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1. Introduction
Drug repurposing is an approach in the medi-
cal field that involves finding new therapeutic
uses for existing drugs. This strategy offers sev-
eral advantages such as speeding up the drug de-
velopment process, reducing toxicity risks, and
lowering costs. A key aspect of drug repurposing
is understanding drug-target interactions, which
are the mechanisms through which drugs exert
their effects on specific targets like proteins or
cells in the body.
Advancements in artificial intelligence (AI) and
machine learning, particularly deep learning,
have greatly enhanced the process of drug re-
purposing. These technologies enable the anal-
ysis of vast amounts of biological and chemi-
cal data, leading to the prediction of new uses
for existing drugs, the identification of drug tar-
gets, and the optimization of drug design. AI’s
predictive models facilitate the efficient screen-
ing of molecules, potentially saving time and
resources in the drug discovery process. Fur-
thermore, these models aid in understanding
complex drug-target interactions, predicting off-
target effects, and assessing drug safety and ef-
ficacy across different patient groups.
Deep learning, specifically, is crucial in analyzing
complex biological data like protein sequences

and ligands such as small molecules. Previous
studies suggested models like DeepLPI [4] that
use deep learning for drug-target interaction pre-
dictions. These technologies are instrumental in
drug repurposing, offering a faster, more efficient
alternative to traditional methods by leveraging
raw data for automatic feature extraction. But
there is still a lot of room for further studies in
this area since it can transform the way to de-
velop new drugs in a really innovative way.
The focus of this study is to predict novel in-
teractions between proteins and ligands. Such
tasks aid in understanding drugs’ mechanism of
action and in the development of personalized
medicine strategies, potentially improving treat-
ment efficacy and reducing side effects. Addi-
tionally, drug repurposing through AI and ma-
chine learning can contribute to cost-effective
healthcare solutions, particularly in the treat-
ment of rare diseases and in combating drug re-
sistance in infectious diseases and cancer.

2. Dataset and Preprocessing
Throughout this thesis, three distinct datasets
were utilized, with BindingDB [1] being the pri-
mary and initial one. BindingDB is a publicly
accessible online database that compiles binding
affinity data, focusing mainly on the interactions
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between proteins, which are potential drug tar-
gets, and small, drug-like molecules.
The information in BindingDB is derived from
a variety of measurement methods such as en-
zyme inhibition, kinetics, isothermal titration
calorimetry, NMR, radioligand assays, and com-
petition assays. This database contains data
gathered from scientific publications, patents,
select PubChem confirmatory BioAssays, and
ChEMBL entries that offer clearly defined pro-
tein targets.
The other two datasets are used for pretrain-
ing data in different models that will be ex-
plained later. These two datasets were used with
the names "Homosapiens Db" and "AllProDb".
These datasets include more protein sequences
in addition to BindingDb.
Proteins are expressed as sequences of 20 amino
acids while ligands are encoded as smiles.

BindingDb HomosapiensDb AllProDb

Total
Proteins

84,840 20,598 79,006

Unique
Proteins

2,483 20,528 75,948

Table 1: Number of Proteins in Datasets

2.1. Affinity and Drug Target Inter-
action

In the context of drug repurposing, "affinity"
refers to the degree to which a drug can bind to a
target, usually a protein, in the body. This con-
cept is central to understanding how drugs inter-
act with biological systems and how they can be
repurposed for new therapeutic uses. This mea-
sures how strongly a drug binds to its target.
A high affinity means the drug binds tightly to
the target, which is often desirable for efficacy.
In drug repurposing, researchers look for drugs
that have a high affinity for new targets, which
might be implicated in different diseases than
the drug was originally developed for.
Measuring Affinity: Techniques like measuring
the equilibrium dissociation constant (Kd) are
used to quantify affinity. In drug repurposing,
comparing the Kd values of a drug for different
targets can provide insights into potential new
uses.

2.2. Data Labeling
In BindingDb a labeling operation had to be
done since they are needed for the classification
task. In the original database, only some mea-
surements about matching proteins and drugs
exist but there is no label such as 1 or 0. In or-
der to do this some options are considered and
in the end Kd value is chosen for the labeling
operation.
Kd value is called the dissociation constant
which is a commonly utilized parameter to elu-
cidate the degree of attachment between a lig-
and and its receptor. Essentially, Kd serves as a
quantification of binding affinity, signifying how
strongly a ligand attaches to a receptor. The in-
teraction between a ligand and receptor can be
symbolized as L + R LR, and the Kd value is
computed as

Kd =
([L][R])

[LR]
(1)

The Kd value is instrumental in comprehend-
ing the affinity between proteins and drugs.
However, due to its continuous nature at the
nanometer scale, it cannot be directly employed
as a label for classification purposes. To address
this, another value must be computed, which in-
volves converting the Kd value into a logarithmic
scale. As suggested in previous studies [2] pKd
value was calculated. Which is the result of the
transformation the Kd value into log space as

pKd = − log10
(Kd

1e9

)
(2)

The labeling process is carried out based on the
pKd value, with 7 sets as the cutoff point. If the
pKd value is 7 or higher, the input is labeled as
1, indicating a match between the protein and
drug, while values below 7 are labeled as 0.

3. Feature Representations
3.1. Drug Representation
Since in the BindingDb dataset proteins and
drugs are represented in different ways. For
drugs a method called SMILES is used.
SMILES, which stands for Simplified Molecular
Input Line Entry System, is a widely used no-
tation for representing chemical structures, in-
cluding those of drug molecules. It is a textual
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representation that encodes the structural infor-
mation of a molecule in a concise and human-
readable format. In a SMILES notation, atoms
and bonds are represented using specific charac-
ters and symbols.
SMILES notation allows chemists and re-
searchers to easily communicate and store chem-
ical structures in a compact and standardized
format. It is commonly used in cheminformatics,
drug discovery, and computational chemistry for
tasks such as database storage, structure search-
ing, and predictive modeling of molecular prop-
erties.
When it is shown in SMILES notation it be-
comes:

CC(= O)OC1 = CC = CC = C1C(= O)O

(3)
As previously noted this representation consists
of characters and symbols. What is needed
for a Machine Learning model is a number.
So a transformation of this representation was
needed. For this transformation labeling each
character or symbol with a number is chosen.
For example Carbon ’C’ corresponds to 4 and
Oxygen ’O’ to 15. After this normalization
is applied to these values. For the normaliza-
tion, Min-Max scaling is chosen to scale values
in a range between 1 and 0. Without normal-
ization, the coefficients of features with larger
scales might have not provided meaningful in-
sights into their actual impact on the model’s
output. In order to test this both possibili-
ties were used in experiments and improvements
were seen after the normalization operation. In
order to decide the proper length of the SMILES
vectors, related statistics were used and different
values between 100 and 300 were tried in differ-
ent experiments.

3.2. Protein Representation
Chemically, proteins are essentially long chains
composed of 20 primary amino acids. Their
chemical properties hinge on the sequence of
these amino acids. Protein sequences can vary
greatly in length, from a few tens to several
thousands of amino acids, with the more typ-
ical lengths being in the hundreds. The ex-
traordinary diversity in protein functions stems
from the countless combinations of amino acid
sequences. For example, there are roughly 10260

potential proteins that are 200 amino acids long,

a number far exceeding the estimated 1080 atoms
in the observable universe. This highlights that
only a minuscule fraction of all possible proteins
may ever exist or have existed on Earth.
In the databases referenced in this thesis, pro-
tein sequences were denoted with a single let-
ter for each amino acid. Similar methods were
used previously in other studies [3]. A simi-
lar method was used to convert this representa-
tion into a numerical format. Each amino acid
was assigned a number, which was then normal-
ized to a range between 0 and 1 using Min-Max
scaling. Further research led to the use of a
Word2Vec approach which includes the calcula-
tion of a three-dimensional vector for each amino
acid. For instance, the vector for the amino acid
alanine (abbreviated as ’A’) was determined to
be [0.6454009, 0.4708575, 0.37278453].
Calculating different statistics such as median
and average informed the decision on the length
of the protein vectors used in the models. De-
pending on the model, protein lengths varied be-
tween 100 and 300 amino acids. This decision
was based on the statistics provided and the re-
sults of various experiments conducted.

4. Experiments
Throughout this study, different deep learn-
ing models were tried and compared with each
other. The first method that was tried was sim-
ple Neural Networks. Since in this study starting
point is text data and the sequence of the input
is important, it has been thought that LSTMs
can be useful. For this purpose simple LSTM
models, LSTM models with attention mecha-
nisms were tested. Along with these models in
order to help the model to extract information
from the features better models with pretrain-
ing are created. The architecture chosen for
this was Autoencoders. After experiments with
both standard Autoencoders and LSTM autoen-
coders, it was seen that LSTM Autoencoders
were the best models for this drug repurposing
task.
First LSTM Autoencoders were tested with only
BindingDb and then other dataset including
more proteins were added in the pretraining
phase and the results were compared. In this
LSTM Autoencoder model along with Bind-
ingDb for drug-target interaction, more data in-
cluding different proteins were used for pretrain-

3



Executive summary Ismail Fatih Gonen

ing.
In the table 1 configuration of the best perform-
ing LSTM Autoencoder model can be seen.

Feature/Model Autoencoder2 Autoencoder1 Combined Model
Input Features 300 100 100 & 300
Encoder LSTM Layers
Number of Layers 2 2 2 each (total 4)
Neurons (per Layer) 128, 64 64, 32 64, 32 & 128, 64
Decoder LSTM Layer
Neurons 300 100 N/A
Dense Layers
Neurons N/A N/A 96

Table 2: Configuration of the LSTM Autoen-
coder model

The results of these experiments will take place
in the next section.

5. Results
The results that have been acquired from the
experiments are given in Table 1.

Model Accuracy Precision Recall F1 Score

Feedforward Neural Network 88.94 95.51 87.02 91.06

Simple LSTM 84.30 92.45 84.16 88.18

LSTM and Attention Mechanism 90.3 87,15 94,28 90.57

Autoencoders BindingDb 88.27 95.39 87.98 91.53

Autoencoders HomosapiensDb 88.84 95.42 86.7 90.85

Autoencoders AllProDb 87.32 86 89.16 87.55

LSTM Autoencoders BindingDb 90.60 88.39 93.48 90.86

LSTM Autoencoders HomosapiensDb 91.61 88.56 95.56 91.92

LSTM Autoencoders AllProDb 91.62 88.25 96.04 91.98

Random Predictor with Bias 58.1

Table 3: Results of each model

Overall, the best-performing models are LSTM
Autoencoders. Autoencoder models follow them
in this. Particularly those with pretraining and
Homosapiens data. These models exhibit a good
balance between accuracy, precision, recall, and
F1 score, indicating robust and reliable perfor-
mance.
Random Predictor with Bias is the baseline
model for comparison. It was created by gener-
ating random values while giving bias to popular
values in order to measure the effect of imbal-
ance in the dataset. Its low accuracy (58,1%)
shows it’s not a good predictive model, as ex-
pected. This shows that other models that have
been used do not just depend on the bias of
the dataset. Feedforward Neural Network was
the first deep learning method that has been

used. Even this simple neural network model
shows some promising values. The model has
high precision (95,51%) and a good F1 score
(91.06%), indicating effective identification of
true positives. To analyze the other values from
the results table: LSTM Models: These models
(Long Short-Term Memory) vary in configura-
tion and performance. LSTM with Attention
Layer resulted in being the best among them,
with the highest accuracy (90,3%) and a bal-
anced F1 score (90.57%). These LSTM models
with Attention mechanisms perform a little bit
higher compared to the simple Neural Networks.
Autoencoder Models: These models are used for
learning efficient data codings in an unsuper-
vised manner. The "Autoencoders Pretraining
with BindingDb" shows the Autoencoder model
with only BindingDb as the dataset. And "Au-
toencoder with Homosapiens data" shows the
model with additional proteins for pretraining.
The second one has high accuracy and F1 scores,
indicating robust performance.
LSTM autoencoder variant shows even higher
performance metrics with an accuracy of
91.62%, precision at 88.25%, and an exceptional
recall of 96.04%. The F1 score is significantly
high at 96.37. This suggests that this model
is not only accurate overall but is particularly
strong in identifying true positive cases (as in-
dicated by the high recall). Its F1 score sug-
gests an excellent balance between precision and
recall, making it potentially the most effective
model in the table.
In Table 3 additional metrics for the top-
performing models were given. These were AUC
and Matthews Correlation(MCC) values. The
Matthews correlation coefficient is an indicator
of the effectiveness of binary and multiclass clas-
sifications. It considers both true and false posi-
tives and negatives, making it a balanced metric
suitable for classes of varying sizes. This MCC is
a correlation coefficient ranging from -1 to +1.
A value of +1 indicates a flawless prediction,
0 signifies a prediction no better than random,
and -1 denotes a completely inverse prediction.
This statistic can also be referred to as the phi
coefficient.
The AUC metric is calculated using the area un-
der the ROC curve. It is a single number giving
the summary of how well the model discrimi-
nates between the two classes (positive and neg-
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ative). The value of AUC ranges from 0 to 1.
Closer to 1 meaning the model discriminates well
between classes.
These AUC and MCC metrics show correlating
results with previous metrics, which is an

Model AUC Matthews Correlation
Autoencoders with AllProDb 94.47 74.56
LSTM Autoencoders BindingDb 96.51 82.78
LSTM Autoencoders HomosapiensDb 96.5 83.32
LSTM Autoencoders AllProDb 96.37 83.42

Table 4: AUC and Matthews Correlation for
Top Models

In summary, the LSTM Autoencoder models,
particularly the "LSTM Autoencoders with All-
proDb," demonstrate outstanding performance
across all metrics. The high recall rates are espe-
cially notable, indicating these models are very
effective in identifying positive cases, which is
often a critical aspect in many machine learn-
ing applications. As a result, it was seen that
using more data on proteins for the purpose of
pretraining helps to achieve better results. Es-
pecially when the Autoencoder architecture is
combined with LSTMs.

6. Conclusions and Future
Work

The transformative potential of machine learn-
ing (ML) in revolutionizing drug repurposing
has been delved into here, particularly through
the identification of promising candidates for
repurposing. This study meticulously evalu-
ates a range of ML models for drug repurpos-
ing and unveils LSTM Autoencoder models as
the frontrunners, particularly when configured
with many additional protein data for pretrain-
ing. These models showcase exceptional pre-
dictive accuracy and reliability, as corroborated
by their high AUC values, robust MCC scores,
and balanced performance across accuracy, pre-
cision, recall, and F1 scores. These compelling
findings suggest that LSTM Autoencoder mod-
els could significantly accelerate the drug devel-
opment process, paving the way for quicker and
more cost-effective therapeutic solutions.
Future research might focus on further optimiz-
ing these models, expanding their applicability
to a broader spectrum of datasets, and integrat-
ing them seamlessly into a holistic drug discov-
ery framework. Here it was seen that using more

data for the purpose of pretraining with Au-
toencoder models improves the performance, so
this is something to consider in future studies.
Adding more pretraining data for the molecules
can be helpful. Additionally, enhancing model
interpretability to gain a nuanced understand-
ing of the rationale behind predictions could fos-
ter trust and provide valuable insights for re-
searchers and clinicians. Furthermore, integrat-
ing these models into existing drug discovery
pipelines could empower pharmaceutical compa-
nies with powerful tools to identify repurposing
candidates more efficiently. Fostering collabora-
tive efforts with experts in bioinformatics, phar-
macology, and clinical sciences could pave the
way for more holistic and interdisciplinary ap-
proaches to drug repurposing.
In conclusion, this research unequivocally
demonstrates the immense potential of ML in
revolutionizing drug repurposing through ac-
curate and reliable drug classification. These
promising results lay the foundation for more ef-
ficient, cost-effective, and innovative approaches
to therapeutic discovery, underscoring the piv-
otal role of ML in shaping the future of pharma-
ceutical research and development.

References
[1] Binding Database. Bindingdb. https://

www.bindingdb.org, 2023.

[2] T He, M Heidemeyer, F Ban, A Cherkasov,
and M Ester. Simboost: a read-across ap-
proach for predicting drug-target binding
affinities using gradient boosting machines.
Journal of Cheminformatics, 9(1):24, 2017.

[3] Jackson Souza, Marcelo Fernandes, and
Raquel De Melo Barbosa. A novel deep neu-
ral network technique for drug–target inter-
action. Pharmaceutics, 14:625, 03 2022.

[4] B Wei, Y Zhang, and X Gong. Deeplpi:
a novel deep learning-based model for pro-
tein–ligand interaction prediction for drug
repurposing. Scientific Reports, 12:18200,
2022.

5

https://www.bindingdb.org
https://www.bindingdb.org

	Introduction
	Dataset and Preprocessing
	Affinity and Drug Target Interaction
	Data Labeling

	Feature Representations
	Drug Representation
	Protein Representation

	Experiments
	Results
	Conclusions and Future Work

