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Abstract 

This work aims to evaluate how a temporary school square in the neighbourhood 

of Bolognina, in the city of Bologna, impacted on vehicular patterns through 

exploiting TomTom Floating Car Data (FCD) from before and after the 

intervention, which was implemented under the principles of tactical urbanism 

approach. 

After statistical validation of available datasets through two-tailed paired 

Student’s t-tests, trend analyses have been performed on sample sizes and speed-

related values to detect global variations in the first place, and more thoroughly 

among clusters of road segments based on graph-calculated distance from the 

intervention site. Results suggest that traffic flows have been relocated from 

segments directly interested by the intervention, where a sharp decrease has been 

registered (-23.9%), towards adjacent streets or segments in a buffer area, which 

have recorded a moderate increase (+5.7% and +2.4% respectively), so the 

phenomenon of traffic evaporation did not take place as opposed to more 

widespread tactical urbanism interventions described in literature. 

OD matrices per 15-minute time fractions over the three selected peak time slots 

have been extracted through a data driven procedure proposed by 

Krishnakumari et al. (2019) and adapted to the case under examination, in order 

to obtain reliable input data for a future development of traffic microsimulation 

models. The extraction method is based on least squares optimization problems 

solving systems of linear equations representing OD flows assigned to observed 

link, after selecting a set of 𝑘̅ shortest paths through a Path Size Logit (PSL) 

model. 

Even though the availability of large amount of data could not overcome typical 

underdetermination of the problem, due to the key issue of data dependence 

among traffic counts, the validation of retrieved matrices returned good results 

in terms of correlation between observed and estimated link flows. In the few 

cases where the quality of correlation fell, underlying causes have been 
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investigated and the influence of outliers, amplified by the high fragmentation of 

the provided road graph, might represent the core problem. 

 

Key-words: tactical urbanism, OD matrix estimation, Floating Car Data
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Abstract in italiano 

Questo lavoro punta a valutare come l’implementazione di una piazza scolastica 

temporanea, secondo i principi dell’urbanistica tattica, abbia impattato sugli 

schemi di traffico del quartiere Bolognina, nella città di Bologna, attraverso 

l’utilizzo di Floating Car Data (FCD) forniti da TomTom raccolti prima e dopo 

l’implementazione. 

Dopo la validazione statistica dei dati attraverso t test accoppiati a due code, sono 

state svolte delle analisi sull’andamento dei flussi e dei parametri relativi alle 

velocità per individuare variazioni globali in primis e più approfonditamente tra 

classi di segmenti stradali formate sulla base della distanza sul grafo dal sito 

dell’intervento. I risultati mostrano che i flussi di traffico sono migrati dalle 

strade coinvolte dall’intervento, dove si è registrata una netta flessione (-23.9%), 

verso le strade adiacenti o nell’area a margine, che hanno segnato un moderato 

incremento (+5.7% e +2.4% rispettivamente), quindi il fenomeno di 

“evaporazione del traffico” non è stato riscontrato a differenza di esempi di 

interventi più estesi descritti in letteratura. 

Matrici OD in frazioni di 15 minuti per ciascuna delle tre fasce orarie di punta 

selezionate sono state ricavate tramite una procedura basata sui dati proposta da 

Krishnakumari et al. (2019) e adattata al caso in questione, al fine di ottenere dati 

di input affidabili per lo sviluppo futuro di modelli microsimulativi di traffico. Il 

metodo di stima si basa sulla risoluzione mediante ottimizzazioni ai minimi 

quadrati di sistemi di equazioni lineari che rappresentano flussi OD assegnati ai 

segmenti osservati, dopo aver selezionato un insieme di 𝑘̅  percorsi di costo 

minimo attraverso un modello Logit con fattore di sovrapposizione dei percorsi. 

Sebbene l’ampia disponibilità di dati non abbia potuto superare la 

sottodeterminazione tipica del problema, a causa della questione chiave della 

dipendenza tra conteggi di traffico, la validazione delle matrici ricavate ha 

restituito buoni risultati in termini di correlazione tra flussi osservati e stimati. 

Nei pochi casi in cui la qualità della correlazione si è ridotta, sono state indagate 
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le ragioni di fondo e l’influenza di valori anomali, amplificati dall’elevata 

frammentazione del grafo stradale di base, potrebbe averne rappresentato il 

problema centrale. 

Parole chiave: urbanistica tattica, stima di matrici OD, Floating Car Data



  

 

 

vii 

 

Acknowledgments 

This research has been carried out during a curricular internship at Fondazione 

Transform Transport ETS (Milan, Italy), the non-profit research foundation 

launched by Systematica Srl on March 2022 and focused on innovation in 

mobility and transport planning.  

The author thanks the team of citiEU Consultancy LTD (Guildford, United 

Kingdom) for their fruitful collaboration and for sharing data.  

The analysed data were treated according to the General Data Protection 

Regulation (EU, 2016/679).  

This research received no specific grant from any funding agency in the public, 

commercial and not-for-profit sectors. 

The author would like to thank Prof. Roberto Maja, Dr. Giulia Ceccarelli and Dr. 

Andrea Gorrini for their supervision and collaboration. 

 

The results of this research have been submitted for oral presentation to the 

European Transport Conference: Pozzoni, M., Ceccarelli G., Gorrini, A., Manenti, 

L., Sanfilippo, L., Brignone, A. (2023, submitted). TomTom Data Applications for 

the Assessment of Tactical Urbanism Interventions: The Case of Bologna. In: 51th 

European Transport Conference 2023 (ETC 2023), 6-8 September 2023, Milan (Italy). 

 

 





  

 

 

 

Table of Contents 

Abstract .............................................................................................................................. iii 

Abstract in italiano ........................................................................................................... v 

Acknowledgments .......................................................................................................... vii 

Table of Contents ............................................................................................................. ix 

List of Figures ................................................................................................................... xi 

List of Tables ................................................................................................................... xiii 

1 Introduction ............................................................................................................... 1 

2 General framework .................................................................................................. 3 

3 Literature review ....................................................................................................... 7 

3.1. Tactical urbanism ............................................................................................ 7 

3.2. Floating Car Data (FCD) ................................................................................ 8 

3.3. OD matrix estimation ..................................................................................... 9 

4 Enabling data and methodology .......................................................................... 11 

4.1. TomTom data ................................................................................................ 11 

4.2. Trend statistical analysis .............................................................................. 16 

4.3. OD matrices estimation procedure ............................................................ 18 

4.3.1. Workflow ....................................................................................................... 18 

4.3.2. Representativity of sample data ................................................................. 19 

4.3.3. Zoning ............................................................................................................. 21 

4.3.4. Generation and attraction ............................................................................ 23 

4.3.5. Shortest paths calculation ............................................................................ 24 

4.3.6. Route choice ................................................................................................... 25 

4.3.7. Link traffic counts selection ......................................................................... 26 

4.3.8. Equation system solving .............................................................................. 29 

4.3.9. Validation of results ...................................................................................... 30 

5 Results ....................................................................................................................... 33 

5.1. Statistical analysis ......................................................................................... 33 



 | Table of Contents 

 

 

x 

5.1.1. T-tests .............................................................................................................. 33 

5.1.2. Trend analysis ............................................................................................... 37 

5.2. OD matrices estimation ............................................................................... 48 

6 Discussion ................................................................................................................ 57 

7 Conclusion and future developments ................................................................ 61 

Bibliography ..................................................................................................................... 65 

 



  

 

 

List of Figures 

 

Figure 1. Aerial view of the temporary school square in via Procaccini, Bologna 

(photo by Margherita Caprilli) .................................................................................... 4 

Figure 2. Selected area for TomTom query .............................................................. 15 

Figure 3. FRC classification ........................................................................................ 15 

Figure 4. Buffer segments classification ................................................................... 17 

Figure 5. Workflow of OD matrix estimation procedure ...................................... 19 

Figure 6. Network size reduction .............................................................................. 22 

Figure 7. Origin-Destination nodes ........................................................................... 23 

Figure 8. Average speed on weekdays for FRC 2-3 segments - comparison ex-

ante/ex-post .................................................................................................................... 37 

Figure 9. Average speed on weekdays for FRC 4-6 segments - comparison ex-

ante/ex-post .................................................................................................................... 38 

Figure 10. Average speed 85th percentile on weekdays for FRC 2-3 segments - 

comparison ex-ante/ex-post .......................................................................................... 39 

Figure 11. Average speed 85th percentile on weekdays for FRC 4-6 segments - 

comparison ex-ante/ex-post .......................................................................................... 39 

Figure 12. Average traffic flow on weekdays on intervention streets - comparison 

ex-ante/ex-post ................................................................................................................ 40 

Figure 13. Average traffic flow on weekdays on adjacent streets - comparison ex-

ante/ex-post .................................................................................................................... 41 

Figure 14. Average traffic flow on weekdays on buffer streets - comparison ex-

ante/ex-post .................................................................................................................... 41 

Figure 15. Average traffic flow on weekdays on control streets - comparison ex-

ante/ex-post .................................................................................................................... 42 

Figure 16. Average traffic flow variation adjusted over control segments 

fluctuations ................................................................................................................... 43 

Figure 17. Average traffic flow on weekdays - comparison ex-ante/ex-post ........ 44 



 | List of Figures 

 

 

xii 

Figure 18. Relative variation in average traffic flow - time slot 7:00-9:00 AM.... 45 

Figure 19. Relative variation in average traffic flow - time slot 1:00-3:00 PM .... 45 

Figure 20. Relative variation in average traffic flow - time slot 5:00-7:00 PM .... 46 

Figure 21. Absolute variation in average traffic flow - time slot 7:00-9:00 AM .. 47 

Figure 22. Absolute variation in average traffic flow - time slot 1:00-3:00 PM ... 47 

Figure 23. Absolute variation in average traffic flow - time slot 5:00-7:00 PM ... 48 

Figure 24. Contraction of OD matrix layout ............................................................ 49 

Figure 25. 𝑅2 values for ex-ante scenario .................................................................. 52 

Figure 26. 𝑅2 values for ex-post scenario .................................................................. 52 

Figure 27. Linear regression of discarded flows - ex-ante, weekdays, 7:15-7:30 AM 

time fraction .................................................................................................................. 54 

Figure 28. Linear regression of discarded flows - ex-ante, weekdays, 5:45-6:00 PM 

time fraction .................................................................................................................. 54 

Figure 29. Absolute variation of OD flows between ex-ante and ex-post scenarios

 ........................................................................................................................................ 55 



  

 

 

List of Tables 

Table 1. Functional Road Classes (FRC) description .............................................. 12 

Table 2. Expansion coefficients (𝐶𝑒𝑥𝑝, 𝑘) calculation ............................................. 20 

Table 3. Origin-Destination zones ............................................................................. 22 

Table 4. Results of t-tests for average speed values ................................................ 33 

Table 5. Results of t-tests for sample size values .................................................... 34 

Table 6. Results of t-tests performed on speed 85th percentile values .................. 35 

Table 7. Average traffic flow variation relative to control segments ................... 43 

Table 8. Number m of selected linear equations per each time fraction .............. 50 

Table 9. Coefficients of determination R-squared (𝑅2) .......................................... 51 

Table 10. Theil's inequality coefficients for low-𝑅2 regressions ........................... 53 

 

 

 

 

 

 

 

 

 

 

 

 

 





  

 

 

1 

1 Introduction 

The purpose of this master thesis work is to assess how a punctual tactical 

urbanism intervention changed mobility patterns in the neighbourhood road 

network in which it was implemented, by analysing data collected through 

innovative techniques such as GPS-based Floating Car Data (FCD). In particular, 

the goal is to extract reliable Origin-Destination matrices as inputs for traffic 

demand models through elaborating available FCD datasets. 

Tactical urbanism is an innovative urban design approach that enables public 

authorities and administrations to temporarily requalify deteriorated or misused 

urban spots to be regenerated and reinstated into their original purposes. Such 

approach is characterized by limited financial resources usage and streamlined 

bureaucratic procedures and requires the involvement of the public, especially 

locals or usual users of the area, who can have their say during the project design 

and the later assessment phases. In the recent years, the practice of tactical 

urbanism has been recently increasingly adopted in urban settings throughout 

the world, as we can count many examples in Milan (Italy), São Paulo (Brazil), 

Bogotá (Colombia), Quito (Ecuador), Mumbai (India), Istanbul (Turkey), Addis 

Ababa (Ethiopia) (GCDI, 2022). 

While the impact on pedestrian accessibility of such reconverted spaces has been 

recorded from previous experiences as good, literature has recently raised the 

question on how it can affect the surroundings in terms of transport network 

performance. There are some questions still to be thoroughly addressed by 

academic research like: 

• To what extent can a punctual intervention affect the surrounding road 

network? 

• What happens in the streets directly affected? And what to the buffer area? 

How large is such area? 



 1| Introduction 

 

 

2 

Furthermore, more and more innovative technologies are being employed to 

elaborate input data for traffic demand models: while the traditional method of 

collecting OD matrices to run simulations has always been either household 

surveys, travel interviews or traffic counts backed by fixed sensors, nowadays 

research found out that the impressive amount of data passively recorded by 

devices embedded in vehicles as well as mobile phones or even wearable devices 

could be of use when estimating mobility patterns, both boosting coverage of 

data samples and enhancing predictions by solving the problem of 

underdetermination, which usually affects estimations. The research questions 

regarding the field of traffic modelling that this paper aims to answer are: 

• Can a GPS-based FCD dataset overcome underdetermination problems 

when estimating OD matrices through recorded link traffic counts and 

average speeds/travel times? If yes, how? 

• Which procedure is suitable to obtain such matrix without any ground 

truth OD data? Will it provide a reliable matrix? 

After a focus on the case of study in the following Section 2 and a literature 

review based on previous assessments of tactical urbanism interventions and on 

the state-of-the-art for the estimation of OD matrices through Floating Car Data 

in Section 3, available data and the selected methodology to be used are 

presented in Section 4. Results of trend statistical analysis of link supply patterns 

and estimated OD matrices are displayed in Section 5; discussions on results and 

limitations of adopted procedures in Section 6; conclusions and future 

developments in Section 7.
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2 General framework 

This research work follows a stream of mobility-related studies conducted by 

Transform Transport 1 . They addressed the topic of walkability for children, 

meant as a metric to evaluate friendliness of walking and spending time in urban 

areas for young users aged 5-13. First, a study was conducted to assess levels of 

pedestrian accessibility for services devoted to children and their needs in the 

city of Bologna through GIS analysis of available georeferenced data at macro 

scale (Abdelfattah et al., 2021) and through Space Syntax at a more detailed scale 

focusing on the Bolognina district (Gorrini et al., 2023). Second, following the 

implementation enacted by the municipality of Bologna and promoted by 

Foundation of Urban Innovation of a temporary school square for young 

students in via Camillo Procaccini, Bologna close to a secondary school, 

pedestrian and vehicular flow patterns were monitored on a micro scale via 

video analytics backed by machine learning techniques, providing temporal and 

spatial analyses of recorded data in order to support the iterative design process 

typical of tactical urbanism approach (Ceccarelli et al., 2023). 

The intervention under examination consists of a reconversion of an unregulated 

parking space located in the crossroads among Via Camillo Procaccini, Via 

Andrea da Faenza and Via Antonio di Vincenzo in the neighbourhood of 

Bolognina, into a temporary school square: 300 square metres have been 

pedestrianised, equipped with street furniture (benches, seating spots and flower 

boxes) and highlighted through colourful paint. The aim of the project in which 

the intervention takes part is to ensure young students augmented safety and 

 
1  Fondazione Transform Transport ETS (Milan, Italy) is a non-profit research foundation 

launched by Systematica Srl in March 2022 and focused on innovation in mobility and transport 

planning. It provides innovative, inclusive, and sustainable mobility solutions for shaping the 

future of cities worldwide in line with the UN’s SDG 11 (Sustainable cities and communities) – 

see: https://transformtransport.org/ 
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autonomy in their home-school-home journeys and to provide a space for 

socializing and waiting together before the school opens. It was implemented in 

March 2022 after three weeks of works and inaugurated on April 2nd, 2022: as a 

street experiment and according to tactical urbanism principles, it lasted 

approximately 12 months, during which usage patterns were monitored in order 

to understand if the intervention had reached expected goals and to later define 

a permanent configuration of this urban space. 

 

Figure 1. Aerial view of the temporary school square in via Procaccini, Bologna (photo 

by Margherita Caprilli) 

This current study aims to widen the assessment perspective from the punctual 

observations at the intervention spot to a larger buffer area surrounding the 

temporary school square. The main focus is set on vehicular traffic variations at 

neighbourhood scale, checking if vehicle patterns in the district have been 

disrupted, remained untouched or even improved in terms of congestion by the 

new road allocation scheme. 

To that end, via a GPS-based dataset containing aggregate traffic information for 

peak daily time slots, private car mobility trends will be analysed at macro scale 

via different clustering of road segments, comparing data from before and after 

the implementation of the square. 

Then, data will be elaborated to extract OD matrices which, once fed to a 

microsimulation software in a future step of this research, will serve as inputs for 
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further assessments on streets and intersections in the neighbourhood, extracting 

useful metrics to detect variations in vehicular patterns, congestion problems if 

present or definitive approval of the intervention from road traffic management 

point of view. 
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3 Literature review 

3.1. Tactical urbanism 

As stated in the introduction, tactical urbanism approach has been increasingly 

promoted by public administrations to boost the implementation of rapid and 

effective changes in the urban setting under their competence. Such street 

experiments aim at establishing the idea that streets should belong to people 

rather than traffic (Bertolini, 2020) by physically reducing road space capacity for 

vehicles in favour of pedestrian and soft mobility. This practice allegedly leads 

to traffic evaporation, referring to the reduction in traffic flows as a consequence of 

capacity-limiting interventions on the transport network: such phenomenon can 

be intended as the opposite of induced traffic, which results from an expansion 

of road capacity (e.g., opening of a new road, widening of the road via new lanes). 

While literature focused a lot on induced traffic implications on mobility patterns 

variations, so far very few researchers have investigated traffic evaporation 

potentially caused by reallocation scheme interventions, despite the current and 

popular need to switch to more sustainable modal choices than private car. There 

are studies on “disappearing” traffic caused by road closures particularly on 

physiological bottlenecks of road networks e.g., bridges (Hunt et al., 2002) and 

tunnels (Tennøy et al., 2021), either planned or not: overall, common results from 

these studies suggest that a decrease in traffic flows should be expected when 

implementing road space reallocation schemes or, more generally, interventions 

that reduce street capacity, with traffic behaviour change in the new scheme area 

to be proportional to the level of disruption to the network. More, even though 

capacity of the network is downgraded, road congestion tends to be less severe 

than conventional traffic models would suggest. However, because of the poor 

research effort involved as of today, correlation among studies remains difficult 

due to different geographical contexts and types of interventions.  

Research also lacks work exploring impacts on a wider perspective on the 

network, so not only in the local intervention area but on a meso-scaled point of 
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view. A valuable exception to this is Nello-Deakin (2022), which exploited 

datasets of traffic counts provided by permanent sensors to evaluate the extent 

of traffic evaporation following the extensive implementation program of 

multiple tactical urbanism interventions in the Eixample district of the city of 

Barcelona, Spain. The study investigated not only streets directly interested by 

interventions but also assessed traffic levels in a buffer area within 500 metres, 

leading to confute the assertion that traffic would simply gather onto more 

convenient paths and congest roads in a limited buffer area, as results suggest 

that overall traffic has diminished, with a very low relative increase in the streets 

adjacent to interventions. 

3.2. Floating Car Data (FCD) 

Besides traditional methods, lately more and more traffic data sources and 

collection techniques have been either improved or invented, each of them 

featuring their own advantages and disadvantages according to the usage and 

the collection purpose.  

The aim of this research effort is to progressively outdate traditional techniques 

such as travel surveys (household, on-board etc.), which can be time- and money-

consuming other than poorly accurate for low-sampled trips. 

As comprehensively portrayed by Leduc (2008), road traffic data collection 

methods can be distinguished based on whether measurements are performed 

by sensors – or people, in the case of manual counts – located along the roadside 

or by vehicles themselves acting as moving sensors for the road network. This 

second cluster is known as Floating Car Data (FCD) and works by collecting real-

time traffic data through consecutive positions of equipped vehicles via mobile 

phones or GPS devices, along with complementary data such as instantaneous 

speed and direction of travel. By providing high quality and cost-effective data, 

as there is no need of implementation of hardware in situ but only on vehicles, 

FCD is a promising alternative to existing technologies for road data collection 

and it is also crucial in the development and functioning of Intelligent Transport 

Systems (ITS), which mostly rely on precise real-time information on traffic 

conditions through the network. It is to remind, though, that such raw data do 

not explicitly provide information to calibrate or validate estimates on 

behavioural choice, which travel surveys can usually offer. 
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Based on the connectivity option, FCD can be GPS-based or reliant on cellular 

phone networks: while GPS provides a 10 times better precision but suffers lack 

of vehicles equipped with suitable devices, cellular based technology 

compensates low accuracy with the large number of sample size corresponding 

to a wide coverage. 

Lately, Floating Car Data has been used as ground data for research studies 

addressing mobility tasks and issues, such as detecting and analysing urban 

patterns from GPS traces (Necula, 2015), estimating traffic delays and network 

speeds from low-frequency GPS taxi traces (Deng et al., 2015), detecting traffic 

congestion and incidents (D’Andrea et al., 2017), or estimating or updating OD 

matrices, which will be furtherly addressed in the next subsection. 

3.3. OD matrix estimation 

Origin-Destination matrix estimation can be a challenging requirement prior to 

transport network simulations: in the framework of 4-stage traffic models, it can 

be thought as the inverse procedure of traffic assignment step (Cascetta, 1998): 

while the latter loads the network with flows determined according to estimated 

or observed traffic demand and route choice models, OD matrix estimation goes 

the other way round focusing on estimating path flows (which once aggregated 

represent OD pair flows) based on available records of link flows in the reference 

period. Such data is usually available through travel surveys or traffic counts in 

specific sections of the transport network under examination, either manual or 

via automated sensors (magnetic spires, cameras etc.).  

Traditional methods of vehicular demand estimation through traffic count data 

recorded on links of the network require ground truth OD data: such process is 

usually an update of an outdated Origin-Destination matrix via traffic counts 

collected in the reference period, with data held in the old matrix being attributed 

a level of confidence in relation to their age.  

Estimation of OD matrices from scratch is a challenge from mathematical 

standpoint, as errors affecting route choice models and observations can lead to 

undetermined problems (no existing matrix capable of representing actual 

observed flows); moreover, despite the wider coverage with respect to interviews 

or surveys, traffic count campaigns, either manual or via fixed automated 

sensors, usually provide flow information only on a limited number of links of 



 3| Literature review 

 

 

10 

the network, resulting in underdetermined equation systems whose solution 

need to be estimated through regression procedures such as constrained 

generalized least squares or maximum likelihood algorithms. Furthermore, the 

absence of an outdated OD matrix as ground data for the estimation process 

strongly affects Origin-Destination pairs that are not covered by any of the 

planned traffic counts. 

Due to the current availability of large streams of passively collected data, data-

driven methods have started to be developed and validated by academic research 

as an efficient alternative to traditional OD estimation methodologies. For 

instance, in Bonnel et al. (2018) and later in Fekih et al. (2021), data from mobile 

phone networks were used to estimate OD matrices in the Rhône Alpes region in 

France. Demissie et al. (2022) analysed GPS trajectory data over one year to 

estimate origin-destination flows of trucking vehicles within the province of 

Alberta, Canada. Ge et al. (2016) used aggregated data of GPS traces to avoid 

privacy issues and implemented a sequential updater based on maximum 

entropy principle to update an outdated matrix. Tolouei et al. (2016) validated 

such methods by comparing matrices obtained through roadside interviews 

together with trip-end and gravity models and through the application of mobile 

phone data, stating that trip matrices developed through mobile data were as 

accurate as the ones estimated through conventional models if refined and 

adjusted to remove intrinsic biases and limitations; more, the advantage of larger 

sample sizes allowed mobile data to estimate in a more consistent manner trips 

where no roadside observed data were available. Krishnakumari et al. (2019) 

proposed a method applicable in presence of 3D supply patterns only (sample 

size and speed values per each time period) on all segments of the network, 

consisting of a large equation system to be integrated with principal component 

analysis in case of severely underdetermined systems (typical of larger networks) 

and featuring fundamental assumptions regarding route choice, e.g., cutting off 

the number of considered paths and assigning a proportionality coefficient to 

each path in the OD pair-specific set calculated through a route choice model. 

Overall, according to the nature and the aggregation level of available datasets, 

literature provides appropriate methods and solutions depending on the 

purpose with which data can be elaborated. 
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4 Enabling data and methodology 

4.1. TomTom data 

The available dataset employed to carry out analyses and elaboration in this 

research work were provided by TomTom as Traffic Stats API Area Analysis. 

Such application programming interface is based on the collection of real-time 

Floating Car Data anonymously sent by GPS enabled devices to TomTom servers 

in exchange of accurate on-trip routing and alerts on traffic conditions. 

Elaboration of collected data allows to return valuable insights into traffic levels 

on the road network through time. Queried datasets for this specific API consist 

of aggregate information on the links of the selected network for a requested 

reference period: in particular, for each segment in the selected area of the road 

map elaborated by TomTom the following data are available per each fraction of 

each time slot: 

• sample size 

• speed 

o average 

o harmonic average 

o median 

o standard deviation 

o percentiles (5th – 95th) 

• travel time 

o median 

o average 

o standard deviation 

 

Besides data visualization through interactive dashboards, datasets can be 

downloaded as JSON, GEOJSON or shapefiles to be treated via data analysis 

programming languages or elaborated through GIS. 
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Segments of the road network in the selected area are clustered by TomTom 

according to the character of service they are supposed to provide as roads. 

Functional Road Classes (FRCs) are designed to categorize segments based on 

their functional importance, as this classification defines the role that any 

particular road or street plays in carrying the flow of trips through the road 

network. In Table 1 FCRs are outlined, as reported by TomTom Developers 

(2022): 

Table 1. Functional Road Classes (FRC) description 

FRC Denomination Description 

0 

Motorways; 

Freeways; Major 

Roads 

All roads that are officially assigned as 

motorways. 

1 

Major Roads less 

important than 

Motorways 

All roads of high importance, but not officially 

assigned as motorways, that are part of a 

connection used for international and national 

traffic and transport. 

2 Other Major Roads 
All roads used to travel between different 

neighbouring regions of a country. 

3 Secondary Roads 
All roads used to travel between different parts 

of the same region. 

4 
Local Connecting 

Roads 

All roads making all settlements accessible or 

making parts (north, south, east, west, and 

central) of a settlement accessible. 

5 
Local Roads of High 

Importance 

All local roads that are the main connections in 

a settlement. These are the roads where 

important through traffic is possible e.g.,: 

• arterial roads within suburban areas, 

industrial areas or residential areas 

• a rural road, which has the sole function 

of connecting to a national park or 

important tourist attraction 

6 Local Roads 

All roads used to travel within a part of a 

settlement or roads of minor connecting 

importance in a rural area. 
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7 
Local Roads of 

Minor Importance 

All roads that only have a destination function, 

e.g., dead-end roads, roads inside a living area, 

alleys: narrow roads between buildings, in a 

park or garden. 

8 Other Roads 

All other roads that are less important for a 

navigation system: 

• a path: a road that is too small to be 

driven by a passenger car 

• stairs 

• pedestrian tunnels 

• pedestrian bridges 

• alleys that are too small to be driven by a 

passenger car 

 

For the case of study, a query to TomTom servers was sent asking for the 

following data: 

• periods of time: September and October 2021 (ex-ante) – September and 

October 2022 (ex-post) 

• date ranges: weekdays (Mondays to Fridays) – weekends (Saturdays, 

Sundays) 

• daily time slots: 3 two-hour slots split into 15-minute fractions 

o 7:00 - 9:00 AM → school entrance 

o 1:00 - 3:00 PM → school exit 

o 5:00 - 7:00 PM → spontaneous usage of the square 

• area: Bolognina district, Bologna (Figure 2) 

• FRC: 1 to 6 

 

Provided sample size is intended as the total number of vehicles registered in the 

segment through all the days of the sampling period, while each supplied value 

of speed or travel time is calculated as arithmetical average (unless stated 

otherwise) over each daily value in the selected date range and specific time 

fraction.  

The choice of periods of time has been made based on the following assumptions:  
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• in the months of September and October schools are open, fundamental 

requirement given that the intervention is expected to impact also school-

related traffic; 

• a two-month dataset is enough to use as representative for mean traffic 

values; 

• as the implementation of the temporary square happened in March, ex-

post data are collected sufficiently later than the implementation of the 

temporary square, which is advisable to consider as several pieces of 

research literature (Goodwin et al., 1998; Hunt et al., 2002) encountered 

unusual congestion in the days straight after the road closure. 

The choice for daily time slots and time fractions has been made in accordance 

with daily slots and granularity used for video analytics observations on the 

same intervention and related analyses performed in Ceccarelli et al. (2023). 

Functional Road Classes have been subset due to budgetary constraints from 1 

to 6; however, this is not as impacting as limitation since no motorway segment 

is included in the selected area and FRC 7 and FRC 8 road segments would not 

improve the dataset and the consequent evaluations with added benefit. 
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Figure 2. Selected area for TomTom query 

 

Figure 3. FRC classification 

selected area

intervention
area
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4.2. Trend statistical analysis 

The goal of this step is to analyse the requested datasets under a macroscopic 

point of view on the whole network before and then by clusters identified by 

proper attributes of road segments in order to detect the magnitude of variations 

(if there are any) in traffic-related parameters such as sample sizes and speed-

related values. 

First, to assess significant differences between distinct clusters of available data, 

a set of Student’s t-tests is performed. In this case, two-tailed paired (or 

dependent samples) t-tests have been used. 

From the logical perspective, t-tests are based on the rejection of a null 

hypothesis, formulated at the start of the test: in the case of paired t-tests, in order 

to ascertain whether there is a substantial difference between the two datsets, the 

null hypothesis postulates no difference between the means of the two sets of 

samples. The key result of null hypothesis significance testing is the p-value, 

standing as the probability of obtaining results as compatible as the observed 

ones given that the null hypothesis is true. In other words, p-values determine 

whether difference between observation sample sets under the null hypothesis is 

due to randomness, intrinsic in the sampling process, or not. More in detail, after 

setting a significance level 𝛼, intended as the probability of rejecting the null 

hypothesis: 

• if 𝑝 > 𝛼 , empirical evidence is not strong enough to reject the initial 

hypothesis; 

• if 𝑝 < 𝛼, observed data are statistically significant, so the null hypothesis 

is rejected.  

One of the main assumptions to be made in order to run Student’s t-tests is to 

assume equal variances between the data samples. 

At this early stage of the study, comparisons intend to assess first whether 

sampled data are a good representation of a real and coherent situation, by 

evaluating consistent differences between values of speed and sample size 

recorded for different date ranges (weekdays vs. weekends) and for different 

FCRs, and then to assess a significant difference between values retrieved for ex-

ante and ex-post traffic conditions.  
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Once data are statistically validated, a set of trend analyses is developed to detect 

any variations in sample sizes and speed-related values; in order to do so, an 

additional classification of segments is established. According to Nello-Deakin 

(2022), roads in the network are clustered on the basis of their proximity to the 

site of intervention. In particular: 

• the intervention streets are segments directly interested by the 

modification; 

• adjacent streets are close to the intervention and represent the best 

alternatives to avoid the site of intervention; 

• streets in the buffer area are no farther than 400 meters on road graph 

distance; 

• all the other roads in the network are classified as control segments. 

In Figure 4, the selected road network is shown according to the classification 

above mentioned. 

 

Figure 4. Buffer segments classification 
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4.3. OD matrices estimation procedure 

The aim of this step is to estimate Origin-Destination matrices which fit the 

supply patterns extracted from the dataset with the same granularity of available 

data (one every 15 minutes). The procedure that will be used is the one proposed 

in Krishnakumari et al. (2019).  

In this paper, the researchers presented an algorithm that allows to obtain OD 

matrices from 3D link supply patterns, intended as values of speed as well as the 

key figure of transiting vehicles over each time fraction. The algorithm intends to 

bypass the usual iterative loading of the road network until convergence. It is 

fundamentally based on the assumptions of cutting off the number of possible 

shortest paths per OD pair and of attributing a proportional share of the whole 

pair flow to each path in the previously selected set according to a Path Size Logit 

(PSL) model using observed travel times as key explanatory variable. 

In order to exploit and elaborate available data, a script in R environment has 

been developed, implementing all procedural steps described ahead, except for 

the resolution of equation systems and results visualization, elaborated through 

Excel. 

 

4.3.1. Workflow 

As already mentioned before, estimation of OD matrices can be thought of as the 

inverse process of traffic assignment, being the fourth and last step in the 

framework of 4-stage traffic models. 

For an area of study subdivided into 𝑛  zones, Origin-Destination matrices 

describing traffic demand on the road network that connects such zones are 

tables made of 𝑛2 cells. Under the hypothesis of no intrazonal trips, the problem 

of OD matrix estimation features 𝑛2 − 𝑛  unknowns, provided that zones 

generate and attract trips at the same time.  

Specifically for each time fraction 𝑘, linear equations eligible to solve the problem 

are identified through traffic counts 𝑦𝑘
𝑚, which can be seen as link flows derived 

from the combination of the assignment matrix 𝑨𝒌 and the vector 𝒙𝒌 containing 

OD pairs: 
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 𝑨𝒌𝒙𝒌 = 𝒚𝒌 (4.1) 

representing a stream of 𝑘 systems of 𝑚 linear equations in 𝑛2 − 𝑛 unknowns can 

be either underdetermined, full-rank (in rare cases) or overdetermined: either 

way, solutions for each time fractions will be extracted solving an optimization 

problem due to inconsistency in the datasets. 

In Figure 5, a flow chart summarizing the procedure from raw data to validated 

OD matrices is displayed: 

 

Figure 5. Workflow of OD matrix estimation procedure 

 

4.3.2. Representativity of sample data 

Representativity of input data for transport models are of evident importance, as 

transportation planners and mobility experts rely on the outcomes of these 

studies to advise decision makers regarding possible implications for traffic and 

mobility matters and issues.  

Unfortunately, no official data are retrievable about coverage of TomTom data 

samples, so it is necessary to extract a consistent expansion coefficient per each 

time fraction 𝑘 to be applied to available TomTom data. Previously elaborated 

mean traffic counts from video analytics have been used as comparison to 

calculate expansion coefficients. As 𝑘 time fractions match in both studies, it is 
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possible to expand daily average counts by using the ratio between 

corresponding sample sizes, so that a 𝐶𝑒𝑥𝑝,𝑘  for each period 𝑘  (distinguishing 

between weekday and weekend) is calculated: 

 
𝐶𝑒𝑥𝑝,𝑘 =

𝑇𝑜𝑚𝑇𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

𝑉𝑖𝑑𝑒𝑜 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑠 𝑐𝑜𝑢𝑛𝑡𝑠
 (4.2) 

In the next table, available counts from both datasets and the calculated 

expansion coefficient 𝐶𝑒𝑥𝑝,𝑘 are listed: 

Table 2. Expansion coefficients (𝐶𝑒𝑥𝑝,𝑘) calculation 

Time 

fractions 𝒌 

Weekdays Weekends 

Video 

analytics 

TomTom Cexp,k 

[%] 

Video 

analytics 

TomTom Cexp,k 

[%] 

7:00 - 7:15 am 7.87 0.350 4.45 3 0.125 4.17 

7:15 - 7:30 am 12 0.650 5.42 2.67 0.25 9.37 

7:30 - 7:45 am 13.07 0.625 4.78 4 0 0.00 

7:45 - 8:00 am 18.93 0.450 2.38 4.5 0.375 8.33 

8:00 - 8:15 am 25 0.850 3.40 5 0.3125 6.25 

8:15 - 8:30 am 20.13 0.600 2.98 7.5 0.3125 4.17 

8:30 - 8:45 am 16.73 0.500 2.99 7.25 0.5625 7.76 

8:45 - 9:00 am 20.47 1.000 4.89 8 0.375 4.69 

1:00 - 1:15 pm 12.5 0.475 3.80 11.75 0.3125 2.66 

1:15 - 1:30 pm 13.71 0.650 4.74 14 0.5625 4.02 

1:30 - 1:45 pm 14.85 0.900 6.06 10.5 0.5 4.76 

1:45 - 2:00 pm 14.64 0.575 3.93 9.25 0.625 6.76 

2:00 - 2:15 pm 18.85 0.725 3.84 12.5 0.375 3.00 

2:15 - 2:30 pm 15.78 0.675 4.28 12 0.625 5.21 

2:30 - 2:45 pm 15.85 0.750 4.73 10.75 0.5625 5.23 

2:45 - 3:00 pm 13.21 0.550 4.16 11.5 0.4375 3.80 

5:00 - 5:15 pm 16.85 0.975 5.79 15.25 0.75 4.92 

5:15 - 5:30 pm 17.85 0.850 4.76 14.75 0.75 5.08 

5:30 - 5:45 pm 17.45 0.925 5.30 15.75 0.625 3.97 

5:45 - 6:00 pm 18.42 0.950 5.16 15.25 0.8125 5.33 

6:00 - 6:15 pm 20.08 0.875 4.36 16.25 0.4375 2.69 

6:15 - 6:30 pm 21.77 1.375 6.32 18 0.5 2.78 

6:30 - 6:45 pm 20.46 1.025 5.01 16 0.875 5.47 

6:45 - 7:00 pm 20.85 1.000 4.80 10.75 1.125 10.47 
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Mean   4.51   5.04 

SD   0.95   2.31 

 

On average, Cexp for weekdays is 4.51% (with standard deviation equal to 0.95%), 

while Cexp for weekends is 5.04% (with SD equal to 2.31%). While 4.51% 

corresponds to a value endorsed by other examples in literature using such type 

of data and features a low value of standard deviation, as wee ends’ standard 

deviation is relatively high, a consistent correlation between TomTom data and 

video analytics data is not possible, so the decision is not to use data collected on 

weekends, but to focus on weekdays data only for both trend analyses of 

vehicular patterns and the estimation of reliable OD matrices. 

 

4.3.3. Zoning 

Zoning is an essential requirement for the later application of the procedure: in 

this case, as the network is at neighbourhood scale, origin and destination zones 

are identified through access and exit streets, i.e., in correspondence with the 

intersections of the trimming polygon of the selected network (Figure 2) and the 

road graph of the city of Bologna. Such choice of zoning finds itself to be useful 

for the purpose of micro-simulating the road network once OD matrices are 

obtained, also avoiding that sample size values on minor local roads could be 

discarded in the elaboration.  

Since the available network extension is much larger than the area which is 

supposedly affected by the tactical urbanism intervention and in order to ease 

the OD matrix estimation process by limiting the number of origin and 

destination zones, a reduction of the segments in the network is performed: via 

Stalingrado, on the eastern side of the selected area, is removed along with all the 

eastward afferent segments, as well as the tunnel denominated Asse Nord-Sud 

and the connection with via de’ Carracci, at the southwestern corner of the 

network. In Figure 6, removed segments are highlighted in red colour. 
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Figure 6. Network size reduction 

In Table 3, the list of origin and destination zones of the edited road network and 

respective nodes denomination is displayed: 

Table 3. Origin-Destination zones 

Node id Access/exit segment O D 

382  ia de’ Carracci • • 

304 Via Giacomo Matteotti • • 

58 Via Ferrarese • • 

37 Via di Corticella • • 

370 Via Aristotile Fioravanti • • 

5 Via Ezio Cesarini •  

854 Via Alceste Giovannini  • 

2 Via Daniele Manin •  

735 Via Yuri Gagarin  • 

496 Via Yuri Gagarin •  

105 Via della Liberazione •  

870 Via Donato Creti  • 

896 Via Sebastiano Serlio  • 

             
         

 ept

removed

intervention 
area
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In Figure 7, a map showing the network highlights the position of origin and 

destination nodes: 

 

Figure 7. Origin-Destination nodes 

 

4.3.4. Generation and attraction 

A set of input data of generated and attracted trip patterns in each time fraction 

of 15 minutes is necessary for the estimation procedure: as availability of sample 

size data interests each link on the selected network, generation and attraction 

patterns for OD zones are easily identified with corresponding sample data 

associated to access/exit segments. These data enforce two fundamental 

constraints for OD flows: 

 ∑ 𝑥𝑖𝑗𝑘
𝑗

= 𝑃𝑖𝑘 (4.3) 

 ∑ 𝑥𝑖𝑗𝑘
𝑖

= 𝐴𝑗𝑘 (4.4) 

being 𝑥𝑖𝑗𝑘 the demand for OD pair 𝑖 → 𝑗 of trips departing in time fraction 𝑘; 
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𝑃𝑖𝑘 the sum of outbound OD flows from origin node 𝑖 during time fraction 

𝑘; 

𝐴𝑗𝑘  the sum of inbound OD flows to destination node 𝑗  during time 

fraction 𝑘. 

 

4.3.5. Shortest paths calculation 

Calculation of shortest paths between origin and destination nodes through a 

weighted graph is a well-known, computationally demanding challenge in this 

kind of studies. For a portion of urban road network as the one under 

examination, characterized by a grid layout, calculating all simple paths (i.e., 

paths without loops and that do not contain the same node more than once), 

attributing costs according to chosen explanatory variables and selecting a set 

containing the most convenient paths, i.e., the ones featuring the minimum costs, 

can take days for a decent 64-bit calculator, so it is necessary to pursue a faster 

way. 

For each OD pair, a limited set of possible paths is calculated: the chosen 

algorithm for this step is Yen’s algorithm, proposed in Yen (1971), which 

computes the first 𝑘̅ shortest loopless paths for a determined pair of nodes in an 

oriented graph with non-negative costs attributed to edges. It can employ any 

effective algorithm for the calculation of the shortest path, then proceeding to 

compute 𝑘̅ − 1 best deviations with the same algorithm used beforehand. 

The underlying logic of the algorithm is as follows: once the first shortest path is 

computed, for each node 𝑖 belonging to this path from the origin node, the best 

alternative way to the destination node is calculated by previously removing the 

edge (𝑖, 𝑖 + 1) from the graph; all alternatives are compared regarding the total 

cost and the one featuring the lowest value is selected as best alternative; the 

algorithm continues to the next iteration until all 𝑘̅ shortest paths for the selected 

OD pair are sorted. 

For the case study, the algorithm was implemented in the R environment by the 

library yenpathy, basically transposing the algorithm script from C++; the shortest 

path computation algorithm adopted by the function in R is Dij stra’s. 

A sensitivity test has been performed with the aim of assessing determinedness 

of equation systems resulted from the procedure, which stated that the most 
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suitable number of possible shortest paths is  𝑘̅ = 4 , given the extent of the 

network and the number of origin and destination zones resulted from the 

zoning process. Such choice of 𝑘̅ would lead overall to slightly underdetermined 

problems, optimizing the trade-off between severe underdetermination resulting 

in inconsistent solutions and dispersion of flow on paths whose route choice 

proportionality is unrealistic. 

 

4.3.6. Route choice 

To attribute route choice proportionality to each path in the calculated set, a Path 

Size Logit model is used: it consists of a Multinomial Logit with travel time as 

key explanatory variable, with the addition of penalties for paths that share 

segments with others in the same set. The main reason for penalizing paths 

containing shared links is the consideration that the user tends not to recognize 

one path as a valid alternative if most of the segments are shared between two 

different choices. 

As presented in Prato (2009), the following PSL model is assumed: 

 
𝑝𝑖𝑗𝑘

𝑛 =
𝑒(𝑉𝑛+𝛽𝑃𝑆∙ln 𝑃𝑆𝑛)

∑ 𝑒(𝑉𝑟+𝛽𝑃𝑆∙ln 𝑃𝑆𝑟)
𝑟𝑖𝑗𝑘

𝑛 ∈𝑃𝑖𝑗𝑘

 (4.5) 

with  𝑝𝑖𝑗𝑘
𝑛  route choice proportional factor of path 𝑛; 

𝑉𝑛 = −𝐶𝑛 = −𝑇𝑇𝑛
𝑘; 

 𝛽𝑃𝑆 path size parameter to be estimated; 

 𝑃𝑆𝑛 path size factor of path 𝑛. 

The disutility function 𝑉𝑛 expresses how costs negatively affect attractiveness of 

the choice of path 𝑛 through explanatory variables, travel time 𝑇𝑇𝑛
𝑘 only in this 

example. In the occurrence of segments featuring null travel time for the time 

fraction 𝑘 , indicating that no vehicle has been recorded on the segment, the 

algorithm automatically converts the attribute value for travel time into 1000 

minutes to exclude such segments from the computation of convenient routes. 

Lacking useful data for calibration (usually provided by interviews), 𝛽𝑃𝑆  is 

assumed equal to 1, accordingly to the formulation of the Logit model proposed 
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by Krishnakumari et al. (2019). Path sizes are calculated through the original 

formulation proposed by Ben-Akiva et al. (1999): 

 
𝑃𝑆𝑛 = ∑

𝐿𝑎

𝐿𝑛
𝑎∈𝑟𝑖𝑗𝑘

𝑛

1

∑ 𝛿𝑎𝑛𝑟𝑖𝑗𝑘
𝑛 ∈𝑃𝑖𝑗𝑘

 
(4.6) 

where 𝐿𝑎 is the length of link 𝑎; 

 𝐿𝑛 is the length of path 𝑛; 

 𝛿𝑎𝑛  is an integer variable expressing the link-path incidence, i.e., the 

number of paths in the set in which link 𝑎 features.  

It follows that path flows are directly related to OD flows by each proportionality 

factor: 

 𝑥𝑖𝑗𝑘
𝑛 = 𝑝𝑖𝑗𝑘

𝑛 𝑥𝑖𝑗𝑘      ∀ 𝑖, 𝑗, 𝑘; 𝑛 = 1 … 𝑁𝑖𝑗𝑘
∗  (4.7) 

 

4.3.7. Link traffic counts selection 

Once production and attraction patterns are determined and path sets together 

with relative choice proportionality are assumed as described beforehand, an 

additional and essential constraint on OD flows is provided by link traffic counts 

𝑦̃𝑘 = 𝐶𝑒𝑥𝑝,𝑘𝑦𝑘 , previously increased by expansion coefficients calculated in 

section 4.3.1, which represent the main piece of information for traffic demand.  

A link traffic count provides information on OD pairs in the form of these 

equations: 

 𝑦𝑘
𝑎̃ = ∑ 𝑥𝑖𝑗𝑘

𝑛

𝑟𝑖𝑗𝑘
𝑛 ∈𝑃𝑘

𝑎

= ∑ 𝑝𝑖𝑗𝑘
𝑛 𝑥𝑖𝑗𝑘

𝑟𝑖𝑗𝑘
𝑛 ∈𝑃𝑘

𝑎

 
(4.8) 

saying that the expanded traffic count on link 𝑎 in time fraction 𝑘 is the sum of 

the path flows 𝑥𝑖𝑗𝑘
𝑛  corresponding to all the paths contained in the set 𝑃𝑘

𝑎 =

 {𝑟𝑖𝑗𝑘
𝑛  | 𝑎 ∈  𝑟𝑖𝑗𝑘

𝑛 }. 

If the whole set of traffic counts were to be used, the linear system for the 

determination of OD pairs for each time fraction 𝑘 would feature equations (4.3), 

(4.4) and (4.8): 
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{

𝑥𝑖1𝑘 + ⋯ + 𝑥𝑖𝑗𝑘 + ⋯ = 𝑃𝑖𝑘

𝑥1𝑗𝑘 + ⋯ + 𝑥𝑖𝑗𝑘 + ⋯ = 𝐴𝑗𝑘

𝑝11𝑘
𝑛 𝑥11𝑘 + ⋯ + 𝑝𝑖𝑗𝑘

𝑛 𝑥𝑖𝑗𝑘 + ⋯ = 𝑦𝑘
𝑎̃

 (4.9) 

However, not every configuration of traffic counts can lead to a satisfying 

solution of the OD estimation problem. For instance, in (4.9) coefficient matrix 𝑨𝒌 

is surely a singular matrix because of dependence among link traffic counts. As 

stated in Ortúzar and Willesden (2011) and Espitia Echeverría (2018), traffic 

counting suffers from two fundamental problems: 

• data inconsistency 

Traffic counts are affected from multiple errors caused by intrinsic flaws 

in the measurement procedure, leading to inconsistent flows attributed to 

each link; this means that even if the equation system is full rank, there 

might be no matrix able to satisfy each value of the observed flow vector; 

it is thus necessary to consider a vector of errors affecting the set of 

observed flows. 

• data dependence 

Traffic is modelled over the road network under the hypothesis of flow 

continuity at nodes, meaning that difference between inbound and 

outbound flows must be null; thus, flow on one of the segments related to 

each node is deductible as linear combination of the others, leading to 

linearly dependent equations which would not bring any additional 

information. 

Usually, traffic counts campaigns with limited availability of sensors priorly 

consider such problems and outline a configuration of counting spots which 

leads to an independent dataset. As, for the case under examination, link counts 

are available for each segment for each time fractions in the daily time slots, a 

criterion for selecting a limited number of independent equations must be 

assumed.  

Yang et al. (1998) proposed four basic rules for the selection of optimal locations 

for link counters: 

1. OD pair coverage: a minimum share of demand flow per OD pair should 

be observed; 

2. Maximum flow fraction: for each OD pair, the link with the greatest 

demand flow fraction between the pair should be observed; 
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3. Maximum coverage: in the case of limitations of number of available 

counters, the greatest number possible of OD pairs is to be observed; 

4. Link independence: traffic counts should not be linearly dependent. 

On the basis of such rules, localization methods for traffic counters are 

developed. Most methods presented in literature proceed from the assumption 

that a prior OD matrix is available so, by assigning this particular matrix to the 

network, it is possible to obtain information over used paths between OD pairs 

and link flows, which constitute input data for localization methods. 

In this case, no prior matrix is available: however, information on paths is in fact 

available because of the assumptions formulated in sections 4.3.5 and 4.3.6 

(implications of such premises on the accuracy of the results will be discussed 

later), so the same methods could be applied to the current case. 

The proposed method works as follows:  

1. equations (4.3) and (4.4) are chosen as first equations of the linear system, 

being “privileged” traffic counts providing information of production and 

attraction patterns; though, it is to remark that one equation must be 

discarded because it is a linear combination of all the others in the set;  

2. for each link in the network, excluding access/exit segments, which have 

been already considered in the previous step, it is computed how many 

OD pairs have at least one path transiting through the link itself; 

3. starting from the link with the highest number of transiting OD, the 

corresponding matrix row is added, and a rank check is performed: if the 

rank of the matrix at this step is lower than the rank of the matrix with the 

added row, the row is declared linearly independent and the 

corresponding equation is definitely added to the solving equation 

system. 

The procedure is repeated for all the available traffic counts which, in the current 

time fraction, have recorded a value greater than 0; all discarded rows because 

linearly dependent are placed in a separate container, which will be used to 

validate resulting OD pair flows once calculated. 

In summary, this algorithm seeks to represent as many OD pairs as possible 

while ensuring that no redundant information is considered, solving the issue of 

data dependence. Of course, the number of considered possible shortest paths is 

relevant to the determinedness of the resulting equation system: by increasing 
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the number 𝑘̅ of considered paths between OD pairs, flows would be dispersed 

over unrealistically convenient routes, so the benefit of handling more 

determined equation systems allegedly leading to more consistent solutions 

would be counterproductive, if not detrimental for the accuracy of final 

outcomes. 

 

4.3.8. Equation system solving 

At the end of the previous step, a system of linear equations is obtained for each 

time fraction 𝑘: 

 𝑨𝒌𝒙𝒌 = 𝒚̃𝒌 (4.10) 

in which 𝑨𝒌𝒙𝒌 represent the vector of estimated link flows 𝒚̂𝒌 and 𝒚̃𝒌 stands for 

the vector of observed flows multiplied by the corresponding expansion 

coefficient; in order to avoid meaningless solutions featuring negative OD flows, 

the vector of unknows, consisting of OD flows in time fraction 𝑘, has a non-

negativity constraint: 𝒙𝒌 ≥ 0. 

This equation system can be either underdetermined, full-rank or 

overdetermined, as the coefficient matrix may not be a square matrix. As a result 

of the choice of 𝑘̅, equation systems both from ex-ante and ex-post situations are 

slightly underdetermined, with a few cases of full-rank condition. 

Nevertheless, the problem raised before about data inconsistency is yet to be 

confronted. Assumptions on paths and route choice also affect accuracy of the 

solution. 

To address this issue, it is necessary to consider a vector of errors summarizing 

measurement errors affecting observed flows, assumption errors and flaws 

introduced with the proposed model: 

 𝑨𝒌𝒙𝒌 = 𝒚̃𝒌 + 𝜺𝒌 (4.11) 

With the introduction of vector 𝜺𝒌, independently from the determinedness of 

each linear system, the solution has to be searched through solving an 

optimization problem: the objective function 𝑍(𝒙) (4.12) to be minimized is the 

norm of vector of errors, which from (4.11) it corresponds to the difference vector 

between estimated flows and observed flows:  
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 𝑍(𝒙𝒌) = ‖𝜺𝒌‖2 = ‖𝑨𝒌𝒙𝒌 − 𝒚̃𝒌‖2 = ‖𝒚̂𝒌 − 𝒚̃𝒌‖2 (4.12) 

To solve this optimization problem, the nonlinear Generalized Reduced Gradient 

(GRG) embedded in the Excel plugin Solve is employed. It consists of an iterative 

algorithm which calculates at each step the gradient of the objective function: 

starting from a trial solution 𝒙0, it computes numerically partial derivatives to 

form the gradient and takes a further step in the desired direction, e.g., for 

minimization problems the step in the most negative direction, in order to reach 

the optimal solution as fast as possible, which is considered to be the step in 

which gradient is the null vector. It is indicated for nonlinear “smooth” problems, 

so suitable for functions represented by regular hypersurfaces featuring 

continuous gradients in every direction. 

As it needs a first trial solution as starting point, it could be tricked into 

recognizing local optima as global solutions: in order to partially overcome this 

limitation, it is possible to select from Solve plugin settings the option Multistart, 

which reduces the risk of running into solutions situated in local optima by 

repeating the procedure starting from different trail solutions, but obviously 

increasing computational time.  

 

4.3.9. Validation of results 

Once the Solve plugin has reached a solution, a definitive vector 𝒙𝒌 containing 

OD flows is extracted and after proper rearrangements, OD matrices are 

available with the correct table layout. 

To validate the process, linear regression of considered and discarded link flows 

between estimations and observations are performed. The aim of this step is to 

assess the level of correlation between the two sets of link flows, in order to 

evaluate the accuracy of the determination of OD flows.  

Linear regression basically returns a linear function 𝑦 = 𝑚𝑥 + 𝑦0  which 

interpolates two paired sets of values from variables or, like in this case, the 

observed values of a variable 𝑦̃ and the corresponding estimations 𝑦̂. As a matter 

of fact, the two sets can be related through the linear function considering also an 

error term 𝜀: 
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 𝑦̂ = 𝑚𝑦̃ + 𝑦0 + 𝜀 (4.13) 

The coefficient of multiple correlation, indicated by 𝑅, is defined as Pearson’s 

correlation coefficient between the predicted and the observed values of a 

variable; in other words, it is a measure of how good a variable can be predicted 

through models based on linear relations of a set of other variables. The key 

parameter is the coefficient of determination 𝑅2 (R-squared): it is the proportion 

of how common variance between independent and dependent variables is, so it 

is used in regression models to evaluate how much of the variance of one variable 

is explained in the other variable’s variance. 𝑅2 may vary between 0 and 1: a high 

value (𝑅2 > 0.7) means that variations in one variable mostly depend on the 

variations in the other variable; a low value (𝑅2 < 0.3) shows that only a small 

portion of values in one variable is explained by the other, so the two sets are not 

well correlated. 

Correlation coefficient 𝑟  often overestimates relationship between variables, 

especially when employed samples are not numerous, while coefficient of 

determination tends to be more accurate. Furthermore, 𝑅2 is usually well defined 

no matter the nature of the independent variable, if random or fixed. 

In case 𝑅2 drops under the threshold of 0.7, Theil’s inequality coefficient 𝑈 will 

be computed; although primarily used to evaluate economic inequality, it was 

proposed by Toledo et al. (2004) to statistically validate traffic simulation models. 

A useful property of this coefficient is that it can overcome the effect of outliers 

(Barceló et al., 2010), as opposed to usually adopted RMS estimators. 𝑈  is 

calculated as follows: 

 

𝑈 =

√1
𝑛

∑ (𝑦̂𝑖 − 𝑦̃𝑖)2𝑛
𝑖=1

√1
𝑛

∑ (𝑦̂𝑖)2𝑛
𝑖=1 + √1

𝑛
∑ (𝑦̃𝑖)2𝑛

𝑖=1

 (4.14) 

with 𝑛 being the number of elements in both the observed and estimated data; 

 𝑦̂𝑖 the estimations; 

 𝑦̃𝑖 the observations. 

𝑈 is bounded between the values of 0 and 1: 𝑈 = 0 means that measurements and 

estimations fit perfectly; 𝑈 = 1  depicts an unacceptable fit. As suggested by 
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Barceló et al. (2010), predicted series featuring 𝑈 > 0.2 should be disregarded 

because of their inaccurate character. 

Theil’s inequality coefficient can be decomposed in three proportions: 𝑈𝑀 (bias), 

𝑈𝑆 (variance) and 𝑈𝐶 (covariance). Their expressions are listed below: 

 
𝑈𝑀 =

(𝑦̂𝑖̅ − 𝑦̃𝑖̅)
2

1
𝑛

∑ (𝑦̂𝑖 − 𝑦̃𝑖)2𝑛
𝑖=1

 (4.15) 

 
𝑈𝑆 =

(𝜎̂ − 𝜎̃)2

1
𝑛

∑ (𝑦̂𝑖 − 𝑦̃𝑖)2𝑛
𝑖=1

 (4.16) 

 
𝑈𝐶 =

2(1 − 𝑟)𝜎̂𝜎̃

1
𝑛

∑ (𝑦̂𝑖 − 𝑦̃𝑖)2𝑛
𝑖=1

 (4.17) 

where 𝑦̂𝑖̅  and 𝑦̃𝑖̅  are means, 𝜎̂  and 𝜎̃  standard deviations of estimations and 

observations respectively; 𝑟 the Pearson’s correlation coefficient between the two 

sets. 

In particular, 𝑈𝑀 gives information about the systematic error, 𝑈𝑆 tells how well 

the variability is replicated by the model while 𝑈𝐶  informs about the non-

systematic error. Because of how they are constructed, the sum of all three 

proportions must return 1: the indication of a good fit lies in 𝑈𝑀 and 𝑈𝑆 being as 

small as they can get (in return, 𝑈𝐶 should be as close to 1 as possible). 
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5 Results 

The procedure described in the previous section has been implemented using 

both RStudio and Microsoft Excel; in the current section obtained results will be 

displayed and commented. 

 

5.1. Statistical analysis 

5.1.1. T-tests 

In the first place, t-tests have been performed comparing datasets by date ranges 

(weekdays and weekends) and groups of Functional Road Classes (FRC 2-3 and 

FRC 4-6). In the tables below, the investigated values of the datasets (average 

speed, sample size and speed 85th percentile) have been condensed in peak time 

slots through arithmetical average among all the segments belonging to the 

cluster. The tables feature mean and standard deviation of both ex-ante and ex-

post values, p-values resulted from the statistical test and the difference in means 

ΔM. 

 

Table 4. Results of t-tests for average speed values 

Average 

speed 

ex-ante ex-post 
p-value ΔM  

M SD M SD 

 

weekdays 

30.82 9.77 29.74 9.29 7.06E-29 -1.08*** 7-9am 

 31.55 9.62 30.77 9.17 2.04E-19 -0.77*** 1-3pm 

 28.13 9.59 27.24 9.11 2.78E-18 -0.89*** 5-7pm 

 

weekends 

34.40 11.49 33.31 11.15 3.07E-12 -1.09*** 7-9am 

 32.58 10.06 31.73 9.67 6.03E-15 -0.86*** 1-3pm 

 30.55 9.65 29.07 9.13 6.80E-25 -1.49*** 5-7pm 
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FRC 2-3 

37.48 10.40 36.73 9.79 2.10E-11 -0.76*** 7-9am 

 36.61 9.38 36.14 9.03 2.55E-07 -0.48*** 1-3pm 

 32.84 9.20 32.18 9.20 7.60E-08 -0.66*** 5-7pm 

 

FRC 4-6 

30.38 10.25 29.15 9.81 1.53E-23 -1.24*** 7-9am 

 29.98 9.35 29.01 8.75 6.09E-26 -0.97*** 1-3pm 

 27.74 9.27 26.31 8.54 4.50E-35 -1.43*** 5-7pm 

 
weekdays 

FRC 2-3 

34.29 9.62 33.64 9.30 9.43E-09 -0.65*** 7-9am 

 35.75 9.38 35.18 8.90 1.11E-05 -0.57*** 1-3pm 

 31.01 9.63 30.51 9.35 1.06E-03 -0.50** 5-7pm 

 
weekdays 

FRC 4-6 

29.23 9.43 27.96 8.73 1.73E-22 -1.27*** 7-9am 

 29.62 9.10 28.75 8.58 3.57E-15 -0.87*** 1-3pm 

 26.81 8.60 25.74 8.60 3.59E-16 -1.07*** 5-7pm 

 
weekends 

FRC 2-3 

40.68 10.20 39.82 9.29 1.03E-05 -0.86*** 7-9am 

 37.48 9.32 37.09 9.08 3.69E-03 -0.38** 1-3pm 

 34.68 9.43 33.85 8.75 2.04E-05 -0.83*** 5-7pm 

 
weekends 

FRC 4-6 

31.53 10.90 30.34 10.67 1.22E-08 -1.20*** 7-9am 

 30.34 9.59 29.27 8.92 3.73E-13 -1.07*** 1-3pm 

 28.67 9.17 26.88 8.45 4.63E-21 -1.79*** 5-7pm 

 * p < 0.05; ** p < 0.01; *** p < 0.001 

 

 

Table 5. Results of t-tests for sample size values 

Sample size 
ex-ante ex-post 

p ΔM  
M SD M SD 

 

weekdays 

68.46 66.58 72.62 68.70 4.60E-55 4.16*** 7-9am 

 61.52 60.89 64.88 64.01 2.85E-51 3.36*** 1-3pm 

 85.05 77.51 86.12 77.18 9.73E-10 1.07*** 5-7pm 

 

weekends 

22.38 23.58 25.38 25.68 3.41E-86 3.00*** 7-9am 

 51.78 57.68 56.07 60.01 7.13E-83 4.28*** 1-3pm 

 69.95 75.79 72.39 73.65 5.35E-21 2.44*** 5-7pm 
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FRC 2-3 

86.03 70.39 92.47 71.29 1.29E-62 6.44*** 7-9am 

 108.91 70.02 116.67 71.76 1.57E-91 7.76*** 1-3pm 

 148.84 80.84 149.88 80.84 3.50E-03 1.04** 5-7pm 

 

FRC 4-6 

26.83 32.30 29.10 33.88 4.32E-74 2.27*** 7-9am 

 32.73 33.08 34.74 34.24 3.64E-62 2.01*** 1-3pm 

 44.84 44.87 46.92 45.18 1.39E-38 2.09*** 5-7pm 

 
weekdays 

FRC 2-3 

129.38 73.37 137.12 73.16 1.20E-28 7.74*** 7-9am 

 115.74 68.58 123.86 70.84 2.00E-45 8.12*** 1-3pm 

 157.91 77.75 159.86 76.07 3.96E-06 1.95*** 5-7pm 

 
weekdays 

FRC 4-6 

40.57 39.09 43.10 40.73 3.42E-38 2.52*** 7-9am 

 36.70 36.00 37.88 36.85 4.11E-21 1.18*** 1-3pm 

 51.69 49.11 52.36 49.11 5.36E-05 0.67*** 5-7pm 

 
weekends 

FRC 2-3 

42.68 27.80 47.82 28.80 2.71E-61 5.14*** 7-9am 

 102.08 70.95 109.49 72.12 2.57E-48 7.40*** 1-3pm 

 139.78 89.24 139.90 84.35 8.24E-01 0.13 5-7pm 

 
weekends 

FRC 4-6 

13.08 13.52 15.10 15.70 9.00E-39 2.02*** 7-9am 

 28.76 29.39 31.61 31.13 1.04E-44 2.85*** 1-3pm 

 37.98 38.51 41.48 40.21 1.29E-39 3.50*** 5-7pm 

 * p < 0.05; ** p < 0.01; *** p < 0.001 

 

 

Table 6. Results of t-tests performed on speed 85th percentile values 

Speed – 85th 

percentile 

ex-ante ex-post 
p ΔM 

 

M SD M SD 

 

weekdays 

41.98 11.93 40.41 10.79 1.14E-14 -1.57*** 7-9am 

 42.78 11.69 41.72 10.67 3.40E-09 -1.06*** 1-3pm 

 39.10 11.95 37.67 10.66 3.21E-12 -1.43*** 5-7pm 

 

weekends 

45.83 14.56 44.02 13.71 1.71E-12 -1.80*** 7-9am 

 44.04 12.78 42.44 11.55 3.45E-11 -1.59*** 1-3pm 

 41.18 12.04 39.65 10.80 9.39E-10 -1.53*** 5-7pm 
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FRC 2-3 

50.28 11.46 49.14 10.59 1.66E-11 -1.14*** 7-9am 

 48.92 10.43 48.22 9.75 2.52E-06 -0.70*** 1-3pm 

 44.54 10.19 43.94 10.19 7.06E-05 -0.60*** 5-7pm 

 

FRC 4-6 

40.99 13.28 39.05 11.97 6.94E-18 -1.94*** 7-9am 

 40.89 12.21 39.27 10.57 7.45E-15 -1.62*** 1-3pm 

 38.13 12.04 36.24 10.15 5.18E-17 -1.89*** 5-7pm 

 
weekdays 

FRC 2-3 

46.39 10.55 45.61 10.23 9.51E-11 -0.78*** 7-9am 

 47.84 10.46 47.25 9.73 5.41E-04 -0.59*** 1-3pm 

 42.69 10.93 42.14 10.44 1.48E-03 -0.55** 5-7pm 

 
weekdays 

FRC 4-6 

39.97 12.00 38.03 10.19 2.82E-11 -1.94*** 7-9am 

 40.46 11.50 39.18 10.12 3.18E-07 -1.28*** 1-3pm 

 37.46 10.13 35.62 10.13 1.85E-10 -1.84*** 5-7pm 

 
weekends 

FRC 2-3 

54.18 11.03 52.67 9.76 1.93E-06 -1.51*** 7-9am 

 50.00 10.30 49.19 9.70 9.22E-04 -0.81*** 1-3pm 

 46.39 10.39 45.74 9.63 8.78E-03 -0.65** 5-7pm 

 
weekends 

FRC 4-6 

42.00 14.39 40.07 13.45 1.68E-08 -1.94*** 7-9am 

 41.31 12.88 39.35 11.01 4.01E-09 -1.95*** 1-3pm 

 38.79 12.01 36.86 10.15 2.27E-08 -1.93*** 5-7pm 

 * p < 0.05; ** p < 0.01; *** p < 0.001 

 

The null hypothesis stating that difference in means is zero is rejected in nearly 

all the tests that have been performed, under the level of probabilistic significance 

level 𝛼 = 0.001. A few tests have returned p-values slightly greater than 0.001 

but under the threshold value of 𝛼 = 0.05. The t-test comparing sample sizes in 

ex-ante and ex-post datasets for FRC 2-3 segments at weekends in the time slot 

5:00 - 7:00 PM returned a very high p-value (0.82), so for this specific test the null 

hypothesis could not be rejected under any reasonable level of probabilistic 

significance. 

On the whole, the available datasets which have been compared from a statistical 

significance point of view through t-tests and later by analysing trends have 

demonstrated significant differences, so worthwhile to be investigated for 

mobility patterns variations. However, since from calculating expansion 
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coefficients it was noticed that weekends data could present issues regarding the 

representativity of real traffic flow data, only values recorded on weekdays have 

been exploited in the next sections. 

Being given the green light from t-tests to analyse trends in traffic-related 

parameters, speed values have been analysed between the FRCs clusters, while 

sample sizes have been treated under the buffer segments classification 

(intervention, adjacent, buffer and control).  

In the following pages, histograms representing flow trends per each time 

fractions both for ex-ante and ex-post situations are reported. 

 

5.1.2. Trend analysis 

5.1.2.1. Speed values 

In Figure 8 and Figure 9, results from trend analyses of average speed on 

weekdays are shown: 

 

Figure 8. Average speed on weekdays for FRC 2-3 segments - comparison ex-ante/ex-

post 
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Figure 9. Average speed on weekdays for FRC 4-6 segments - comparison ex-ante/ex-

post 
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Figure 10. Average speed 85th percentile on weekdays for FRC 2-3 segments - 

comparison ex-ante/ex-post 

 

Figure 11. Average speed 85th percentile on weekdays for FRC 4-6 segments - 

comparison ex-ante/ex-post 
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analysis is 35 km/h, the extensive application of the speed limit of 30 km/h zones 

would be too restrictive in terms of acceptance from the users, with the risk of 

general incompliance, let alone on FRC 2-3 streets, whose 85th percentile of speed 

value is 45 km/h on average. 

5.1.2.2. Sample size values 

In order to assess variations in traffic flow values, the investigated parameter is 

the sample size adapted to actual values through expansion coefficients in Table 

2 to represent real traffic flow, averaged over the entire cluster. For this analysis, 

road segments have been clustered according to Nello-Deakin (2022) 

classification regarding the position of the intervention that supposedly triggered 

the mobility patterns to change. 

In the next figures, plots displaying results from the trend analyses are presented. 

In Figure 12, average traffic flow on weekends for intervention streets is 

displayed: 

 

Figure 12. Average traffic flow on weekdays on intervention streets - comparison ex-

ante/ex-post 

Intervention streets variation trend is characterized by considerable peaks mostly 

due to little flows interesting such segments, making it more susceptible to high 

relative variability. From Figure 12 it is clearly visible that in time slot 5:00-7:00 
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time slots do not display as clear reduction in flows as the evening slot, being 

those subject to high fluctuations.  

Following plots show average traffic flow trends for adjacent (Figure 13), buffer 

(Figure 14) and control segment class (Figure 15). 

 

Figure 13. Average traffic flow on weekdays on adjacent streets - comparison ex-ante/ex-

post 

 

Figure 14. Average traffic flow on weekdays on buffer streets - comparison ex-ante/ex-

post 
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Figure 15. Average traffic flow on weekdays on control streets - comparison ex-ante/ex-

post 

 

From the plots before shown, it is clear that, whilst traffic flow appears to be 

decreased for intervention streets between ex-ante and ex-post scenarios, the other 

clusters in the buffer classification seem to be in countertrend, with positive delta 

values in most of time fractions. 

Of course, traffic levels in a neighbourhood may have changed because of other 

factors than the temporary school square implementation within a whole year. 

In order to understand if and how traffic patterns have changed because of the 

intervention, in Figure 16 the idea is to adjust buffer classes variations over 

control segments fluctuations, with the aim of cancelling the noise sourced from 

other events that may have affected other zones of the selected road network. 

Adjusted relative variations have been computed as the difference between delta 

values of the buffer classes and the ones for the control class in the same time 

fraction 𝑘: 

 ∆(𝑖,𝑎,𝑏),𝑘
𝑎𝑑𝑗

= ∆(𝑖,𝑎,𝑏),𝑘 − ∆𝑐,𝑘 (5.1) 
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Figure 16. Average traffic flow variation adjusted over control segments fluctuations 

 

Average indexes of traffic flow variation are presented in Table 7, consisting of 

mean values per time slot of relative fluctuations for average traffic flows: 

Table 7. Average traffic flow variation relative to control segments 

Buffer segment 

class 

7:00 - 9:00 

AM 

1:00 - 3:00 

PM 

5:00 - 7:00 

PM 

Average 

Intervention -23.11% -20.42% -28.08% -23.87% 

Adjacent +8.53% +3.96% +4.61% +5.70% 

Buffer +5.38% -1.25% +3.09% +2.41% 

 

From both Figure 16 and Table 7, it is possible to outline findings relatively to the 

impact that the tactical urbanism intervention may have had on the road 

network: 

• the intervention streets, despite presenting considerable peaks due to 

little flow so more sensitive to variations, averagely faced a consistent 

reduction, coherently with both the nature and the main purpose of a 

capacity-limiting, pedestrian-friendly road intervention;  

• segments in the adjacent and buffer zones have recorded, albeit lower 

both in relative and in absolute terms with respect to intervention 
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segments, a positive relative variation in the matter of traffic flow with 

respect to the general fluctuations calculated over control segments. 

These figures suggest that the implementation of the new temporary school 

square has moved traffic patterns from the intervention area to alternative paths 

which deviate from the former most convenient routes using adjacent streets. A 

further level of interpretation of such data may conclude from available evidence 

that traffic has disappeared from segments interested by the new 

implementation, but not from the entire road network (corresponding trend 

analysis for weekdays on the whole road network is displayed in Figure 17), so 

the phenomenon of traffic evaporation, encountered in other, more extensive street 

experiments (Nello-Deakin, 2022), did not occur here, pointing out that in the 

case under examination a punctual tactical urbanism could be disruptive to 

traffic patterns, even if slightly, but did not succeed in diminishing traffic flow in 

the neighbourhood network. 

  

 

Figure 17. Average traffic flow on weekdays - comparison ex-ante/ex-post 

 

Sticking to relative fluctuations in traffic flows, network maps have been 

elaborated through GIS for each time slot, representing percentage changes 

between ex-ante and ex-post conditions per each segment. 
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Figure 18. Relative variation in average traffic flow - time slot 7:00-9:00 AM 

 

Figure 19. Relative variation in average traffic flow - time slot 1:00-3:00 PM 
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Figure 20. Relative variation in average traffic flow - time slot 5:00-7:00 PM 

 

GIS maps confirm what commented earlier about the relocation of traffic patterns 

from segments directly affected by the intervention to adjacent and buffer streets: 

it is to underline once again that, in spite of a quite consistent relative reduction 

in intervention streets, highlighted in the maps through stronger warm colours, 

surrounding segments have recorded a relatively slight increase in traffic flow, 

simple because of already considerable traffic flows interesting such segments.  

 

To better understand which roads may have experienced stronger impacts and 

to validate considerations so far expressed, network maps have been elaborated 

through GIS, representing absolute variations in each time slot between ex-ante 

and ex-post conditions per each segment.  
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Figure 21. Absolute variation in average traffic flow - time slot 7:00-9:00 AM 

 

Figure 22. Absolute variation in average traffic flow - time slot 1:00-3:00 PM 
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Figure 23. Absolute variation in average traffic flow - time slot 5:00-7:00 PM 

Referring to absolute variation maps elaborated through GIS and supported by 

global indexes displayed in Table 7, a clear difference in vehicular patterns 

emerges focusing on the surroundings of the new temporary square: intervention 

segments have recorded a slight negative variation in every addressed time slot; 

adjoining and neighbouring segments such as via di Corticella, representing the 

major axis which accesses the neighbourhood from its northern side, via Franco 

Bolognese and via Pellegrino Tibaldi, core axes for the east-west through-traffic 

phenomenon, figuring either in the adjacent or buffer class, have been affected 

by an appreciable increase in traffic flow. These considerations stand as hint of 

vehicular pattern changes towards a worsening of traffic conditions in the road 

segments surrounding the intervention area. 

 

5.2. OD matrices estimation 
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traffic-related values recorded during weekdays for each time fraction 𝑘  to 
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obtain OD matrices, both for ex-ante and ex-post traffic conditions; data collected 

on weekends have been discarded for the reasons commented in section 4.3.2.  

According to the list of origin and destination nodes resulted from the zoning 

process, the number of unknowns for each equation system, which corresponds 

to the number of empty cells of Origin-Destination matrices, is 76; other cells of 

each 𝑛 × 𝑛 matrix are automatically set to the value of zero because no path could 

be established between the nodes (due to postulated absence of intrazonal trips 

and for the presence of origin or destination only nodes). Because of this, 

henceforth it will be used a contracted OD matrix layout, which excludes rows 

representing only destination nodes and columns only for origin nodes: 

 

Figure 24. Contraction of OD matrix layout 

Through the process of link counts selection, 𝑚 linear equations representing 

counted segments have been chosen to build non-singular coefficient matrices 𝑨𝑘 
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and corresponding vectors of observed traffic flows 𝒚̃𝑘: in Table 8, 𝑚 is reported 

for each case. 

Table 8. Number m of selected linear equations per each time fraction 

𝒌 
𝒎 linear equations  

𝒌 
𝒎 linear equations 

ex-ante ex-post  ex-ante ex-post 

1 73 62*  13 65* 74 

2 58* 74  14 75 75 

3 75 73  15 63* 74 

4 76 74  16 74 74 

5 74 75  17 69* 75 

6 75 75  18 75 74 

7 75 74  19 75 75 

8 75 74  20 74 75 

9 65* 75  21 74 74 

10 74 75  22 75 75 

11 74 76  23 75 75 

12 74 74  24 73 75 

* 𝑚 < 70 

Following the choice of cutting off the number of possible paths between OD 

pairs into 𝑘̅ = 4  most convenient routes in terms of travel times, nearly the 

majority of equation systems used in the algorithm have resulted slightly 

underdetermined, with only a couple of exceptions of full-rank conditions. In a 

few cases, the number of equations has dropped under the threshold of 70; 

however, this seems not to have affected the results in terms of correlation 

between estimations and observed flows. 

OD matrices for each 15-minute fraction 𝑘  have been extracted through the 

optimization problem which minimizes the norm of the difference vector 

between estimated and observed link flows, described in section 4.3.8. Linear 

regressions between observations and estimations have been established in two 

separate sets, the first consisting of flows selected to take part in the coefficient 

matrix, the second containing discarded flows used for the validation of the 

method: hence, it is possible to compute coefficients of determination 𝑅2 for each 

linear regression and to evaluate the accuracy of the estimation process. In Table 
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9, numerical values of 𝑅2  per each time fraction, both for ex-ante and ex-post 

situations are shown: 

Table 9. Coefficients of determination R-squared (𝑅2) 

𝒌 Time fraction  

Coefficients of determination 𝑹𝟐 

ex-ante ex-post 

Selected Discarded Selected Discarded 

1 7:00 - 7:15 AM 0.909 0.747 0.885 0.718 

2 7:15 - 7:30 AM 0.928 0.568* 0.827 0.587* 

3 7:30 - 7:45 AM 0.852 0.431* 0.886 0.568* 

4 7:45 - 8:00 AM 0.859 0.794 0.869 0.808 

5 8:00 - 8:15 AM 0.911 0.825 0.873 0.816 

6 8:15 - 8:30 AM 0.912 0.813 0.909 0.822 

7 8:30 - 8:45 AM 0.904 0.738 0.877 0.777 

8 8:45 - 9:00 AM 0.867 0.773 0.895 0.825 

9 1:00 - 1:15 PM 0.856 0.730 0.916 0.799 

10 1:15 - 1:30 PM 0.933 0.835 0.898 0.826 

11 1:30 - 1:45 PM 0.911 0.841 0.899 0.826 

12 1:45 - 2:00 PM 0.900 0.809 0.929 0.814 

13 2:00 - 2:15 PM 0.937 0.816 0.927 0.822 

14 2:15 - 2:30 PM 0.911 0.819 0.927 0.851 

15 2:30 - 2:45 PM 0.922 0.635* 0.910 0.821 

16 2:45 - 3:00 PM 0.901 0.781 0.910 0.842 

17 5:00 - 5:15 PM 0.921 0.824 0.847 0.790 

18 5:15 - 5:30 PM 0.881 0.729 0.884 0.778 

19 5:30 - 5:45 PM 0.883 0.774 0.886 0.800 

20 5:45 - 6:00 PM 0.844 0.660* 0.833 0.752 

21 6:00 - 6:15 PM 0.901 0.801 0.875 0.764 

22 6:15 - 6:30 PM 0.861 0.784 0.872 0.810 

23 6:30 - 6:45 PM 0.855 0.738 0.874 0.795 

24 6:45 - 7:00 PM 0.884 0.686* 0.845 0.783 

* 𝑅2 < 0.7 

From the coefficients of determination calculated and presented in the previous 

table, correlation between estimated and observed values of link flows once the 

OD matrix has been elaborated is defined as strong, since 𝑅2 > 0.7  in every 
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regression for selected flows and almost any correlation for validating the model 

through discarded flows. Figure 25 and Figure 26 show plotted series for 𝑅2 

values along with high positive correlation threshold 𝑅2 = 0.7, represented by 

the horizontal green line. 

 

Figure 25. 𝑅2 values for ex-ante scenario 

 

Figure 26. 𝑅2 values for ex-post scenario 
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Feeling necessary to further inspect regressions whose R-squared is below the 

acceptance threshold, it is clever to investigate the main factors that could affect 

the quality of the correlation, therefore the size of correlation coefficients 𝑟 

(Goodwin et al, 2006): 

a) variability in the data; 

b) matching degree for shapes for distributions; 

c) nonlinearity; 

d) outliers; 

e) sample characteristics; 

f) measurements errors. 

Notwithstanding that f) is clear and present for every set, could and surely is 

affecting correlation quality, the other factors could be investigated to look for 

the downgrading element. 

For each of the “bad performing” correlations, Theil’s inequality coefficient is 

computed, and later decomposed into its three indicators which should be able 

to explain (or at least exclude) which is the problem. 

Table 10. Theil's inequality coefficients for low-𝑅2 regressions 

 

Th   ’     q     y    ff       𝑼 

ex-ante, 𝒌 ex-post, 𝒌 

2 3 15 20 24 2 3 

𝑼 0,2110 0,2699 0,1913 0,1843 0,1768 0,1997 0,2091 

𝑼𝑴 0,0008 0,0119 0,0110 0,0090 0,0038 0,0001 0,0004 

𝑼𝑺 0,0015 0,0549 0,0007 0,0009 0,0070 0,0002 0,0078 

𝑼𝑪 0,9977 0,9332 0,9883 0,9901 0,9892 0,9997 0,9918 

From the reported values, regressions featuring lower 𝑅2, and for this reason 

addressed here, present values of 𝑈 close to the threshold of 0.2. By checking 

inequality proportions values, it seems that no issue is encountered relatively to 

systematic errors or variability, since the inequality proportions relative to bias 

and variance stick to small values, certifying the quality of the prediction. Since 

these statistics do not directly address the effect of outliers, through a qualitative 

check on linear regression scatterplots it is possible to highlight considerable 

incidence of isolated points (actually streams of points, due to the fragmentation 

of the underlying road graph). In Figure 27 and Figure 28, examples are shown. 



 5| Results 

 

 

54 

 

Figure 27. Linear regression of discarded flows - ex-ante, weekdays, 7:15-7:30 AM time 

fraction 

 

Figure 28. Linear regression of discarded flows - ex-ante, weekdays, 5:45-6:00 PM time 

fraction 

 

In Figure 29, absolute deviation of each OD flow is represented in three different 

chromatic matrices, disaggregated per time slot.  
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Figure 29. Absolute variation of OD flows between ex-ante and ex-post scenarios 
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From the previous figure, some quick but effective remarks both on accuracy of 

estimated OD matrices and on the general trend of OD flows can be made: 

• in all three matrices, from the lightest shade to the darkest one, blue 

cells depicting increments are more than red cells, which denote 

decrements; this stands in consistency with trend analysis for average 

traffic flow on weekends suggested (Figure 17), which displayed a 

general rise in each time slot; 

• darkest colours appear in correspondence of OD pairs whose source 

and/or sink nodes represent accesses or exits from the network through 

major axes, in accordance with network absolute variation maps 

(Figure 21 to Figure 23) which reported increases on east-west through-

traffic routes and main accesses to the neighbourhood from both north 

and south; 

• time slot 1:00-3:00 PM features lighter colours, sign that absolute 

variations during lunchtime are lower with respect to the morning and 

evening slots; this could either suggest a less disrupted pattern 

behaviour or, more probably, be a consequence of the fact that, as it is 

not one of the two peak time slots by definition, it reportedly carries 

less traffic flow, so in absolute terms also variations tend to be less 

evident. 

Further validation of estimated OD matrices will be attainable once the obtained 

OD demand is fed to micro simulation software that assigns 15-minute matrices 

back to the road network (the process could be done both statically and 

dynamically) and elaborates network maps displaying estimated flows on each 

segment to be compared with observations. 
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6 Discussion 

Overall, the applied procedure worked, allowing both to make meaningful 

considerations about traffic flow variations over the neighbourhood network and 

to extract reliable OD matrices for each time fraction 𝑘 , but there are some 

limitations that need to be addressed, to highlight the implications on the final 

results. 

First, representativity of sampled data is a fundamental step since the main 

application of the employed procedure is representing real traffic values in order 

to support decision-making on actual scenarios. To faithfully expand sample 

sizes, proved expansion coefficients based on actual coverage of accessible 

sensors should be employed; if not available, it is necessary at least to perform a 

comparison between flow observations extracted from the set as representative 

for the sample and traffic counts covering the total flow in the same counting 

spots and in the same period of the GPS-based sampling process. In any cases, 

the two datasets to be compared need to be a robust estimate of what they 

represent, so that the expansion coefficient calculation returns reliable 

multipliers. Nonetheless, as observations systematically contain a considerable 

number of errors, expansion coefficients will likely amplify such errors. 

Then, assumptions have been made through the procedure in order to smoothen 

the most complicated steps, but this may come at a price in accuracy in the final 

results: 

• the choice of cutting off the set of shortest paths to a determined 

number 𝑘̅ may exclude paths that are significant and actually used by 

the OD pair demand; such approximation redistributes discarded path 

flows on the ones already included in the set, so the final outcome 

could unrealistically concentrate flows in few convenient segments 

according to the assumed cost functions; however, this assumption is 

needed as the listing of all paths for every considered Origin-
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Destination pair is computationally way too demanding and it does 

not benefit from a practical point of view.  

• Under the assumption of a common 𝑘̅  for each OD pair, through 

sensitivity tests it is possible to choose the most suitable value of such 

parameter, balancing the credibility of the assumption related to the 

size of the network under examination (a too large 𝑘̅  can be 

counterproductive and also unrepresentative, given the fact that the 

common user does consider a limited set of paths as alternatives, 

especially at neighbourhood scale) and the determination of the 

mathematical problem, in order to obtain consistent outcomes; it could 

be intelligent to choose an OD-pair-specific 𝑘̅ to select the appropriate 

number of possible paths in relation to effectively convenient 

alternatives for the considered trip. 

• Path Size Logit (PSL) model for the calculation of route choice 

probability only considered experienced travel time as explanatory 

variable, though enriched through the path size factor: other traffic-

related variables can be considered, for instance speed limits imposed 

on segments (with a tight tie with 30 km/h zones question), or presence 

of signalized intersections, which may distort the perception of the 

user on the convenience of the path. 

Extraction of 15-minute OD matrices overall returned reliable input data for 

further implementation of simulation models, whose accuracy have been 

validated through regression parameters. Nevertheless, there are some time 

fractions that recorded low 𝑅2 values in the validation via discarded flows. As 

suggested from evidence in the last section, these weak results in correlation 

must not be imputed to the determinedness of equation systems (as already said, 

the number 𝑚 of equations could not always explain low values for R-squared) 

but they may find an explication in the proposed criterion of selection of link 

traffic counts. As outlined before, the logic was to select segments which could 

give the richest information by containing as much OD pairs as possible while 

being independent from already considered equations, in order to avoid the 

mentioned data dependence issue. The main assumption that led to this proposal 

is that, even though no prior matrix was available, the two fundamental 

assumptions regarding path sets cut-off and route choice probability provided 

information about used paths as if a prior matrix were at hand. However, as the 
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underlying logic is based on assumptions, the correlation between actual paths 

and predicted ones could have been affected by biases, and so could have the 

criterion. 

It is though worth understanding why overall OD flows have fitted also 

discarded link flows after being assigned to the road network but visible 

inaccuracies have been registered in some time fractions. After considering 

goodness-of-fit measures such as Theil’s inequality coefficients and its related 

proportions, which excluded systematic errors as well as ability to reproduce 

variability, and by qualitative assessment of linear regression scatterplots, 

encountered inaccuracies could be explained through the detrimental effect of 

outliers on such statistical validation tools. In particular, due to the high 

fragmentation of the road graph provided by TomTom, which negatively affects 

data inconsistency, if the model assigns an outlying estimation to a road segment, 

in the linear regression the street is represented by a number of fragments which 

emphasize the negative outlying effects. To overcome this problem, a possible 

solution could be the harmonization of the road graph together with segments 

attributes. 

In the end, intrinsic in this method there might be strong biases due to the fact 

that data have been recorded from vehicles equipped with navigation systems. 

The construction of set of paths, as already said, is led once again by the 

assumption of the user choosing among a selection of best paths, fits with the 

ground functioning of navigation systems, as every device informs the user about 

the best paths along with some convenient real-time alternatives together with 

predicted travel times. This assumption, though, clashes with the nature of 

systematic trips, which are not guided by any navigation system, but derive from 

habits of the systematic traveller. This could be a major limitation, because the 

algorithm tends to concentrate flows on best paths, discarding actually used 

segments, and cannot be verified in absence of ground truth data. 
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7 Conclusion and future 

developments 

This work aimed at assessing the effects on private vehicular patterns in the 

neighbourhood of Bolognina, in the city of Bologna, following the 

implementation in March 2022 of a temporary square dedicated to young 

students in via Camillo Procaccini, under the principles of tactical urbanism 

approach. It made use of TomTom Floating Car Data collected over the months 

of September and October 2021 (before the intervention, ex-ante) and 2022 (after 

the intervention, ex-post), consisting of traffic counts, average speed values and 

travel times for each segment of the selected road network over three daily time 

slots and per time fractions of 15 minutes. 

After validating datasets and data clustering through hypothesis tests on 

statistical significance, trend analyses have shown that traffic flows experienced 

a slight global increase within a year, with a corresponding mild increase in 

speed-related values. 

More in detail, for what concerns traffic flows, under the classification of 

segments in accordance to graph distance from the intervention site, streets 

directly interested by the intervention recorded a considerable decrease (-23.9%), 

with adjacent streets and segments suffering a more contained but positive 

increase (+5.70% and +2.41%, respectively). This suggests that the phenomenon 

of traffic evaporation, observed in findings related to more widespread 

implementations of tactical urbanism interventions, did not occur in this 

situation, which exhibited a more impacting traffic flow relocation on alternative 

paths.  

For trend analyses related to speed values, some data-led considerations can be 

made regarding the scheduled extensive application of 30 km/h speed limits in 

the whole neighbourhood: as recorded 85th percentiles of speed values show 
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higher values than the projected speed limit, the planned implementation is not 

backed by widely recognized methodologies. 

On the whole, extraction of OD matrices per 15-minute time fractions through 

data-driven procedures returned reliable results, which have been validated 

through coefficients of determination for regressions between observed and 

estimated link flows, also thanks to the large availability of data discarded from 

the equation system construction due to data dependence. 

Nonetheless, despite the big number of observations, almost every equation 

system adopted to extract matrices resulted, even if slightly, underdetermined: 

this is because many observations were dependent on the others, due to high 

fragmentation of the segments in the network (each one with their own supply 

pattern of traffic-related information), to the grid layout of the road network and 

to the cut-off of the number of possible paths per OD pair. 

Future developments of this work could include:  

• an improvement of the adopted procedure through harmonization of 

the road graph and segments attributes in order to overcome issues 

such as encountered outliers or considerable data inconsistency; 

• microsimulations of the road network exploiting as demand inputs the 

extracted OD matrices, both as further validation of the extracting 

procedure and as a more thorough assessment of the impact the tactical 

urbanism intervention had on the private mobility patterns via 

extraction of traffic-related metrics (queue lengths at intersections, 

Level of Service); 

• vehicular network performance-based evaluation of further 

developments of the design of the temporary school square with the 

already retrieved input data.  
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