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1. Introduction
The aim of this thesis is to study the main ef-
fects of flooding events on the nearby territory
causing erosion and land damages. The urgency
was brought out by the alluviums in the Marche
region on the 15th and 16th of September 2022,
in which there were 12 casualties, 50 injured and
150 people displaced. The total monetary loss of
this disaster was around 2 Bilion of Euros. With
this work, the hope is to have set the basis to de-
velop a model which can be useful to predict the
risk and consequences of particular events that
can be harmful. The starting approach is the
Particle Finite Element Method (PFEM), which
describes the fluid domain with a Lagrangian
mesh that follows the particles of the fluid. The
task is to integrate this model with a descrip-
tion of the sediment movement inside the flow.
In the literature, the most accurate way to ap-
proach the problem is considering a two phase
flow. This is computationally very onerous and
can create some problem in this PFEM environ-
ment since usually two phase flow models work
with an Eulerian mesh for the fluid. So this way
to approach the problem is discarded. Indeed
the aim is to find something which is not com-
putationally expensive but can give good results

in some concrete applications. To this matter,
a mixture model has been considered by adding
an advection-diffusion equation to the solution
system. From this equation the concentration
of the sediment is recovered on the Lagrangian
mesh of the fluid. This model has the limit of
working with low concentrations of sediment in-
side the flow. Then, an erosion model based
on the Shields scouring criterion is used to see
how the flow affects the surrounding soil envi-
ronment.
In this thesis, the total model is addressed con-
sidering first the mathematical setting of the
problem, controlling that each part works in a
robust way; then some concrete physical tests
are carried on in order to find some possible im-
provements and to see the applications.

2. Fluid-sediment model
Consider a generic bounded, time-dependent do-
main Ω ⊆ R2, ∀t ∈ [0, T ] with T > 0. In
here, the Navier-Stokes equations for weakly
compressible fluids are solved using the ALE
(Arbitrary Lagrangian Eulerian) approach. The
Eulerian formulation has been used to address
the problem of boundary nodes. Indeed, they
too are moving with the fluid and so they lose
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their position at the edge. To solve this issue,
these boundary nodes are considered fixed and
here the Eulerian formulation is used. Summing
up, ∀x ∈ Ω and ∀t ∈ [0, T ] the system to solve
is: 

ρ

[
∂u

∂t
+ (uc · ∇)u

]
= ∇ · σ + ρb

∂p

∂t
+ (uc · ∇) p+K (∇ · u) = 0

(1)

where uc (x, t) = u (x, t) − r (x, t), with r (x, t)
denoting the mesh velocity. σ (x, t) is the stress
tensor, ρ is the fluid density, K is the fluid bulk
modulus and b (x, t) are the body forces. For
the sediment the equation is:

∂c

∂t
+∇ ·

[(
uc + ws

g
|g|

)
c

]
=

νt
σc

∆c (2)

Where ws is the falling velocity constant that
addresses the effect of gravity, νt is the sediment
diffusivity and σc is the Schmidt number. Grav-
ity is present as an advection term since in this
starting model the sediment does not have mass
and so no body forces can be present. For now
a weakly coupled model is considered: this im-
plies that the concentration is influenced by the
fluid velocity but not vice versa. In the next
part, a totally coupled model is introduced as
an improvement. For the moment the density
of the fluid is constant and so is the viscosity.
The generic boundary condition for the Navier-
Stokes (NS) equations and for the advection-
diffusion (AD) one are:

NS =

{
σ · n = 0 on ΓN

u = q on ΓD

(3)

AD =

{
∇c · n = 0 on ΓN

c = w on ΓD

(4)

Note that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. n
is the normal vector to the boundary and (q, w)
are the imposed values of velocity and concentra-
tion at ΓD. Finally, an initial condition is con-
sidered for velocity and for concentration such
that, ∀x ∈ Ω:

u (x, 0) = u

c (x, 0) = c
(5)

2.1. Numerical formulation
In order to be able to solve the problem, a mesh
discretization in space Υh and a partition in
time have been adopted. P1 linear functions are
used to represent velocity, pressure and concen-
tration. This creates some problems regarding
the satisfaction of the inf-sup condition and so
a proper stabilization method should be imple-
mented, which in our case is the pressure stabi-
lizing Petrov-Galerkin technique. The temporal
discretization of the equation is the explicit Eu-
lerian one where all the terms are considered at
the previous instant. The time subdivision used
is:

0 = t0 < t1 < ... < tn < ... < tM = T

tn+1 − tn = ∆tn, n = 0, 1, ...,M − 1
(6)

which introduces this particular time stepping
procedure to solve the set of equations.
Step 1: Solve the momentum equation to
find the velocity un+1

un+1 − un

∆tn
+ (un

c · ∇)un =
1

ρ
∇ · σn + b (7)

Step 2: Update the position of the mesh
nodes

xn+1 = xn + un+1∆tn (8)

Step 3: Solve the advection-diffusion
equation to find the concentration of the
sediment cn+1

cn+1 − cn

∆tn
+∇ ·

[(
un+1
c + ws

g
|g|

)
cn
]

=
νt
σc

∆cn
(9)

Step 4: Solve the continuity equation to
recover the pressure pn+1

pn+1 − pn

∆tn
+
(
un+1
c · ∇

)
pn

+K
(
∇ · un+1

)
= 0

(10)

Each solution has to fill the boundary condition
set for the particular problem. They can be as
seen for the cases 3 and 4. To address the stabil-
ity issues of the explicit Euler method, the time
step is fixed by following the CFL condition:
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∆tn = CN min
e

(
hne
ve

,
(hne )

2

νt

)
(11)

where he is a current characteristic size of the
deformed element e, ve is the speed of dilational
waves in the fluid depending on the element den-
sity and CN is a safety parameter. This condi-
tion has been modified since the sediment equa-
tion can give problems regarding the choice of
the stable time step.

2.2. Totally coupled model
Now that the numerical setting of the model is
done, the first limit is addressed. Indeed, for
now the concentration did not have influence on
the motion of the fluid. The aim is now shifted
into finding a totally coupled model, where the
fluid and the sediment interact with each other.
In order to do this the density and the viscosity
of the fluid are changed by inserting the concen-
tration.

ρ = ρf (1− c) + ρsc (12)

µ = µf (1 + 2.5c) (13)

where: ρf is the fluid density, ρs is the sediment
one and µf is the fluid viscosity. The formula
13 is found in [2] and it works under the main
assumption of c ≤ 0.1. This limit is in line with
the physical problem of the mixture model: it
works only with low concentrations. This prob-
lematic has been explained in section 1, showing
why in the PFEM framework it makes sense to
use the mixture model.

3. Erosion model
Now the erosion model is introduced in the sys-
tem by considering the Shields scouring crite-
rion, as shown in [3]. The basic idea is to con-
sider each node belonging to the interface and
check if the shear stress applied by the fluid is
enough to snatch it away from the bed. In this
case the node becomes a part of the fluid flow.
The shear stress is computed passing through
the Shields parameter:

θ =
τ

(ρs − ρ) gDm
=

ρ ∥u∗∥2

(ρs − ρ) gDm
(14)

θc = 0.22R−0.6
ep + 0.06 10−7.7R−0.6

ep (15)

Rep =

Dm

√
Dmg

(
ρs
ρ − 1

)
µ

(16)

Dm is the mean dimension of the sediment, g
is the acceleration of gravity, ρs is the sediment
density, Rep is the particle Reynolds number and
u∗ is the friction velocity. If θ > θc, the node is
freed. The friction velocity is computed in the
nearest node to considered one at the interface
using the log law formula:

u∗ = κ
u − (u · n)n

ln
(
z∆
z0

) (17)

where z∆ is the distance between the fluid node
and the boundary, as shown in figure 1. To sat-
isfy the log law profile assumption, it should be
30 ≤ z∆

z0
≤ 130.

Figure 1: Boundary element: the friction veloc-
ity is computed using the velocities at the third
node

4. Results - Flow model
To have a better understanding of each term in
the sediment equation, they are added brick by
brick. Initially, only the diffusion action is con-
sidered, then the transport one is added: in this
way the full model will be built step by step giv-
ing a good overview of the meaning of each part.
Finally, a case showing the effects of the totally
coupled model is presented.

4.1. Diffusion
To study the diffusion part of the equation, u =
0 m

s and ws = 0 m
s : the fluid is still and gravity

is not acting on the sediment. The domain is a
bucket on which a value c = 1 is imposed on the
free surface. The starting domain and the final
result are shown in figure 2.
An equilibrium condition is reached quickly,
showing the fulfilment of the boundary condi-
tions. To check the good functionality of this
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(a) t = 0 s (b) t = 1 s

Figure 2: Diffusion action: νt = 10 m2

s , σc = 1,
hm = 0.1 m

model, a convergence analysis has been carried
on. The expectation was to recover the error
estimate in L2 (Ω) of equation 18:

∥c− ch∥L2(Ω) ≤ Chr+1 |c|Hr+1(Ω) (18)

where c is the solution of the analytical problem,
ch is the discretized one, C is a constant and r
is the grade of the polynomial used to discretize
the solution, which in our case is 1. In figure 3,
it can be seen that the error has a quadratic or-
der of convergence in h, which follows the grade
expected. Then, using the commercial software
ABAQUS ©, a further confirmation of the good
functioning of this model has been made.

Figure 3: L2 error estimate (log-log scale)

∥c− ch∥L2(Ω)

h[m] 0.2 0.1 0.08 0.05
T = 0.5s 0.03607 0.00694 0.00405 0.00152
T = 1s 0.05656 0.01260 0.00731 0.00274

Table 1: Values of the L2 errors

4.2. Advection
Now the transport terms are activated, by con-
sidering non null fluid and falling velocities. On

the other hand the diffusivity of the sediment is
set to be null, so νt = 0 m2

s . The test consid-
ered for this case is a channel flow with a circu-
lar sediment source that is transported along by
the fluid movement. In figure 4 is represented
the starting system: the fluid moves from left to
right and the velocity is null on the top and bot-
tom; the sediment source is a circle that starts in
the center. The results in figure 5 show that the
sediment is going to the right (fluid transport)
and down (gravity transport). After T = 10 s
(final time) the source exits the domain.

Figure 4: t = 0 s, ws = 0.05 m
s , h = 0.1 m

Figure 5: Concentration plot at: t = 1s, t = 3s,
t = 5s and t = 8s

This problem is advection dominated: a Stream-
line Diffusion stabilization has been introduced
after having computed the local Peclet number:

Pek = 1.25hk

∥∥∥u+ ws
g
|g|

∥∥∥
L∞

+ νt
σc

νt
σc

(19)

Then, the global Peclet number is recovered as
Pe = max

k
Pek. If Pe > 1, the local SD term 20

is added in the weak formulation:

hk
∥β∥L∞

∫
Ωk

(β · ∇ch) (β · ∇vh) dΩ

β = u+ ws
g
|g|

(20)

Practically, a diffusive term is added of the order
of the transport term. In this way all the spuri-
ous oscillations go away. Avijit et al. [1] recover
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a convergence estimate for SD, which should be
of order 3

2 as shown in formula 21:

∥c− ch∥L2 ≤ C
√
γ
h3/2 (21)

where C and γ are constants. This convergence
estimate is confirmed by the model as shown in
figure 6.

Figure 6: SD convergence (log-log scale)

∥c− ch∥L2(Ω), T = 1s

h[m] 0.1 0.09 0.08
SD-Stab 0.15544 0.13804 0.11919

Table 2: Values of the L2 errors for the stabilized
problem

4.3. Totally coupled model
In this thesis many problems were attacked,
showing different applications of the model. To
test the correct functionality of the totally cou-
pled model, a cavity flow is considered. Cavity
flow is a problem where a fluid moves inside a
box by forcing the velocity on the top bound-
ary. Indeed, the velocity of the fluid and the
concentration on all the sides are 0 except on
the top one, where a positive horizontal velocity
is imposed to the fluid and c = 0.1.

(a) Concentration plot (b) Velocity plot

Figure 7: T = 60 s, νt = 0.01 m2

s , ws = 0.05 m
s ,

h = 0.02 m

The final solution can be viewed in figure 7
and the plot of the concentration in two points
is shown in 8. The problem reaches a steady
state situation, where the sediment (gravel, ρs =
1680 kg

m3 ) is trapped inside the main vortex of
fluid.

Figure 8: Time plot of the concentration in
(0.5, 0.5) m and in (0.9, 0.5) m

5. Results - Erosion model
To check if the added erosion model works fine,
some concrete simulations were carried on. The
most significant ones that will be shown here
are the sand dune erosion and the beach ero-
sion. These cases should set the starting point
for what this model can build on in flood pro-
tection environment.

5.1. Sand dune erosion

Figure 9: Starting domain of the problem

The domain is a channel of size [0, 3]× [0, 1] m,
shown in figure 9. As long as the dune parti-
cles (sand, ρs = 1520 kg

m3 ) in Ωd = [0.5, 1.5] ×
(0, 0.5] m do not violate the Shields condition,
they have the imposed values c = 1 and u = 0m

s .
The boundary conditions for the fluid are the
same as for the problem described in section 4.2.
Regarding concentration, the natural condition
is imposed at the exit while on all the other chan-
nel boundaries c = 0. The results are shown in
figure 10, where it can be seen that the sand
dune is extinguished in T = 30s. In figure 11
is instead shown the plot of the eroded area in
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Figure 10: Concentration plot at: t = 1s, t = 2s,
t = 4s, t = 10s, t = 20s and t = 30s

time: at the start the erosion is more aggressive
since in the center of the channel the velocity
is bigger; then erosion is attenuated by the fact
that the basis of the sand dune is near the bot-
tom where the velocity is small due to the null
boundary condition.

Figure 11: Plot of the eroded area

5.2. Beach erosion

Figure 12: Starting domain of the problem

Now the focus is shifted on the beach erosion
problem. In figure 12 the initial domain is
shown, composed by the sea and the beach cov-
ering a total distance of 25 meters. At the start,
the sea has no sediment inside; while the beach
is composed only by sediment, indeed here c = 1
and the nodes are still. The sea is perturbed by a
set of waves that shatter on the beach causing its
erosion. Since the fluid must lose energy in order
to snatch away the sediment particles from the
beach, the totally coupled model is used. Thus,
the loss of energy is addressed by the variability

of density and viscosity. In this problem high
concentrations must be considered: a better for-
mula found in [4] for the mixture viscosity is
considered in equation 22.

µ

µw
= 1 + 2.5c+ 10.05c2 + 0.00273e16.6c (22)

This model works for concentrations c ≤ 0.4,
which is a better limit with respect to c ≤ 0.1
but it is still not ideal. Viewing the results of
figure 13, take into account that there is an error
to keep in mind since for the beach nodes c = 1.

(a) Beach morphology

(b) Concentration plot

Figure 13: T = 90 s, νt = 0.001 m2

s , ws =
0.001 m

s , h = 0.1 m

The beach is eroded by the waves and the re-
leased sand precipitates on the bottom of the
sea, since the concentration is higher towards
the seabed.

6. Conclusions
The final objective of this thesis was to build an
accurate, robust and computationally affordable
model for the simulation of sediment transport
and erosion in a fluid-sediment domain. The
aim has been reached, making some assumptions
and taking into account some limits. The main
one is that this model works only by consider-
ing low concentrations, which is a forced choice
due to the fact that two-phase approaches are
avoided for their modelling and numerical com-
plexity. The mixture model on the other hand,
is very fast and computationally affordable. All
the test cases described in this thesis can be ap-
plied in different fields of engineering. There are
many possible improvements to this model: first
of all, the 3D extension should be implemented;
then the Robin boundary condition should be in-
troduced, which can represent correctly the sedi-
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mentation of the particles on the bottom surface
due to gravity; finally, the Exner equation could
be implemented, that describes bed morphology
change due to erosion and deposit of sediment.
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