
Experimental Assessment of Deep
Reinforcement Learning Assisted
Optical DC/HPC Network Recon-
figuration Methods

Tesi di Laurea Magistrale in
Telecommunications Engineering - Ingegneria delle
Telecomunicazioni

Author: Massimiliano Sica

Hosting Institution: University of California Davis

Student ID: 10558133
Advisor: Prof. Massimo Tornatore
Co-advisors: Prof. S.J. Ben Yoo, Prof. Roberto Proietti, Dr. Sandeep
Kumar Singh
Academic Year: 2021-2022

i

Abstract

Data center (DC) and high performance computing (HPC) networks are at the roots
of any cloud-computing system and are responsible for interconnecting efficiently the
different parts of a system architecture. In the recent years cloud-computing has seen an
impressive growth with services like AWS, Azure and Google Cloud becoming the standard
for almost any tradition IT service. In particular, the wide diffusion of machine learning
has led to an increase in workload for the current data center systems which are now
dealing with different types of traffic, with different quality-of-service requirements and
an increased number of demands. Current data center networks rely on over provisioned
static links which are designed to handle worst case scenarios. The current approach not
only is very expensive to maintain, but is also inefficient since most of the current data
center traffic is highly unpredictable and prone to oscillations. One of the most promising
solutions is optical switch reconfiguration, which allows to provision paths depending on
the current network situation with very fast switching times if compared to a classical
electrical switch. To drive optical switch reconfiguration several heuristic and integer
linear programming (ILP) methods have been tried, however they tend to show limited
scalability and poor generalization capabilities. To solve the above problem we are going
to present a deep reinforcement learning (DRL) based optical reconfiguration method
using an experimental testbed. DRL allows to generalize to different scenarios without
explicit training. The specific goal is to show that optical reconfiguration can indeed
improve the training performance of distributed machine learning workloads in case of
network congestion. By changing the topology of the network dynamically, optical switch
reconfiguration can generate new topologies where it is possible for the routing algorithm
to route the distributed machine learning traffic on a path which is less congested than
the one where it was running pre-reconfiguration. By setting up the testbed with the
proper number of servers, a real time network monitoring system and a routing algorithm
we were able to show a 5x training time decrease for the deployed distributed computer
vision algorithm. In addition, using a self-supervised learning algorithm we were able to
improve the training of the agent leading to a 29% less network collapses.

Keywords: optical network reconfiguration, data center networks, reinforcement learn-

ii | Abstract

ing, distributed machine learning, self-supervised learning

iii

Abstract in lingua italiana

Le reti di data center (DC) e High Performance Computing (HPC) sono alla base di
qualsiasi sistema di cloud-computing e sono responsabili interconnettere efficientemente
diverse parti di sistema. Negli ultimi anni il cloud-computing ha visto una crescita im-
pressionante con servizi come AWS, Azure e Google Cloud che sono diventati lo standard
per quasi tutti i servizi IT tradizionali. In particolare, l’ampia diffusione del machine
learning ha comportato un aumento del carico di lavoro per gli attuali sistemi di data
center che oggi affrontano tipologie di traffico variegate, con diverse esigenze di qualità
del servizio e un numero maggiore di richieste. Le attuali reti di data center si basano su
collegamenti statici progettati per gestire i worst case scenarios. L’approccio attuale non
solo è molto costoso da mantenere, ma è anche inefficiente poiché la maggior parte del
traffico in un data center è altamente imprevedibile. Una delle soluzioni più promettenti si
basa sulla riconfigurazione degli switch ottici, che consente di generare nuove connessioni
a seconda della situazione della rete con tempi di commutazione molto rapidi rispetto a
un classico switch elettrico. Per guidare la riconfigurazione dello switch ottico sono stati
testati diversi algoritmi euristici e di integer linear programming (ILP), tuttavia tendono
per mostrare una scalabilità limitata e scarse capacità di generalizzazione. Per risolvere
il problema di cui sopra, presenterò un metodo di riconfigurazione ottica basato sul deep
reinforcement learning (DRL) utilizzando una testbed sperimentale. Il DRL permette
di generalizzare in scenari in cui non e’ stato esplicitamente addestrato. L’obiettivo è
dimostrare che la riconfigurazione ottica può effettivamente migliorare le prestazioni di
addestramento dei carichi di lavoro di machine learning distribuiti. Cambiando dinami-
camente la topologia della rete, la riconfigurazione ottica può generare nuove toplogie
dove è possibile per l’algoritmo di routing instradare il traffico del carico distribuito su
un percorso che è meno congestionato di quello pre-reconfigurazione. Configurando il
banco di prova con il numero corretto di server, un sistema di monitoraggio della rete
in tempo reale e un algoritmo di routing, sono stato in grado di mostrare una riduzione
del tempo di addestramento di 5 volte per l’algoritmo di visione artificiale distribuito.
Inoltre, usando un algoritmo self-supervised sono stato in grando di migliorare il processo
di training dell’agente riducendo il numero di collassi di rete del 29%.

Parole chiave: riconfigurazione reti ottiche, reti per data center, reinforcemnt learning,
machine learning distribuito, self-supervised learning

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Thesis Outline . 1
1.2 Overview and Motivation . 1
1.3 Problem Statement . 2

2 Optical Reconfiguration in DC/HPC Networks 5
2.1 DC/HPC Networks in a Nutshell . 5
2.2 The Power of Optical Reconfiguration and SDN 6
2.3 State of the Art: ML for Optical Reconfiguration 7

3 Deep Reinforcement Learning Theory and Applications 11
3.1 Introduction and Concepts . 11
3.2 Deep-Q Learning . 14
3.3 Deep Deterministic Policy Gradient (DDPG) 16
3.4 Self-Supervised Deep Reinforcement Learning 17

4 Solution Development 19
4.1 Overall Architecture . 19
4.2 Testbed Description . 19
4.3 Workloads . 22

4.3.1 Distributed Machine Learning . 22
4.3.2 Iperf and Sflow . 23

4.4 Traffic Monitoring and Traffic Matrix Estimation 24
4.5 Routing Algorithm . 25

4.6 Deep Reinforcement Learning Algorithm 26
4.7 Experimental Setup DQN . 30

5 Results Evaluation 35
5.1 DQN Results . 35
5.2 Self-Supervised Assisted Results . 37
5.3 DDPG Results . 40

6 Conclusions and Further Developments 43

Bibliography 45

List of Figures 51

List of Tables 53

Acronyms 55

Acknowledgements 57

1

1| Introduction

This introductory chapter is going to provide an overview on the structure of this thesis
and on the reasons why the topic of optical reconfiguration for data center and high
performance computing networks was chosen. In the last section, the problem statement,
a more detailed explanation of what the developed algorithm does, the results obtained
and an example scenario are provided.

1.1. Thesis Outline

This thesis is organized in 6 chapters including this one and they are organized as follows:

• Chapter 1: presents the motivation behind this work and the problem statement
addressed with this study

• Chapter 2: provides an overview of DC/HPC networks, discusses how optical re-
configuration can help, and presents the related work

• Chapter 3: presents general reinforcement learning (RL) theory, two DRL algo-
rithms and a self-supervised DRL method and analyzes their advantages

• Chapter 4: is the biggest chapter where the proposed approach is presented together
with all the tools used to develop it

• Chapter 5: presents and analyzes the experimental results

• Chapter 6: concludes this thesis summarizing the major outcomes and discussing
possible future work directions.

1.2. Overview and Motivation

Data center networking is the integration of a constellation of networking resources switch-
ing, routing, load balancing, analytics, etc. to facilitate the storage and processing of
applications and data -VMware Glossary [47]

2 1| Introduction

Data center and high performance computing networks are at the roots of any cloud-
computing system and are responsible for interconnecting efficiently the different parts of
a system architecture. They rely on high bandwidth optical links in order to be able to
deal with the massive amount of data generated every second. In the recent years cloud-
computing has seen an impressive growth with services like AWS, Azure and Google
Cloud becoming the standard for almost any tradition IT service (storage, computing,
networking etc...). The growth of these services also led to an increase in the number
of users with different needs, and consequently to more complex traffic patterns. For
this reason, today’s DC and HPC networks are characterized by a progressively more
spiky and unpredictable traffic due to the vast number of applications running and the
constant demand from users. Each user/ application tries to meet different requirements
and meeting all of them can be complex. Current DC/HPC architectures have dealt
with the problem by using static, over provisioned architectures which are designed to
handle worst case scenarios. The problem with this kind of architectures is that they
are not able to efficiently adapt to the modern unpredictable data center traffic and this
leads to quality-of-service (QoS) requirements not being met. In addition, worst case
static provisioning comes with very expensive useless cabling, excessive heat production
and strong power consumption. Current state of the art solutions rely mainly on ILP,
which are very hard to solve online even with the most advanced solvers, or heuristics
algorithms which can show generalization issues. Even the current DRL based solutions
show some problems. Specifically, DRL follows a trial-and-error approach which leads
to making a lot of mistakes (taking sub-optimal actions or failure-leading actions) that
can slow down the training process. DRL training can be lengthy, energy consuming
and data-hungry. This work is going to focus on how to move beyond statically wired
networks and develop a smart infrastructure capable of provisioning dynamically and the
needed resources for each application leading to an improvement of QoS and to a simpler
architecture. First, a DRL agent is developed to improve the training performance of
the distributed machine learning algorithm and act as a baseline. After a self-supervised
methodology is implemented in order to improve the convergence time of the base agent
and reduce the number of visits to failure states (network collapse).

1.3. Problem Statement

The explosion of machine learning in the recent years has led to a considerable increase
within data center infrastructure of these kinds of workloads which consume a relevant
amount of both computer and network resources [9]. According to [20], "Since 2012, the
amount of compute in the largest AI training jobs has been increasing exponentially with

1| Introduction 3

a 3.4-month doubling time, 50x times faster than the pace of Moore’s Law". In this
context, being able to optimize the execution of such type of traffic can lead to great
savings for the company owning the data center and to an improvement of quality-of-
service for the customers. To support this thesis, we decided to run an experiment to
understand how much improvement can be obtained with reconfiguration. We deployed
the distributed machine learning (DML) algorithm using the testbed shown in 4.1 with
and without background traffic. The DML traffic captured by Sflow is shown in figure
1.2. The background traffic consisted in congesting a single link with 9Gb/s UDP traffic
generated by Iperf. we deployed the machine learning training over the following virtual
machines (VM): VM1, VM2, VM3 and VM4, and we generated Iperf traffic between
VM7 and VM8. The difference in training time between the two is simply impressive,
the non congested scenario completed a 100 epoch training in about 1950 seconds while
the congested one completed in about 3548 seconds. The increase in training time is
about 45% which means that a proper optical reconfiguration algorithm could make a
real difference.

Given the above, the goal of this work is to provide a novel algorithm based on deep
DRL to provide efficient optical switch reconfiguration to improve the training time of
DML applications running in a data center/super computer while also improving the
performance of the DRL agent using a self-supervised module.

The input to our algorithm is the physical topology of the testbed in Figure 4.1 that
we are using to test the algorithm, and a the current network metrics obtained from the
top-of-the-rack (ToR) switches. The system is responsible for the following:

• Traffic monitoring

• Traffic matrix estimation

• Routing

• Optical Switch Reconfiguration

All of the above are implemented by three components: the DRL agent, the traffic monitor
and the flow manager which are shown in figure 1.1. The output of the algorithm is a
new configuration for the optical switch and the new flow tables for each ToR. For the
development of the DRL agent we are going to compare the performance of two well known
algorithms: Deep Q-learning and Deep deterministic policy gradient. Once a baseline is
obtained, a self-supervised approach is used to improve the performance of the agent itself
in terms of convergence time and visits to the failure state.

4 1| Introduction

Figure 1.1: Input-output diagram

Figure 1.2: Example of distributed machine learning traffic

5

2| Optical Reconfiguration in

DC/HPC Networks

In this chapter some fundamental background topics, useful for the development of the
optical reconfiguration algorithm of this thesis, are presented. It is introduced what data
center and high performance computing networks are, and how optical reconfiguration and
SDN can be game changers for the current cloud- computing architectures. Eventually,
the state of the art in machine learning (ML) for optical reconfiguration is described.

2.1. DC/HPC Networks in a Nutshell

Data center and high performance computing networks are the backbone infrastructure
for any modern cloud-computing system. They provide high speed connectivity between
the different servers that compose the system. Given the growing popularity of cloud-
computing, DC/HPC networks are responsible to carry high bandwidths and to guarantee
QoS in more complex scenarios [19]. These networks need very fast routing to be able
to manage the huge amount of network traffic and the velocity at which the demand
set changes. The authors of [51], propose an SDN based routing algorithm capable of
outperforming current network protocols like OSPF in terms of convergence time and
response. In addition to being efficient, routing algorithms need to be able to adapt to
changing topologies, since the problem of optical network reconfiguration is a dynamic
one [42]. Currently, DC/HPC networks rely on static wiring to provision worst-case
scenario bandwidths ([1], [10]), however such solution leads to poorly performing networks
since the bandwidth is not allocated dynamically according to the current needs [2]. In
addition to being inefficient performance wise [3], they are also lacking in terms of energy
efficiency. In [31] and [45], the authors mention that the total power consumption of
data centers increased globally from 24GW to 38GW (63%) between 2011 and 2012.
This can lead to significant bottlenecks in certain areas of the network, while other links
are completely available. In order to solve this issue we need to rethink completely the
current architecture and move to a more flexible architecture which allocates bandwidth

6 2| Optical Reconfiguration in DC/HPC Networks

dynamically. However, in order to build this system we need to develop a data plane that
is easily re-configurable no matter the size and that is reconfigured fast, to minimize the
data loss. The two ingredients to obtain such architecture are optical reconfiguration and
software defined networking (SDN). One example is [42] where the authors try to develop
an efficient routing algorithm to deal with the flexible interconnects of re configurable
DC/HPC networks using OpenFlow and Ryu.

2.2. The Power of Optical Reconfiguration and SDN

Optical switching technology can enable fast reconfiguration within a data center network
since optical interconnections can be provisioned quickly and the bandwidth is much
higher that the average electronic packet switch. In this section, two papers that express
the potential of these two technologies are presented.

The first paper, Flexspander [43] is an example of successful integration of optical cir-
cuit switches (OCS) within mainly electronic packet switches systems. The authors of
Flexspander claim that most DC/HPC systems are currently connected using either a
Hierarchical Clos [24] or a Dragonfly [21] topology which are statically wired and can
lead to lack of flexibility and suffer performance degradation. In this scenario researchers
started looking at optical switching and developed a reconfigurable topology called Flexfly
[50] capable of leveraging silicon photonics (SiP) switches to build a re configurable ar-
chitecture with nanosecond switching. The authors of [43] decided to build on top of this
architecture using the concept of expander networks ([40] [44]) which have been proven to
be capable of outperforming most of other topologies at the same cost [18]. The result is
the Flexpander architecture, which is a re configurable network topology that can be built
with an arbitrary combination of commercial electrical packet switches and OCS. Thanks
to its flexibility, the authors were able to show an improvement of performance over static
network topologies in terms of flow completion time (FCT) and prove the superiority of
optical reconfiguration in handling the skewed, unpredictable traffic of today’s DC/HPC
systems.

Thanks to Flexspander it has been shown that optical circuit switches provide the hard-
ware for an efficient data plane, but that is not enough since it is also important to
control synchronously the OCS and all the other electronic components in the system,
like for example top-of-the-rack (ToR) switches. To do so the concept of software defined
networking [22] is exploited, which consist in separating the data plane from the control
plane for better management. On top of SDN any application that can do reconfigura-
tion and management for the network can be run, figure 2.1 shows the concept behind

2| Optical Reconfiguration in DC/HPC Networks 7

SDN. Other works have successfully shown the capabilities of SDN in this context like
"Software-Defined Networking Control Plane for Seamless Integration of Multiple Silicon
Photonic Switches in Datacom Networks" [39]. In this paper, the authors have explored
how to integrate silicon photonics based switches into a traditional Ethernet or InfiniBand
networks in order to study the feasibility and performance of integrating such switches
into the current Datacom network architectures. The SDN controller is used to integrate
two technologies that are completely different from one another and manages to make
them work together in a synchronized fashion. SDN is used to run the reconfiguration
algorithm needed to improve the performance of the network by using the OpenFlow pro-
tocol to send messages to both the electronic packets switches (EPS) and silicon photonic
switches. Using this setup the authors were able to demonstrate a considerable improve-
ment over the state of the art, in fact the final control plane was able to reach a 344 µs
latency.

Figure 2.1: Visual explanation of SDN (link)

2.3. State of the Art: ML for Optical Reconfigura-

tion

The problem of optical reconfiguration has been treated in literature in multiple occa-
sions. The initial approach taken by most researchers was to write an ILP problem for
reconfiguration, however the complexity of these methods did not scale well with the size
of the current data center infrastructure as pointed out in ([49], [14], [26], [27]). Also
heuristic algorithms have been proven to be non adequate to solve the task since they are
often very far from optimal ([49], [5], [8], [48]). In particular, OSPF [6] and ECMP [46]
do not account for current network utilization and lead to sub optimal solutions. In this

https://sdnet.pressbooks.com/chapter/introduction/

8 2| Optical Reconfiguration in DC/HPC Networks

context, people started exploring machine learning based solutions that have the potential
to scale properly without considerable human intervention [37].

Paper [49] provides an example of machine learning for optical reconfiguration. The
authors were able to develop a convolutional neural network architecture capable of finding
an optimal or near optimal reconfiguration scheme given as input the current demand
matrix and the topology of the network. With respect to an ILP, the proposed neural
network does not need to keep solving a problem online. Instead the neural network
model is trained offline from from traffic traces which are very common in today’s data
centers, after the training the new topology inference is found to be quite fast. The overall
architecture ends up being quite complex and based on three separate modules responsible
for:

• Scoring a traffic demands matrix and topology couple

• Labeling the historical traffic traces with topologies with high scores

• Mapping module to actually map a demand matrix to a topology

Another approach was taken in [13], where the authors developed a DRL based framework
for avoiding quality-of-service (QoS) deterioration of applications running within a data
center. Whenever a certain application’s QoS deteriorates the DRL is triggered and the
workloads on the overloaded links are reconfigured. QoS is defined in terms of throughput,
latency and packet loss combined together in:

QS(t) = Tp −
S∑

s=1

(k21Las + ks2Pls) (2.1)

Where Tp is the throughput, Las is the latency and Pls is the packet loss of reconfigured
workloads at time t with QoS s, while k1 and k2 are weighted factors. Every DRL
algorithm is characterized, in addition to the reward, by a state and an action space. The
state at time t for this solution is made of the following for each workload:

• QoS priority

• Source

• Destination

• Link Utilization : a vector combining the bandwidth utilization of each link nor-
malized between 0 and 1

The action decides how the reconfigured workload is reconfigured in the data plane and is

2| Optical Reconfiguration in DC/HPC Networks 9

defined as a distribution ratio vector of length m, where each element is the ratio of traffic
allocated to the mth available path. The authors make use of OpenFlow to periodically
poll the SDN agents and gather the statistics needed for computing the QS function(2.1)
and for checking the QoS status. The authors tested their application using some real
world workloads belonging to different categories with very different needs (online serving,
scientific computing, offline backup) and obtained significant results up to 6.9% network
latency improvement with respect to heuristic reconfiguration methods. However, during
the result’s collection it emerged that reconfiguring when the QoS is already degraded
leads to a decrease in performance. As a follow up for this work the authors in [12]
tried to predict a QoS degradation that will lead to a reconfiguration in advance, using
recurrent neural networks, in order to avoid the performance deterioration that would
follow.

The algorithm presented in this thesis is going to focus on a new self-supervised DRL
algorithm capable of optical reconfiguration which is going to exploit real time monitoring
of the network traffic to optimize the training time of a DML algorithm. DRL is the way
to go in this problem since we want to avoid using ILP and heuristic algorithms to improve
generalization capabilities. The real time monitoring is necessary in order to deal with the
possible delays that may arise from a polling system and instead react readily to drastic
network traffic changes. In addition to the above we will also develop a self-supervised
algorithm to improve the convergence of the agent and reduce the number of visits to
the failure state. The entire work is going to be carried using an experimental testbed to
more closely resemble a real world scenario.

11

3| Deep Reinforcement Learning

Theory and Applications

In this chapter the theory needed to build the general knowledge to understand my thesis
work is covered. It will focus on RL in general, Markov Decision processes, deep Q-
learning, Deep Deterministic Policy Gradient and a more particular type of RL based on
a self-supervised training methodology.

3.1. Introduction and Concepts

The concepts of RL explained in this section come from Sutton and Barto [41].

To understand RL we need to start from the concept of "finite Markov Decision Process"
(MDP), where we have an agent interacting with an environment which provides back a
reward and a new environment state.

MDP can be modeled by:

• States S

• Actions A

• Reward function R

• Discount factor γ ∈ (0, 1]

• Policy to learn π

The dynamics of the MDP can be fully defined by function p (3.1) where Rt and St are
random variables, for respectively the reward and the state, with well defined discrete
probability distributions.

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (3.1)

From the above equation we can derive anything that we want to know about the envi-

12 3| Deep Reinforcement Learning Theory and Applications

Figure 3.1: Visual explanation of agent environment (link)

ronment like for example the state-transition probabilities:

p(s′|s, a) = Pr{St = s′|St−1 = s, At−1 = a} =
∑
r∈R

p(s′, r|s, a) (3.2)

or the expected reward for a certain state, action, next state triplet:

E[Rt|St−1, At−1 = a, St = s′] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (3.3)

The idea is to teach the agent how to take actions (find a policy) that are capable of
maximizing the cumulative rewards, hence the reward the system provides should be
strongly connected to the result we want to achieve. The discount factor γ defines how
much our algorithm is long or short sighted. For each state we want to evaluate how
"good" it is to be there (in terms of expected future rewards) and in this context we
define two functions:

• Vπ(s) State Value Function : expected return of being in state s and following policy
π

• qπ(s,a) Action Value Function : expected return starting from s taking action a and
here after following policy π

Vπ(s) can be estimated using Bellman equation 3.4 and can be used to find the optimal
policy, however in reality solving Bellman equation 3.4 is very computationally expensive
and often unfeasible since a huge amount of memory would be required to store all the
possible states of a real world scenario.

V π(s) =
∑
a∈A

π(a|s)[R(s, a) + γ
∑
s∈S

P (s′|s, a)V s′] (3.4)

https://www.frontiersin.org/articles/10.3389/fbuil.2020.562239/full

3| Deep Reinforcement Learning Theory and Applications 13

If we want the optimal value for both value ans action value then we get:

V ∗(s) = maxa{r(s, a) + γ
∑
s∈S

P (s′|s, a)V ∗(s′)} (3.5)

Q∗
π(s, a) = r(s, a) + γ

∑
s′∈S

p(s′|s, a)max′aQ∗(s′, a) (3.6)

And the reason why we want these is because by rewriting the equation we can get the
optimal policy.

The big issue with MDP is that they require a full knowledge of the environment which
is, again, almost never the case in real world scenarios.

To tackle the issue of solving Bellman equation, dynamic programming was developed
in order to break down the big problem into small recursive sub problems. Dynamic
programming starts with policy evaluation where we apply, for every step k, Bellman
equation to every state. It can be proved that for k →∞ Vk converges to Vπ for any initial
V0 The second component of dynamic programming s policy improvement:

π∗(s) = argmaxa{r(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′)} (3.7)

The idea behind policy improvement is acting greedy by choosing the best action at every
step. Now if we combine policy evaluation and policy improvement we obtain the so
called policy iteration, which converges to the optimal policy by evaluating and improving
iteratively.

Dynamic programming despite improving the previous situation still suffers from the curse
of dimensionality when the number of states is very big, and it is strongly connected to
having full knowledge of the environment which is normally not true. There are other
methods called Monte Carlo (MC) methods which rely only on the experience gathered
(data) to learn value functions. These methods are still based on policy iteration, however
some modifications have to be made:

• Policy Evaluation: MC averages returns observed after visits to s (either every-visit
or first-visit)

• Policy Improvement: MC acts greedy with respect to the state action function

The algorithm of policy improvement for MC converges asymptotically only if every state-

14 3| Deep Reinforcement Learning Theory and Applications

action pair is visited, which means that sometimes we need to sacrifice optimality for
exploration. This trade off is called exploration-exploitation dilemma.

Before moving on to the final algorithm it is worth mentioning that another problem still
needs to be fixed: MC only applies to episodic tasks which is strong limitation. The
solution is temporal difference (TD) learning which combines MC with DP.

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)] (3.8)

The equation above shows between squared brackets the temporal-difference error and is
what allows us to train online without the need of a complete episode like in MC. Now
that we have added this tiny bit of information we can move on to Q-learning, which
updates its action value function like:

Q(St, At) = Q(St, At) + α[Rt+1 + γmaxaQ(St+1, At+1)−Q(St, At)] (3.9)

We now have all the tools to understand DRL and how neural networks come into play
to improve the performances of these algorithms and provide a tool that could be used
on real world use cases.

3.2. Deep-Q Learning

Here we use recent advances in training deep neural networks to develop a novel artificial
agent, termed a deep Q-network (DQN), that can learn successful policies directly from
high-dimensional sensory inputs using end-to-end reinforcement learning. [30]

As mentioned in the previous chapter, solving Bellman’s equation extremely complex and
it is often impossible in real world scenarios. In this context, neural networks can really
help since we can train them to approximate the optimal action-value function 3.6. We
are going to refer to the approximate action-value function as Q(s; a; θi) where θi are the
weights at iteration i. Introducing a non linear approximator in RL comes at a price
since the learning can become unstable due to the high correlation between sequences of
observations. The authors of [30] propose two solutions to this problem:

• Experience replay buffer: it allows us to sample data at different time instants to
perform training on uncorrelated sequences

• Iterative approach: training is done with respect to a target network which is only
periodically updated

3| Deep Reinforcement Learning Theory and Applications 15

To perform experience replay we store the agent’s experience et = (st, at, rt, st+1) in a
data set D. During learning we apply Q-learning updates on samples of experience drawn
uniformly at random from D.

The loss function we use to compute gradient descent looks like:

where θ−i are the weights of the target network updated every c steps.

Algorithm 3.1 Deep Q-Learning
1: Randomly initialize neural network Q(s, a|θQ)
2: Initialize target networks Q’
3: Initialize Replay buffer R
4: for Episode = 1,M do
5: Receive initial state s1
6: for t = 1, T do
7: Generate random probability p
8: if p >= ϵ then
9: Select action at = argmaxa(Q(s, a|θQ))

10: else
11: Select random action at
12: end if
13: Execute action at and observe reward rt and observe new state st+1

14: Store transition (st, at, rt, st+1) from R
15: Sample a random mini batch of M transitions from R
16: if episode terminated at the next step then
17: yi = ri

18: else
19: yi = ri + γmaxa

′Q′(s′, a′|θ−i)
20: end if
21: Compute gradient descent yi- Q(s, a|θQ) to update the weights
22: end for
23: end for

16 3| Deep Reinforcement Learning Theory and Applications

3.3. Deep Deterministic Policy Gradient (DDPG)

We adapt the ideas underlying the success of Deep Q-Learning to the continuous action
domain. We present an actor-critic, model-free algorithm based on the deterministic policy
gradient that can operate over continuous action spaces [25].

Algorithm 3.2 Deep Deterministic Policy Gradient
1: Randomly initialize critic network and actor network Q(s, a|θQ) and µ(s|θµ)
2: Initialize target networks Q’ and µ′ with θQ′ and θµ′

3: Initialize Replay buffer R
4: for Episode = 1,M do
5: Initialize random process N for exploration
6: Receive initial state s1
7: for t = 1, T do
8: Select action at = µ(st|θµ) + Nt

9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) from R
11: Sample a random mini batch of M transitions from R
12: end for
13: end for

The main reason behind the development of DDPG [25] is to apply DQN [30] in continuous
action spaces where it would be impossible or very complex to evaluate singularly all the
possible actions that may occur (greedy policy), since in continuous spaces the amount of
possible actions can be outstanding and not realistically manageable computationally. In
this context we need to find a different way to estimate the policy function. The solution
is to use an actor neural network µ(s, θµ) to estimate the current policy(the action to take
at every step) and a critic network which provides an estimate of the Bellman’s equation
(like in DQN) and tells the actor how good it is performing. For what concerns the issue
that samples collected close in time are strongly correlated we use a replay buffer like in
DQN. To solve the exploration-exploitation dilemma the actor will produce some actions
that are going to be affected by some values extracted by sampling an ad hoc random
process. Now we should get in the details of how the losses are computed. The critic
loss is based on the mean square error formula while the actor loss wants to minimize the
mean of the value given by the critic network for the actions taken by the actor network.
The target networks for the critic and the actor are updated every k steps using a very

3| Deep Reinforcement Learning Theory and Applications 17

small parameter τ to track the current weights. The τ parameter should be much smaller
than 1 to avoid divergence.

3.4. Self-Supervised Deep Reinforcement Learning

One of the biggest problems of DRL is the lack of awareness when taking certain actions
with respect to others. As human beings we are going to treat different actions in different
ways [28], for example if we are handling a container made of glass we are going to be
more careful with it than if it was made of plastic. The reason behind this is simple, if we
dropped a glass container it is going to break and we cannot bring it back to its original
state which is not true for the plastic one. The authors of [11] believe that introducing
this kind of thinking, known as causal thinking, in the agent’s learning process could
dramatically speed up the convergence of the rewards. Reversibility estimation allows to
teach the agent to maintain a safer behavior in high risk environments, like for example
when interacting with elders or handling fragile material. The paper explains how to
introduce an auxiliary component to the regular DRL reward which takes into account
causality and is estimated using a self-supervised learning process. In order to estimate
causality, according to the paper [11] we need to focus our attention on a surrogate task:
learning how to predict if an observation (A) comes before another (B). An observation
can be considered as a synonym of the combination of state and next state

Figure 3.2: Sokoban reversibility example

In figure 3.2 we show how from observation one we move to observation two which leads to
failing the task since once the box is placed next to the wall there is no way for the agent
to go back and the game has to be restarted. Now that the problem setup is more clear we
can move the implementation of the solution . The first step is to find a mathematical way
to relate precedence and causality and for doing so we need to define some components:

• Degree of reversibility of an action in K steps: ϕπ,K(s, a)

18 3| Deep Reinforcement Learning Theory and Applications

• Precedence estimator ψπ(s, s
′) : it provides the probability of visiting state s’ after

s

• Empirical reversibility ϕπ(s, a) = E[ψπ(s, s
′)]

Starting from the above, the authors are able to link precedence and reversibility providing
a theoretical bridge between the two.

Now, how can we predict precedence between two observations in a self-supervised way?
First of all by self-supervised the authors mean that the neural network is going to train
itself without the need of a labeled data set. The neural network is going to take as
target two temporally ordered states, distant no more than w steps from each other, and
as input the same states but shuffled. The network is supposed to tell which of the two
states comes first and it is going to know if the prediction is correct or not thanks to the
target.The algorithm generates an embedding for both the states using a Siamese network
which are concatenated together and then passed to a feed forward neural network for
temporal order prediction. The probability is updated via negative log likelihood against
the result of the shuffle so that it matches the actual temporal order. With this setup the
authors define two possible ways to operate the algorithm: a version which tries to avoid
irreversible actions (RAE: Reversibility Aware Exploration) and a version which prohibits
irreversible actions (RAC: Reversibility Aware Control). Both of these algorithms were
able to improve considerably the performance of a basic IMPALA agent [7]. For what
concerns RAC with offline training, in the use case of the cart pole problem [33] it achieves
the maximum score immediately despite the use of a random policy agent. If we deploy
RAC online, we are going to experience a slower learning curve, which however leads to
a very safe behavior.

19

4| Solution Development

This chapter is the most relevant, since here the solution and the tools needed to develop
it are covered in detail. The overall architecture of the system, which includes the testbed
(virtual machines, ToR, optical switch and links) and the external servers that we use to
run different applications, is shown. After that, the chapter will dive into the physical
structure of the testbed and the configuration procedure for the virtual machines. Fol-
lowing the testbed configuration more information about the workloads deployed for the
experiment will be given. After that, the implementation of traffic monitoring, routing
and the DRL algorithm is explained. The chapter ends by describing the experimental
setup.

4.1. Overall Architecture

The whole system architecture is shown in figure 4.1. The data plane is made by 6 virtual
machines, 4 ToR switches and an optical switch, while the control plane is handled between
two servers, the controller and the monitor. The monitor is the brain of our system and
it is where our algorithm is going to run, while the controller takes care of running the
Ryu ofctl rest API [38] which allows the monitor to interface with the data plane using
OpenFlow. In addition the controller is configured as Sflow [16] collector to provide real
time monitoring capabilities to our system.

4.2. Testbed Description

In this subsection we will go more in the details for what concerns the structure of the
DC testbed available at the NGNCS lab of UC Davis.

The DC testbed is made up by four virtual servers running in two separate physical
servers (Node1 and Node2) connected by four virtual ToR switches built inside a physical
ToR running PicOS [36]. At the center of the topology there is the microelectromechan-
ical system (MEMS) based optical switch (figure 4.3), and the whole infrastructure is
controlled by the monitor and the controller which are installed in two different servers.

20 4| Solution Development

Figure 4.1: System’s architecture

The controller provides an interface for the Ryu rest API (ofctl rest) [38] which allows
to manage the virtual bridges using a SDN approach. On the other hand, the monitor
acts as an orchestrator and sends out the commands to the controller calling the needed
ofctl rest method. The monitor is also the server where our deep RL runs and where the
reconfiguration commands are sent to the OCS. The optical switch receives configuration
instructions via a TCP socket using Standard Commands for Programmable Instruments
(SCPI). The optical circuit switch deserves a few additional notes, since it provides a
number of ports that can be connected dynamically leading to variations in the topology
(number of edges and connected VMs). In particular the VMs are connected like shown
in 4.1. This means that every time that a reconfiguration is required, the DRL algorithm
will connect the VMs in a different way leading to a new topology graph.

4| Solution Development 21

Figure 4.2: Physical testbed [4]

VM In Port Out Port

row1 VM1 17 49

row2 VM1 21 53

row3 VM2 18 50

row4 VM2 22 54

row5 VM3 23 55

row6 VM3 19 51

row7 VM4 20 52

row8 VM4 24 56

Table 4.1: Virtual machine to optical switch port

As mentioned earlier in the section we make use of virtualization in order to create two
VMs within each computing node. Since configuration and installation were part of the
work at UC Davis we are going to provide a description of the procedure here. The very
first step was to physically place the server in the rack, the servers are from EXXACT
and come with 32 Gb of RAM and an AMD EPYC 7302P 16-Core Processor. To connect
the server with the ToR we used two 10GBase-DWDM ER SFP+ SMF 1537.40nm 40Km
transceivers. Once the server was placed in the right spot and connected to the rest of
the testbed we installed Ubuntu 20.04 in it and an OpenSSH [34] server to be able to
work outside the server room. The installation of the virtual machines was carried out
using KVM [23]. First of all we need to create a virtual router (with both L2 and L3

22 4| Solution Development

Figure 4.3: Optical switch available cross-connects

configuration) using 1G ports in order to guarantee Internet access to the virtual machines
and to act as DNS server. Then we are going to create two bridges linked to the 10G
ports via MAC address. Once this whole procedure is completed and correctly running
we proceed to create two virtual machines, one for each of the bridges defined before, with
4096 MB of RAM, 10GB of hard disk space and two vCPUs. A picture with a schematic
of the internal networking configuration is available in figure 4.4.

4.3. Workloads

4.3.1. Distributed Machine Learning

For the experiments we run a DML algorithm developed in PyTorch by PhD student Yang
Hao at the University of Science and Technology in China. The algorithm is an image
classification task of the Cifar10 [32] data set which contains 60000 32x32 colour images
in 10 classes, with 6000 images per class. Let us analyze all the keywords one by one.
When we talk about image classification we want to be able to assign a new image not
belonging to the training set to the correct class (eg: airplane, automobile, bird, cat etc...
[32]). Performing such task is often very demanding in terms of computation and may
not be possible to solve it using a single machine and this is when DML comes into play.

4| Solution Development 23

Figure 4.4: Virtual machines configuration visual explanation [4]

DML allows to train the neural network model in different nodes communicating with one
another following, in this case, a ring all-reduce pattern (in our topology represented in
figure 4.1: 0→ 3 → 2 → 1 → 0).

4.3.2. Iperf and Sflow

In this section we are going to introduce to the reader two fundamental tools used for the
development of this work Iperf [17] and Sflow [16].

Iperf is a tool for generating synthetic traffic between an Iperf server and a client. In our
specific scenario Iperf has been used to trigger the reconfiguration algorithm by congesting
some links using around 9Gb/s of background traffic. Iperf can generate both TCP and
UDP traffic, in our experiments we chose to use UDP since we need to congest some links
and TCP congestion control would not allow it.

On the other hand, Sflow is a tool to provide real time visibility to software-defined
networks and other DevOps systems. It involves the following concepts:

• Agent: embedded in network device (i.e., a switch) converts the raw data into usable
metrics

• Collector: responsible for gathering data from all the agents

24 4| Solution Development

• Sampling Rate: number of samples taken from an input port of the switch

In our system each switch will be an Agent while the controller will the the collector.
Furthermore SFlow offers a rest API which can be easily used from python to gather all
the needed metrics [16] and a dashboard that allows to see in real time the traffic evolution
in the network.

4.4. Traffic Monitoring and Traffic Matrix Estima-

tion

In this section we are going to explain why and how we have implemented traffic mon-
itoring and matrix estimation for this project. The reason why we have implemented
such system is to be able to detect when reconfiguration should be triggered in order to
improve the performance of the DML and to be able to collect the current demands, IP
to IP, which we use to build our traffic matrix. Other groups have explored techniques
for network monitoring and metric collection like [35], [29], however we decided to opt for
Sflow [16] which substantially simplifies the whole monitoring process.The traffic matrix
is estimated by sending an HTTP request to the rest API of Sflow asking for all the flows
reported by the agents to the collector. From the answer we build a matrix which we
will use later on for routing and for updating the bandwidths at every step (while loop
iteration). Traffic monitoring is implemented using a method within the same class that
implements traffic matrix estimation. This method takes as input the current topology
graph g (made by many edges connecting the different servers) and the traffic matrix.
The method will check edge by edge whether the specific edge belongs to a path taken
by the DML and it is congested, where by congested we mean that more than 80% of
its total bandwidth has been used. If we meet one of such edges we increase a counter
called edges_non_conforming which we use to determine whether or not we need to
reconfigure. Instead, to understand if the network has collapsed (no more DML traffic
flowing), we need to keep another counter which will check if for every demand in the
traffic matrix there is a path satisfying it, if there isn’t we can say that the network has
collapsed since the DML requires each of the servers to be reachable by all others in order
to exchange information, whenever this condition is not satisfied the traffic stops to flow
and the DML training stops. For technical reasons we decided to develop a function that
checks whether or not a certain function will lead to a collapse, if it does we are just going
to ignore the action and collect the associated reward.

4| Solution Development 25

Figure 4.5: Possible topology 1 Figure 4.6: Possible topology 2

4.5. Routing Algorithm

The routing algorithm is the most crucial component of this system after the DRL since it
is meant to provide each demand in the traffic matrix with a path which avoids congestion
and allows for a better balancing of the DML traffic. The routing algorithm is responsible
for

• Topology generation

• Finding paths for each demand

• Updating bandwidth of each link

• Installing the flows on the ToR switches

Topology generation is the initial step which is needed in order to adjust to the dynamic
configuration variations of the OCS. After every reconfiguration, a new topology is gener-
ated reflecting the changes in the OCS interconnects. Two examples are given in Fig.4.5
and Fig.4.6

Now let us dive in the procedure described in the second bullet point, which for each
demand takes the following steps:

1. Get the first k shortest paths from the tracking topology

2. For each one of them evaluate the bandwidth availability

3. Pick the shortest one which has enough band to satisfy the demand

26 4| Solution Development

After we have a path for each demand we update the bandwidth in the tracking topology,
which keeps track of the bandwidth usage on each link and it is updated at every time
step by sampling the traffic matrix using Sflow [16], this topology is kept in the memory
of the program and is used to monitor the congestion levels in the system. The last point
is a little more peculiar since once we have a path for each demand we do not install the
flows on the ToR immediately, we only install them as a result of a reconfiguration. The
reason for doing so is avoiding to install the flows at every monitoring step which leads
to instability in the code.

4.6. Deep Reinforcement Learning Algorithm

This section is going to take care of the most crucial parts of this work, which are the
DRL algorithms, their implementation and testing.

For this work we relied mainly on DDPG [25] and DQN [30] with different setups between
one and the other. The DRL agent that we are trying to train is responsible for finding
the best reconfiguration for the OCS given a certain traffic condition, which in other
words means that it is supposed to generate a new topology where the routing algorithm
is capable of finding a path for the DML which is not congested by any other application.
Let us start by defining the part of algorithm which are common to both methods. Both
the algorithms were trained for a certain number of episodes where each episode is made
up by a certain number of steps. For every step the algorithm does the following:

1. Monitor link congestion

2. If the reconfiguration threshold is not met ignore the action and move to the next
step

3. Else generate a new configuration

4. If the configuration leads to a collapse ignore it and collect -0.125 reward

5. Else implement it and collect the reward

6. If we reached the best state or failure state start a new episode

7. Else move to the next step

It is important to point out that the reason why we ignore the action is that when working
with the testbed actions that collapse the network can create issues at the application
level. In fact continuously restarting the DML or simply isolating any of the virtual
machines may require to restart the entire program and kill the DML processes via CLI

4| Solution Development 27

in the various virtual machines. A flow chart is available in figure 4.7.

Figure 4.7: Flow chart for DRL training

The reward function A(t) where t is a specific time step of the episode is defined as:

A(t) = non_conforming_dml(t)− non_conforming_dml(t+ 1)

total_links
(4.1)

where non_conforming_dml(t) represents the number of links which exceed the conges-
tion threshold and are being used by the DML algorithm at time step t. Total_links
instead represents the total number of links in the testbed. The choice of considering only
the links used by the DML is of great importance since the final goal of this algorithm
is to optimize the performance of the DML not of the other applications running in the
testbed. Specifically in DQN the problem definition is as follows:

1. Congestion Threshold: defines the amount of bandwidth usage needed to claim that
a link is congested

2. Reconfiguration Threshold: defines the number of congested links needed for re-
configuring

28 4| Solution Development

3. State: number of congested links

4. Action: score for each possible action that can be taken

5. Reward: A(t)-A(t+1) for a successful action otherwise zero

Once the neural network outputs the score for every action in the action space, the
algorithm acts greedy and picks the highest scoring action. The Markov process associated
to the DQN setup is shown in figure 4.9, where each number represents the number of
congested links used by the DML. In the setup that we are using, the maximum number
of such links is 3, while the minimum is zero. Furthermore each state is connected to the
other state by at least one OCS configuration, in the next section we are going to show
a more detailed example of the state space and the associated transitions related to the
specific experiment we are carrying out. The actions that can be taken to move from one
state to another are stored in an array an look like the example in figure 4.2 where the
numbers 17 to 24 are the ports of the OCS as can be seen in table 4.1

17 18 19 20 21 22 23 24

17 0 0 0 1 0 0 0 0

18 0 0 1 0 0 0 0 0

19 0 1 0 0 0 0 0 0

20 1 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 1

23 0 0 0 0 0 0 0 0

24 0 0 0 0 0 1 0 0

Table 4.2: Optical circuit switch matrix example

We have implemented exploration by following an ϵ greedy policy where we choose a
random action among the available ones with probability less or equal to ϵ and we decrease
ϵ every four steps.

As for DDPG, the framing of the problem is a little different, since it does not pick an
action from a set in a greedy fashion, instead it generates a new OCS matrix made up
of continuous values which will need processing in order to be turned into an actionable
configuration scheme. While generating a continuous action and then discretize it may
sound pointless, the idea behind using DDPG for this problem scenario is to solve the

4| Solution Development 29

scalability issues that may incur while working with DQN. DQN evaluates all the available
actions in the action space and then chooses greedily which can create some issues if the
state space is too big, on the other hand DDPG does not evaluate all the different actions
but instead it generates a continuous output that can be interpreted as an action. So the
problem definition for DDPG is as follows:

1. Congestion Threshold: defines the amount of bandwidth usage needed to claim that
a link is congested

2. Reconfiguration Threshold: defines the number of congested links needed for re-
configuring

3. Action: continuous connectivity matrix of the OCS

4. Reward: A(t)− A(t+ 1) for a successful action otherwise zero

5. Action post processing: algorithm to turn the continuous matrix into a discrete one

The output of the DDPG actor network is the lower triangular of what will be the con-
nectivity matrix of the OCS after the processing step as shown in figure 4.8.

Figure 4.8: Output of DDPG agent (red)

In fact given the algorithm that we use for post processing the action we do not need to
output the full matrix because of the proprieties of the latter:

1. The OCS matrix is symmetric since each port should be connected to the other

2. the diagonal is zero since a port cannot be connected to itself

30 4| Solution Development

3. Each row and each column can only have a non zero entry to avoid having one port
connected to many others.

To enforce the above, for every row we run the following algorithm:

1. Find element in row with the highest value and set it to 1

2. Set to 0 all other elements of the row and of the column

3. Add the zero diagonal and make the matrix symmetric

Once we have generated a proper connectivity matrix we implement it in the OCS and
let the routing algorithm take care of serving the demands.

4.7. Experimental Setup DQN

Now that all the components of our system have been covered in detail, this section is
going to describe the way the experiments were carried out. To train the agent the first
step was to deploy the DML on the 4 nodes of the testbed in figure 4.1 to generate the
traffic, after two monitoring iterations of the algorithm an Iperf is generated launching
around 9 Gigabit/s of UDP traffic between VM 7 and 8. Once the link congestion is
detected by the traffic monitor an action is chosen by the agent. Before implementing
the action in the OCS however, we check whether or not it will lead to a collapse. If it
does we ignore the action and collect a reward of -0.125 otherwise we implement it and
collect the associated reward. Exploration is implemented as a random action taken with
a probability ϵ starting from 0.8 and decreased all the way to 0.001 during the various
training steps. Choosing the right value of ϵ is quite critical since a value which is too
small may lead to have the agent always stuck taking the same action, while a too big
value can make convergence harder. The neural network has the following structure (input
x output):

1. input layer: 4x15 ReLu activated

2. normalization layer

3. hidden layer: 15x30 ReLu activated

4. normalization layer

5. output layer: 30x4 ReLu activated

The training is carried out for 2000 episodes with a buffer size of 250, and each episode
terminates either after 10 steps or after the optimal (state 0) or failure (F) state is reached.

4| Solution Development 31

The reason for terminating the training when the optimal state is reached is because while
in the optimal state no reconfiguration is triggered. We decided to train the network over
a batch of 4 trajectories (state, action, reward, next state) every 5 time steps and consider
it an hyper parameter.

Figure 4.9: Markov process for our experiment

Figure 4.9 shows the Markov process associated to the experiment, every state represents
the total number of congested links. We have 4 actions available a0, a1, a2, a3 and a4
which have the following effect:

1. a0: leads to state F

2. a1: leads to state 0

3. a2: leads to state 2

4. a3: leads to state 3

For example state 3 means that there are three congested links in the testbed where the
DML is running. In every state we take an action which can lead to any state. The
initial state is state 3 whose topology can be seen in figure 4.10 and the optimal state is
state 0 (DML is not running over any congested link). The topologies for the different
states are shown in 4.10, 4.11, 4.12,4.13. For example in figure 4.10 the Iperf from VM8
to VM7 will take path [13,17,20,22,18,19,14] and the DML will run on exactly the same
path since it is the only available one supporting the ring all-reduce patter mentioned in
section 4.3. If we analyze state 2 instead (fig. 4.11), the Iperf will congest only the path
[13,17,22,18,23,14], leaving link [20,19] free.

32 4| Solution Development

Figure 4.10: State 3

Figure 4.11: State 2

4| Solution Development 33

Figure 4.12: State 0

Figure 4.13: State F

34 4| Solution Development

The following transitions will lead to these rewards:

1. state 3 to state 2: 0.041

2. state 3 to state 0: 0.125

3. state 2 to state 0: 0.083

4. state 3 or 2 to state F: -0.125

5. state 2 to state 3: -0.041

35

5| Results Evaluation

This is the final chapter of my thesis, and we are going to show the experimental results of
the DQN based reconfiguration algorithm together with a comparison of the performance
of the latter with the self-supervised aided version. A small section is also devoted to the
results obtained using DDPG which however where not of interest, due to the divergence
of the algorithm.

5.1. DQN Results

By means of a DQN agent we were able to show an improvement in terms of training
time for the DML of about 5x as shown in 5.1

Figure 5.1: Deep Q network performance over 20 epochs

The precise values are:

1. Only DML : 978 seconds (16 minutes)

2. DML and 9 Gbit/s UDP iperf: 56756 (95 minutes)

36 5| Results Evaluation

3. Reconfiguration:1026 seconds (17 minutes)

The results prove the initial assumption made in section 4.1 that using optical reconfig-
uration can actually lead to significant improvements in the training of machine learning
algorithms. Our algorithm is capable, given a certain traffic matrix, to generate a new
topology that allows to separate the Iperf and the DML traffic. The agent converges
around episode 250, meaning that the test scenario is restarted 250 times before being
able to take the best action at the first shot. In figure 5.2 we show the evolution of the
rewards, on the x-axis the episodes are shown, while on the y-axis the average reward per
episode is shown. Always from figure 5.2 we can see that the rewards oscillate a lot at
the beginning, as we would expect, but they stabilize around the maximum (0.125) with
some oscillations due to the fact that the exploration probability is never fully zero. The
agent’s loss is shown in 5.4, the x-axis shows the training epoch while the y-axis shows
the value of the loss. A training epoch consists of five episodes, since we train the neural
network associated with the agent every five episodes.

Figure 5.2: Reward evolution for deep Q network agent

It is worth reminding that 0.125 is the best reward attainable by the agent while -0.125
is the worst.In figure 5.3 we show an alternative view for the reward evolution expressed
in terms of episode duration, on the x-axis we have the episodes aggregated by a factor
five and on the y-axis the duration of the episode (number of collected rewards).Again,
after some iterations we reach convergence around a length of 1 since we succeeded to
get to the best state at the first attempt. If the algorithm is learning it means that
the episodes get shorter since the DRL immediately chooses the optimal action and the
episode is terminated just after that. Convergence is attained around epoch 250 with
multiple spikes related to exploration. Exploration may lead us to take a non optimal
action at a certain time step the episode will run for more steps than it would have if we

5| Results Evaluation 37

Figure 5.3: Five episode average length evolution for deep Q network agent

picked the best action immediately, since with a probability ϵ we take a random action
from the action set.

5.2. Self-Supervised Assisted Results

In order to improve the performance of the DQN algorithm we have tried to implement
the self-supervised (ss) reversibility aware algorithm explained in 3.4. To build the self
supervised algorithm we need to update the reward function:

A(t) = non_conforming_dml(t)− non_conforming_dml(t+ 1)

total_links
− SS (5.1)

SS is a variable estimated by the self-supervised neural network and it represents the
probability with which a certain state come before another one on average and it is
normalized in the range -0.125 and 0.125. Our self supervised network is trained over a
batch of four observations and has the following structure:

• one fully connected layer 4x10 ReLu activated

• one fully connected output layer 20x1 Sigmoid activated

The comparison between the self-supervised aided algorithm and the regular DQN is
shown in figure 5.5. In the figure is shown how the self-supervised module is capable of

38 5| Results Evaluation

Figure 5.4: Neural network loss per training epoch

speeding up the convergence of the regular DQN module.

Figure 5.5: Neural network reward evolution

The loss for the self-supervised module is shown in 5.6, however this is the part of the
work that needs to be investigate further since the loss for this network is behaving in a
slightly unusual way since its convergence is still oscillating around the fixed value of 0.2
instead of smoothly converging there.

To conclude this section we check how many times the failure state is visited in both the
self-supervised aided scenario and the regular one. The logic behind this analysis relies on
the idea that the self-supervised algorithm is meant to make the agent behave in a more

5| Results Evaluation 39

Figure 5.6: Self-supervised network loss per training epoch

"safe" way by reducing the number of times a failure state is visited. We ran 10 training
sessions and collected the number of times the failure state was visited and plotted the
average value in 5.7. The value for the simple DRL is 27.9 times while for the ss module
is 19.8 visits, that’s a 29% decrease.

Figure 5.7: Failure state visits per algorithm

40 5| Results Evaluation

Figure 5.8: DDPG reward evolution

5.3. DDPG Results

We are adding this section just for reference since the DDPG agent was not successfully
able to converge in our scenario. The main reasons may be related to the very small state
and space for this problem and the fact that the action space is naturally discrete, we
were forcing it to be continuous in order to deal with the scalability issues of DQN.

Given that the agent did not converge to any reward the result analysis in terms of DML
training completion time is not meaningful. However the reward evolution, critic loss and
actor loss are shown respectively in figures 5.8, 5.9, 5.10.

5| Results Evaluation 41

Figure 5.9: DDPG critic loss per training epoch

Figure 5.10: DDPG actor loss per training epoch

43

6| Conclusions and Further

Developments

For this thesis we developed a DRL-based optical reconfiguration algorithm to improve
the training time of a DML algorithm running over 4 nodes in an experimental testbed
in presence of network congestion. We were able to demonstrate a 5x times training time
improvement by generating a new topology via optical switch reconfiguration and proper
routing to separate completely the DML from the congesting traffic flow. We were also able
to improve the performance of the DRL agent using a self-supervised technique leading to
faster convergence and 29% less visits to the failure state. The result is very relevant since
it provides a proof of concept that DML workloads can have their training time improved
thanks to optical reconfiguration and that a self-supervised reversibility aware method can
improve the performance of a regular DQN agent and reduce the number of visits to the
failure state. The main limitations of our works are related to scalability both in terms
of number of nodes and applications running in the testbed. A future improvement could
be to deploy other applications on the testbed (Hadoop, media streaming etc...) to check
the performance variations, and to increase the state space by simulating our algorithm
over an actual data center network to deal with the possible scalability issues that may
arise from using DQN. In fact, DQN works by providing a score to each available action
and greedily choosing the best one. Such approach may result to be unsuitable when the
action space is very very large (millions of actions), which would be a common scenario
in a real world data center. In addition to the above, to investigate how other agents can
perform in this scenario. A possibility could be the double DQN(DDQN) [15] algorithm
which, by getting rid of the max operation in the training of DQN, may improve the
scalability and performance of the agent in more complex scenarios.

45

Bibliography

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center net-
work architecture. ACM SIGCOMM computer communication review, 38(4):63–74,
2008.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic
characteristics. ACM SIGCOMM Computer Communication Review, 40(1):92–99,
2010.

[3] X. Chen, R. Proietti, M. Fariborz, C.-Y. Liu, and S. B. Yoo. Machine-learning-
aided cognitive reconfiguration for flexible-bandwidth hpc and data center networks.
Journal of Optical Communications and Networking, 13(6):C10–C20, 2021.

[4] W. O. Cifuentes. Testbed demonstration of optical reconfiguration by make before
break approach in cloud computing networks. 2022.

[5] Y. Cui, S. Xiao, X. Wang, Z. Yang, S. Yan, C. Zhu, X.-Y. Li, and N. Ge. Dia-
mond: Nesting the data center network with wireless rings in 3-d space. IEEE/ACM
Transactions On Networking, 26(1):145–160, 2017.

[6] M. Dzida, M. Zagozdzon, M. Pioro, and A. Tomaszewski. Optimization of the
shortest-path routing with equal-cost multi-path load balancing. In 2006 Interna-
tional Conference on Transparent Optical Networks, volume 3, pages 9–12. IEEE,
2006.

[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on ma-
chine learning, pages 1407–1416. PMLR, 2018.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat. Helios: A hybrid electrical/optical switch architec-
ture for modular data centers. In Proceedings of the ACM SIGCOMM 2010 Confer-
ence, pages 339–350, 2010.

46 | Bibliography

[9] M. Ghobadi. Emerging optical interconnects for ai systems. In 2022 Optical Fiber
Communications Conference and Exhibition (OFC), pages 1–3. IEEE, 2022.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pages
51–62, 2009.

[11] N. Grinsztajn, J. Ferret, O. Pietquin, M. Geist, et al. There is no turning back: A
self-supervised approach for reversibility-aware reinforcement learning. Advances in
Neural Information Processing Systems, 34:1898–1911, 2021.

[12] X. Guo, X. Xue, F. Yan, B. Pan, G. Exarchakos, and N. Calabretta. Experimental
assessment of traffic prediction assisted data center network reconfiguration method.
In 2021 European Conference on Optical Communication (ECOC), pages 1–4. IEEE,
2021.

[13] X. Guo, F. Yan, X. Xue, B. Pan, G. Exarchakos, and N. Calabretta. Qos-aware
data center network reconfiguration method based on deep reinforcement learning.
Journal of Optical Communications and Networking, 13(5):94–107, 2021.

[14] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah,
and A. Tanwer. Firefly: A reconfigurable wireless data center fabric using free-space
optics. In Proceedings of the 2014 ACM conference on SIGCOMM, pages 319–330,
2014.

[15] H. Hasselt. Double q-learning. Advances in neural information processing systems,
23, 2010.

[16] inMon. Sflow-rt home page. URL https://sflow-rt.com/index.php.

[17] Iperf. Iperf home page. URL https://iperf.fr/.

[18] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla. Beyond fat-trees
without antennae, mirrors, and disco-balls. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pages 281–294, 2017.

[19] A. Kaur, V. Singh, and S. S. Gill. The future of cloud computing: opportunities,
challenges and research trends. In 2018 2nd International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mo-
bile, Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on, pages
213–219. IEEE, 2018.

https://sflow-rt.com/index.php
https://iperf.fr/

| Bibliography 47

[20] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman, A. Vahdat,
B. Klenk, and E. Ebrahimi. Sip-ml: high-bandwidth optical network interconnects
for machine learning training. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 657–675, 2021.

[21] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable
dragonfly topology. In 2008 International Symposium on Computer Architecture,
pages 77–88. IEEE, 2008.

[22] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, 103(1):14–76, 2014.

[23] KVM. Kvm home page. URL https://www.linux-kvm.org/page/Main_Page.

[24] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing.
IEEE transactions on Computers, 100(10):892–901, 1985.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[26] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M.
Voelker, D. G. Andersen, M. Kaminsky, et al. Scheduling techniques for hybrid
circuit/packet networks. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, pages 1–13, 2015.

[27] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar. Towards workflow scheduling
in cloud computing: a comprehensive analysis. Journal of Network and Computer
Applications, 66:64–82, 2016.

[28] D. W. McAllister, T. R. Mitchell, and L. R. Beach. The contingency model for
the selection of decision strategies: An empirical test of the effects of significance,
accountability, and reversibility. Organizational behavior and human performance,
24(2):228–244, 1979.

[29] O. Michel, J. Sonchack, G. Cusack, M. Nazari, E. Keller, and J. M. Smith. Software
packet-level network analytics at cloud scale. IEEE transactions on network and
service management, 18(1):597–610, 2021.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

https://www.linux-kvm.org/page/Main_Page

48 | Bibliography

[31] F. A. Moghaddam, P. Lago, and P. Grosso. Energy-efficient networking solutions in
cloud-based environments: A systematic literature review. ACM Computing Surveys
(CSUR), 47(4):1–32, 2015.

[32] U. of Toronto. Cifar10 and cifar100 datset. URL https://www.cs.toronto.edu/

~kriz/cifar.html.

[33] OpenAi. Gym: Cartpole. URL https://www.gymlibrary.dev/environments/

classic_control/cart_pole/.

[34] OpenSSH. Openssh main page. URL https://www.openssh.com/.

[35] K. Phemius and M. Bouet. Monitoring latency with openflow. In Proceedings of
the 9th international conference on network and service management (CNSM 2013),
pages 122–125. IEEE, 2013.

[36] PicOS. Configuration guide. URL https://docs.pica8.com/.

[37] D. Rafique and L. Velasco. Machine learning for network automation: Overview,
architecture, and applications [invited tutorial]. Journal of Optical Communications
and Networking, 10(10):D126–D143, 2018.

[38] Ryu. Ryu ofctl rest documentation. URL https://ryu.readthedocs.io/en/

latest/app/ofctl_rest.html.

[39] Y. Shen, M. H. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman, and K. Bergman.
Software-defined networking control plane for seamless integration of multiple silicon
photonic switches in datacom networks. Optics express, 26(8):10914–10929, 2018.

[40] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 225–238, 2012.

[41] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2015.

[42] M. Y. Teh, Y.-H. Hung, G. Michelogiannakis, S. Yan, M. Glick, J. Shalf, and
K. Bergman. Tago: Rethinking routing design in high performance reconfigurable
networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[43] M. Y. Teh, Z. Wu, and K. Bergman. Flexspander: Augmenting expander networks
in high-performance systems with optical bandwidth steering. Journal of Optical
Communications and Networking, 12(4):B44–B54, 2020.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.openssh.com/
https://docs.pica8.com/
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

6| BIBLIOGRAPHY 49

[44] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira. Xpander: Towards optimal-
performance datacenters. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies, pages 205–219, 2016.

[45] A. Venkatraman. Global census shows datacentre power demand grew 63% in 2012.
ComputerWeekly. com, 8, 2012.

[46] A. Verma and N. Bhardwaj. A review on routing information protocol (rip) and
open shortest path first (ospf) routing protocol. International Journal of Future
Generation Communication and Networking, 9(4):161–170, 2016.

[47] VMware. What is data center networking. URL https://www.vmware.com/topics/

glossary/content/data-center-networking.html.

[48] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. E. Ng, M. Kozuch,
and M. Ryan. c-through: Part-time optics in data centers. In Proceedings of the
ACM SIGCOMM 2010 Conference, pages 327–338, 2010.

[49] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen, and J. Zhu. Neural network
meets dcn: Traffic-driven topology adaptation with deep learning. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 2(2):1–25, 2018.

[50] K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K. Bergman,
and J. Wilke. Flexfly: Enabling a reconfigurable dragonfly through silicon photon-
ics. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 166–177. IEEE, 2016.

[51] C. Yu, J. Lan, Z. Guo, and Y. Hu. Drom: Optimizing the routing in software-defined
networks with deep reinforcement learning. IEEE Access, 6:64533–64539, 2018.

https://www.vmware.com/topics/glossary/content/data-center-networking.html
https://www.vmware.com/topics/glossary/content/data-center-networking.html

51

List of Figures

1.1 Input-output diagram . 4
1.2 Example of distributed machine learning traffic 4

2.1 Visual explanation of SDN (link) . 7

3.1 Visual explanation of agent environment (link) 12
3.2 Sokoban reversibility example . 17

4.1 System’s architecture . 20
4.2 Physical testbed [4] . 21
4.3 Optical switch available cross-connects . 22
4.4 Virtual machines configuration visual explanation [4] 23
4.5 Possible topology 1 . 25
4.6 Possible topology 2 . 25
4.7 Flow chart for DRL training . 27
4.8 Output of DDPG agent (red) . 29
4.9 Markov process for our experiment . 31
4.10 State 3 . 32
4.11 State 2 . 32
4.12 State 0 . 33
4.13 State F . 33

5.1 Deep Q network performance over 20 epochs 35
5.2 Reward evolution for deep Q network agent 36
5.3 Five episode average length evolution for deep Q network agent 37
5.4 Neural network loss per training epoch . 38
5.5 Neural network reward evolution . 38
5.6 Self-supervised network loss per training epoch 39
5.7 Failure state visits per algorithm . 39
5.8 DDPG reward evolution . 40
5.9 DDPG critic loss per training epoch . 41

https://sdnet.pressbooks.com/chapter/introduction/
https://www.frontiersin.org/articles/10.3389/fbuil.2020.562239/full

52 | List of Figures

5.10 DDPG actor loss per training epoch . 41

53

List of Tables

4.1 Virtual machine to optical switch port . 21
4.2 Optical circuit switch matrix example . 28

55

Acronyms

Acronym Description

OCS Optical Circuit Switch

DRL Deep Reinforcement Learning

RL Reinforcement Learning

DML Distributed Machine Learning

DQN Deep Q Network

DDPG Deep Deterministic Policy Gradient

SS Self-Supervised

AWS Amazon Web Services

IT Information Technology

SDN Software Defined Networking

VM Virtual Machine

EPS Electronic Packet Switch

ML Machine Learning

TD learning Temporal Difference learning

ToR Top of the Rack

SiP Silicon Photonics

MC Monte Carlo

DP Dynamic Programming

ILP Integer Linear Programming

MEMS Micoroelectromechanical System

57

Acknowledgements

I would like to thank Prof. Massimo Tornatore who helped me out during my Master’s
and gave me the possibility to pursue our thesis at UC Davis. A special thanks goes to
Dr. Sandeep Kumar Singh who followed me closely during our work in Davis and taught
me how to make it through my first research experience. I would also like to thank Prof.
Roberto Proietti and Prof. S.J. Ben Yoo for hosting me in their lab and providing me
with funding for my time in California.

On a personal level I would like to thank my family for supporting me throughout my
entire journey in both the bachelor’s and the master’s. I could not have reached this goal
without your support.

A special thanks goes to U.U.

To conclude I would like to thank my university colleagues with whom we have shared
ups and downs and long days and nights working on a multitude of projects. Thanks
to your friendship and positive attitude we were able to keep myself strong and focused
throughout my studies.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Thesis Outline
	Overview and Motivation
	Problem Statement

	Optical Reconfiguration in DC/HPC Networks
	DC/HPC Networks in a Nutshell
	The Power of Optical Reconfiguration and SDN
	State of the Art: ML for Optical Reconfiguration

	Deep Reinforcement Learning Theory and Applications
	Introduction and Concepts
	Deep-Q Learning
	Deep Deterministic Policy Gradient (DDPG)
	Self-Supervised Deep Reinforcement Learning

	Solution Development
	Overall Architecture
	Testbed Description
	Workloads
	Distributed Machine Learning
	Iperf and Sflow

	Traffic Monitoring and Traffic Matrix Estimation
	Routing Algorithm
	Deep Reinforcement Learning Algorithm
	Experimental Setup DQN

	Results Evaluation
	DQN Results
	Self-Supervised Assisted Results
	DDPG Results

	Conclusions and Further Developments
	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Acknowledgements

