companies
are introduced with respect to the prior layer; firms D′Amico S.p.A. and IV S Group do
not belong to the dataset anymore.

5.2.1. Ownership Similarity

The construction and analysis of the ownership layer is subordinated to the choice of the
threshold t to indicate when it comes to building links among companies. The threshold
t is important because without it the layer would result in being totally connected, in the
sense that each company would be linked to every other. For this layer the choices on
this parameters is t = 0.875. The reason behind this value is driven by the outcome of
the similarity index construction. Indeed, the distribution of the similarity index s over
all firms is the following:

Figure 5.8: Similarity index distribution

As one can clearly see, the distribution of s follows piecewise increasing patterns alterned
with drastic decreases. The values of s in correspondance with which the spikes occurs are
not random, but depend on the choice of the distance introduced. This distance depends
on 4 different quantities. Assuming two companies to present the exact same features in
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only one of those and to be completely different in all the others, the similarity index in
this case becomes equal to around 0, 134. If they match in only two of those, the similarity
rises to around 0, 293, and to 0, 5 when 3 of their discriminants perfectly matches. The
spikes in the distribution of the similarity index are in correspondance with those values.
For the dataset taken into consideration, no companies present the same exact features for
all four attributes. Setting a threshold equal to 0, 875 means that companies are regarded
as similar in case their similarity index equals the one of two companies that are the same
in at least 3 of their main attributes, and present the distance in the last attribute to be
less than 0,25 (on a scale from 0 to 1). The final structure of the graph is shown here
below:

Figure 5.9: Ownership layer 1

The graph results in not being connected and being composed by 879 edges. It decomposes
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in two main giant components and other smaller disconnected ones. Overall, the number
of connected components is 62, when including also isolated nodes. The number of those
nodes adds up to 43. The main structure of the graph is represented by a giant component,
formed by 59 nodes. This means that more than 22% of the firms belong to the giant
connected component. It is interesting to observe how the ownership structure looks like
for the companies belonging to the two main giant components. As the lower threshold t
has been set to 0, 875, looking at a couple of companies for each component gives an idea
on how the mean ownership structure for it looks like. It turns out that firms belonging
to the main giant component are heavily controlled by their first shareholder who owns
more than 50% of total shares. Others relevant shareholders do not bear a significant
importance in those companies. The number of relevant shareholders is low, usually less
than 4, and the main one is characterized to be a physical person. A similar structure
identifies the firms belonging to the second largest connected component. In this case,
companies still present a low number of relevant investors, are still controlled by their first
shareholder, but this is represented by a S.p.A., not a physical person. In general though,
companies belonging to the main components present a heavily centralised ownership
structure and few relevant shareholders. The distribution of the companies across the
connected components is the following:

Figure 5.10: Connected components’ size

The biggest connected component is composed by 59 companies and 555 link. The second
biggest consists of 28 companies and 153 links between them. Since the total number of
links in the layer is 879, this means that the account for more than 63% and 17% of the
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total edges singularly and around 80% of them combined. Looking on the other hand on
the graphs mean index values, the average scores for the different node measures, together
with the size of the graph’s diameter, are the following:

Measure Average Value
Degree 7,58

Strength 2,81
Clustering 0,73
Closeness 2,00·10−4

Eccentricity 8,53·10−4

Betweenness 11,69
Diameter 510,62

Table 5.3

The average clustering coefficient tells that, on average, if a certain company presents a
connection with two other firms, the probability that those two are also directed connected
is a little more than 70%. The diameter increases with respect to the prior values, as the
longest shortest path between two connected nodes equals 510,62. Again, the cost of
moving from one node to another is computed as the inverse of the weight of the edge
connecting them. For what concerns the distribution of the degree, strength and the main
centrality measures over all nodes, note the following bar plots:
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Figure 5.11: Main layer measures’ distribution

For what concerns the degree distribution, this spans from a minimum of 0 to a maximum
of 31, presenting a decreasing path with fewer companies ingaging in more than 7 links.
Indeed, the majority of the firms tend to have less than 7 connections. The company that
presents more links is Garofalo Health Care S.p.A., a firm working in the private health
care sector. Piquadro S.p.A. and Seri Industrial S.p.A. follow with 30 connections each.
Interestingly enough though, none of them is directly linked to Garofalo Health Care
S.p.A..
The representation depicted by the distribution of the strength index across companies is
very similar, showing a general decreasing trend with many companies having null or close
to null strength value. In this case it is Piquadro S.p.A. that presents the highest value,
equal to around 11,5. The clustering coefficient is very high, more than 0,7, meaning that
many local clusters arise. Looking at the distribution it is interesting to see how around
17% of the companies present a clustering coefficient equal to 1, meaning that all possible
triplets to which they could belong to actually take place. The centrality measures are
once again normalized to so fit in the interval [0 1]. Betweenness and eccentricty present
a similar trend, identifying fewer very important companies. They both indicate Tod′s
S.p.A. as the most relevant firm. On the other hand, according to closeness centrality,
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the two most central companies are Netweek S.p.A. and again Garofalo S.p.A.. It it
also important to notice that all those companies mentioned above belong to the main
giant component. All of them are characterized by the fact that their main shareholder is
a physical person and that the number of relevant shareholder is less than 3. Moreover,
their relevant owhership structure present the main shareholder to completely control
the company, that is by owning more than 50% of the shares, and the other relevant
shareholders to hold a marginal amount of shares. This means that these are companies
that are strongly controlled by one person that is the main shareholder.

5.2.2. Ownership Ties

The next layer is again composed by the same 232 companies that were part of the prior
one. It considers ownership ties to create links among companies, in a similar way to how
interlocking directorates defined links in the first two layers. A picture showing out the
final result is represented here:
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Figure 5.12: Ownership ties graph

In this framework, companies are roughly divided in three categories: isolated nodes, firms
belonging to the main giant component and companies ingaging in few links outside of
the main component. The total number of links is 239. The giant component is composed
by 72 firms, that is a little more than 31% of the sample, while the number of isolated
nodes is 130. The average values for the different node measures are:
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Measure Average Value
Degree 2,06

Strength 0,74
Clustering 0,74
Closeness 1, 17 · 10−04

Eccentricity 1, 3 · 10−03

Betweenness 32,01
Diameter 33

Table 5.4: Mean values

The average degree of a node is little more than 2 (as one would expect as there are
around the same number of nodes and edges). Average clustering coefficient is again
pretty high, around 0,74. The company presenting the most links (16) is Enel S.p.A.,
followed by Assicurazioni Generali S.p.A. (14). Also for the strength index those are
the most important companies. Betweenness and closeness centrality identify respectively
Assicurazioni Generali S.p.A. and Enel S.p.A. as the most relevant companies, while
the highest value of eccentricity is reached by Finecobank S.p.A.. Below the distribution
of those indices across all companies:
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Figure 5.13: Centralities distribution
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Now that all the different layers have been presented independently, it is possible to start
analysing them together while constructing the network. As already mentioned in the
previous chapters, as the analysis are based on two datasets, the set of nodes, i.e. the
company considered, are not all the same across the different layers. Following the nota-
tion introduced in the mathematical review chapter, in order to reconduct ourselves to a
situation in which all layers insist on the same nodes, the union of the set of companies
presented in the two different datasets is considered. Two different networks, each one
composed by three layers, are considered. The first one is composed by the direct inter-
locking, ownership ties and ownership similarity layers, while the second one considers
indirect interlocking instead of direct ones.

6.1. Network 1: Direct interlocking, Ownership ties

and Ownership similarity

The first multi network is composed by N = 234 companies, represented by the nodes
of the network. These are the companies that belong to at least one of the two datasets
on ownership and governance structure. Let V represent the set of all companies. In the
mathematical notation introduced in the previous chapters, the multiplex being analised
is M = (G, C). G = (G1, G2, G3) is composed by three different layers, G1 = (V,E1),
G2 = (V,E2) and G3 = (V,E3). G1 is the graph whose edges are composed by interlocking
directorates (DI layer), G2 is the one stemming from ownership ties (OT layer), while G3

is the one that links companies having a similar ownership structure (OS layer). Each
of those layers is weighted. The links across companies and the weights attached to the
edges are the one described in the single layer analysis. The set C is composed only by
234× 234 identity matrices representing the inter layer links connecting the same nodes.
Indeed, no other inter layer links have been constructed. A helpful visual representation
of the multi layer structure is presented below:
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Figure 6.1: Network representation

Note that, for simplicity, the inter layer edges have not been drawed.
The networks (from now on, always not considering inter layer edges) is composed by
a total of OA = 1387 edges. The overall weight of the network on the other hand is
OW = 445, 91. The number of isolated nodes is only equal to 6. The companies that
are not linked to any other firm in any of the layers are Aquafil S.p.A, Biancamano
S.p.A., CreditoV altellinese S.p.A., Ratti S.p.A., Techedge S.p.A. and Tiscali S.p.A..
The distribution of the sum over the three layers of the degrees of the nodes is presented
below:

Figure 6.2: Overall degree distribution

Comparing this histogram plot with the single layer degree distributions, one can clearly
see a different, but still decreasing, pattern. The maximum number of links to which
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a firm belongs to is 36. The two companies realising this maximum are Caltagirone

Editore S.p.A. and Piquadro S.p.A.. Both of them were not the companies presented as
the most important ones according to the degree index in the three single layers. Below
the representation of the overall degree for the companies presenting the most links in the
single layers, together with Caltagirone Editore S.p.A. and Piquadro S.p.A..

Figure 6.3: Companies’ degree composition

The blue, yellow and red histograms represent the number of links to which the companies
belong to in the DI, OS and OT respectively. OV S S.p.A., Enel S.p.A. and Garofalo

S.p.A. are the companies presenting the highest number of edges in those layers.
The same reasoning can be made for the overall strength. Of course, only the same 6
companies presented before have a total network weight equal to 0. The distribution of
the overall weight across the nodes is the following:

Figure 6.4: Companies strength composition

The pattern is similar to the one pictured by the probability distribution of the degree,
but in this case more companies seem to present low strength values. Indeed, a little
less than 25% of the firms have an overall network strength higher than 6. This has to
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be considered together with the fact that the company realising the maximum strength,
Piquadro S.p.A., has a strength of around 13,06.

Figure 6.5: Companies’ strength composition

The stacked bar plot shows again the distribution across layers of the most relevant
companies in the single layers (which happens to be the same ones as before, with the
exeption of Garofalo S.p.A.) and Piquadro S.p.A..
The entropy of a node indicates how its overall degree or strength is distributed across
layers. Low levels of entropy represent the situation in which the relative node presents
the majority of its edges to belong to a single layer, while larger values for this measure
indicate that links are more or less equally distributed across all layers. The mean entropy
value for the network is around 0, 43. Because M is composed by three layers, the
maximum value that entropy can take is around 1, 1. This means that the normalised
average entropy value is little less than 40%. The distribution of the entropy across all
nodes is the following:

Figure 6.6: Entropy distribution
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68 companies bear a null entropy. This means that more than 29% of the companies
either are completely disconnected or are only linked to other firms in one layer, i.e. they
would be disconnected if not for one specific layer. The rest of the companies on the
other hand seem to have a uniform distribution across possible entropy values. For what
concerns mean weighted entropy, this is around 0, 37, which normalised gives a result of
33%. On avergage, nodes tend to present very different features regarding degree and
strength across the different layers. The distribution of weighted entropy is the follwoing:

Figure 6.7: Weighted entropy distribution

The final result is similar to the one depicted by the unweighted entropy, with many nodes
showing null entropy and around 70% of the sample being kind of uniformly distributed
across all possible values in (0, wemax].

To further analyse the network, let’s now focus on the layers, trying understanding which
are the most relevant ones and to what degree they affect the overall network structure.
As said before, the network presents 1387 different edges. These are distributed across
the three layers as follows:

Layer DI OT OS Total
Number of Edeges 269 239 879 1387

Table 6.1: Number of links

More than 65% of the edges belong to the ownership similarity layer. For what concerns
the total weight of the network, this turns out to be equal to around 445,91. Again, its
distribution across layers is the following:
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Layer DI OT OS Total
Edges’ overall weight 33,67 86,67 325,57 445,91

Table 6.2: Layers’ weight

Also here the most relevant layer turns out to be the third one. In this case though, its
overall weight is even more relevant in the final structure as it accounts for more than
73% of the overall structure’s weight.
The edge overlap EOA(α,β) helps in understanding how many nodes are linked over
different layers. This quantity has been computed aggregating the layers in all possible
ways. The edge overlap values are the following:

EOA (DI,OT ) (DI,OS) (OT,OS) (DI,OT,OS)

DI 0,1152 0,0260 0,0186
OT 0,1297 0,0837 0,0209
OS 0,0080 0,0228 0,0057

(DI,OT ) 0,1613
(DI,OS) 0,7143
(OT,OS) 0,2500

Table 6.3: Edge overlap

In this table, the first row stores all relevant aggregation of layers α, while the first column
stores all relevant aggregation of layers β. Notice that the DI and OT layers overlap for
around 11% and 12% of their respective number of edges. On the other hand, both layers
present a very now number of overlaps when they are each one considered together with
the OS layer. Recall that around 80% of the links in the OS layer are between companies
that are heavily controlled by their first shareholder. This leads to thinking that heavily
controlled companies, in general, do not engage in ownership ties or interlocks. As stated
by several authors (for example in [1] and [2]), ownership ties are also introduced with
the aim of gaining control of a firm. In a company in which the majority of shares are
in hand of only one shareholder, it might be more difficult to introduce interlocks as the
main shareholder has an important impact on the choice of the directors. Also when
considering the three layers combined over a single layer the edge overlap index is almost
negligible. An increase in this index is seen when considering the overlap of all three
layer combined against two of them. In particular considering β = (DI,OT,OS) and
α = (DI,OS) leads to an overlap in more than 71% of the cases. This value holds
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relevant information in terms of the OT layer. Indeed, it means that the addition of this
third layer to the structure impacts the least on the total number of new edges. In other
words, if two nodes are linked both in the DI graph and in the OS one, then 71% of the
times those two vertices are also linked in the OT layer.
The contribution of a multiplex to another one bears similar information in this direction.
The following two matrices store the contribution COA and weighted contribution COW

of all different set of layers α to all possible sets of layers β.

COA (DI,OT ) (DI,OS) (OT,OS) (DI,OT,OS)

DI 0,4990 0,2296 0,1769
OT 0,4361 0,1995 0,1447
OS 0,7642 0,7823 0,6424

(DI,OT ) 0,3411
(DI,OS) 0,8208
(OT,OS) 0,7984

Table 6.4: Layers’ Contribution

Many observations can be made about these results. Recall that, given a multi layer M,
the contribution of a set of m layers α to a set of n layers β represents the fraction of
links present in the projected network πβ(M) that are only contributed by the layers α.
High levels of this index thus indicate that the addition of α is significant.
Both DI and OT layers have around the same impact against the set (DI,OT ). This is
also due to the fact that they present a similar total number of edges. On the other hand,
their respective impact on the sets (DI,OS) and (OT,OS) is less relevant. This is due to
the fact that OS present many more links. Moreover, OS has a relevant impact on any
set of layers β.
As for what concerns the different weighted contribution index COW values, these are
stored below:
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COW (DI,OT ) (DI,OS) (OT,OS) (DI,OT,OS)

DI 0,2798 0,0937 0,0766
OT 0,7202 0,2102 0,1944
OS 0,9063 0,7898 0,7311

(DI,OT ) 0,2699
(DI,OS) 0,8056
(OT,OS) 0,9245

Table 6.5: Weighted layers’ contribution

This index quantifies the contribution of a set of layers to the overall weight of a bigger
structure. The difference in the values taken by the COA and COW indices gives a hint
on how the weights are distributed and which layers l are "heavier", meaning that their
overall weight Wl =

∑N
i,j=1w

l
ijis greater. In case of COW , the OT layer independently

contributes to more than 72% of the weight of the network given by layers (DI,OT ).
Comparing now COW (OT, (DI,OT )) with COA(OT, (DI,OT )) we deduce that the links
in OT are on average heavier than the ones in DI. Overall, it can be seen that layer OS
contributes the most to all the weight matrices of the projected network it is a part of.

Another relevant index that compares the layers composing the network is the distance
among them. For this multiplex, the distances between its layers are the following:

distances DI OT OS

DI 0 0,3679 0,4288
OT 0,3679 0 0,1774
OS 0,4288 0,1774 0

Table 6.6: Distances across graphs

These distances have been normalised so to fit in the interval [0, 1]. This has been done
by dividing the real distance for the one between the two furthest types of graphs of N
nodes: a completely connected one and one with no edges. In a mathematical notation,
the maximum distance between graphs is realised between G1 and G0, where G1 = (V,1N)

and G0 = (V, 0N). Here, 1N and 0N represent respectively the N × N matrices of ones
in the off diagonal elements and the null matrix. It can be seen that, according to this
choice for defining the distance, the layers that are more similar to each other are the
ones build from the ownership dataset, that is OT and OS.
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Another important index that is used for comparing layers and understanding which
could be the best representation of a network is the V N entropy. The VN entropy of a
network is the average of the VN entropies of its single layers. These ones are computed
by means of the Laplace formulations of their adjacency or weight matrices. The VN
entropy of a layer represents how the overall degree (or strength) of the graph is spread
across its nodes. Comparing the VN entropies of different representations of a network
with its projected layer’s one gives information on which representation deviates the most
from the projected layer portrayal. The VN entropies for the different projected networks
R, together with the respective structural reducibility quantities q(R) are the following:

Network representations VN entropy Structural reducibility
(DI,OT,OS) 6,79 0,0928

((DI,OT),OS) 7,05 0,0581
((DI,OS),OT) 6,82 0,0881
(DI,(OT,OS)) 7,18 0,0410
((DI,OT,OS)) 7,48 0

Table 6.7: VN entropy

In this table, the network representations column stores the different multilayer that can
be born after projecting some of the layers of M. Each Rn of size n is written by means of
its n layers, that is Rn = (R1, . . . , Rn). In this case, n ≤ 3. The value of the VN entropy
and the respective quantity q show that the representation that deviates the most from
the projected layer is the original 3 layer network. On the contrary, weighted VN entropy
shows a different result; indeed, it turns out that the lowest value for this index, and thus
the highest score for the respective structural reducibility, is reached by the representation
in which DI and OS layers are projected in one single layer.

Network representations VN entropy Structural reducibility
(DI,OT,OS) 6,7462 0,08563

((DI,OT),OS) 6,8789 0,0673
((DI,OS),OT) 6,7021 0,0913
(DI,(OT,OS)) 7,1634 0,0288
((DI,OT,OS)) 7,3754 0

Table 6.8: Weighted VN entropy



64 6| Network Analysis

This means that the distribution of weights across all nodes in the network ((DI,OS), OT )

differs the most, over all possible representations, from the same distribution in the pro-
jected layer. A possible explanation for this can be found in how the layer contribution
changes when considering the weights in the network. Indeed, the contribution of DI to
the set of layers (DI,OS) decreases when considering COW rather than COA, while the
contribution of OS to the same set of layers increases. This means in other words that
the intake of DI becomes less relevant and might not be worth being differentiated with
a layer for itself.

6.1.1. Projected Layer

The projected layer πp(M) have been introduced many times in this analysis. This is a
one layer network composed by the union of all the three graphs DI, OT and OS. Its
graphical representation is presented below:
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Figure 6.8: Projected graph

It is composed by 234 nodes and presents, as network M, only 6 isolated nodes. The
number of different connected components is 8. Besides the 6 isolate companies and two
others that are only linked to each other, ACSM −AGAM S.p.A. and Ascopiave S.p.A.,
the rest of the firms belong to a giant component composed by 226 firms, that is more
than 96% of the sample.
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Measure Average Value
Degree 11,40

Strength 3,81
Clustering 0,47
Closeness 1,4·10−3

Eccentricity 2,59·10−2

Betweenness 214,98
Diameter 52,70

Table 6.9: Mean values

The mean degree is higher than each of the ones for the single layer, and same goes for
the mean strength. The clustering coefficient is around 0, 5, higher than the one for DI
layer but significantly lower than the one reached by OT and OS layers. Mean closeness,
mean eccentricity and mean betweenness observe an increase in their values with respect
to the single layers values.
The distribution of those indices and centrality measures across firms are shown below:

Figure 6.9: Centralities distribution
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With respect to the prior cases, more companies tend to present a high level for degree
and strength. Piquadro S.p.A. is again the company realising the maximum in these
measures, respectively 35 and 13,06. Almost 6% of the companies present a clustering
coefficient equal to 1. The distribution of closeness and eccentricity change a lot with
respect to the prior cases, as more companies present higher relative (i.e with respect
to their normalization) values in those measures. Each centrality measure indicates a
different most central company; according to closeness, the most important firm in the
layer is RCS Mediagroup S.p.A., a multimedia publishing group. Eccentricity on the
other hand indicates Tod′s S.p.A. as the most central company. As for betweeneess
centrality, Mediobanca S.p.A. is the one presenting the maximum value for it.

6.1.2. Flattened Layer

The flattened representation of a network also bears interesting features about it. This
is a one layer graph were to each node in the starting network M, M different nodes
correspond in the flattened representation GF , where M is the number of original layers.
This representation is well suited when a cost, rather than a weight, is given to each edge.
This because the cost of going from two nodes representing the same firm in the original
network M is 0, i.e. there is no difference in thinking of a company as belonging to a
layer rather than to another. The cost matrix is thus constructed as an NM ×NM block
matrix whose off diagonal matrices are null entries, while the diagonal matrices are the
N × N cost matrices of the different layers. In this analysis, these have been computed
as follows:

cij =
1

wij

∀i, j ∈ {1, . . . , N}

with the convention that 1
0
= ∞.

The nodes stemming from the same companies in M are linked by edges within GF . This
is composed by 702 different nodes, and each company in the original dataset corresponds
to three vertices. Having this in mind, it is possible to run the usual centrality measures
(besides calculating the strength of each node). The average values for those are presented
here:
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Measure Average Value
Degree 5,95

Clustering 0,58
Closeness 2, 6 · 10−4

Eccentricity 2, 55 · 10−2

Betweenness 1388,9
Diameter 53,90

Table 6.10: Mean measures

The average degree is of course lower than the one for the projected layer. Diameter, mean
closeness and mean eccentricity present very similar features with their respective values
in πp(M); this is due to the fact that the distances between nodes across the different
structure representations remain similar (no cost in jumping from two nodes representing
the same firm). Betweenness on the other hand heavily increases while clusters are less
likely to happen, again as a consequence of the way in which the network is represented.
The distribution of the values for those measures across all nodes are plotted below:

Figure 6.10: Centrality measures distribution

The degree distribution for this layer presents a steeper pattern than the one that charac-
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terises the projected network. This is no surprise as, besides the trivial edges connecting
same nodes, no other inter layer edges are taken into account. For this reason no new
links are added to the structure, but nodes of different layers are still kept separated,
and thus there is no summation of any sort between the different adjacency matrices.
Garofalo S.p.A. is the most relevant company according to degree. Eccentricity and
closeness present a pattern very similar to the one held by the projected layer, and they
indicate respectively Tod′s S.p.A. and OV S S.p.A. as the most central companies. Be-
tweenness centrality is almost always zero for the majority of the nodes and realises its
maximum in a node representing the firm ERG S.p.A..

6.2. Network 2: Indirect interlocking, Ownership ties

and Ownership similarity

The next network to be analysed is similar to the prior one, but changes in the way in
which interlocks are defined. Indeed, not only direct interlocks are considered now, but
also indirect ones. In other words, the only condition for an interlock to be born is that
directors of different companies sit together in a board of directors of a listed company
present in the dataset, but it doesn′t matter which one. This graph have already been
introduced and studied independently in the prior chapter. It is characterised to have a
number of edges (1029) greater than the OS graph (879) and much higher than the ones
of DI and OT layers. For this reason, it is interesting to see how the general network
feature changes when substituting the DI layer with the new II ( Indirect Interlocking)
one. The multiplex M of study is thus composed by the same set of nodes V as before and
by three layers: G1 = (V,E1), G2 = (V,E2) and G3 = (V,E3). E2 and E3 are the same
ones as in the prior network, while E1 represents edges linking companies that present at
least one indirect interlock. Below the representation of the three layers.
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Figure 6.11: Network representation

The network is composed by a total of OA = 2147 edges, and the overall weight of the
network is around 633, 38. Again there are 6 isolated nodes, corresponding to the same
companies that were isolated in the prior network. The distribution of the total degree of
each firm is the following:

Figure 6.12: Overall degree distribution

The degree distribution differs slightly form the ones presented before, as it is not always
decreasing but peaks at around the value 10. The company with the greatest degree (56)
is Brembo S.p.A., a manufacturing company specialised in producing automotive brake
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systems. It is again intersting to see how this compares to the company that, in the single
layers, presented the most links.

Figure 6.13: Companies’ degree composition

The blue, yellow and red histograms represent the number of links to which the companies
belong to in the II, OS and OT respectively. Contrary to the other companies, Brembo
S.p.A. presents many links both in the II and in the OS layers.
The same reasoning can be made for the overall strength.

Figure 6.14: Overall strength distribution

The most important company in this case is Amplifon S.p.A.. Comparing its strength
to the one of the single layer most important companies lead to the following result:
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Figure 6.15: Companies’ degree composition

Average entropy and weighted entropy of the network are both around 0,45. While there
is a slight decrease in the value of entropy with respect to the prior network, weighted
entropy increases of around 0,08, that is around 17% of its new value. This implies that
in the new network, weights are on average more equally distributed across layers. The
nodes distribute across all possible entropy values as follows:

Figure 6.16: Entropy distribution

As for what concerns weighted entropy, this is the distribution:
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Figure 6.17: Weighted entropy distribution

Going on to analysing the different layers and their impact on the overall structure, the
first thing to look at is how the total number of edges is distributed across layers:

Layer II OT OS Total
Number of Edeges 1029 239 879 2147

Table 6.11: Number of links

More than 88% of the edges is concentrated in the II and OS layers ( respectively around
48% and 41%). This leads to the belief that layer OT could impact less on the structure
of M. The overall weight distribution is similar:

Layer II OT OS Total
Edges’ overall weight 221,14 86,66 325,57 633,38

Table 6.12: Layers’ weight

For what concerns the edge overlap indices EOA(α,β), this obviously does not change
for the sets of layers α and β that do not include II. The table storing the results is the
following:
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EO (II,OT) (II,OS) (OT,OS) (II,OT,OS)
II 0,0486 0,0233 0,0058
OT 0,2092 0,0837 0,0251
OS 0,0273 0,0228 0,0068

(II,OT) 0,12
(II,OS) 0,25
(OT,OS) 0,3

Table 6.13: Edge overlap

In general, edge overlap values are similar to the ones for the prior network. A relevant
decrease in this value is seen though for the overlapping of the whole network over layers
(II, OS). This suggests that the addition of indirect interlocks introduces links that were
not present in the OT graph. Indeed, also the index EOA(OT, (II, OT )) decreases.
Let’s now go on and focus on the different values contribution for layers to the structure
in both the unweighted and weighted case, COA and COW respectively.

COA (II,OT) (II,OS) (OT,OS) (II,OT,OS)
II 0,8038 0,5334 0,4667
OT 0,1552 0,1995 0,0850
OS 0,4538 0,7823 0,4085

(II,OT) 0,5731
(II,OS) 0,8839
(OT,OS) 0,5502

Table 6.14: Layers’ contribution

With respect to the prior network, as one would expect, the contribution of the inter-
locking dataset is much more relevant. It adds around 80% of the edges when considered
together with the OT layer and turns out to contribute even more than the OS one.
Moreover, the projected layer π(II,OS)(M) accounts for more than 88% of total edges of
πp(M). The situation described by COW is slightly different.
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COW (II,OT) (II,OS) (OT,OS) (II,OT,OS)
II 0,7184 0,4045 0,3499
OT 0,2816 0,2102 0,1368
OS 0,5955 0,7898 0,5182

(II,OT) 0,4680
(II,OS) 0,8632
(OT,OS) 0,6509

Table 6.15: Weighted layers’ contribution

When considering the intake of layers taking into account also edges’ weights, the con-
tribution index portrays a different picture. Indeed, the contribution of II layers lowers
while the one of OT and OS grows. This can be ascribed to the fact that the mean weight
of OT and OS are respectively 0,36 and 0,37, while the average weight for the II layer
is just around 0,21. For those reasons, the layer contributing the most to the different
projected representations is the OS one.
As for the distance between graphs, the following table stores all the results:

distance II OT OS
II 0 0,3709 0,4319
OT 0,3709 0 0,1774
OS 0,4319 0,1774 0

Table 6.16: Distances between graphs

The situation is very similar to the one given by the prior multiplex. Layer II departs
from the ownership layers with around the same magnitude as layer DI does. It is thus
interesting to see what the distance is between the two governance structure based layers,
and this turns out to be 0,0055. It means that the two graphs are very similar to each
other (recall that the values presented in the table have been normalised so to fit in the in-
terval [0, 1]). On the one hand, this should be of no surprise as the II layer is an extention
of the DI one. On the other hand though, the number of links present in the two is very
different, as II presents almost 4 times the number of links that DI does. Moreover, one
has to recall that the distance d is defined here only on unweighted layers. This means
that the weights of the edges are not taken into account, simplifying slightly the repre-
sentation. In case one were to extend the definition of distance also for weighted graphs,
the new distance between II and DI would probably result in a higher (normalised) score.



76 6| Network Analysis

The VN entropy and the relative structural reducibility for each possible representation
of the multilayer M are presented here:

Network representations VN entropy Structural reducibility
(DI,OT,OS) 6,706 0,0987

((DI,OT),OS) 7,0518 0,0598
((DI,OS),OT) 6,8682 0,0843
(DI,(OT,OS)) 7,1760 0,0433
((DI,OT,OS)) 7,5000 0

Table 6.17: VN entropy

The VN entropy presents the lowest value for the original M network and the highest for
the projected layer πp(M). This means that the representation that differs the most from
πp(M) is indeed the original 3 layer network M. According thus to these indices, no layers
must be projected onto each other. Weighted VN entropy bears the same conclusions, as
the scores it holds are very similar. Below the exact results.

Network representations VN entropy Structural reducibility
(DI,OT,OS) 6,7121 0,1032

((DI,OT),OS) 6,9969 0,0651
((DI,OS),OT) 6,8335 0,0869
(DI,(OT,OS)) 7,1122 0,0497
((DI,OT,OS)) 7,4842 0

Table 6.18: Weighted VN entropy

6.2.1. Projected layer

The projected graph πp(M) is shown in the following picture:



6| Network Analysis 77

Figure 6.18: Projected network

πp(M) is composed by the usual 234 nodes and 2059 edges. It decomposes in 8 con-
nected components, 6 of which are isolated nodes. These are again the same nodes that
were isolated in the prior network. Again, two companies, ACSM -AGAM S.p.A. and
AscopiaveS.p.A., are only linked to each other, while the remaining 226 firms belong to
the giant component. The average centrality values are
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Measure Average Value
degree 17,60

strength 5,41
clustering 0,51
closeness 1, 710−3

eccentricity 3, 3410−2

betweenness 150,80
diameter 34,84

Table 6.19: Mean centrality values

With respect to the prior projected layer, both mean degree and strength increase as a
consequence of the higher number of links. This goes also for the clustering coefficient,
closeness and eccentricity. Betweenness centrality on the other hand decreases, as well
as the diameter of the graph. The distribution of those indices and centrality measures
across firms are shown below:

Figure 6.19: Centrality distributions

Amplifon S.p.A. is the company for which degree and strength reach their highest val-
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ues. The clustering coefficient distribution looks similar to the one describing the prior
projected network, while eccentricity identifies Esprinet S.p.A as the most central node
and Tod′s S.p.A. becomes the second most central firms in this case. Brembo S.p.A. and
ERG S.p.A. presents the highest closeness and betweenness values respectively.

6.2.2. Flattened layer

The flattened representation GF of multilayer M is composed by 702 nodes, and is com-
pletely identified by its two block matrices Af and Cf . The average node measures are
the following:

Measure Average Value
degree 8,12

clustering 0,62
closeness 3, 1110−4

eccentricity 3, 3010−2

betweenness 1118,7
diameter 36,23

Table 6.20: Mean values

As expected mean degree increases because of the substitution of DI with II layer.
Overall, there is an increase in every single measure; in line with this result, the diameter
of the network on the other hand decreases. For what concerns finally the distribution of
those measures across nodes:
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Figure 6.20: Centrality measures distribution

These distribution present again a pattern similar to the one describing the prior network.
Again, betweenness shows very low values, while closeness and eccentricity seem to be
negatively skewed. The most relevant companies are OV S S.p.A. according to degree and
closeness, Esprinet S.p.A. for what concerns eccentricity and again ERG S.p.A. when
considering betweenness.
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The scores for the different nodes, layers and network measures are now to be interpreted
in a more profound and broader view, in order to grasp possible interesting patterns
or economical trends at their foundation. First thing is to understand if the different
layers are similar and if they present analogous features. Because of the way the different
layers have been constructed, comparing graphs can deliver relevant information about
the relationships between Board of Director composition, specifically interlocks, ownership
ties and ownership structure. Comparing the direct interlocks and the ownership ties layer
is relevant, especially because the overall number of edges in the two cases is very similar.
The two layers present indeed 269 and 239 links respectively, therefore it is interesting to
see how those are spread across the nodes. Edge overlap is small, but not negligible as
around 12% of the edges of both layers are present in both. These include companies that
both have a shareholder and a director in common. As it has been stated before, italian
public listed companies’ ownership tend to be concentrated in few owners, and these are
usually physical persons. Therefore, companies that are linked both by ownership ties
and interlocks are usually the ones that are owned by private persons who also have a
strong influence on the choice of the BoD composition. In the dataset of interest, links
are present between firms in which one or few persons play a relevant role. It is the
case of Caltagirone S.p.A. and Caltagirone Editore S.p.A. for example. Those firms,
besides being strongly connected, are also linked with Acea and Assicurazioni Generali.
All those companies are strongly tied and connected by the Caltagirone family members,
centered around the businness man Francesco Gaetano. Caltagirone S.p.A., the main
holding, is a company whose interest are in real estate, manifacturing and publishing.
The same goes for the companies orbiting around Tamburi investment Partners S.p.A.
(TIP ). Monrif , Elica, OV S, BE Shaping the Future and Alkemy all have TIP as
relevant investor. TIP is a company engaged in the financial sector, providing services
of investment banking and advisory in corporate finance transactions. Then also state
owned companies present both links in the DI and OT layer. Terna, Italgas Snam,
Telecom and Webuild are all linked by the CDP , Cassa Depositi e Prestiti investor, a
state owned investment bank. When considering also indirect interlocks the result is very
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similar. In this case though, there is a strong unbalance between the two layers given by
the different number of links present in each graph. OT presents less than one fourth of
the overall number of links created by indirect interlocks. For this reason, the overlapping
index between the two drops when considering it in terms of indirect interlocks. On the
other hand, the proportion of overlapping edges with respect to ownership ties grows to
more than 20%, indicating that the new links stemming from indirect interlocks do overlap
to some extent with the ownership ties. Even if this is the case though, the cluster of
companies that ingage in both links remain the same. Indeed, the main groups of double
linked companies are again the ones orbiting around either the Caltagirone S.p.A. group,
the TIP one or present a relevant amount of shares that belong to public investors like
CDP .
The contribution of each layer to each other is another measure of how well distributed
edges are across the DI and OT layers. Table 6.4 stores the data of interest. Summing up
the elements of the first column, that are COA(DI, (DI,OT )) and COA(OT, (DI,OT ))

gives a hint at what extent the two graphs complement each other. Indeed if the two
contributions were to sum up to one, it would mean that no overlap is present and
the layers are perfectly complementary with respect to their projection. In this case
COA(DI, (DI,OT )) = 0, 50 and COA(DI, (DI,OT )) = 0, 44. This implies that they
only overlap for around 6% of the edges and they almost equally split over the projected
network. Also when considering indirect interlocks as well, the number of links that are
contributed by both layers accounts for less that 5% of the total links in the projected
layer. This to further strengthen the idea that interlocks and ownership ties complement
over the set of listed italian companies. The thing that changes when considering indirect
interlocks is the importance of the layers in the final structure. Because indirect interlocks
are much more common than ownership ties, this leads to a scenario in which firms are
more likely to be connected by an interlock in the BoD rather than having a common
shareholder.
For what concerns the overlap between interlocks and ties, it is also interesting to see
how those distribute across the different sectors to which companies can belong to. The
following bar plot depicts the situation for DI and OT layers.
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Figure 7.1: DI an OT overlaps

17 of the overlaps happen including a company working in the discretionary goods pro-
ducing sector. When also considering financial and industrial companies, then more than
half of the overlapping edges are about firms belonging to those sectors. In percentage
with respect to the number of firms that belong to each sector, again the discretionary
good sector is the most represented, followed by the utilities one. Besides 5 different
double links connecting companies both from the discretionary goods sector, edge over-
lapping happens mostly between companies of different sectors. Indeed, only around 30%
of overlaps are between same industry firms. The sectors presenting most overlaps are
the discretionary goods one, together with the finance and industrial one.
When also considering indirect interlocks, the number of double links between companies
belonging to different industry increases. The distribution of the overlapping edges across
the sectors is the following:

Figure 7.2: II and OT overlaps
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The number of overlapping edges is 50, and only 13, the 26% of them, is between same
sector companies. Overlaps, i.e. situations in which firms are tightly connected as they
share both at least a director and a shareholder, happen more often again in the direc-
tionary goods, finance, industrial and utility sectors. The most common inter sectors
overlap happens between the discretionary goods and industry sectors, and the utility
and industry sectors. In proportion, the sectors for which it is most likely to find firms
belonging to overlapping edges are the telecomunication and utility ones.

Comparing the two layers stemming from the ownership dataset is also a matter of inter-
est. Any conclusion that can be deduced has to take into consideration the fact that the
number of edges in the OS graph are more than 3 times as many as the one connecting
companies because of a tie. This even if the threshold used for constructing links in the
OS layer has been chosen to only connect companies that present a very similar ownership
structure. Indeed, recall that two firms, in order to be linked in this layer, must present
at least the same type of first shareholder, must either be completely controlled or not
completely controlled both by the first shareholder and by the relevant ones, and finally
have a similar number of relevant shareholders. This means in particular that compa-
nies with equally distributed shares and many shareholders are not linked with heavily
controlled companies. Recall moreover that the dataset considered regarding ownership
structure is composed mostly by companies whose first shareholder on average holds more
than 50% of companies shares, and that more than 57% of firms are completely controlled
by their first shareholder and 80% of them are controlled by the relevant shareholders.
This means that, when comparing the OS layer with other ones, we are usually analysing
how heavily controlled companies either engage with interlocks or ownership ties. With
this consideration in mind, it is possible to start and interpret the network composed by
OT and OS layers. The first thing that comes to attention is the extremely high num-
ber number that pops out when summing the contribution of OS and OT layers to the
(OT,OS) network. COA(OT, (OT,OS)) = 0, 2 and COA(OS, (OT,OS)) = 0, 78, leading
to a total contribution to the their projected layer of around 0,98. This means that less
than 2% of all edges are present in both layers. Indeed, only 20 double links exist. The
distribution of double links over all companies’ sectors is shown below:
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Figure 7.3: OT and OS overlaps

With respect to the previous cases, now the sectors in which more overlaps occurs are
the industrial one, followed by the utilities and finance one. Two main clusters of heavily
linked companies arise. The first one is composed by public utility and industrial compa-
nies. These are ENI S.p.A., Enel S.p.A., Leonardo S.p.A. and Avio S.p.A.. The italian
Ministero delle Economie e delle F inanze is the public invertor linking of those. The
second main cluster involves banks, respectively Unicredit S.p.A, Banco BPM S.p.A.,
Prysmian S.p.A. and Finecobank S.p.A.. These companies are linked by at least one
of the following common owners, BlackRock Inc. and Capital Group. Those two are
financial services companies, among the largest investment management firms. The first
one, BlackRock, is the world’s largest company for AUM, and also invests in Eni and
Intesa Sanpaolo among other important italian listed firms. These asset management
companies specialise in active and passive management whose main aim is to profit from
their investment. They usually do not heavily invest in companies so not to be involved
in the management decisions. All the just mentioned companies are indeed characterised
by having a very disperse ownership. None of them has its main shareholder owning
more than 30% of outstanding shares, and moreover none of them is controlled by the
relevant shareholders. This means that equity is mainly distributed across very small
investors, who usually do not interfere in the decision making process of the company.
A (maybe trivial) takeaway from this is that ownership ties tend to happen among com-
panies whose equity is more widespread. But this happens also for heavily controlled
companies. Indeed, even in the case of Piquadro S.p.A. and RCS Mediagroup S.p.A.,
which are linked both in the OS and in the OT layers, the tie between them is due to
the investment in both companies made by Mediobanca, a minority shareholder. Both
Piquadro and Mediagroup have their first shareholder owning more than half of total eq-
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uity. The previous claim could thus be substituted with the statement that ownership ties
do not tend to happen more often for widespread equity companies, but rather they occur
because of smaller investors. Still, there are also fewer examples of heavily controlled
companies who present ownership ties that are due to the fact that both companies are
completely controlled by the same owner. This is usually a physical person, as for the
case of Centrale del latte d′Italia S.p.A and Newlat Food S.p.A, or V ianini S.p.A and
Caltagirone S.p.A..
Besides the clusters and links just mentioned though, very few companies are double
linked. In general the final picture is the one of two very different layers which almost
completely complement each other over their projected network. The fact that the eq-
uity distribution across shareholders in the italian stock exchange is usually not very
widespread, together with the fact that OS and OT hardly ever overlap, and ,when they
do, this happens for companies with distributed equity, leads to think that strongly con-
trolled companies do not usually engage in ownership ties.
This complementary feature between the layers seems to be in contrast with what the
distance between them turns out to be. Indeed d(OT,OS) = 0, 18. This is an incredible
low number when considering the fact that very few edges overlap. The reason behind
why those two features can coexist is hidden behind the overall number of reachable
nodes from each vertex. When considering OT and OS, the number of nodes that do
not present a path linking them in both layers is much higher than the one in DI or
II. This is because considering interlocks leads to a layer structure in which a main
connected component includes the majority of companies. Even if the number of links is
relatively low, as in the case of DI, the number of couple of disconnected companies is
not high. On the other hand, OS partitions the dataset of companies in many clusters.
This is a consequence of the choice of the similarity index and the respective threshold.
As soon as firms’ most relevant shareholders do not belong to the same category, or if
the two companies present very different equity distribution, they will not be linked by
any path. The OT layer on the other hand links companies building a main connected
component, but also leaves many disconnected nodes. For this reasons, OT and OS are
regarded as completely equivalent when they are compared over a couple of disconnected
firms. The distance measure d does not care for the topology of the layers, as it extends
them by building their "most natural" connected version, without having to eliminate
disconnected nodes.

The last considerations are now to be made considering the interlock layers together
with OS. Taking into account DI, also in this case the situation is very similar to the one
described previously, where overlaps are almost negligible. The overall marginal contri-
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bution of DI and OS to their projection is more than 99%. There are only seven double
links and they are equally distributed across companies presenting different equity distri-
bution. This means that interlocks are very rare between companies with same ownership
characteristics; in other words, for the dataset of interest, direct interlocks almost strictly
take place between companies with very different structure in terms of company control.
The situation is similar also when including indirect interlocks into the picture. In this
case, the number of overlapping edges is 24. This is a surprisingly low number when
considering the fact that II and OS are the layers with the highest number number of
links. The distribution of overlaps over all companies sectors is the following:

Figure 7.4: II and OS overlaps

The discretionary goods, industrial and technology sectors are the ones that engage the
most in those overlaps. There doesn’t seem to be any relevant pattern relating interlocks,
both direct and indirect, and the degree of despersiveness of companies. Indeed, the
average percentage of shares held by the first shareholder of firms engaging in double
links is around 50%. This means that there is no strong evidence of interlocks to happen
more often between heavily controlled companies, rather than in disperse ownership ones.
In general, the main information of interest is the very low number of edge overlaps, that
seem to clearly state the separation between the two layers across the dataset.
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8| Conclusions and future

developments

This thesis had as subject the ownership and governance composition of the main firms
listed in the italian stock exchange. It introduced a multilayer network analysis in or-
der to study if the presence of interlocks, ownership ties or similarity in the ownership
structure between companies influence each other and if those features are related. The
analysis carried on in the thesis focused on the creation of different layers, linking firms
according to several criterion stemming from the subjects just introduced. The aim was
to understand the relationship between those firms’ characteristics. This has been done
by analysing the different networks, their degree of overlap and the reasons behind those.
What emerged from the study was that there is a strong level of separation between the
layers, meaning that considering different data leads to very different final structures. All
layers complement each other, and there are very few companies engaging in more than
one link. No relevant correlation is found between strongly concentrated ownership and
interlocks. As the dataset considers companies that, on average, are controlled by few
investors, this could lead to the conclusion that interlocks are less likely to happen for
those firms. On the other hand, the majority of ties between companies happens across
firms with a more dispersed ownership structure. Interlocks and ownership ties are the
layers that tend to overlap the most, but still present a very complementary feature. The
overlaps between those are driven by small clusters of firms, all mainly linked by either a
single person or a common public investor. Considering indirect, rather than only directs
interlocks leads to more connected networks, but does not change meaningfully the rela-
tionships between the layers.
A matter of interest for further future development could be to understand the impact of
those features on company performance. The question that could arise, to which an an-
swer might lead to interesting findings, is how interlocks, ownership ties and the structure
of ownership of a company impact on its financial results. Carrying on an analysis of this
sort could help in understanding if those features are relevant issues on this matter.
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A| Appendix A: Proof of

theorem 1

Proof. The proof below demonstrates that d is a distance. It is thus given only for
unweigthed networks. The proof that d̃ is a distance (over connected networks) is not
given, as it follows a same and simpler reasoning.
Consider two different graphs G1 = (V,E1), G2 = (V,E2). It is trivial to see that the
operator d takes only positive values, that it is symmetric and that it is equal to 0 if and
only if E1 = E2. What is left to be proven is thus only the triangular inequality. Consider
now a third graph G = (V,E3). For simplicity, in the following mathematical reasoning,
the notation di = dGi

(u, v), for i = 1, 2, 3 will be used. Then it has

d(G1, G2) =
∑

{u,v}∈E1∩E2

|dG1(u, v)− dG2(u, v)|+
∑

{u,v}∈E1\E2

|N − dG1(u, v)|+

+
∑

{u,v}∈E2\E1

|N − dG2(u, v)| =

=
∑

E1∩E2

|d1 − d2|+
∑
E1\E2

|N − d1|+
∑
E2\E1

|N − d2| ≤

≤
∑

E1∩E2∩E3

|d1 − d3|+ |d3 − d2|+
∑

E1∩E2\E3

|d1 −N |+ |N − d2|+

+
∑

(E1\E2)∩E3

|d1 − d3|+ |d3 −N |+
∑

(E1\E2)\E3

|d1 −N |+ |N −N |+

+
∑

(E2\E1)∩E3

|N − d3|+ |d3 − d2|+
∑

(E2\E1)\E3

|N −N |+ |N − d2| = (∗)

The inequalities in the prior passages stemps simply from the modular inequality that
states that ∀a, b, c ∈ R, then |a − b| ≤ |a − c| + |c − b|. Decomposing even further the
result by splitting the sums yield the result that

(∗) =
∑

E1∩E2∩E3

|d1 − d3|+
∑

E1∩E2∩E3

|d3 − d2|+
∑

E1∩E2\E3

|d1 −N |+
∑

E1∩E2\E3

|N − d2|+
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+
∑

(E1\E2)∩E3

|d1 − d3|+
∑

(E1\E2)∩E3

|d3 −N |+
∑

(E1\E2)\E3

|d1 −N |+
∑

(E1\E2)\E3

|N −N |+

+
∑

(E2\E1)∩E3

|N − d3|+
∑

(E2\E1)∩E3

|d3 − d2|+
∑

(E2\E1)\E3

|N −N |+
∑

(E2\E1)\E3

|N − d2| =

That leads to
≤
∑

E1∩E3

|d1 − d3|+
∑

E2∩E3

|d3 − d2|+
∑
E1\E3

|N − d1|+

+
∑
E2\E3

|N − d2|+
∑

(E1∪E2)∩E3

|N − d3| ≤

≤
∑

E1∩E3

|d1 − d3|+
∑

E2∩E3

|d3 − d2|+
∑
E1\E3

|N − d1|+

+
∑
E2\E3

|N − d2|+
∑
E1\E3

|N − d3|+
∑
E2\E3

|N − d3| =

Adding together the different terms we get to the thesis

= d(G1, G3) + d(G3, G2)
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B| Appendix B: Entropy

derivation formula

The notion of "Entropy" present in this thesis has to be considered in the information
theory sense of the concept. Information theory is a branch of probability theory designed
to model how information is conveyed from a sender to a receiver [20]. One of its purposes
is to properly measure the information acquired when observing an event occurring with
probability p. Defined as I(p) the information gathered, this problem breaks down to
how to model the function I(·), which is supposed continuous. This function has to
satisfy some initial hypothesis; indeed, if an event is certain, then no relevant information
about the state of the world can be retreived from it, thus I(1) = 0. Secondly, as the
aim is to quantify information, I(·) should not hand over negative values, i.e. I(p) ≥ 0.
Finally, if two independent events with probability of happening p1 and p2 are observed
together, then the overall information gathered should just be the sum of the one that
would be retreived if those events were to be observed by themselves. Mathematically,
I(p1 ·p2) = I(p1)+ I(p2). This reasoning can be generalized for every number n of events,
thus yielding the equality

I

(
n∏

i=1

pi

)
=

n∑
i=1

I(pi) = ∀n ∈ N

From those characteristics that the infomation function is supposed to satisfy, it follows
that

I(p) = I((p
1
m )m) =

m∑
i=1

I(p
1
m ) = m · p

1
m ⇒ I(p

1
m ) =

1

m
· I(p)

Similarly, I(p
n
m ) = n

m
· I(p), n,m ∈ N. This concept can be generalised and proven to

hold for each real number α > 0, i.e:

I(pα) = α · I(p) 0 ≤ p ≤ 1
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It can also be proven that the only function I(·) satisfying all those properties is the
logarithm, thus yielding the result that

I(p) = −logb(p) = logb

(1
p

)
b > 0

Now, suppose that there are k different events that can be observed and to label them
(a1, . . . , ak). Each event occurs with a different probability pi. The vector (p1, . . . , pk)

stores those probabilities. When observing event ai the information I(pi) = −log(pi) is
gathered. Suppose N different observations are conducted. In this situation, the event
ai, i ∈ {1, . . . , k} will occur on average N · pi times. The total information obtained
throughout all observations is

IN =
k∑

i=1

(N · pi)log
( 1

pi

)
Averaging out the information received over all observations yields the final result that

IN
N

=
k∑

i=1

pi · log
( 1

pi

)
If the vector (a1, . . . , ak) represents the support of a random variable X whose law is
completely determined by the vector of probabilities (p1, . . . , pk), the last quantity is
defined as the Entropy of X, and it measures the uncertainty around the outcomes of
X. In formulas

H(X) =
k∑

i=1

pi · log
( 1

pi

)
For example, if k = 2 and X is the certain event a1, then H(X) = 0 (in this case, we
suppose 0 · ∞ = 0). The more density function of X maximising its entropy is given by
(p1, p2) = (1

2
, 1
2
).
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