
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Anno Accademico 2020 / 2021

SELF-DRIVING CARS AND OPENPILOT: A COMPLETE

OVERVIEW OF THE FRAMEWORK

Relatore: Prof. Luciano BARESI

Correlatore: Dott. Damian Andrew TAMBURRI

Tesi di Laurea di:

Francesco FONTANA

Matr. 919901

 i

Ringraziamenti

A conclusione di questo lavoro di tesi, è doveroso porre un sincero ringraziamento a tutti

coloro che, in momenti diversi e in vari modi, hanno prestato il loro aiuto e la loro assistenza

nella realizzazione di questo lavoro.

Desidero innanzitutto ringraziare il professor Luciano Baresi, relatore di questa tesi, per la

disponibilità e la cortesia dimostrata e per il supporto fornito durante la stesura. Un grazie

va anche al dottor Damian Tamburri, per il tempo concessomi e per il gran sostegno allo

sviluppo delle tesi esposte in questo lavoro.

Un ringraziamento va ai miei amici e colleghi che, in un modo o nell’altro, hanno condiviso

con me tutti questi anni di gioie e sacrifici. In particolare, ringrazio Vincenzo, Filippo e

Francesco, amici da una vita con i quali ho condiviso tempo, passioni ed esperienze.

Un sincero ringraziamento va poi a Danila, la mia più cara amica, che mi ha sempre

supportato nei momenti difficili.

Ringrazio poi tutti i miei zii, punti di appoggio sui quali ho sempre potuto contare e sempre

disposti ad aiutarmi in questa mia avventura da fuorisede.

Il più grande ringraziamento va ovviamente alla mia famiglia, a mia madre e mio padre, per

l’amore incondizionato che mi hanno sempre dimostrato in qualsiasi situazione, per tutto il

sostegno datomi in questi anni e i relativi sforzi e sacrifici, fatti senza mai pensarci due volte,

ma soprattutto per non aver mai smesso di credere in me.

 ii

Abstract (IT)

Openpilot è un vasto progetto opensource, con più di 230 contributori e 50.000 righe di

codice. La documentazione disponibile fornisce alcuni spunti su cosa è in grado di fare

Openpilot, come installarlo e come le persone possono contribuire al suo sviluppo, mentre

il team di sviluppo pubblica periodicamente aggiornamenti sul blog aziendale [1],

informando i lettori sullo stato del progetto e sull'implementazione di nuove caratteristiche.

Queste informazioni, che potrebbero essere sufficienti per un utente che vuole solo utilizzare

Openpilot e, di tanto in tanto, ricevere aggiornamenti sulle modifiche che verranno apportate

nelle versioni future, potrebbe essere insufficienti per uno sviluppatore che vuole contribuire

e non sa da dove cominciare. Sul blog sono presenti informazioni generali su cosa sono i

diversi componenti del software e come interagiscono tra loro, ma non è disponibile

documentazione tecnica.

La community di Openpilot è molto attiva e spesso proprio dalla community arrivano le

risposte alle domande tecniche degli sviluppatori, che tuttavia possono non essere sempre

affidabili.

Lo scopo di questo studio è analizzare Openpilot, decodificare il suo codice sorgente per

capire come è strutturato il software, come i diversi componenti interagiscono e scambiano

informazioni e quali sono gli aspetti teorici alla base di alcuni concetti chiave del software.

L'analisi verterà su:

• Le dipendenze che caratterizzano il progetto e come Openpilot sfrutta le sue librerie.

• Come sono stati testati i diversi componenti del software.

• Come si è evoluto il software.

• Come è stato organizzato il lavoro e come l'open sourcing ha contribuito allo sviluppo.

Lo scopo dell'analisi dei contributi è identificare i contributori chiave e quali funzionalità

sono state introdotte nel corso dello sviluppo. Il punto di partenza è la cronologia dei

cambiamenti presenti su GitHub per ogni modulo del software, che verrà poi filtrata e

raggruppata per identificare i contributi chiave.

Per comprendere meglio come vengono perseguiti gli obiettivi di test di Openpilot, per ogni

modulo verranno analizzati i test inclusi e le GitHub Action che vengono eseguite dopo ogni

commit, per avere un quadro più chiaro di quali sono gli aspetti critici da monitorare per

ogni repository.

La versione del progetto considerata per questa analisi sarà la versione 0.8.7, rilasciata il

01/07/2021.

Parole chiave: open source; guida autonoma; intelligenza artificiale; machine learning;

analisi del software; test del software; qualità del software; contributi della community;

 iii

Abstract (EN)

Openpilot is a vast open-source project, with more than 230 contributors and 50.000 lines of

code. The documentation available gives some insights on what Openpilot is capable of

doing, how to install it and how people can contribute to it, while the development team

posts periodically update on the company’s blog [1] on the state of the project and

implementation of new features.

This information, which could be enough for a user that only wants to use Openpilot and,

from time to time, receive updates on the changes that will be made in future releases, could

be insufficient for a developer that wants to contribute and doesn’t know where to start. On

the blog are present general information on what the different components of the software

are and how they interact, but no technical documentation is available.

The community of Openpilot is very active and often from the community come the answers

to the technical questions of the developers, but community members cannot be always

reliable and give answers that are the results of their interpretation of the code.

This study aims to analyze the Openpilot, reverse engineering its codebase to understand

how the software is structured, how the different components interact and exchange

messages, and what are what is the theory behind some of the key aspects of the software.

The analysis will focus on:

• The dependencies that characterize the project and how Openpilot leverages its libraries.

• How the different components of the software have been tested.

• How each component of the software evolved.

• How the work was organized and how open sourcing contributed to the development.

The analysis of the contributions aims to identify the key contributors and what

functionalities were introduced during the different releases. The starting point is the history

of the Git commits of each package of the repository, which will then be filtered and grouped

to identify the key contributions.

To better understand how the Openpilot testing goals are pursued, for each directory will be

analyzed the tests that are included and the GitHub Actions that are executed after each

commit, to have a clearer picture of what are the most critical aspects to monitor for each

repository.

The project’s version considered for this analysis will be version 0.8.7, released on

01/07/2021.

Keywords: open source; self-driving; artificial intelligence; machine learning; software

analysis; software testing; software quality; community contributions;

Index I

Summary

1 Introduction .. 1

2 The Openpilot framework .. 2

 What is Openpilot? ... 2

 Structure of Openpilot and management of the workflow...................................... 3

 Solution’s architecture description ... 6

 Research design .. 9

3 Openpilot’s submodules: their purpose, the development process, and the community

contributions .. 10

 Cereal .. 10

 Package structure ... 10

 Implementation .. 11

3.1.2.1 Messaging... 13

3.1.2.2 VisionIPC ... 16

 Usage ... 18

3.1.3.1 Messaging - usage .. 19

3.1.3.2 VisionIPC - usage... 21

 Testing ... 23

 Development and community contribution ... 25

 Common .. 32

 Package structure ... 32

 Implementation .. 33

3.2.2.1 API ... 34

3.2.2.2 Kalman ... 35

3.2.2.3 Transformation ... 37

 Usage ... 39

3.2.3.1 Api - usage ... 40

3.2.3.2 Kalman - usage ... 41

Index II

3.2.3.3 Transformations - usage ... 42

 Testing ... 44

 Development and community contribution ... 46

 Laika ... 55

 Package structure ... 57

 Implementation .. 58

 Usage ... 62

 Testing ... 67

 Development and community contribution ... 70

 OpenDBC .. 77

 Package structure ... 77

 Implementation .. 77

 Usage ... 88

 Testing ... 91

 Development and community contributions.. 92

 Panda ... 100

 Package structure ... 102

 Implementation .. 102

 Usage ... 111

 Testing ... 113

 Development and community contribution ... 123

 Rednose ... 129

 Package structure ... 129

 Implementation .. 130

 Usage ... 134

 Testing ... 136

 Development and community contributions.. 138

4 Self-driving cars: an overview of the Openpilot framework and its quality assessment

 139

 Package structure .. 139

 Implementation ... 143

 AthenaD ... 143

Index III

 BoardD/PandaD ... 145

 CameraD .. 147

 ControlsD .. 150

 PlannerD .. 155

 RadarD ... 159

 CalibrationD .. 161

 LocationD .. 164

 UbloxD .. 166

 ModelD .. 168

 DMonitoringModelD ... 175

 DMonitoringD ... 178

 LoggerD ... 180

 Testing .. 183

 Development and community contributions ... 197

5 Conclusions and future work ... 209

6 References .. 210

7 Appendixes ... 215

Index IV

List of Figures

Figure 1 - Flowchart diagram of the development process of Openpilot, supported by GitHub

CI ... 3

Figure 2 - Motivation view of this thesis, showing the key stakeholders and the goals that

this thesis wants to reach ... 6

Figure 3 - BPMN diagram showing the process of making new changes to the software,

leveraging the artifacts of this thesis ... 7

Figure 4 - BPMN diagram showing the process of retrieving information related to the

technologies used in self-driving cars, looking at the details of the technologies implemented

by Openpilot .. 8

Figure 5 - Packages included in cereal main directory .. 10

Figure 6 - Messaging class diagram, showing the links between the PubSocket and

SubSocket and the integration with the PubMaster and SubMaster components 13

Figure 7 - PubSub design pattern .. 15

Figure 8 - visionipc class diagram, with the VisionIPC server having a PubSocket for each

type of VisionBuf and the VisionIPC client able to subscribe only to a type of VisionBuf at

a time (for a maximum of 128 buffers of the same type) .. 16

Figure 9 - Import dependencies between selfdrive and cereal .. 18

Figure 10 - Import dependencies between selfdrive and cereal/messaging 19

Figure 11 - Import dependencies between selfdrive and cereal/visionipc........................... 21

Figure 12 - Package diagram of the common directory .. 32

Figure 13 - Import dependencies between selfdrive and common 39

Figure 14 - Import dependencies between selfdrive and common/api 40

Figure 15 - Import dependencies between selfdrive and common/kalman 41

Figure 16 - Import dependencies between selfdrive and common/transformations 42

Figure 17 - Comparison between the cropped frame and the full-frame acquired by the

device's camera .. 47

Figure 18 - Visualization of GLONASS and GPS orbits .. 56

Figure 19 - Receiver on Earth and the estimation of the position in space of multiple satellites

 ... 56

Figure 20 - Predictions of the Carrier Phase (CP) made by AstroDog................................ 57

Index V

Figure 21 - Package diagram of Laika... 57

Figure 22 - Import dependencies between selfdrive and laika .. 62

Figure 23 - get_ionex() activity diagram showing download, elaboration, and caching of

IONEX files ... 64

Figure 24 - get_nav() activity diagram showing download, elaboration, and caching of NAV

files .. 65

Figure 25 - get_orbit() activity diagram showing download, elaboration, and caching of

ORBIT files ... 66

Figure 26 - Comparison of the measurements acquired with Laika and U-Blox. Laika shows

a much higher concentration of data around 0 meters of altitude error 70

Figure 27 - Opendbc package diagram .. 77

Figure 28 - DBC class diagram. Each part of a DBC file has its implementation (Msg, Signal,

Val). ... 79

Figure 29 - CANPacker class diagram. The component construct a message starting from a

series of values. ... 81

Figure 30 - CANParser class diagram. The component parses the received message through

the MessageState component... 84

Figure 31 - Import dependencies between selfdrive and opendbc 88

Figure 32 - Comparison between the precision of ZSS and that of the standard sensor 97

Figure 33 - The White Panda ... 100

Figure 34 - The Grey Panda with its external GPS antenna .. 100

Figure 35 - The Black Panda ... 101

Figure 36 - The Red Panda .. 101

Figure 37 - Panda package diagram .. 102

Figure 38 - Panda class diagram. The handle attribute can be a either USB handle (standard

from usblib) or a custom Wi-Fi handle, according to the connection method. 108

Figure 39 - Import dependencies between selfdrive and panda .. 111

Figure 40 - Rednose package diagram .. 129

Figure 41 - EKFSym class diagram. EKFSym leverages the Extended Kalman Filter EKF

that is generated according to the selected measurement model and provides the prediction

and update methods. .. 130

Figure 42 - Import dependencies between selfdrive and rednose 134

Figure 43 - Kinamatic EKF simulation plot .. 137

Figure 44 - Openpilot package diagram .. 140

Figure 45 - Dependencies of the selfdrive packages ... 140

Figure 46 - Openpilot deployment diagram .. 141

Index VI

Figure 47 - processes taxonomy, organized by type and objective of the process 142

Figure 48 - Sequence diagram of the initialization of Openpilot. ManagerD daemon takes

care of managing the choreography of processes that run during the execution of the

software. .. 143

Figure 49 - Panda and Pigeon class diagram ... 146

Figure 50 - camerad class diagram. The two cameras only differ for the way they handle the

processor instructions calls. ... 147

Figure 51 - camerad activity diagram .. 148

Figure 52 - camerad data flow diagram ... 149

Figure 53 - controlsd inbound data flow diagram ... 151

Figure 54 - controlsd activity diagram .. 152

Figure 55 - CarInterface class diagram. The CarInterface leverages the CANParser

component to elaborate the received messages. .. 153

Figure 56 - controlsd outbound data flow diagram ... 154

Figure 57 - lane change statechart diagram ... 155

Figure 58 - LateralPlanner class diagram .. 156

Figure 59 - LongitudinalPlanner class diagram ... 157

Figure 60 - plannerd data flow diagram .. 158

Figure 61 - RadarD class diagram ... 159

Figure 62 - RadarInterface class diagram .. 159

Figure 63 - RadarData message packet specifications .. 159

Figure 64 - radard data flow diagram .. 160

Figure 65 - calibrationd data flow diagram ... 163

Figure 66 - locationd class diagram. The EKFSym component from Rednose library helps

smoothing the acquired data. ... 164

Figure 67 - locationd data flow diagram ... 165

Figure 68 - UbloxMsgParser class... 166

Figure 69 - ubloxd data flow diagram ... 167

Figure 70 - modeld class diagram. RunModel component can use SNPEModel component,

that leverages only the Snapdragon processor capabilities, or use the caching system

provided by Thneed. .. 168

Figure 71 - supercombo model input ... 172

Figure 72 - supercombo model output ... 172

Figure 73 - Desire message specifications .. 173

Figure 74 - modeld data flow diagram .. 174

Index VII

Figure 75 - dmonitoringd class diagram. Similarly to the path prediction model, also here

there is the possibility for RunModel to use SNPEModel only or Thneed. 175

Figure 76 - monitoring_model_q input ... 176

Figure 77 - monitoring_model_q output ... 176

Figure 78 - dmonitoringmodeld data flow diagram .. 177

Figure 79 - DriverStatus class diagram ... 178

Figure 80 - DMonitoringD data flow diagram .. 179

Figure 81 - LoggerdState class diagram .. 180

Figure 82 - VideoEncoder class diagram .. 181

Figure 83 - selfdrive data flow diagram .. 182

Figure 84 - Speed variation for different targets of cruise speeds 185

Figure 85 - Acceleration variation for reaching the target cruise speed 185

Figure 86 - Following distance at different lead speeds .. 186

Figure 87 - Steer ratios of two consecutive commits .. 194

Figure 88 – Difference of steer ratio in two consecutive commits 194

Figure 89 - Messages delays obtained through HIL testing, shown during COMMA_CON

 ... 195

Figure 90 - Comparison between a healthy boardd and a lagging one, from COMMA_CON

 ... 195

Figure 91 - Results of the study conducted by Consumer Report 196

Figure 92 - The Comma One ... 197

Figure 93 - EON dashcam DevKit .. 198

Figure 94 - The Comma Two device ... 199

Figure 95 - Diagram of the warp-simulator ... 200

Figure 96 - The Comma Three device ... 201

Figure 97 - output of the analysis of the contribution of Adeeb Shihadeh 205

Figure 98 - Openpilot's software entropy .. 206

Figure 99 - Total contribution made by the most active users .. 208

Index VIII

List of Tables

Table 1 - Lines of code of cereal, by programming language ... 11

Table 2 - TestPubSubSockets test case.. 23

Table 3 - TestMessaging test case ... 23

Table 4 - TestPoller test case ... 23

Table 5 - TestSubMaster test case ... 24

Table 6 - TestPubMaster test case ... 24

Table 7 - TestServices test case ... 24

Table 8 - Lines of code for the Common, by programming language 32

Table 9 - TestFileHelpers unit test .. 44

Table 10 - InterpTest unit test ... 44

Table 11 - TestParams test case ... 44

Table 12 - TestParams (xattr) test case .. 45

Table 13 - TestSimpleKalman test case .. 45

Table 14 - TestNED test case .. 45

Table 15 - TestOrientation test case .. 45

Table 16 - Lines of code of the Laika, by programming language 57

Table 17 - AstroDog class ... 58

Table 18 - TestDOP Test Case .. 67

Table 19 - TestAstroDog Test Case .. 67

Table 20 - TestFailCache Test Case .. 67

Table 21 - TestFetchSatInfo Test Case.. 68

Table 22 - TestPositioning Test Case .. 68

Table 23 - TestConstellationPRN Test Case ... 68

Table 24 - TestTime Test Case .. 69

Table 25 - TestTimeRangeHolder Test Case .. 69

Table 26 - Packages included in opendbc main directory ... 77

Table 27 - TestCanParserPackerExceptions test case ... 91

Index IX

Table 28 - TestCANDefine test case ... 91

Table 29 - TestCanParserPacker test case ... 91

Table 30 - Packages included in Panda main directory ... 102

Table 31 - Common Test Cases ... 114

Table 32 - TestChryslerSafety ... 115

Table 33 - TestGmSafety Test Case .. 115

Table 34 - Honda Test Cases ... 116

Table 35 - Hyundai Test Cases .. 117

Table 36 - TestMazdaSafety Test Case ... 117

Table 37 - TestNissanSafety Test Case ... 118

Table 38 - TestSubaruLegacySafety Test Case ... 118

Table 39 - TestSubaruSafety Test Case ... 119

Table 40 - TestTeslaSafety Test Case ... 119

Table 41 - TestToyotaSatety Test Case ... 120

Table 42 - TestVolkswagenMqbSafety Test Case .. 120

Table 43 - TestVolkswagenPqSafety Test Case .. 121

Table 44 - Lines of code of Rednose, by programming language 129

Table 45 - TestCompare test case .. 136

Table 46 - TestKinematic Test Case.. 137

Table 47 - Lines of code of selfdrive, by programming language 139

Table 48 - TestValgrind test case .. 183

Table 49 – TestBoarddApiMethods .. 184

Table 50 - TestAlerts test case ... 184

Table 51 - TestClustering test case .. 184

Table 52 - TestCruiseSpeed test case .. 184

Table 53 - TestFollowingDistance test case .. 186

Table 54 - TestLateralMpc test case .. 186

Table 55 - TestStartup test case ... 187

Table 56 - TestMonitoring test case .. 187

Table 57 - TestUploader test case.. 188

Table 58 - TestDeleter test case ... 189

Table 59 - TestEncoder test case ... 189

Index X

Table 60 - TestLoggerd test case ... 190

Table 61 - TestCalibrationd test case .. 190

Table 62 - TestLocationdLib test case ... 190

Table 63 - TestLocationdProc test case ... 191

Table 64 - TestAthenadMethods test case ... 191

Table 65 - TestRegistration test case ... 192

Table 66 - TestPowerMonitoring test case .. 192

Table 67 - TestCarModel test case .. 193

Table 68 - Statistics of the main contributors .. 207

Table 69 - Averages and standard deviations of the selected statistics 207

Table 70 - Normalized statistics for each contributor ... 208

Table 71 - Discord server's channels description .. 219

Table 72 - Commits adding new parameters to capnp files in cereal 226

Table 73 - Contributions to the DBC files of Acura cars .. 226

Table 74 - Contributions to the DBC files of BMW cars .. 226

Table 75 - Contributions to the DBC files of Chrysler cars .. 227

Table 76 - Contributions to the DBC files of Ford cars .. 228

Table 77 - Contributions to the DBC files of GM cars ... 229

Table 78 - Contributions to the DBC files of Chevrolet cars .. 229

Table 79 - Contributions to the DBC files of Cadillac cars .. 229

Table 80 - Contributions to the DBC files of Honda cars ... 232

Table 81 - Contributions to the DBC files of Hyundai cars .. 233

Table 82 - Contributions to the DBC files of Luxgen cars .. 233

Table 83 - Contributions to the DBC files of Mazda cars ... 234

Table 84 - Contributions to the DBC files of Mercedes cars .. 234

Table 85 - Contributions to the DBC files of Nissan cars ... 234

Table 86 - Contributions to the DBC files of Subaru cars... 236

Table 87 - Contributions to the DBC files of Tesla cars ... 236

Table 88 - Contributions to the DBC files of Toyota cars... 240

Table 89 - Contributions to the DBC files of Lexus cars .. 240

Table 90 - Contributions to the DBC files of Volvo cars .. 241

Table 91 - Contributions to the DBC files of Volkswagen car ... 241

Chapter 1 1

1 Introduction

The rapid development of the Internet economy and Artificial Intelligence (AI) has

promoted the progress of self-driving cars. The offer of many car manufacturers, such as

Tesla, focuses on delivering cars capable of autonomously deciding what is the safest path

to follow and detecting possible danger coming from the road using a wide range of sensors.

Unlike what many would think, self-driving a car is not a hardware problem, instead is

almost completely related to software. Modern cars are built in such a way that all the

relevant information about the status of the car is exchanged over standardized channels, that

if accessed allow controlling the car. Many cars that support, to some extent, automated drive

use a set of sensors that can be reduced to cameras and radars, which allows the car to be

aware of its surroundings. These data are then elaborated and through AI and machine

learning.

Machine learning has two learning models: supervised and unsupervised. With unsupervised

learning, a machine learning algorithm receives unlabeled data and no instructions on how

to process it, so it has to figure out what to do on its own.

With the supervised model, an algorithm is fed instructions on how to interpret the input

data. This is the preferred approach to learning for self-driving cars. It allows the algorithm

to evaluate training data based on a fully labeled dataset, making supervised learning more

useful where classification is concerned.

These machine learning algorithms, in the end, allow a car to collect data on its surroundings

from cameras and other sensors, interpret it, and decide what actions to take. Machine

learning even allows cars to learn how to perform these tasks as good as (or even better than)

humans. This leads to the reasonable conclusion that machine learning algorithms and

autonomous vehicles are the future of transportation. [2]

The approach of many car manufacturers is that of developing their machine learning

algorithm and providing their cars with a precise set of sensors. However, in a trial to

democratize self-driving cars and make them available to everyone, Comma.ai with

Openpilot, the object of this analysis, offers a single device, able to bring the power of a

machine learning algorithm trained on thousands of hours of drive in any compatible car. In

the following pages, it will be analyzed how this is made possible and what are the limitation

that comes with an open-source software, trying to provide a complete overview of all of its

components.

Chapter 2 2

2 The Openpilot framework

 What is Openpilot?

Comma.ai is an AI startup founded by George Hotz (@geohot) in September 2015. The

mission of the company is to “solve self-driving cars while delivering shippable

intermediaries”.

To achieve this mission, in 2016 Comma.ai launched Openpilot, an open-source, semi-

automated driving system. It is a comprehensive system of driver assistance features

supporting a wide range of car models. Today, Comma.ai sold more than 7.000 devices and

has more than 3500 active users.

The Society of Automotive Engineers (SAE) defines 6 levels of driving automation ranging

from 0 (fully manual) to 5 (fully autonomous). These levels have been adopted by the U.S.

Department of Transportation.

Openpilot allows reaching a level 2 driving automation level, meaning that the vehicle on

which the device is installed can control both steering and accelerating/decelerating. At a

level 2 automation, the human still monitors all the tasks and can take control at any time.

It is substantially different from other automated driving systems since it can be installed by

anyone that buys the Comma Two or Comma Three development kit available in their

online shop and flashes the Openpilot software available on the public GitHub repository.

Openpilot offers many functionalities based on machine learning and computer vision,

including:

• Automated lane-centering

• Adaptive cruise control

• Driver monitoring

• Assisted lane change

The user base grew from less than 275 users per week in the second half of 2018 to more

than 2.750 users per week at the end of 2020, and so did the number of developers who

contributed to the project, now more than 200.

In 2018, Comma.ai also published their proprietary development tools on Openpilot’s main

repository, to help all developers willing to contribute to developing and testing the software

with the same tools used internally by Comma.ai.

Chapter 2 3

 Structure of Openpilot and management of the workflow

The Openpilot repository is available at https://github.com/commaai/Openpilot.git, it counts

more than 5.000 forks and is starred by more than 25.000 users. Developers that want to

contribute to the project push their changes on the master branch, which is stripped and

minified by CI (GitLab Continuous Integration) and pushed to master-ci automatically if

the tests pass. When the version on the master branch is ready to be published on the release

branch, master-ci is pushed to devel-staging, opening a pull request into devel. This pull

request will be the spot for comments on the new release, and hotfixes at this point will be

cherry-picked from master into devel-staging. devel is built by CI and pushes the built

versions to release-staging and dashcam-staging signed with the official comma release

key. After the -staging branches are tested by the community for a few days, the changes are

pushed to release and dashcam. [3]

Figure 1 - Flowchart diagram of the development process of Openpilot, supported by GitHub CI

https://github.com/commaai/openpilot.git

Chapter 2 4

The release branch is structured as follows:

• cereal: the messaging spec and libs used for all logs

• common: library like functionality and utility functions

• installer/updater: manages updates of NEOS

• opendbc: files showing how to interpret data from cars

• panda: code used to communicate on CAN

• phonelibs: external libraries

• pyextra: extra python packages not shipped in NEOS

• selfdrive: code needed to drive the car

o assets: fonts, images, and sounds for UI

o athena: allows communication with the app

o board : daemon to talk to the board

o camerad: driver to capture images from the camera sensors

o car: car specific code to read states and control actuators

o common: shared C/C++ code for the daemons

o controls: planning and controls

o debug: tools to help you debug and do car ports

o location: precise localization and vehicle parameter estimation

o logcatd: Android logcat as a service

o loggerd: logger and uploader of car data

o modeld: driving and monitoring model runners

o proclogd: Logs information from processes

o sensord: IMU interface code

o test: unit tests, system tests, and a car simulator

o ui: the UI

Openpilot, from version 0.7 on, includes different submodules available on dedicated

repositories that allow a completely open style of development. Modules that are in separate

repositories include:

• cereal

• laika

• opendbc

• panda

• rednose

This allows developers to work on the same workflow as the Openpilot team and to allow to

merge pull requests much easier [3]. Another important aspect to consider is the managerial

aspect: Openpilot is entirely managed through GitHub discussions and a Discord server.

The GitHub discussions, as well as the Openpilot wiki, gather some general information

about the most important aspects of the project. Discussed topics regard porting new cars,

discussion about simulations on different hardware, and porting Openpilot on unofficial

hardware, but also include FAQs from new users that want to collaborate and developers

that want to share their thoughts and doubts.

The Discord server, Comma.ai community, is organized into different channels, that have

the purpose of giving the users a place to discuss different topics. Channels are organized

into categories, which allow giving access to certain channels only to people that have a

specific role. A role is a defined set of permissions, identified by a name. Each role has

different permissions, that will allow the users having that role to perform certain actions

rather than others.

Chapter 2 5

The roles on the server include:

• admin: the user is an administrator of the server.

• Comma.ai staff: the user is a member of the Comma.ai staff.

• COMMA_CON: a user participating to the COMMA_CON, the official convention of

Comma.ai where the participants will be able to meet the members of the company and

talk about the future of self-driving cars.

• comma prime: a user that purchased the comma prime service, the comma’s mobile

service which allows EON and comma two to connect to the internet through a SIM card

and upload the route data in real-time.

• moderator: the user is a moderator of the Discord server and has the privileges needed

to mute or ban other users.

• Openpilot contributor: a user who contributed to the development of Openpilot, by

pushing some changes to a branch of the repository.

• Openpilot tester: an official tester of Openpilot. Is a user who purchased Openpilot and

contributed to making it run on both supported and unsupported car models.

• community member: identifies a user that has joined the community. When a user joins

the server, this role is given automatically.

• dev: a user that has accepted the terms and conditions of the development channel. After

accepting, this role will be assigned to the users, allowing them to write, and read

messages on the development channels.

The channels on the server are classified into different categories, each of which can be

accessed only by users with the right set of privileges. More details on the channels can be

found in Table 71.

Chapter 2 6

 Solution’s architecture description

The aim of this thesis is to support all the contributors in making effective changes to the

project, but also give more technical information about the software to anyone that is

interested in having more details on the implementation of Openpilot.

The analysis of both the submodules in chapter 3 and selfdrive, where the Openpilot software

lives, in chapter 4, aim to reach four key goals:

• Analyze the software implementation, identifying the main classes and functionalities

provided by each component. These details are available in the paragraphs Package

structure and Implementation both for each submodule and for selfdrive.

• Analyze the submodules’ dependencies, and in particular what are Openpilot’s key

processes that use the submodules. These details can be found in the paragraph Usage of

each submodule analyzed in chapter 3.

• In the paragraph Testing is an assessment of the testing strategy of each component,

what are the tests executed and what is their output.

• In the paragraph Development and community contribution An overview of all the

main contributions to the project, both internal and external to Comma.ai

The main stakeholders to which this thesis is directed are the community contributors, the

users of Openpilot that own a Comma device, and the researchers of the self-driving cars

field, while the drivers of this research are three: supporting the contributors with a complete

software walkthrough that can give insights on the actual functioning of each component;

discuss the main technologies adopted, the theoretical basis and the design choices that are

behind the implementation; understand what is the development process through which

Openpilot went through and how evolved over time.

Figure 2 - Motivation view of this thesis, showing the key stakeholders and the goals that this thesis wants to

reach

A stakeholder wanting to consult this thesis could adopt different approaches according to

what are the specific needs. To have a general view of how Openpilot works, the chapter 4

provides all the information about the processes that are involved in the execution of the

software.

Chapter 2 7

The process taxonomy of the software [Figure 47] provides a general classification of all

the processes, while each paragraph of the chapter describes them in detail, providing details

on the operations that they perform and what other components of the software are involved.

To have more insight on the submodules that the processes they use, the stakeholders can

find the explanation of their implementation in chapter 3.

A developer can also find relevant information in the same chapters, including technical

descriptions of the different components that will support the development of the software

features. In Figure 3 is shown how a stakeholder could leverage the information contained

in the different paragraphs to improve its productivity and quality of changes made.

Figure 3 - BPMN diagram showing the process of making new changes to the software, leveraging the

artifacts of this thesis

If a stakeholder is instead interested to the development process of Openpilot, each section

of chapter 3 and 4 has a paragraph dedicated to the improvement, corrections, and additions

made over the years. All the changes are listed in chronological other and come with the list

of commits that influenced a specific change. A general analysis of all the contributions and

contributors is also available in paragraph 4.4, where are analyzed in a qualitative and

quantitative way the contributions made by the most productive contributors, including both

the members of the community and Comma.ai employees.

Chapter 2 8

A stakeholder could be interested in this document to have more insights on the technologies

that are currently used in the field of self-driving cars and what makes possible to convert

the external input coming from outside in data that can then be elaborated and used to predict

the path that the car should follow. The paragraph dealing with the implementation of the

different components also give insight on the theoretical basis that are behind a certain

design or implementation choice. The most relevant technologies that a researcher of the

field may be interested into may be the predictive model of Openpilot and the interface that

the device uses to communicate with the car.

Figure 4 - BPMN diagram showing the process of retrieving information related to the technologies used in

self-driving cars, looking at the details of the technologies implemented by Openpilot

Chapter 2 9

 Research design

This thesis will tackle the problem of the lack of a unified source of knowledge for what

concerns the more technical details of the Openpilot framework, that for an open-source

project of this size could represent an entry barrier for many developers that are willing to

contribute but don’t have the necessary information to correctly interpret and understand the

many modules and processes of which the project is composed.

The available literature that partially mitigates the problem is limited to an article analyzing

only the driving model of Openpilot [4] and other articles, posted by the Comma.ai team,

giving general information on the different processes. Other general information is present

in the main GitHub repository and includes instructions on the installation of the software

and on how to contribute, while on the official Discord server the community is very active,

and many members often share their knowledge and experiences.

The main source of information of this overview of the Openpilot framework is the source

code of Openpilot, available on GitHub, for what concerns the description of the different

components, what is their purpose, and how they work and interact with the other

components of Openpilot. A lot of information is also found in the Discord server, since the

less trivial topics are frequently asked by many users, and in the Pull Requests conversations,

which often provided more details than the simple commit description. From the output of

the execution of the GitHub Actions, instead, are retrieved the details of the execution of the

test, what are the expected results of the tests, and what are the main components that are

important to test the reliability of the software.

The analysis of the code base will follow a top-down approach, starting from the classes and

methods that expose the functionalities to the other components and decomposing them into

their key and atomic functionalities.

This thesis also wants to provide the information needed to assess the quality of the software.

Two key points that will be considered will be the compliance of the system with the current

regulations and the improvement of the provided functionalities from a release to the

successive.

The main tools used to support the analysis are Visual Studio Code, that thanks to its “Find

all references” functionality make it easy to discover the usage of methods, attributes, and

classes throughout the code, even in files written using different programming languages,

and different tools used to draw the UML diagrams. The history of the GitHub commits

provides useful insights on what changes are made by the users, which functionalities are

introduced or corrected, and Visual Studio Code is again a useful tool to examine the changes

made, comparing the modified pieces of code in two successive commits.

The structure of this document will see a first chapter, containing the details on the libraries

used by Openpilot, how they are structured, how they work, and how they are leveraged by

Openpilot, and a second chapter analyzing the source code of Openpilot, focusing on its

constellation of processes.

Chapter 3 10

3 Openpilot’s submodules: their purpose,

the development process, and the

community contributions

Openpilot needs many components that allow the software to interface with the car and

exchange messages with it. These components, after the open-sourcing of the software, were

organized in different repositories, allowing to better manage them and have a clear

distinction of what role each component plays. In this excursus of the submodules that are

available in the main Openpilot repository will be analyzed the functionalities that each one

of them provides, how they were tested to ensure the required levels of reliability, and what

was the development process they went through.

 Cereal

Cereal is both a messaging specification for robotics systems as well as a generic high-

performance inter-process communication protocol enabling the communication among a

single Publisher and multiple Subscribers (IPC pub/sub) for all the components that

implement it. One of its main purposes is to enable easy and effective logging of all the

events that occur during the usage of Openpilot, as well as enabling the different modules of

the software to communicate with each other. The main components that cereal provides are

messaging, which is the actual messaging specification library, and VisionIPC, which allows

exchanging visual data.

 Package structure

Cereal is composed of different packages [Figure 5], the main of which is messaging. Here

are located the methods needed to instantiate the Publisher and the different Subscribers, as

well as the methods needed to send and receive messages.

Figure 5 - Packages included in cereal main directory

Both messaging and visionipc are written in C++, but the package also uses Cython to allow

using the library’s functionalities in Python code.

Chapter 3 11

Language Files Blank Comment Code

C++ 14 441 79 1.550

C/C++ Header 9 77 4 422

Python 3 65 13 265

Cython 2 55 9 139

SUM: 28 638 105 2.376

Table 1 - Lines of code of cereal, by programming language

 Implementation

Cereal supports a wide range of events and states, all defined through Cap’n Proto, a data

exchange format optimized for client-server communication. Through the Cap’n Proto

specifications can be defined the structs corresponding to different classes of events and

messages, and for each of them the relative typed parameter. In particular, these

specifications are described in the files log.capnp, legacy.capnp, and car.capnp.

car.capnp contains the specifications for messages that the car needs to send and receive to

communicate with Openpilot, such as information on the speed of the car, the transmission,

the steering wheel, the gears, the wheels' speed, and so on. There are five main structs defined

in car.capnp.

• CarEvent, containing the messaging specifications of the events corresponding to a state

change of the car. An example of events that are defined in the specifications are:

canError @0;
steerUnavailable @1;
brakeUnavailable @2;
wrongGear @4;

• CarState, that is the specifications of the messages communicating the state of the car

and its components. For instance, the wheels' speed can be encapsulated in a message

generated using the following struct.

struct WheelSpeeds {
 fl @0 :Float32; # front left
 fr @1 :Float32; # front right
 rl @2 :Float32; # rear left
 rr @3 :Float32; # front right
}

• RadarData, specifying the structure of the messages related to the radar state and activity.

A message transmitting the position retrieved by the radar will be generated by using the

following specification:

struct RadarPoint {
 trackId @0 :UInt64; # no trackId reuse
 dRel @1 :Float32; # m from the front bumper of the car
 yRel @2 :Float32; # m
 vRel @3 :Float32; # m/s
 aRel @4 :Float32; # m/s^2
 yvRel @5 :Float32; # m/s
 measured @6 :Bool;
}

Chapter 3 12

• CarControl, which contains the messaging specifications corresponding to the different

actions on the actuators of the car, such as pedals and steering wheel. The basic struct of

this class of messages is that of Actuators, which allows communicating the basic car

actuator’s status.

struct Actuators {
 gas @0: Float32; # range from 0.0 - 1.0
 brake @1: Float32; # range from 0.0 - 1.0
 steer @2: Float32; # range from -1.0 - 1.0
 steeringAngleDeg @3: Float32; # range from -1.0 - 1.0
}

• CarParams, that describes the parameters used by the car to calibrate the actuators its

actuators while performing an action. One of the most important sets of parameters are

the tuning parameters, which include lateral and longitudinal tuning messages

specification.

struct LateralINDITuning {
 outerLoopGainBP @4 :List(Float32);
 outerLoopGainV @5 :List(Float32);
 innerLoopGainBP @6 :List(Float32);
 innerLoopGainV @7 :List(Float32);
 timeConstantBP @8 :List(Float32);
 timeConstantV @9 :List(Float32);
 actuatorEffectivenessBP @10 :List(Float32);
 actuatorEffectivenessV @11 :List(Float32);
}

Tuning a car means adjusting the different parameters defined in these messaging

specifications, needed to make the car steer, break, and accelerate as desired [5]. Tuning

topics are discussed in a dedicated channel of the Discord server.

log.capnp describes the specifications of all the events that are logged during the execution

of Openpilot. The events also include that described in car.capnp and legacy.capnp. The

message structures defined include that for the actuators, the lateral and longitudinal tuning,

the predictive model output, and all the other components state and relative events allowed.

legacy.capnp includes the specifications of old messages that are not used anymore or

deprecated.

Chapter 3 13

3.1.2.1 Messaging

The functionalities provided with the messaging package allow the car to communicate with

the device, sending the messages triggered by the different events that can occur while

driving.

Figure 6 - Messaging class diagram, showing the links between the PubSocket and SubSocket and the

integration with the PubMaster and SubMaster components

The messages are first created thanks to the method new_message() and are initialized

accordingly to the different services that require the creation of the message. The service

parameter will change how the new message is initialized.

Chapter 3 14

def new_message(service: Optional[str], size: Optional[int]):
 dat = log.Event.new_message()
 dat.logMonoTime = int(sec_since_boot() * 1e9)
 dat.valid = True
 if service is not None:
 if size is None:
 dat.init(service)
 else:
 dat.init(service, size)
 return dat

The methods pub_sock() and sub_sock() return respectively a PubSocket and a SubSocket

object, which correspond to the message publisher and the message receiver, respectively.

Multiple subscribers can connect to a socket and receive responses from the publisher, while

PubSocket can send the messages to the different subscribers connected to the same its same

socket. Each parent class (PubSocket and SubSocket) has two child classes, that are

instantiated according to the adopted exchange protocol, ZeroMQ or MSGQ.

ZeroMQ is a high-performance asynchronous messaging library, aimed at use in distributed

or concurrent applications. It provides a message queue, but unlike message-oriented

middleware, a ZeroMQ system can run without a dedicated message broker. ZeroMQ

supports common messaging patterns (pub/sub like the one used in Cereal, request/reply,

client/server, and others) over a variety of transports (TCP, in-process, inter-process,

multicast, WebSocket, and more), making inter-process messaging as simple as inter-thread

messaging.

MSGQ is a system to pass messages from a single producer to multiple consumers. All the

consumers need to be able to receive all the messages. It is designed to be a high-

performance replacement for ZMQ-like SUB/PUB patterns. It uses a ring buffer in shared

memory to efficiently read and write data. Each read requires a copy. Writing can be done

without a copy, as long as the size of the data is known in advance.

The library provides the methods to send and receive messages using both ZeroMQ and

MSGQ, as shown in the class diagram in Figure 6.

If we consider a typical execution of the program, the Context is first initialized. A Poller is

created, according to the adopted messaging protocol. The role of the Poller is that of

efficiently wait for new messages, saving resources for more important tasks. When a new

message is sent on a socket, the receivers are notified by sending a SIGUSR2 signal.

The SubSocket and the PubSocket are then instantiated, with multiple SubSocket able to

connect to the same endpoint and one single PubSocket for each endpoint. The connection

is performed through the method connect().

In the case of the PubSocket, it takes as parameters the context, the endpoint, a boolean

indicating if the PubSocket should conflate, and a boolean indicating if it should first check

the endpoint before sending data. On the other hand, the SubSocket requires the same

parameters, with the addition of the address on which the Publisher will send data, which by

default is 127.0.0.1.

This is a classical implementation of the Pub/Sub design pattern [Figure 7] [6], in which a

client subscribes to a certain topic and the publisher sends messages to all the subscribers

subscribed to a certain topic.

Chapter 3 15

Figure 7 - PubSub design pattern

The exposed classes that can be used to make the Publisher and the Subscribers interact are

located in the socketmaster.cc file, and there include PubMaster and SubMaster classes.

They can be used as shown in the example reported in the official documentation:

sm = messaging.SubMaster(['sensorEvents']) # In subscriber
while 1:
 sm.update()
 print(sm['sensorEvents'])

pm = messaging.PubMaster(['sensorEvents']) # In publisher
dat = messaging.new_message('sensorEvents', size=1)
dat.sensorEvents[0] = {"gyro": {"v": [0.1, -0.1, 0.1]}}
pm.send('sensorEvents', dat)

The subscriber keeps listening on the selected socket and the update() refreshes the messages

for all the sockets of the current poll.

def update(self, timeout: int = 1000) -> None:
 msgs = []
 for sock in self.poller.poll(timeout):
 msgs.append(recv_one_or_none(sock))

 for s in self.non_polled_services:
 msgs.append(recv_one_or_none(self.sock[s]))
 self.update_msgs(sec_since_boot(), msgs)

Chapter 3 16

3.1.2.2 VisionIPC

Inter-process communication (IPC) refers specifically to the mechanisms that allow the

processes to manage shared data. In the applications that use IPC, there is typically a client

and a server, where the client requests data and the server responds to the client’s requests.

The module VisionIPC implements this mechanism, providing the methods and classes

needed to establish a connection between the client (VisionIpcClient) and the server

(VisionIpcServer), and exchange data containing information regarding the acquired images,

that can be encoded in RGB or YUV, on the created channel.

Figure 8 - visionipc class diagram, with the VisionIPC server having a PubSocket for each type of VisionBuf

and the VisionIPC client able to subscribe only to a type of VisionBuf at a time (for a maximum of 128

buffers of the same type)

The communication is enabled by the messaging components present in the messaging

package: the VisionIPC server has a PubSocket through which publishes the acquired

frames, while the VisionIPC client has a SubSocket that connects to the specified PubSocket

and receives the frames. The communication between the client and the server happens in

the following way:

• The server is first initialized, and a name is given to it.

• The VisionIpcServer then creates a buffer (VisionBuf), specifying the stream type

and the dimension of the images (width and height).

• The client has to connect to the server, specifying its name and the type of stream

that is going to receive.

Chapter 3 17

• After specifying the content of the VisionBuf and VisionIpcBufExtra, the two objects

are then sent to the client

VisionIpcServer server("camerad");
server.create_buffers(VISION_STREAM_YUV_BACK, 1, true, 100, 100);
server.start_listener();

VisionIpcClient client = VisionIpcClient("camerad",
VISION_STREAM_YUV_BACK, false);
REQUIRE(client.connect());
zmq_sleep();

VisionBuf * buf = server.get_buffer(VISION_STREAM_YUV_BACK);
REQUIRE(buf != nullptr);

((uint64_t)buf->addr) = 1234;

VisionIpcBufExtra extra = {0};
extra.frame_id = 1337;

server.send(buf, &extra);

VisionIpcBufExtra extra_recv = {0};
VisionBuf * recv_buf = client.recv(&extra_recv);

On the client side, a Message object is received on the socket to which the client is connected.

From the Message object, a VisionIpcPacket is extrapolated and then converted into a

VisionBuf that will be equal to the VisionBuf sent by the server.

VisionIpcPacket *packet = (VisionIpcPacket*)r->getData();
VisionBuf * buf = &buffers[packet->idx];

The VisionBuf represents the main abstraction of the camera frame. The image is encoded

using the YUV color encoding, and the VisionBuf provides the details on the three channels

Y, U, and V of the image, the width, and height, and provides the methods to convert the

YUV image in RGB and vice versa.

Chapter 3 18

 Usage

Cereal main directory exposes the files containing the definitions of the different messages,

and, together with methods to retrieve the information related to available services. The

different components of selfdrive use the structs defined in log.capnp and car.capnp to

serialize the different data streams.

Figure 9 - Import dependencies between selfdrive and cereal

In particular, the service daemons like boardd, locationd, loggerd, sensorsd, and thermal,

leverage this communication protocol to transmit the data acquired by the different sensors

and the message specifications defined in the Cap’n Proto files allow building well-

structured messages. For instance, in the case of sensors, managed by the process sensorsd,

each sensor has a get_event() method, through which it retrieves the value recorded by the

specified sensor.

event.setSource(cereal::SensorEventData::SensorSource::RPR0521);
event.setVersion(1);
event.setSensor(SENSOR_LIGHT);
event.setType(SENSOR_TYPE_LIGHT);
event.setTimestamp(start_time);
event.setLight(value);

Chapter 3 19

3.1.3.1 Messaging - usage

Figure 10 - Import dependencies between selfdrive and cereal/messaging

As we can see from the diagram in Figure 10, the messaging functionalities are largely used

in the other component of Openpilot. All the software components that need to send and

receive messages to other software components use cereal to establish a Pub-Sub connection.

To simplify the instantiation of the PubSocket and SubSocket, the library provides two

components, the PubMaster and SubMaster, that automatically instantiate and initialize the

publisher and the subscribers for all the specified services.

In camerad, for instance, the component that manages the acquisition of the camera frames,

are instantiated both a PubMaster and a SubMaster.

s->sm = new SubMaster({"driverState"});
s->pm = new PubMaster({"roadCameraState",
 "driverCameraState",
 "thumbnail"});

This means that the camera component listens to data arriving on the socket “driverState”,

containing details on the state of the diver, and publishes the data acquired by the road

camera and the driver camera on the sockets roadCameraState and driverCameraState,

respectively.

The data sent on the sockets by the PubMaster are then received by the SubMaster subscribed

to the same sockets. For instance, data sent on socket roadCameraState are received by

controlsd, modeld, the component managing the alerts and the one managing the snapshots.

Chapter 3 20

controlsd.py
self.camera_packets = ["roadCameraState", "driverCameraState"]
self.sm = messaging.SubMaster(['deviceState', 'pandaState', 'modelV2',
 'liveCalibration', 'driverMonitoringState',
 'longitudinalPlan', 'lateralPlan',
 'liveLocationKalman’, 'managerState',
 'liveParameters', 'radarState'] +
 self.camera_packets + joystick_packet,
 ignore_alive = ignore,
 ignore_avg_freq = ['radarState', 'longitudinalPlan'])

cycle_alerts.py
sm = messaging.SubMaster(['deviceState', 'pandaState',
 'roadCameraState', 'modelV2',
 'liveCalibration', 'driverMonitoringState',
 'longitudinalPlan', 'lateralPlan',
 'liveLocationKalman'])

// modeld.cc
PubMaster pm({"modelV2", "cameraOdometry"});
SubMaster sm({"lateralPlan", "roadCameraState"});

snapshot.py
def get_snapshots(frame="roadCameraState",
 front_frame="driverCameraState",
 focus_perc_threshold=0.):
 sockets = []
 if frame is not None:
 sockets.append(frame)
 if front_frame is not None:
 sockets.append(front_frame)

 sm = messaging.SubMaster(sockets)

Chapter 3 21

3.1.3.2 VisionIPC - usage

VisionIPC is used by all the components that require to access the frames acquired by the

device’s cameras [Figure 11]. In particular, the processes accessing the frame data are

camerad and modeld. Moreover, there are also tools and common shared libraries which use

VisionIPC to send and retrieve camera frames.

Figure 11 - Import dependencies between selfdrive and cereal/visionipc

In the case of the camera driver, for instance, each camera is represented by a CameraBuf

object, which provides the methods to acquire the image and send it to the different

VisionIpcClients. The acquire() method reads data from the cameras and the instantiated

VisionIpcServer transmits them using MSGQ or ZMQ, indifferently.

void VisionIpcServer::send(VisionBuf* buf, VisionIpcBufExtra* extra,
bool sync){
 if (sync) buf->sync(VISIONBUF_SYNC_FROM_DEVICE);

 assert(buffers.count(buf->type));
 assert(buf->idx < buffers[buf->type].size());

 VisionIpcPacket packet = {0};
 packet.server_id = server_id;
 packet.idx = buf->idx;
 packet.extra = *extra;

 sockets[buf->type]->send((char*)&packet, sizeof(packet));
}

Chapter 3 22

Both RGB and YUV data are sent using this approach, but data is sent on different sockets.

vipc_server->send(cur_rgb_buf, &extra);
vipc_server->send(cur_yuv_buf, &extra);

The method release() calls a callback which closes the connection.

void CameraBuf::release() {
 if (release_callback) {
 release_callback((void*)camera_state, cur_buf_idx);
 }
}

The method queue(), instead, pushes the data on in the buffer’s queue.

void CameraBuf::queue(size_t buf_idx) {
 safe_queue.push(buf_idx);
}

On the other hand, the model daemon receives the camera data as a VisionIpcClient and

passes the received data to the modeler.

VisionIpcClient vipc_client = VisionIpcClient(
 "camerad",
 wide_camera
 ? VISION_STREAM_YUV_WIDE
 : VISION_STREAM_YUV_BACK,
 true,
 device_id,
 context);

 while (!do_exit && !vipc_client.connect(false)) {
 util::sleep_for(100);
 }
 if (vipc_client.connected) {
 const VisionBuf *b = &vipc_client.buffers[0];
 LOGW("connected with buffer size: %d (%d x %d)",
 b->len,
 b->width,
 b->height);
 run_model(model, vipc_client);
 }

Chapter 3 23

 Testing

messaging is tested by using the unittest framework. A unit test is a small test that checks

that a single component operates in the right way, and it does that by comparing the result

of the component with the expected result. To test the behavior with the different types of

events, parametrized tests are widely used: they allow passing a list of tuples and running

the test for each one of the elements in the list.

• TestPubSubSockets: it contains three tests that aim to test the connection between a

publisher and a subscriber, instantiating the different sockets and checking the robustness

of the library in case of conflated or delayed behaviors. [Table 2]

TestPubSubSockets

+ setup()

+ test_pub_sub()

+ test_conflate()

+ test_receive_timeout()

Table 2 - TestPubSubSockets test case

• TestMessaging: it includes eight tests that check the capability of the sockets to receive

different types of messages and their capability to handle errors. It also makes use of the

parameterized test to test the socket for each service available. [Table 3]

TestMessaging

+ setUp()

+ test_new_message()

+ test_pub_sock()

+ test_sub_sock()

+ test_drain_sock()

+ test_recv_sock()

+ test_recv_one()

+ test_recv_one_or_none()

+ test_recv_one_retry()

Table 3 - TestMessaging test case

• TestPoller: its five tests verify the ability of the Poller to send one or more messages to

one or more subscribers. The Poller also has to ensure that there is only one publisher

sending messages on a certain socket, otherwise, it has to raise an exception. [Table 4]

TestPoller

+ test_poll_once()

+ test_poll_and_create_many_subscribers()

+ test_multiple_publishers_exception()

+ test_multiple_messages()

+ test_conflate()

Table 4 - TestPoller test case

Chapter 3 24

• TestSubMaster: this test case comprehends nine tests that check the functioning of the

component of the library responsible for the connection of the different subscribers to a

socket and of the reception of messages. Three of these tests, however, are only needed

to check if the components are still running and alive. [Table 5]

TestSubMaster

+ setUp()

+ test_init()

+ test_init_state()

+ test_getitem()

+ test_update()

+ test_update_timeout()

+ test_alive()

+ test_ignore_alive()

+ test_valid()

+ test_conflate()

Table 5 - TestSubMaster test case

• TestPubMaster: it contains only two tests, one that initializes the PubMaster and one

that checks the sending of a response to different sockets, using the different protocols.

[Table 6]

TestPubMaster

+ setup()

+ test_init()

+ test_send()

Table 6 - TestPubMaster test case

• TestServices: its three tests check that there cannot be duplicate ports and that the

generated files are valid C files for all the services. [Table 7]

TestServices

+ test_services()

+ test_no_duplicate_port()

+ test_generated_header()

Table 7 - TestServices test case

The unit tests are executed with GitHub Actions, which executed the tests whenever a new

commit is made, to ensure that each change doesn’t modify the behavior of the software and

work as expected.

For what concerns VisionIPC, it is tested through Catch2, a unit testing framework for C++.

Catch2 allows defining tests easily and naturally, without the need of naming them with

valid identifiers or registering them. visionipc_tests.cc include six different unit tests:

connecting, check buffers, check YUV/RGB, send single buffer, test no conflate, test

conflate.

Chapter 3 25

 Development and community contribution

Many users contributed to the development of cereal. In particular, the possibility to test the

messaging specs on different car models and compare their behavior speeded up the whole

development process. Cereal was made a public GitHub repository on the 13th of June 2019.

initial commit, internal from 6/13/19 (13/06/2019) <George Hotz>

Currently, cereal repository counts more than 100 forks and over 30 contributors. When

published, the community, as well as the Comma.ai staff, focused on increasing the events

supported by the messaging specifications. The allowed modifications and additions had to

follow precise guidelines.

The development of cereal started before Comma.ai made the repository public, and new

developers would find the messaging specification already in place, but they were free to

modify and add new specifications and parameters according to their needs and findings

during the tests on the road.

Not only external contributors, but also the Comma.ai team at the beginning focused on

adding different parameters to support the events that were logged during the execution of

Openpilot [Table 72]. If we consider the commits which modify the files car.capnp,

log.capnp, and legacy.capnp, the ones containing the specifications of different types of

messages corresponding to the events, represent more than half of the total amount of

commits of this repository.

The addition of new parameters was more frequent when the repository was made public,

while now the community focuses more on stability and performance issues.

After the publication of the specifications of the events in the public repository, also the

messaging services were made public and moved to cereal.

import messaging and services (01/11/2019) <George Hotz>

fixups (01/11/2019) <George Hotz>

fix internal refs (01/11/2019) <George Hotz>

The first problems that the team had to deal with were related to the remote connection to

the messaging services. This included managing the connection and deletion of the

SubSockets and make possible to pass a specific address to which the socket could connect.

def connect(self,Context context, string endpoint,
 string address=b"127.0.0.1",
 bool conflate=False):
 self.socket.connect(context.context, endpoint, address, conflate)
def connect(self,Context context, string endpoint,
 string address=b"127.0.0.1",
 bool conflate=False):
 self.socket.connect(context.context, endpoint, address, conflate)

remove extra underscore from __dealloc__ (03/11/2019) <andyh2>

only delete subsocket when created by same object (04/11/2019) <Willem Melching>

remote address support (04/11/2019) <Willem Melching>

Don't delete context from python side only (04/11/2019) <Willem Melching>

A big improvement in terms of performance was brought by the introduction of MSGQ.

MSGQ was disabled when first introduced and then made the default in version 0.7.1.

Chapter 3 26

The implementation of MSGQ required some time, with the staff focusing on improving the

protocol stability and performances.

add all msgq files, but don’t use as default (05/11/2019) <Willem Melching>

Fix service list path in bridge (05/11/2019) <Willem Melching>

zmq already sets the errno correctly (05/11/2019) <Willem Melching>

add c exports for jni usage (07/11/2019) <andyh2>

fix export prefix and make shared library world readable (07/11/2019) <andyh2>

default to msgq (08/11/2019) <Willem Melching>

MSGQ stability improvements when opening and closing lots of queues (15/11/2019)

<Willem Melching>

also remove the FIFO from disk (16/11/2019) <Willem Melching>

msgq: don't clean up uninitialized sockets (16/11/2019) <Willem Melching>

msgq: make sure read_fifos is initialized so we don’t close random fds (16/11/2019)

<Willem Melching>

msgq: try again when no timeout on poll but also no message (18/11/2019) <Willem

Melching>

Default to zmq (19/11/2019) <Willem Melching>

msgq: don’t block when fifo does not exists (19/11/2019) <Willem Melching>

add msgq tests (19/11/2019) <Willem Melching>

Switch from polling on FIFOs to signal (#12) (22/11/2019) <George Hotz>

Switch default to msgq (#21) (13/01/2020) <Willem Melching>

New tests were also created to validate the new functionalities added. The tests were also

added to GitHub CI, to make them run automatically when a user makes a new commit.

Run scons in CI (#14) (21/11/2019) <Willem Melching>

run python unittest in ci (21/11/2019) <Willem Melching>

add test with multiple subscribers (21/11/2019) <Willem Melching>

It has also been implemented an error handling mechanism and two new types of exceptions,

MultiplePublishersError and MessagingError, thrown when the connection fails.

Implement error handling and exceptions (#18) (04/12/2019) <Willem Melching>

SubSocket * create(Context * context, string endpoint, string address,
bool conflate) {
 SubSocket *s = SubSocket::create();
 int r = s->connect(context, endpoint, address, conflate);
 if (r == 0) {
 return s;
 } else {
 delete s;
 return NULL;
 }
}

The first external contribution to this library was made by a user trying to make cereal work

on macOS. Paweł Goliński pointed out the fact that MSGQ was not supported by macOS

due to the absence of a shared memory filesystem, therefore he proposed to use ZMQ as

default for the operative system [7].

Use ZMQ on MacOS (#46) (21/05/2020) <Paweł Goliński>

Chapter 3 27

The same user also explicated a silent failure causing a segmentation fault while using

Openpilot tools [8].

Fix potential segfault in MSGQPubSocket:connect (21/05/2020) <Paweł Goliński>

An important change, aimed to simplify and improve how cereal could allow exchanging

messages among the master and its subscribers, was made by an external contributor, Dean

Lee, with the support of Willem Melching, a member of the Comma.ai team. The

introduction of a SubMaster and a PubMaster allowed to create a SubSocket for all the

specified sockets, and the PubMaster, sending the latest messages to all its subscribers [9].

C++ implementation of SubMaster and PubMaster (21/05/2020) <Dean Lee>

submaster always conflates (22/05/2020) <Willem Melching>

Other changes were made to lint the code through flake8, a command-line utility for

enforcing style consistency across Python projects. It was added to the workflow of the

GitHub Actions also a static analysis check, executed before each commit.

add pre-commit static analysis (#48) (29/05/2020) <Willem Melching>

two spaces before inline comment (31/05/2020) <Adeeb Shihadeh>

fix flake8 complaint about too many blank lines (01/06/2020) <Adeeb Shihadeh>

whitespace fix (01/06/2020) <Adeeb Shihadeh>

enable almost all flake8 checks (01/06/2020) <Adeeb Shihadeh>

fix dereferencing of full_path after free (08/06/2020) <Adeeb Shihadeh>

After the revision of the previous changes from the Comma.ai staff, George Hotz pointed

out some issues related to the implementation of the new Master classes. In particular, the

file containing those classes was placed in the main folder of /cereal and not in

/cereal/messaging. The author of the changes initially placed the file socketmaster.cc in

/cereal because it would make the execution of offroad.apk if placed in /cereal/messaging,

as specified in pull request #58 [10]. Both the problems were then fixed by the same author

[11].

fix mac build (#50) (12/06/2020) <George Hotz>

More tests had to be added to validate the new classes and lower-level functions, and smaller

fixes were also made to clean up the code and be compliant with the constraint imposed by

flake8.

Messaging unit tests (#66) (27/07/2020) <Adeeb Shihadeh>

Update catch2 and move to Dockerfile (#71) (27/07/2020) <Adeeb Shihadeh>

Tests for lower level messaging functions (#73) (28/07/2020) <Adeeb Shihadeh>

remove get_one_can (29/07/2020) <Adeeb Shihadeh>

simple service tests (29/07/2020) <Adeeb Shihadeh>

test generated services.h (29/07/2020) <Adeeb Shihadeh>

fix test file path (29/07/2020) <Adeeb Shihadeh>

Smaller fixes to the socket class constructor were also made to improve their usability and

reduce their memory usage. For instance, the parameter types and the return types were made

explicit for all the methods available in messaging.h and parallel execution was enabled

when building Cython extension.

expose frame and rcv_frame in C++ submaster (02/08/2020) <Adeeb Shihadeh>

parallelize Cython extension build (02/08/2020) <Adeeb Shihadeh>

Chapter 3 28

Add type hints to messaging (#82) (23/08/2020) <Adeeb Shihadeh>

larger shared memory size on computer for frames (28/08/2020) <Willem Melching>

It was possible to further reduce the CPU usage by using only one Poller for each SubMaster

and by making the request without a specified service non-blocking. This is particularly

useful to reduce the usage of processes that should run at 10Hz but instead run at 100Hz

when subscribing to the socket carState. [12]

allow prioritization of services in SubMaster (#84) (02/09/2020) <Adeeb Shihadeh>

Smaller fixes were then made, one of which was made by an external contributor, Gregor

Kikelj, and fixed an issue opened by Willem Melching, a member of the Comma.ai team.

The issue [13] was about finding a way to show a warning when subscribing/publishing to

a service queue that was not in the service list, and it was solved by checking if the

considered service was in the list of available services.

bool service_exists(string path) {
 for (const auto& it : services) {
 if (it.name == path) {
 return true;
 }
 }
 return false;
}

To better manage the creation of new messages, it was introduced a MessageManager class

to simplify the code and utilize the same class rather than calling the same methods multiple

times each time that a message had to be created.

Custom message builder (#72) (13/09/2020) <Dean Lee>

In particular, a community member, Alexander Litzenberger, was able to improve the

performances and brought a speed up by changing the type of messages exchanged using the

method send() from string to byte.

Switch send to using bytes (#93) (07/10/2020) <Alexander Litzenberger>

A code refactoring was made due to the violation of some best practices that made it hard to

understand what the different parameters were actually needed for.

In many cases, the parameters did not mention the System of Unit, used deprecated methods,

or had misleading names, and the refactor made by Harald Schafer in his pull request [14]

aimed to fix those bad practices.

Best practice (#107) (17/02/2021) <Harald Schafer>

msgq: fixup larger queue size for frames (22/02/2021) <Willem Melching>

Comparably to what happened with the creation of the class of MessageManager, it was also

created the class AlignedBuffer. AlignedBuffer allows to simply manage a buffer, made by

an Array of words, without the need of managing the creation and deallocation of it every

time that is needed.

fix the issue 41 (#87) (11/09/2020) < Gregor Kikelj >

Chapter 3 29

Added new util class AlignedBuffer (#125) (15/03/2021) <Dean Lee>

AlignedBuffer remove operator() to prevent out of scope usage (17/03/2021) <Willem

Melching>

To ensure that the update frequency was adequate it was introduced a method to check if the

average frequency, and if higher than 90% of the expected value then the subscriber could

be considered alive.

Add check for average frequency (#128) (06/04/2021) <Willem Melching>

don’t check avg freq in simulation (08/04/2021) <Willem Melching>

add list for average frequency ignore (#132) (08/04/2021) <Willem Melching>

To simplify the process of verifying if all the subscribers to a certain socket are alive and

updated a new getter function that performed this check was introduced. The pull request

with the additions, as well as other small fixes [15], was made by a community member,

Joost Wooning.

some fixes and small changes for locationd in C++ (#135) (19/04/2021) <Joost

Wooning>

More improvements were then made to the part dealing with the connection of the services,

making the service assign the ports dynamically rather than statically. Also in this case, the

pull request was made by a community member, Shane Smikol [16].

Automatically generate service ports (#136) (20/04/2021) <Shane Smiskol>

The last optimizations made to the library regards mostly the consideration of some

particular cases that could lead to some unexpected behaviors.

For example, the method msgq_all_readers_updated() was modified to make it return the

value true only if there is at least one connected user, and the liveness of a subscriber can be

checked only when not in a simulation.

SubMaster: split socket recv and update (#133) (23/04/2021) <iejMac>

msgq_all_readers_updated: only return true when at least one reader is connected

(05/05/2021) <Willem Melching>

SubMaster: Don't check alive when SIMULATION env variable is set (05/05/2021)

<Willem Melching>

C++ SubMaster: make readers always valid (#139) (15/05/2021) <Dean Lee>

Also, the types of some variables were changed to save space and increase the performance.

Other changes were then made to increase the number of subscribers that can connect to the

same socket.

construct PubMaster with vector instead of initializer list (15/05/2021) <Adeeb

Shihadeh>

SubMaster - allow dynamic service lists (#150) (18/05/2021) <Shane Smiskol>

msgq: bump num readers to 10 (21/05/2021) <Adeeb Shihadeh>

Unbridge - for republishing msgs sent from your laptop to Openpilot (#160)

(08/06/2021) <Shane Smiskol>

SubMaster: set traversalLimitInWords to max (#188) (17/08/2021) <Dean Lee>

For what concerns VisionIPC, the library has not been modified in many years from its first

implementation since it was the most effective way to transmit frame data.

Chapter 3 30

After the introduction of MSGQ, multiple attempts of removing VisionIPC were made, and

the head of Openpilot George Hotz even offered a prize of $500 to the author of the pull

request which fulfilled the objective [17]. The bounty was then closed, since removing

VisionIPC could not bring any tangible performance improvement.

VisionIPC was included in the cereal package only in a second moment when it was

rewritten and updated to improve performances and usability. In the beginning, it was

located directly in the selfdrive directory and it was not open source. The rewriting of

VisionIPC required 64 commits made by Adeeb Shihadeh and Willem Melching [18]. The

main changes included the introduction of the classes currently used for managing the client

and the server, VisionIpcClient and VisionIpcServer respectively, and VisionBuf to manage

the buffer of the acquired frames. It was also adopted the messaging specification included

in the cereal package to create the sockets and transfer data among the publisher and the

different subscribers.

Visionipc v2.0 (#101) (08/01/2021) <Willem Melching>

More minor changes were made, including the addition of a timeout to the client-side after

which the connection, if not receiving any data, could be dropped, and of parameters to the

server-side which help to manage the persistence of the connection, for instance, it has been

forced that the server buffer can be freed only by the server itself and invalid buffer type no

longer stop the execution of the server.

only free ION buffer in server (11/01/2021) <Willem Melching>

visionipc add timeout param (19/01/2021) <Willem Melching>

don't crash on invalid buffer type (19/01/2021) <Robbe Derks>

To improve the usability of the VisionIPC server functionalities has been included a Cython

wrapper for the VisionIpcServer class, to give access to the C++ implementation of the

server also from Python code and use its main feature like if it was a Python library.

Cython wrapper for VisionIpc server (#117) (09/02/2021) <Willem Melching>

cdef extern from "visionipc_server.h":
 cdef cppclass VisionIpcServer:
 VisionIpcServer(string, void*, void*)
 void create_buffers(VisionStreamType, size_t, bool, size_t, size_t)
 VisionBuf * get_buffer(VisionStreamType)
 void send(VisionBuf *, VisionIpcBufExtra *, bool)
 void start_listener()

Small fixes were then made to the header files of the package: to unify the style with the rest

of the packages, the headers extension has been modified from hpp to h, and the path of

inclusion of the headers has been fixed by making explicit also the folder where the different

headers are located.

rename headers: hpp -> h (04/05/2021) <Adeeb Shihadeh>

fix cython visionipc for qcom (29/05/2021) <Adeeb Shihadeh>

cleanup include paths (#165) (10/06/2021) <Dean Lee>

The previous changes on the management of the free of the buffer were reverted [19] due to

some details found on a dedicated forum which suggested to always free the buffer, not

considering the author of the free request or failure while freeing the buffer [20].

Chapter 3 31

visionipc: increase max fds to 128 (10/07/2021) <Adeeb Shihadeh>

Always free ION buffer (#183) (26/07/2021) <Willem Melching>

ignore failures on ION buffer free (28/07/2021) <Willem Melching>

As pointed out by many users, in the cereal repository there is not a clear guide of how the

messages are structured and how Openpilot makes use of it to communicate with the car. It

is not rare that a new developer, willing to collaborate, is pulled down by the complexity of

the project and by the absence of a clear guide on how to use each component correctly.

Fortunately, the community is full of developers that have a lot of experience with the project

and can help the newcomers to better understand how the software is structured and point

out the key aspect to consider when contributing to the project.

Also, this allows responding more quickly and effectively than it would be if the only people

able to reply to technical questions were the Comma.ai staff.

Overall, many developers who were not part of the staff of Comma.ai gave their contribution

to cereal by testing the library, trying to make Openpilot communicate with different car

models, fixing bugs, and adding new features.

Chapter 3 32

 Common

The common package contains methods, variables, and processes that are used by all the

other packages to perform common operations.

 Package structure

The package [Figure 12] includes a simple Kalman filter, the methods needed to call the

REST API, proprietary of Comma.ai, and transformation utilities, needed to manipulate the

acquired camera frames.

Figure 12 - Package diagram of the common directory

The utility functions included in the common directory are mainly written in Python, but

most of the code, represented by the implementation of Kalman and transformation, is

written in C++.

Language Files Blank Comment Code

C++ 6 1.531 4.392 23.117

Python 25 288 138 1.064

Cython 4 72 17 255

C/C++ Header 2 10 0 48

SUM: 37 1.901 4.547 24.484

Table 8 - Lines of code for the Common, by programming language

Chapter 3 33

 Implementation

Among the different utility functions that come with the common package, we can find

functions that help to manipulate or generate files, for example using CFFI to generate C

code to import in Python modules and compile the generated code.

def compile_code(name,
 c_code,
 c_header,
 directory,
 cflags = "",
 libraries = None):
 if libraries is None:
 libraries = []

 ffibuilder = FFI()
 ffibuilder.set_source(name,
 c_code,
 source_extension='.cpp',
 libraries=libraries)
 ffibuilder.cdef(c_header)
 os.environ['OPT'] = "-fwrapv -O2 -DNDEBUG -std=c++1z"
 os.environ['CFLAGS'] = cflags
 ffibuilder.compile(verbose=True, debug=False, tmpdir=directory)

Other utilities provide timing information, including the time since the boot of the device

and the real-time.

cdef double readclock(clockid_t clock_id):
 cdef timespec ts
 cdef double current

 clock_gettime(clock_id, &ts)
 current = ts.tv_sec + (ts.tv_nsec / 1000000000.)
 return current

def sec_since_boot():
 return readclock(CLOCK_BOOTTIME)

Many functions supporting the logging of the different events are available, and they aim to

both format correctly the logs and record the different events. Logging is supported by the

logging library available for Python, which provides a standard library module so that all the

Python modules can participate in logging: in this way the application log can include both

custom messages and messages from third-party modules.

The package also includes different processes directly used by selfdrive, for instance,

showing the loading spinner and dealing with the timeout exceptions.

Chapter 3 34

3.2.2.1 API

Comma.ai exposes on the website https://api.commadotai.com/ a series of web APIs that can

be accessed to get different types of information. More in general, a web API is a

programmatic interface consisting of one or more publicly exposed endpoints to a defined

request-response message system, in this case, expressed in JSON. The available endpoints

for Comma.ai API are:

• Account

o Profile: returns information about the authenticated user.

o Devices: list devices owned or readable by the authenticated user.

• Device

o Device info: returns an object representing a comma device.

o Update device properties: update device alias and/or vehicle_id.

o Device location: returns a gpsLocation ZMQ packet from the device. The API

server queries Athena and caches the location for the Device Info response.

o Pair EON: pair a comma EON to the authenticated user's account.

o Unpair device: Unpair a device. The authenticated user must be the device owner

to perform.

o Grant device read permissions to user: grant read permissions to a user by

email. The authenticated user must be the device owner to perform.

o Remove device read permissions from user: remove read permissions from a

user by email. The authenticated user must be the device owner to perform.

o Device driving statistics: returns aggregate driving statistics for a device.

o Device users: list users with access to a device.

o Device boot logs: returns most recent boot logs uploaded from a device.

o Device crash logs: returns most recent crash logs uploaded from a device.

• Routes

o Segments: returns time-sorted list of segments, each of which includes basic

metadata derived from Openpilot log.

o Route Info: returns information about the provided route. The authenticated user

must have ownership of or read access to the device from which the route was

uploaded.

o Route Segments: returns a list of segments comprising a route. The authenticated

user must have ownership of or read access to the device from which the route

was uploaded.

o Route Manifest: lists files uploaded for a route.

• Raw driving data

o Files: retrieve uploaded files for a route.

o Qlogs: retrieve uploaded qlogs for a route.

• Video Stream

o Rear Camera Stream: returns rear camera HLS stream index of MPEG-TS

fragments.

o Front Camera Stream: returns front camera HLS stream index of MPEG-TS

fragments.

• Derived Data

o GPS Path: after Openpilot uploads a log, a JSON array of GPS coordinates

interpolated at 1hz is exposed at a signed URL in the cloud. As segments are

uploaded, route.coords will be appended atomically.

o Video Frames (every 5s): JPEGs are extracted every 5s from road camera video

and are exposed at a signed URL in the cloud.

https://api.commadotai.com/

Chapter 3 35

• Vehicles

o Vehicle by ID: retrieve vehicle metadata by ID.

o List Vehicle Makes: list available vehicle makes and years.

o List vehicles by make: returns JSON array of vehicle metadata

• Openpilot

o Openpilot auth: authenticate and return the dongle_id and access_token.

o Athena WebSocket: Listen for inbound JSON-RPC requests.

o Upload URL: Request a URL to which an Openpilot file can be uploaded via

PUT request. This endpoint only accepts tokens signed with a device's private

key.

• Athena

o Athena HTTP: send JSON-RPC requests to the active web socket client for a

given device identified by Dongle ID.

• Annotations

o My Annotations: list annotations contributed by the authenticated user.

o Device Annotations: list annotations contributed to drives from a device that

authenticated user has ownership of or read access to.

o Annotation by ID: returns annotation object. The authenticated user must have

contributed the annotation.

o Create Annotation: create a new annotation.

o Delete annotation: delete an annotation by ID. The authenticated user must have

contributed the annotation.

o Update annotation: update "data" object. The authenticated user must have

contributed the annotation.

• Leaderboard

o List top leaders: returns overall and last-week comma point leaders.

• Billing

o Subscription Status: retrieve subscription status for a device

o Activate Subscription: activate the subscription for a device, optionally with a

compatible SIM card.

o Get Payment Source: get the current payment source

o Set Payment Source: update payment source associated with an account. Stripe

securely stores all card information.

o Cancel Subscription: cancel the subscription for the device.

3.2.2.2 Kalman

The kalman package includes the implementation of a simple Kalman filter, needed to

smooth the series of values acquired from the different actuators. Kalman filtering, also

known as linear quadratic estimation (LQE), is an algorithm that uses a series of

measurements observed over time, containing statistical noise and other inaccuracies, and

produces estimates of unknown variables that tend to be more accurate than those based on

a single measurement alone, by estimating a joint probability distribution over the variables

for each timeframe. The variables involved in the calculation of the smoothed values are:

• A: state transition matrix, which applies the effect of each parameter of the previous state

on the next state. (3.2)

• K: Kalman gain. It is calculated from the state covariance matrix and the measurement

covariance matrix. The higher the noise measurement, the lower the value of K, and vice

versa. (3.2)

Chapter 3 36

• x0: initial state, it contains the state of the system i.e., the parameters that uniquely

describe the current position of the system. (3.4)

• C: state covariance matrix, it models uncertainty in the system. It models the uncertainty

of the state vector 'x'. Each of the diagonal elements contains the variance (uncertainty

in position) of each of those respective state variables in the state vector. For initialization

for this matrix, if the state variable's initial location is known to a high degree, the

corresponding diagonal element in P is small. Vice-versa in case the state variable's

initial location is not known well. (3.3)

The first step of the algorithm is the prediction step, in which the values of the next system

state are predicted. By multiplying the (3.2) and (3.3) we obtain the (3.5). This result is then

subtracted from the state matrix A to obtain (3.7).

 𝐴 = [
𝐴00 𝐴01

𝐴10 𝐴11
] (3.1)

 K = [
𝑘00

𝑘10
] (3.2)

 C = [𝑐00 𝑐01] (3.3)

 𝑥0 = [
𝑥00

𝑥10
] (3.4)

 K ∗ 𝐶 = [
𝐾00𝐶00 𝐾00𝐶01

𝐾10𝐶00 𝐾10𝐶01
] (3.5)

 A − K ∗ 𝐶 = [
𝐴00 − 𝐾00𝐶00 𝐴01 − 𝐾00𝐶01

𝐴10 − 𝐾10𝐶00 𝐴11 − 𝐾10𝐶01
] (3.6)

 [
𝐴𝐾0 𝐴𝐾1

𝐴𝐾2 𝐴𝐾3
] =   [

𝐴00 − 𝐾00𝐶00 𝐴01 − 𝐾00𝐶01

𝐴10 − 𝐾10𝐶00 𝐴11 − 𝐾10𝐶01
] (3.7)

def __init__(self, x0, A, C, K):
 self.x0_0 = x0[0][0]
 self.x1_0 = x0[1][0]
 self.A0_0 = A[0][0]
 self.A0_1 = A[0][1]
 self.A1_0 = A[1][0]
 self.A1_1 = A[1][1]
 self.C0_0 = C[0]
 self.C0_1 = C[1]
 self.K0_0 = K[0][0]
 self.K1_0 = K[1][0]
 self.A_K_0 = self.A0_0 - self.K0_0 * self.C0_0
 self.A_K_1 = self.A0_1 - self.K0_0 * self.C0_1
 self.A_K_2 = self.A1_0 - self.K1_0 * self.C0_0
 self.A_K_3 = self.A1_1 - self.K1_0 * self.C0_1

Chapter 3 37

The second step is the update step, in which the value is corrected using the actual

measurement.

 (𝐴 − 𝐾𝐶) ∗ 𝑥0 = [
𝐴𝐾0 ∗ 𝑥00 + 𝐴𝐾1 ∗ 𝑥10

𝐴𝐾2 ∗ 𝑥00 + 𝐴𝐾3 ∗ 𝑥10
] (3.8)

 K ∗ 𝑚eas = [
𝑘00 ∗ 𝑚𝑒𝑎𝑠
𝑘10 ∗ 𝑚𝑒𝑎𝑠

] (3.9)

 (𝐴 − 𝐾𝐶) ∗ 𝑥0 + (𝐾 ∗ 𝑚𝑒𝑎𝑠) = [
𝐴𝐾0 ∗ 𝑥00 + 𝐴𝐾1 ∗ 𝑥10 + 𝑘00 ∗ 𝑚𝑒𝑎𝑠
𝐴𝐾2 ∗ 𝑥00 + 𝐴𝐾3 ∗ 𝑥10 + 𝑘10 ∗ 𝑚𝑒𝑎𝑠

] (3.10)

 [
𝑥00
𝑥10

] = [
𝐴𝐾0 ∗ 𝑥00 + 𝐴𝐾1 ∗ 𝑥10 + 𝑘00 ∗ 𝑚𝑒𝑎𝑠
𝐴𝐾2 ∗ 𝑥00 + 𝐴𝐾3 ∗ 𝑥10 + 𝑘10 ∗ 𝑚𝑒𝑎𝑠

] (3.11)

The matrix resulting from this operation (3.11) can be used to directly apply the

transformation and the result is computed by the method update() which returns a state that

is updated using the Kalman filter starting from a measurement ‘meas’. [21]

def update(self, meas):
 double x0_0 = self.A_K_0 * self.x0_0 +
 self.A_K_1*self.x1_0 +
 self.K0_0*meas

 double x1_0 = self.A_K_2*self.x0_0 +
 self.A_K_3*self.x1_0 +
 self.K1_0*meas
 self.x0_0 = x0_0
 self.x1_0 = x1_0

 return [self.x0_0, self.x1_0]

3.2.2.3 Transformation

Openpilot has to deal with different types of reference frames and is helpful to have the

possibility to convert them into a different type of reference frame since all of them are

widely diffused throughout the codebase.

This folder contains all helper functions needed to transform generate the different types of

reference frames and orientations. Generally, this is done by generating a rotation matrix and

multiplying the reference frame. The reference frame adopted by Openpilot are:

• Geodetic: is a reference frame for precisely measuring locations on Earth or other

planetary body. In geodetic coordinates, Earth's surface is approximated by an ellipsoid,

and locations near the surface are described in terms of latitude, longitude, and height.

• ECEF (Earth-Centered, Earth-Fixed): represents positions as X, Y, and Z coordinates.

The origin (point 0, 0, 0) is defined as the center of mass of Earth, hence the term

geocentric coordinates. The distance from a given point of interest to the center of Earth

is called the geocentric distance, R = √(𝑋2 + 𝑌2 + 𝑍2), which is a generalization of the

geocentric radius, not restricted to points on the ellipsoidal surface.

Chapter 3 38

• NED (North, East, Down): are similar to ECEF in that they are Cartesian, however,

they can be more convenient due to the relatively small numbers involved, and because

of the intuitive axes.

• Device: the frame aligned with the road-facing camera used by Openpilot.

• Calibrated: calibrated frame is defined to be aligned with the car frame in pitch and yaw

and aligned with the device frame in roll. It also has the same origin as the device frame.

• Car: the reference frame defined as aligned with the vehicle. The origin of car frame is

defined to be directly below the device frame (in car frame), such that it is on the road

plane. The position and orientation of this frame are not necessarily always aligned with

the direction of travel or the road plane due to suspension movements and other effects.

• View: like the device frame, but also considers the camera conventions.

• Camera: like the view frame, but 2D on the camera image.

• Normalized camera: generated from the camera frame after applying a normalization

process. The normalization is done by dividing the measured data by the focal of the

camera.

• Model: the sampled rectangle of the full camera frames the model uses.

• Normalized model: generated from the model frame after applying a normalization

process. The normalization is done by dividing the measured data by the focal of the

camera.

The orientation of the different reference frames can be expressed in different ways:

quaternions, rotation matrices, and Euler angles are three equivalent representations of

orientation and all three are used throughout the code base.

For Euler angles the preferred convention is roll (longitudinal axis), pitch (transverse axis),

and yaw (normal axis) which corresponds to rotations around the x, y, and z axes. All Euler

angles should always be in radians or radians/s unless for plotting or display purposes.

For quaternions, the Hamilton notations are preferred, which are [qw, qx, qy, qz]. All

quaternions should always be normalized with a strictly positive qw. These quaternions are

a unique representation of orientation whereas Euler angles or rotation matrices are not.

To rotate from one frame into another with Euler angles the convention is to rotate around

the roll, then around pitch, and then around yaw, while rotating around the rotated axes, not

the original axes.

The transformation folder provides functionalities to transform coordinates, orientations,

and models among the different used by Openpilot. For the orientations, the transformation

methods available are:

Quaternion euler2quat(Vector3)
Vector3 quat2euler(Quaternion)
Matrix3 quat2rot(Quaternion)
Quaternion rot2quat(Matrix3)
Vector3 rot2euler(Matrix3)
Matrix3 euler2rot(Vector3)
Matrix3 rot_matrix(double, double, double)
Vector3 ecef_euler_from_ned(ECEF, Vector3)
Vector3 ned_euler_from_ecef(ECEF, Vector3)

The different orientations, instead, can be transformed using the methods:

Chapter 3 39

NED ecef2ned(ECEF)
ECEF ned2ecef(NED)
NED geodetic2ned(Geodetic)
Geodetic ned2geodetic(NED)

 Usage

The common directory provides many utility functionalities used by Openpilot and its

processes.

• spinner: gives information on the progress of a given operation.

• profiler: provides a set of statistics that describe how often and for how long various

parts of the program are executed.

• ffi_wrapper: a foreign function interface (FFI) is a mechanism by which a program

written in one programming language can call routines or make use of services written

in another. This wrapper allows to compile and use C++ code.

• text_window: get a predefined text corresponding to methods return codes.

• xattr: is a workaround for the EON/termux build of Python having os.*xattr removed.

Extended attributes extend the basic attributes of files and directories in the file system.

• Filter_simple: it is a simple implementation of a first-order high-pass filter

• stat_live: tracks real-time mean and standard deviation without storing any data

• dict_helpers: utility function that removes all keys that end in DEPRECATED.

• realtime: get the time passed since when the application is booted.

Figure 13 - Import dependencies between selfdrive and common

Chapter 3 40

3.2.3.1 Api - usage

Figure 14 - Import dependencies between selfdrive and common/api

The different processes that leverage the APIs make use of methods to both query the

endpoint and receive responses. A request can be made through the method api_get().

api_get(endpoint,method='GET',timeout=None,access_token=None,**params)

The request is sent to https://api.commadotai.com/endpoint. Here is reported an example of

a request generated and the relative response from the server:

GET /v1/devices/:dongle_id/location

curl 'https://api.commadotai.com/v1/devices/02ec6bea180a4d36/location' \
-H 'Authorization: JWT {{token}}'

Response
{
 "dongle_id": "02ec6bea180a4d36",
 "lat": 32.0,
 "lng": -117.0,
 "time": 1558595762000,
 "speed": 0.0,
 "bearing": 0.0
}

https://api.commadotai.com/endpoint

Chapter 3 41

The response is a JSON object that is decoded when received by the client.

The method get_token(), generates a token by encoding a payload using RSA Signature with

SHA-256. The encoding algorithm is an asymmetric algorithm that requires two keys, a

public key, and a private key. The private key is stored in an internal folder inside the main

directory. The token is then used to establish a connection with the server (also used by the

method api_get() as access_token).

The Comma APIs are largely used by Athena, which is the Openpilot component that enables

to access remotely the car parameters detected by the Comma device mounted in the vehicle.

Athena connects to the API base URL and returns a web socket that manages the exchange

of requests and responses.

ws = create_connection(ws_uri,
 cookie="jwt=" + api.get_token(),
 enable_multithread = True,
 timeout = 30.0)

When Athena receives a request, it sends a response to the client that generated it.

3.2.3.2 Kalman - usage

Figure 15 - Import dependencies between selfdrive and common/kalman

The Kalman filter available in common folder is used by the process managing the car radar

information for Openpilot (radard) to precisely estimate the speeds and rotations of the car.

Chapter 3 42

The measured speed is corrected by computing the matrixes using pre-computed values for

the state matrixes and the Kalman gain.

self.v_ego_kf = KF1D(x0=[[0.0], [0.0]],
 A=[[1.0, DT_CTRL], [0.0, 1.0]],
 C=[1.0, 0.0],
 K=[[0.12287673], [0.29666309]])

def update_speed_kf(self, v_ego_raw):
 if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0:
 self.v_ego_kf.x = [[v_ego_raw], [0.0]]

 v_ego_x = self.v_ego_kf.update(v_ego_raw)
 return float(v_ego_x[0]), float(v_ego_x[1])

In the showed example, the v_ego_kf array is first initialized using the Kalman filter and is

then used to correct the raw measure. The check on the difference between the raw data and

the computed data has the purpose to prevent large accelerations when the car starts at non-

zero speed. v_ego_x array represents the corrected state and is calculated by applying the

update function to the raw velocity measurement ‘v_ego_raw’.

3.2.3.3 Transformations - usage

Figure 16 - Import dependencies between selfdrive and common/transformations

Chapter 3 43

The snapshot functionalities, included in camerad process, provide methods that return the

images acquired by the camera, converting them in JPEG format. The size of the different

types of frames that are acquired by the camera are specified in the Transformations package:

from common.transformations.camera import eon_f_frame_size,
 eon_d_frame_size,
 leon_d_frame_size,
 tici_f_frame_size
eon_f_frame_size = (1164, 874)
eon_d_frame_size = (1152, 864)
leon_d_frame_size = (816, 612)
tici_f_frame_size = tici_e_frame_size = tici_d_frame_size = (1928, 1208)

The precise sizes of the different frames are needed to extract the images from the buffer. R,

G, and B arrays are reshaped according to the image’s height and width, resulting in

bidimensional arrays with each pixel of a given color (red, green, or blue) corresponding to

the position [h][w] of the corresponding array. Np.dstack() stacks arrays in sequence depth-

wise (along the third axis). In this way, each pixel in the position [h][w] will correspond to

an RGB color code.

def extract_image(dat, frame_sizes):
 img = np.frombuffer(dat, dtype=np.uint8)
 w, h = frame_sizes[len(img) // 3]
 b = img[::3].reshape(h, w)
 g = img[1::3].reshape(h, w)
 r = img[2::3].reshape(h, w)
 return np.dstack([r, g, b])

In this way is possible to extract the images captured by the front and rear camera.

rear = extract_image(sm[frame].image, frame_sizes)
 if frame is not None
 else None

front = extract_image(sm[front_frame].image, frame_sizes)
 if front_frame is not None
 else None

The calibration daemon (calibrationd) also leverages the transformation methods to calibrate

the acquired frames.

Calibrating the acquired images is helpful for Openpilot's driving model since it can be more

accurate and make more accurate predictions if the images taken as input by the model look

similar also when acquired by other devices mounted differently in different cars. To achieve

this, the images are "calibrated” by transforming them into calibrated frames.

Chapter 3 44

 Testing

The functionalities of this library are tested through unit testing, and in particular, using the

unittest framework. There are tests specific for the different packages both for the main

package common and for the Kalman and transformations packages. The common package

includes four test cases and a total of twenty-one tests, also executed through GitHub

Actions.

• TestFileHelpers: it includes three tests [Table 9] that check atomic writes in a temporary

file and a specific directory. The test writes a string and checks that the result of the write

is the one expected.

TestFileHelpers

+ run_atomic_write_func(atomic_write_func)

+ run_atomic_write_on_fs_tmp()

+ run_atomic_write_in_dir()

Table 9 - TestFileHelpers unit test

• InterpTest: it includes one test [Table 10] which tests the function designed to perform

the one-dimensional linear interpolation in a fast and efficient way and compares the

result of the interpolation with the result of the one-dimensional linear interpolation

calculated using numpy.

InterpTest

+ test_correctness_controls()

Table 10 - InterpTest unit test

• TestParams: this test case comprehends twelve tests [Table 11] that check the behavior

when trying to set and retrieve different types of parameters. This includes particular

cases such as non-ASCII parameters, parameters with an unknown key, or persistent

parameters.

TestParams

+ test_params_put_and_get()

+ test_persist_params_put_and_get()

+ test_params_non_ascii()

+ test_params_get_cleared_panda_disconnect()

+ test_params_get_cleared_manager_start()

+ test_params_two_things()

+ test_params_get_block()

+ test_params_unknown_key_fails()

+ test_params_permissions()

+ test_delete_not_there()

+ test_get_bool()

+ test_put_non_blocking_with_get_block()

Table 11 - TestParams test case

Chapter 3 45

• TestParams(xattr): it includes five tests [Table 12] that perform operations on the

extended attributes and check the behavior of the library while it manages them.

Extended attributes extend the basic attributes of files and directories in the file system.

TestParams

+ test_getxattr_none()

+ test_listxattr_none()

+ test_setxattr()

+ test_listxattr()

+ test_removexattr()

Table 12 - TestParams (xattr) test case

Kalman tests compare two versions of the Kalman filter that are used in the library. The taste

case is TestSimpleKalman compares the results and the performances of the two.

TestSimpleKalman

+ test_getter_setter()

+ update_returns_state()

+ test_old_equal_new()

+ test_new_is_faster()

Table 13 - TestSimpleKalman test case

Transformation tests focus on testing the different transformations that can be performed

using the library, from and to Euler, Quaternions, and Rotation matrixes.

• TestNED: this test case [Table 14] comprehends five tests that test the conversion of

data to the NED coordinates system and vice versa.

TestNED

+ test_small_distances()

+ test_ecef_geodetic()

+ test_ned()

+ test_ned_saved_results()

+ test_ned_batch()

Table 14 - TestNED test case

• TestOrientation: it includes four tests [Table 15] that check the result of different

transformations performed on a set of data.

TestOrientation

+ test_quat_euler()

+ test_rot_euler()

+ test_rot_quat()

+ test_euler_ned()

Table 15 - TestOrientation test case

Chapter 3 46

 Development and community contribution

Common folder was made a public repository on the 17th of January 2020.

common folder (17/01/2020) <George Hotz>

Even if it was made public, most of the contributions still come from the Comma.ai staff. In

the case of the Kalman filter, for example, no modifications were made by the members of

the community and in one year only six commits have been made, three of which are part of

general modifications made to the entire common folder. Also, the modifications made only

updated the package dependencies and the builder file to be compliant with the new standard

adopted by the project, which changed over time.

Rebuild cython extensions when dependency version changes (#1886) (16/07/2020)

<Adeeb Shihadeh>

update pipfile.lock (#1896) (21/07/2020) <Willem Melching>

One of the reasons why this package is not frequently updated like the other libraries is the

introduction of an ad-hoc library for Kalman filtering, called rednose, and over time a lot of

the dependencies from the Kalman filter were removed and replaced by rednose. For what

concerns the API package, six commits have been made after that the common folder was

published for the first time. Most of the fixes were about correcting the indentation of the

code, which was creating conflicts with the rules enforced by flake8 and solving some issues

that could occur during the installation process on Mac and PC systems.

manager runs on Mac, and other Openpilot for PC fixes (02/02/2020) <George Hotz>

After the update of the library PyJWT, used to generate the web token, some users

experience problems when trying to call the function get_token(), since in version 2.0 of

PyJWT the method decode() returns a string, while in the older versions returned a type

bytes. To solve this issue, a community member opened a pull request proposing a solution

in which the token is converted into a string when the method decode() returns a bytes value,

otherwise, the token is returned as it is.

token = jwt.encode(payload, self.private_key, algorithm='RS256')
if isinstance(token, bytes):
 token = token.decode('utf8')
return token

Fix jwt.encode return type (#19776) (#19958) (02/02/2021) <Shubham Dhumal>

The transformation functionalities, instead, are updated and changed as new functionalities

are introduced in Openpilot, since a lot of data acquired by the cameras have to be pre-

processed and calibrated before they can be used. After some initial clean-up of the

deprecated functions that were no longer needed and removed, it was also adjusted to support

the introduction of a new driving model.

deprecated (18/01/2020) <Harald Schafer>

delete unused code (24/04/2020) <George Hotz>

The BIG model, introduced in April 2020, is a model trained with a resolution close to that

of the full camera frames, instead of the cropped frame that is adopted with other models.

This allows to get a lot of data and driving information, but it is also more costly to run it.

Chapter 3 47

What enabled the implementation of the BIG model was the release of Comma Two, which

had more powerful hardware compared to EON, and the various optimizations made,

especially the refactor of the Python code into C++ code which allowed to reduce the CPU

usage.

who is ready for big model? (22/04/2020) <George Hotz>

Compared to the small model, the frames are four times bigger and almost the same size as

the full camera frame.

Figure 17 - Comparison between the cropped frame and the full-frame acquired by the device's camera

Other fixes, in line with the previous adjustments on the frames management, were then

made.

transform_img_M (23/04/2020) <George Hotz>

run coordinate tests (24/04/2020) <Willem Melching>

def transform_img(base_img,
 augment_trans=np.array([0,0,0]),
 augment_eulers=np.array([0,0,0]),
 from_intr=eon_intrinsics,
 to_intr=eon_intrinsics,
 output_size=None,
 pretransform=None,
 yuv=False,
 alpha=1.0,
 beta=0,
 blur=0):

After some small improvements to the naming and the initialization of the variables, the

Comma.ai team decided to refactor the code and convert it from Python to C++, to include

more functionalities while keeping the same level of performance.

Chapter 3 48

pure init (#1569) (27/05/2020) <Harald Schafer>

More rigorous definition of calibration (06/06/2020) <Harald Schafer>

The conversion was made by Willem Melching, and it took 37 commits to write the C++

classes and the different optimizations.

Write orientation & transform in C++ (#1637) (10/06/2020) <Willem Melching>

Like for the other libraries, a Cython wrapper has also been written to allow to call the

generated C++ code of the transformation and orientation classes from other Python

processes.

Later on, were added also the getter for the transformation matrices, which enable to

transform NED data to ECEF data.

add getter for LocalCoord transformation matrices (10/06/2020) <Willem Melching>

More models were then added and the relative information about the size of their input frame

had to be included in the common folder.

add calmodel (06/07/2020) <George Hotz>

needed in pipeline (29/07/2020) <Harald Schafer>

makes more sense (05/08/2020) <Harald Schafer>

sbigmodel, a bigmodel with the size of a smallmodel (27/10/2020) <George Hotz>

Other improvements were then made to the function and parameters relative to the camera

information, making them more general and not platform-specific (they were tailored to

EON in the first place).

generalize camera assumptions (#2423) (05/11/2020) <ZwX1616>

clip arcsin to prevent locationd orientation NaN (#20868) (11/05/2021) <Harold

Schafer>

remove oneplus camera params (#21047) (27/05/2021) <Adeeb Shihadeh>

The common package, among the other functionalities, offers Android-specific methods and

attributes that can be easily accessed by the other components of Openpilot. Especially in

the beginning, the Comma.ai team focused on the maintenance and improvement of the

Android functionalities included in common, since NEOS, the operative system of the

devices on which Openpilot is executed, is based on a modified version of Android. With

the first improvements made, they were introduced parameters to better monitor the status

of the phone.

allow non android to be identified differently (18/01/2020) <George Hotz>

apk lib: Grant offroad access to TelephonyManager (20/01/2020) <andyh2>

Cache FW query (#1025) (31/01/2020) <Willem Melching>

Add network_type to thermald (#1030) (01/02/2020) <Andrew Valish>

Handle get_network_type exception (03/02/2020) <Willem Melching>

get_network_type: Sort, correct cell network lookup and fix for pc (04/02/2020)

<Andy Haden>

Only show update alert if updater failed once since reboot (#1078) (11/02/2020)

<Willem Melching>

Add LaneChangeEnabled param and settings toggle (#1093) (15/02/2020) <Andrew

Valish>

Disable Power Down option for desk devices (#1117) (18/02/2020) <George Hotz>

Chapter 3 49

apk: Fix permission to read /sdcard/ (20/02/2020) <andyh2>

add network strength logging to thermal (#1211) (07/03/2020) <Andrew Valish>

use unknown networkstrength, not none (#1222) (09/03/2020) <Andrew Valish>

revise wifi signalstrength dumpsys query (#1224) (10/03/2020) <Andrew Valish>

Remove legacy AccessToken param (23/03/2020) <Andy Haden>

Sidebar Connectivity Status (#1268) (05/04/2020) <Andy>

RHD support for driver monitoring (#1299) (16/04/2020) <ZwX1616>

Some changes to the structure were then made, which lead to the removal of some unused

methods and files and the inclusion of a geocoder. The geocoder, then removed in later

commits, offered two main functionalities: get the name of a city starting from its

coordinates, and tell if in a certain city the drive is on the left lane.

Remove unused logging_es (28/01/2020) <Andy Haden>

logging: Vendor findCaller for correct stack frame info in logs (28/01/2020) <Andy

Haden>

logging: imports for stack info (28/01/2020) <Andy Haden>

reverse geocoder (04/02/2020) <Harald Schafer>

Other fixes were about showing error messages and better managing the exceptions that

could happen during the execution or at boot time.

dm offsetshould only care about the valid counts (23/03/2020) <ZwX1616>

URLFile: include url in bad status code error (24/03/2020) <Andy Haden>

compress option for dict column store writer (28/03/2020) <Greg Hogan>

Add binary to display text (#1301) (01/04/2020) <Willem Melching>

Boot-loop testing script for EON/C2 device sensors (#1303) (01/04/2020) <Jason

Young>

Show manager startup failures using TextWindow (#1310) (03/04/2020) <Willem

Melching>

fix AttributeError: 'FakeSpinner' object has no attribute 'close' (#1317) (05/04/2020)

<DeanLee>

ColumnStoreWriter/Reader support for dictionary of arrays in single file

(14/04/2020) <Greg Hogan>

fix UnicodeDecodeError in get_network_strength (#1385) (17/04/2020) <Dean Lee>

ColumnStoreReader support for intermediate keys of flat dictionaries (21/04/2020)

<Greg Hogan>

ColumnStoreWriter.add_dict() support for multiple types (21/04/2020) <Greg

Hogan>

A lot of unused code and functions, including the recently added geocode, were removed to

reduce the total number of lines of the project. The company internally set the target of

40.000 lines of Python code, and the cleanup, optimizations, and porting some modules to

C++ allowed it to reach this goal.

remove unused code (24/04/2020) <George Hotz>

more unused code (24/04/2020) <George Hotz>

delete more unused, now under 40k lines of python. framereader needs to be ported

to C++ (24/04/2020) <George Hotz>

remove geocode (24/04/2020) <Willem Melching>

Chapter 3 50

On the line of the previous changes, the Comma.ai team kept optimizing the code, but also

making improvements to how the message was displayed to the final user and updating some

of the adopted libraries. To fix many minor code indentation and unused import problems,

it was also used https://lgtm.com/, which provides tools to analyze the code and prevent

critical vulnerabilities.

improve printing in profiler (27/04/2020) <George Hotz>

add simple usage example to window.py (01/05/2020) <George Hotz>

Using lgtm.com and fixing found alerts (#1452) (02/05/2020) <George Hotz>

To statically analyze the code, it was adopted https://pre-commit.ci/, a framework for

managing and maintaining multi-language pre-commit hooks. Git hooks are programs that

can be placed in a hooks directory to trigger actions at a certain point during git’s execution

and are useful for identifying simple issues before submission to code review. pre-commit.ci

run its hooks on every commit to automatically point out issues in code such as missing

semicolons, trailing whitespace, and debug statements. This allows the code reviewers to

focus only on what is important and not on smaller fixes that can be solved automatically.

pre-commit pylint (#1580) (28/05/2020) <Willem Melching>

flake8 in pre-commit (#1583) (28/05/2020) <Willem Melching>

Run mypy commit hook (#1591) (29/05/2020) <Willem Melching>

Running pre-commit in CI (#1590) (29/05/2020) <Willem Melching>

Since the methods and attributes in common can be called by all the other components of

Openpilot, is important to consider unexpected behaviors that may be caused by passing the

wrong parameter. That is the case of mkdirs_exists_ok(path), which returns the absolute path

of the variable path. Since also URLs have the same format as a directory path and the

automatic checks could not identify the error, it has been added another check that made the

method return an error in the case the path starts with http:// or https://.

ensure mkdirs_exists_ok is not called for URLs (09/06/2020) <Greg Hogan>

mkdirs_exists_ok more specific URL detection (09/06/2020) <Greg Hogan>

Yet in another cleanup of the code, the CPU usage tests were also refactored, and they were

moved from the common folder directly in the tests of the selfdrive package, and

consequently, the manager_helpers.py file was removed.

fix CPU usage test for thermald and dmonitoringd (24/06/2020) <Adeeb Shihadeh>

fail CPU usage test if can't get usage for a process (24/06/2020) <Adeeb Shihadeh>

Refactor CPU usage test (#1802) (04/07/2020) <Adeeb Shihadeh>

remove duplicate logging context (04/07/2020) <Greg Hogan>

remove manager_helpers.py after CPU usage test refactor (04/07/2020) <Adeeb

Shihadeh>

New common attributes and functions were then added to support the new functionalities

that were being developed. In particular, two more parameters were added to the file

params.py to get additional information about the system update, and a method checking the

status of the sound card of the devices was added to the provided Android-specific methods.

support code for NEOS update alert (25/06/2020) <Adeeb Shihadeh>

Add an SSH param to disable updates (#1807) (01/07/2020) <George Hotz>

Sound test (#1820) (06/07/2020) <Adeeb Shihadeh>

A community member, Mufeed VH, pointed out a vulnerability, specifically an insecure

temporary file creation vulnerability (CWE-377), that affected a deprecated library that was

https://lgtm.com/
https://pre-commit.ci/

Chapter 3 51

still used. The issue was solved by substituting the vulnerable function mktemp() with the

more secure NamedTemporaryFile(). [22]

Fix insecure temporary file creation (#1890) (18/07/2020) <Mufeed VH>

fix params permissions after #1890 (19/07/2020) <Adeeb Shihadeh>

Other small additions were made to consider more variables that could be relevant for

Openpilot, such as the car battery capacity. It has also made explicit to the user the last

exception detected when the update of Openpilot fails 15 times, and this exception is saved

in a dedicated persistent parameter.

add test for params permissions (19/07/2020) <Adeeb Shihadeh>

don’t init sound (31/07/2020) <Harald Schafer>

Alert when updated consistently fails (#2013) (12/08/2020) <Adeeb Shihadeh>

An important refactor of the power management system was made to solve an issue [23]

opened to solve a battery drain problem of the comma device that users could experience in

the case in which they would use the car for short periods daily. The Comma Two was set

to be on for 30 hours and then turn off, to avoid syncing problems with Comma Connect. If

used repeatedly for short periods, the Comma Two would be on for days and continuously

drain the battery, with the car battery not able to charge the device completely during the

short drive. Many proposals were discussed in the relative pull request [24] and a solution

was found by logging the car battery level and shutting the device down if it reaches a certain

threshold while the car is off.

Car power integrator + power management refactor (#1994) (17/08/2020)

<robbederks>

One of the main refactor of the common package was made to overcome the hardcoded

dependencies from the android platform and abstract the hardware layer, by creating

different hardware classes that could be instantiated according to the different platforms on

which Openpilot would be run. This implied moving the Android-specific methods and

attributes into a dedicated Android class and was also created a TICI class that included all

the methods and attributes relative to the new Comma Three that was being developed.

Unused parameters were also removed, and other modifications were made to improve the

performance and reliability, especially for the utility functions needed to retrieve the real-

time information.

UI vision refactor (#2115) (04/09/2020) <Adeeb Shihadeh>

TextWindow Enhancements (#2114) (04/09/2020) <Shane Smiskol>

Improve realtime performance on NEOS (#2166) (17/09/2020) <Adeeb Shihadeh>

Realtime shield (#2194) (18/09/2020) <Adeeb Shihadeh>

Pandad: turn on panda power (#2073) (24/08/2020) <Willem Melching>

Hardware abstraction class (#2080) (26/08/2020) <Willem Melching>

hardware.py: PC is Wi-Fi so uploader works (26/08/2020) <Willem Melching>

tici: fix set_realtime_priority (#2124) (02/09/2020) <Willem Melching>

clean up old params (04/09/2020) <Adeeb Shihadeh>

handle exception in android service call (11/09/2020) <Adeeb Shihadeh>

Tici hardware abstraction layer (#2183) (17/09/2020) <Willem Melching>

tici: reboot (15/10/2020) <Willem Melching>

Chapter 3 52

Params: use a multiple-reader / single-writer flock to improve concurrency (#2207)

(24/09/2020) <Dean Lee>

Run all driving processes on cores 2-3 (#2257) (03/10/2020) <Adeeb Shihadeh>

More optimizations were also made to speed up the boot times, simplify the code, and

replace unused libraries. In particular, the optimization on the permission check allowed to

save 2.5 seconds when booting Openpilot.

Speedup android permissions (#2331) (13/10/2020 15:35) <Gregor Kikelj>

Params refactor, simplified (#2300) (13/10/2020 16:23) <Willem Melching>

fix params on PC and when reading path from env (#2340) (14/10/2020) <Adeeb

Shihadeh>

set default path for put_nonblocking helper (14/10/2020) <Adeeb Shihadeh>

Params path only in one place (#2344) (15/10/2020) <Willem Melching>

revert apk launch thread (16/10/2020) <Adeeb Shihadeh>

fix build warnings (#2355) (17/10/2020) <Adeeb Shihadeh>

store params in ~/.comma on PC (#2369) (20/10/2020) <Willem Melching>

More changes to the structure were made and more components were moved to the common

folder, so that general information about the hardware could be accessed from everywhere

in the code.

Scons builder for cython extensions (#2485) (11/11/2020) <Gregor Kikelj>

Simple improvements for quality gate (#2517) (12/11/2020) <Jon Ander Oribe>

Make the DSP work everywhere (#2621) (30/11/2020) <George Hotz>

Move thermald hardware calls into HW abstraction layer (#2630) (02/12/2020)

<robbederks>

hardware.py: get network info over dbus (#2727) (14/12/2020 14:19) <Willem

Melching>

Set GPU priorities + improved modeld priorities (#2691) (16/12/2020) <Adeeb

Shihadeh>

HW abstraction layer (#19530) (17/12/2020) <Adeeb Shihadeh>

With the introduction of the driving statistics, displayed on the main Qt UI, more parameters

and utility functions were also added to the common folder. This included the parameters to

keep track of the status of the vision toggle and the hardware details of the device, as well

as parameters to store the time zone and the last time the GPS was updated, needed to show

that information when no connection was available or with the car not moving.

b"HardwareSerial": [TxType.PERSISTENT],
b"IMEI": [TxType.PERSISTENT],
b"VisionRadarToggle": [TxType.PERSISTENT],
b"LastGPSPosition": [TxType.PERSISTENT],
b"LastUpdateTime": [TxType.PERSISTENT],
b"Timezone": [TxType.PERSISTENT]

Qt Offroad stats (#19498) (18/12/2020) <Gregor Kikelj>

Mpc rework2 (#19660) (15/01/2021) <Harald Schafer>

Qt offroad: pairing (#19675) (18/01/2021) <Gregor Kikelj>

params helpers (#19788) (19/01/2021) <Greg Hogan>

vision-only radar toggle (#19849) (27/01/2021) <Greg Hogan>

Chapter 3 53

Timezoned (#19960) (06/02/2021) <Willem Melching>

fixup ui (#20049) (10/02/2021) <Harald Schafer>

Spinner: wait for UI to start (#20279) (09/03/2021) <Shane Smiskol>

The development of new features required also more parameters to be stored, to save the

state of the new relevant information needed. In particular, with the possibility to force

power down the device and to SSH the operative system, a parameter telling if any of these

actions are allowed to be performed is needed. The same is true for the introduction of the

possibility to lock and unlock the car remotely, while the toggle to change the lane while

driving was removed, together with the corresponding parameter.

b"SshEnabled": [TxType.PERSISTENT],
b"ForcePowerDown": [TxType.CLEAR_ON_MANAGER_START],
b"RecordFrontLock": [TxType.PERSISTENT], # for the internal fleet

agnos 0.6 (#20077) (19/02/2021 03:14) <Adeeb Shihadeh>

Fix tici powerdown and add support for forcing (#20132) (23/02/2021) <robbederks>

record front lock (#20400) (19/03/2021 04:15) <Adeeb Shihadeh>

Remove lane change toggle and default LDW to off (#20442) (23/03/2021) <Adeeb

Shihadeh>

In release 0.8.3 it was introduced a new model to support the laneless drive, the KALE (or

KL) model. The laneless drive is not the default mode of drive, so it has been added a toggle

to turn this mode on. The corresponding parameter can be accessed through the key

“EndToEndToggle”.

b"EndToEndToggle": [TxType.PERSISTENT]

New KL model + laneless toggle (#20454) (24/03/2021) <Harold Schafer>

To further increase the performances, as well as the maintainability of the project, caching

and logging have been introduced to different modules of selfdrive, and to support them,

different parameters to keep stored the state of the different components have been

introduced. To also increase usability, it has been introduced a series of toggles to enable the

wide camera and the LTE connection, and the relative parameter to keep track of the user

actions have been introduced as well.

b"GitDiff": [TxType.PERSISTENT],
b"GithubUsername": [TxType.PERSISTENT],
b"ApiCache_DriveStats": [TxType.PERSISTENT],
b"ApiCache_Device": [TxType.PERSISTENT],
b"ApiCache_Owner": [TxType.PERSISTENT],
b"EnableWideCamera": [TxType.PERSISTENT],
b"EnableLteOnroad": [TxType.PERSISTENT],
b"ControlsReady": [TxType.CLEAR_ON_MANAGER_START,
TxType.CLEAR_ON_PANDA_DISCONNECT]

log to file and send through athena (#20250) (25/03/2021) <Greg Hogan>

updated: log git diff on overlay init (#20476) (26/03/2021) <Adeeb Shihadeh>

Qt: cache home screen state (#20395) (26/03/2021) <Dean Lee>

Cache prime/points widget (#20497) (26/03/2021) <Willem Melching>

Chapter 3 54

logging cleanup (#20502) (27/03/2021) <Greg Hogan>

Qt: show username for current SSH keys (#20508) (29/03/2021) <Dean Lee>

Params: python-like interface (#20506) (30/03/2021) <Dean Lee>

add putBool/getBool wrappers to cython params class (#20611) (07/04/2021)

<Willem Melching>

ecam toggle (#20597) (07/04/2021) <Willem Melching>

Params: new class FileLock (#20636) (09/04/2021) <Willem Melching>

LTE toggle (#20683) (15/04/2021) <Adeeb Shihadeh>

delay controls start (#20761) (30/04/2021) <Adeeb Shihadeh>

To grant quick access to the common parameters keys list, it has been ported from Python

to C++ and moved from the common folder to selfdrive/common/. In this way, the Python

files only provide utility function caller more rarely, while the parameters key can be

accessed and managed using quicker C++ methods.

Params: move keys from cython to cc (#20814) (04/05/2021) <Dean Lee>

After that, the parameter type indicating that a parameter should be reset after the car engine

is started was added.

The enum ParameterKeyType, in which are enumerated all the parameters type available,

after the refactor and the last additions become the following.

enum ParamKeyType {
 PERSISTENT = 0x02,
 CLEAR_ON_MANAGER_START = 0x04,
 CLEAR_ON_PANDA_DISCONNECT = 0x08,
 CLEAR_ON_IGNITION_ON = 0x10,
 CLEAR_ON_IGNITION_OFF = 0x20,
 ALL = 0x02 | 0x04 | 0x08 | 0x10 | 0x20
};

add CLEAR_ON_IGNITION param type (#20810) (04/05/2021) <Adeeb Shihadeh>

Add CLEAR_ON_IGNITION_OFF param type (#21121) (04/06/2021) <Shane

Smiskol>

Refactoring the main methods to manipulate the parameters and translating them in C++

allowed to leverage the threaded execution, since Cython code can release the global

interpreter lock (GIL) if no Python objects are manipulated by the specific fragment of code

where the GIL has been released. From the official documentation, we read that GIL is the

mechanism that assures that only one thread executes Python bytecode at a time. By

releasing it, the performances can be increased by leveraging multi-threading.

Release GIL when calling C++ params functions (#21257) (15/06/2021) <Willem

Melching>

After the last clean-up of the code and a fix to the log of the error, version 0.8.7 of Openpilot

was officially released.

Add type hints, small cleanups (#21080) (03/06/2021) <Josh Smith>

only log errors once (15/07/2021) <Greg Hogan>

Chapter 3 55

 Laika

Laika is an open-source library for processing GNSS. The Global Navigation Satellite

System (GNSS) refers to the set of constellations of satellites that include Europe’s Galileo,

the USA’s NAVSTAR Global Positioning System (GPS), Russia’s Global'naya

Navigatsionnaya Sputnikovaya Sistema (GLONASS), and China’s BeiDou Navigation

Satellite System. The different constellations of satellites provide signals from space that

include positioning and timing data and the GNSS receivers use all these data to determine

the exact location.

Laika can process raw GNSS observations with data gathered online from various analysis

groups to produce data ready for position/velocity estimation, producing accurate results,

readable and easy to use. One of the possible methodologies that can be adopted to determine

the position of a GNSS receiver is that of the Time-Of-Arrival. The different satellites have

known orbits, so it is possible to determine their positions at any time. Since the signals

travel at the speed of sound, by measuring the time that passes from when the signal is sent

to when is received is possible to calculate the distance of the receiver from the satellite

(3.12).

This makes determining the receiver's position a basic 3-dimensional trilateration problem.

In practice, observed distances to each satellite will be measured with some offset that is

caused by the receiver's clock error. This offset also needs to be determined, making it a 4-

dimensional trilateration problem.

Laika is designed to process the received data and transform the raw GNSS data into usable

distance measurements and satellite positions ready to be used to estimate the position. This

is possible thanks to the class AstroDog, which is the main component of Laika.

Running the Jupyter Notebook file “walkthrough.ipybn” gives some important insight on

what operations this library allows to perform, which include retrieving different pieces of

information about the satellites such as their accurate position, velocity, and clock error.

Sattelite's position in ecef(m):
[-19501731.52999999; -7580440.43899999; 16817823.82499999]
Sattelite's velocity in ecef(m/s):
[1993.27528306; -613.07074562; 2016.32438942]
Sattelite's clock error(s): 0.00025521380390669117
Sattelite's delay correction (m) in San Fransisco: 3.1049571045513886

Laika supports different constellations of satellites, and is possible to get their orbits’

information that is publicly available to download. The files containing this information are

broadcasted by Crustal Dynamics Data Information System (CDDIS), the official NASA’s

archive of Space Geodesy Data, and can be downloaded at https://cddis.nasa.gov. The

official format for exchanging raw satellite navigation system data I known as Receiver

Independent Exchange Format (RINEX).

 R = range

(3.12) R = 𝑣𝑠𝑜𝑢𝑛𝑑 ∗ Δt  𝑣𝑠𝑜𝑢𝑛𝑑 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓𝑠𝑜𝑢𝑛𝑑

 𝛥𝑡 = transmit time − receive time

https://cddis.nasa.gov/

Chapter 3 56

RINEX enables storage of measurements of pseudo-range, carrier-phase, Doppler, and

signal-to-noise. After parsing these data, is possible to extract all this information and use

them for many purposes, such as plotting them to show the actual orbits of the satellites in

the constellation of interest.

Figure 18 - Visualization of GLONASS and GPS orbits

Is also possible to track the number of satellites that are in view for each time frame (or

epoch) and to calculate their distance from the receiver, so that is possible to plot the exact

position of each satellite and position it precisely in their orbits.

Figure 19 - Receiver on Earth and the estimation of the position in space of multiple satellites

AstroDog can also make predictions on positioning measurement based on the previous

measurement. The predictions are not always precise, but still, they are close to the actual

measurement.

Chapter 3 57

Figure 20 - Predictions of the Carrier Phase (CP) made by AstroDog

 Package structure

The main components providing the Laika library functionalities are included in the /laika

directory, but the repository also comes with tests and examples which showcase the library

features and performances.

Figure 21 - Package diagram of Laika

Laika library is written in Python and has a strong focus on readability, usability, and easy

integration with other optimizers. It runs in Python 3.8.2 and has only been tested on Ubuntu

20.04.

Language Files Blank Comment Code

Python 29 743 452 3556

HTML 1 9 0 1823

Jupyter Notebook 3 0 1029 329

Markdown 1 31 0 59

YAML 2 2 0 54

SUM: 36 785 1481 5821

Table 16 - Lines of code of the Laika, by programming language

Chapter 3 58

 Implementation

More in detail, the AstroDog class provides methods and attributes to retrieve, store and

manage different types of localization data and from the different satellite constellations.

AstroDog

+ auto_update: bool

+ cache_dir: String

+ dgps: bool

+ dgps_delays: List

+ ionex_maps: List

+ pull_orbit: bool

+ valid_const: List<String>

+ cached_ionex: List<Any>

+ cached_dgps: List<Any>

+ orbit_fetched_times: TimeRangeHolder

+ nav_fetched_times: TimeRangeHolder

+ dcbs_fetched_times: TimeRangeHolder

+ orbits

+ nav

+ dcbs

+ cached_orbits

+ cached_nav

+ cached_dcbs

+ get_ionex(time)

+ get_nav(prn, time)

+ _select_valid_temporal_items(item_dict, time, cache)

+ get_navs(time)

+ get_orbit(prn, time)

+ get_orbits(time)

+ get_dcb(prn, time)

+ get_dgps_corrections(time, recv_pos)

+ add_ephem(new_ephem, ephems)

+ get_nav_data(time)

+ get_orbit_data(time)

+ get_dcb_data(time)

+ get_ionex_data(time)

+ get_dgps_data(time, recv_pos)

+ get_tgd_from_nav(prn, time)

+ get_sat_info(prn, time)

+ get_all_sat_info(time)

+ get_glonass_channel(prn, time)

+ get_frequency(prn, time, signal)

+ get_delay(prn, time, rcv_pos, no_dgps, signal, freq)

Table 17 - AstroDog class

The methods provided by AstroDog and their purpose will be analyzed in the following

pages, giving also details on the different types of data.

Chapter 3 59

• get_ionex(time): the Ionosphere map Exchange (IONEX) is a format adopted to

communicate effectively the total electron content (TEC) of the ionosphere. These data

are stored in IONEX files downloadable from

https://cddis.nasa.gov/archive/gnss/products/ionex/ and composed of a header and a data

section. IONEX supports the exchange of 2- and 3-dimensional TEC maps given a

certain geographic grid. The method get_ionex() returns a list of objects that have a time

that is closest to a given time (operation performed by the method get_closest() in

\laika\helpers.py). The set of data considered is retrieved by the method

get_ionex_data(), which downloads the IONEX map and returns the file path where is

stored. Data are then parsed and the head and the body of the file are extracted.

• get_nav(prn, time): all the satellites in the different constellations transmit information

about their location and timing via what is known as ephemeris data. This data is used

by the receivers to estimate their position on earth and is retrieved by the method

get_nav(prn, time). The pseudo-random noise (prn) is the satellite ID in the RINEX

convention, while the time is the epoch for which the data has to be retrieved. The method

get_nav_data(time) retrieves the Ephemeris data for the desired constellation of satellites

and parses them to generate a corresponding Ephemeris object (GLONASSEphemeris

or GPSEphemeris), which easily allow access to the satellites key information. The

Ephemeris is then checked and only the one with a time that is closest to a given time is

cached. In this way is possible to access the cached ephemeris knowing that it will be

the most recent available. According to the time at which the request for the Ephemeris

is made, data on a daily or an hourly basis may be available. The CDDIS creates daily

broadcast ephemeris files from the GNSS site-specific files transmitted by the stations

and for both GPS and GLONASS data they can be downloaded at the URL

https://cddis.nasa.gov/archive/gnss/data/daily/. A similar file is created at the start of the

UTC day and updated on an hourly basis from the hourly broadcast navigation files and

these files are available at https://cddis.nasa.gov/archive/gnss/data/hourly/.

• add_ephem(new_ephem, ephem): add the new_ephem object, recorded by a satellite

with a certain prn, to the map of Ephemeris already stored. At each key of the map, equal

to the prn, will correspond an array of Ephemeris objects acquired by the satellite with

that same prn.

• _select_valid_temporal_items(item_dict, time, cache): it returns only valid temporal

item for a specific time from currently fetched data, by verifying that the absolute value

of the difference between the time of the measure and that of the Ephem data is less than

a maximum difference.

• get_navs(time): uses the method _select_valid_temporal_items(item_dict, time, cache)

to validate the cached navigation data for a specific time. If the considered time does not

have a corresponding Ephemeris file, the method calls get_nav_data(time) to get a valid

Ephemeris file that corresponds to that time.

• get_orbit (prn, time): satellite orbit solutions are made available using pre-determined

schedules, e.g., sub-daily, daily, or weekly, depending upon the data product. All orbit

solution files utilize the Extended Standard Product- 3 (SP3c) format. All operational

IGS GNSS products (i.e., orbits, station positions, EOP, clock solutions) are available in

subdirectories, divided by GPS week, and are retrieved by the method

download_orbits(), which downloads the file corresponding to the desired GPSTime.

Files can be accessed via https://cddis.nasa.gov/archive/gnss/products/ for GPS and

ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/ for GLONASS. The files are then parsed by

the method parse_sp3_orbits(), which generates a PolyEphemeris object holding the

navigation information for easy access. The newest ephemeris is then cached.

https://cddis.nasa.gov/archive/gnss/products/ionex/
https://cddis.nasa.gov/archive/gnss/data/daily/
https://cddis.nasa.gov/archive/gnss/data/hourly/
https://cddis.nasa.gov/archive/gnss/products/
ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/

Chapter 3 60

• get_orbits(time): uses the method _select_valid_temporal_items(item_dict, time,

cache) to validate the cached navigation data for a specific time. If the considered time

does not have a corresponding Ephemeris file, the method calls get_orbits_data(time) to

get a valid Ephemeris file that corresponds to that time.

• get_dcb(prn, time): Differential Code Biases (DCBs) are the systematic errors, or

biases, between two GNSS code observations at the same or different frequencies. DCBs

are required for code-based positioning of GNSS receivers, extracting ionosphere total

electron content (TEC), and other applications. The method get_dcb(prn, time) retrieves

the DCB of the satellite that has the ID equals to the prn and it caches the result in a map

containing all the most recent DCB for each prn. If no DCB is already cached the method

get_dcb_data is invoked to initialize the DCBs map.

• get_dcb_data(time): the method tries to download the DCB files from the repository at

https://cddis.nasa.gov/archive/gnss/products/bias/ for the time specified and if the file is

available is downloaded and cached, then the file path of the file is returned. Data is

retrieved for many days since a lot of data are missing in the database.

• get_ tgd_from_nav(prn, time) the term 𝑇_𝐺𝐷 corresponds to the group delay

differential. TGD values are referenced to an empirical absolute instrumental (satellite)

bias, whereas DCB values are in a relative sense to reflect the differential hardware (the

satellite or receiver) delay between two different code observations obtained on the same

or two different frequencies. 𝑇_𝐺𝐷 values can be easily accessed through the method

get_tgd_from_nav(), which returns the tgd parameter of the GPSEphemeris object with

the specified prn.

• get_sat_info(prn, time): it allows to retrieve information recorded by a satellite, with

the identifier equal to the specified prn and recorded at a particular time. Information

includes the position, velocity, and clock error.

• get_all_sat_info(time): it fetches the information recorded by all the satellites of the

constellation at the specified time and it creates a map, with the key equals to the

satellite’s prn and the value equal to an array containing the satellite’s information

(position, velocity, and clock error), for all the satellites available.

• get_dgps_data(time, recv_pos): A Differential Global Positioning System (DGPS) is

an enhancement to the Global Positioning System (GPS) which provides improved

location accuracy, in the range of operations of each system, from the 15-meter nominal

GPS accuracy to about 1-3 centimeters in case of the best implementations. These data

are acquired by the network of CORS stations. The Continuously Operating Reference

Station (CORS) network is a multi-purpose cooperative endeavor involving more than

220 government, academic, commercial, and private organizations. Although

participation in the CORS network is voluntary site operators must adhere to certain

basic standards and conventions. CORS sites have a fundamental role in establishing and

giving access to the National Spatial Reference System (NSRS). This network aims to

minimize GNSS signal distortion and maximize the quality of calculated positions,

following models used in processing GNSS data, to obtain centimeter to sub-centimeter

accuracy. The list of available CORS is retrieved and the set of stations that are closest

to the specified position recv_pos is then identified. For each station, the data is

downloaded from ftp://geodesy.noaa.gov/cors/rinex/ and cached in RINEX format. If

such file exists, is parsed and a DGPSDelay object is generated and appended to the array

of available objects. A DGPSDelay object contains information on the station id, station

position, transmission delays, and maximum distance from the receiver.

• get_dgps_corrections(time, recv_pos): it returns the cached DGPSDelay object that is

the closest to the given time, if available, otherwise it fetches the DGPS data through the

https://cddis.nasa.gov/archive/gnss/products/bias/
ftp://geodesy.noaa.gov/cors/rinex/

Chapter 3 61

method get_dgps_data() and caches the one that has the time that is closest to the

specified time.

• get_delay(prn, time, rcv_pos, no_dgps, signal, freq): it returns the transmission delay

of the specified satellite. The satellite information is first retrieved using the method

get_sat_info() and if these data are available the Elevation and Azimuth for the satellite’s

position are calculated. The Elevation describes the angle of a satellite relative to the

horizontal plane, while the Azimuth is the angle between the satellite and true North. If

the Elevation is less than 18° the function terminates, otherwise, it calculates the delay

according to the type of satellite. In the case of a CORS satellite, the delay is calculated

through get_dgps_corrections(), while in the other cases the method calculates the

ionospheric and tropospheric delays, also making corrections using the differential code

biases. In the ionosphere the speed of propagation of radio signals depends on the number

of free electrons in the path of a signal, causing the delay, while in the troposphere the

speed of propagation of GPS signals in the troposphere is lower than that in free space

and, therefore, the apparent range to a satellite appears longer, typically by 2.5-25 m

depending on the satellite elevation angle.

• get_glonass_channel(prn, time): All GLONASS satellites transmit the same code as

their standard-precision signal; however, each transmits on a different frequency using a

15-channel frequency division multiple access (FDMA) technique spanning either side

from 1602.0 MHz, known as the L1 band. The method get_glonass_channel() returns

the channel on which the satellite with the specified prn is transmitted at a given time.

• get_frequency(prn, time, signal): Each constellation of satellites transmits signals on

very precise frequencies. GPS satellite program started to transmit right-hand circularly

polarized signals to the earth at two frequencies, designated L1 (at 1575.42MHz) and

L2 (at 1227.6 MHz). Moreover, a new radio frequency link (L5 at 1176.45 MHz) for

civilian users has been included in a radio band reserved exclusively for aviation safety

services. Unlike GPS and the other GNSS, GLONASS uses Frequency Division Multiple

Access (FDMA) rather than Code Division Multiple Access (CDMA) for its legacy

signals transmission. The open signals are located at 1602 MHz (L1 band) and 1246

MHz (L2 band) for civil uses. A modernized GLONASS-K satellite, GLONASS-KM

also transmits on the L5 frequency at 1176.45 MHz, the same as the modernized GPS

signal L5 and Galileo signal E5a. Galileo satellites transmit permanently three

independent CDMA and Right-Hand Circularly Polarised (RHCP) signals, named E1,

E5, and E6. The E5 signal is further sub-divided into signals denoted E5a and E5b. The

precise frequency at which a satellite transmits can be identified by the method

get_frequency() by getting the constellation to which the satellite belongs, calculated

using the prn, and the code corresponding to the transmission band.

Chapter 3 62

 Usage

Laika library is used to acquire and process GNSS data from the satellites and determine a

set of information including the satellite’s position, velocity, and frequency.

Figure 22 - Import dependencies between selfdrive and laika

The results obtained using the data processed by Laika are much more precise than those

produced using raw GNSS data acquired by the u-blox M8 GNSS module.

The process locationd combines GNSS, INS, and vision data to precisely estimate the

vehicle positioning in space. Through an Extended Kalman Filter, which is provided by the

Rednose library, these data are smoothed and used by Openpilot. Rednose allows using many

measurements models, which in the case of Laika is based on processed GNSS acquisitions,

and combines them with the other measurements model to let the Extended Kalman Filter

consider all the possible sources of noise of the system.

bs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
 [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
 [h_phone_rot_sym, ObservationKind.NO_ROT, None],
 [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
 [h_pos_sym, ObservationKind.ECEF_POS, None],
 [h_vel_sym, ObservationKind.ECEF_VEL, None],
 [h_orientation_sym, ObservationKind.ECEF_ORIENTATION_FROM_GPS, None],
 [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
 [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
 [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]]

Chapter 3 63

GNSS processing requires getting data from the internet from various analysis groups such

as NASA's CDDIS. AstroDog downloads and caches files from FTP servers from these

groups when it needs them. These files are then parsed by AstroDog and kept in memory.

Every one of these parsed objects (DCBs, ionospheric models, satellite orbit polynomials,

etc.) has a valid location area and/or a valid time window. Within those windows, these

objects can provide information relevant to GNSS processing.

The following activity diagrams show how some of the main methods provided by the library

communicate with the different components. The methods considered are get_ionex()

[Figure 23], get_nav() [Figure 24], and get_orbit() [Figure 25].

Chapter 3 64

Figure 23 - get_ionex() activity diagram showing download, elaboration, and caching of IONEX files

Chapter 3 65

Figure 24 - get_nav() activity diagram showing download, elaboration, and caching of NAV files

Chapter 3 66

Figure 25 - get_orbit() activity diagram showing download, elaboration, and caching of ORBIT files

Chapter 3 67

 Testing

The functionalities of laika are tested through unit testing, using the unittest framework. The

test cases focus on verifying the different aspects of the process of retrieving data from a

satellite and checking their validity.

• TestDOP: get raw data from the satellite and verify their dilution of precision (DOP).

DOP describes to what extent the errors in the measurement will affect the final state

estimation and is defined as GDOP  =  ∆(𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)/∆(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎) [25].

The tests verify the different measurements that compose the dilution of precision and

check that the DOP stays close to a given threshold. The different types of DOP are:

o HDOP – horizontal dilution of precision

o VDOP – vertical dilution of precision

o PDOP – position (3D) dilution of precision

o TDOP – time dilution of precision

o GDOP – geometric dilution of precision

TestDOP

+ satellites

+ receiver

+ setUp()

+ test_GDOP()

+ test_HDOP()

+ test_VDOP()

+ test_PDOP()

+ test_TDOP)

Table 18 - TestDOP Test Case

• TestAstroDog: AstroDog is the main component of this library and these tests check

that the different methodologies that can be used to retrieve satellites information (such

as Ephemeris and Orbits) return close enough results.

TestAstroDog

+ gps_times_list

+ svIds

+ gps_times

+ test_nav_vs_orbit__old()

Table 19 - TestAstroDog Test Case

• TestFailCache: this test tries to retrieve satellite data 1000 times and checks that it takes

less than 10 seconds.

TestFailCache

+ gps_times_list

+ svIds

+ gps_times

+ test_no_infinite_pulls()

Table 20 - TestFailCache Test Case

Chapter 3 68

• TestFetchSatInfo: tests that AstroDog can retrieve information using all the different

types of constellations and methodologies available. It does that by defining an array of

all the possible combinations of the constellation and pull methodologies and requests

for the satellites’ data, expecting a not empty result.

TestFetchSatInfo

+ test_fetch_data_from_distant_future()

+ test_no_block_satellite_when_get_info_from_not_available_period()

+ test_get_all_sat_info_gps()

Table 21 - TestFetchSatInfo Test Case

• TestPositioning: it downloads and caches the satellite positioning information from the

official website and computes its exact position, comparing actual data with the result of

the computation of the same data using a WSL optimizer.

TestPositioning

+ test_station_position()

Table 22 - TestPositioning Test Case

• TestConstellationPRN: Check the validity of the unique identifier of the satellites for

the different constellations (PRN). From the PRN should be possible to get all the

information of the satellite, such as the constellation to which it belongs, and the tests in

this test case try to retrieve this information for both valid and invalid PRNs.

TestConstellationPRN

+ test_constellation_from_valid_prn()

+ test_constellation_from_prn_with_invalid_identifier()

+ test_constellation_from_prn_outside_range()

+ test_prn_from_nmea_id_for_main_constellations()

+ test_prn_from_nmea_id_for_SBAS()

+ test_prn_from_invalid_nmea_id()

+ test_nmea_id_from_prn_for_main_constellations()

+ test_nmea_id_from_prn_for_SBAS()

+ test_nmea_id_from_invalid_prn()

+ test_nmea_ranges_are_valid()

Table 23 - TestConstellationPRN Test Case

• TestTime: performs different verifications on the synchronization of the satellites’ time

and on the methods needed to convert and compare the system time with the satellites’

time. The checks performed try to verify that a given time is in a certain time range and

that the methods used to manipulate the time data and the time ranges return the expected

results, by comparing the result of their computation with the expected outcome of the

computation.

Chapter 3 69

TestTime

+ datetimes_strings

+ datetimes

+ gps_times_list

+ gps_times

+ test_gps_time_dt_conversion()

+ test_gps_time_week_rollover()

+ test_gps_time_subtraction_addition()

+ test_syncer()

+ test_utc_converter()

Table 24 - TestTime Test Case

• TestTimeRangeHolder: retrieves ranges of time from the satellite and verifies different

properties, like the possibility to marge more ranges of time, to check if a given time is

inside or outside of a given range and if a range is empty.

TestTimeRangeHolder

+ test_empty()

+ test_one_in_range()

+ test_one_outside_range()

+ test_merge_ranges()

+ test_extend_range_left()

+ test_extend_range_right()

Table 25 - TestTimeRangeHolder Test Case

To prove the efficacy of Laika, the library was tested using comma2k19, a large dataset ideal

for the development and validation of tightly coupled GNSS algorithms and mapping

algorithms that work with commodity sensors.

A lack of ground truth can make it difficult to judge GNSS algorithms since the true position

of the receiver is never known. However, assuming the height of the road is constant within

a small area, it can be estimated the altitude accuracy of a position fix by checking the

variation of the estimated road height over small sections (5m x 5m) of road. This requires

many passes through the same section of road to be reliable but the high-density data from

comma2k19 is more than sufficient.

The conducted tests compare the measurement estimated using Laika algorithm and the ones

computed using Live u-blox baseline algorithm and as it can be seen from Figure 26 the

results show that overall, Laika can reduce the positioning error by 40%.

The measurement has been made with the antenna in two different positions, in one case on

the roof of the vehicle and in the other case under the windshield, where the device is

supposed to be when using Openpilot. The following bar charts show the error dispersion in

the two cases when using Laika and when using u-blox live.

Chapter 3 70

Figure 26 - Comparison of the measurements acquired with Laika and U-Blox. Laika shows a much higher

concentration of data around 0 meters of altitude error

 Development and community contribution

Laika is an open-source GNSS processing library developed with comma2k19. comma2k19

is a dataset of over 33 hours of commute in California's 280 highway. This means 2019

segments, 1 minute long each, on a 20km section of highway driving between California's

San Jose and San Francisco.

comma2k19 is a fully reproducible and scalable dataset. The data was collected using

comma EONs equipped with sensors similar to those of any modern smartphone, including

a road-facing camera, phone GPS, thermometers, and 9-axis inertial measurement units

(IMU). Additionally, the EON captures raw GNSS measurements, and all CAN data sent by

the car with a comma grey panda.

The comma2k19 project was possible thanks to Eddie Samuels, Nicholas McCoy, George

Hotz, Greg Hogan, Viviane Ford, and Willem Melching, who set up the hardware and

infrastructure that enabled this research, while most of the work on the Laika library was

made by Harald Schafer, the CTO of Comma.ai, who has made more than 100 commits to

the repository.

Laika is a public repository on GitHub since the 20th of November 2018 and today counts

almost 200 commits, more than half of which has been made by Harald Schafer. Of these

commits, the ones that directly affect the code or the repository structure are around 80

commits, while the others are small fixes to the documentation, typos, and comments.

To better understand how the library was modified over time, we can distinguish between

two classes of modifications: the ones that directly affected the functions of the library and

the ones that improved the documentation and the test provided with the library.

For the second category of modifications, we will look at the commits that modified the files

contained in the folders laika_repo/examples and laika_repo/tests, which contains

respectively a series of Jupiter Notebooks which showcase the functioning of the library,

also when combined with a Kalman filter, and a series of unittests to validate the library. At

Chapter 3 71

the first publication of the repository the library was pretty simple, and so were the tests and

the examples included.

Many tests were left commented, waiting for the implementation of the needed methods.

laika tests (29/11/2018) <Harald Schafer>

change test positions (29/11/2018) <Harald Schafer>

The following commits, instead, focused on the development of the Jupiter Notebooks which

showcased the accuracy of Laika and compared the result of the computation of raw data

using Laika and that using u-blox, together with some fixes on the import and the location

of the tests files after the refactoring of the whole library structure.

add Kalman example (21/11/2018) <Harald Schafer>

run test using setup.py test (26/11/2018) <Willem Melching>

cleaned a little (27/11/2018) <Harald Schafer>

packaging fixes (29/11/2018) <Harald Schafer>

update notebooks (29/11/2018) <Harald Schafer>

add cache for speed (29/11/2018) <Harald Schafer>

final updates notebooks (29/11/2018) <Harald Schafer>

updated plots (29/11/2018) <Harald Schafer>

At this point, the repository includes three Jupiter Notebooks, Compute_station_pos.ipynb,

Kalman.ipynb, and Walkthrogh.ipynb. They respectively download some observation data

from a CORS station and confirm the position estimate to the known position of the station,

show the difference between fixes computed with Laika from raw data of the u-blox receiver

versus the fixes the u-blox receiver computes, and test the functioning of AstroDog, the main

component of Laika. The Jupiter Notebooks were then further enriched by taking as input

data the one collected in Comma.ai’s database comma2k19.

use comma2k19 (12/12/2018) <Harald Schafer>

This required fixing some problems that the introduction of comma2k19 produced, and the

fixes were published that same day.

fix last Kalman bugs (12/12/2018) <Harald Schafer>

another update....... (12/12/2018) <Harald Schafer>

pushed wrong... (12/12/2018) <Harald Schafer>

For more than 9 months the examples and the tests remained unchanged, until when Python3

was adopted as the standard for the project and some adjustments had to be made to be

compliant with it. Most of the fixes regarded the syntax of the code. No other changes were

made to the examples and tests in 2019.

python 3 stuff (27/09/2019) <Harald Schafer>

fix prints (27/09/2019) <Harald Schafer>

A new TestCase was introduced after the publication of the repository at the beginning of

2020. The TestPositioning test case has the same behavior as the Jupiter Notebook

Compute_station_pos.ipynb, but in a form of a unittest.

Created test_positioning.py, a modification of Compute_station_pos.ipynb to test

new code. Behavior should be the same, however differential code bias has not been

Chapter 3 72

updated for new signals and returns 0 for new signals. Implemented warning to

notify user. (18/01/2020) <Logan Maynard>

make unit test (23/01/2020) <Harald Schafer>

fix examples path (28/01/2020) <Willem Melching>

More tests and fixes were then added by a community member, Slawomir Figiel. In

particular, the added unit test checks the return value of the methods which calculate the

Dilution of Precision (DOP) parameters.

The pull request on GitHub was reviewed and merged with the master branch.

def test_GDOP():
 dop = get_DOP(self.receiver, self.satellites)
 self.assertAlmostEqual(dop, 2.352329857908973)

def test_HDOP():
 dop = get_HDOP(self.receiver, self.satellites)
 self.assertAlmostEqual(dop, 1.3418910470124197)

def test_VDOP():
 dop = get_VDOP(self.receiver, self.satellites)
 self.assertAlmostEqual(dop, 1.7378390525714509)

def test_PDOP():
 dop = get_PDOP(self.receiver, self.satellites)
 self.assertAlmostEqual(dop, 2.195622042769321)

def test_TDOP():
 dop = get_TDOP(self.receiver, self.satellites)
 self.assertAlmostEqual(dop, 0.8442153787485294)

Fix VDOP, add more DOP measurements (07/05/2020) <Slawomir Figiel>

A second pull request by the same user was made a few days later, and the changes made

included important modifications to the library functionalities, that will be better discussed

in the part regarding the evolution of the Laika library’s functionalities and structure.

Remove hardcoded constellation size (09/05/2020) <Slawomir Figiel>

Add method for fetch all satellites from specific time (09/05/2020) <Slawomir Figiel>

Update Walkthrough (09/05/2020) <Slawomir Figiel>

Prevent to re-fetch data for prn not found, warnings instead of exceptions in helpers

(16/05/2020) <Slawomir Figiel>

For what concerns the tests, both modified and newly added, in this pull request have been

introduced three new unit tests: test_prns.py, test_fetch_sat_info.py, and

test_time_range_holder.py. These modifications allowed to have a better division of the

different types of tests, i.e., moving the tests which retrieved data from satellites, that were

first included in the file test_ephemeris.py, to the dedicated file test_fetch_sat_info.py.

Another test was then added to check that the AstroDog component stops trying to retrieve

data after failing for 10 seconds. This simple test is important to verify that the execution of

AstroDog doesn’t stop unexpectedly.

don’t keep retrying if it has already failed (12/05/2020) <Harald Schafer>

Chapter 3 73

One last modification to the test fixed the time used for some satellites.

no old data on Russian servers (28/10/2020) <Harald Schafer>

For what concerns the modification to the library’s structure and functionalities, we can see

that in the latest years many users other than Harald Schafer contributed to the development

of Laika, however until the end of 2019 he was the only active contributor.

The structure of Laika was different from the current one: the Laika folder was contained in

the gnss folder (then eliminated), and the tests were included in the Laika folder and not in

the main repository laika_repo.

Initial commit (20/11/2018) <Harald Schafer>

laika in submodule (20/11/2018) <Harald Schafer>

After some general fixes to the setup files and import files were made, and also caching has

been improved, by making Laika download the needed files from the web in case of a cache

miss. Caching was already implemented for other types of data, such as ionex and orbits,

and it was then implemented also for DGPS. Also, the download method was fixed, allowing

to download data from the correct repository corresponding to the specific type of data in

case the cached files were not available or invalid.

cache naming for dgps (29/11/2018) <Harald Schafer>

pull from web if no cache (29/11/2018) <Harald Schafer>

downloading from cache wrongly (29/11/2018) <Harald Schafer>

Caching allows to improve the performances of Laika, but there were other problems with

the library that had to be tackled. The first one was the fix of the dilution of precision

parameters, which at the beginning was calculated as a unique parameter without making

the distinction between the different types of DOP. The calculation of the dilution of

precision was split into two components, the vertical and horizontal dilution of precision.

VDOP and HDOP (07/12/2018) <Harald Schafer>

Proper VDOP and HDOP (07/12/2018) <Harald Schafer>

Small optimizations were then also made to the download process, to consider the case in

which while parsing a DGPS file no constellation among the ones required are in the

constellation from which the raw data were acquired.

check constellations in pre-processed measurements (08/12/2018) <Harald Schafer>

Other unexpected behaviors were experienced when retrieving u-blox data, and this was due

to a missing control on the sigId parameter in an if statement, which caused the method

read_raw_ublow() to read also messages containing information about the subset of signals

marked as raw data. This particular behavior of the sigId parameter is described in a note in

the official u-blox documentation [26].

guess this was always wrong... (12/02/2019) <Harald Schafer>

Up to this moment, orbit data were retrieved by using the data of the GLONASS

constellation, and in case of a failure while downloading the data then used the GPS

constellation. This approach worked but it has been demonstrated how combining data

coming from different constellations improves the availability of signals, gives operators

more access, and increases accuracy.

Chapter 3 74

Therefore, the method get_orbit_data() was modified to download both GLONASS and

GPS orbit data at the same time, rather than downloading only when the download of

GLONASS orbit data failed.

always pull both (06/08/2019) <Harald Schafer>

In September 2019, Laika was then migrated to Python3, and this migration was performed

by George Hotz and Harald Schafer.

apply 2to3 (25/09/2019) <Andy Haden>

ignore swp files (25/09/2019) <George Hotz>

integer divide (25/09/2019) <George Hotz>

w -> wb (25/09/2019) <George Hotz>

python 3 stuff (27/09/2019) <Harald Schafer>

An important contribution, made by a community member, was made to support the new

GNSS codes introduced with the deployment of the new civil signals. This was made by

adding the frequencies of the new civil signals to the list of constants used by the AstroDog

component and adding the cases corresponding to the new signal types to the methods which

retrieve those frequencies given a specific signal type.

if get_constellation(prn) == 'GPS':
 if signal[1] == '1':
 return constants.GPS_L1
 elif signal[1] == '2':
 return constants.GPS_L2
 elif signal[1] == '5':
 return constants.GPS_L5
 elif signal[1] == '6':
 return constants.GALILEO_E6
 elif signal[1] == '7':
 return constants.GALILEO_E5B
 elif signal[1] == '8':
 return constants.GALILEO_E5AB

After the verification by the Comma.ai staff, the commits were merged with the master

branch.

Modified download_cors_station function to clarify error if file on server not found

Modified RINEXfile class to handle exception where file is not in local cache, ie, not

downloaded from server (17/01/2020) <Logan Maynard>

Modified program to handle new navigation signals and satellites Created

test_positioning.py, a modification of Compute_station_pos.ipynb to test new code.

Behavior should be the same, however differential code bias has not been updated

for new signals and returns 0 for new signals. Implemented warning to notify user.

(18/01/2020) <Logan Maynard>

Before making other big changes, were made small fixes to the download process (the

connection now is closed right after the data have been read).

close connection (23/01/2020) <Harald Schafer>

As already anticipated, the contributor Slawomir Figiel managed to add the methods needed

to calculate the vertical and horizontal Dilution of Precision.

Chapter 3 75

Fix VDOP, add more DOP measurements (07/05/2020) <Slawomir Figiel>

He also discussed with Harald Shafer the dynamics to retrieve the PRN from satellites to

avoid problems that could arise after the introduction of new satellites in the different

constellations. Eventually, a solution was found by establishing a new convention for the

unsupported satellites of which PRN is not available. [27]

Remove hardcoded constellation size (09/05/2020) <Slawomir Figiel>

Add method for fetch all satellites from specific time (09/05/2020) <Slawomir Figiel>

Support cache during read list of items from AstroDog (10/05/2020) <Slawomir

Figiel>

Prevent to re-fetch data for prn not found, warnings instead of exceptions in helpers

(16/05/2020) <Slawomir Figiel>

Other major contributions were made by Tyler, who fixed problems related to the download

of RINEX files and the management of exceptions in the case of errors.

minor fixups/changes (14/05/2020) <Tyler>

fix up url from debugging (14/05/2020) <Tyler>

The same user also pointed out other problems in the download process: in particular, he

also managed to drastically reduce the download time for CORS coordinates and update the

used standard for CORS station position.

download faster + more robust (15/05/2020) <Tyler>

use ITRF2014 position (15/05/2020) <Tyler>

make sure to pass back file paths (15/05/2020) <Tyler>

To better support the contribution of external users like Tyler and Slawomir Figiel, it has

been introduced a static analysis at commit time, which is executed every time that a user

commits. Like in the case of the other packages, this was done through the implementation

of pre-commit.ci.

add pre-commit ci (29/05/2020) <Willem Melching>

Install python differently (29/05/2020) <Willem Melching>

fix config location (29/05/2020) <Willem Melching>

try with laika as argument (29/05/2020) <Willem Melching>

run pre-commit after install (29/05/2020) <Willem Melching>

A case that was not considered when retrieving information from a GLONASS satellite was

that of a satellite with an unknown channel, so that was fixed by returning None in the case

of an unknown channel and returning None as a value for a delay or frequency of a satellite

with an unknown channel.

def get_glonass_channel(self, prn, time):
 nav = self.get_nav(prn, time)
 if nav:
 return nav.channel
 else:
 return None

deal with unknown channel for glonass (02/06/2020) <Harald Schafer>

Chapter 3 76

Another fix for what concerns RINEX files was made again by Tyler, and it was made to

deal with RINEX files having a data rate too fast. This allows saving memory and speed by

ignoring stations with a data rate below a certain threshold.

if self.rate and (hdr[0].microsecond or hdr[0].second % self.rate != 0):
 self._skip_obs(f, len(hdr[2]))
 continue

allow decimating rinex files if their rates are too fast (13/07/2020) <Tyler>

The geodesy data are downloaded from online repositories, which may not be always

available due to ordinary or extraordinary interventions that could be made throughout the

years. For this reason, different URL bases are available to download the geodesy files, and

multiple times they have been changed and updated in Laika to ensure that there was always

at least one operative service from which these data could be downloaded.

bye nasa (03/11/2020) <Harald Schafer>

missing / (03/11/2020) <Harald Schafer>

at least run that code.. (03/11/2020) <Harald Schafer>

no longer exists (13/11/2020) <Harald Schafer>

catch (05/01/2021) <Harald Schafer>

replace server (13/01/2021) <Harald Schafer>

esa is deleting stuff (04/06/2021) <Harald Schafer>

To ensure high availability of these data, GNSS and GLONASS data have been mirrored in

a dedicated GitHub repository, where data coming from the official sources are uploaded

periodically.

Added GitHub mirrors for gnss and glonass data (#50) (30/06/2021) <Mitchell Goff>

The download process itself has been modified to support more functionalities, such as the

download from both FTP and HTTPS URLs and the secret login when downloading files

from the NASA repositories and improved the existing ones. The caching functionalities

were updated to also support files downloaded from FTP and HTTP URLs and to throw an

exception in case of a missing known preamble in the download link.

The decompression process was optimized as well, introducing a new library (Hatanaka) to

automatically decompress the downloaded files rather than doing it manually.

support API (12/11/2020) <Harald Schafer>

add curl (12/11/2020) <Harald Schafer>

more robust (07/01/2021) <Harald Schafer>

some issue with ssl (12/11/2020) <Harald Schafer>

cache_failures (#40) (26/02/2021) <Harald Schafer>

secret login (#41) (11/03/2021) <Adeeb Shihadeh>

allow .netrc usage (#42) (11/03/2021) <Harald Schafer>

update nav data compression format (#43) (08/04/2021) <Martin Valgur>

Use Hatanaka library for RINEX decompression (#45) (19/04/2021) <Martin

Valgur>

Added 10s ftp connection timeout (#51) (14/07/2021) <Mitchell Goff>

Catch socket.timeout error (15/07/2021) <mitchellgoffpc>

Only use netrc file for nasa.gov downloads (#53) (24/07/2021) <Mitchell Goff>

Chapter 3 77

 OpenDBC

OpenDBC is a repository containing all the reverse-engineered signals corresponding to the

supported car. The signals coming from the cars are reversed engineered through Cabana,

accessible at https://my.comma.ai/cabana/, which allows visualizing the messages

exchanged on the CAN bus and creating a DBC file specific for the car. In the master branch

are also provided tools that allow generating a DCB file.

 Package structure

Figure 27 - Opendbc package diagram

OpenDBC is a C++ library that is wrapped using Cython and can be accessed like a normal

Python library. The C++ implementation grants high performances, while the callable

Python class and methods make the library much more usable.

Language Files Blank Comment Code

C++ 5 102 27 622

Python 6 81 42 293

Cython 2 55 9 200

C/C++ Header 2 31 1 139

SUM: 15 269 79 1.254

Table 26 - Packages included in opendbc main directory

 Implementation

A DBC file is a proprietary file format that describes the data that travels over a CAN bus.

Each DBC file can contain the definition of multiple DCB files. The starting point of each

file is indicated by the field CM_.

CM_ "Imported file _comma.dbc starts here";

For each file are defined the specifications of the messages exchanged on the bus. A message

must have one identifier and must contain one or more signals associated. A simple message

has the following structure [28]:

BO_ MSG_ID MSG_NAME: DLC SENDER
 SG_ SG_NAME : STARTING_BIT | BIT_SIZE@TYPE (SCALE,OFFSET) [MIN|MAX]
“UNIT” DST_NODE

https://my.comma.ai/cabana/

Chapter 3 78

• the MSG_ID field univocally identifies the message and is an unsigned integer.

• the MSG_NAME field is the name given to the message to make it human

comprehensive and is a string.

• the DLC (Data Length Code) field corresponds to the data field length in the requested

data frame. [29]

• the SENDER field is the component sending the message on the CAN bus.

• the SG_NAME field is the name given to the signal to identify it more easily.

• the STARTING_BIT field indicates the bit position at which the signal data frame

starts.

• the BIT_SIZE field indicates the size, in number of bits, of the signal data frame.

• the TYPE field indicates the formatting at the data level of the data frame. It can assume

values:

o @0-: signed big-endian

o @0+: unsigned big-endian

o @1-: signed little-endian

o @1+: unsigned little-endian

• the couple (SCALE,OFFSET) identifies the range and the precision required by the

variable to be sent. For instance, if the SCALE is 0.1 and TYPE is unsigned, the variable

value can range from 0.0 to 25.5.

• the couple [MIN|MAX] identifies if there is a minimum and a maximum value that the

variable sent can assume.

• the UNIT field indicates the unity of measure of the variable (it could be, for example,

“miles” or “centimeters”). It can also be an empty value.

• the DST_NODE field indicates the destination node, that is the receiver of the signal.

The following fragment of code is a typical message specification that is present in the DBC

files contained in the opendbc repository. In particular, the following message is the

GAS_PEDAL message specification of the Acura ILX 2016.

BO_ 513 GAS_SENSOR: 6 INTERCEPTOR
 SG_ INTERCEPTOR_GAS : 7|16@0+ (0.253984064,-83.3) [0|1] "" EON
 SG_ INTERCEPTOR_GAS2 : 23|16@0+ (0.126992032,-83.3) [0|1] "" EON
 SG_ STATE : 39|4@0+ (1,0) [0|15] "" EON
 SG_ COUNTER_PEDAL : 35|4@0+ (1,0) [0|15] "" EON
 SG_ CHECKSUM_PEDAL : 47|8@0+ (1,0) [0|255] "" EON

In the specific case, the message GAS_SENSOR is sent by the component INTERCEPTOR,

and is received by the EON, that is the device on which is installed Openpilot. It includes 5

different signals: INTERCEPTOR_GAS, INTERCEPTOR_GAS2, STATE,

COUNTER_PEDAL, and CHECKSUM_PEDAL.

DBC files also allow defining the enumeration type, used to visualize names instead of

numbers. It is defined as follows:

VAL_ MSG_ID SG_NAME VAL1 “VAL1_NAME” VAL2 “VAL2_NAME” [...] ;

A VAL_ field can be defined for each SG_NAME, and it allows to define a customize value

corresponding to the numeric value (VAL1, VAL2, …) that the signal can assume. If we

consider again the DCB file of the Acura ILX 2016, we can see that for the signal STATE is

defined an enumeration type for the values that can assume:

Chapter 3 79

VAL_ 513 STATE 5 "FAULT_TIMEOUT" 4 "FAULT_STARTUP" 3 "FAULT_SCE" 2
"FAULT_SEND" 1 "FAULT_BAD_CHECKSUM" 0 "NO_FAULT" ;

In opendbc, A DBC file can be represented using the struct DBC. Its messages and values

can be accessed by knowing the pointers to their first bit and the number of messages and

values defined in the file. Signal, Messages, and Values have their corresponding structure

in opendbc [Figure 28].

Figure 28 - DBC class diagram. Each part of a DBC file has its implementation (Msg, Signal, Val).

The C++ representation corresponding to the DBC file of a car is generated by the process

process_dbc.py. The method process(in_fn, out_fn) generate a file starting from a template,

defined in the file dbc_template.cc, and to perform this operation it uses the library Jinja2.

template_fn = os.path.join(os.path.dirname(__file__), "dbc_template.cc")
with open(template_fn, "r") as template_f:
 template = jinja2.Template(template_f.read(),
 trim_blocks = True,
 lstrip_blocks = True)

After defining what is the template to use, a dbc object (a Python representation of the .dbc

file) is created by parsing the .dbc file. When a dbc object is initialized, passing the path of

the .dbc file, each line of the text file is stored in a list of strings, with each element of the

list corresponding to a line of text.

def __init__(self, fn):
 with open(fn, encoding="ascii") as f:
 self.txt = f.readlines()

Chapter 3 80

The definition of some regular expressions will then help to parse each line of the file, since

applying the regular expression to the line will split it into different groups that can then be

added to the corresponding array of elements.

bo_regexp = re.compile(r"^BO_ (\w+) (\w+) *: (\w+) (\w+)")
sg_regexp = re.compile(r"^SG_ (\w+) : (\d+)\|(\d+)@(\d+)([\+|\-]) \
 (([0-9.+\-eE]+),([0-9.+\-eE]+)\) \[([0-9.+\-eE]+)\
 |([0-9.+\-eE]+)\] \"(.*)\" (.*)")
sgm_regexp = re.compile(r"^SG_ (\w+) (\w+) *: (\d+)\|(\d+)@(\d+)([\+|\-]) \
 (([0-9.+\-eE]+),([0-9.+\-eE]+)\) \[([0-9.+\-eE]+)\
 |([0-9.+\-eE]+)\] \"(.*)\" (.*)")
val_regexp = re.compile(r"VAL_ (\w+) (\w+) (\s*[-+]?
 [0-9]+\s+\".+?\"[^;]*)")

For instance, applying the regular expression bo_regexp to a line that starts with “BO_” will

generate 3 groups, corresponding to the three components of a DBC message: MSG_ID,

MSG_NAME, and DLC.

if l.startswith("BO_ "):
 dat = bo_regexp.match(l)
 if dat is None:
 print("bad BO {0}".format(l))
 name = dat.group(2) # MSG_NAME
 size = int(dat.group(3)) # DLC
 ids = int(dat.group(1), 0) # MSG_ID
 if ids in self.msgs:
 sys.exit("Duplicate address detected %d %s" % (ids, self.name))
 self.msgs[ids] = ((name, size), [])

According to the car manufacturer, the checksum parameters are initialized in the proper

way.

 if can_dbc.name.startswith(("honda_", "acura_")):
 checksum_type = "honda"
 checksum_size = 4
 counter_size = 2
 checksum_start_bit = 3
 counter_start_bit = 5
 little_endian = False
 elif can_dbc.name.startswith(("Toyota_", "lexus_")):

After some sanity checks on the COUNTER and CHECKSUM rules, the template is then

rendered, meaning different Signal, Msg, and Val objects are generated and stored.

parser_code = template.render(dbc = can_dbc,
 checksum_type = checksum_type,
 msgs = msgs,
 def_vals = def_vals,
 len = len)

The destination of the file is indicated as out_fn.

Chapter 3 81

with open(out_fn, "a+") as out_f:
 out_f.seek(0)
 if out_f.read() != parser_code:
 out_f.seek(0)
 out_f.truncate()
 out_f.write(parser_code)

The two main components through which Openpilot can manipulate data traveling on the

CAN bus are CANPacker and CANParser.

CANPacker provides the methods to generate and lookup for CAN messages on the CAN

bus. [Figure 29]

Figure 29 - CANPacker class diagram. The component construct a message starting from a series of values.

Chapter 3 82

When the CANPacker is initialized, it is first associated with a DBC file, and the file

representation is stored in the variable dbc.

For each message of the DBC file, a pointer to that is added to the vector message_lookup,

so that it will be possible to easily access each message when needed.

The vector signal lookup is also initialized, by finding all the different signals that are present

for each DBC message in the given DCB file. This vector will contain all the signals that are

specified in the DBC file.

CANPacker::CANPacker(const string& dbc_name) {
 dbc = dbc_lookup(dbc_name);
 assert(dbc);
 for (int i = 0; i < dbc->num_msgs; i++) {
 const Msg* msg = &dbc->msgs[i];
 message_lookup[msg->address] = *msg;
 for (int j=0; j<msg->num_sigs; j++) {
 const Signal* sig = &msg->sigs[j];
 signal_lookup[make_pair(msg-address, string(sig>name))] = *sig;
 }
 }
 init_crc_lookup_tables();
}

In the end, is also set up a static CRC table, which allows performing a consistency check

on the data. CRC stands for Cyclic Redundancy Check and is an algorithm that calculates a

checksum to attach to data that helps to identify the bit errors that could occur during data

transmission.

The method pack() creates a DCB message by combining all the signals that have to be

included in the message identified by the value address, which can indicate both the name

and the ID of the message.

for (const auto& sigval : signals) {
 string name = string(sigval.name);
 double value = sigval.value;
 auto sig_it = signal_lookup.find(make_pair(address, name));
 if (sig_it == signal_lookup.end()) {
 WARN("undefined signal %s - %d\n", name.c_str(), address);
 continue;
 }
 const auto& sig = sig_it->second;
 int64_t ival = (int64_t)(round((value - sig.offset) / sig.factor));
 if (ival < 0) {
 ival = (1ULL << sig.b2) + ival;
 }
 ret = set_value(ret, sig, ival);
 }

For each signal in the vector of signals passed to the function pack(), the name and the value

of each element are retrieved and is checked if the signal is valid or is undefined for that

specific message, identified by checking the pair (MSG_NAME, SG_NAME), where

MSG_NAME is equal to the address.

Chapter 3 83

If it is undefined, it means that the signal is not part of that message, and the next operations

are not performed, and the control continues on the next elements of the vector.

If the signal is valid, its value is calculated by performing the operation (𝑣𝑎𝑙𝑢𝑒 −
𝑠𝑖𝑔. 𝑜𝑓𝑓𝑠𝑒𝑡)/sig. factor. If the value is less than 0, then the two’s complement is calculated,

by taking the MAX value allowed by the signal, shifting its value of 1 bit to the left, and

adding the negative value of the signal.

The value is then converted into a binary value through the function set_value(). What this

function does is to apply a mask to the value to keep only the relevant bits.

static uint64_t set_value(uint64_t ret, const Signal& sig, int64_t ival)
{
 int shift = sig.is_little_endian? sig.b1 : sig.bo;
 uint64_t mask = ((1ULL << sig.b2)-1) << shift;
 uint64_t dat = (ival & ((1ULL << sig.b2)-1)) << shift;
 if (sig.is_little_endian) {
 dat = ReverseBytes(dat);
 mask = ReverseBytes(mask);
 }
 ret &= ~mask;
 ret |= dat;
 return ret;
}

After that, is checked if the message also has to include a counter signal, mainly needed for

synchronization purposes, and is verified if the couple (address, “COUNTER”) is valid, and

if it is, then the signal is added to the pack of signals that will be sent to the receiver, also in

this case after applying bit masking.

 if (counter >= 0) {
 auto sig_it = signal_lookup.find(make_pair(address, "COUNTER"));
 if (sig_it == signal_lookup.end()) {
 WARN("COUNTER not defined\n");
 return ret;
 }
 const auto& sig = sig_it->second;
 if ((sig.type != SignalType::HONDA_COUNTER) &&
 (sig.type != SignalType::VOLKSWAGEN_COUNTER)) {
 WARN("COUNTER signal type not valid\n");
 }
 ret = set_value(ret, sig, counter);
 }

Chapter 3 84

Finally, it is checked if a checksum signal has to be included in the message, by verifying

that the pair (address, “CHECKSUM”) is in the signal_lookup vector, and if it is the

checksum is then retrieved and added to the pack of signals.

if (sig.type == SignalType::HONDA_CHECKSUM) {
 unsigned int chksm = honda_checksum(address, ret,
 message_lookup[address].size);
 ret = set_value(ret, sig, chksm);
} else if ([…]) { // check other checksums
 […]
}

In the end, the pack of signals stored in the variable ret is returned by the function. The

CANParser component provides the methods to parse the messages that are sent over the

CAN bus.

Figure 30 - CANParser class diagram. The component parses the received message through the

MessageState component

Chapter 3 85

The method UpdateCans parses the list of CanData received on the specified CAN bus. The

CanData type is a struct, defined in the file log.capnp in the cereal library, that contains four

parameters.

struct CanData {
 address @0 :UInt32;
 busTime @1 :UInt16;
 dat @2 :Data;
 src @3 :UInt8;
}

For each CanData parameter, its source field is compared with the bus field of the

CANParser to check that both match: if not, the current CanData element is skipped. For the

CanData elements that pass the control, the state is retrieved. The state of a CanData is

expressed through the MessageState class, which holds all the relevant information for a

message, including the signals and values that compose it, its size, and address.

The MessageState class provides the functionalities to parse the signals of which is

composed a message through the method parse(uint64_t sec, uint16_t ts_, uint8_t * dat).

This method iterates over the vector of signals parse_sig, and for each of them, it performs

a series of checks.

The first control is on the byte ordering of the signal: it performs a right shift of a number of

bits equals to the minimum value allowed, in the case of a little-endian signal, or equals to

the starting bit in the case of a big-endian signal. In both cases, a bit mask is applied to select

only the relevant number, that will be equal to the number of bits of the biggest value

allowed.

if (sig.is_little_endian)
 tmp = (dat_le >> sig.b1) & ((1ULL << sig.b2)-1);
else
 tmp = (dat_be >> sig.bo) & ((1ULL << sig.b2)-1);

If the signal is signed, then the two’s complement is calculated.

if (sig.is_signed)
 tmp -= (tmp >> (sig.b2-1)) ? (1ULL << sig.b2) : 0; //signed

Then, if the signal requires to verify the checksum and the current signal is of type checksum,

the value of the signal is compared with the result of a calculation of the checksum, that is

specific for each car manufacturer.

if (!ignore_checksum) {
 if (sig.type == SignalType::HONDA_CHECKSUM) {
 if (honda_checksum(address, dat_be, size) != tmp) {
 return false; // checksum fail
 }
 } else if (…) { // the other checksums are checked
 […]
 }
}

Chapter 3 86

A similar check is made for the signals of type counter. If the signal is a counter and it fails

the check 5 times, then the execution of the methods ends.

if (!ignore_counter) {
 if (sig.type == SignalType::HONDA_COUNTER) {
 if (!update_counter_generic(tmp, sig.b2)) {
 return false;
 }
 } else if (sig.type == SignalType::VOLKSWAGEN_COUNTER) {
 if (!update_counter_generic(tmp, sig.b2)) {
 return false;
 }
 } else if (sig.type == SignalType::PEDAL_COUNTER) {
 if (!update_counter_generic(tmp, sig.b2)) {
 return false;
 }
 }
}

If all the checks pass, the value is computed by multiplying it by the signal factor and adding

the signal offset and is added to the vector of values on the MessageState object.

vals[i] = tmp * sig.factor + sig.offset;

The method parse is called for each can message over which the method UpdateCans iterates.

void CANParser::UpdateCans(uint64_t sec, const List<CanData>::Reader&
cans) {
 int msg_count = cans.size();

 DEBUG("got %d messages\n", msg_count);

 for (int i = 0; i < msg_count; i++) {
 auto cmsg = cans[i];
 // parse the messages
 if (cmsg.getSrc() != bus) {
 // DEBUG("skip %d: wrong bus\n", cmsg.getAddress());
 continue;
 }
 auto state_it = message_states.find(cmsg.getAddress());
 if (state_it == message_states.end()) {
 // DEBUG("skip %d: not specified\n", cmsg.getAddress());
 continue;
 }

 if (cmsg.getDat().size() > 8) continue; //shouldn't ever happen
 uint8_t dat[8] = {0};
 memcpy(dat, cmsg.getDat().begin(), cmsg.getDat().size());

 state_it->second.parse(sec, cmsg.getBusTime(), dat);
 }
}

Chapter 3 87

The same method has two different implementations: the former is used if multiple CAN

messages are passed to the function, while if the second implementation is for parsing a

single CAN message. The parsing process is the same for both the implementations.

void CANParser::UpdateCans(uint64_t sec,const
capnp::DynamicStruct::Reader& cmsg) {
 // assume message struct is `cereal::CanData` and parse
 assert(cmsg.has("address") &&
 cmsg.has("src") &&
 cmsg.has("dat") &&
 cmsg.has("busTime"));

 if (cmsg.get("src").as<uint8_t>() != bus) {
 DEBUG("skip %d: wrong bus\n", cmsg.get("address").as<uint32_t>());
 return;
 }

 auto state_it =
message_states.find(cmsg.get("address").as<uint32_t>());
 if (state_it == message_states.end()) {
 DEBUG("skip %d: not specified\n",
cmsg.get("address").as<uint32_t>());
 return;
 }

 auto dat = cmsg.get("dat").as<capnp::Data>();
 if (dat.size() > 8) return; //shouldn't ever happen
 uint8_t data[8] = {0};
 memcpy(data, dat.begin(), dat.size());
 state_it->second.parse(sec, cmsg.get("busTime").as<uint16_t>(), data);
}

The validity of a CAN message is checked through the method UpdateValid(). For each

message state, the method verifies if the time at which the message is seen respect the

allowed threshold. The parameter check_treshold indicates the maximum number of seconds

that can pass from when the message is sent to when it is seen. If one message does not

respect the threshold, the whole CAN pack of messages is invalidated.

 if (state.check_threshold > 0 &&
 (sec - state.seen) > state.check_threshold) {
 if (state.seen > 0) {
 DEBUG("0x%X TIMEOUT\n", state.address);
 } else {
 DEBUG("0x%X MISSING\n", state.address);
 }
 can_valid = false;
 }

Chapter 3 88

 Usage

The OpenDBC repository and its functionalities are leveraged by the packages of selfdrive

which let the car of the different manufacturers interface with Openpilot.

Figure 31 - Import dependencies between selfdrive and opendbc

The C++ implementation of the library is wrapped using Cython and can be accessed by

importing the files parser.py and packer.py, which expose the class CANParser and

CANPacker, respectively. Openpilot has to deal with the different car manufacturers

differently, since each of them adopts different standards and approaches to send data over

the CAN bus. In general, for each car manufacturer, there is a specific interface and a set of

signal signals allowed.

The car state is managed through the class CarState, which allows intercepting the signals

traveling on the bus and parsing them. the parse happens thanks to the CANParser provided

by the OpenDBC functionalities.

We can distinguish two types of signals, that are also managed by two different parsers:

• the signals coming directly from the car, that include gear change signals, door opening

signals, etc.

• signals coming from the cameras.

In the first case, the CANParser is created by the method get_can_parser().

Inside of the method is defined the list of all the possible signals that can travel on the bus,

by specifying the signal name and the signal address, that corresponds to the message name

in the dbc file format. It also defines a check array, which contains the couples composed by

the signal address and their working frequency, expressed in Hertz.

Chapter 3 89

These signals are hardcoded and change from car manufacturer to car manufacturer.

def get_can_parser(CP):
 signals = [
 ("PRNDL", "GEAR", 0), # (sig_name, sig_address, default)
 ("DOOR_OPEN_FL", "DOORS", 0),
 # [...]
]
 checks = [
 ("BRAKE_2", 50), # (sig_address, frequency)
 ("EPS_STATUS", 100),
 # [...]
]

 if CP.enableBsm:
 signals += [
 ("BLIND_SPOT_RIGHT", "BLIND_SPOT_WARNINGS", 0),
 ("BLIND_SPOT_LEFT", "BLIND_SPOT_WARNINGS", 0),
]
 checks += [("BLIND_SPOT_WARNINGS", 2)]

 return CANParser(DBC[CP.carFingerprint]["pt"], signals, checks, 0)

Similarly, the parser managing the camera signals is created by the method

get_cam_can_parser().

def get_cam_can_parser(CP):
 signals = [
 # sig_name, sig_address, default
 ("COUNTER", "LKAS_COMMAND", -1),
 ("CAR_MODEL", "LKAS_HUD", -1),
 ("LKAS_STATUS_OK", "LKAS_HEARTBIT", -1)
]
 checks = [
 ("LKAS_COMMAND", 100),
 ("LKAS_HEARTBIT", 10),
 ("LKAS_HUD", 4),
]
 return CANParser(DBC[CP.carFingerprint]["pt"], signals, checks, 2)

By using this specific case, relative to the Chrysler CanState, we can see how the different

signals are also specified in the .dbc file.

BO_ 658 LKAS_COMMAND: 6 XXX
 SG_ COUNTER : 39|4@0+ (1,0) [0|15] "" XXX
 SG_ CHECKSUM : 47|8@0+ (1,0) [0|255] "" XXX
 SG_ LKAS_STEERING_TORQUE : 2|11@0+ (1,-1024) [0|1] "" XXX
 SG_ LKAS_HIGH_TORQUE : 4|1@0+ (1,0) [0|1] "" XXX

BO_ 678 LKAS_HUD: 8 XXX
 SG_ LKAS_ICON_COLOR : 1|2@0+ (1,0) [0|3] "" XXX
 SG_ LKAS_LANE_LINES : 19|4@0+ (1,0) [0|1] "" XXX
 SG_ LKAS_ALERTS : 27|4@0+ (1,0) [0|1] "" XXX
 SG_ CAR_MODEL : 15|8@0+ (1,0) [0|255] "" XXX

Chapter 3 90

A CANParser is also created to parse the signals relative to the radar sensors of the car.

These include information relative to the distance of the car from the obstacles in the long

and short-range and the relative speed of the car.

def _create_radar_can_parser(car_fingerprint):
 msg_n = len(RADAR_MSGS_C)
 signals = list(zip(
 ['LONG_DIST'] * msg_n +
 ['LAT_DIST'] * msg_n +
 ['REL_SPEED'] * msg_n,
 RADAR_MSGS_C * 2 + # LONG_DIST, LAT_DIST
 RADAR_MSGS_D, # REL_SPEED
 [0] * msg_n + # LONG_DIST
 [-1000] * msg_n + # LAT_DIST
 [-146.278] * msg_n)) # REL_SPEED set to 0
 checks = list(zip(RADAR_MSGS_C +
 RADAR_MSGS_D,
 [20]*msg_n + # 20Hz (0.05s)
 [20]*msg_n)) # 20Hz (0.05s)
 return CANParser(DBC[car_fingerprint]['radar'], signals, checks, 1)

The second main component of OpenDBC, the CANPacker, is used by the car controller

component (carcontroller.py) to generate the CAN messages. Each CarController class has

a CanPacker, which is initialized at the beginning of the execution. The packer object is

utilized to create new messages that can be elaborated by Openpilot.

new_msg3 = create_lkas_command(self.packer,
 int(apply_steer),
 self.gone_fast_yet,
 frame)

Each of the method used to initialize the different messages behaves in the same way: the

different signals are associated with the parameters passed to the function and then the

method and the packer generates the new message.

def create_lkas_command(packer, apply_steer, moving_fast, frame):
 values = {
 "LKAS_STEERING_TORQUE": apply_steer,
 "LKAS_HIGH_TORQUE": int(moving_fast),
 "COUNTER": frame % 0x10,
 }
 return packer.make_can_msg("LKAS_COMMAND", 0, values)

The method make_can_msg(), defined in the Cython wrapper of the C++ implementation of

the CANPacker component, after computing the size of the message and its address, it

computes the binary representation of the message.

Chapter 3 91

The representation is created through the method pack() provided by the CANPacker

component, already described in the previous pages.

cpdef make_can_msg(self, name_or_addr, bus, values, counter=-1):
 cdef int addr, size
 if type(name_or_addr) == int:
 addr = name_or_addr
 size = self.address_to_size[name_or_addr]
 else:
 addr, size =
self.name_to_address_and_size[name_or_addr.encode('utf8')]
 cdef uint64_t val = self.pack(addr, values, counter)
 val = self.ReverseBytes(val)
 return [addr, 0, (<char *>&val)[:size], bus]

 Testing

The OpenDBC functionalities are tested through the unittest framework. The test folder

includes three Test Cases and a total of four tests, which look into the main component of

the library.

• TestCanParserPackerExceptions: it verifies that the CANPacker and CANParser

are able to throw an exception in the case in which an invalid file is given to the two

components.

TestCanParserPackerExceptions

+ test_civic_exceptions()

Table 27 - TestCanParserPackerExceptions test case

• TestCANDefine: It tries to generate a CANDefine object of a Honda Civic Touring

2016 starting from the corresponding DBC file and checks that the generated values

are the expected ones.

TestCANDefine

+ test_civic()

Table 28 - TestCANDefine test case

• TestCanParserPacker: it instantiates both a CANParser and a CANPacker and

generates a message, that then tries to parse and verifies that the values given to the

CANPacker are the same as the ones that the CANParser retrieves for the same

message.

TestCanParserPacker

+ test_civic()

+ test_subaru()

Table 29 - TestCanParserPacker test case

Chapter 3 92

The unit tests are executed with GitHub Actions, which executed the tests whenever a new

commit is made, to ensure that each change doesn’t modify the behavior of the software and

work as expected.

Run docker run opendbc bash -c "python -m unittest discover opendbc"
 docker run opendbc bash -c "python -m unittest discover opendbc"
 shell: /usr/bin/bash -e {0}
 env:
 RUN: docker run --shm-size 1G --rm opendbc /bin/sh -c
 BUILD: docker pull $(grep -ioP '(?<=^from)\s+\S+' Dockerfile) ||
true
 docker pull docker.io/commaai/opendbc:latest || true
 docker build --cache-from docker.io/commaai/opendbc:latest -t opendbc
-f Dockerfile
--
Warning, using python time.time() instead of faster sec_since_boot
--
Ran 4 tests in 0.061s

OK

As stated in the introduction of this paragraph, Cabana is a tool that helps to identify and

classify the different signals that travel on the CAN bus. The tool can also be used to test the

DBC files and to identify new signals, by connecting the car directly to Cabana through

Panda.

 Development and community contributions

Unlike other packages in the repository, OpenDBC has many contributions coming from the

community members. The reason for the high level of contribution is probably that

generating a .dbc file for a new car does not require any particular skill or experience in

coding: in fact, tools such as Cabana and CANdevStudio allow to read the traffic on the CAN

bus and help the contributors to identify the different messages that travel on it.

General modifications and improvement of the library functionalities, however, are done

almost exclusively by the Comma.ai team, with some exceptions. OpenDBC directory was

made a public repository on May 31st, 2017. When it was created, it only supported five cars.

Import the DBCs from Openpilot (31/05/2017) <George Hotz>

make opendbc import work, and ignore junk (05/06/2017) <George Hotz>

Back in 2017, the data needed to train the predictive model was collected by means of an

Android application, CHFFR. The phone, mounted on the car, would act as a dashcam, and

record the trip. The recorded information could be used to train the self-driving car model

[30]. To better support the data recorded through the app, ad-hoc signals and messages were

added to the dbc specification to map standard messages and signals to custom metrics,

which could be displayed in the CHFFR application. [31]

Add chffr metrics for cars (10/09/2017) <Andy Haden>

As already anticipated, Cabana was used to help users to reverse engineer the signals

traveling on their car’s network and create a specific DBC file. This was the case of a user,

Chapter 3 93

Jeankalud, who thanks to Cabana reverse-engineered his Tesla and updated the relative

DBC file, correcting many signals and messages parameters. [32]

Lots of correction, thanks to cabana! (03/11/2017) <jeankalud>

To optimize the generation of the DBC files for the different cars, it was introduced a

preprocessor which had the role of creating a DBC file by combining a brand-specific DBC

file with a model-specific DBC file.

The DBC file relative to the model will contain an “IMPORT” field, which is not part of the

specifications of the DBC standards but is needed by the generator to include in the generated

file the brand-specific fields.

In a model-specific DBC file will be present the following instruction (in the specific case,

for a Honda car).

CM_ "IMPORT _honda.dbc"

On the other hand, the generator finds the files starting with that specific pattern and include

the right brand specific DBC file.

dbc_file = open(os.path.join(dir_name, filename)).read()
include = re.search(r'CM_ "IMPORT (.*?)"', dbc_file)

if include is not None:
 dbc_file = dbc_file.replace(include.group(0),
 '\nCM_ "%s starts here"' % filename)
 include_path = os.path.join(dir_name, include.group(1))
 # Load included file
 include_file = open(include_path).read()
 include_file = 'CM_ "Imported file %s starts here"\n'%include.group(1)
 + include_file
 dbc_file = include_file + dbc_file

The generator is only included in the version of Openpilot on the master branch, since is

meant to be a developer tool that aims to facilitate the generation of new DBCs for cars that

are not supported and test new values for messages and signals creating customs DBCs.

dbc file preprocessor (27/01/2018) <Willem Melching>

whitespace consistency (27/01/2018) <Willem Melching>

fix comments and values (27/01/2018) <Willem Melching>

fix PCM_SPEED factor (27/01/2018) <Willem Melching>

cleanup (27/01/2018) <Willem Melching>

move generated files to root folder (27/01/2018) <Willem Melching>

regenerate new steer torque eps factor (27/01/2018) <Willem Melching>

readme explanation of preprocessor (27/01/2018) <Willem Melching>

Updated README with a recommended overview (19/05/2018) <Riccardo Biasini>

Minor fixes were then made to the DBC files structure, such as changing the end line

sequence from CRLF (0x0D at the end of each line) to LF (0x0A at the end of each line) and

changing the values that signals without a unit of measure could have, making them act like

boolean variables.

Chapter 3 94

convert all line endings to unix style (13/02/2018) <Willem Melching>

set scaling to 1 for brake and gas which have no real unit (21/02/2018) <Willem

Melching>

In March 2018 was introduced Comma Pedal, a solution to virtually pressing the gas pedal

on Honda and Acura cars to enable stop and go functionalities on the supported models. To

communicate with the device, it was required the definition of new messages, corresponding

to the messages sent by the Comma Pedal on the CAN bus.

Comma Pedal: sending 2 tracks on 0x200 (03/03/2018) <Riccardo Biasini>

Comma Pedal: added state byte and enable bit (03/03/2018) <Riccardo Biasini>

Comma Pedal: made GAS_COMMAND 6 bytes (03/03/2018) <Riccardo Biasini>

With the introduction of the Comma Pedal, it was also convenient to move the messages,

signals, and values related to it in a file like the DBC file for a brand of a car, to be imported

in all the model-specific DBC files. The generator had to be modified to be able to parse

multiple headers imported (the comma DBC file and the car brand DBC file).

CM_ "IMPORT _honda_2017.dbc"
CM_ "IMPORT _comma.dbc"

dbc_file = open(os.path.join(dir_name, filename)).read()
dbc_file = '\nCM_ "%s starts here"\n' % filename + dbc_file

includes = re.finditer(r'CM_ "IMPORT (.*?)"', dbc_file)
for include in includes:
 dbc_file = dbc_file.replace(include.group(0), '')
 include_path = os.path.join(dir_name, include.group(1))
 include_file = open(include_path).read()
 include_file = '\n\nCM_ "Imported file %s starts here"\n' %
 include.group(1) + include_file
 dbc_file = include_file + dbc_file

update generator script to allow for multiple imports (09/03/2018) <Willem

Melching>

Pedal Interceptor: fault state VAL moved to _comma (13/03/2018) <Riccardo

Biasini>

In a pull request by an external contributor, dekerr on GitHub, he updated the generator to

make it build the included files in the correct order and to improve the readability of the

generated files.

Update generator.py (17/06/2018) <dekerr>

Update generator.py (17/06/2018) <dekerr>

The changes, however, introduced some problems when generating the files, but the bugs

were soon pointed out by the Comma.ai staff and fixed.

Update generator.py (17/06/2018) <dekerr>

Update generator.py (17/06/2018) <dekerr>

Update generator.py (17/06/2018) <dekerr>

Chapter 3 95

small generator cleanup (17/06/2018) <Willem Melching>

pass dirname explicitly to generator helperfunctions and whitespace (17/06/2018)

<Willem Melching>

Another member of the community instead managed to fix a bad encoding problem that

afflicted some files, and in particular some units of measure like the Celsius degrees (°C).

- SG_ EngineCoolantTemp : 23|8@0+ (1,-40) [0|0] "�C" NEO
+ SG_ EngineCoolantTemp : 23|8@0+ (1,-40) [0|0] "°C" NEO

Syntax and encoding fixes (#111) (17/09/2018 07:14) <Oscar Söderlund>

Many modern cars have the Eco and Sport mode, and a user managed to decode those signals

traveling on the CAN bus and adding them to the DBC file of Toyota and Lexus cars.

SG_ SPORT_ON : 2|1@0+ (1,0) [0|1] "" XXX
SG_ ECON_ON : 40|1@0+ (1,0) [0|1] "" XXX

VAL_ 956 SPORT_ON 0 "off" 1 "on";
VAL_ 956 ECON_ON 0 "off" 1 "on";

Update Gear Packet with Eco and Sport button (#135) (29/01/2019) <arne182>

More adjustments were then made to Comma Pedal, especially to the checksum and counter

signals.

Pedal: same checksum and counter (#143) (03/03/2019) <Riccardo Biasini>

Pedal: back again at 6 bytes (03/03/2019) <Riccardo Biasini>

To enable the support of more cars, it was needed to support their hardware first and decode

how the basic component for different car manufacturers and models communicate with the

car. In particular, many cars from Volvo used a specific radar, the Delphi ESR Radar, which

was not supported until that moment. Also on this occasion, the pull request was made by a

community member, AdasCoder on GitHub, which decoded the 64 messages and the

relative signals that the ESR Radar uses to communicate with the car. [33]

Add files via upload (#147) (14/03/2019) <AdasCoder>

Apart from the addition of new messages and signals for the already supported cars the

addition of new cars, most of which were added thanks to the community members, the main

repository functionalities were not modified, but only small fixes to the file formatting were

made.

Fix manually created dbc files (#154) (04/04/2019) <Maksim Salau>

Fix Spelling (#180) (03/09/2019) <Arne Schwarck>

Remove non ascii characters (21/09/2019) <Willem Melching>

After the migration to Python 3, also the CANParser and CANPacker were moved from

Openpilot’s repository to OpenDBC. This allowed to achieve a higher level of abstraction

and have a more coherent separation of the code and its functionalities. This migration

required more than two weeks of work and the collaboration of many members of the

Comma.ai team.

move generator to python3 (27/09/2019) <George Hotz>

Chapter 3 96

Can migration (#199) (23/11/2019) <Riccardo Biasini>

fix gitignore (27/11/2019) <Comma Device>

OpenDBC needs cereal (02/12/2019) <George Hotz>

consistent naming (03/12/2019) <Willem Melching>

unify can packer and parser (03/12/2019) <Willem Melching>

add test for can define (03/12/2019) <Willem Melching>

move CANDefine to parser code (03/12/2019) <Willem Melching>

no more python version of libdbc, everything through Cython (03/12/2019) <Willem

Melching>

packer depends on libdbc (03/12/2019) <Willem Melching>

Azure pipelines ci (#202) (03/12/2019) <Willem Melching>

deterministic dependency order (03/12/2019) <Willem Melching>

A simple test for the generator was also added. The test verified that the generator is executed

for each change made to the repository. If after running the generator there are new untracked

files it means that the generator was not run after the last change made to the repository, and

the test fails.

added generator test (#207) (16/12/2019) <Riccardo Biasini>

The continuous work on the OpenDBC repository for more than two years led to the creation

of a complex and complete database, which was also used by people external to Comma.ai

to develop other tools and applications, such as CANdevStudio. Since the tool could be

useful also to developers of Openpilot, the reference to CANdevStudio was added to the

README.md file in the OpenDBC repository. [34]

Add reference to CANdevStudio in README file (16/01/2020) <Remigiusz

Kołłątaj>

With the introduction of the support to GitHub CI, the tests were moved from the Azure

pipeline to GitHub Actions, allowing to execute them before every commit and ensure a

higher level of quality. GitHub CI also allowed to perform a static analysis of the code and

enforce the linter rules defined by flake8.

GitHub actions (#217) (17/02/2020) <Nelson Chen>

Library cleanup (#261) (13/05/2020) <Willem Melching>

run pre commit in ci (#268) (29/05/2020) <Willem Melching>

More fixes were then made to Cython files, improving the reliability of the setup and build

processes and fixing some missing dependencies.

Build cython extensions in common setup.py (#281) (08/07/2020) <Adeeb Shihadeh>

rebuild cython extensions when python/cython/distuils change (16/07/2020) <Adeeb

Shihadeh>

add packer.cc and parser.cc dependencies on their cython extensions (02/08/2020)

<Adeeb Shihadeh>

parallel cythonize extension build (02/08/2020) <Adeeb Shihadeh>

cleanup parser_pyx (02/08/2020) <Adeeb Shihadeh>

fix mac build (09/09/2020) <Willem Melching>

A major fix instead was made by an external contributor, Gregor Kikelj, who closed an

open issue (issue #222, opened by Willem Melching), about a problem with the CANDefine

component not hanging when a not existing DBC file was passed as an argument.

Chapter 3 97

To test the solution, the user also added a test to verify the capability of CANDefine to throw

an exception in this particular case.

Fix 222 (#296) (10/09/2020) <Gregor Kikelj>

The libraries and the adopted technologies were then updated to their latest version available,

to leverage the improvement in performance and reliability offered by their new versions.

C++17 (#305) (17/10/2020) <Willem Melching>

fix pycapnp (29/10/2020) <Adeeb Shihadeh>

ubuntu 16.04 -> 20.04 (#309) (29/10/2020) <Adeeb Shihadeh>

Scons cython builder (#316) (27/11/2020) <Gregor Kikelj>

Another piece of hardware that is possible to mount of the car, like the Comma Pedal, is the

Zorro Steering Sensor (ZSS), developed by Ross Fisher (zorrobyte on GitHub).

This sensor is much more precise than the standard one mounted in cars, and to make it

communicate with Openpilot it was required to add a new signal.

Figure 32 - Comparison between the precision of ZSS and that of the standard sensor

Add ZSS signal (#322) (03/12/2020) <Shane Smiskol>

Other optimizations also regarded the C++ implementation of the CAN parser, where many

parameters were changed to static and constants to improve the performances and reliability

of the component. Many security adjustments were also made to the same component.

CANParser::update_string :use const std::string& as parameter (31/01/2021) <Dean

Lee>

Chapter 3 98

packer.cc: const Signal& (#354) (08/03/2021) <Dean Lee>

update_string: use cached buffer (#356) (09/03/2021 16:10) <Dean Lee>

init message_states map without making copies (#355) (09/03/2021 16:11) <Dean

Lee>

Modified can parser to run it from PlotJuggler (#352) (09/03/2021 16:33) <Joost

Wooning>

CANParser: add option to enforce message checks (25/04/2021 08:09) <Adeeb

Shihadeh>

log missing addrs that are validated (#343) (25/04/2021 11:45) <Greg Hogan>

The last change before the release of Openpilot 0.8.7 was the addition of the MIT License

add license (30/04/2021) <Adeeb Shihadeh>

Most of the community contributions focused on decoding the DBC messages of their car

and contribute to the creation to the DBC database that is today available.

• Acura: The support to Acura cars was added for the first time on July 27th, 2017, and

they are maintained almost exclusively by the Comma.ai team. [Table 73 - Contributions

to the DBC files of Acura cars]

• BMW: The DBC files for the BMW models from 2008 to 2013 were added by a

community member. No more modifications were made to them. [Table 74 -

Contributions to the DBC files of BMW cars]

• Chrysler: Chrysler additions were made for the first time by Drew Hintz and also most

of the next contributions to Chrysler cars were made by the same user. [Table 75 -

Contributions to the DBC files of Chrysler cars]

• Ford: [Table 76 - Contributions to the DBC files of Ford cars]

• General Motors, Chevrolet, and Cadillac: GM, Chevrolet, and Cadillac cars share a

similar platform and the messages and signals that travel on the CAN bus often are the

same for these car manufacturers. The DBC files relative to General Motors’ cars [Table

77 - Contributions to the DBC files of GM cars]. Chevrolet cars support was added

thanks to the support of the community members, in particular of Vasily Tarasov who

first added the support to Chevrolet Volt back in 2017 [Table 78 - Contributions to the

DBC files of Chevrolet cars]. Cadillac DBC files were generated starting from the

Chevrolet DBC files, since many signals are common for the two car manufacturers.

Cadillac cars are maintained by the Comma.ai team, and in particular by Riccardo Biasini

when he was still part of the organization [Table 79 - Contributions to the DBC files of

Cadillac cars].

• Honda: The cars from Honda were the first to be supported and also today are the ones

to which more changes and improvements are made, both from the community and the

Comma.ai team. OpenDBC counts seventeen cars in the master branch of the repository

and almost all of them are also supported by the release version of Openpilot. [Table 80

- Contributions to the DBC files of Honda cars]

• Hyundai: The support to Hyundai cars was added very early in the development of

OpenDBC and was maintained almost exclusively by the Comma.ai team, but also many

community members contributed to the identification and tuning of different signals.

[Table 81 - Contributions to the DBC files of Hyundai cars]

• Luxgen: The Luxgen cars did not reach the release version of Openpilot, nevertheless a

user added the DBC file of a Luxgen car to the master branch for anyone wanting to test

it. [Table 82 - Contributions to the DBC files of Luxgen cars]

Chapter 3 99

• Mazda: The support to Mazda car was introduced by an external contributor, Jafar Al-

Gharaibeh, and also today is the only one who updates and improves the DBC files

related to the cars from the manufacturer. The model that was also included in the final

release is the Mazda CX-5 from 2017. [Table 83 - Contributions to the DBC files of

Mazda cars]

• Mercedes: No Mercedes car is officially supported by Openpilot and included in the

final release, nevertheless a user, quillford on GitHub, decoded many messages and

signals for the Mercedes e350 of 2010. [Table 84 - Contributions to the DBC files of

Mercedes cars]

• Nissan: Nissan is another example of a car manufacturer of which cars were supported

thanks to the community. The two cars were added thanks to Bugsy and Andre

Volmensky. [Table 85 - Contributions to the DBC files of Nissan cars]

• Subaru: The DBC of a Subaru car was included for the first time by Jeff Palmer and

his work was resumed after a few years by Riccardo Biasini. After that he left the

organization, more changes were then made by the community. Today, 4 Subaru cars of

the five included in the master branch are also available in the release 0.8.7. [Table 86 -

Contributions to the DBC files of Subaru cars]

• Tesla: The support for Tesla cars was introduced with the creation of the OpenDBC

repository. Most of the corrections were then made by external contributors, however,

the focus remained on cars that did not already provide an autonomous drive system and

not many changes during the years were made to Tesla’s DBCs. [Table 87 -

Contributions to the DBC files of Tesla cars]

• Toyota and Lexus: Toyota and Lexus were the first car manufacturers to be supported

by an official release of Openpilot. The two share a common platform, therefore the

messages and signals that are sent on the CAN bus are often the same. These two car

manufacturers count the largest number of cars supported by Openpilot, but also the

majority of commits from both the Comma.ai team and external contributors [Table 88

- Contributions to the DBC files of Toyota cars]. Lexus cars can leverage the fact that

many messages and signals are congruent to that defined in the DBC file of the Toyota

manufacturer, in fact, the same file is used to generate the model-specific DBC files for

the different Lexus car models. [Table 89 - Contributions to the DBC files of Lexus cars]

• Volvo: The Volvo V40 was reverse-engineered by a community member, danielzmod

on GitHub, and required 131 commits in total, then merged with the master branch of

OpenDBC. [Table 90 - Contributions to the DBC files of Volvo cars]

• Volkswagen: Volkswagen cars were added by jessrussell for the first time and then

updated and fixed by Jason Young, with almost no contribution from the Comma.ai

team apart from smaller fixes to the comments and indentation of the DBC files. [Table

91 - Contributions to the DBC files of Volkswagen car]

Chapter 3 100

 Panda

Panda is a universal car interface developed by Comma.ai. It connects to the ODB-II port

[35] and the camera of the car, supporting the majority of communication busses adopted by

many car manufacturers. In combination with OpenDBC, it allows to read and interpret all

the signals traveling on the car network.

Its first version was the White Panda [Figure 33], it supported 3 CAN buses, 2 LIN buses,

and 1 GMLAN bus. It could interface with the car through a second device, the Giraffe,

which had to be connected between the car camera sensor connector and the White Panda.

This interface was specific for each different car and had manual switches to change

modality (engage Openpilot or normal driving). This interface was hard to build, replace and

act on it, therefore was soon eliminated.

Figure 33 - The White Panda

The Grey Panda [Figure 34] offers the same capabilities as the White Panda, but also

provides an additional GPS antenna to increase the precision of the localization-based

services.

Figure 34 - The Grey Panda with its external GPS antenna

Its next version, the Black Panda, brought many technical innovations. The form factor was

much more compact, and it also included the GPS antenna in the Panda enclosure. It also

added the support for a fourth CAN bus, coming directly from the OBD-II port of the car

and allowing a much faster and more effective fingerprinting of the car, and it replaced the

OBD-II port with a USB A to connect to the Comma device and a USB C to connect to the

car harness.

Chapter 3 101

The Giraffe was also replaced by a much simpler system to interface with the car: the

interface is now composed of a relay, capable of automatically switching the driving

configuration, and the car harness, which became the only part that has to be changed from

car to car (rather than replacing the whole Giraffe).

Figure 35 - The Black Panda

In its last release, the Red Panda [Figure 36], it was made a big leap in performance, thanks

to a new CPU, and it was adopted the new CAN FD protocol on all the CAN bus. The CAN

FD protocol allows the ECU of the car to dynamically switch to different data-rate and with

larger or smaller message sizes [36]. This version is not supported by Openpilot 0.8.7, but

the Comma.ai staff is already testing it on newer releases.

Figure 36 - The Red Panda

In the newest Comma devices, the Panda is already integrated into the device’s enclosure,

nevertheless is a separate device. Is possible to buy the Panda alone in case it is needed for

testing purposes or to mount it with older devices such as the EON, but it is not recommended

since the support for those devices is limited.

Chapter 3 102

 Package structure

The Panda repository provides both the source code that is executed on the device and the

library to interact with it.

The software executed on the device, the drivers, firmware, safety constraints, and processes

executed, the source code can be found in the panda directory, structured as shown in Figure

37.

The software run on the board can be found in the /board, while the Python library is located

in folder /python.

Figure 37 - Panda package diagram

The source code executed on the board, as well as the drivers for the STM32 platform, are

written in C. This allows to have a high level of performance and to be executed directly on

the Panda board. The Panda library, instead, is written in Python and can be used by

developers to easily test the device’s functionalities.

Table 30 - Packages included in Panda main directory

 Implementation

The board directory contains the source code that runs on the STM32, which is the hardware

platform on which Panda is based. Its main() first initializes the hardware and retrieves the

parameters needed, and after that executes an endless for-loop at the frequency of 8Hz.

int main(void) {
 init_interrupts(true); // Init interrupt table

Language Files Blank Comment Code

C/C++ Header 82 4.783 6.120 31.164

Python 10 309 139 1.610

C 6 219 310 1.254

Assembly 2 220 178 696

Bourne Shell 6 9 1 35

Markdown 1 12 0 25

SUM: 107 5.552 6.748 34.784

Chapter 3 103

The first operation initializes the handler of each of the possible interrupts that could be

invoked.

Registering interrupt handlers provides the system with a way to associate an interrupt

handler with an interrupt specification. The interrupt handler is called when the device might

have been responsible for the interrupt. The handler has the responsibility of determining

whether it should handle the interrupt and, if so, of claiming that interrupt. [37]

The timer of the interrupts is then set to 1 second.

void init_interrupts(bool check_rate_limit) {
 check_interrupt_rate = check_rate_limit;

 for(uint16_t i = 0U; i < NUM_INTERRUPTS; i++) {
 interrupts[i].handler = unused_interrupt_handler;
 }

 interrupt_timer_init(); // Init interrupt timer for a 1s interval
}

Through the APIs provided by STM32 it is possible to interact with the hardware abstraction

layer (HAL) and communicate with the different peripherals. When an interrupt event occurs

(or like in the previous example is initialized) the STM32 HAL APIs are used to reconfigure

the low-level hardware.

If no errors occur when initializing all the interrupts, the interrupt requests (IRQ) are then

disabled, by setting the IRQ mask bit of the Current Program Status Register (CPSR) to 0;

 // shouldn't have interrupts here, but just in case
 disable_interrupts();

disable_interrupts() disables all the interrupts by setting the I-bit of the CPSR by calling a

low-level function written in C-asm, that allows inserting Assembly code in a high-level

language such as C or C++, much faster than a high-level function performing the same

operation.

__STATIC_FORCEINLINE void __disable_irq(void)
{
 __ASM volatile ("cpsid i" : : : "memory");
 // “cpsid i”-> CPS register, I-bit, disable
}

The clocks and the peripherals are then initialized. The Reset and Clock Controller (RCC)

is in charge of the generation of all the clocks and of the system and peripherals resets, thus

all its registers have to be initialized to the correct values and synchronized. The registers

that compose the RCC and that the method clock_init() initialize are the Clock Control

Register (CR), Clock Configuration Register (CFGR), Phase Lock Loop (PLL)

Configuration Register (PLLCFGR). It also initializes the flash memory instruction and data

cache and wait state.

Similarly, the peripherals_init() method initializes the clock register and reset register of

all the connected peripherals.

Chapter 3 104

A check for an external serial debugging device is made. The device is detected through the

General Purpose I/O (GPIO) interface, by setting the GPIO mode to the pull-down

configuration (which means that the load is placed between the GPIO and the ground) and

checking the input on the third pin of the GPIO.

The method detect_board_type() then initializes the configuration that is specific for the

different types of board. The board can be any of Panda hardware (from White Panda to

Black Panda), but also a Comma Pedal, a device specifically developed to improve the

precision of the accelerator pedal for some models of cars.

The last component to be initialized is the Analog to Digital Converter (ADC), through the

method adc_init().

 // init early devices
 clock_init();
 peripherals_init();
 detect_external_debug_serial();
 detect_board_type();
 adc_init();

If the hardware type, retrieved by the method detect_board_type(), is unknown, then the

program will wait endlessly, until the device is turned off. Otherwise, the board details are

logged.

 // check for non-supported board types
 if(hw_type == HW_TYPE_UNKNOWN) {
 puts("Unsupported board type\n");
 while (1) { /* hang */ }
 }

 puts("Config:\n");
 puts(" Board type: "); puts(current_board->board_type); puts("\n");
 puts(has_external_debug_serial ?" Real serial\n" : " USB serial\n");

The selected board is then initialized. The initialization method is different for each of the

boards, since each board may have different peripherals connected to different pins.

 // init board
 current_board->init();

Panda devices provide a Floating-Point Unit (FPU) that can execute operations on floating-

point numbers. It is enabled by setting the coprocessor access mode to full access, and that

is done by acting on the coprocessor registers CP10 and CP11.

 // panda has an FPU, let's use it!
 enable_fpu();

If an external debugger is connected to the Universal Asynchronous Receiver/Transmitter

(UART) of the board, it is initialized by registering and enabling the interrupts corresponding

to the configuration selected. All the different hardware platform versions on which the

Panda devices can be built have the possibility to connect an external device through the

Chapter 3 105

UART. SMT32 boards have various UART channels, which include USART1, USART2,

and USART3, which allows synchronous and asynchronous data transfer, and UART5 for

only asynchronous data transfer.

All the channels can be accessed by two specific pins, identified with TX and RX. Data are

transmitted at the specified rate, defined as the baud rate. [38]

 // enable main uart if it's connected
 if (has_external_debug_serial) {
 uart_init(&uart_ring_debug, 115200);
 }

If a GPS is connected to the board’s UART is also initialized by registering and enabling the

interrupts of the GPS antenna and setting the correct gauge rate.

 if (current_board->has_gps) {
 uart_init(&uart_ring_gps, 9600);
 } else {
 // enable ESP uart
 uart_init(&uart_ring_gps, 115200);
 }

If the car on which the Panda device is installed adopts a LIN bus, the LIN mode is first

enabled by initializing the Control Buffer and their interrupts have to be also registered and

enabled.

 if(current_board->has_lin){
 // enable LIN
 uart_init(&uart_ring_lin1, 10400);
 UART5->CR2 |= USART_CR2_LINEN;
 uart_init(&uart_ring_lin2, 10400);
 USART3->CR2 |= USART_CR2_LINEN;
 }

The timer for the control register, the event generation register, and the prescaler are

initialized and set to the enabled state.

 microsecond_timer_init();

The safety mode is then initialized to the silent configuration: the replay is set to the

passthrough mode, disabling the replay functionalities by default, and the CAN mode is set

to normal.

 // init to SILENT and can silent
 set_safety_mode(SAFETY_SILENT, 0);

The component which enables the physical link between the bus is the transceiver. This

component enables to transmit and receive data, converting data coming from the CAN

controller into electrical signals and transmitting them on the bus [39]. It is enabled and

configured specifically for the board with which the transceiver has to communicate.

Chapter 3 106

 // enable CAN TXs
 current_board->enable_can_transceivers(true);

The ticker timer is then initialized. A ticker is a timer that is used to recurrently call a function

at a predefined rate, in the specific case at 8Hz. The registered interrupt will be in charge of

calling the function tick_handler() at the rate defined by TICK_TIMER_IRQ. tick_handler()

is in charge of managing the sirens, the led state, and the fan spin.

 // 8Hz timer
 REGISTER_INTERRUPT(TICK_TIMER_IRQ,
 tick_handler,
 10U,
 FAULT_INTERRUPT_RATE_TICK)
 tick_timer_init();

Like for the other peripherals, the interrupt for the USB port has to be registered. The

corresponding handler, OTG_FS_IRQ_Handler(), is called whenever an event coming from

the USB port occurs. It first disables the Nested Vector Interrupt Control (NVIC) register,

the purpose of which is to prioritize the interrupts, to allow to trigger directly the interrupt

coming from the USB. The handler then verifies what event triggered the interrupt and acts

accordingly.

 // enable USB (right before interrupts or enum can fail!)
 usb_init();

The registered interrupts are then enabled, and this is done by clearing the I bit of the CPSR.

This function performs the exact opposite operation of the disable_interrupts() method.

 puts("**** INTERRUPTS ON ****\n");
 enable_interrupts();

After that all the parameters, interrupts, and peripherals are enabled, the program starts the

execution of an endless loop, with a counter cnt that keeps track of the number of executions.

At each loop there is a check that verifies if the power saving mode is enabled.

uint64_t cnt = 0;
for (cnt=0;;cnt++) {
 if (power_save_status == POWER_SAVE_STATUS_DISABLED) {
 #ifdef DEBUG_FAULTS
 if(fault_status == FAULT_STATUS_NONE) {
 #endif

Chapter 3 107

If it is not, the device’s led is turned on and off with a fading effect, to indicate that there are

no problems during the execution.

uint32_t div_mode = ((usb_power_mode == USB_POWER_DCP) ? 4U : 1U);

 // useful for debugging, fade breaks = panda is overloaded
for(uint32_t fade = 0U; fade < MAX_LED_FADE; fade += div_mode){
 current_board->set_led(LED_RED, true);
 delay(fade >> 4);
 current_board->set_led(LED_RED, false);
 delay((MAX_LED_FADE - fade) >> 4);
}

for(uint32_t fade = MAX_LED_FADE; fade > 0U; fade -= div_mode){
 current_board->set_led(LED_RED, true);
 delay(fade >> 4);
 current_board->set_led(LED_RED, false);
 delay((MAX_LED_FADE - fade) >> 4);
}

If problems occur during the debug, the device’s led will turn on and off without any fading

effect.

#ifdef DEBUG_FAULTS
} else {
 current_board->set_led(LED_RED, 1);
 delay(512000U);
 current_board->set_led(LED_RED, 0);
 delay(512000U);
}
#endif

If the device is in power saving mode, it is put in a sleeping state called Wake from Interrupt

(WFI), this means that it will stay in the sleeping state until an interrupt that has already been

registered and enabled occurs.

 } else {
 __WFI();
 }
 }

 return 0;
}

In the panda/python directory is located the Python implementation of the Panda library,

through which is possible with the device. In particular, the class Panda [Figure 38] provides

the methods to connect and send data to the Panda device. Through a Panda object is possible

to communicate to Openpilot the command that the user input through the car controls.

Chapter 3 108

Figure 38 - Panda class diagram. The handle attribute can be a either USB handle (standard from usblib) or

a custom Wi-Fi handle, according to the connection method.

Openpilot can connect to Panda through the method connect(). It first retrieves a list of the

connected devices through the method list(). USB devices are assigned a logical handle by

operating systems when they are first plugged in. This process is known as enumeration.

Once a USB device has been enumerated, it is ready for use by the host computer software.

For the host application software to communicate with the USB device, it must first obtain

the handle assigned to the USB device during the enumeration process. The handle can be

obtained using an open function along with some specific information about the USB device.

Information that can be used to obtain a handle to a USB device includes, serial number,

Chapter 3 109

product ID, or vendor ID [40]. By checking the vendor identifier and product identifier of

the device, the Panda device can be discovered.

if device.getVendorID() == 0xbbaa and device.getProductID()
 in [0xddcc, 0xddee]

Its handle is then saved into the _handle variable and a Panda object can use it to read and

write information to and from the Panda device.

if self._serial is None or this_serial == self._serial:
 self._serial = this_serial
 print("opening device", self._serial, hex(device.getProductID()))
 self.bootstub = device.getProductID() == 0xddee
 self._handle = device.open()

The methods close() and reconnect() use the functionalities provided by the device handle

to respectively close and restore (by closing and connecting again the handle) the connection

to the handle. The method reset() sends a reset request to the panda device and its default

parameters are restored.

A series of methods allow flashing a firmware for the Panda device. Different possibilities

are available: flash_ota_st() and flash_ota_wifi() allow to make OTA update, without the

need of flashing the whole firmware from scratch; flash_static() and flash() both install the

newest version of the firmware; recover() resets the device, it puts it into DFU (device

firmware update or recovery mode) and flashes again the firmware.

To check global status statistics of the device is possible to call the method health(), which

reads a series of parameters about the status of the device and returns them in form of a Map.

dat = self._handle.controlRead(Panda.REQUEST_IN, 0xd2, 0, 0, 44)
a = struct.unpack("<IIIIIIIIBBBBBBBHBBB", dat)

return {
 "uptime": a[0],
 "voltage": a[1],
 "current": a[2],
 "can_rx_errs": a[3],
 "can_send_errs": a[4],
 "can_fwd_errs": a[5],
 "gmlan_send_errs": a[6],
 "faults": a[7],
 "ignition_line": a[8],
 "ignition_can": a[9],
 "controls_allowed": a[10],
 "gas_interceptor_detected": a[11],
 "car_harness_status": a[12],
 "usb_power_mode": a[13],
 "safety_mode": a[14],
 "safety_param": a[15],
 "fault_status": a[16],
 "power_save_enabled": a[17],
 "heartbeat_lost": a[18],
}

Chapter 3 110

Different methods are available to get the device's basic information. They allow retrieving

the Panda version, signature, or hardware used.

get_version(), get_signature_from_firmware(), get_signature(), get_serial(),

get_secret(), and has_obd() return the devices’ basic information, such as the version of the

firmware or the serial number. Other getters are also available to retrieve other kind of details

such as the fan rpms (get_fan_rpm()) and the system datetime (get_datetime()).

The hardware version of Panda can be retrieved using the methods is_white(), is_grey(),

is_black(), is_pedal(), is_uno(), and is_dos(), which return a boolean indicating if the

hardware is the one for what is being checked for.

The library also allows setting different parameters of the Panda device itself, such as the

speed of the different modalities, the transfer speed of data, or even resetting the device.

• set_usb_power(): change the USB power mode, which can be USB disabled, standard

USB charging port, or Charging Downstream Port (CDP) and Dedicated Charging Port

(DCP), which can supply a higher current.

• set_fan_power(): specify the percentage to which the device fan should spin.

• set_power_save(): enable or disable the power-saving mode.

• set_esp_power(): enable or disable the ESP of the car.

• esp_reset(): reset the ESP configuration.

• set_siren(): enable or disable the device’s siren.

• set_safety_mode(): select a safety model for a specific car manufacturer.

• set_can_forwarding(): forward a CAN message to the specified bus.

• set_gmlan(): leverage the CAN2 and CAN3 modules to convert CAN data, and in

particular GMLAN (General Motors Local Area Network) data, into analog outputs and

send them over the CAN2 bus.

• set_obd(): send data over the OBD port.

• set_can_loopback(): enable or disable the CAN loopback mode, which sends the CAN

messages back to the source to test the network reliability.

• set_can_enable(): set the CAN transceiver enable pin. Since the board support

bidirectional communication, each input pin has also to be associated with an enable pin.

• set_can_speed_kbps(): set the bandwidth of the bus, in kbps.

• set_uart_baud(): set the baud rate of the UART.

• set_uart_parity(): UART can have an optional parity bit, through this method it can be

defined if use an even or odd parity bite or no parity bit.

• set_uart_callback(): define a callback function for the specified UART peripheral.

The main functionalities regard sending and receiving data over the CAN bus. can_send()

permits to send data in hexadecimal format to the specified bus, while can_recv() decodes

the data arriving from the Panda device. can_clear() drains all the messages still in queue.

Panda also supports ISO-TP, which is a transport protocol defined in the ISO-Standard

ISO15765-2. This transport protocol extends the limited payload data size for classical CAN

(8 bytes) and CAN-FD (64 bytes) to theoretically 4 GB. ISO-TP segments the data packets

into small fragments depending on the payload size of the CAN frame. The method

isotp_recv() reads the data from the receive FIFO of the context, while isotp_send() sends

data to a peer that listens to the specified address. [41]

The library also allows leveraging the board UART to send and receive data synchronously

by using the methods serial_read() and serial_write().

Chapter 3 111

Also in this case serial_clear() allows to drain off the messages buffer.

Other than CAN protocol, in the past, it was widely used the K-Line protocol, and even if it

does not play a substantial role as it did in the past, it is still widely used by many car

manufacturers, that yet implement their ECUs using K-Line technology.

The K-Line is suitable for both on-board and off-board diagnostics, and it offers two special

initialization patterns: kline_wakeup() is based on a 10,400 baud standard, and it sends a

wake-up pattern. There is also what is known as the 5-Baud Init pattern, implemented by the

method kline_5baud(), in which the system sends an address byte at five baud, and the

receiver detects this slow transmission rate. Data are sent through kline_send() and received

through kline_recv() at a standard transmission rate of 10.400 baud and speeds up to

115.200 baud for such purposes as programming of flash memories [42]. The K-Line buffer

can be drained through the method kline_drain().

Panda devices send periodical signals to indicate their normal operation: these signals,

commonly named heartbeat, are sent through the method send_heartbeat(). The Panda

heartbeat can be disabled through the method set_heartbeat_disabled(): in this case, the

checks for the device’s heartbeat are automatically disabled and can be re-enabled by

sending a new heartbeat signal.

 Usage

The Python implementation of the Panda library is used by selfdrive to perform operations

at start time or that don’t require a high computation time, while a C++ version of the Panda

library is available in selfdrive, which allows achieving a higher level of performance.

Figure 39 - Import dependencies between selfdrive and panda

Chapter 3 112

One example of the usages of the Python library is to have an easy way to retrieve the

signature of the firmware installed on the device.

def get_expected_signature() -> bytes:
 try:
 return Panda.get_signature_from_firmware(PANDA_FW_FN)
 except Exception:
 cloudlog.exception("Error computing expected signature")
 return b""

It is also used to instantiate a Panda object, or a PandaDFU object in the case in which the

device is in recovery mode.

while True:
 # break on normal mode Panda
 panda_list = Panda.list()
 if len(panda_list) > 0:
 cloudlog.info("Panda found, connecting")
 panda = Panda(panda_list[0])
 break

 # flash on DFU mode Panda
 panda_dfu = PandaDFU.list()
 if len(panda_dfu) > 0:
 cloudlog.info("Panda in DFU mode found, flashing recovery")
 panda_dfu = PandaDFU(panda_dfu[0])
 panda_dfu.recover()

The Panda instance can then be used to check that the firmware is updated and that the

heartbeat is always sound.

health = panda.health()
if health["heartbeat_lost"]:
 cloudlog.event("heartbeat lost", deviceState=health)

Chapter 3 113

 Testing

The library and its functionalities were first tested through CircleCI and then the tests were

migrated to GitHub Actions. In particular, the jobs defined allow to perform a static analysis

of the source code and check that the safety logic constraints needed to be compliant with

the Federal Motor Vehicle Safety Standards (FMVSS) are respected. Panda, as well as the

other safety-relevant components of Openpilot, has to observe the ISO26262 guidelines, as

well as strict coding guidelines that include MISRA C:2012 for C source code and flake8 and

pylint linters for Python source code.

The workflows defined in GitHub Actions allow automating the check of both the drivers

and the safety constraints, respectively in the workflow drivers and tests.

The workflow drivers, after setting up the environment and solving all the dependencies,

try to carry out the installation of SocketCAN, which is the driver for the Linux kernel that

provides a socket interface to user space applications and builds upon the Linux network

layer.

name: Build socketcan driver
run: |
 cd drivers/linux
 make link
 make all
 make install

SocketCAN allows using Panda with tools such as can-utils, which contains userspace

utilities for the Linux SockenCAN subsystem. The utilities include basic tools to display,

record, generate and replay CAN traffic. If the job is carried out till the end and completes

the installation of panda after that of the driver it means that there are no issues with

SocketCAN.

The workflow tests run the static analysis of the source code and verify that the safety

constraints are respected.

safety:
 steps:
 - name: Run safety tests
 run: |
 $RUN "cd /tmp/Openpilot && \
 scons -c && \
 scons -j$(nproc) -i opendbc/ cereal/ && \
 cd panda/tests/safety && \
 ./test.sh"

Safety tests are executed for each of the supported platforms and for each car manufacturer

and make sure that the test fails in the case of unknown hardware.

for hw_type in 0 1 2 3 4 5 6

do
 echo "Testing HW_TYPE: $hw_type"
 HW_TYPE=$hw_type python -m unittest discover .
done

Chapter 3 114

The discovery functionality provided by the unittest framework allows executing all the Test

Case in the same directory of the script. All the tests inherit the properties and behaviors of

PandaSafetyTestBase, which is an instance of unittest.TestCase, is inherited by the common

safety test cases PandaSafetyTest, TorqueSteeringSafetyTest, and InterceptorSafetyTest.

These test cases define all the standard tests that are shared for all the safety models.

InterceptorSafetyTest

+ INTERCEPTOR_THRESHOLD

+ _interceptor_msg(gas, addr)

+ test_prev_gas_interceptor()

+ test_disengage_on_gas_interceptor()

+ test_unsafe_mode_no_disengage_on_gas_interceptor()

+ test_allow_engage_with_gas_interceptor_pressed()

+ test_gas_interceptor_safety_check()

Table 31 - Common Test Cases

PandaSafetyTestBase

+ safety: FFILibrary

+ setUpClass(cls)

+ _rx(msg)

+ _tx(msg)

PandaSafetyTest

+ TX_MSGS: List[List[int]]

+ STANDSTILL_THRESHOLD: Literal

+ GAS_PRESSED_THRESHOLD: Literal

+ RELAY_MALFUNCTION_ADDR: Literal

+ RELAY_MALFUNCTION_BUS: Literal

+ FWD_BLACKLISTED_ADDRS: map[int, List[int]]

+ FWD_BUS_LOOKUP: map[int, int]

+ _brake_msg(brake)

+ _speed_msg(speed)

+ _gas_msg(gas)

+ _pcm_status_msg(enable)

+ test_relay_malfunction()

+ test_fwd_hook()

+ test_spam_can_buses()

+ test_default_controls_not_allowed()

+ test_manually_enable_controls_allowed()

+ test_prev_gas()

+ test_allow_engage_with_gas_pressed()

+ test_disengage_on_gas()

+ test_unsafe_mode_no_disengage_on_gas()

+ test_prev_brake()

+ test_enable_control_allowed_from_cruise()

+ test_disable_control_allowed_from_cruise()

+ test_cruise_engaged_prev()

+ test_allow_brake_at_zero_speed()

+ test_not_allow_brake_when_moving()

+ test_sample_speed()

+ test_tx_hook_on_wrong_safety_mode()

TorqueSteeringSafetyTest

+ MAX_RATE_UP

+ MAX_RATE_DOWN

+ MAX_TORQUE

+ MAX_RT_DELTA

+ RT_INTERVAL

+ MAX_TORQUE_ERROR

+ TORQUE_MEAS_TOLERANCE

+ _torque_meas_msg(torque)

+ _torque_msg(torque)

+ _set_prev_torque(t)

+ test_steer_safety_check()

+ test_torque_absolute_limits()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_exceed_torque_sensor()

+ test_realtime_limit_up()

+ test_torque_measurements()

Chapter 3 115

Each car manufacturer-specific test case also includes the test that inherits from its parent

common classes, and also defines tests that are specific for the different types of cars.

For instance, the test case that verifies the safety constraints for Chrysler cars [Table 32]

defines, besides PandaSafetyTest and TorqueSteeringSafetyTest common tests, three more

tests that check the ability of Panda to engage or disengage only when needed.

PandaSafetyTest

TestChryslerSafety

+ packer: CANPackerPanda

+ _button_msg(cancel)

+ _torque_msg(torque)

+ test_prev_gas()

+ test_disengage_on_gas()

+ test_cancel_button()

Table 32 - TestChryslerSafety

Similarly, GM safety tests [Table 33] ensure that values such as the torque constraints are

never exceeded.

Table 33 - TestGmSafety Test Case

TorqueSteeringSafetyTest

PandaSafetyTest

TestGmSafety

+ packer: CANPackerPanda

+ packer_chassis: CANPackerPanda

+ _button_msg(buttons)

+ _send_brake_msg(brake)

+ _send_gas_msg(gas)

+ _set_prev_torque(t)

+ _torque_driver_msg(torque)

+ _torque_msg(torque)

+ test_resume_button()

+ test_set_button()

+ test_cancel_button()

+ test_brake_safety_check()

+ test_gas_safety_check()

+ test_steer_safety_check()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_against_torque_driver()

+ test_realtime_limits()

+ test_tx_hook_on_pedal_pressed()

+ test_tx_hook_on_pedal_pressed_on_unsafe_gas_mode()

Chapter 3 116

The test cases regarding Toyota cars [Table 34] consider all the versions supported, which

means that there are different tests for the Toyota cars that have a Nidec camera and for those

that have a Bosh camera. Also, there is the distinction between Panda devices connected

through harness and Giraffe, since each configuration uses different values for the

parameters used by Panda and has to be initialized in different ways.

Table 34 - Honda Test Cases

PandaSafetyTest InterceptorSafetyTest

TestHondaNidecSafety

+ setUp()

+ _interceptor_msg(gas, addr)

+ _send_brake_msg(brake)

+ test_fwd_hook()

+ test_brake_safety_check()

+ test_tx_hook_on_interceptor_pressed()

TestHondaSafety

+ packer: CANPackerPanda

+ _button_msg(buttons)

+ _send_steer_msg(steer)

+ _send_brake_msg(brake)

+ test_resume_button()

+ test_set_button()

+ test_cancel_button()

+ test_disengage_on_brake()

+ test_steer_safety_check()

+ test_rx_hook()

+ test_tx_hook_on_pedal_pressed()

TestHondaBoschLongHarnessSafety

setUp()

TestHondaBoschLongSafety

+ NO_GAS

+ MAX_GAS

+ MAX_BRAKE

+ _send_gas_brake_msg(gas, accel)

+ test_diagnostics()

+ test_radar_alive()

+ test_gas_safety_check()

+ test_brake_safety_check()

TestHondaBoshSafety

+ setUp()

+ _alt_brake_msg(brake)

+ _send_brake_msg(brake)

+ test_alt_disengage_on_brake()

TestHondaBoshHarnessSafety

+ PT_BUS

+ STEER_BUS

+ test_spam_cancel_safety_check) TestHondaBoschLongGiraffeSafety

+ setUp()

TestHondaBoschGiraffeSafety

Chapter 3 117

Hyundai test cases [Table 35], like for Chrysler ones, verify that the torque constraints are

respected. Moreover, also the longitudinal tuning functionalities are tested, and these include

the calculation of the acceleration that the car can have, checking also by means of the radar

that is safe to accelerate or decelerate.

Table 35 - Hyundai Test Cases

Mazda test case [Table 36] does not differ from the others and, above the common safety

tests, also checks the torque constraints.

Table 36 - TestMazdaSafety Test Case

PandaSafetyTest

TestHyundaiSafety

+ packer: CANPackerPanda

+ cnt_gas: int

+ cnt_speed: int

+ cnt_brake: int

+ cnt_cruise: int

+ setUp()

+ _button_msg(buttons)

+ _torque_driver_msg(torque)

+ test_against_torque_driver()

+ test_realtime_limits()

+ test_spam_cancel_safety_check()

TestHyundaiLegacySafety

TestHyundaiLongitudinalSafety

+ def _send_accel_msg(accel, aeb_re, aeb_decel)

+ _send_fca11_msg(idx, aeb_req, aeb_decel)

+ test_no_aeb_fca11()

+ test_no_aeb_scc12()

+ test_set_resume_buttons()

+ test_cancel_button()

+ test_accel_safety_check()

+ test_diagnostics()

+ test_radar_alive()

TestHyundaiLegacySafetyEV

TestHyundaiLegacySafetyHEV

PandaSafetyTest

TestMazdaSafety

+ packer: CANPackerPanda

+ setUp()

+ _torque_meas_msg(torque)

+ _torque_msg(torque)

Chapter 3 118

The Nissan safety test [Table 37] also includes safety checks about the Lane Keeping Assist

System (LKAS) and Adaptive Cruise Control (ACC), ensuring that when the two systems

are enabled the angle command rate limit is always enforced.

TestNissanSafety

+ packer: CANPackerPanda

+ setUp()

+ _angle_meas_msg(angle)

+ _set_prev_angle(t)

+ _angle_meas_msg_array(angle)

+ _lkas_control_msg(angle, state)

+ _acc_button_cmd(cancel, propilot, flw_dist, _set, res)

+ test_angle_cmd_when_enabled()

+ test_angle_cmd_when_disabled()

+ test_acc_buttons()

Table 37 - TestNissanSafety Test Case

TestSubaruLegacySafety test case [Table 38] verifies the compliance with the safety

constraints for old Subaru cars that are still supported by Openpilot. In particular, the torque

values limits are checked, ensuring that the CAN message is delivered only if the torque

values fall within the limits.

TestSubaruLegacySafety

+ packer: CANPackerPanda

+ cnt_gas: int

+ setUp()

+ _set_prev_torque(t)

+ _torque_driver_msg(torque)

+ _torque_msg(torque)

+ _set_torque_driver(min_t, max_t)

+ test_steer_safety_check()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_against_torque_driver()

+ test_realtime_limits()

Table 38 - TestSubaruLegacySafety Test Case

PandaSafetyTest

PandaSafetyTest

Chapter 3 119

The compliance with the safety constraints of the newer models of Subaru (manufactured

after 2017) is tested by the PandaSafetyTest test case [Table 39]. Even if the differences are

the same for both the safety and the newer models of Subaru cars two test cases are needed

because the parameters have to be initialized differently.

Table 39 - TestSubaruSafety Test Case

The safety tests for Tesla check that the messages regarding the different components,

including Tesla’s Autopilot, lead to the expected status.

Table 40 - TestTeslaSafety Test Case

PandaSafetyTest

TestSubaruSafety

+ packer: CANPackerPanda

+ cnt_gas

+ cnt_torque_driver

+ cnt_cruise

+ cnt_speed

+ cnt_brake

+ setUp)

+ _set_prev_torque(t)

+ _torque_driver_msg(torque)

+ _torque_msg(torque)

+ _set_torque_driver(min_t, max_t)

+ test_steer_safety_check()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_against_torque_driver()

+ test_realtime_limits()

PandaSafetyTest

TestTeslaSafety

+ packer: CANPackerPanda

+ setUp()

+ _angle_meas_msg(angle)

+ _set_prev_angle(t)

+ _angle_meas_msg_array(angle)

+ _lkas_control_msg(angle, enabled)

+ _control_lever_cmd(command)

+ _autopilot_status_msg(status)

+ test_angle_cmd_when_enabled()

+ test_angle_cmd_when_disabled()

+ test_acc_buttons()

+ test_autopilot_passthrough()

Chapter 3 120

Toyota test case comprehends all the common tests defined, together with more validation

of the acceleration and steering parameters that can be sent to Panda.

Table 41 - TestToyotaSatety Test Case

Volkswagen cars can be categorized into cars that adopt the MQB (Modularer

Querbaukasten) platform, and those that adopt the PQ platform (also known as New Small

Family platform (NSF)).

MQB is a system that consists of a main core that is the base for many other platforms of

different cars. The test case for this car platform [Table 42] does not differ from the test case

for the other platform of Volkswagen, but it has to initialize the destination bus to which

send the messages differently.

Table 42 - TestVolkswagenMqbSafety Test Case

PandaSafetyTest TorqueSteeringSafetyTest InterceptorSafetyTest

TestToyotaSafety

+ packer: CANPackerPanda

+ setUp()

+ _lta_msg(req, req2, angle_cmd)

+ _accel_msg(accel)

+ test_accel_actuation_limits()

+ test_lta_steer_cmd()

+ test_rx_hook()

PandaSafetyTest

TestVolkswagenMqbSafety

+ packer: CANPackerPanda

+ setUp()

+ _set_prev_torque(t)

+ _lh_eps_03_msg(torque)

+ _hca_01_msg(torque)

+ _gra_acc_01_msg(cancel, resume, _set)

+ test_steer_safety_check()

+ test_spam_cancel_safety_check()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_against_torque_driver()

+ test_realtime_limits()

+ test_torque_measurements()

+ test_rx_hook()

Chapter 3 121

The PQ platform is destined for a range of ultra-compact city cars and is substantially

different from the MQB platform. Its test case, however, is specular to that of the other

platform, whit only the variables representing the destination pins for the messages

initialized differently.

PandaSafetyTest

Table 43 - TestVolkswagenPqSafety Test Case

All these test cases and the relative tests defined within are executed for each version of the

Panda hardware. Overall, the 501 tests defined are executed for the seven hardware types

available.

Testing HW_TYPE: 4
scons: Entering directory ‘/tmp/Openpilot/panda’
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘tests/safety’ is up to date.
scons: done building targets.
[…]
Ran 501 tests in 3.349s

Testing HW_TYPE: 5
scons: Entering directory ‘/tmp/Openpilot/panda’
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: ‘tests/safety’ is up to date.
scons: done building targets.
[…]
Ran 501 tests in 3.527s

TestVolkswagenPqSafety

+ packer: CANPackerPanda

+ setUp()

+ _set_prev_torque(t)

+ _lenkhilfe_3_msg(torque)

+ _hca_1_msg(torque)

+ _motor_2_msg()

+ _gra_neu_msg(bit)

+ test_steer_safety_check()

+ test_spam_cancel_safety_check()

+ test_non_realtime_limit_up()

+ test_non_realtime_limit_down()

+ test_against_torque_driver()

+ test_realtime_limits()

+ test_torque_measurements()

+ test_rx_hook()

Chapter 3 122

The other type of tests executed by GitHub Actions are the safety replay tests. The different

route logs, acquired by various cars, are replayed by resending all the CAN messages of the

drive (through TX bus) and recording the outcome of each message (arriving on RX bus).

replaying 2425568437959f9d|2019-12-22--16-24-37.bz2 with safety mode 1
and param 0

RX
total rx msgs: 1271442
invalid rx msgs: 0
invalid addrs: set()
https://github.com/commaai/panda/runs/3648263901?check_suite_focus=true - step:4:26
TX
total Openpilot msgs: 89954
total msgs with controls allowed: 3046
blocked msgs: 45
blocked with controls allowed: 0
blocked addrs: {506}

The other jobs executed through GitHub Actions make a static analysis of the source code.

C code is checked against the Misra-C:2012 regulations. MISRA-C:2012 contains 143 rules

and 16 "directives", each of which is classified as mandatory, required, or advisory. They

are separately classified as either Single Translation Unit or System. Additionally, the rules

are classified as Decidable or Undecidable [43]. The output of these verifications shows

which rules are violated.

PANDA F4 CODE
Checking ../../board/main.c ...
Checking ../../board/main.c:
PANDA=1;STM32F4=1;CAN3=1;UID_BASE=1;STM32F423xx...
Checking ../../board/main.c.dump...
Checking ../../board/main.c.dump, config
PANDA=1;STM32F4=1;CAN3=1;UID_BASE=1;STM32F423xx...

MISRA rules violations found:
Undefined: 466

MISRA rules violated:
misra-c2012-9.3 (-): 1
misra-c2012-11.4 (-): 10
misra-c2012-11.5 (-): 11
misra-c2012-19.2 (-): 8
misra-c2012-20.1 (-): 1
misra-c2012-20.7 (-): 11
misra-c2012-20.10 (-): 10
misra-c2012-21.1 (-): 414

https://github.com/commaai/panda/runs/3648263901?check_suite_focus=true#step:4:26

Chapter 3 123

Python source code is checked by using different linters, including flake8 and pylint.

Check python ast..Passed
Check Yaml..Passed
Check for merge conflicts...Passed
Check for broken symlinks....................(no files to check).Skipped
mypy..Passed
flake8..Passed
pylint..Passed

 Development and community contribution

The Panda repository was one of the first to be published when Openpilot was first released.

initial commit (07/04/2017) <George Hotz>

The Python library was developed only in a second moment, in the beginning, only the code

that had to be run on the boards was included.

Created python package and implemented industry best practices. Supports Python

2 and 3 (to the best of my testing ability at the time) (14/06/2017) <Jessy Diamond

Exum>

When GitHub CI was not available yet, tests were manually executed. The available test

included a loopback test, a standalone test, and a throughput test.

Fix some tests to not explode on python3. (28/06/2017) <Jessy Diamond Exum>

Repairing panda tests. (28/06/2017) <Jessy Diamond Exum>

loopback test works with new CAN bus ids. (12/07/2017) <Jessy Diamond Exum>

The safety policies implemented were refactored and made modular, to allow to manage

them more easily and add new ones without acting on the singular components. The simple

checks that verified if a control sent over the TX bus and RX bus was enabled were

substituted with the actual safety policies for the different cars, at the beginning only

available for Honda cars.

Refactor of safety to support more modular additions of safety policies. (12/07/2017)

<Jessy Diamond Exum>

Change all output safety mode identifier to prevent user mistakes. (12/07/2017)

<Jessy Diamond Exum>

Modularize safety modes to encourage 3rd party safety code contribution.

(17/07/2017) <Jessy Diamond Exum>

separate out controls allowed and safety mode (17/07/2017) <Firmware Batman>

refactor safety and enable tests (18/07/2017) <Firmware Batman>

An important fix was made to correctly send the request to and from the USB bus. Thanks

to the distinction between the ingoing and outgoing request destination, it was made easier

to direct the data flow.

- REQUEST_TYPE = usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
+ REQUEST_IN = usb1.ENDPOINT_IN | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
+ REQUEST_OUT = usb1.ENDPOINT_OUT | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE

Chapter 3 124

Panda library now correctly sends USB direction bit. (18/07/2017)

<Firmware Batman>

oops, I mean that (18/07/2017) <Firmware Batman>

A further addition was the introduction of a method that allowed to change the bit rate at

which data were sent over the CAN bus.

support can speed, and test it (18/07/2017) <Firmware Batman>

The introduction of this way to change the bitrate brought some problems that made the tests

fail and the fix required different tries and commits.

hmm, reliability test fails... (18/07/2017) <Firmware Batman>

clean up can interrupts, still failing (18/07/2017) <Firmware Batman>

serial echo test is failing (18/07/2017) <Firmware Batman>

add debug mode, more locks, fix test (18/07/2017) <Firmware Batman>

Also, thanks to the new tests defined and automated through a shell script, more fixes were

possible. In particular, it was easier to figure out which buses were used to transmit specific

information, for instance, GMLAN was moved over the CAN3 bus, instead of the CAN2

bus where was originally assigned.

cleanly put GMLAN on bus 3, love tests (19/07/2017) <Firmware Batman>

The firmware installation was also optimized, by including during the build process a flasher,

in charge of downloading and installing the newest firmware.

write soft flasher (25/07/2017) <Firmware Batman>

make new flasher the default for make (30/07/2017) <Firmware Batman>

To have a clearer separation of the tests, which could allow also more precise testing of the

different functionalities, the tests were refactored, and also new ones were added. The new

tests added aimed to verify the reliability of the build process and the flashing of the firmware

over Wi-Fi.

break tests into two files (30/07/2017) <Firmware Batman>

add wifi tests (30/07/2017) <Firmware Batman>

fix legacy build issue, add build test, fix warnings (01/08/2017) <Firmware Batman>

Also, thanks to the tests were detected some problems when using UDP transfer protocol to

download the firmware, problems that were then addressed and solved by introducing a

delay.

st wifi flash is failing (30/07/2017) <Firmware Batman>

begin to address UDP reliability issues (13/08/2017) <Firmware Batman>

adding delay made it much better (13/08/2017) <Firmware Batman>

An important addition was the inclusion of the support to ELM327, a command protocol for

interfacing with cars using an OBD-II port to read standard vehicle diagnostic codes. ELM

is mainly used to diagnose vehicles and reset fault codes in the car's computer after fixing

an issue.

ELM327: Car simulator now simulates LIN ISO 14230-4 (KWP FAST) (19/08/2017)

<Jessy Diamond Exum>

Chapter 3 125

ELM327: incoming messages cleared before commands to prevent congestion. (19/0

8/2017) <Jessy Diamond Exum>

some computers are slow to enumerate (21/08/2017) <Firmware Batman>

The introduction of the support of the DSU mode in the Python library allowed to boot the

device directly in a recovery mode to perform the erase and recover of the device’s firmware,

and also automatically trigger the boot of the recovery mode in case of a reset failure.

support DFU mode in python library (22/08/2017) <Firmware Batman>

factor out DFU code (23/08/2017) <George Hotz>

list can fail (13/09/2017) <George Hotz>

ugh, pass (13/09/2017) <George Hotz>

add to dfu as well (13/09/2017) <George Hotz>

try a DFU recover if reset failed (19/09/2017) <George Hotz>

try DFU every time (01/10/2017) <George Hotz>

The Panda Python library folder was then renamed from panda/panda to panda/python, to

avoid misapprehensions.

rename panda to python because of git ambiguity (07/12/2017) <George Hotz>

It was then added the support to more Panda functionalities and hardware, including the

Panda Serial and Panda Pigeon, Panda Debug functionalities, Grey Panda hardware check,

and K-Line debugging features.

add PandaSerial and location panda (aka pigeon) test (07/01/2018) <George Hotz>

fix panda serial write (19/01/2018) <George Hotz>

add pandadebug support (24/01/2018) <George Hotz>

add is_grey (16/02/2018) <George Hotz>

add kline debug support (01/03/2018) <Jennifer Strange>

kline checksum algo was broken... (01/03/2018) <Jennifer Strange>

Another addition was the support of the IsoTP transfer protocol and a way to send and

receive messages through it.

despite it being bad code, move isotp (10/03/2018) <George Hotz>

add way to call isotp (10/03/2018) <George Hotz>

forgot the selfs (10/03/2018) <George Hotz>

long isotp msgs (22/06/2018) <George Hotz>

More safety hooks were also added to be compliant with the guidelines and regulations that

are mandatory for level 2 self-driving cars. Up to this moment in time, the safety hooks

available regarded cars manufactured by Chrysler, GM, Honda, and Toyota.

added bosch safety hooks and forwarding (06/03/2018) <gregjhogan>

Chrysler safety controls (#130) (06/11/2018) <Drew Hintz>

A community member, Chris Vickery, implemented the WebUSB and WinUSB 2.0

specifications, and also added the support to USB 2.1 specifications. [44]

Implement WebUSB and upgrade WinUSB to 2.0 (#107) (11/04/2018) <Chris

Vickery>

Chapter 3 126

Another community member, Nigel Armstrong, made a series of improvements to optimize

the power consumption of the device and also added the specification for a hardware-in-the-

loop Jenkins test.

Capture make failure so it can be logged to sentry (21/02/2019) <Nigel Armstrong>

Power Saving (#169) (14/03/2019) <Nigel Armstrong>

Additional Power saving (#170) (02/04/2019) <Nigel Armstrong>

Jenkins (#179) (09/04/2019) <Nigel Armstrong>

The next big change was made with the release of the new version of the Panda, the Black

Panda. The support to the new hardware was added to the Python library and the new

specifications were added to the board source code. This was also the occasion to split the

code-related different boards into different files, to better manage and maintain them.

Black (#254) (24/07/2019) <rbiasini>

Black panda Jenkins (#256) (28/08/2019) <robbederks>

After updating the Python version used by the library, many changes were needed to adapt

to the new standard and to replace functions and methods that were no longer available in

the new version.

env python -> env python3 (25/09/2019) <Riccardo>

xrange is gone (25/09/2019) <Riccardo>

Fix all the prints with 2to3, some need to be undo (25/09/2019) <Riccardo>

undo unnecessary brackets for print (25/09/2019) <Riccardo>

2to3 applied (25/09/2019) <Riccardo>

read file as byte and no tab before sleep (25/09/2019) <Riccardo>

Fixed some python3 bugs in the test scripts and PandaSerial (28/09/2019)

<Robbe Derks>

python2 -> 3 fixes to pedal flasher (#292) (09/10/2019) <rbiasini>

More Python 3 fixes, attempting to fix Jenkins wifi regression test (#295) (10/10/2019)

<rbiasini>

More additions to the safety specification were made to also include that for Volkswagen,

Audi, SEAT, and Skoda. Additional improvements were also made by aligning the enum in

cereal with those in the safety specifications of the Panda library.

match safety enum in cereal (#285) (03/10/2019) <rbiasini>

Panda safety code for Volkswagen, Audi, SEAT, and Škoda (#293) (09/10/2019)

<Jason Young>

To simplify the process of flashing Electronic Control Units (ECUs) over CAN using a

Panda and perform general scanning of ECUs for interesting data it was developed and

included in Panda the Unified Diagnostic Services (UDS) library. UDS is a diagnostic

communication protocol used in ECUs within automotive electronics, which is specified in

the ISO 14229-1. [45]

The addition of the UDS Panda library was entirely conducted by Greg Hogan, who

collaborated with the Comma.ai team to optimize it and fix the issues that arise during the

different tests.

uds lib (15/10/2019) <Greg Hogan>

more UDS message type implementation (15/10/2019) <Greg Hogan>

SERVICE_TYPE enum (15/10/2019) <Greg Hogan>

Chapter 3 127

uds can communication (15/10/2019) <Greg Hogan>

zero pad messages before sending (15/10/2019) <Greg Hogan>

fix remaining size calculation (15/10/2019) <Greg Hogan>

clear rx buffer and numeric error ids (15/10/2019) <Greg Hogan>

multi-frame tx (15/10/2019) <Greg Hogan>

bug fixes (15/10/2019) <Greg Hogan>

flow control delay (15/10/2019) <Greg Hogan>

fix flow control delay scale (15/10/2019) <Greg Hogan>

fix separation time parsing (15/10/2019) <Greg Hogan>

handle separation time in microseconds (15/10/2019) <Greg Hogan>

convert uds lib to class (15/10/2019) <Greg Hogan>

fix rx message filtering bug (15/10/2019) <Greg Hogan>

bug fixes (15/10/2019) <Greg Hogan>

add timeout param (15/10/2019) <Greg Hogan>

support tx flow control for chunked messages (15/10/2019) <Greg Hogan>

updates for python3 (15/10/2019) <Greg Hogan>

more python3 (15/10/2019) <Greg Hogan>

custom errors from thread (15/10/2019) <Greg Hogan>

bytes() > chr().encode() (15/10/2019) <Greg Hogan>

fix WARNING_INDICATOR_REQUESTED name (15/10/2019) <Greg Hogan>

fix more encoding and some bytes cleanup (#300) (15/10/2019) <rbiasini>

better CAN comm abstraction (15/10/2019) <Greg Hogan>

more uds debug (15/10/2019) <Greg Hogan>

timeout is float (16/10/2019) <Greg Hogan>

proper python3 exception inheritance (16/10/2019) <Greg Hogan>

uds drain before send and use has_obd() (06/11/2019) <Greg Hogan>

improve uds message processing (06/11/2019) <Greg Hogan>

uds: no need for threads if you always drain rx (13/11/2019) <Greg Hogan>

uds: better debug prints (13/11/2019) <Greg Hogan>

single addr was better (14/11/2019) <Greg Hogan>

uds zero second timeout (15/11/2019) <Greg Hogan>

uds: handle function addrs and fw version query example (17/11/2019)

<Greg Hogan>

functional addr handling (17/11/2019) <Greg Hogan>

UDS: handle remote addressing (17/12/2019) <Willem Melching>

uds: rx message buffering (06/02/2020) <Greg Hogan>

uds: clear rx buffer on drain (06/02/2020) <Greg Hogan>

Another refactor of the power saving was necessary because of two main problems:

• The CAN-based ignition would not trigger the interrupt on the ignition line that changed

the power save mode and set the USB power mode to CDP.

• easy to trigger race conditions where EON changed the safety mode and re-enabled some

of the CAN lines after interrupt corresponding to the ignition off was triggered.

The solution proposed by Riccardo Biasini [46] included several fixes:

• Move power save mode logic to boardd (Openpilot). ON when the car is ON, OFF when

the car is ON.

Chapter 3 128

• Only set_power_save_state() call in Panda is when EON is disconnected: enter both

SILENT safety mode and power saving mode to ensure that if EON is disconnected

while the car is ON, Panda won't remain in high consumption mode.

• Enter CDP mode when check_started() is True.

• It was added a USB command to change the power save state.

• It was added a power save state to the health packet.

• The ignition line interrupt was disabled

Power saving refactor (#389) (21/11/2019) <rbiasini>

Other improvements were made to the functionalities allowing to control the health status of

the device. In particular, it was added a global timer instead of the local one that was included

before, and the structure of the health packet was also modified, including new parameters

indicating the faults and errors that occurred while running the process.

Add uptime counter to the health packet (#391) (22/11/2019) <Robbe Derks>

Fixed health struct size. We should really get an automated test for this (23/11/2019)

<Robbe Derks>

Added faults integer to health packet (27/11/2019) <Robbe Derks>

send can_rx_errs in health (20/12/2019) <Riccardo>

As more cars were being supported by Openpilot, also new safety codes and specifications

for the new car manufacturers had to be added and the ones for the existing manufacturers

were also corrected and improved to support a wider range of cars.

better differentation of honda safety modes (21/12/2019) <Riccardo>

Volkswagen safety updates: Phase 1 (#444) (19/02/2020) <Jason Young>

Added Nissan safety (#244) (26/02/2020) <Andre Volmensky>

separating subary legacy safety mode from global (#452) (28/02/2020) <rbiasini>

remove toyota ipas safety code and tests (#460) (04/03/2020) <rbiasini>

Safety model for Volkswagen PQ35/PQ46/NMS (#474) (01/04/2020) <Jason Young>

remove cadillac (#496) (13/04/2020) <Adeeb Shihadeh>

An important improvement made to increase productivity was made thanks to the

introduction of GitHub Actions. Thanks to the CI capabilities offered, it was no longer

needed the integration with CircleCI, which was replaced. GitHub Actions also allowed the

enforcement of static code constraints for both C and Python source code.

GitHub Actions (#535) (18/05/2020) <Adeeb Shihadeh>

only push to dockerhub from master (18/05/2020) <Adeeb Shihadeh>

pull base image (18/05/2020) <Adeeb Shihadeh>

fix docker file path (18/05/2020) <Adeeb Shihadeh>

Fast CI (#539) (19/05/2020) <Adeeb Shihadeh>

Add pre commit checks + CI (#545) (29/05/2020) <Willem Melching>

Speed up misra test in CI (#552) (08/06/2020) <Adeeb Shihadeh>

only push to docker registry from master (08/06/2020) <Adeeb Shihadeh>

update dockerhub token (12/06/2020) <Adeeb Shihadeh>

Build socketcan driver in CI (#588) (09/08/2020) <Adeeb Shihadeh>

The last big update regard modifications aimed to support the new Red Panda, which

compared to its predecessors is based on a new board model (STM32H7).

Support for STM32H7 and Red Panda (#694) (03/08/2021) <Igor Biletskyy>

Chapter 3 129

 Rednose

Rednose is a Kalman filter library that can be used for a wide range of optimization

problems. In particular, it is used for problems in the field of visual odometry and sensor

fusion localization (SLAM). It is designed to provide very accurate results, work online or

offline, and be computationally efficient.

The library applies the Rauch-Tung-Striebel (RTS) Smoother algorithm, which is

composed of two passes: the forward pass consists of a standard Extended Kalman Filter

(EKF), while the backward pass is introduced to reduce the inherent bias in the EKF

estimates.

In estimation theory, EKF is the nonlinear version of the Kalman filter which linearizes about

an estimate of the current mean and covariance. The EKF can be considered as the de facto

standard in the theory of nonlinear state estimation, navigation systems, and GPS.

 Package structure

The library offers a series of helper functions and classes that allow performing the filtering

actions, as well as the templates that help the function to generate the result of its

computation. [Figure 40]

Figure 40 - Rednose package diagram

It provides both a Python and a C++ implementation for its classes and methods. It also

comes with a Cython wrapper for the main EKF component, which allows generating C code

ad calls it in Python libraries.

Language Files Blank Comment Code

C++ 5 158 93 2.741

Python 7 248 134 911

C/C++ Header 5 34 4 201

C 3 34 21 176

Cython 1 35 6 149

SUM: 21 509 258 4.178

Table 44 - Lines of code of Rednose, by programming language

Chapter 3 130

 Implementation

The main component exposing the Extended Kalman Filter functionalities is the EKFSym

class.

Figure 41 - EKFSym class diagram. EKFSym leverages the Extended Kalman Filter EKF that is generated

according to the selected measurement model and provides the prediction and update methods.

When an EKFSys object is instantiated it first initializes the process functions and all the

observation functions of the Kalman filter.

Compared to a simple Kalman Filter, an EKF uses a method called First Order Taylor

Expansion to linearize the distribution of a nonlinear function, like can be a radar or GPS

measurement. If a real-valued function f(x) is differentiable at the point x = a, then it has a

linear approximation near this point, and this relation can be described by using (3.13).

 𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) (3.13)

Chapter 3 131

A nonlinear system can be generally defined by equations (3.14) and (3.15), where x

identifies the state vector and z the measurements vector and 𝑤𝑘 and 𝑣𝑘 are the process and

measurement noises.

 xk = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 (3.14)

 𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (3.15)

The initial optimal state and error covariance are initialized with the mean (3.16) and

covariance (3.17) of x, as those are the only data available when the algorithm starts.

 𝑥0
𝑎 = E[x0] (3.16)

 𝑃0 = 𝐶𝑜𝑣[𝑥0] (3.17)

void EKFSym::init_state(Map<VectorXd> state,
 Map<MatrixXdr> covs,
 double filter_time) {
 this->x = state;
 this->P = covs;
 this->filter_time = filter_time;
 this->augment_times = VectorXd::Zero(this->N);
 this->reset_rewind();
}

By expanding the nonlinear function describing the state using the first-order Taylor

expansion we obtain (3.18)

 𝑓(𝑥𝑘−1) = 𝑓(𝑥𝑘−1
𝑎) + 𝐹 𝑒𝑘−1 (3.18)

where F is the Jacobian of the main state and 𝑒𝑘−1 ≡ 𝑥𝑘−1 − 𝑥𝑘−1
𝑎 . The Jacobian is defined

as:

 𝐹 =

[

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 (3.19)

By conditioning 𝑓(𝑥𝑘−1) by the vector of the measurements z we can identify the expected

value with the (3.20), where 𝐸[𝑒𝑘−1|𝑍𝑘−1] = 0, therefore the forecasted value will be

expressed by the (3.21):

 𝐸[𝑓(𝑥𝑘−1)|𝑍𝑘−1] ≈ 𝑓(𝑥𝑘−1
𝑎) + 𝐹 ∙ 𝐸[𝑒𝑘−1|𝑍𝑘−1] (3.20)

 𝑥𝑘
𝑓

≈ 𝑓(𝑥𝑘−1
𝑎) (3.21)

By substituting (3.18) in the forecast error equation we obtain:

𝑒𝑘

𝑓
≡ 𝑥𝑘 − 𝑥𝑘

𝑓
≈ 𝐹 ∙ 𝑒𝑘−1

+ 𝑤𝑘−1
(3.22)

The forecast error covariance will be given by:

Chapter 3 132

𝑃𝑘
𝑓

≡ 𝐸 [𝑒𝑘
𝑓
(𝑒𝑘

𝑓
)
𝑇
]

 = 𝐹 ∙ 𝐸[𝑒𝑘−1 ∙ 𝑒𝑘−1
𝑇] ∙ 𝐹𝑇 + 𝐸[𝑤𝑘−1 ∙ 𝑤𝑘−1

𝑇]

 = 𝐹 ∙ 𝑃𝑘−1 ∙ 𝐹𝑇 + 𝑄𝑘−1

(3.23)

The predictions of the state and state covariance are calculated by the method predict(). The

EKF component of a EKFSym can be generated starting from different measurement

models, and the prediction algorithm, as well as the update algorithm, will change

accordingly to model from which the EKF component is generated.

// functions generated from sympy
f_fun(in_x, dt, nx);
F_fun(in_x, dt, in_F);

EEM F(in_F);
EEM P(in_P);
EEM Q(in_Q);

RRM F_main = F.topLeftCorner(MEDIM, MEDIM);

P.topLeftCorner(MEDIM, MEDIM) = (F_main*P.topLeftCorner(MEDIM, MEDIM)) *
 F_main.transpose();
P.topRightCorner(MEDIM, EDIM - MEDIM) = F_main *
 P.topRightCorner(MEDIM, EDIM - MEDIM);
P.bottomLeftCorner(EDIM - MEDIM, MEDIM) =
 P.bottomLeftCorner(EDIM - MEDIM, MEDIM) *
 F_main.transpose();

P = P + dt*Q; // prediction step

The update step starts with the computation of the difference between the measured value

and the actual value. The measured value is computed by function h(x), which specifies how

the speed and the position of x are mapped to polar coordinates.

 𝑦 = 𝑧 − ℎ(𝑥) (3.24)

The total error (or residual covariance) and the (near-optimal) Kalman Gain can then be

computed by applying (3.25) and (3.26), respectively.

 𝑆 = 𝐻 ∙ 𝑃 ∙ 𝐻𝑇 + 𝑅 (3.25)

 𝐾 = 𝑃 ∙ 𝐻𝑇 ∙ 𝑆−1 (3.26)

H is the Jacobian matrix of the observations and R is the measurement noise.

The updated state estimate and covariance estimate can be computed by applying:

 𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐾 ∙ 𝑦 (3.27)

 𝑃𝑘 = (𝐼 − 𝐾 ∙ 𝐻)𝑃𝑘
𝑓
 (3.28)

Chapter 3 133

// update state by injecting dx
Eigen::Matrix<double, EDIM, 1> dx(delta_x);
dx = (KT.transpose() * y);
memcpy(delta_x, dx.data(), EDIM * sizeof(double));
err_fun(in_x, delta_x, x_new);
Eigen::Matrix<double, DIM, 1> x(x_new);

// update cov
P = ((I_KH * P) * I_KH.transpose()) + ((KT.transpose() * R) * KT);

In the case in which a Multi-State Constraint Kalman Filter is used, it is needed to run a

Mahalanobis Distance test. The Mahalanobis Distance is an effective multivariate distance

metric that measures the distance between a point and a distribution. This measure is useful

to identify multivariate outliers, which could negatively influence the outcome of the

computation.

if (MAHA_TEST) {
 XXM a = (H_err * P * H_err.transpose() + R).inverse();
 double maha_dist = y.transpose() * a * y;
 if (maha_dist > MAHA_THRESHOLD) {
 R = 1.0e16 * R;
 }
}

The method predict_and_update_batch() is the one providing the main Kalman filter

functionalities. It leverages the C functions included in the library to perform prediction and

update operations in a faster and more efficient way.

Like in the first case, the prediction function computes the Jacobian matrix F and it calculates

the estimated covariance.

In the update step, after the computation of the Jacobian of the measurements, it is calculated

the loss between the measured value and the actual value of the observation. Like in the

previous case, the formulas derived from the resolution of the equations are used to compute

the updated state estimate and covariance estimate.

The library provides a function that allows generating the source code describing all the

parameters needed by the Extended Kalman Filter to perform the prediction and the update

step starting from a given measurement model. The input parameters include all the state

variables of the models, while the output consists of 2 files, a C header, and the C source

code file, containing the definition of the linearization functions using the Jacobian, the error

functions, the state propagation functions, and the observation functions.

The backward recursion pass of the Rauch-Tung-Striebel Smoother algorithm is performed

by the method rts_smooth(). The smoothed estimates generated during the backward are

more precise and reliable than the estimation of EKF only.

The Python library allows to use only the EKF or combine it with RTS smoother. Even if

the second method usually gives better results, in some cases it may be preferable to use only

the EKF to reduce the computation time and still have a good level of precision. [47]

Chapter 3 134

 Usage

The main component of Openpilot that makes usage of the Rednose library is the process

locationd. This process takes care of the localization of the car by combining data coming

from vision sensors and GPS and smoothing the result using the Extended Kalman Filter.

Figure 42 - Import dependencies between selfdrive and rednose

It is possible to choose among various measurement models for the EKF implementation. A

particular model is selected based on many factors, one being the limitations of the available

measurements. One of the main models is Laika, which provides much more accurate GNSS

data acquisitions. All the different measurements model are combined to get a much more

accurate estimation of the car positions. LiveKalman is the generated component

implementing the Extended Kalman Filter functionalities and leveraging all the

measurement models, including GNSS, vision, and sensors.

private:
 std::unique_ptr<LiveKalman> kf;

The parameters needed to apply the EKF forward step of the RTS smoother algorithm can

be retrieved through the LiveKalman instance. These include the initial state and covariance,

the Jacobian matrix, and the predicted state and covariance.

VectorXd init_x = this->kf->get_initial_x();
MatrixXdr init_P = this->kf->get_initial_P();
double filter_time = this->kf->get_filter_time();
VectorXd predicted_state = this->kf->get_x();
MatrixXdr predicted_cov = this->kf->get_P();
MatrixXdr HH = this->kf->H(H_input);

Chapter 3 135

LiveKalman class comes with a filter object, which is an instance of the EKFSym class.

Through this object, it can access all the Rednose library functionalities, including prediction

and smoothing methods offered by the Extended Kalman Filter.

this->kf->predict_and_observe(sensor_time,
 OBSERVATION_PHONE_GYRO,
 {meas});

this->kf->predict_and_observe(sensor_time,
 OBSERVATION_PHONE_ACCEL,
 {meas});

this->kf->predict_and_observe(current_time,
 OBSERVATION_ECEF_ORIENTATION_FROM_GPS,
 { initial_pose_ecef_quat });

this->kf->predict_and_observe(current_time,
 OBSERVATION_ECEF_POS,
 { ecef_pos },
 { ecef_pos_R });

this->kf->predict_and_observe(current_time,
 OBSERVATION_ECEF_VEL,
 { ecef_vel },
 { ecef_vel_R });

this->kf->predict_and_observe(current_time,
 OBSERVATION_NO_ROT,
 { Vector3d(0.0, 0.0, 0.0) });

this->kf->predict_and_observe(current_time,
 OBSERVATION_CAMERA_ODO_ROTATION,
 { (VectorXd(rot_device.rows() +
 rot_device_std.rows()) << rot_device,
 rot_device_std).finished() });

this->kf->predict_and_observe(current_time,
 OBSERVATION_CAMERA_ODO_TRANSLATION,
 { (VectorXd(trans_device.rows() +
 trans_device_std.rows()) << trans_device,
 trans_device_std).finished() });

In LiveKalman, the method predict_and_observe() makes use of the

predict_and_update_batch() method of the EKFSym class, the main method of the class

which computes the predictions made by the Extended Kalman Filter.

Chapter 3 136

 Testing

The two test cases available for the Rednose library and executed through GitHub Actions

when a new commit is made aim to test the performance of both the Python and the Cython

implementations of the library, as well as the precision of the predictions made through the

library.

 The test case TestCompare instantiate creates two different implementations of the

Extended Kalman Filter. Both of them use C code to perform their operations, with the

difference that in one case the code is generated using the Cython wrapper, while in the other

case the source code is generated by a Python method and invoked thanks to the C Foreign

Function Interface (CFFI) for Python.

This second methodology produces the same result as Cython, allowing to call C code from

Python code, increasing the overall performances, but the advantage is that the

implementation of this methodology does not require the knowledge of a third programming

language, like in the case of Cython.

Table 45 - TestCompare test case

The purpose of the test case is to show that the two implementations have similar

performances.

self.assertAlmostEqual(kf.filter_py.get_filter_time(),
 kf.filter_pyx.get_filter_time())

self.assertTrue(np.allclose(kf.filter_py.state(),
 kf.filter_pyx.state()))

self.assertTrue(np.allclose(kf.filter_py.covs(),
 kf.filter_pyx.covs()))

CompareFilter

+ name: string

+ initial_x: array

+ initial_P_diag: array

+ Q: ndarray

+ obs_noise: map<ObservationKind, ndarray>

+ filter_py: EKF_sym

+ filter_pyx: EKF_sym

+ generate_code(generated_dir)

+ get_R(kind, n): ndarray

TestCompare

+ dt: float

+ ts: arange

+ xs: empty

+ x: float

+ switch: tuple

+ test_compare()

1..

1

0..

n

Chapter 3 137

The second test case uses the Extended Kalman Filter to correct a set of measurements and

create estimations that are much closer to the actual data than the measured data.

Table 46 - TestKinematic Test Case

In Figure 43 is shown how the Kinematic EKF can predict values that are much closer to the

actual measurements acquired than a normal simulation is able to do.

Figure 43 - Kinamatic EKF simulation plot

TestKinematic

+ dt: float

+ ts: arange

+ vs

+ x

+ xs

+ xs_meas

+ xs_kf

+ vs_kf

+ xs_kf_std

+ vs_kf_std

+ test_kinematic_kf()

KinematicKalman

+ name: string

+ initial_x: array

+ initial_P_diag: array

+ Q: ndarray

+ obs_noise: map<ObservationKind, ndarray>

+ filter_py: EKF_sym

+ filter_pyx: EKF_sym

+ generate_code(generated_dir)

1..

1
0..

n

Chapter 3 138

 Development and community contributions

Rednose was added to Openpilot only when Openpilot reached its release 0.7.x and replaced

some of the functionalities that were originally performed by the simple Kalman filter

located in the common directory.

initial commit (14/05/2020) <Willem Melching>

The Kinematic EKF was one of the first additions. This example of the EKF, which

compares the prediction of parameters related to the position and speed of the car with the

actual measurements taken, was added to showcase the capabilities of the filter and its usage.

add kinematic example and test (16/05/2020) <Willem Melching>

Add picture (16/05/2020) <Willem Melching>

To improve the usability of the Kalman filter, it was also added a Kalman filter base class,

which comes with a filter property to which can be assigned an EKF object.

add kalman filter base class (16/05/2020) <Willem Melching>

remove unused constant (16/05/2020) <Willem Melching>

The tests available for the library were integrated with static analysis, performed before each

commit, and using different Python linters, including flake8, mypy, and pylint.

run static analysis in CI (29/05/2020) <Willem Melching>

Fix docker container name (29/05/2020) <Willem Melching>

use github url (29/05/2020) <Willem Melching>

use same pre-commit config as Openpilot (04/06/2020) <Adeeb Shihadeh>

cleanup pre-commit config (22/06/2020) <Adeeb Shihadeh>

Along with the EKF_sym class, already available in Python and using SymPy to generate

the C method to invoke, it was also added an EKF_sym class in C++ and then wrapper using

Cython. They offer similar performances but having an implementation both in C++ and

Python for the EKF_sym class offers a higher degree of flexibility, allowing Openpilot to

leverage the Extended Kalman filter functionalities in modules written both in Python and

C++.

EKF_sym class rewritten to c++ (#9) (08/04/2021) <Joost Wooning>

changes for locationd in c++ (#13) (20/04/2021) <Joost Wooning>

Chapter 4 139

4 Self-driving cars: an overview of the

Openpilot framework and its quality

assessment

Openpilot needs many components that allow the software to interface with the car and

exchange messages with it. These components, after the open-sourcing of the software, were

organized in different repositories, allowing to better manage them and have a clear

distinction of what role each component plays. In this excursus of the submodules that are

available in the main Openpilot repository will be analyzed the functionalities that each one

of them provides, how they were tested to ensure the required levels of reliability, and what

was the development process they went through.

 Package structure

The selfdrive directory is the largest repository of Openpilot and contains the definition of

the Python and C++ processes executed on the Comma device. The choice of Python and

C++ is common for applications executed on microcontrollers that require to interface with

external actuators, since many microcontrollers can natively run C++ code. Also, C++ grants

a high level of performance, while Python provides high programmer productivity. In most

cases, the C++ libraries are wrapped using Cython, which can be defined as a superset of

Python that compiles to C and C++. This allows calling C and C++ code from Python code,

keeping both the advantages in the usability of Python and the performance of C++.

Language Files Blank Comment Code

Python 164 3.935 1.630 19.587

C++ 103 3.458 1.444 16.736

C 11 958 212 10.275

C/C++ Header 121 2.244 3.056 9.736

OpenCL 7 88 60 556

SVG 15 0 0 242

JSON 2 0 0 104

HTML 2 11 0 89

Bourne Shell 8 17 3 83

QML 1 5 0 42

Cython 1 4 2 22

SUM: 435 10.720 6.407 57.472

Table 47 - Lines of code of selfdrive, by programming language

To describe the architecture of Openpilot we can take advantage of the 4+1 architectural

view model of Kruchten, which provides a systematic way to describe a system according

to different views. As for the logical view of the architecture, the only task that Openpilot

performs is to drive the car. From version 0.8.7 is also possible to use a navigator.

Chapter 4 140

Looking at the development view, Openpilot is made of different packages which allow

communication with the car and run the predictive model.

Figure 44 - Openpilot package diagram

Each package contains the different processes of Openpilot. The processes communicate by

using the Cereal messaging specifications, but they also provide common functionalities that

can be used by other processes to retrieve various details, such as the hardware version, the

car model on which the device is mounted, and so on.

Figure 45 - Dependencies of the selfdrive packages

Chapter 4 141

The physical components that are involved are essentially three: the Comma device (Comma

Two or Comma Three), a Comma Pedal to communicate with the car, and the supported car

itself.

The car provides the raw data that is given to the AI model to generate an output that is then

transformed into actions by the car actuators. Raw data come from the car camera, radar,

and sensors.

Data are then transmitted over the CAN bus, and the Panda device interfaces with the car

and intercepts the data over the CAN bus. These data are then transmitted, over USB, to the

Comma device.

The Openpilot software, running on the device, comes with different process daemons that

manage the acquired data, give them to the AI model, and generate a message that is sent to

the car over the same CAN bus. In Figure 46 is represented Openpilot’s component diagram,

showing the core nodes and components involved in the system.

The camera daemon, (camerad), sends the frames acquired by the car and device’s camera

to the model daemon (modeld), which generates the predictions based on AI algorithms, and

the sensor daemon (sensord) elaborates the output of the car’s sensors. All of these data are

input into the control daemon (controlsd), which generates the messages that are sent to the

car through Panda and over the CAN bus.

Figure 46 - Openpilot deployment diagram

Looking at the process view, selfdrive is characterized by the parallel execution of different

processes, which take care of the different aspects that need to be controlled during the

software execution.

Openpilot processes include both Python and C++ processes. Generally, the C++ processes

are those which require a high level of performance and that can be executed natively on the

Comma device. These include the processes taking care of the prediction and elaboration of

the acquired frames of the camera, the processes directly controlling or showing content on

the device, and other logging functionalities.

More specifically, the taxonomy in Figure 47 shows the different categories of processes

and their type.

Chapter 4 142

Figure 47 - processes taxonomy, organized by type and objective of the process

After launching the software and building the different modules, Openpilot starts its process

manager, which runs for the whole execution of the software and ensures that each process

is running, also sending and receiving state messages to and from the different components.

As we can see in Figure 48, the processes started are many and each one of them performs a

specific action. Each of them will be further analyzed in a dedicated paragraph.

Openpilot

processes

Sensors and
actuators

cameraD

sensorD

boardD

pandaD

Data processing

modelD

dMonitoringModelD

locationD

ubloxD

calibrationD

Controls

controlsD

plannerD

radarD

paramsD

Logging

logcatD

loggerD

procLogD

logMessageD

dMonitoringD

deleter

uploader

Application

ui

soundD

athenaD

Utility

clocksD

rtShield

thermalD

timezoneD

tombstoneD

updateD

Native processes

Python processes

Chapter 4 143

Figure 48 - Sequence diagram of the initialization of Openpilot. ManagerD daemon takes care of managing

the choreography of processes that run during the execution of the software.

 Implementation

To analyze the implementation of the different processes, each of them will be considered

individually, focusing on how they communicate with each other and what functionalities

provide and how.

 AthenaD

This service allows real-time communication with the car. It runs also if the car is parked

and not moving and allows to access different functionalities of the car from a dedicated

application.

The Athena daemon leverages the Comma API to instantiate a WebSocket object that listens

to inbound JSON-RPC requests. The specific WebSocket can be reached by specifying the

unique dongle_id parameter.

dongle_id = params.get("DongleId", encoding='utf-8')

ATHENA_HOST = os.getenv('ATHENA_HOST', 'wss://athena.comma.ai')
ws_uri = ATHENA_HOST + "/ws/v2/" + dongle_id

api = Api(dongle_id)

ws = create_connection(ws_uri,
 cookie = "jwt=" + api.get_token(),
 enable_multithread = True,
 timeout = 30.0)

Chapter 4 144

An application can request an active WebSocket by sending a JSON-RPC message to the

base URL https://athena.comma.ai and specifying the required service.

The JSON-RPC response will contain the result of the query. Below is shown an example

of a response containing the result of a request for the health status of a car.

{
 "jsonrpc": "2.0",
 "result": {
 "health": {
 "gasInterceptorDetected": true,
 "controlsAllowed": true,
 "started": true,
 "current": 77,
 "startedSignalDetected": false,
 "isGreyPanda": true,
 "voltage": 12008
 },
 "logMonoTime": 12553712590731
 },
 "id": "db7cb7a3-5f54-4521-91ac-51877064da11"
}

Internally, Athena manages the requests and responses through different threads. The

functions that can be called remotely are added to the server by using a JSON-RPC

Dispatcher. The available functions are:

• getMessage(): request for any message from the car.

• getVersion(): return the version of the system installed on the device.

• setNavDestination(): set a destination in Openpilot’s navigator, by specifying the

latitude and longitude of the point to reach.

• listDataDirectory(): list the directory and files in the device.

• reboot(): reboot the comma device from remote.

• uploadFileToUrl(): put a file into the upload queue and return the object. The queue of

object to upload is managed by a specific thread.

• listUploadQueue(): list the files currently in the upload queue.

• cancelUpload(): empty the upload queue and put the elements in another queue,

containing all the canceled uploads.

• primeActivated(): returns a boolean value indicating if Comma Prime is activated on

the device.

• getPublicKey(): get the public RSA key, needed in combination with the private key to

authenticate through SSH.

• getSshAuthorizedKeys(): get the list of public authorized keys.

• getSimInfo(): get the status of the SIM card in the Comma device, if one is present.

Information includes the connection state and the MAC address of the SIM card.

• getNetworkType(): return the type of network to which the device is connected (Wi-Fi,

mobile…).

• getNetworks(): returns the supported network connections.

• takeSnapshot(): acquire a picture from the road camera and the front-facing camera.

https://athena.comma.ai/

Chapter 4 145

The function getMessage() uses Cereal to instantiate a subscriber to a socket corresponding

to the specified service. Thanks to the Cereal library, the subscriber retrieves a message from

the publisher that is sending messages on that same socket, and returns the result to the client

making the JSON-RPC request.

socket = messaging.sub_sock(service, timeout=timeout)
ret = messaging.recv_one(socket)

 BoardD/PandaD

This process represents the receiving side of the Panda firmware. It parses and sends data

through USB by using the library libusb.

The thread managing the send of data uses a SubSocket object and leverages the Cereal

library specifications to retrieve the data on the socket sendcan.

SubSocket * subscriber = SubSocket::create(context, "sendcan");
Message * msg = subscriber->receive();

capnp::FlatArrayMessageReader cmsg(aligned_buf.align(msg));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();

panda->can_send(event.getSendcan());

When a message is received it is then parsed and adapted to the default word size, by splitting

the message in multiple messages long at maximum as the maximum word size length.

The parsed message is then sent to Panda, which will receive it and forward it to the CAN

bus of the car.

The thread managing the receipt of messages, instead, instantiates a PubMaster object, and

when receiving a message from Panda it publishes it the socket can.

void can_recv(PubMaster &pm) {
 kj::Array<capnp::word> can_data;
 panda->can_receive(can_data);
 auto bytes = can_data.asBytes();
 pm.send("can", bytes.begin(), bytes.size());
}

The board component can talk both to a newer version of Panda hardware (like Panda Black

and Panda Red) and an older version, like Panda Grey (also known as Pigeon to clearly

distinguish it from the other Panda devices, singe Pigeon is deprecated in the latest versions

of Openpilot).

We already saw in the implementation details of the Panda library how the board initializes

its interrupts and the transceiver to send and receive the messages on the UART: in this case,

the receiver side is represented by this implementation of the Panda (and Pigeon) [Figure

49] and allows to send and receive messages to the board, that through the UART can

communicate with the Comma device and the car.

Chapter 4 146

Like in the case of the Python library of Panda, provided to test and communicate with the

Panda devices easily and simply, this implementation provides the same methods and

functionalities to query all the details of the board.

• get_rtc()

• get_fan_speed()

• get_state()

• get_firmware_version()

• get_serial()

The same methods are also available for the Python Panda library and can provide the same

details about the board.

Figure 49 - Panda and Pigeon class diagram

The board daemon is started by the process pandaD, which is a Python wrapper of boardD

that updates the Panda first. It uses the Python Panda library to configure the device and

after that, it launches the main boardD process.

def main() -> None: # pandaD main
 panda = update_panda()

 health = panda.health() # check health for lost heartbeat
 if health["heartbeat_lost"]:
 cloudlog.event("heartbeat lost", deviceState=health)

 cloudlog.info("Resetting panda")
 panda.reset()

 os.chdir(os.path.join(BASEDIR, "selfdrive/boardd"))
 os.execvp("./boardd", ["./boardd"]) # launch boardD

Chapter 4 147

 CameraD

The camera daemon captures both the road and driver camera and handles autofocus and

autoexposure.

The camera daemon uses VisionIPC, in combination with the Cereal library, to send the

frames data to the other component. In particular, the VisionIPC server sends the data frames

directly to the model daemon, which uses the frames to compute the predictions.

vipc_server->send(cur_rgb_buf, &extra);
vipc_server->send(cur_yuv_buf, &extra);

The frames are acquired by using the functionalities provided by the Qualcomm Snapdragon

chipset. For Snapdragon chips no public SDK is available, so the Comma 2 had to reverse

engineer the chipset to be able to access the provided camera functionalities.

Snapdragon 820 (used in Comma Two) and Snapdragon 845 (used in Comma Three) use

different SDKs to access the cameras, both of which have been reverse-engineered and

available in qcom and qcom2, respectively.

Figure 50 - camerad class diagram. The two cameras only differ for the way they handle the processor

instructions calls.

In both cases, the acquisition of the frames is managed by different threads, one for each

camera. The cameras are first initialized: in this phase are specified the parameters

specifying the cameras’ settings, including for instance the ISO and the frame rate.

If in the qcom camera specification we find the initialization of two cameras, the front-facing

camera, and the road camera, in qcom2 three cameras have to be initialized, since the Comma

Three, equipped with the Snapdragon 845, has two road cameras and one front-facing

camera.

For each camera are acquired an RGB and a YUV frame since both are used by different

components. The model receives YUV encoded images, while the UI displays on the screen

RGB encoded images.

Chapter 4 148

After specifying the image quality settings and the hardware parameters are initialized, a

SubMaster and a PubMaster are instantiated. The SubMaster subscribes to the socket

driverState, while the PubMaster will publish data on the sockets roadCameraState,

driverCameraState, and thumbnail. The PubMaster for the qcom2 implementation also

publishes data on the socket wideRoadCameraState, specific for the wide-angle camera of

the Comma Three.

The cameras are then opened, and the acquisition of the frames begins. The VisionIPC server

starts to listen on socket camerad to handle all the incoming requests and send the acquired

frames as response.

A thread for each camera will encapsulate the acquired frame data, containing information

on the exposure, time of the acquisition of the frame, and focus, in a message that is then

sent through the PubMaster, previously instantiated, on the roadCameraState socket (in the

case of the thread managing the road camera) or driverCameraState (for the thread managing

the driver camera).

The process also continuously polls the video events and creates a queue of all the data

events.

Figure 51 - camerad activity diagram

Chapter 4 149

Figure 52 - camerad data flow diagram

Chapter 4 150

 ControlsD

This process represents the main 100 Hz loop driving the car. It receives a plan from the

planner daemon and constructs the CAN packets required to actuate that plan.

The process uses a SubMaster to receive data on the states of the different car components

and a PubMaster to send the computed CAN packets, containing the instructions for the

actuators, to Panda.

Data arriving on the socket can are sampled at a frequency of 100 Hz. On the can socket can

be obtained the carState of the car. The carState represent the main car abstraction used by

Openpilot and includes all the details of the car, including information on the status of the

different car parts and component, speed, acceleration, etc…

Besides, the controlsd process receives data from many other processes of Openpilot [Figure

53]: all these data are needed to compute the corrections to apply to the actuators of the car

to actuate the planned predictions and to decide if is needed to disengage Openpilot due to

some problems related to the system itself or the actions of the driver.

On the socket deviceState are transmitted information on the device that controlsd will use

to decide if the battery level or the memory is enough to enable Openpilot.

Similarly, on the socket pandaState the board daemon transmits information on the Panda

device, which can be used to determine if there are hardware problems with the Panda and

eventually disengage Openpilot.

Model daemon, the process applying the AI prediction model to the acquired camera frames,

sends on socket modelV2 the predictions, which can include a lane change, a hard brake, and

also information on the road like the number of lanes detected.

From the calibration process is retrieved the status of the calibration, while from the driver

monitoring process gets information on the state of awareness of the driver: if the calibration

is not completed or the driver is not aware it ignores the prediction of the model process.

The planner produces the lateral and longitudinal plans, which contain indications of the

adjustments to be made to the steering and acceleration of the car.

The components that manage these changes are Longitudinal Control and Latitudinal

Control. Longitudinal Control deals with the acceleration and braking of the car, while

Lateral Control with the steering.

From the socket liveLocationKalman the process can get information on the status of the

GPS and notify the event of a missing or unstable GPS signal.

Using the same logic, on the socket radarState the radar process communicates if there is

any fault in the radar component, while on sockets roadCameraState,

wideRoadCameraState, and driverCameraState are notified of the faults of the

corresponding camera.

Through the socket managerState, the process keeps track of all the processes, ensuring that

all of them are running.

To make precise corrections is also needed to what is the degree of error of the component,

specific for each car. These data are provided on the socket liveParameters and include the

stiffness factor, the steering ratio, the average offset in degrees that there is when steering.

Chapter 4 151

Figure 53 - controlsd inbound data flow diagram

In its main loop, simplified in Figure 54, all the data acquired at each iteration allow

generating events that can trigger Openpilot to disengage if a problem is detected or can

generate and forward messages indicating to the car if there is the need to steer and where,

brake, or accelerate.

Chapter 4 152

Figure 54 - controlsd activity diagram

The components CarInterface, CarState, and CarControls [Figure 55] represent the

abstractions of the different aspects of a car that the process can use to communicate with it.

They are located in selfdrive/car, and each car has its specific implementation of the

components.

CarInterface provides the methods to get the basic information of the car and to interact with

it. The CarController allows to generate and send a CAN message by leveraging the

OpenDBC library, which provides the CAN message specifications for each car

manufacturer. CarState instead provides information about the state of the car components.

Chapter 4 153

Figure 55 - CarInterface class diagram. The CarInterface leverages the CANParser component to elaborate

the received messages.

Chapter 4 154

Through the CarInterface apply() method, which then uses the update() method provided by

the CarController object, the process builds the CAN packets, which are then sent on the

socket sendcan. The daemon process managing the panda board subscribes to that same

socket, receiving the messages to forward to the car.

The updated controls are then sent also on the socket controlsState and received by the

processes dmonitoring and plannerd. In particular, these processes will stop their normal

operations if the control state tells that Openpilot should disengage.

Similarly, the new computed CarState and CarParams are sent over the sockets carState and

carParam, respectively, to transmit information about the changed conditions of the different

actuators of the car.

Figure 56 - controlsd outbound data flow diagram

Chapter 4 155

 PlannerD

After processing the camera images through the AI model, Openpilot has to compute a way

to bring the car in a position that is coherent with that indicated by the output model. The

planner process executes three Model Predictive Control (MPC) loops based on Automatic

Control and Dynamic Optimization (ACADO), one for lateral control and two for

longitudinal control.

If both the model and the radar are updated the planner will run the lateral and longitudinal

planners.

if sm.updated['modelV2']:
 lateral_planner.update(sm, CP)
 lateral_planner.publish(sm, pm)
if sm.updated['radarState']:
 longitudinal_planner.update(sm, CP)
 longitudinal_planner.publish(sm, pm)

The lateral planner will first get the predictions by parsing the model retrieved on socket

modelV2 through the component LanePlanner. The parse_model() method will initialize the

values of the class starting from the ModelDataV2 message specifications defined in the

Cereal library. This message includes details on the predicted future position and orientation

of the car and predictions on the position lane lines and road edges.

After that the model data is obtained, the process applies the lane change logic to determine

the next state in which the car needs to be. The different states and the possible flows are

represented in Figure 57.

Figure 57 - lane change statechart diagram

When changing the lane, the process does not calculate the path to stay in the lanes, since

they have to be crossed. If the model does not indicate the intention to cross a lane, the path

is calculated through the LanePlanner.

The method get_d_path() calculates the direction on the y axis that the car has to travel to

respect the predictions of the model’s output.

Chapter 4 156

The path is calculated by computing the weighted average of the probabilities that the car

has to go left or right of a certain amount.

self.d_prob = l_prob + r_prob - l_prob * r_prob
lane_path_y = (l_prob * path_from_left_lane + r_prob *
 path_from_right_lane) / (l_prob + r_prob + 0.0001)
lane_path_y_interp = np.interp(path_tself.ll_t[safe_idxs],
 lane_path_y[safe_idxs])
path_xyz[:,1] = self.d_prob * lane_path_y_interp +
 (1.0 - self.d_prob) * path_xyz[:,1]

The computed path points indicating the deviation that the car has to take are sent over socket

lateralPlan and received by both the control and model daemons.

Figure 58 - LateralPlanner class diagram

For what concerns Longitudinal Planning, the Planner class provides the methods to get the

current values of velocity and acceleration and computes the changes that the actuators have

to apply to reach the target values predicted by the model.

The Planner uses a Model Predictive Controls approach to estimate the speed and

acceleration of the car. By solving the control problem and updating the current state each

sample time, the Planner is able to achieve a real-time implementation of the MPC technique.

A real-time implementation allows working with a triple-integrator model based on the

speed (v), acceleration (a), and jerk (j) of the vehicle seen as a particle in longitudinal

displacement (d).

This system can be expressed using (4.1) [48].

 [
𝑑�̇�

𝑣�̇�

𝑎�̇�

] = [
0 1 0
0 0 1
0 0 0

] [
𝑑𝑙

𝑣𝑙

𝑎𝑙

] + [
0
0
1
] 𝑗𝑙 (4.1)

Chapter 4 157

The system first initializes the current state of the car and the target values for speed and

acceleration, then runs the two types of MPC algorithm available, which include the Lead

Car MPC and Longitudinal MPC.

self.mpcs[key].set_cur_state(self.v_desired, self.a_desired)
self.mpcs[key].update(sm['carState'], sm['radarState'], v_cruise)

In the case of the LeadMPC, the estimations will be based on the values of speed,

acceleration, and distance of the first car that the vehicle follows. If there is actually a car in

front of the vehicle, then its current state is estimated by retrieving the radar acquisitions, if

there is no lead car, instead, the parameters are initialized with a fictitious and fast lead car

to keep the model running. The MPC based on lead cars predicts the future position, speed,

and acceleration of the leading car.

The second class of MPC that the planner uses is a LongitudinalMPC where the only

parameters used to make the estimations come from the current state of the vehicle.

Figure 59 - LongitudinalPlanner class diagram

For solving the previous constrained optimization problem, the MPC solver ACADO toolkit

is used. It is a self-contained library based on C++ designed to solve linear and non-linear

models under multi-objective optimization functions.

Both the models are executed, and the applied solution will be that returning the lower

acceleration. The computed solution is sent over the socket longitudinalPlan.

Chapter 4 158

Figure 60 - plannerd data flow diagram

Chapter 4 159

 RadarD

This process parses the data acquired by the radar into a RadarState packet.

Figure 61 - RadarD class diagram

Since every car has a different radar, the radar interface is imported dynamically from the

selfdrive/car folder at runtime. A RadarInterface object provides the details about the radar

delays and acquisition intervals, as well as the methods to actually retrieve the radar

acquisitions from the front and back radar, using a CANParser object to translate the

messages traveling on the CAN bus.

Figure 62 - RadarInterface class diagram

The main thread first subscribes to the socket modelV2 and carState, needed to retrieve

details on the timing recorded by the car for synchronization purposes. The process then

initializes the RadarInterface, specific for the car in which Openpilot is being executed, and

the main RadarD object, which represents an abstraction of the car’s radar.

The core of the process is an endless loop which at each step retrieves the data acquired by

the radar through its RadarInterface, obtaining a RadarData packet containing the details on

the distance, speed, and optionally the acceleration of an object in front of the vehicle.

Figure 63 - RadarData message packet specifications

Chapter 4 160

RadarD update() method retrieves the parameters acquired from the radar and creates the

corresponding Track, which can be seen as a vector in space, having as direction the result

of the composition of x and y and module equal to the speed.

Tracks are smoothed utilizing a simple Kalman filter, which has the role to take the current

known state of the target and predict the new state of the target at the time of the most recent

radar measurement. It then forms a weighted average of this prediction of state and the latest

measurement of state, taking account of the known measurement errors of the radar and its

uncertainty in the target motion models. A key assumption in the mathematics of the Kalman

filter is that the measurement equations and the state equations are linear. [49]

A series of Tracks make a Cluster, which can be used to estimate more precisely the

properties of a lead car. These estimations are then used to generate a RadasState message,

where are specified all the details of a leading car, including its speed, acceleration, and

distance from the car. To do so, the clusters are matched with the estimations coming from

the AI model.

def get_lead(v_ego, ready, clusters, lead_msg, low_speed_override=True):
 if len(clusters) > 0 and ready and lead_msg.prob > .5:
 cluster = match_vision_to_cluster(v_ego, lead_msg, clusters)
 else:
 cluster = None

 […]

The closest cluster is then selected and the created RadarState is sent over socket radarState

to the planner and controls daemons.

Figure 64 - radard data flow diagram

Chapter 4 161

 CalibrationD

This process canonicalizes the acquired frames by converting them into calibrated frames,

which are then used by the other Openpilot components. This is important because users can

mount their Comma devices in different positions and transforming them allows the model

to ignore the error in the predictions that this could introduce.

The main thread of the calibration process sends data at a 4 Hz frequency containing the

result of the calibration. For each frame, the algorithm first calculates the Euler angles,

denoted by roll, pitch, and yaw, starting from the rotation and translation recorded thanks to

visual odometry.

observed_rpy = np.array([0, #roll
 -np.arctan2(trans[2], trans[0]), #pitch
 np.arctan2(trans[1], trans[0])]) #yaw

The new calibrated Euler angles are obtained computing the dot (or scalar) product between

the old measures of the angles and the new observed angles.

new_rpy = euler_from_rot(rot_from_euler(self.get_smooth_rpy())
 .dot(rot_from_euler(observed_rpy)))

The methods to make the conversion from Euler angles to the corresponding rotation matrix

(rot_from_euler()) and vice versa (euler_from_rot()) are provided by the transformation

tools included in the common folder. These transformations are needed mainly to convert

the old and new acquisitions of the Euler angles in the rotation matrixes that are used to

calculate the scalar product between them.

In practice, the rotation matrixes on the three axis can be defined using the following

equations:

 𝑅𝑥(𝜓) = [
1 0 0
0 cosψ −sinψ
0 sinψ cosψ

] (4.2)

Chapter 4 162

 𝑅𝑦(𝜃) = [
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

] (4.3)

 𝑅𝑧(𝜑) = [
cosφ −sinφ 0
sinφ cosφ 0

0 0 1
] (4.4)

where 𝜓, 𝜃, and 𝜑 are the Euler angles. A general rotation matrix has the form of (4.5).

 R = [
𝑅11 𝑅12 R13

𝑅21 𝑅22 𝑅23

R31 𝑅32 𝑅33

] (4.5)

This matrix can be thought of as a sequence of three rotations, one about each principal axis.

𝑅 = Rz(φ)Ry(θ)Rx(ψ)

= [

cos θ cos φ sin ψ sin θ cos φ − cos ψ sin φ cos ψ sin θ cos φ + sin ψ sin φ
cos θ sin φ sin ψ sin θ sin φ + cos ψ cos φ cos ψ sin θ sin φ − sin ψ cos φ

− sin θ sin ψ cos θ cos ψ cos θ
]

(4.6)

Given a rotation matrix R, we can compute the Euler angles, ψ, θ, and φ by equating each

element in R with the corresponding element in the matrix product Rz(φ)Ry(θ)Rx(ψ).

The calibration is made by sampling multiple camera acquisitions and computing the

average of the values of the available valid blocks. Each block is made of a hundred

acquisitions.

self.rpy = np.mean(self.rpys[:self.valid_blocks], axis=0)

def get_smooth_rpy(self):
 if self.old_rpy_weight > 0:
 return self.old_rpy_weight * self.old_rpy +
 (1.0 - self.old_rpy_weight) *
 self.rpy
 else:
 return self.rpy

The minimum number of blocks required for the calibration is five, even if the optimal

amount would be fifty blocks (or more) for stability purposes. If the number of valid blocks

is not enough while computing a calibrated frame, its calibration status will be set to

uncalibrated, it is set to valid otherwise. The generated packet, sent over socket

liveCalibration, includes the details on the calibrated angles, the calibration state, and the

number of blocks on which the calibration is based.

msg = messaging.new_message('liveCalibration')
msg.liveCalibration.validBlocks = self.valid_blocks
msg.liveCalibration.calStatus = self.cal_status
msg.liveCalibration.calPerc = min(100 *
 (self.valid_blocks*BLOCK_SIZE+self.idx) //
 (INPUTS_NEEDED * BLOCK_SIZE), 100)
msg.liveCalibration.extrinsicMatrix = [float(x) for x
 in extrinsic_matrix.flatten()]
msg.liveCalibration.rpyCalib = [float(x) for x in smooth_rpy]
msg.liveCalibration.rpyCalibSpread=[float(x) for x in self.calib_spread]

Chapter 4 163

Calibrated parameters can also be cached as CalibrationParams by using the Params class

utility.

Figure 65 - calibrationd data flow diagram

Chapter 4 164

 LocationD

This process runs a global localizer, which estimates the vehicle position, speed, and

acceleration and how they change in the three dimensions. It combines the data coming from

multiple sources, including the camera, the GPS and inertial measurement unit (IMU)

sensors.

The Localizer class [Figure 66] provides the methods to handle the different types of events

recorded and process the corresponding messages.

Figure 66 - locationd class diagram. The EKFSym component from Rednose library helps smoothing the

acquired data.

The Localizer will handle the received events by checking first their type.

if (log.isSensorEvents()) {
 this->handle_sensors(t, log.getSensorEvents());
} else if (log.isGpsLocationExternal()) {
 this->handle_gps(t, log.getGpsLocationExternal());
} else if (log.isCarState()) {
 this->handle_car_state(t, log.getCarState());
} else if (log.isCameraOdometry()) {
 this->handle_cam_odo(t, log.getCameraOdometry());
} else if (log.isLiveCalibration()) {
 this->handle_live_calib(t, log.getLiveCalibration());
}

Chapter 4 165

The sensors from which a message can be received are the uncalibrated gyroscope and the

accelerometer. The uncalibrated gyroscope, which registers the rotation of the car on the

three axis, is more indicated than the calibrated one to acquire data since they will be

calibrated dynamically by the algorithm. The accelerometer, instead, measures the

acceleration of the car on the three axis.

When a GPS message is received, the acquired data are first converted in ECEF coordinates,

since this coordinates system is commonly adopted as the standard for global positioning

systems. The acquired data allow determining the position and speed of the vehicle. The

speed is also retrieved from the carState.

The messages related to the camera’s acquisitions allow computing, through visual

odometry, the vehicle’s rotation and translation.

The process also retrieves the calibrated frames, elaborated by calibrationD, which can be

defined as frames aligned with car frame in pitch and yaw, and aligned with device frame in

roll. This transformation is useful to overcome small inconsistencies that could appear from

a device to another, allowing to normalize the acquired frames.

In all the cases, the acquisitions are compared with strict safety checks that skip the message

if the safety constraints are exceeded. Also, in all the cases the estimations are computed

using an Extended Kalman Filter, provided by the Rednose library.

If all the camera, sensors, and GPS acquisitions are alive and valid, then a message is built

and sent over socket liveLocationKalman. The generated message will contain a set of

Measurement (a type defined in Cereal) corresponding to all the estimations made by the

process at each frame.

Figure 67 - locationd data flow diagram

Chapter 4 166

 UbloxD

Comma devices come with a u-blox chip, which is capable of acquiring data from up to three

GNSS concurrently, granting a high level of accuracy.

u-blox data are acquired by the Panda, published on socket ubloxRaw, and parsed by the

UbloxMsgParser component.

Figure 68 - UbloxMsgParser class

The parser has a buffer that is filled until the raw message is fully parsed. It may be needed

to fill the buffer multiple times if the raw message size exceeds the buffer capacity.

According to the message type, the parser uses a different method to extract usable content

from the raw data.

switch (ubx_message.msg_type()) {
case 0x0107:
 return {"gpsLocationExternal", gen_nav_pvt(static_cast<
nav_pvt_t*>(body))};
 break;
case 0x0213:
 return {"ubloxGnss", gen_rxm_sfrbx(static_cast<rxm_sfrbx_t*>(body))};
 break;
case 0x0215:
 return {"ubloxGnss", gen_rxm_rawx(static_cast< rxm_rawx_t*>(body))};
 break;
case 0x0a09:
 return {"ubloxGnss", gen_mon_hw(static_cast<mon_hw_t*>(body))};
 break;
case 0x0a0b:
 return {"ubloxGnss", gen_mon_hw2(static_cast< mon_hw2_t*>(body))};
 break;
default:
 LOGE("Unkown message type %x", ubx_message.msg_type());
 return {"ubloxGnss", kj::Array<capnp::word>()};
 break;
}

Chapter 4 167

The methods displayed handle the different types of GNSS data arriving from the supported

satellites constellations, including GPS, GLONASS, BeiDou, and Galileo.

Figure 69 - ubloxd data flow diagram

Chapter 4 168

 ModelD

The main model takes in a picture from the road camera and answers the question “Where

should I drive the car?” It also takes in a desire input, which can command the model to act,

such as turning or changing lanes.

Figure 70 - modeld class diagram. RunModel component can use SNPEModel component, that leverages

only the Snapdragon processor capabilities, or use the caching system provided by Thneed.

The input of the model is retrieved by a thread that takes the data from the socket

liveCalibration containing the calibrated frames elaborated by the process calibrationd.

The representation of the camera frames is built by considering both the intrinsic parameters,

that are the camera parameters that are internal and fixed to a particular camera/digitization

setup, and the extrinsic parameters, that are the camera parameters that are external to the

camera and may change concerning the world frame.

Chapter 4 169

If the intrinsic parameters define the location and orientation of the camera concerning the

world frame, the intrinsic Parameters allow a mapping between camera coordinates and pixel

coordinates in the image frame.

Intrinsic and extrinsic parameters can be represented by using the matrixes (4.7) and (4.8),

respectively:

where f is the focal length, (𝑜𝑥, 𝑜𝑦) is the image center, (𝑠𝑥, 𝑠𝑦) is the effective size of pixels

in the horizontal and vertical direction, R is the rotation matrix, and T is the translation

vector. [50]

In the specific case, the data generated by the calibration process represent the extrinsic

parameters, while the intrinsic parameters are hardcoded and depend on the hardware

(Comma Two and Comma Three have different camera setups, therefore different intrinsic

matrixes).

The linear perspective transformation can be defined as the product of the two matrixes.

auto camera_frame_from_road_frame = cam_intrinsics *
extrinsic_matrix_eigen;

The matrix has to be further processed to consider the position of the camera, which is placed

higher than the ground level.

Eigen::Matrix<float, 3, 3> camera_frame_from_ground;
 camera_frame_from_ground.col(0) =
camera_frame_from_road_frame.col(0);
 camera_frame_from_ground.col(1) =
camera_frame_from_road_frame.col(1);
 camera_frame_from_ground.col(2) =
camera_frame_from_road_frame.col(3);

auto warp_matrix = camera_frame_from_ground *
ground_from_medmodel_frame;

The processed calibrated frames are then used by the model to make the predictions. The

actual frames are sent using VisionIPC and can be corrected by using the calibrated frame

information computed by the thread managing the calibration.

The VisionIPC client connects to the socket camerad and the model is initialized. The model

which runs the neural network to make the predictions is called Supercombo and as the

default setting it is uses the Snapdragon Neural Processing Engine (SNPE), which is a

Qualcomm Snapdragon software accelerated runtime for the execution of deep neural

networks.

 𝑀𝑖𝑛𝑡 = [
−𝑓/𝑠𝑥 0 𝑜𝑥

0 −𝑓/𝑠𝑦 𝑜𝑦

0 0 1

] (4.7)

 𝑀𝑒𝑥𝑡 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

−𝑅1
𝑇𝑇

−𝑅1
𝑇𝑇

−𝑅1
𝑇𝑇

] (4.8)

Chapter 4 170

#if (defined(QCOM) || defined(QCOM2)) && defined(USE_THNEED)
 s->m = make_unique<ThneedModel>("../../models/supercombo.thneed",
 &s->output[0], output_size, USE_GPU_RUNTIME);
#else
 s->m = make_unique<DefaultRunModel>("../../models/supercombo.dlc",
 &s->output[0], output_size, USE_GPU_RUNTIME);
#endif

To make the model faster and more efficient, it was also introduced Thneed, an SNPE

accelerator. The Thneed model runs on the local device, caching a single model run and

replaying it at a higher speed. Apart from the caching functionalities, the Thneed does not

change any aspect of the default SNMP. The specifics of the model and the definition of its

inputs and outputs are defined in the official Openpilot wiki [51].

The input parameters of the model are:

• image stream: two consecutive images (256 ∗ 512 ∗ 3 in RGB) recorded at 20 Hz:

393216 = 2 ∗ 6 ∗ 128 ∗ 256

o Each 256 ∗ 512 image is represented in YUV420 with 6 channels: 6 ∗ 128 ∗
 256

o Channels 0, 1, 2, 3 represent the full-res Y channel and are represented in numpy

as Y[::2, ::2], Y[::2, 1::2], Y[1::2, ::2], and Y[1::2, 1::2]

o Channel 4 represents the half-res U channel

o Channel 5 represents the half-res V channel

• desire: one-hot encoded vector to command model to execute certain actions, bit only

needs to be sent for 1 frame : 8

• traffic convention: one-hot encoded vector to tell model whether traffic is right-hand or

left-hand traffic : 2

• recurrent state: The recurrent state vector that is fed back into the GRU for temporal

context: 512

The produced output is composed of:

• plan: 5 potential desired plan predictions, for a total of 4955 = 5 ∗ 991 possibilities

o predicted mean and standard deviation of the following values at 33 timesteps:

990 = 2 ∗ 33 ∗ 15

▪ (𝑥, 𝑦, 𝑧) position in current frame (𝑚𝑒𝑡𝑒𝑟𝑠)

▪ (𝑥, 𝑦, 𝑧) velocity in local frame (𝑚𝑒𝑡𝑒𝑟𝑠/𝑠)

▪ (𝑥, 𝑦, 𝑧) acceleration local frame (𝑚𝑒𝑡𝑒𝑟𝑠/(𝑠 ∗ 𝑠))

▪ (𝑟, 𝑝, 𝑦) roll, pitch , yaw in current frame (𝑟𝑎𝑑𝑖𝑎𝑛𝑠)

▪ (𝑟, 𝑝, 𝑦) roll, pitch , yaw rates in local frame (𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠)

o probability of this plan hypothesis being the most likely: 1

• lane lines: lane lines (outer left, left, right, and outer right): 528 = 4 ∗ 132

o predicted mean and standard deviation for the following values at 33 x positions:

132 = 2 ∗ 33 ∗ 2

▪ y position in current frame (meters)

▪ z position in current frame (meters)

• lane line probabilities: 2 probabilities that each of the 4 lane lines exists: 8 = 4 ∗ 2

o deprecated probability

o used probability

• road-edges: 2 road-edges (left and right): 264 = 2 ∗ 132

Chapter 4 171

o predicted mean and standard deviation for the following values at 33 x positions:

132 = 2 ∗ 33 ∗ 2

▪ y position in current frame (𝑚𝑒𝑡𝑒𝑟𝑠)

▪ z position in current frame (𝑚𝑒𝑡𝑒𝑟𝑠)

• leads: 2 hypotheses for potential lead cars: 102 = 2 ∗ 51

o predicted mean and standard deviation for the following values at 0, 2, 4, 6, 8,

10s: 48 = 2 ∗ 6 ∗ 4

▪ x position of lead in current frame (𝑚𝑒𝑡𝑒𝑟𝑠)

▪ y position of lead in current frame (𝑚𝑒𝑡𝑒𝑟𝑠)

▪ speed of lead (𝑚𝑒𝑡𝑒𝑟𝑠/𝑠)

▪ acceleration of lead(𝑚𝑒𝑡𝑒𝑟𝑠/(𝑠 ∗ 𝑠))

o probabilities this hypothesis is the most likely hypothesis at 0s, 2s or 4s from now

: 3

• lead probabilities: probability that there is a lead car at 0s, 2s, 4s from now: 3 = 1 ∗
 3

• desire state: probability that the model thinks it is executing each of the 8 potential

desire actions : 8

• meta: Various metadata about the scene: 80 = 1 + 35 + 12 + 32

o Probability that Openpilot is engaged: 1

o Probabilities of various things happening between now and 2, 4, 6, 8, 10s: 35 =
 5 ∗ 7

▪ Disengage of Openpilot with gas pedal

▪ Disengage of Openpilot with brake pedal

▪ Override of Openpilot steering

▪ 3 𝑚/(𝑠 ∗ 𝑠) of deceleration

▪ 4 𝑚/(𝑠 ∗ 𝑠) of deceleration

▪ 5 𝑚/(𝑠 ∗ 𝑠) of deceleration

o Probabilities of left or right blinker being active at 0, 2, 4, 6, 8, 10s: 12 = 6 ∗ 2

o Probabilities that each of the 8 desires is being executed at 0, 2, 4, 6s: 32 = 4 ∗
 8

• pose: predicted mean and standard deviation of current translation and rotation rates:

12 = 2 ∗ 6

o (𝑥, 𝑦, 𝑧) velocity in the current frame (𝑚𝑒𝑡𝑒𝑟𝑠/𝑠)

o (𝑟, 𝑝, 𝑦) roll, pitch, yaw rates in the current frame (𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠)

• recurrent state: the recurrent state vector that is fed back into the GRU for temporal

context: 512

The model is trained using the comma2k19 dataset, a dataset of over 33 hours of drive. The

dataset contains 10.000 camera acquisitions, which were manually labeled to the different

elements of the frames. The features vectors are then fed to the Recurrent Neural Networks

that generate the driving policy.

For feature extraction from frames, Comma uses a lot of skip connections and converts a 12

x 128 x 256 (two YUV format consecutive frames with 3 extra alpha channels).

Chapter 4 172

Figure 71 - supercombo model input

The model learns to encode all the relevant information required for planning into a

compressed form. This vision encoding is later forked into several branches which are

processed independently to output lanes, paths, etc.

Figure 72 - supercombo model output

When the model receives the YUV frames from the VisionIPC server, they are first prepared

and transformed using the transformation matrix obtained after processing the calibrated

frame. This preparation step initializes the ModelFrame, which is a virtual camera frame

with even width and height frame that can be used by the model.

The size of the frame is defined as 𝑀𝑂𝐷𝐸𝐿_𝑊𝐼𝐷𝑇𝐻 ∗ 𝑀𝑂𝐷𝐸𝐿_𝐻𝐸𝐼𝐺𝐻𝑇 ∗ 3 / 2, where

the 3/2 factor takes into account the fact that YUV has one channel in full resolution and

two color channels in half resolution, therefore the size of the buffer will be 1 + 0.25 +
 0.25 = 1.5 = 3/2 of the total amount of pixels, represented by 𝑀𝑂𝐷𝐸𝐿_𝑊𝐼𝐷𝑇𝐻 ∗
 𝑀𝑂𝐷𝐸𝐿_𝐻𝐸𝐼𝐺𝐻𝑇. The model takes 2 frames at a time, so that it is able to have a perception

of the motion and make better predictions.

auto net_input_buf = s->frame->prepare(yuv_cl,
 width,
 height,
 transform);

After the ModelFrame relative to the acquired YUV frames are ready, the model execution

starts.

Chapter 4 173

s->m->execute(net_input_buf, s->frame->buf_size);

If Thneed is used, a full execution is required only the first time since then the outputs are

recorded and can be used to make faster predictions.

if (!recorded) {
 thneed->record = THNEED_RECORD;
 thneed->copy_inputs(inputs);
 thneed->clexec();
 thneed->copy_output(output);
 thneed->stop();
 recorded = true;
} else {
 thneed->execute(inputs, output);
}

The model, through the directory ioctl() (input/output control), can communicate with the

Qualcomm Kernel Graphic Support Layer (KGSL). It also leverages the OpenCL

functionalities supported by the Qualcomm platform to increase the performance and

efficiency of the computation of the predictions. When the execution of the model is

triggered, the command clEnqueueNDRangeKernel() enqueues a command to execute the

OpenCL kernel on the device. The cached commands are elaborated by the KGSL and the

result is retrieved from the OpenCL read buffer.

return clEnqueueNDRangeKernel(thneed->command_queue,
 kernel,
 work_dim,
 NULL,
 global_work_size,
 local_work_size,
 0,
 NULL,
 NULL);

The instruction on what type of predictions the model has to make are contained in the desire,

which is computed by the lateral planner and indicates on what direction the car should

proceed. A desire can assume different values that are defined in the Cereal messaging

specification, shown in Figure 73.

Figure 73 - Desire message specifications

Chapter 4 174

From the output data is then extracted and published on socket modelV2.

ModelDataRaw net_outputs;
net_outputs.plan = &s->output[PLAN_IDX];
net_outputs.lane_lines = &s->output[LL_IDX];
net_outputs.lane_lines_prob = &s->output[LL_PROB_IDX];
net_outputs.road_edges = &s->output[RE_IDX];
net_outputs.lead = &s->output[LEAD_IDX];
net_outputs.lead_prob = &s->output[LEAD_PROB_IDX];
net_outputs.meta = &s->output[DESIRE_STATE_IDX];
net_outputs.pose = &s->output[POSE_IDX];

The model also runs posenet to generate the visual odometry parameters, estimated from the

model output and published on socket cameraOdometry. With posenet we generally refer to

computer vision techniques that estimate the position of an object, in the specific case of the

rotation and translations of the frame estimated by the model.

Figure 74 - modeld data flow diagram

Chapter 4 175

 DMonitoringModelD

The Driver Monitoring Model tracks the head pose, eye positions, and eye states using the

model in models/monitoring_model_q.dlc. It runs on the Digital Signal Processor (DSP) to

not use CPU or GPU resources needed by the other daemons, giving it of room to grow.

Figure 75 - dmonitoringd class diagram. Similarly to the path prediction model, also here there is the

possibility for RunModel to use SNPEModel only or Thneed.

The model receives the YUV frames through VisionIPC.

VisionIpcClient vipc_client = VisionIpcClient("camerad",
 VISION_STREAM_YUV_FRONT,
 true);

Chapter 4 176

The frames are acquired by the front camera of the Comma device and record the driver

movements. The model is built using the RunModel component, the same used for building

the Supercombo model, but in this case the model built is the monitoring_model_q.

The input of the model consists of six channels images of resolution 320x160, where channel

0-3 is the top left, bottom left, top right, the bottom right pixel of every four pixels of Y

block, and channels 4-5 are U and V.

Figure 76 - monitoring_model_q input

The model elaborates each frame and computes the output containing the information about

the driver head pose, eye position, it estimates the driver distraction and gives weight to all

of these estimations.

Figure 77 - monitoring_model_q output

ret.face_prob = s->output[12];
ret.left_eye_prob = s->output[21];
ret.right_eye_prob = s->output[30];
ret.left_blink_prob = s->output[31];
ret.right_blink_prob = s->output[32];
ret.sg_prob = s->output[33];
ret.poor_vision = s->output[34];
ret.partial_face = s->output[35];
ret.distracted_pose = s->output[36];
ret.distracted_eyes = s->output[37];
ret.dsp_execution_time = (t2 - t1) / 1000.;

Chapter 4 177

The output is packed in a message and sent over driverState socket. ad elaborated by the

driverMonitoringD process, which interprets the data and disengages Openpilot if the

parameters indicating the driver distractions surpass a certain threshold.

Figure 78 - dmonitoringmodeld data flow diagram

Chapter 4 178

 DMonitoringD

The driver monitoring process takes the data elaborated from the driver monitoring model

and the other component monitoring the status of Openpilot. The status variables are held

by an instance of the DriverStatus class, which includes all the details relative to the state of

awareness of the driver.

Figure 79 - DriverStatus class diagram

At each iteration, the process updates the driver status according to the driver awareness and

the controls status.

driver_status.update(events,
 driver_engaged,
 sm['controlsState'].enabled,
 sm['carState'].standstill)

Chapter 4 179

The message containing the updated status details is built and sent over socket

driverMonitoringState.

dat.driverMonitoringState = {
 "events": events.to_msg(),
 "faceDetected": driver_status.face_detected,
 "isDistracted": driver_status.driver_distracted,
 "awarenessStatus": driver_status.awareness,
 "posePitchOffset": driver_status.pose.pitch_offseter.filtered_stat.mean(),
 "posePitchValidCount": driver_status.pose.pitch_offseter.filtered_stat.n,
 "poseYawOffset": driver_status.pose.yaw_offseter.filtered_stat.mean(),
 "poseYawValidCount": driver_status.pose.yaw_offseter.filtered_stat.n,
 "stepChange": driver_status.step_change,
 "awarenessActive": driver_status.awareness_active,
 "awarenessPassive": driver_status.awareness_passive,
 "isLowStd": driver_status.pose.low_std,
 "hiStdCount": driver_status.hi_stds,
 "isActiveMode": driver_status.active_monitoring_mode,
}

The state of the driver is then retrieved by the control daemon that disengages Openpilot in

the case in which the driver is not focused on the drive.

Figure 80 - DMonitoringD data flow diagram

Chapter 4 180

 LoggerD

This daemon subscribes to all the sockets and log all the messages intercepted. It also

subscribes to all the device’s camera and saves the drive recording.

Figure 81 - LoggerdState class diagram

During the initialization phase, a socket is created for each of the services defined included

in cereal/services.h. Then, if the service is one of roadCameraState, driverCameraState, or

wideRoadCameraState, it also adds the socket to the RotateState object corresponding to the

specific camera.

for (int cid=0; cid <= MAX_CAM_IDX; cid++) {
 if (string(it.name) == cameras_logged[cid].frame_packet_name) {
 s.rotate_state[cid].fpkt_sock = sock;
 }
}

The encoder thread is initialized for each camera connected to the device (road camera and

driver camera only in the case of Comma Two and the additional wide road camera in the

case of Comma Three). The encoder thread (encoder_thread() in loggerd/loggerd.cc) loads

the camera information and instantiates a VisionIPC client for each of the cameras, receiving

the frames on the corresponding socket.

Chapter 4 181

LogCameraInfo &cam_info = cameras_logged[cam_idx];
VisionIpcClient vipc_client = VisionIpcClient("camerad",
 cam_info.stream_type,
 false);

To each camera is assigned a video encoder, which is in charge of encoding the frames

received through VisionIPC. The Comma devices encoder can leverage OpenMAX, which

is a cross-platform API that provides comprehensive streaming media codec and application

portability by enabling accelerated multimedia components to be developed, integrated, and

programmed across multiple operating systems and silicon platforms. [52]

Figure 82 - VideoEncoder class diagram

When receiving a message on any of the socket, they are logged and saved in a log file using

the bzlib library, which provides an interface for compressing and decompressing streams of

data represented as lazy ByteStrings.

Chapter 4 182

Figure 83 - selfdrive data flow diagram

Loggerd, together with controlsd, represents one of the main nodes where data are exchanged

among the different processes. If controlsd receives data from all the sensors, cameras, and

actuators of the car, sending back the computed corrections over the CAN bus, the logger

daemon only receives the messages from all the sockets available without publishing any

response message.

Chapter 4 183

 Testing

Testing in Openpilot is particularly crucial since it has to ensure that all the security

constraints and traffic rules constraints are always respected, that the quality constraints of

a Level 2 automated drive system are met, and this has to be true for all the cars supported

by Openpilot.

GitHub Actions allows to perform automated checks for each change made to the master

branch, and these checks range from unit tests to replaying a route for each car, ensuring that

rules are respected.

A first GitHub action performs a static analysis of the code, highlighting the programming

errors for all the programming errors used by Openpilot.

Check python ast..Passed
Check JSON..Passed
Check Xml...Passed
Check Yaml..Passed
Check for merge conflicts...Passed
Check for broken symlinks...Passed
mypy..Passed
flake8..Passed
pylint..Passed
cppcheck..Passed

Another GitHub Action checks the software against memory problems, and this is done

through Valgrind, a tool used to debug and profile C and C++ code to automatically detect

memory leaks and other problems with the memory management.

TestValgrind

+ extract_leak_size(log)

+ valgringlauncher(arg, cwd)

+ replay_process(config, logreader)

+ test_config()

Table 48 - TestValgrind test case

The check is performed on the process that downloads the GPS data from the server and

ensures that the same number of frames is allocated and freed.

Memcheck, a memory error detector
Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
Command: ./ubloxd

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 92,222 allocs, 92,222 frees, 16,753,646 bytes
allocated
All heap blocks were freed -- no leaks are possible
For lists of detected and suppressed errors, rerun with: -s
ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Chapter 4 184

One of the main GitHub Action of the workflow run the unit tests defined in all the

directories of selfdrive and other external directories like common, opendbc, and tools.

Different test cases are defined for the main processes of Openpilot. Boardd API tests

compare the new version of the API with an old one, ensuring that both receive and send the

same messages and also that the performances of the new API are better than that of the old

API.

TestBoarddApiMethods

+ test_correctness()

+ test_performance()

Table 49 – TestBoarddApiMethods

Moreover, it is executed a loopback test checking that the analyzed board can properly send

and receive messages. The loopback test requires a loopback device, in the specific case a

Panda device connected. Controlsd unit tests verify the correct working of the alerts and the

other general status parameter, as well as the correctness and safety of lateral and

longitudinal maneuvers that are required to actuate the planner’s outputs.

TestAlerts

+ test_events_defined()

+ test_alert_text_length()

+ test_alert_sanity_check()

+ test_offroad_alerts()

+ test_offroad_alerts_extra_text()

Table 50 - TestAlerts test case

This test case ensures that the alerts are displayed correctly on the device, with no

overlapping or wrong size rendering. In the controls library are also available clustering

functionalities, used by the radar process to cluster multiple acquisitions.

TestClustering

+ test_scipy_clustering()

+ test_pdist()

+ test_cpp_clustering()

+ test_cpp_wrapper_clustering()

+ test_random_cluster()

Table 51 - TestClustering test case

To test if controlsd is able to always maintain the set cruise speed, an ad-hoc test verifies for

different cruise speed that in all the cases it is reached and maintained with an even

acceleration and without crashing in a hypothetical lead car in front of the vehicle.

TestCruiseSpeed

+ test_cruise_speed()

Table 52 - TestCruiseSpeed test case

Chapter 4 185

The test simulates a hundred seconds ride at a cruise speed each time higher than 5 m/s. It is

implicitly imposed a limit for the acceleration that can be exerted to respect both the safety

constraint and the comfort of the driver, which would fail in case of an excessive

acceleration.

Plotting the result of the test in a graph shows us how the acceleration is always constant for

all the cruise speed considered and that the acceleration does not exceed the 1,2 𝑚/𝑠2.

Figure 84 - Speed variation for different targets of cruise speeds

Figure 85 - Acceleration variation for reaching the target cruise speed

Another important test, crucial to ensure safety while driving, verifies an adequate distance

when following another car is always kept. This distance has to be dynamic and change

according to the speed of the lead car: the higher the speed, the greater the distance.

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

S
p

ee
d

 [
m

/s
]

Time [s]

target of 5 m/s target of 10 m/s target of 15 m/s target of 20 m/s

target of 25 m/s target of 30 m/s target of 35 m/S

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

A
cc

el
er

at
io

n
 [
𝑚

/𝑠
²]

Time [s]

target of 5 m/s target of 10 m/s target of 15 m/s target of 20 m/s

target of 25 m/s target of 30 m/s target of 35 m/s

Chapter 4 186

TestFollowingDistance

+ test_following_distanc()

Table 53 - TestFollowingDistance test case

We can also notice from the graph in Figure 86 that if the lead car is not moving, the vehicle

will stop, maintaining a safe distance.

Figure 86 - Following distance at different lead speeds

In controlsd, the lateral planner is the main component that manages the steering of the

vehicle. The test verifies that the vehicle is subject to the expected curvature.

TestLateralMpc

- _assert_null(sol, curvature)

- _assert_simmetry(sol,

curvature)

+ test_straight()

+ test_y_symmetry()

+ test_poly_symmetry()

+ test_curvature_symmetry()

+ test_psi_symmetry()

+ test_no_overshoot()

+ test_switch_convergence()

Table 54 - TestLateralMpc test case

When the controlsd process is first initialized, it has to check the fingerprint of the car where

the device running Openpilot is mounted, since each car has a different response to the

applied torque.

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

L
ea

d
 d

is
ta

n
ce

 [
m

]

Time [s]

lead speed = 0 m/s lead speed = 5 m/s lead speed = 10 m/s lead speed = 15m/s

leadspeed = 20 m/s lead speed = 25 m/s leadspeed = 30 m/s lead speed = 35 m/s

Chapter 4 187

TestStartup

+ test_startup_alert(expected_event, car_model, toggle_enabled, fw_versions)

Table 55 - TestStartup test case

The test case leverages the functionalities of parametrized testing offered by the unittest

framework to run the test for different cars and under different conditions. The considered

cases are a car officially supported by Openpilot (Toyota Corolla), one that supports only

the dashcam functionalities (Mazda CX5), and one unrecognized car. For each case, a

message is sent to the Panda device and a response message is expected.

The process dmonitoringd verifies other safety constraints relative to the behavior of the

driver, who should be always focused on the drive. The test case verifies that the driver is

always framed and attentive, and then simulates different situations in which the driver

interacts with the steering wheel or goes out of the camera frame end ensures that Openpilot

engages and disengages properly.

TestMonitoring

- _run_seq(msgs, interaction, engaged)

- _assert_no_events(events)

+ test_fully_aware_driver()

+ test_fully_distracted_driver()

+ test_fully_invisible_driver()

+ test_normal_driver()

+ test_biggest_comma_fan()

+ test_sometimes_transparent_commuter()

+ test_last_second_responder()

+ test_pure_dashcam_user()

+ test_long_traffic_light_victim()

+ test_somehow_indecisive_model()

Table 56 - TestMonitoring test case

In the case of a normal driver (test_normal_drivet()), for instance, the simulated simulation

sees the Comma device operating normally, then it displays a warning to the driver, who

begin to pay attention. After that, another warning is displayed, the driver touches the wheel,

and the warning stops.

Chapter 4 188

The logger daemon is another important component that needs to be tested since all the

messages and the camera acquisition pass through it and the logs help to diagnose potential

problems and allow the users to replay their rides.

TestUploader

+ setUp()

+ start_thread()

+ join_thread()

+ gen_files(lock: bool = False)

+ gen_order(seg1, seg2)

+ test_upload()

+ test_upload_ignored()

+ test_upload_files_in_create_order()

+ test_no_upload_with_lock_file()

Table 57 - TestUploader test case

The test case relative to the upload process tries to upload a series of segments to a fake URL

and waits for a response message with the outcome of the upload.

upload ('2019-04-18--12-52-54--153/qlog.bz2',
 '/tmp/tmpr9bj6482/2019-04-18--12-52-54--153/qlog.bz2') over 1
{
 "event": "upload",
 "key": "2019-04-18--12-52-54--153/qlog.bz2",
 "fn": "/tmp/tmpr9bj6482/2019-04-18--12-52-54--153/qlog.bz2",
 "sz": 1048576
}
checking '2019-04-18--12-52-54--153/qlog.bz2' with size 1048576
uploading '/tmp/tmpr9bj6482/2019-04-18--12-52-54--153/qlog.bz2'
upload_url v1.3 http://localhost/does/not/exist {}
** WARNING, THIS IS A FAKE UPLOAD TO http://localhost/does/not/exist **
{
 "event":
 "upload_success",
 "key": "2019-04-18--12-52-54--153/qlog.bz2",
 "fn": "/tmp/tmpr9bj6482/2019-04-18--12-52-54--153/qlog.bz2",
 "sz": 1048576,
 "debug": true
}

upload done, success=True

UploaderTestCase

+ set_ignore()

+ setUp()

+ tearDown()

+ make_file_with_data(f_dir, fn, size_mb: float = .1, lock: bool = False)

Chapter 4 189

Similarly, the deleter process deletes two sample files and verifies that after the operation

they are not present anymore.

TestDeleter

+ setUp()

+ start_thread()

+ join_thread()

+ test_delete()

+ test_delete_files_in_create_order()

+ test_no_delete_when_available_space()

+ test_no_delete_with_lock_file()

Table 58 - TestDeleter test case

deleting /tmp/tmpwhp7mz2c/2019-04-18--12-52-54--82
deleting /tmp/tmpf0tgti3t/2019-04-18--12-52-54--268

The encoder test case uses the Encoder class to encode the camera frame and verifies the

correctness of the encoding process.

The checks ensure that when encoding, the number of frames received and elaborated is the

same, that there are no duplicated frames, and that no frame is skipped.

TestEncoder

+ setUp()

+ tearDown()

+ _clear_logs()

+ _get_latest_segment_path()

+ test_log_rotation(record_front)

Table 59 - TestEncoder test case

The actual loggerd test case verifies the status of the log after performing different

operations, like the initialization or the upload of a file. In particular, the test is executed

after the test case relative to the uploader, which uploads known files.

UploaderTestCase

+ set_ignore()

+ setUp()

+ tearDown()

+ make_file_with_data(f_dir, fn, size_mb: float = .1, lock: bool = False)

Chapter 4 190

The logger verifies that the file logged are the same.

TestLoggerd

- _get_latest_log_dir()

- _get_log_dir(x)

- _get_log_fn(x)

- _gen_bootlog()

- _check_init_data(msgs)

- _check_sentinel(msgs, route)

+ test_init_data_values()

+ test_rotation()

+ test_bootlog()

+ test_qlog()

+ test_rlog()

Table 60 - TestLoggerd test case

For what concerns the processes managing the calibration using the EKF, the test case

relative to calibrationd test that the calibration parameters are correctly uploaded.

TestCalibrationd

+ test_read_saved_params

Table 61 - TestCalibrationd test case

Locationd has two test cases, one for the library and one for the process itself. The one testing

the library functionalities ensures that the Localizer library is able to interpret all the

messages correctly.

Table 62 - TestLocationdLib test case

TestLocationdLib

+ ffi: FFI

+ lib: FFILibrary

+ localizer: Localizer

+ buff_size: int = 2048

+ msg_buf

+ setUp()

+ localizer_handle_msg(msg_builder)

+ localizer_get_msg(t = 0, inputsOK: bool, sensorsOK: bool, gpsOK: bool)

+ test_liblocalizer()

+ test_device_fell()

+ test_posenet_spike()

Chapter 4 191

The test case relative to the process tries to handle different messages, including messages

with detail on the GPS positioning and fake camera odometry measurements.

TestLocationdProc

+ MAX_WAITS: int = 1000

+ pm: PubMaster

+ setUp(self)

+ tearDown(self)

+ send_msg(self, msg)

+ test_params_gps(self)

Table 63 - TestLocationdProc test case

Athena test cases aim to test the functionalities provided by the Athena APIs, which allow

to access remotely a Comma device and to read the essential information on the car ad device

state.

TestAthenadMethods

+ setUp()

+ wait_for_upload()

+ test_echo()

+ test_getMessage()

+ test_listDataDirectory()

+ test_do_upload(host)

+ test_uploadFileToUrl(host: string)

+ test_upload_handler(host)

+ test_upload_handler_timeout()

+ test_cancelUpload()

+ test_listUploadQueueEmpty()

+ test_listUploadQueueCurrent(host: string)

+ test_listUploadQueue()

+ test_startLocalProxy(mock_create_connection)

+ test_getSshAuthorizedKeys()

+ test_getVersion()

+ test_jsonrpc_handler()

+ test_get_logs_to_send_sorted()

Table 64 - TestAthenadMethods test case

The test case includes tests for the upload functionalities, both in the case of a single upload

of a file and upload of multiple files and ensures that the queue behaves as expected. It also

uses the APIs to query a parameter and verifies that the response is the correct one and

verifies that the JSON-RPC messages are correctly interpreted.

Chapter 4 192

Another test case tests specifically the registration of the device through Athena, ensuring

that the device ID is correctly registered and that caching of the relevant information always

ensures the availability of those.

TestRegistration

- _generate_keys()

+ setUp()

+ tearDown()

+ test_valid_cache()

+ test_missing_cache()

+ test_unregistered()

Table 65 - TestRegistration test case

Monitoring the performances and the temperatures of the devices is also a critical part of the

testing process, since it has to be ensured that all the devices operate correctly under the

possible conditions.

TestPowerMonitoring

+ setUp()

+ mock_peripheralState(hw_type: int, car_voltage: int = 12)

+ test_pandaState_present()

+ test_offroad_ignition(hw_type: int)

+ test_offroad_integration_discharging(hw_type: int)

+ test_car_battery_integration_onroad(hw_type)

+ test_car_battery_integration_upper_limit(hw_type: int)

+ test_car_battery_integration_offroad(hw_type: int)

+ test_car_battery_integration_lower_limit(hw_type: int)

+ test_max_time_offroad(hw_type: int)

+ test_car_voltage(hw_type: int)

+ test_disable_power_down()

+ test_ignition()

+ test_harness_connection()

Table 66 - TestPowerMonitoring test case

The thermal process monitors the power consumption detected by the Panda device and

verifies that is always under the predefined thresholds and that is null when the device is not

being used. The tests are repeated for all the Panda versions available and for different

conditions to test the detection when the vehicle is moving or is turned off.

Chapter 4 193

A crucial part of the testing is represented by the car unit tests, which are unit tests defined

for all the cars supported by Openpilot. These parametrized unit tests are executed for all the

supported cars.

TestCarModel

+ car_model: string

+ can_msg: Message[0..*]

+ CP: CarParams

+ CI: CarInterface

+ CC: CarControl

+ setUpClass()

+ test_car_params()

+ test_car_interface()

+ test_radar_interface()

+ test_panda_safety_rx_valid()

+ test_panda_safety_carstate()

Table 67 - TestCarModel test case

For each car model, the test case tests that the parameters are detected correctly, that the

safety model for the car is available in Panda, and that the car uses the correct version of the

lateral tuning algorithm (pid, lqr, or indi). Here are reported some of the key parameters

detected during the execution of test_car_params() test.

Analyzing HYUNDAI VELOSTER 2019
Car mass: 1613.88037109375
Car steerRateCost: 0.5
Lateral tuning algorithm: pid

Analyzing CHRYSLER PACIFICA HYBRID 2017
Car mass: 2378.0
Car steerRateCost: 0.699999988079071
Lateral tuning algorithm: pid

To test the car interface, it is counted the number of invalid messages sent using the

CarInterface component. a Test passes if the number of invalid messages is less than fifty.

Similarly, the radar interface is tested by checking that the number of invalid messages stays

under a certain threshold, twenty in this case.

More safety checks are made to ensure that all the messages are received correctly on the

RX pin of the Panda board and that no failure happens when checking the parameters

indicating that the gas pedal and the brake pedal have been pressed, and when checking the

engagement state of Openpilot, ensuring that no message allowing it to take control of the

car is lost.

Another important set of tests is represented by the process replay tests, run in their dedicated

workflow in GitHub Actions. A process replay test is a regression test designed to identify

any changes in the output of a process. This test replays a segment of drive and then stores

a log of each process's output as a reference. Then it compares the output of the same set of

processes calculated after the committed changes and it compares the output to the reference

replay. If there are differences, the test fails and displays the changes.

Chapter 4 194

In Figure 87 is shown the steer ratio computed in two different commits.

Figure 87 - Steer ratios of two consecutive commits

 The values almost overlap, but small differences can be noticed throughout the log. These

differences are more clear looking at the graph in Figure 88. Here the values plotted are

computed as the difference between the expected value of the steer ratio and the actual one.

Even a small variation for the steer ratio variable could lead to major issues while driving,

therefore the test fails even for the smallest differences from the expected values of all the

processes.

This type of validation is run for all the car models supported by Openpilot.

Figure 88 – Difference of steer ratio in two consecutive commits

-0,0012

-0,0007

-0,0002

0,0003

0,0008

0,0013

 actual expected

-0,00002

-0,000015

-0,00001

-0,000005

0

0,000005

0,00001

0,000015

Chapter 4 195

An important part of testing is represented by the hardware-in-the-loop (HIL) tests, executed

on a Jenkins server where a series of Comma Twos and Comma Threes continuously run

real segments. Based on this execution can be determined if the performances are the one

expected if the CPU usage and the temperature is optimal for all the devices. The devices

connected to the Jenkins server run a series of tests, including process and model replay tests,

unit tests and car unit tests, camera tests, and hardware tests. The devices tested are a total

of twelve and keep them running for a long period and checking their behavior allows

ensuring and high long-term reliability.

The execution on the Jenkins server can give more insights into what the performances of

the different processes are and allows to plot the timing of the messages sent by them. In a

recent convention held by Comma, the COMMA_CON, have been shown the timing of

different processes which are crucial to Openpilot, obtained by analyzing the devices

connected to the server. The results show that overall, the delay between a message and

another follows a Gaussian distribution around a mean that should never be too high.

Figure 89 - Messages delays obtained through HIL testing, shown during COMMA_CON

One process that is crucial to Openpilot is boardd: since it allows the car to communicate

with Openpilot, the timing of messages coming from all the other processes depends on it.

The delays of the messages traveling through the can socket have to stay as low as possible,

and this was the reason why a past release of the NEOS firmware was canceled: it suffered

from a problem that would cause boardd to lag and have a latency of order of magnitude

higher.

Figure 90 - Comparison between a healthy boardd and a lagging one, from COMMA_CON

Chapter 4 196

Many tests were conducted also in real-world situations by different testers, both individual

and organizations. A recent study by Consumer Report [53] shows how Openpilot excels in

many of the tested categories and can outperform its competitors [Figure 91]. Their tests

were conducted in 5 main categories:

• Capability and performance: it considers how well each system kept the vehicle in the

center of the lane, as well as how smoothly and intuitively the ACC system could adjust

its speed behind other cars.

• Keeping the driver engaged: the ability of the active driving assistance systems to

monitor the driver and encourage the driver to stay actively engaged.

• Ease of use: how easy it was for drivers to engage the systems and adjust the settings. it

was also considered the types and amount of information displayed to drivers, and how

easy it was for drivers to know and understand what the system was doing.

• Clear when safe to use: how the systems communicate in real-time about when drivers

should and should not be using the technology.

• Unresponsive driver: evaluation of the systems for their escalation process for

warnings, steering control, and speed control.

Comma Two managed to obtain excellent results in all the categories, and presumably,

Comma Three will be even better. However, is the only system that requires an after-market

modification from the customers.

Even if such modifications should not be endorsed, the results of the tests show that are

comparable, and in many cases superior, to many other OEMs, as shown in the table

reporting the overall rating result of the Consumer Reports’ study.

Figure 91 - Results of the study conducted by Consumer Report

Chapter 4 197

 Development and community contributions

The concept of making a normal car a self-driving one was made reality when George Hotz,

for the first time, hacked its own Toyota Supra and made it drive on the highway

autonomously. From the realization of the potential of machine learning and the high

computational power offered by modern technology George founded Comma.ai. The first

natural step to create a superhuman driver was to gather enough data to train a superhuman

self-driving model. Comma.ai launched in 2016 the mobile application chffr: the objective

was to give people a mobile dashcam for the car, while at the same time collecting data on

how people drive daily. The first device released was the Comma One, but soon the

production was interrupted after that NHTSA (the National Highway Traffic Safety

Administration) questioned the compliancy of the device with regulations.

Figure 92 - The Comma One

The first version of Openpilot was released on the 29th of November 2016.

Openpilot release (29/11/2016) <Vehicle Researcher>

The functionalities offered were very limited and included adaptive cruise control and lane

keep assist. There was not a real driving model making the predictions on were to drive the

car and the supported cars were two, an Acura and a Civic. The device as well was not more

than a prototype, all 3D-printed and based on a smartphone hardware.

The next releases of version 0.2.x focused on bug fixing and small optimizations. Most of

the optimization were made to boardd process and the way it handled the messages traveling

on the CAN bus and to the vision model and image acquisition, improving from time to time

the quality of the acquired images interpreted by the model. The process managing

elaborating the images was visiond, then substituted by camerad. Visiond not only managed

the frame acquisition, but the whole vision pipeline of Openpilot.

With version 0.3.x, the camera acquisition system was refactored, and it was introduced

VisionIPC to allow the connection of multiple clients to the cameras. In release 0.3.0 was

also introduced the CarParams abstraction, which simplified the way to access the key

parameters relative to the car status.

Version 0.3.7 introduced the Model Predictive Control, which improved the lateral and

longitudinal controls by approaching the problem of predicting the direction that the car had

to follow as an optimization problem, that given the position and velocity of the lead car tries

to optimize the breaking and the steering of the vehicle.

Chapter 4 198

Openpilot v0.3.7 release (01/10/2017) <Vehicle Researcher>

Openpilot v0.3.7 tweaks (03/10/2017) <Vehicle Researcher>

Openpilot v0.3.7 tweaks (04/10/2017) <Vehicle Researcher>

On 19th October 2017 was announced the EON Dashcam DevKit. The EON [Figure 93] is

a dashcam that can connect to the car’s communication system and record the car’s data in

sync with driving videos. It also includes a camera-based Driver Monitoring (DM) system

that alerts the driver when distracted or asleep. EON is essentially a LeEco Le Pro 3

smartphone in a plastic case loaded with a custom version of Android maintained by the

team of Comma.ai. It comes with a Snapdragon 820 processor, a front facing camera and a

main camera offering good quality pictures, and a series of sensors that made it an optimal

choice to make it the device where to run Openpilot.

It can communicate with the car through Panda and Giraffe (then substituted by much more

modular and simpler car harness), which is a universal common interface allowing to send

and receive signals over Wi-Fi or USB directly to/from BUSes available in a vehicle.

Figure 93 - EON dashcam DevKit

The EON was preloaded with a dashcam software, but it was easy to install Openpilot on

and in this way it was possible to sell the device while being compliant with all the

regulations.

Forward Collision Warning was introduced in version 0.3.9, as a result of all the

improvements made on the longitudinal control model. Even without a machine learning

model in place at the time of the release, the effort made in tweaking the algorithm to

understand what the car in front of the vehicle was doing only relying on camera and sensors

and using all the data collected to correct the algorithm based on the false positives detected,

allowed to deliver the feature with a high level of reliability.

Openpilot v0.3.9 release (22/11/2017) <Vehicle Researcher>

Openpilot v0.3.9 tweaks (06/12/2017) <Vehicle Researcher>

Version 0.4.4 prepared Openpilot to the introduction of the driver monitoring model. This

required to flip the original orientation of the device, which was thought with the camera on

the right side, while it was proved that a higher accuracy could be achieved with the driver

camera on the left side.

Fortunately, the case which hosted the NEON was symmetric and it was simple to reverse

the orientation of the device.

Chapter 4 199

Openpilot v0.4.4 release (14/04/2018) <Vehicle Researcher>

After a deadly accident, where a pedestrian was killed by a self-driving Uber car, Comma.ai

decided to include drive monitoring in the future releases of Openpilot.

Driver monitoring was shipped in version 0.5.0. This feature, still in beta version at this stage

of the development, was crucial to ensure that the driver was always paying attention while

driving, but its performances were not optimal due to the restrictions dictated by the

hardware of the device and of the optimization of the software.

Openpilot v0.5 release (13/07/2018) <Vehicle Researcher>

One important step of the development, especially for the community, was introduced in

version 0.5.8 with the open sourcing of the visiond model. The open-source version of the

model was based on the SNMP Snapdragon library, which offered the same functionalities,

tweaked for Snapdragon processors, offered by the neural network that was previously

included and in the model and executed through OpenCL. With the open sourcing of visiond,

all the code of Openpilot was made opensource.

Openpilot v0.5.8 release (24/01/2019) <Vehicle Researcher>

With the series of version 0.6.0 it was introduced a model developed using machine learning

and using as a ground truth the data coming directly from the Comma devices, so that the

model was trained on the actual behavior of human while driving their car.

Openpilot v0.6 release (28/06/2019) <Vehicle Researcher>

Comma.ai continued to improve its hardware and the software. In April 2019 released The

Comma the Comma Connect app (on iOS and Android), which provided video storage of

drives and remote camera access, and in January 2020 it launched the Comma Two [Figure

94]. The device replaces the EON DevKit, but it retains all the EON’s features. The Comma

Two is powered via OBD-C, rather than a battery, as Hotz says that was a top complaint

from the EON owners. It had a larger mount, as well as a custom fan-based hardware cooling

solution. Like the EON, which used a camera to recognize drivers’ faces and decelerate if it

detected that they were distracted, the Comma Two performs facial recognition. It leverages

two infrared sensors as opposed to an RGB sensor, enabling it to work during nighttime.

Figure 94 - The Comma Two device

Chapter 4 200

Version 0.7.1 was the first to support the Comma Two. In the same release was also shipped

the new Supercombo model, which merged posenet and driving model into a unique model,

allowing a better lead estimation.

Openpilot v0.7.1 release(15/01/2020) <Vehicle Researcher>

In January 2020 Openpilot also switched from a cathedral style open sourcing to a bazaar

style, sharing on the GitHub repository all the changes made and allowing all the contributors

to see in real time the changes that where being made at each step of the development and

not only when a new version was released.

root commit (17/01/2020) <George Hotz>

Version 0.7.7 introduced the live localizer, a precise vehicle abstractions providing all the

key acquisitions of the car sensors.

get ready for live localizer <Harald Schafer> (11/02/2020)

WIP: Live localizer (#1074) <Willem Melching> (11/02/2020)

more fixes (11/02/2020) <Harald Schafer>

The vehicle characteristics indicated by the manufacturer are not always respected and they

can vary even among different cars of the same model. Through the live localizer is possible

to estimate those parameters, that include the wheels grip, the steering ratios, the offset in

degrees of the steering wheel, while driving the car. This allows to make much better

predictions and to control the car more precisely.

Openpilot v0.7.7 release (17/07/2020) <Vehicle Researcher>

Version 0.8.0 improved even more the driving model, including prediction in 3 dimensions

to consider also slopes on the road that with the past models caused problems in interpreting

the camera frames.

Openpilot v0.8.0 release (24/11/2020) <Vehicle Researcher>

In version 0.8.3 was delivered a model fully trained end-to-end, capable of making high

quality lateral planning.

New KL model + laneless toggle (#20454) (24/03/2021) <Harald Schafer>

The model is trained using a simulator that takes real world video and computes how

Openpilot would behave with the model. To do so, the acquired frames are warped to

simulate the car movement and the path.

Figure 95 - Diagram of the warp-simulator

Chapter 4 201

To train the model to recover from mistakes and go back on the optimal path (the path that

a human would take), in the simulation were introduced on purpose noise and deviation that

would make the car deviate from the optimal path and train the model to go back on the ideal

trajectory. This method, even if it works in a simulation, resulted to be less effective in real-

world situations, since training the model using warped images introduced a lot of artifacts.

For a model is much simple to learn if an image is warped or not warped, and some prediction

could be based not on the movement that the car had to make to go back on the optimal

trajectory, instead on the changes to be made to make the image not look warped. To avoid

this, the Comma.ai research team made a great effort in trying to make the model “blind” to

the simulation artifacts. This was possible by applying the Kullback-Leibler divergence loss

to the vector containing the features of the frame, filtering at training time the relevant

features from all the others.

Version 0.8.7 was the first to support the new piece of hardware developed by Comma.ai,

the Comma Three[Figure 96]. This last iteration of the device. It has dual camera with 360°

vision, plus a narrow camera to spot objects far off in the distance. The three 1080p cameras

have 120 dB of dynamic range, two generations ahead of a leading electric car maker. It can

connect through Wi-Fi, LTE, and offers a high-precision GPS.

Figure 96 - The Comma Three device

A lot of support was also given by the community, especially when it comes to new

supported cars. The number of supported cars went up from two in the first version of

Openpilot to more than a hundred and forty cars, with even more cars not officially supported

but still maintained by the community itself.

One of the biggest contributor is without a doubt Dean Lee, which made more than five

hundred commits and his contributions go from simple bug fixing and small optimization to

the refactor of core parts of the code. In particular, on many occasions he optimized the C++

code of different components of the project and converted Python code in C++ code, helping

to increase the performances of the software.

Refactor ModelFrame struct to class (#20005) (19/06/2021) <Dean Lee>

UI: refactor onboarding (#21223) (19/06/2021) <Dean Lee>

util.cc: refactor read_file (#21321) (18/06/2021) <Dean Lee>

UI: refactor ButtonControl (#21315) (18/06/2021) <Dean Lee>

util.cc: refactor read_file (#21295) (17/06/2021) <Dean Lee>

Chapter 4 202

qt/api.cc: refactor create_jwt (#21281) (16/06/2021) <Dean Lee>

Refactor C++ LogReader (#21152) (13/06/2021) <Dean Lee>

UI: refactor SoftwarePanel (#21244) (13/06/2021) <Dean Lee>

refactor FrameReader (#21141) (08/06/2021) <Dean Lee>

Refactor FrameReader (#21002) (25/05/2021) <Dean Lee>

camerad: refactor RGBToYUVState into a class (#20310) (13/04/2021) <Dean Lee>

refactor webcam, use common run_camera function (#20555) (06/04/2021) <Dean

Lee>

refactor set_driver_exposure_target (#20327) (03/04/2021) <Dean Lee>

refactor draw_circle_image (#20473) (30/03/2021) <Dean Lee>

refactor function alloc (#20192) (12/03/2021) <Dean Lee>

boardd: refactor usb_connect, delete panda on failure (#19956) (29/01/2021) <Dean

Lee>

Panda: refactor get_firmware_version, return std::optional<std::vector> (#19896)

(28/01/2021) <Dean Lee>

panda: refactor get_serial, return std::optional<std::string> (#19895) (28/01/2021)

<Dean Lee>

UI: refactor transform (#19658) (15/01/2021) <Dean Lee>

Refactor image texture stuff into class (#19719) (11/01/2021) <Dean Lee>

Refactor alert blinking (#19583) (08/01/2021) <Dean Lee>

refactor ui_draw_driver_view (#19597) (08/01/2021) <Dean Lee>

refactor ui_draw_image (#19656) (05/01/2021) <Dean Lee>

refactor qlog_counter (#19626) (04/01/2021) <Dean Lee>

refactor imgproc/utils (#2766) (15/12/2020) <Dean Lee>

ui: refactor model related functions (#2026) (18/08/2020) <Dean Lee>

Another active contributor is Shane Smiskol, who was also taken as an intern after all of his

contributions. His contributions helped to develop the car interface abstraction, but also

helped many community members on the Discord server with more than six thousand

messages sent.

Update 17 Corolla safetyParam (#2175) (16/09/2020) <Shane Smiskol>

Fix toyota_eps_factor.py script (#2647) (29/11/2020) <Shane Smiskol>

Toyota: always learn offset to accurate steer angle sensor (#20087) (16/02/2021)

<Shane Smiskol>

Toyota: simplify angle offsetting (#20102) (20/02/2021) <Shane Smiskol>

Chrysler: Default fingerprint argument to empty fingerprint (#20146) (24/02/2021)

<Shane Smiskol>

Honda - Don't send cancel cmd when using comma pedal (#20922) (18/05/2021)

<ShaneSmiskol>

Add missing Hondas and Toyotas to tests (#21044) (27/05/2021) <Shane Smiskol>

Update Honda Fit route (#21065) (29/05/2021) <Shane Smiskol>

Add some missing Hyundai routes (#21072) (29/05/2021) <Shane Smiskol>

Add missing Chrysler routes (#21074) (29/05/2021) <Shane Smiskol>

Split Avalon 2016-18 and Avalon 2019+ (#21058) (01/06/2021) <Shane Smiskol>

Merge Accord trims (#21105) (03/06/2021 22:35) <Shane Smiskol>

Use hyundaiLegacy safety model for Hyundai Elantra (#21108) (03/06/2021) <Shane

Smiskol>

Toyota: Only use gas interceptor under 19 mph (#21101) (04/06/2021) <Shane

Smiskol>

Chapter 4 203

2020 Ioniq PHEV Support (#21147) (11/06/2021) <Shane Smiskol>

Toyota: handle models with permanent low speed lockout (#21512) (10/07/2021)

<Shane Smiskol>

Erich Moraga is another important member of the community. His contributions include

the addition of more than sixty car fingerprints, but he is also a very active member of the

discord server and helped many other community members throughout the years.

Below are reported only some of his contributions, in particular the commits relative to the

additions made to the fingerprints of Lexus cars, but many other contributions are relative

also to models of other car manufacturer.

Add CAR.LEXUS_RX various missing firmware (#2189) (16/09/2020) <Erich

Moraga>

Add engine f/w for CAR.LEXUS_RX (#2235) (28/09/2020) <Erich Moraga>

Added LEXUS_RX_TSS2 ESP & Engine f/w (#19618) (29/12/2020) <Erich Moraga>

2018 Lexus NX300: Add missing EPS & engine f/w (#20337) (14/03/2021) <Erich

Moraga>

Add missing engine & EPS f/w for LEXUS_IS (#20398) (18/03/2021) <Erich

Moraga>

Add missing CAR.LEXUS_NX f/w (#20546) (01/04/2021 11:05) <Erich Moraga>

Add multiple missing f/w for LEXUS_ESH (#20669) (13/04/2021) <Erich Moraga>

Add several missing LEXUS_ES_TSS2 f/w (#20865) (10/05/2021) <Erich Moraga>

Add missing LEXUS_NXH EPS f/w (#20941) (18/05/2021) <Erich Moraga>

Add missing LEXUS_NX_TSS2 engine & fwdCamera (#21490) (06/07/2021) <Erich

Moraga>

Jason Young also helped to support many car models, especially Volkswagen cars. Him

alone added the support to almost twenty cars, reverse engineering the messages traveling

on the CAN bus of the cars and fingerprinting the different models.

Fixes and new message for VW MQB, fix for Accord Touring (#193) (17/10/2019)

<Jason Young>

Add TSK_06 CRC validation for VW MQB (#234) (16/03/2020) <Jason Young>

Additional car params auto-detection in support of VW (#38) (31/03/2020) <Jason

Young>

Add SWA_01 message detail and CRC support for VW MQB (#236) (02/04/2020)

<Jason Young>

VW MQB: UDS fingerprinting support (#20271) (26/03/2021) <Jason Young>

VW MQB: Volkswagen Tiguan Mk2 (#20484) (26/03/2021) <Jason Young>

VW MQB: VW Jetta Mk7, Škoda Kodiaq Mk1 (#20487) (26/03/2021) <Jason

Young>

VW MQB: Volkswagen Passat Mk8 (#20493) (26/03/2021) <Jason Young>

VW MQB: Škoda Superb Mk3 (#20500) (27/03/2021) <Jason Young>

VW MQB: Update to Volkswagen Golf Mk7 (#20498) (29/03/2021) <Jason Young>

VW MQB: Volkswagen Atlas Mk1 (#20881) (12/05/2021) <Jason Young>

VW MQB: Add FW values for 2019 Volkswagen Golf GTI (#20882) (12/05/2021)

<Jason Young>

VW MQB: Volkswagen Golf Alltrack Mk7 (#20893) (13/05/2021) <Jason Young>

VW MQB: Add FW values for 2018 Volkswagen Golf Alltrack (#20905) (14/05/2021)

<Jason Young>

Chapter 4 204

VW MQB: Add FW values for 2020 Volkswagen Jetta (#20936) (18/05/2021) <Jason

Young>

VW MQB: Add FW for 2018 Volkswagen Atlas (#20938) (18/05/2021) <Jason

Young>

VW MQB: Add FW for 2018 Volkswagen Atlas (#21068) (28/05/2021) <Jason

Young>

VW MQB: Add FW for 2017 Volkswagen Golf R (#21110) (02/06/2021) <Jason

Young>

VW MQB: Add FW for 2020 Volkswagen Tiguan (#21222) (11/06/2021) <Jason

Young>

VW MQB: Switch to comfort blinker signal (#21253) (14/06/2021) <Jason Young>

VW MQB: Add FW for 2016 Golf R (#21254) (15/06/2021) <Jason Young>

VW MQB: Volkswagen Touran Mk2 (#21263) (15/06/2021) <Jason Young>

VW MQB: Add FW for 2018 Volkswagen Golf (#21388) (23/06/2021) <Jason Young>

VW MQB: Add FW for 2016 Volkswagen Tiguan (#21418) (28/06/2021) <Jason

Young>

VW MQB: Add FW for 2019 Volkswagen Atlas (#21491) (06/07/2021) <Jason

Young>

VW MQB: Add detail to Blinkmodi_02 (#402) (14/06/2021) <Jason Young>

VW MQB: Add FW for 2016 Volkswagen Golf R (#21663) (20/07/2021) <Jason

Young>

VW MQB: Add FW for 2016 Škoda Octavia RS (#21689) (23/07/2021) <Jason

Young>

VW MQB: Auto network location detection (#21671) (25/07/2021) <Jason Young>

VW MQB: Volkswagen T-Cross Mk1 (#21709) (25/07/2021) <Jason Young>

Comma.ai, to incentivize new contributions, promoted many initiatives to award the most

active community members with different prizes. For instance, in 2020, during the “Comma

awards”, the team of Comma.ai assigned a silver statuette to the members who made more

contributions during the year. The prizes were assigned to different categories and the award

ceremony was held in a live stream. The following are the results for year 2020:

• Pencilers of the year:

o https://github.com/pjlao307

o https://github.com/erikbernheim (Erik Bernheim)

o https://github.com/doktorsleepelss

o https://github.com/spektor56 (Brett Sanderson)

• Video of the year:

o https://youtu.be/3Y67XKPmtY8 ($7.000 Tesla Autopilot vs $1.000 Openpilot:

Self-Driving Test!)

Award goes to:

https://youtube.com/user/MyTechMethods1 (Andy Slye)

https://youtube.com/user/Atticus1337 (Logan LeGrand)

• Fingerprinter of the year:

o https://github.com/ErichMoraga (Erich Moraga)

• Contributing to Openpilot and now joining as interns:

o https://github.com/ShaneSmiskol (Shane Smiskol)

o https://github.com/YassineYousfi (Yassine Yousfi)

• Contributor of the year:

o https://github.com/deanlee (Dean Lee)

https://github.com/pjlao307
https://github.com/erikbernheim
https://github.com/doktorsleepelss
https://github.com/spektor56
https://youtu.be/3Y67XKPmtY8
https://youtube.com/user/MyTechMethods1
https://youtube.com/user/Atticus1337
https://github.com/ErichMoraga
https://github.com/ShaneSmiskol
https://github.com/YassineYousfi
https://github.com/deanlee

Chapter 4 205

Assessing the quality of the contributions in an open-source software (OSS) is not an easy

task: unlike industrial software, OSS is often developed under a non-traditional structure

and, as a result, is seen as the product of teams composed almost exclusively of developers.

This picture is of course incomplete at best, as is well known by those involved with OSS.

While young projects can thrive under the guidance of lone developers or small unsupported

teams, more mature projects usually benefit from contributions to the project that transcend

code. These non-code contributions may include, for example: moderating communication

channels associated with the project or its issue tracker(s), fielding questions, outreach,

infrastructure, governance, funding acquisition, documentation, or even mere attention,

these contributions are all crucial determinants of a project’s continued success. [54]

To have a complete picture of the community contributions made to openpilot over time, in

the following analysis will be considered both code contributions and non-code

contributions. To simplify the process of data mining, the analysis will be supported by an

ad-hoc tool developed for this purpose, that from now on will be referenced as contributors-

profiler. The tool will collect the data leveraging the GitHub APIs and for each contributor

it will compute the key performance indicators (KPIs). For the code contributions, we will

consider the number of commits, and the ratio between the successful GitHub actions

executed after the commits and the total amount of actions triggered by the contributor’s

commits, as a proxy of the errors introduced with each commit. The non-code data will

include the amount of issues made by each contributor and their activity on the Discord

server, since it is the main place where the community interact. For the code contribution,

the granularity will be of a week, both to speed up the execution and because a finer

granularity won’t be meaningful for this analysis’ purpose.

One of the most active users in the community and also a member of the Comma.ai team is

for sure Adeeb Shihadeh, with almost 1400 commits. Using the afore mentioned tool, we

obtain the following output that shows how also the jobs success rate is very high.

Figure 97 - output of the analysis of the contribution of Adeeb Shihadeh

Chapter 4 206

This approach to estimate the quality on the commit based on the success of the jobs,

however, has some limitations. The GitHub APIs have a limit of 1020 elements for each

response: this is typically more than enough if we consider the average user and the

considered granularity of a week, but in for the most active users this could lead to omit

some jobs executions. Also, the number of requests for this high number of commits and

jobs executed quickly surpasses the limit allowed by GitHub, blocking the execution of the

tool.

The workflow testing the functionalities of Openpilot and its reliability was also introduced

in a second moment, so as it can be evicted from

Another approach would be to consider the success rate of the workflows and not of single

jobs, but in this case the result would consider as failed also the workflows failed for errors

in the jobs relative to the build processes and less important tasks. On average there is a 10%

of difference between the two approaches, and that makes the parameter not reliable.

Another performance indicator that could be used to assess the quality of the contribution

could be the entropy of the commits. The software entropy takes its name from the entropy

in real world, that can be defined as a measure of chaos that either stays the same or increases

over time. In the case of software entropy, this indicator is a proxy of the chaos of a software,

and measures of how specific each commit was in relation to the entire code base. Very

specific commits only affect a small set of files, and thus have a low entropy. Commits that

touch a large number of files are much less specific and have a higher entropy as a result.

Software entropy impacts the overall quality of software systems. High entropy hinders

developers from understanding the purpose of a piece of code and can cause developers to

make sub-optimal changes and introduce bugs.

The overall software entropy of Openpilot can be measured using the tool commit-entropy,

which allows to compute the average entropy per day and a 30-day rolling average. [55]

Figure 98 - Openpilot's software entropy

As turns out, the software entropy shows a descending trend, with the peaks close to the

dates of the new releases.

0

1E+16

2E+16

3E+16

4E+16

5E+16

6E+16

1
7

/0
1

/2
0

2
0

1
7

/0
2

/2
0

2
0

1
7

/0
3

/2
0

2
0

1
7

/0
4

/2
0

2
0

1
7

/0
5

/2
0

2
0

1
7

/0
6

/2
0

2
0

1
7

/0
7

/2
0

2
0

1
7

/0
8

/2
0

2
0

1
7

/0
9

/2
0

2
0

1
7

/1
0

/2
0

2
0

1
7

/1
1

/2
0

2
0

1
7

/1
2

/2
0

2
0

1
7

/0
1

/2
0

2
1

1
7

/0
2

/2
0

2
1

1
7

/0
3

/2
0

2
1

1
7

/0
4

/2
0

2
1

1
7

/0
5

/2
0

2
1

1
7

/0
6

/2
0

2
1

1
7

/0
7

/2
0

2
1

1
7

/0
8

/2
0

2
1

1
7

/0
9

/2
0

2
1

1
7

/1
0

/2
0

2
1

Entropy 30 days average Lineare (Entropy)

Chapter 4 207

The commit-entropy tool computes the entropy as 𝑙𝑜𝑔2(# 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑), where the

base 2 of the logarithm is given by the fact that the entropy is expressed in bits. Here is

assumed that all the files have an equal probability of being changed.

To have more details on the software entropy that characterize Openpilot and to further

investigate what is the entropy of the commits of each contributor, the contributor-profiler

has been modified to compute the average entropy generated by the single user. This value

can be considered as a proxy of the average quality of a commit, since the lower the entropy,

the lower is the probability to introduce bugs in the code.

Combining these data with the results previously obtained with the data gathered on the

Discord server we obtain a much clearer picture of the overall contributions made by the

most active members of the Openpilot community.

Contributor Commits Issues sent Discord messages Entropy

adeebshihadeh 1.382 43 2.080 0,905

pd0wm 1.208 23 1.409 0,642

deanlee 560 17 0 1,005

HaraldSchafer 292 8 919 0,895

geohot 149 5 14.225 1,281

VirtuallyChris 138 1 4776 0,065

ZwX1616 126 0 132 1,049

jyoung8607 105 2 18.470 1,072

sshane 96 2 6.028 0,939

gregjhogan 95 3 978 0,674

ErichMoraga 71 0 56.451 0,070

grekiki 65 0 2120 1,317

robbederks 54 2 506 1,312

iejMac 39 0 0 1,259

rbiasini 27 0 0 1,586

vanillagorillaa 26 0 8.446 0,170

briskspirit 19 3 928 0,629

sunnyhaibin 19 1 2.925 0,654

mitchellgoffpc 17 0 0 1,072

Table 68 - Statistics of the main contributors

More meaningful values can be obtained by normalizing these results. To compute the

normalization are needed the average and standard deviation for the considered measures,

which can be easily retrieved using the GitHub APIs and the search functionalities of the

Discord server1.

 Commits Issues sent Discord messages

Total 5.085 5.871 848.141

Average (per user) 18,922 0,568 337

Standard deviation 112,470 3,355 13.165,863

Table 69 - Averages and standard deviations of the selected statistics

1 Standard deviation of the Discord messages is overestimated due to the high amount of messages sent by

Erich Moraga and the small sample considered.

Chapter 4 208

The normalized results are reported in Table 70.

Contributor Commits Issues sent Discord messages

adeebshihadeh 12,12 12,65 0,13

pd0wm 10,57 6,69 0,08

deanlee 4,81 4,90 -0,03

HaraldSchafer 2,43 2,22 0,04

geohot 1,16 1,32 1,05

VirtuallyChris 1,06 0,13 0,34

ZwX1616 0,95 -0,17 -0,02

jyoung8607 0,77 0,43 1,38

sshane 0,69 0,43 0,43

gregjhogan 0,68 0,72 0,05

ErichMoraga 0,46 -0,17 4,26

grekiki 0,41 -0,17 0,14

robbederks 0,31 0,43 0,01

iejMac 0,18 -0,17 -0,03

rbiasini 0,07 -0,17 -0,03

vanillagorillaa 0,06 -0,17 0,62

briskspirit 0,00 0,72 0,04

sunnyhaibin 0,00 0,13 0,20

mitchellgoffpc -0,02 -0,17 -0,03

Table 70 - Normalized statistics for each contributor

These data are now comparable with each other, and by calculating the vectorial product

among the three measures and weighting them for the sum of all the computed measures we

obtain an indicator that takes into account both quantitative and qualitative data to estimate

the total contributions made by a user.

Figure 99 - Total contribution made by the most active users

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

Total contribution

Chapter 5 209

5 Conclusions and future work

Openpilot turns out to be a truly vast and complex software. The aim of this thesis was to

clearly define its framework, by focusing on the relationships that all the different

components of which are made work and interact with each other.

The analysis of the packages gives insights on the main classes defined, describing their

methods and the relationship with the other classes of the packages, and focusing on the

theoretical basis behind the main design choices. Trying to see the big picture of the

framework is not an easy task, given its size and the number of modules of which is made,

and that is the reason why a bottom-up approach was adopted for what concerns the analysis

of the overall structure: analyzing the submodules first allows to have the necessary

knowledge to better understand how openpilot leverages them to run its key processes.

Each submodule is itself a complex process that deals with different aspects of the software:

we have Cereal, which clearly defines the messaging specifications through which the

processes of Openpilot can communicate; the Common functionalities, providing utility

functions that include a simple Kalman filter and functions to manipulate images; Rednose,

that is an Extended Kalman Filter that smooth and improves the estimations of the different

acquisitions; Laika, that pre-processes the GNSS data improving the precision of the

positioning data; OpenDBC, that provides the specification of the messages exchanged on

the CAN bus; Panda, that interfaces with the Panda device to let the Comma device

communicate with the car. Each component is necessary to make Openpilot work reliably

and safely.

Due to the risks that malfunctioning of Openpilot could bring, both for the driver and other

people on the road, the software is heavily tested and has to respect strict security constraints.

Testing the submodules is as crucial as testing openpilot itself: a malfunctioning of Cereal

or Panda could lead to miss a break message when approaching a car or a person on the road;

a miscalculation of the positioning of the car could make the model predict a wrong steering

angle; a message not correctly encoded could lead to unexpected behavior of the car. This is

the reason why many test cases are defined for all the modules of openpilot, and why each

commit made to the repository has to pass these tests and be approved by the Comma.ai

team. As turns out, all these precautions make Openpilot a very reliable software and its

performances are comparable, and often higher, than the solutions offered by the other car

manufacturers.

The community is a central part of the whole project: changes are made on the basis of the

feedbacks given by the community members, and the community also contributed to the

development of the software by sending their Pull Requests, many of which made to the final

releases of Openpilot. With this thesis, one of the main objectives is to help the community

even mode, giving clear technical guidelines on what they will find in the GitHub repository

and how the whole framework works, being the starting point of an official and constantly

updated documentation of the software, maintained by the Comma.ai team and the

community.

References 210

6 References

[1] "comma.ai blog," Comma.ai, [Online]. Available: https://blog.comma.ai/.

[2] Mindy News Blog, "How Machine Learning in Automotive Makes Self-Driving

Cars a Reality," 12 February 2020. [Online]. Available: https://mindy-

support.com/news-post/how-machine-learning-in-automotive-makes-self-driving-

cars-a-reality/.

[3] "A 2020 Theme: Externalization," 17 January 2020. [Online]. Available:

https://blog.Comma.ai/a-2020-theme-externalization/.

[4] S. Chengyao, "Decoding comma.ai/openpilot: the driving model," 11 November

2019. [Online]. Available: https://medium.com/@chengyao.shen/decoding-comma-

ai-openpilot-the-driving-model-a1ad3b4a3612.

[5] C. McCammon, S. Smiskol, quadmus and grekiki, "Tuning," 4 August 2021.

[Online]. Available: https://github.com/commaai/openpilot/wiki/Tuning.

[6] Sandeep, "PUBLISH-SUBSCRIBE (PUB-SUB) DESIGN PATTERN," 15 February

2016. [Online]. Available: http://www.code2succeed.com/pub-sub/.

[7] P. Goliński, "PR #46: Use ZMQ on MacOS," 20 May 2020. [Online]. Available:

https://github.com/commaai/cereal/pull/46.

[8] P. Goliński, "PR #45: Fix potential segfault in MSGQPubSocket::connect," 20 May

2020. [Online]. Available: https://github.com/commaai/cereal/pull/45.

[9] D. Lee, "PR #42: Sub pub master," 9 May 2020. [Online]. Available:

https://github.com/commaai/cereal/pull/42.

[10] D. Lee, "PR #58: Fix dlopen error after put socketmaster.cc in messaging," 10 June

2020. [Online]. Available: https://github.com/commaai/openpilot-apks/pull/58.

[11] D. Lee, "PR #50: fix mac build," 6 June 2020. [Online]. Available:

https://github.com/commaai/cereal/pull/50.

References 211

[12] A. Shihadeh, "PR #84: allow prioritization of services in SubMaster," 31 August

2020. [Online]. Available: https://github.com/commaai/cereal/pull/84.

[13] W. Melching, "Issue #41: Show warning when subscribing/publishing to queue

that's not in service list," 8 April 2020. [Online]. Available:

https://github.com/commaai/cereal/issues/41.

[14] H. Schafer, "PR #107: Best practice," 3 January 2021. [Online]. Available:

https://github.com/commaai/cereal/pull/107.

[15] J. Wooning, "PR #135: some fixes and small changes for locationd in C++," 19

April 2021. [Online]. Available: https://github.com/commaai/cereal/pull/135.

[16] S. Smikol, "PR #136: Automatically generate service ports," 19 April 2021.

[Online]. Available: https://github.com/commaai/cereal/pull/136.

[17] G. Hotz, "Issue #1038: Remove visionipc -- $500 bounty," 2 February 2020.

[Online]. Available: https://github.com/commaai/openpilot/issues/1038.

[18] W. Melching and A. Shihadeh, "PR #101: Visionipc v2.0," 16 November 2020.

[Online]. Available: https://github.com/commaai/cereal/pull/101.

[19] W. Melching, "PR #183: Always free ION buffer," 26 July 2021. [Online].

Available: https://github.com/commaai/cereal/pull/183.

[20] T. M. Zeng, "The Android ION memory allocator," 8 February 2012. [Online].

Available: https://lwn.net/Articles/480055/.

[21] Wikipedia, "Kalman filter," 8 November 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Kalman_filter.

[22] M. Vh, "PR #1890: Fix insecure temporary file creation," 18 July 2020. [Online].

Available: https://github.com/commaai/openpilot/pull/1890.

[23] C. McCammon, "Issue #1882: Improve car battery management," 16 July 2020.

[Online]. Available: https://github.com/commaai/openpilot/issues/1882.

[24] R. Derks, "PR #1994: Car power integrator + power management refactor," 17

August 2020. [Online]. Available: https://github.com/commaai/openpilot/pull/1994.

[25] Wikipedia, "Dilution of precision (navigation)," 25 May 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation).

References 212

[26] "ZED-F9P interface: u-blox F9 high precision GNSS receiver," 28 May 2020.

[Online]. Available: https://www.u-blox.com/sites/default/files/ZED-

F9P_InterfaceDescription_%28UBX-18010854%29.pdf.

[27] S. Figiel, "PR #22: Remove get_prns_from_constellation," 9 May 2020. [Online].

Available: https://github.com/commaai/laika/pull/22.

[28] "DBC Format," 11 October 2017. [Online]. Available:

http://socialledge.com/sjsu/index.php/DBC_Format.

[29] "data length code (DLC)," [Online]. Available:

https://www.datajob.com/it/definizione/39/data-length-code-(dlc).

[30] "Chffr: a dashcam that trains self-driving cars," 23 April 2019. [Online]. Available:

https://steemit.com/steemhunt/@oluwabori/chffr-chffr-a-dashcam-that-trains-self-

driving-cars.

[31] A. Haden, "PR #18: Add chffr metrics," 10 September 2017. [Online]. Available:

https://github.com/commaai/opendbc/pull/18.

[32] J.-C. Thibault, "PR #49: Lots of correction, thanks to cabana!," 4 November 2017.

[Online]. Available: https://github.com/commaai/opendbc/pull/49.

[33] AdasCoder, "PR #147: Add files via upload," 14 March 2019. [Online]. Available:

https://github.com/commaai/opendbc/pull/147.

[34] R. Kołłątaj, "PR #205: Add reference to CANdevStudio in README file," 16

January 205. [Online]. Available: https://github.com/commaai/opendbc/pull/205.

[35] M. di Preez, "OBD II diagnostic interface pinout," 2 December 2017. [Online].

Available: https://pinoutguide.com/CarElectronics/car_obd2_pinout.shtml.

[36] "CAN FD," 26 August 2021. [Online]. Available:

https://en.wikipedia.org/wiki/CAN_FD.

[37] Oracle, "Registering Interrupts," [Online]. Available:

https://docs.oracle.com/cd/E23824_01/html/819-3196/interrupt-14.html. [Accessed

18 September 2021].

[38] . K. Magdy, "STM32 USART / UART Tutorial," 13 June 2020. [Online]. Available:

https://deepbluembedded.com/stm32-usart-uart-tutorial/.

[39] Elettronica Open Source, "Transceiver CAN," 19 February 2020. [Online].

Available: https://it.emcelettronica.com/transceiver-can.

References 213

[40] "Using Python and the libusb library with ADU USB Data Acquisition Products

(Linux & Windows)," [Online]. Available: https://www.ontrak.net/LibUSBPy.htm.

[Accessed 19 September 2021].

[41] Zephyr, "ISO-TP Transport Protocol," 20 September 2021. [Online]. Available:

https://docs.zephyrproject.org/latest/reference/networking/can_isotp.html.

[42] P. Decker, "K-Line: Flexible Solutions for a Classic protocol," May 2015. [Online].

Available: https://assets.vector.com/cms/content/know-how/_technical-

articles/K_Line_AutomotiveEETimesEurope_201505_PressArticle_EN.pdf.

[43] Wikipedia, "MISRA C," 15 July 2021. [Online]. Available:

https://en.wikipedia.org/wiki/MISRA_C.

[44] C. Vickery, "PR #107: Implement WebUSB and upgrade WinUSB to 2.0," 6 April

2018. [Online]. Available: https://github.com/commaai/panda/pull/107.

[45] G. Hogan, "PR #145: Unified Diagnostic Services (UDS) panda library (ISO

14229)," 16 October 2019. [Online]. Available:

https://github.com/commaai/panda/pull/145.

[46] R. Biasini, "PR #389: Power saving refactor," 21 November 2019. [Online].

Available: https://github.com/commaai/panda/pull/389.

[47] C. Woei-Leong and H. Fei-Bin, "Implementation of the Rauch-Tung-Striebel

Smoother for Sensor Compatibility Correction of a Fixed-Wing Unmanned Air

Vehicle," November 2011. [Online]. Available: https://doi.org/10.3390/s110403738.

[48] J. A. Matute, M. Marcano, A. Zubizarreta and J. Perez, "Longitudinal Model

Predictive Control with comfortable speed planner," 2018. [Online]. Available:

http://dx.doi.org/10.1109/ICARSC.2018.8374161.

[49] Wikipedia, "Radar tracker," 21 September 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Radar_tracker.

[50] P. Sala, "Camera Models and Parameters," 7 20 2006. [Online]. Available:

http://ftp.cs.toronto.edu/pub/psala/VM/camera-parameters.pdf.

[51] H. Schafer, "Neural networks in openpilot," 12 October 2021. [Online]. Available:

https://github.com/commaai/openpilot/tree/master/models.

[52] "OpenMAX overview," Khronos, [Online]. Available:

https://www.khronos.org/openmax/.

References 214

[53] Consumer Reports, "Active Driving Assistance Systems: Test Results and Design

Recommendation," November 2020. [Online]. Available:

https://data.consumerreports.org/wp-content/uploads/2020/11/consumer-reports-

active-driving-assistance-systems-november-16-2020.pdf.

[54] J.-G. Young, A. Casari, K. McLaughlin, M. Z. Trujillo, L. Hébert-Dufresne and J. P.

Bagrow, "Which contributions count? Analysis of attribution in open source," 19

March 2021. [Online]. Available:

https://www.researchgate.net/publication/350311749_Which_contributions_count_

Analysis_of_attribution_in_open_source.

[55] K. Wanrooij, L. Kian Seong and D. Stevens, "commit-entropy," 17 April 2016.

[Online]. Available: https://github.com/GripQA/commit-entropy.

[56] "What is GNSS?," 19 11 2020. [Online]. Available:

https://www.gsa.europa.eu/european-gnss/what-gnss.

[57] S. Schaer and W. Gurtner, "IONEX: The IONosphere Map EXchange," 17 09 2015.

[Online]. Available: http://ftp.aiub.unibe.ch/ionex/draft/ionex11.pdf.

[58] "NASA's Archive of Space Geodesy Data," [Online]. Available:

https://cddis.nasa.gov/.

[59] K. Nobuaki, "GPS/GNSS: Satellite Navigation," 28 07 2014. [Online]. Available:

http://www.denshi.e.kaiyodai.ac.jp/gnss_tutor/pdf/basic_of_gnss.pdf.

[60] "Interfacing with external C code," [Online]. Available:

http://docs.cython.org/en/latest/src/userguide/external_C_code.html.

[61] "Understanding and implementing CRC (Cyclic Redundancy Check) calculation,"

March 2019. [Online]. Available:

http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html.

[62] "Robotics Knowledgebase," 15 August 2017. [Online]. Available:

https://roboticsknowledgebase.com/wiki/sensing/delphi-esr-radar/.

[63] "GNSS Science Support Centre," [Online]. Available: https://gssc.esa.int/.

[64] "A panda and a cabana: How to get started car hacking with comma.ai," 7 July

2017. [Online]. Available: https://comma-ai.medium.com/a-panda-and-a-cabana-

how-to-get-started-car-hacking-with-comma-ai-b5e46fae8646.

[65] L. LeGrand, "A History of Comma.ai," 26 February 2020. [Online]. Available:

https://www.youtube.com/watch?v=OMcdMoa9wnc.

Appendixes 215

7 Appendixes

Category
Category

description
Channel Channel description

onboarding Includes the

channels where a

user that accesses

for the first time to

the server will be

able to interact. In

the onboarding

channels, only the

Comma.ai staff

users can write

new messages,

while other users

can only visualize

them.

guidelines

Explains the guidelines of the

server and the community rules.

After accepting them, the role

community member will be

assigned to the user.

announcements

Channel where the Comma.ai

staff make their announcements,

which include new product

releases, updates on the

development, and articles that

they want to share with the

community.

general Includes the

channels

accessible by the

community

members,

including:

lobby

A channel intended to help to

redirect to the correct channel for

a discussion.

Openpilot-

experience

A channel for posting Openpilot

videos and experiences

installation-

help

A channel to ask questions on the

installation process and get help

in case of problems during the

installation. To get extended

support from the community, the

manufacturer-specific channel

groups are recommended.

comma-

shipping

An informative channel to help

the community quickly reach the

support pages regarding the

shipping and returns.

Openpilot-faq

Users here can post frequently

asked questions that don’t have a

response on the official FAQ

page of Openpilot.

community-

wiki

General questions and discussions

on the official wiki of Openpilot.

for-sale
Here users can sell their unused

official comma devices so that

Appendixes 216

Category
Category

description
Channel Channel description

other members of the community

can buy them second-handed and

at a lower price.

bug-report

An informative channel where

can be found the guidelines to

correctly report a bug. Bugs can

be reported by opening a new

issue on GitHub.

comma-aps

Channel dedicated to the

comma’s applications, including

comma prime, explorer, cabana,

and comma connect.

comma-

clubhouse

A voice channel where the

community can hang out.

development Here can be found

the channels

accessible by

developers (users

with a dev role)

and where

discussions about

the development

of Openpilot take

place. Each aspect

of the

development is

addressed by a

specific channel

feature-

requests

Channel to discuss new ideas for

Openpilot and leave feedback on

existing features.

dev-Openpilot

The main channel to discuss the

development of Openpilot. It is

not a channel to ask for help,

instead, it is only dedicated to the

development of new features and

bug fixing.

tuning

A channel where to discuss how

to properly approach the tuning of

a car. Tuning means adjusting the

control parameters to best suit a

specific car.

comma-api

The channel where developers

can discuss the usage of comma

API and ask for help in case of

issues related to the APIs.

join-

development

The channel from where users

can accept to join the

development channels after a bot

verification. After the

verification, the bot will

automatically add the dev role to

the user.

flexray

FlexRay is an alternative to CAN

and is adopted by many car

manufacturers, especially Audi,

BMW, and Mercedes-Benz. In

this channel, the main discussed

topics regard the specific of the

FlexRay protocol and how

Appendixes 217

Category
Category

description
Channel Channel description

Openpilot can use it instead of the

default CAN protocol.

serial-steering

Like in the case of FlexRay, some

other car models adopt a protocol

different than CAN. This is the

case of Honda and Acura, which

send steering control data over 2

LIN communication bus lines

instead of the CAN bus. This

channel is dedicated to those

developers that want to port

Openpilot on these car models,

allowing them to ask the

Comma.ai staff and other

developers in the community for

clarification and help on the topic.

topic-custom-

models

Channel to discuss the creation,

training, and test of new models

to perform machine learning on

the acquired images, to allow

Openpilot to distinguish key

elements such as cars and lines.

comma-pencil

The channel where to discuss

changes to be made to

comma10k, a repository that

includes 10.000 PNGs of real

driving captured from the comma

fleet. Users can contribute to

comma10k by manually labeling

the elements in the images using a

precise color code.

fw-mods

Channel for discussion on how to

use firmware mods and how to be

safe while using them.

torque-

interceptor

This channel is for talking about

how to build a torque interceptor

the right way. A torque

interceptor is a device that uses a

sensor to detect if the user is

applying torque to the wheel,

multiplies that torque

appropriately in software, and

applies that torque with a motor

to the steering column. Safety is

critical, therefore only developers

with experience with ASIL-D

Hardware and software

Appendixes 218

Category
Category

description
Channel Channel description

engineering are recommended to

work on this project.

topic-maps

Channel to discuss HD Mapping

and how HD maps can be used to

lower the computation time and

the bandwidth that Openpilot

needs to take decisions.

Openpilot-

simulation

A channel for simulation

discussion. The simulator

provided by Comma.ai is

CARLA and in this channel, the

developers can share their

experience, report issues ask for

help on how to run the

simulation.

custom-forks

A channel for custom fork

discussion. All forks discussed

here must be using upstream

Honda/Toyota/Hyundai panda

safety and immediately disengage

when the brake is pressed. Also,

they should not allow complete

disabling of driver awareness

features.

hardware Here users can

discuss the

hardware needed

to run Openpilot.

They have to be

developers (they

must have the dev

role in the Discord

server) to be able

to interact with

these channels:

hw-two-eon

Channel to discuss the 2 main

devices where Openpilot can be

installed, EON and comma two.

hw-panda

Discussion on panda hardware,

the universal car interface used in

by EON and comma two.

hw-pedal

A channel to discuss the comma

pedal interceptor, a gas pedal

interceptor for Honda/Acura that

allows to virtually press the pedal,

enabling stop and go cruise

control on select cars.

hw-unofficial

A channel to discuss the hardware

developed by the community and

based on the EON style form

factor. Also, on the official wiki,

there are the guidelines to

correctly flash NEOS on custom

hardware and some replacement

parts commonly used by the

community and suitable for the

EON form factor.

Appendixes 219

Category
Category

description
Channel Channel description

vehicle

specific

In this category

can be found

channels to

discuss the brand-

specific topics,

such as porting

Openpilot to a

new car model

and solving issues

with specific

brands. Each

channel of this

category

corresponds to a

specific brand or

group of brands

that have similar

characteristics in

terms of

technology

adopted by the

manufacturers,

and these include:

chrysler-jeep-

ram

Chrysler and Jeep related

discussions

ford Ford related discussions

gm GM related discussions

honda-acura
Honda and Acura related

discussions

hyundai-kia-

genesis

Hyundai, Kia and Genesis related

discussions

mazda Mazda related discussions

nissan Nissan related discussions

subaru Subaru related discussions

tesla Tesla related discussions

toyota-lexus
Toyota and Lexus related

discussions

volkswagen-

audi

Volkswagen and Audi related

discussions

volvo Volvo related discussions

old-cars Old cars related discussions

other-cars Other cars related discussions

non English This category

comprehends

channels for non-

English users and

general topics can

be discussed here.

lang-chinese Discussion channel in Chinese

lang-french Discussion channel in French

lang-german Discussion channel in German

lang-russian Discussion channel in Russian

lang-spanish Discussion channel in Spanish

lang-korean Discussion channel in Korean

lang-

portuguese
Discussion channel in Portuguese

lang-

vietnamese

Discussion channel in

Vietnamese

lang-japanese Discussion channel in Japanese

Table 71 - Discord server's channels description

Commit summary Date Contributor

add packet timings to Plan and PathPlan 13/06/2019 Willem Melching

add socket valid to plan and pathplan 14/06/2019 Willem Melching

canError is a better name than commIssue 15/06/2019 Riccardo Biasini

radarCommIssue events is renamed to radarCanError 17/06/2019 Riccardo Biasini

commIssue is standard for socketsDead 17/06/2019 Riccardo Biasini

added comm issue events 17/06/2019 Riccardo Biasini

Appendixes 220

Commit summary Date Contributor

removerted very recent changes. subLog tracking will

be done differently

19/06/2019 Riccardo Biasini

Bug fix 19/06/2019 Riccardo Biasini

Add common 'valid' field to better diagnose when the

published data should be trusted

20/06/2019 Riccardo Biasini

Added canValid bool to carState 22/06/2019 Riccardo Biasini

cleaner name for mpcSolutionValid 26/06/2019 Riccardo Biasini

Deprecated model valid bool from PathPlan 26/06/2019 Riccardo Biasini

Added carEvents for qlogs 27/06/2019 Riccardo Biasini

in CarParams, use the enum for SafetyModel 28/06/2019 Riccardo Biasini

Added carParams to event union type 28/06/2019 Riccardo Biasini

add lead stuff 09/07/2019 Harald Schafer

back 10/07/2019 Harald Schafer

Log can errors from panda 11/07/2019 Riccardo Biasini

add second model lead 15/07/2019 Harald Schafer

different name 15/07/2019 Harald Schafer

added tooDistracted event 16/07/2019 Riccardo Biasini

added HW type to support various panda versions 16/07/2019 Riccardo Biasini

add model prob 17/07/2019 Harald Schafer

add whether point is detected by radar 18/07/2019 Harald Schafer

add posenet debug fields to LiveParameters 18/07/2019 Willem Melching

rename to posenetValid 18/07/2019 Willem Melching

add alert for invalid posenet 18/07/2019 Willem Melching

add speed 20/07/2019 Harald Schafer

Blackpanda (#4) 24/07/2019 Riccardo Biasini

hasGps is a better name than hasGpsAntenna 24/07/2019 Riccardo Biasini

add eye stuff 24/07/2019 Harald Schafer

add longitudinal plan source 24/07/2019 Willem Melching

add decelForModel 24/07/2019 Willem Melching

Add fields for LQR lateral control 25/07/2019 Willem Melching

remove hwType from ThermalData. Decided to have

health at higher freq instead. This will make last 24H

of collected data unreadable. Sorry.

25/07/2019 Riccardo Biasini

deprecate old dm model output 25/07/2019 ZwX1616

add camera rpy angle msg 26/07/2019 ZwX1616

angle calib desc 26/07/2019 ZwX1616

use enum for alert sounds 29/07/2019 Adeeb Shihadeh

add blink msg 02/08/2019 ZwX1616

add soundsUnavailable event 06/08/2019 Adeeb Shihadeh

add eps torque to carstate 09/08/2019 Willem Melching

addtimes 14/08/2019 Harald Schafer

add lqr output to LQRState 30/08/2019 Willem Melching

add desire to controlsState 04/09/2019 Willem Melching

move desire to pathplan 04/09/2019 Willem Melching

angleModelBias is deprecated 04/09/2019 Willem Melching

Add dashcamOnly flag 05/09/2019 Riccardo Biasini

Add lane change states to pathPlan 06/09/2019 Willem Melching

Add lane change events 06/09/2019 Riccardo Biasini

Appendixes 221

Commit summary Date Contributor

allow to specify a passive safety model in CarParams 08/09/2019 Riccardo Biasini

add gm passive safety model 08/09/2019 Riccardo Biasini

placeholders for Mazda, Nissan and vw safety models 10/09/2019 Riccardo Biasini

Added invalidGiraffeToyota event 12/09/2019 Riccardo Biasini

Read RPM from fan connected to Panda 20/09/2019 Riccardo Biasini

add HW type for UNO 20/09/2019 Riccardo Biasini

Added usbPowerOn to health 01/10/2019 Riccardo Biasini

added event about internet connection 01/10/2019 Riccardo Biasini

add ldw to visual HUD alerts (#5) 01/10/2019 Chris Souers

usbPowerMode is more useful to log and it comes

from panda

02/10/2019 Riccardo Biasini

change order of UsbPowerMode to preserve panda lib

behavior

02/10/2019 Riccardo Biasini

Safety cereal (#9) 02/10/2019 Riccardo Biasini

let's spell wolkswagen 02/10/2019 Riccardo Biasini

Add fields and states required for robust Volkswagen

safety compliance (#8)

04/10/2019 Jason Young

add none/invalid USB power mode 04/10/2019 Riccardo Biasini

Fix wrong event enum 05/10/2019 Riccardo Biasini

distinguish between ignition_line and ignition_can 23/10/2019 Riccardo Biasini

added safety model to health packet 25/10/2019 Riccardo Biasini

add ir pwr field 28/10/2019 ZwX1616

add meta 08/11/2019 Harald Schafer

oops bad number 08/11/2019 Harald Schafer

Add struct to log FW version 12/11/2019 Riccardo Biasini

add steeringRateLimited to car.capnp 13/11/2019 Willem Melching

add saturated flags to indi and lqr logs 13/11/2019 Willem Melching

Add fault status to health 14/11/2019 Riccardo Biasini

add front frame 14/11/2019 Comma Device

deprecate irpwr 14/11/2019 ZwX1616

disengage 14/11/2019 Harald Schafer

noOutput safety mode is now called silent 20/11/2019 Riccardo Biasini

added power save state to health packet 21/11/2019 Riccardo Biasini

Add uptime to health 22/11/2019 Riccardo Biasini

Added radar time step to car params 22/11/2019 Riccardo Biasini

20Hz for radar time step is very standard 22/11/2019 Riccardo Biasini

log Panda fault types 27/11/2019 Riccardo Biasini

Added communityFeature bit detection to CarParams 03/12/2019 Riccardo Biasini

Added communityFeatureDisallowed event 03/12/2019 Riccardo Biasini

log mem available and CPU perc in thermald 05/12/2019 Riccardo Biasini

adding low memory event 05/12/2019 Riccardo Biasini

for legacy-testing reasons, better to define the used

percent instead of avail

05/12/2019 Riccardo Biasini

log stock AEB events 06/12/2019 Riccardo Biasini

Remove plusFrame socket in favor of UiLayoutState 10/12/2019 Andy Haden

Add ldw alert 10/12/2019 Riccardo Biasini

no l/r distinction for LDW 10/12/2019 Riccardo Biasini

Add stock Fcw to carState 11/12/2019 Riccardo Biasini

Appendixes 222

Commit summary Date Contributor

add pa0 temp to ThermalData 12/12/2019 Willem Melching

steerLimitTimer should be car dependent 12/12/2019 Riccardo Biasini

Add carUnrecognized event 13/12/2019 Riccardo Biasini

add more stuff to fw log in CarParams 17/12/2019 Willem Melching

Add canRxErrs to health 20/12/2019 Riccardo Biasini

add longitudinal 20/12/2019 Harald Schafer

better name 21/12/2019 Harald Schafer

separate Honda safety models between Bosch Giraffe

and Bosch Nidec

21/12/2019 Riccardo Biasini

Reserve safety #21 for VAG PQ35/PQ46/NMS 29/12/2019 Jason Young

Add radar comm issue error 04/01/2020 Riccardo Biasini

add can error counter to controlsState 14/01/2020 Willem Melching

add face stds 14/01/2020 ZwX1616

add uncertainty event name 16/01/2020 ZwX1616

LateralParams 19/01/2020 Greg Hogan

standalone monitorstate (#23) 28/01/2020 ZwX1616

better put 28/01/2020 ZwX1616

add fingerprintSource to carParams 30/01/2020 Willem Melching

unconfusing and accessible to all 31/01/2020 ZwX1616

add networkType to thermal 31/01/2020 valish

Added ublox hw status 04/02/2020 Robbe

Added offroad power usage 08/02/2020 Robbe

add fixed fingerprintSource 12/02/2020 Willem Melching

add Honda ecus (#29) 18/02/2020 jpancotti

add espDisabled to carState (#30) 25/02/2020 Willem Melching

rigour 26/02/2020 Harald Schafer

or rigor in American 26/02/2020 Harald Schafer

improvements 26/02/2020 Harald Schafer

already exists 26/02/2020 Harald Schafer

deprecate 26/02/2020 Harald Schafer

Add Subaru pre-Global safety mode Biasini 27/02/2020 Riccardo Biasini

pulse desire and e2e 29/02/2020 Harald Schafer

Add blindspot cereal values (#26) 04/03/2020 Willem Melching

fix duplicate ordinals 04/03/2020 Willem Melching

val valid is confusing 05/03/2020 Harald Schafer

support for end of log sentinel (#34) 05/03/2020 George Hotz

not everyone likes gpstime 05/03/2020 Harald Schafer

add networkStrength to thermal (#36) 07/03/2020 Andrew Valish

6log focus state 12/03/2020 ZwX1616

solve by renaming event name instead of service 21/03/2020 Willem Melching

Add invalid lkas setting alert 28/03/2020 Willem Melching

add speedTooHigh alert 31/03/2020 Willem Melching

Additional car params auto-detection in support of

VW (#38)

31/03/2020 Jason Young

Add the laneChangeBlocked Event (#40) 06/04/2020 Arne Schwarck

UiLayoutState: add 'none' app 08/04/2020 andyh2

UiLayoutState: add mockEngaged for onboarding 08/04/2020 andyh2

Appendixes 223

Commit summary Date Contributor

Add all panda fault types to health 09/04/2020 Willem Melching

Add comment to faulttype 09/04/2020 Willem Melching

add preview driver flag 15/04/2020 ZwX1616

Add relayMalfunction alert 16/04/2020 Willem Melching

add sharpness metric 20/04/2020 ZwX1616

add repeated warning2 22/04/2020 ZwX1616

add carState.steerWarning and carState.steerError 01/05/2020 Adeeb Shihadeh

don't duplicate ordinals 01/05/2020 Adeeb Shihadeh

gasPressed event 04/05/2020 Adeeb Shihadeh

stockFcw event 07/05/2020 Adeeb Shihadeh

add alert event type 11/05/2020 Adeeb Shihadeh

move remaining alerts to car events 12/05/2020 Adeeb Shihadeh

remove unnecessary new event type 13/05/2020 Adeeb Shihadeh

mark unused car events as deprecated 14/05/2020 Adeeb Shihadeh

add white panda deprecation events 15/05/2020 Willem Melching

add OK flags to locationd output 20/05/2020 Willem Melching

add default values for backwards compat 20/05/2020 Willem Melching

add gpsOK flag to liveLocationKalman 28/05/2020 Willem Melching

add canErrorPersistent event 29/05/2020 Adeeb Shihadeh

add belowEngageSpeed event 03/06/2020 Adeeb Shihadeh

add validLen to PathData 03/06/2020 George Hotz

add recover state 12/06/2020 ZwX1616

deprecate canErrorPersistent 13/06/2020 Adeeb Shihadeh

add noGps event (#55) 13/06/2020 Willem Melching

add to enum 13/06/2020 ZwX1616

add Hyundai legacy safety mode 13/06/2020 Adeeb Shihadeh

add wrongCruiseMode event 15/06/2020 Adeeb Shihadeh

add adaptive cruise flag to cruiseState 15/06/2020 Adeeb Shihadeh

laneChangeBlocked 16/06/2020 Adeeb Shihadeh

add calibrated orientation 16/06/2020 Harald Schafer

add neosUpdateRequired event 16/06/2020 Adeeb Shihadeh

increment ordinal 16/06/2020 Adeeb Shihadeh

add sensorsOK field to LiveLocationKalman 22/06/2020 Willem Melching

Dos 29/06/2020 Robbe Derks

add sunglasses prob 02/07/2020 ZwX1616

add modeldLagging event 06/07/2020 Adeeb Shihadeh

k-line 5 init fault type (#61) 06/07/2020 Greg Hogan

add frameAge to ModelData 10/07/2020 Adeeb Shihadeh

add frameDropPerc (#63) 14/07/2020 Adeeb Shihadeh

add hyundaiCommunity 27/07/2020 Adeeb Shihadeh

add deviceStable 03/08/2020 Adeeb Shihadeh

add deviceFalling event 04/08/2020 Adeeb Shihadeh

add calib spread metric 06/08/2020 Harald Schafer

add validBlocks for calibration 06/08/2020 Adeeb Shihadeh

Added car battery capacity (#79) 17/08/2020 robbederks

more fault types (#80) 17/08/2020 robbederks

wideFrame 22/08/2020 ZwX1616

Appendixes 224

Commit summary Date Contributor

ThermalData cleanup (#81) 24/08/2020 Willem Melching

add sensor source 25/08/2020 Willem Melching

deprecate rhdChecked field 29/08/2020 Adeeb Shihadeh

add light sensor source 10/09/2020 Willem Melching

add temperature to sensor packet 21/09/2020 Willem Melching

new model packet (#86) 22/09/2020 Harald Schafer

cleanup deprecated car events 22/09/2020 Adeeb Shihadeh

add fanMalfunction event 05/10/2020 Adeeb Shihadeh

alert cleanup (#94) 15/10/2020 Adeeb Shihadeh

Cereal: Typo fix (#96) 17/10/2020 vanillagorillaa

add launch script log field to boot log 21/10/2020 Adeeb Shihadeh

add cameraMalfunction event 22/10/2020 Adeeb Shihadeh

fix duplicate ordinal 22/10/2020 Adeeb Shihadeh

events for grey panda deprecation 24/10/2020 Adeeb Shihadeh

just white for now 27/10/2020 Adeeb Shihadeh

giraffe are extinct 30/10/2020 Adeeb Shihadeh

deprecate deprecation fields 03/11/2020 Adeeb Shihadeh

add legacy stds (#99) 11/11/2020 Harald Schafer

front/wide encodeIdx 17/11/2020 ZwX1616

add model execution time 19/11/2020 Harald Schafer

add timestamps 19/11/2020 ZwX1616

make clear 20/11/2020 Harald Schafer

add execution time to driverState 20/11/2020 Adeeb Shihadeh

modelLagWarning 23/11/2020 Adeeb Shihadeh

add raw predictions 23/11/2020 ZwX1616

deprecate model lag warning 24/11/2020 George Hotz

comm issue warning 27/11/2020 Adeeb Shihadeh

Add HW types (#102) 03/12/2020 Willem Melching

Added minSpeedCan to CarParams to parametrize

MIN_CAN_SPEED to interfaces (#103)

03/12/2020 Igor

log DSP execution time 09/12/2020 Adeeb Shihadeh

Added stoppingBrakeRate to CarParams to

parametrize STOPPING_BRAKE_RATE to

interfaces (#104)

11/12/2020 Igor

eon deprecation event 11/12/2020 Adeeb Shihadeh

add GPU execution time 12/12/2020 Adeeb Shihadeh

Parametrize startingBrakeRate (#106) 16/12/2020 Igor

remove commIssueWarning 17/12/2020 Adeeb Shihadeh

deprecate commIssueWarning 17/12/2020 Adeeb Shihadeh

deprecate internet connectivity needed event 22/12/2020 Adeeb Shihadeh

Adding breakpoints to INDI lateral tuning (#108) 07/01/2021 Igor

add maxSteerAngle to car.capnp (#110) 14/01/2021 Greg Hogan

add GPS malfunction event 14/01/2021 Adeeb Shihadeh

update pathPlan message 19/01/2021 Harald Schafer

add dm is_active 19/01/2021 ZwX1616

add e2e dm states 25/01/2021 ZwX1616

fix indexs 25/01/2021 ZwX1616

add managerState (#111) 26/01/2021 Willem Melching

Appendixes 225

Commit summary Date Contributor

Add MON_HW2 ublox message 29/01/2021 Robbe Derks

split out deprecated structs into separate schema file

(#113)

02/02/2021 Adeeb Shihadeh

cleanup + comments (#116) 04/02/2021 Adeeb Shihadeh

this is a percent 12/02/2021 Adeeb Shihadeh

Best practice (#107) 17/02/2021 Harald Schafer

Change params value to take Data instead of Text. 26/02/2021 Maksym

Sobolyev

deprecate gpsLocation 01/03/2021 Adeeb Shihadeh

Planner outputs curvature (#123) 12/03/2021 Willem Melching

gpsLocationDEPRECATEd ->

gpsLocationDEPRECATED

12/03/2021 Greg Hogan

Improve comments on CarParams from manual 15/03/2021 qadmus

add unfiltered curvatures (#127) 16/03/2021 Harald Schafer

add safetyParam to PandaState 17/03/2021 Willem Melching

deprecate UiLayoutState 25/03/2021 Adeeb Shihadeh

add event for an always-on dashcam alert 26/03/2021 Adeeb Shihadeh

deprecate oneplus event 26/03/2021 Adeeb Shihadeh

4222bc91 - Events cleanup 07/04/2021 Adeeb Shihadeh

Fuzzy FW match alert and carParams (#134) 20/04/2021 Willem Melching

add steerTempUnavailableUserOverride event 21/04/2021 Adeeb Shihadeh

add bsm to car params 25/04/2021 Adeeb Shihadeh

add controls initializing event 27/04/2021 Comma Device

turn pstore into map (#140) 12/05/2021 Willem Melching

add flags (#143) 14/05/2021 Harald Schafer

add usbError event (#145) 15/05/2021 Adeeb Shihadeh

add networkInfo struct to deviceState (#146) 17/05/2021 Willem Melching

add filter age (#148) 18/05/2021 Harald Schafer

add extra field to NetworkInfo 18/05/2021 Willem Melching

rename to deprecate (#151) 19/05/2021 Shane Smiskol

add last athena ping time to deviceState 19/05/2021 Adeeb Shihadeh

add cameraError event: (#149) 20/05/2021 Willem Melching

New model outputs (#155) 20/05/2021 Mitchell Goff

add NetworkInfo.state 20/05/2021 Willem Melching

add osVersion to initData 20/05/2021 Adeeb Shihadeh

split up camera events 21/05/2021 Adeeb Shihadeh

add signal to sentinel (#159) 25/05/2021 Willem Melching

add harness status to panda state (#161) 31/05/2021 robbederks

add cvt transmission type (#162) 03/06/2021 Shane Smiskol

Add stock LKAS/LDW camera detection flag 03/06/2021 Jason Young

Check resets (#163) 03/06/2021 Willem Melching

Permanent joystick debug alert (#158) 03/06/2021 Shane Smiskol

add heartbeatLost field to pandaState 05/06/2021 Adeeb Shihadeh

add no fw startup event 07/06/2021 Adeeb Shihadeh

next gen outputs 09/06/2021 ZwX1616

new lateral log for debug mode (#166) 10/06/2021 Shane Smiskol

add support for trajectory packet (#168) 18/06/2021 Harald Schafer

add ethernet network type 23/06/2021 Adeeb Shihadeh

Appendixes 226

Commit summary Date Contributor

add gpuUsagePercent to DeviceState (#170) 29/06/2021 Willem Melching

Lateral refactor (#169) 01/07/2021 Harald Schafer

deprecate CarParams.enableCamera 07/07/2021 Adeeb Shihadeh

deprecated (#175) 08/07/2021 Harald Schafer

refactor (#176) 08/07/2021 Harald Schafer

Refactor camerad logging (#174) 08/07/2021 Willem Melching

make qlogs small again (#178) 08/07/2021 Adeeb Shihadeh

rename steerTempUnavailableUserOverride ->

steerTempUnavailableSilent

10/07/2021 Adeeb Shihadeh

rename carState.enableCruise -> carState.pcmCruise 10/07/2021 Adeeb Shihadeh

add lsm6ds3trc sensor source 12/07/2021 Willem Melching

add mmc5603nj sensor source 12/07/2021 Willem Melching

add uploaderState (#179) 14/07/2021 Adeeb Shihadeh

panda: rename fault interruptRateTim9 ->

interruptRateTick (#180)

14/07/2021 Igor

add jerks (#181) 14/07/2021 Harald Schafer

Add RP to log.capnp (#182) 22/07/2021 Igor Biletskyy

change name for red panda in log.capnp (#185) 03/08/2021 Igor Biletskyy

consistent name 04/08/2021 Harald Schafer

add accel 12/08/2021 Harald Schafer

comment 12/08/2021 Harald Schafer

Table 72 - Commits adding new parameters to capnp files in cereal

Commit summary Date Contributor

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

Nidec radar: name change to

RADAR_DIAGNOSTIC msg

22/09/2017 Riccardo Biasini

Acura RDX 2018 (#53) 09/12/2017 vanillagorillaa

Parking brake light (#54) 13/12/2017 vanillagorillaa

Adds rdx (#56) 18/12/2017 Ted Slesinski

Define Cruise Buttons (#62) 23/12/2017 vanillagorillaa

move acura rdx to generator folder 29/01/2018 Willem Melching

fix acura rdx dbc, import was missing 31/01/2018 Willem Melching

acura rdx remove double defined message 31/01/2018 Willem Melching

Add 2020 Acura RDX (#290) 11/10/2020 Chris Souers

Table 73 - Contributions to the DBC files of Acura cars

Commit summary Date Contributor

BMW 2008-2013 (#230) 02/04/2020 dzid26

Table 74 - Contributions to the DBC files of BMW cars

Commit summary Date Contributor

initial signals for Chrysler Pacifica 2017 hybrid 08/03/2018 Drew Hintz

Appendixes 227

Commit summary Date Contributor

add gear status PRNDL 08/03/2018 Drew Hintz

tighten up speed bits. brake pressue max comment. 08/03/2018 Drew Hintz

value table for gear status 08/03/2018 Drew Hintz

speed of right vs left side of car 08/03/2018 Drew Hintz

units for speed_right 08/03/2018 Drew Hintz

Set packet lengths, adding steering rate, adjusted speed 08/03/2018 Ted Slesinski

Speed, braking, and distance signals 08/03/2018 Ted Slesinski

turn signals 08/03/2018 Drew Hintz

turn signal lights (and thus hazard lights) 08/03/2018 Drew Hintz

high beams for genericToggle 08/03/2018 Drew Hintz

high beams also. likely dashboard message. 08/03/2018 Drew Hintz

acceleration pedal for gasPressed 08/03/2018 Drew Hintz

🚐 more Chrysler Pacifica signals (#84) 27/07/2018 Drew Hintz

Add Chrysler ACC cancel button (#127) 11/12/2018 Drew Hintz

Chrysler: seems more correct for torque 29/12/2018 Riccardo Biasini

Chrysler: naming consistency 29/12/2018 Riccardo Biasini

Chrysler: no big endian 29/12/2018 Riccardo Biasini

Chrysler: less big endian in dbc 29/12/2018 Riccardo Biasini

Chrysler: no more big endian 29/12/2018 Riccardo Biasini

added torque driver and torque motor 29/12/2018 Riccardo Biasini

Chrysler: added lkas icon color signal 31/12/2018 Riccardo Biasini

Chrysler: better names and LKAS_HUD message

understood

31/12/2018 Riccardo Biasini

Chrysler: minor message renaming 31/12/2018 Riccardo Biasini

Chrysler: fixed torque motor understanding 03/01/2019 Riccardo Biasini

Chrysler message to play an audible beep & ACC

cancel (#133)

07/01/2019 Drew Hintz

Chrysler L gear (#139) 31/01/2019 Drew Hintz

Chrysler car model in LKAS message so we can use

CAN packer (#140)

21/02/2019 Drew Hintz

change Chrysler radar to all big endian to avoid OP can

parser bug (#141)

28/02/2019 Drew Hintz

add Chrysler ACC resume button (#161) 03/05/2019 Drew Hintz

Chrysler: increase size of ACCEL_134 (#174) 23/07/2019 Drew Hintz

Parking Assist Messages (#183) 06/09/2019 TK211X

Chrysler commonize gear VALs 16/02/2020 Riccardo Biasini

Chrysler: add counter to 514 24/02/2020 Riccardo Biasini

Chrysler: Speed msg is 5 bytes 24/02/2020 Riccardo Biasini

reverting changes to Chrysler: speed message seems

different from car to car

24/02/2020 Riccardo Biasini

Chrysler: calculate checksum in can packer/parser 30/04/2020 Adeeb Shihadeh

Fix wrong message size in Chrysler 09/05/2020 Adeeb Shihadeh

Pacifica: Add cruise state indicator (#332) 04/01/2021 vanillagorillaa

Table 75 - Contributions to the DBC files of Chrysler cars

Commit summary Date Contributor

ford cgea 1.2 2011 (#32) 05/10/2017 jessrussell

Appendixes 228

Commit summary Date Contributor

ford fusion initial dbc file 16/04/2018 Commaremote

Ford Fusion: dbc corrections 16/04/2018 Commaremote

Ford Fusion: added steering stalk buttons 17/04/2018 Commaremote

Ford Fusion: added cruise states 17/04/2018 Commaremote

Ford Fusion: fixed bits for wheel speeds 17/04/2018 Commaremote

Ford Fusion: corrected wheel speed factor 17/04/2018 Riccardo Biasini

Ford Fusion: draft for LKAS message 17/04/2018 Riccardo Biasini

Ford Fusion: more info about LKAS control 18/04/2018 Riccardo Biasini

Ford Fusion: more discoveries on LKAS msg 18/04/2018 Riccardo Biasini

Ford Fusion: added LKAS ui masg 19/04/2018 Commaremote

Ford Fusion: LKAS msg update 19/04/2018 Riccardo Biasini

Ford Fusion: added lkas state fbck 19/04/2018 Commaremote

Ford Fusion: bit 7 is not steering angle 20/04/2018 Riccardo Biasini

Ford Fusion: fixed typo 21/04/2018 Commaremote

Ford Fusion: added radar dbc file 25/04/2018 Riccardo Biasini

Ford Fusion: fixed stere conversion 26/04/2018 Riccardo Biasini

Ford Fusion: added accel pedal pos 27/04/2018 Commaremote

Ford Fusion: adjusted pedal msbw 27/04/2018 Commaremote

Ford Fusion: added VAL and CM regarding

Lkas_Action signal

03/05/2018 Riccardo Biasini

Ford Fusion: added brake and doors info 03/05/2018 Commaremote

Ford: Add new base DBC. (#287) 09/09/2020 roxasthenobody98

Create FORD_CADS.dbc (#351) 12/03/2021 ReFil

Table 76 - Contributions to the DBC files of Ford cars

Commit summary Date Contributor

Create gm_global_a_lowspeed_1818125.dbc 04/10/2017 jessrussell

Update gm_global_a_lowspeed_1818125.dbc (#34) 10/10/2017 Mutley

GM: reordered msg addrs so they are monotonic 04/05/2018 Riccardo Biasini

GM: typo 13/06/2018 Commaremote

GM: added cruise main on status 14/06/2018 Commaremote

GM: added TC status 14/06/2018 Commaremote

GM: EPB applied bit 15/06/2018 Riccardo Biasini

GM: fixed epb msg addr 15/06/2018 Commaremote

GM: typoin epb msg 15/06/2018 Commaremote

GM: cruise status 15/06/2018 Commaremote

GM: fixed cruise values 15/06/2018 Commaremote

GM: typo fixes 16/06/2018 Riccardo Biasini

GM: copy radar header from cadillac (#116) 15/10/2018 Vasily Tarasov

Add GM signals for ESP/Mode/Highbeams/Intellibeam 30/10/2018 srpape

Add GM FCW Alert (Take 2) (#125) 28/11/2018 Jamezz

GM Object Front Cam Signals (#128) 21/12/2018 Kylan

new GM powertrain signals (#136) 15/01/2019 Kylan

GM: use common gear VALs 16/02/2020 Riccardo Biasini

Fix GM message signal sizes 09/05/2020 Adeeb Shihadeh

Fix non-standard units in GM global A lowspeed (#327) 20/12/2020 Ryan Rowe

Appendixes 229

Commit summary Date Contributor

GM steering rate scale fix (#362) 12/03/2021 qadmus

Table 77 - Contributions to the DBC files of GM cars

Commit summary Date Contributor

Volt gen 2 support 04/07/2017 Vasily Tarasov

Fix Chevy Volt actuator signal parsing (#66) 16/01/2018 Vasily Tarasov

Volt's gas pedal only and combined gas/acc (#76) 20/02/2018 Vasily Tarasov

Volt: switch to parsing ACC buttons from powertrain

CAN (#74)

20/02/2018 Vasily Tarasov

Volt doors and belts status (#70) 26/02/2018 Vasily Tarasov

Chevy Volt tweaks (#83) 16/03/2018 Vasily Tarasov

Added High Voltage Management to powertrain file. 03/02/2020 Sean Murphy

Removed non high voltage items. Added units. 03/02/2020 Sean Murphy

Fixed up cell voltage readings and added more

commands (#220)

27/05/2020 streber42

Updated Chevrolet Volt HV management messages

(#345)

23/06/2021 streber42

Table 78 - Contributions to the DBC files of Chevrolet cars

Commit summary Date Contributor

added Cadillac dbc, starting from Volt 15/05/2018 Riccardo Biasini

Cadillac CT6: added LKAS cmd msg. Thanks mutley 17/05/2018 Commaremote

Cadillac CT6: fixed LKAS msg 17/05/2018 Commaremote

Cadillac: forgot to update old references to msg 384 17/05/2018 Commaremote

Cadillac: updated vehicle speed factor 17/05/2018 Commaremote

Cadillac: added ASCM-b lkas control msg 17/05/2018 Commaremote

Cadillac: lkas mode added 17/05/2018 Riccardo Biasini

some adjustments in Cadillac dbc 18/05/2018 Riccardo Biasini

checksum seems only 10 bits 17/05/2018 Commaremote

Cadillac: lkas clarification 18/05/2018 Riccardo Biasini

Cadillac: add object bus dbc 24/05/2018 Commaremote

Cadillac: fixed lkas status msg 25/05/2018 Commaremote

Cadillac: fixed eps messages 30/05/2018 Commaremote

Cadillac: fixed dbc VAL 30/05/2018 Riccardo Biasini

Cadillac: added chassis dbc, for now simple copy from

gm

31/05/2018 Riccardo Biasini

Cadillac: add lkas cmd to chassis bus as well 31/05/2018 Riccardo Biasini

Cadillac: fixed counter size 01/06/2018 Commaremote

Cadillac: fixed lkas torque delivered 01/06/2018 Riccardo Biasini

Cadillac: few things added to EPS status 01/06/2018 Riccardo Biasini

Cadillac: adjusted gas command 04/06/2018 Riccardo Biasini

Cadillac: bug fix in redundant steer command msg 09/06/2018 Riccardo Biasini

Cadillac: typo 13/06/2018 Commaremote

Table 79 - Contributions to the DBC files of Cadillac cars

Appendixes 230

Commit summary Date Contributor

Adds 2016 CR-V dbc 09/06/2017 Ted Slesinski

Merge pull request #1 from energee/crv 09/06/2017 George Hotz

push touring mod 26/06/2017 George Hotz

Syntax Error in accord dbc, no 0xE4 message 10/07/2017 Ted Slesinski

tweak crv format 26/07/2017 espes

Honda: changing 'BRAKE_LIGHTS_ON' into

'BRAKE_SWITCH', which is more appropriate

and not confused with 'BRAKE_LIGHTS'

05/08/2017 Riccardo Biasini

Several ADAS updates to CR-V dbc 31/08/2017 Ted Slesinski

Renaming 17 crv dbc to include trim 31/08/2017 Ted Slesinski

Changing units, max, and factor on second

transmission signal to match honda civic

31/08/2017 Ted Slesinski

Latest dbc updates, including chffr metric for

engine temp

12/09/2017 Ted Slesinski

Adds Chinese Odyssey DBC (#110) 17/09/2018 Ted Slesinski

Honda/Acura: added acc speed offset to dbc files 21/09/2017 Riccardo Biasini

Honda/Acura: added radar status msg to detect

radar malfunctions

21/09/2017 Riccardo Biasini

Honda/Acura: added name to msg 0x37c (892) 23/09/2017 Riccardo Biasini

Civic: added brake hold state to dbc 30/09/2017 Riccardo Biasini

Civic: clarified brake hold signals 30/09/2017 Riccardo Biasini

Added trunk open signal 01/10/2017 vanillagorillaa

Update honda_civic_touring_2016_can.dbc 01/10/2017 vanillagorillaa

Improved seat belt status (#27) 01/10/2017 vanillagorillaa

Add Odomerter on 0x516 (#25) 01/10/2017 vanillagorillaa

Added counter and checksum to all defined

messages (#29)

03/10/2017 vanillagorillaa

Civic: readded odometer and corrected a bug

introduced by cabana

03/10/2017 Riccardo Biasini

More updates to support work on 2017 CR-V port

(#33)

05/10/2017 Ted Slesinski

Civic Hatchback DBC (#35) 08/10/2017 Ted Slesinski

Door Locked/Unlocked on 0x309 (#36) 08/10/2017 vanillagorillaa

Reverse Lights on 0x326 (#37) 08/10/2017 vanillagorillaa

ECON Mode On 0x221 (#39) 08/10/2017 vanillagorillaa

Added gear 2 (#40) 10/10/2017 vanillagorillaa

Removed wrong gear signal (#42) 17/10/2017 vanillagorillaa

Cleanup and corrections to the accord DBC 14/10/2017 Ted Slesinski

Wipers (#43) 23/10/2017 vanillagorillaa

Headlight status (#46) 23/10/2017 vanillagorillaa

Passenger Airbag (#44) 23/10/2017 vanillagorillaa

Honda: fixed gas interceptor offset bug 24/10/2017 Riccardo Biasini

Add stalk definitions and checksum fixes (#51) 12/11/2017 Chris Souers

Honda Odyssey dbc (#52) 23/11/2017 Ted Slesinski

Honda Pilot Touring 2017 (#58) 18/12/2017 vanillagorillaa

2017 CR-V Update (#60) 20/12/2017 Ted Slesinski

Added EPB and Brake_Hold (#61) 21/12/2017 Joel Jacobs

Add Honda Clarity Hybrid (#65) 05/01/2018 vanillagorillaa

Appendixes 231

Commit summary Date Contributor

Cleanup duplicate message names 24/01/2018 Willem Melching

consistent can message names for supported

Hondas

25/01/2018 Willem Melching

add odometer message to civic and odyssey 27/01/2018 Willem Melching

fix honda dometer scaling 27/01/2018 Willem Melching

readded gas interceptor to Hondas so it does not

break regression tests

27/01/2018 Riccardo Biasini

fix crv steering_control message 27/01/2018 Willem Melching

rename generic honda and Toyota dbcs to include

year

27/01/2018 Willem Melching

honda wheelspeed in kph to match Toyota 28/01/2018 Willem Melching

fix bugs in some counter/checksum definitions 29/01/2018 Willem Melching

move pilot touring to generated 29/01/2018 Willem Melching

fixed inconsistent factor for speed in Honda dbc

files

13/02/2018 Riccardo Biasini

Add 2017 Honda Ridgeline (#77) 20/02/2018 Ted Slesinski

fix honda pcm gas message size 23/02/2018 Willem Melching

add set me to lkas hud honda 23/02/2018 Willem Melching

add interceptor to civic 09/03/2018 Willem Melching

add setme to honda ACC_HUD 11/03/2018 Willem Melching

Updating Bosch dbcs to use new format and

bringing in new honda changes (#82)

18/03/2018 Ted Slesinski

Add 2019 CR-V Hybrid DBC (#148) 22/03/2019 Ted Slesinski

add back import file for honda pedal's (#94) 19/05/2018 vanillagorillaa

Honda: name change to make the brake pump

request bit explicit

21/06/2018 Riccardo Biasini

Honda Accord: does not have wheels moving bit 07/07/2018 Riccardo Biasini

Add 2018 Honda Fit EX F-CAN dbc (#100) 17/07/2018 Ted Slesinski

Honda Nidec: added wrong config radar value 24/07/2018 Riccardo Biasini

Toyota: added chr hybrid. Honda: regenerated fit. 29/07/2018 Riccardo Biasini

Adds 1.5L Accord DBC (#107) 14/08/2018 Ted Slesinski

Honda-Bosch: fixed xmission speed unit 17/08/2018 Riccardo Biasini

Honda: forgot to generate dbc files 17/08/2018 Riccardo Biasini

add vals honda (#121) 04/11/2018 dekerr

Adds dbc for 2019 Honda Insight (#122) 19/11/2018 Ted Slesinski

Honda Nidec: VSA_STATUS msg is the same for

all

07/02/2019 Riccardo Biasini

Honda: for simplicity all cars now have

BRAKE_HOLD signal

07/02/2019 Riccardo Biasini

Honda: added signal with imperial unit bit 31/05/2019 Commaremote

Honda: fix bug due to little endianness 01/06/2019 Riccardo Biasini

Honda: added time gap setting signal 01/06/2019 Riccardo Biasini

Civic: HUD_SETTING is 5 bytes 01/06/2019 Riccardo Biasini

Honda: fix China model. Toyota: add

STEERING_LTA message for nodsu cars

21/06/2019 Riccardo Biasini

Reverse engineer AEB in Honda 03/08/2019 Riccardo Biasini

Forgot to run generator 03/08/2019 Riccardo Biasini

Add DBC for JDM Honda Fit Hybrid 2018 (#178) 23/08/2019 Pramuditha Aravinda

Appendixes 232

Commit summary Date Contributor

Bosch AEB signals 23/08/2019 Adeeb Shihadeh

more honda Bosch AEB signals 23/08/2019 Adeeb Shihadeh

use generator for honda odyssey extreme 28/08/2019 Adeeb Shihadeh

generated odyssey extreme 28/08/2019 Adeeb Shihadeh

honda nidec AEB values 30/08/2019 Adeeb Shihadeh

honda Bosch longitudinal (#185) 08/09/2019 Greg Hogan

Fixed brake signal unit in Bosch Honda 10/09/2019 Riccardo Biasini

Honda: correct steering torque sensor sign to be

consistent with standard convention (left+)

14/11/2019 Riccardo Biasini

Honda FCM: diagnostic signals 12/12/2019 Riccardo Biasini

Honda Nidec: add new ACC_HUD signals to all

other cars other than the CIVIC

16/12/2019 Riccardo Biasini

update honda steering signals (#208) 20/12/2019 Greg Hogan

Fix honda dbc files after steer torque addition 20/12/2019 Riccardo Biasini

One more fix 20/12/2019 Riccardo Biasini

Adds 2016 Honda CR-V Executive 16/01/2020 Ted Slesinski

Add support for 2019 Civic Sedan Diesel. Split

GAS_PEDAL_2 out to each car. (#215)

13/02/2020 Chris Souers

Add Honda-Bosch lane line detection signals.

(#223)

03/03/2020 DisgracedPilot

fix: Replicate changes done on _honda_2017.dbc

(#225)

04/03/2020 Riccardo Biasini

Bosch: Adding minor changes to be compatible

with 0.4.3.2+

11/04/2018 Ted Slesinski

Civic: added speed Unit 16/04/2019 Riccardo Biasini

Create DBC for HRV (#248) 20/04/2020 cowanhmoore

Add values for a static 0xe5 (honda Bosch) (#250) 28/04/2020 Chris Souers

Rename BYTE_ to SET_ME_X (#253) 29/04/2020 Chris Souers

Honda BSM body (#286) 21/07/2020 Greg Hogan

Use generator for Honda Clarity DBC (#289) 24/07/2020 Adeeb Shihadeh

Honda - steer down to zero (#317) 20/12/2020 Greg Hogan

new clarity brake_error bits (#367) 20/03/2021 vanillagorillaa

Honda HUD message (#371) 30/03/2021 vanillagorillaa

HRV correct GAS_PEDAL (#266) 02/06/2020 cowanhmoore

CIVIC_BOSCH needs an empty nidec brake

command frame for long control. (#246)

05/10/2020 Chris Souers

Merge Accord DBCs (#400) 03/06/2021 Shane Smiskol

Fix steering rate signs for Hondas (#404) 23/06/2021 sshane

Honda Bosch: Add new LKAS HUG messages for

2021+ models (#372)

07/07/2021 Chris Souers

Table 80 - Contributions to the DBC files of Honda cars

Commit summary Data Contributor

add Hyundai 2015 (#63) 28/12/2017 jessrussell

add hyundai_i30_2014.dbc 10/09/2017 Jess

This adds support for 8 Speed Auto Transmission

(#104)

28/07/2018 Andrew Frahn

Correct Message ID on LKAS11 (#172) 01/08/2019 TK211X

Appendixes 233

Commit summary Data Contributor

Hyundai Santa Fe: first dbc commit 22/08/2018 Commaremote

added gear to dbc for Hyundai 22/08/2018 Commaremote

Santa Fe: for now unitless torque request 22/08/2018 Commaremote

Santa Fe: this signal seems 2 bits long 22/08/2018 Riccardo Biasini

Santa Fe: added lane icon color to dbc 22/08/2018 Riccardo Biasini

Santa Fe: how come the steer angle sign was wrong 25/08/2018 Commaremote

Santa Fe: dealing with steer torque integer is easier for

now

25/08/2018 Commaremote

Hyundai: not sure why steer angle was unsigned...

seems a bug

30/08/2018 Riccardo Biasini

Hyundai Cleanup (#130) 24/12/2018 Andrew Frahn

Update DBC for Hyundai Kona Support (#138) 29/01/2019 Andrew Frahn

Add FCA11 & SCC14 (#184) 06/09/2019 TK211X

add electrical gear and fix driver torque 19/01/2020 xx979xx

correct max value 19/01/2020 xx979xx

new Hyundai dbc 08/04/2020 George Hotz

Remove non ascii characters 08/04/2020 Willem Melching

Add LFAHDA message to Hyundai 16/04/2020 Willem Melching

Add gas/brake message for Hyundai EVs, from

@TK211X

22/05/2020 Adeeb Shihadeh

fix endianness in signal from new Hyundai message 22/05/2020 Adeeb Shihadeh

Add DAW (#175) 27/05/2020 TK211X

Update SCC ECU Messages for OP Long Dev. (#267) 28/05/2020 TK211X

Hyundai: AEB and FCW signals 24/06/2020 Adeeb Shihadeh

Hyundai: update scc14 (#274) 27/07/2020 Alice Knag

Update hyundai_kia_generic.dbc (#284) 03/08/2020 xps-genesis

hyundai esp12 checksum and counter were flipped

(#320)

03/12/2020 Greg Hogan

fix hyundai 366_EMS (#319) 20/12/2020 Greg Hogan

fix LKAS12 CF_Lkas_Daw_USM (#318) 20/12/2020 Greg Hogan

hyundai: update LFAHDA_MFC for HDA (#338) 06/01/2021 Greg Hogan

hyundai: add P_STS counter and checksum (#333) 10/01/2021 Greg Hogan

hyundai: fix scc14 comfort band/jerk (#337) 12/01/2021 Greg Hogan

hyundai: better hda signal def (#342) 12/01/2021 Greg Hogan

Fix errors when using cantools with

hyundai_kia_generic.dbc (#346)

31/01/2021 gsa88

Hyundai: add gas pedal position for hybrids (#401) 10/06/2021 Shane Smiskol

Define Hyundai gears in dbc (#405) 29/06/2021 Shane Smiskol

Table 81 - Contributions to the DBC files of Hyundai cars

Commit summary Date Contributor

Create luxgen_s5_2014.dbc (#101) 16/10/2019 chinlin

fixed to luxgen dbc file 16/10/2019 Riccardo Biasini

Table 82 - Contributions to the DBC files of Luxgen cars

Commit summary Date Contributor

Add Mazda CX-5 2017 GT 05/03/2019 Jafar Al-Gharaibeh

Appendixes 234

Commit summary Date Contributor

Updates and new signals (#177) 22/08/2019 Jafar Al-Gharaibeh

Fix torque signal and add new CAN msgs (#181) 08/09/2019 Jafar Al-Gharaibeh

Speed Auto High Beam Traffic signs 28/03/2029 Jafar Al-Gharaibeh

traffic sign speed limit 28/03/2020 Jafar Al-Gharaibeh

Introduce the new Mazda 3 2019/2020 dbc 28/03/2020 Jafar Al-Gharaibeh

Tracking the steer angle with LKAS signal 28/03/2020 Jafar Al-Gharaibeh

Pedals/gear, gas pedal scale value 28/03/2020 Jafar Al-Gharaibeh

Speed limit signs 28/03/2020 Jafar Al-Gharaibeh

Rear Cross Traffic Alert 28/03/2020 Jafar Al-Gharaibeh

Raw angle signal data for easy checksum calc, and

one less gear bit (#254)

01/05/2020 Jafar Al-Gharaibeh

Better GEAR signal tracking the gear stick rather than

the gear box (#257)

03/05/2020 Jafar Al-Gharaibeh

Mazda: add missing static bits, tidy up endianness

(#263)

27/05/2020 Jafar Al-Gharaibeh

Mazda: Traffic sign bits (#392) 10/05/2021 Jafar Al-Gharaibeh

Table 83 - Contributions to the DBC files of Mazda cars

Commit summary Date Contributor

create Mercedes e350 (2010) dbc (#47) 21/12/2017 quillford

Update Mercedes e350 dbc (#112) 17/09/2018 quillford

Table 84 - Contributions to the DBC files of Mercedes cars

Commit summary Date Contributor

Nissan: Added nissan_2017.dbc (#173) 18/07/2019 Bugsy

Cleanup of Nissan DBC (#218) 25/02/2020 Andre Volmensky

Added messages. Cleaned up endianness (#226) 04/03/2020 Riccardo Biasini

Added ProPilot HUD messages (#231) 11/03/2020 Andre Volmensky

Fixed up sign on Driver Torque, added unit (#233) 12/03/2020 Andre Volmensky

Nissan x trail cleanup (#237) 25/03/2020 Willem Melching

Nissan leaf (#238) 28/03/2020 Willem Melching

Fixed signal unknown1 overlapping the button bits 29/03/2020 Andre Volmensky

Fix wrong message sizes in Nissan 09/05/2020 Adeeb Shihadeh

Update X-trail HUD message name, added

SPEED_MPH signal (#269)

01/06/2020 Andre Volmensky

Table 85 - Contributions to the DBC files of Nissan cars

Commit summary Date Contributor

Create subaru_outback_2016_eyesight.dbc 12/07/2017 Jeff Palmer

OpenDBC updates 27/07/2017 Jeff Palmer

OpenDBC updates 27/07/2017 Jeff Palmer

Back 09/08/2017 Jeff Palmer

OpenDBC updates 09/08/2017 Jeff Palmer

OpenDBC updates 10/08/2017 Jeff Palmer

Appendixes 235

Commit summary Date Contributor

OpenDBC updates 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

OpenDBC updates 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 10/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 11/08/2017 Jeff Palmer

OpenDBC updates 11/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 11/08/2017 Jeff Palmer

Update subaru_outback_2016_eyesight.dbc 11/08/2017 Jeff Palmer

Fixed a typo 13/08/2017 Jeff Palmer

Create subaru_outback_2015_eyesight.dbc (#137) 27/01/2019 Bugsy

Subaru: added global dbc 01/03/2019 Riccardo Biasini

Subaru global dbc (#142) 01/03/2019 Bugsy

SUBARU LKAS: minus sign to steer command to

match standard convention

07/03/2019 Riccardo Biasini

Subaru: left steer is positive 07/03/2019 Riccardo Biasini

fixed sign in steering angle 09/03/2019 Vehicle Researcher

Subaru Global: simplified Stalk Message 11/03/2019 Riccardo Biasini

Subaru Global: more endianness consistency. Still a

long way to go

11/03/2019 Riccardo Biasini

Subaru: endianness consistency in wheel speeds 11/03/2019 Riccardo Biasini

Subaru: some cleanup to dbc 11/03/2019 Riccardo Biasini

Subaru: fixed DOOR_OPEN sgs 12/03/2019 Riccardo Biasini

Subaru: slightly touched wheel speed factor 15/03/2019 Riccardo Biasini

Subaru: update LKAS_State 20/03/2019 Vehicle Researcher

Subaru: set speed can be in kph and it needs 8 bits 22/03/2019 Vehicle Researcher

Subaru: added cruise buttons 14/04/2019 Riccardo Biasini

Subaru: minor pedal gas conversion fix 14/04/2019 Riccardo Biasini

Subaru: filled Cruise Buttons message 15/04/2019 Riccardo Biasini

Subaru: temporarily simplified msg 545 for dev

reasons. Removed signals will be restored

15/04/2019 Riccardo Biasini

Subaru: filling ES_LKAS message 19/04/2019 Riccardo Biasini

Subaru: removed unknown signals from

ES_LKAS_State

19/04/2019 Riccardo Biasini

Update subaru_outback_2015_eyesight.dbc (#163) 09/05/2019 Bugsy

Subaru: added hud unit selection 12/05/2019 Riccardo Biasini

Subaru: added lane line visibility to ES_LKAS

message

12/05/2019 Riccardo Biasini

Update metric value for Dash_Units (#164) 15/05/2019 martinl

Add Subaru global transmission msg with gear

values (#168)

23/08/2019 martinl

Appendixes 236

Commit summary Date Contributor

remove obsolete Subaru dbc file 30/10/2019 Riccardo Biasini

Update subaru_outback_2015_eyesight.dbc (#195) 07/11/2019 Bugsy

Fix outback endianness consistency (#196) 07/11/2019 Bugsy

Add steering error signal in Subaru global 03/02/2020 Bugsy

Update subaru_global_2017.dbc 03/02/2020 Bugsy

Subaru: added counter and checksum to brake msg 07/03/2020 Riccardo Biasini

Fixed signals order and added new signals for

Subaru global (#221)

06/04/2020 martinl

CANPacker: Subaru checksum support (#241) 14/04/2020 Adeeb

add checksum check to can parser for Subaru 30/04/2020 Adeeb Shihadeh

Subaru preglobal update (#260) 21/05/2020 martinl

Add BSD_RCTA to Subaru Global (#244) 24/05/2020 martinl

Subaru DBC update (#242) 28/05/2020 martinl

Subaru preglobal DBC update (#270) 11/06/2020 martinl

Subaru Outback 2019 (#278) 29/06/2020 martinl

Subaru DBC update (#277) 23/07/2020 martinl

Subaru: Pre-global signals unification + new

messages (#395)

19/05/2021 martinl

Table 86 - Contributions to the DBC files of Subaru cars

Commit summary Date Contributor

Import the DBCs from Openpilot 31/05/2017 George Hotz

Lots of correction, thanks to cabana! 03/11/2017 jeankalud

Corrected MCU_clusterBacklightRequest (typo) 04/11/2017 jeankalud

Tesla: Add missing line break after VAL_ 69

WprSw6Posn (#109)

02/09/2018 Oscar Söderlund

DBC for the Bosch Radar for Tesla (#158) 02/05/2019 BogGyver

Update Tesla DBCs (#348) 19/02/2021 robbederks

Tesla driver braking (#360) 10/03/2021 robbederks

add tesla AP status (#365) 14/03/2021 robbederks

Table 87 - Contributions to the DBC files of Tesla cars

Commit summary Date Contributor

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

OpenDBC updates 27/07/2017 George Hotz

Appendixes 237

Commit summary Date Contributor

TOYOTA PRIUS: added pedal signals and created a

new dbc file for the ADAS can bus with initial radar

data

22/08/2017 Riccardo Biasini

Prius reverse engineering (#14) 24/08/2017 Riccardo Biasini

Toyota dbc (#15) 26/08/2017 Riccardo Biasini

Prius: added NEW_TRACK bit to radar's data 26/08/2017 Riccardo Biasini

adjusted factors in Toyota radar's dbc 26/08/2017 Riccardo Biasini

Toyota Prius: added driver steer torque to dbc (#16) 29/08/2017 Riccardo Biasini

Toyota Prius: fixed rel speed factor in radar tracks 29/08/2017 Riccardo Biasini

Toyota Prius: fixed STEER_FRACTION unit 30/08/2017 Riccardo Biasini

Toyota Prius: added part of the hud control 30/08/2017 Riccardo Biasini

Toyota Prius: correcting radar lateral distance factor 30/08/2017 Riccardo Biasini

Prius: added main acc switch to dbc 01/09/2017 Riccardo Biasini

Prius: added long acceleration command 13/09/2017 Riccardo Biasini

OpenDBC updates 13/09/2017 Riccardo Biasini

Prius: adjusted bit selection for lead distance and

added LEAD_INFO msg

13/09/2017 Riccardo Biasini

Prius: fixed typo 13/09/2017 Riccardo Biasini

Prius: adjusted vehicle speed factor 13/09/2017 Riccardo Biasini

Prius: wheel speeds reordered 13/09/2017 Riccardo Biasini

Prius: added IPAS steering info 20/09/2017 Riccardo Biasini

OpenDBC updates 28/09/2017 Riccardo Biasini

OpenDBC updates 28/09/2017 Riccardo Biasini

Prius: minor signal name changes 28/09/2017 Riccardo Biasini

Prius: added TC disabled signal 29/09/2017 Riccardo Biasini

Prius: added gear vals and info about cruise state

machine

29/09/2017 Riccardo Biasini

Prius: adding radar's info 03/10/2017 Riccardo Biasini

Prius: typo fix in radar dbc 03/10/2017 Riccardo Biasini

Prius: tuned radar longitudinal distance 03/10/2017 Riccardo Biasini

Prius: added gas released signal 04/10/2017 Riccardo Biasini

Prius: added radar validity bit 06/10/2017 Riccardo Biasini

Toyota: changed dbc names 10/10/2017 George Hotz

Toyota rav4: added dbc draft 10/10/2017 George Hotz

Toyota: fixed Rav4 VS Prius differences 11/10/2017 George Hotz

Toyota: increased factor for steer torque sensor 12/10/2017 Riccardo Biasini

Toyota: added fault indication for LKA 12/10/2017 Riccardo Biasini

Toyota: changed LKA state signal name 12/10/2017 Riccardo Biasini

Toyota: added UI set speed to dbc 18/10/2017 Riccardo Biasini

Toyota: added UI setting msg 18/10/2017 George Hotz

Toyota: added accel produced by cruise control 26/10/2017 Riccardo Biasini

Toyota: fixed steer motor offset 27/10/2017 Riccardo Biasini

Toyota: added checksums 29/10/2017 Riccardo Biasini

Toyota: bug fix in checksum bits 29/10/2017 Riccardo Biasini

Toyota: fixed 610 msg length error 30/10/2017 Riccardo Biasini

Toyota: added low speed lockout bit 30/10/2017 Riccardo Biasini

Toyota: added checksum for 467 and 467 msgs 30/10/2017 Riccardo Biasini

Toyota Prius: msg 610 is 8 bytes long 31/10/2017 Riccardo Biasini

Appendixes 238

Commit summary Date Contributor

Created Toyota iQ base plus reversed some signals

(#48)

05/11/2017 alessbelli

Toyota: added standstill on signal 11/11/2017 Riccardo Biasini

Toyota: added brake lights when ACC commands

decel

19/11/2017 Vehicle Researcher

rav4: fixed comments to BRAKE signals 19/11/2017 Riccardo Biasini

Toyota: added fcw 21/11/2017 Riccardo Biasini

Toyota rav4 hybrid: OP works, but some signals

need to be verified

22/12/2017 Riccardo Biasini

Toyota: added auto high beam 12/01/2018 Carlaptop01

Toyota Corolla: added dbc file, seems the same as

Rav4

25/01/2018 Riccardo Biasini

Toyota: different factor for STEER_TORQUE_EPS 27/01/2018 Riccardo Biasini

fix gas pedal message length rav4h 01/02/2018 Willem Melching

fix Toyota steering lka message length 01/02/2018 Willem Melching

Toyota: more vals for LKA_STATE 13/02/2018 Riccardo Biasini

Toyota: re-generated the files after cfbc9ae363f98ef 13/02/2018 Riccardo Biasini

Add 2018 Camry Hybrid DBC's (#73) 16/02/2018 vanillagorillaa

Add 2018 Toyota CHR dbc (#78) 22/02/2018 Ted Slesinski

update Toyota ACC_CONTROL fields 05/03/2018 Willem Melching

add set me fields to Toyota ACC_HUD 05/03/2018 Willem Melching

add set me to Toyota LKAS_HUD 05/03/2018 Willem Melching

Toyota IPAS: proper steer angle unit 09/03/2018 Riccardo Biasini

run generator for ipas scaling 09/03/2018 Willem Melching

add setme to Toyota STEERING_IPAS 09/03/2018 Willem Melching

Toyota missing ACC_CONTROL checksum 13/03/2018 Willem Melching

extra setme field Toyota LKAS_HUD 13/03/2018 Willem Melching

Toyota: change signal name in EPS_STATUS msg 14/03/2018 Commaremote

Fix Checksum errors for CH-R (#86) 18/03/2018 vanillagorillaa

Toyota: fixed LKA_STATE to be compatible with

Corolla and properly generated CH-R dbc

27/03/2018 Riccardo Biasini

Toyota: added comma specific message that copies

0x266 to be able to control steer angle even if park

assist ecu is plugged in

11/04/2018 Riccardo Biasini

Toyota Prius: added AUTOPARK_STATUS msg 11/04/2018 Riccardo Biasini

Toyota: forgot to add _comma.dbc 05/05/2018 Riccardo Biasini

Toyota Highlander and Avalon DBC (#93) 19/05/2018 vanillagorillaa

Toyota Pedal Support (#108) 24/08/2018 wocsor

Added Toyota Highlander Hybrid 02/09/2018 Riccardo Biasini

Toyota Highlander: fixed dbc file name 04/09/2018 Riccardo Biasini

Add Toyota radar SCORE field 17/10/2018 Willem Melching

add toyota_prius_2010_pt.dbc (#50) 30/10/2018 ROBINSON MAS

Add Distance Lines and RSA (#118) 31/10/2018 arne182

Toyota: generated dnc files after latest change 31/10/2018 Riccardo Biasini

Toyota: added a better cruise active indicator 04/11/2018 Riccardo Biasini

Toyota: fixed typos 04/11/2018 Riccardo Biasini

Add 3rd RSA signal and cleanup (#120) 08/11/2018 arne182

Add more Sign recognitions (#126) 07/12/2018 arne182

Appendixes 239

Commit summary Date Contributor

Add DSU Speed (#134) 31/12/2018 arne182

Run generator again and added Toyota Sienna 10/01/2019 Riccardo Biasini

Toyota: added more info to long control message 11/01/2019 Riccardo Biasini

Toyota: clarified lane line VALs 15/01/2019 Riccardo Biasini

Added support to Toyota pedal 12/02/2019 Riccardo Biasini

Toyota pedal: added counter 01/03/2019 Riccardo Biasini

Toyota pedal: messages are now 7 bytes 02/03/2019 Commaremote

New camry steer message (#149) 26/03/2019 Bugsy

Add wet road symbol for RSA (#156) 08/04/2019 arne182

Added SPORT_ON message for Corolla (#155) 08/04/2019 Shane Smiskol

Rav4 2019 ADAS (#160) 30/04/2019 wocsor

Toyota ipas msgs: fix repeated signal name 03/06/2019 Riccardo Biasini

Toyota Camry: using the same conversion factor for

STEER_TORQUE_EPS as in the CHR

07/06/2019 Riccardo Biasini

Toyota DSU-less: added better measurement of steer

angle

10/06/2019 Riccardo Biasini

Toyota: better name for adas bdc files 10/06/2019 Riccardo Biasini

Toyota: better pt dbc file naming for all dsuless cars 10/06/2019 Riccardo Biasini

Toyota dsu-less: more precise steering angle

conversion

13/06/2019 Riccardo Biasini

Toyota LTA: back to unit factor 21/06/2019 Riccardo Biasini

Toyota: STEERING_LTA actually has an angle

interface

21/06/2019 Riccardo Biasini

Toyota: added 0x283 message description for

PRE_COLLISION msg. Data from

https://ioactive.com/pdfs/IOActive_Adventures_in_

Automotive_Networks_and_Control_Units.pdf

30/07/2019 Riccardo Biasini

typo 30/07/2019 Riccardo Biasini

add another Toyota cancel request signal 01/08/2019 Adeeb Shihadeh

pre-collision signals 02/08/2019 Adeeb Shihadeh

Toyota pre-collision signals 02/08/2019 Vehicle Researcher

reference Toyota DBC 03/08/2019 Adeeb Shihadeh

fix typo 02/08/2019 Vehicle Researcher

Toyota pre collision 03/08/2019 Adeeb Shihadeh

rename 03/08/2019 Adeeb Shihadeh

VIN signal for Toyota 04/08/2019 Adeeb Shihadeh

better VIN msg name 05/08/2019 Adeeb Shihadeh

Toyota DSU cruise message 06/08/2019 Adeeb Shihadeh

restore original Toyota ref 28/08/2019 Adeeb Shihadeh

Toyota time signal (#187) 15/09/2019 quillford

Toyota no dsu: fix steer angle factor, it's 1% of a rad 19/09/2019 Riccardo Biasini

add units and a couple new signals for Toyota (#188) 24/09/2019 quillford

2019+ New Prius Steer Angle (#189) 24/09/2019 illumiN8i

Fix steer angle factor for Toyota 11/10/2019 Riccardo Biasini

Toyota Blind Spot Monitor (TSS2-only?) (#219) 21/02/2020 Nelson Chen

Add STEER_ANGLE to all

STEER_TORUQE_SENSOR messages (#228)

06/03/2020 Willem Melching

Add RPM signal (#216) 02/04/2020 Arne Schwarck

Appendixes 240

Commit summary Date Contributor

Fix Toyota message size 11/05/2020 Adeeb Shihadeh

fix lta message (#262) 14/05/2020 Willem Melching

Toyota ACC_CONTROL PERMIT_BRAKING and

ACCEL_CMT_ALT speculated definition (#258)

28/05/2020 Nelson Chen

Tune 17 Corolla safetyParam (#298) 16/09/2020 Shane Smiskol

Date and Time (#306) 17/10/2020 TK211X

Added CRUISE_STATE value 11 description

(timer_3sec) (#328)

24/12/2020 Igor

Add Toyota Odometer Reading to Toyota DBCs

(#331)

04/01/2021 Nelson Chen

add more Toyota CRUISE_STATE values (#339) 08/01/2021 Willem Melching

add Toyota headlight signals (#373) 02/04/2021 cydia2020

Toyota hazard light (#375) 05/04/2021 cydia2020

move LTA to common DBC (#386) 25/04/2021 Adeeb Shihadeh

More TSS2 RSA symbols (#364) 25/04/2021 Kumar

Toyota combination meter dimmer signal (#398) 29/05/2021 cydia2020

Toyota light sensor (#393) 23/06/2021 cydia2020

Toyota: define ACC_TYPE signal (#409) 09/07/2021 sshane

Table 88 - Contributions to the DBC files of Toyota cars

Commit summary Date Contributor

Lexus: added first draft of RX dbc file 02/02/2018 Riccardo Biasini

Lexus: add is 04/11/2018 Riccardo Biasini

Adds dbc for 2017 lexus is300h (hybrid) (#146) 12/03/2019 eFini

Lexus IS: generated file was out of synch 05/04/2019 Riccardo Biasini

Add wet road symbol for RSA (#156) 08/04/2019 arne182

Lexus GS300h 2017 DBC (#159) 02/05/2019 wocsor

Lexus RX 350 DBC (#170) 12/07/2019 wocsor

properly generate Lexus 350 dbc file 12/07/2019 Riccardo Biasini

Add Lexus CT200h 2018 (#176) 03/08/2019 Thomas Pichard

Lexus CT200 needed one more run of generator 03/08/2019 Riccardo Biasini

merge lexus IS and SI hybrid 28/08/2019 Adeeb Shihadeh

Lexus CT200H seems to have the safetyParam 1

instead of 0.73

17/09/2019 Riccardo Biasini

Lexus is adjustment (#192) 11/10/2019 eFini

Add Lexus NX300H (#214) 04/02/2020 Patipat

Susumpow

Lexus CTH fix: brake pressed is on bit 5 like corolla

and rav4

05/03/2020 Riccardo Biasini

Add STEER_ANGLE to all

STEER_TORUQE_SENSOR messages (#228)

06/03/2020 Willem Melching

Lexus NX300 (#313) 28/10/2020 Adeeb Shihadeh

Table 89 - Contributions to the DBC files of Lexus cars

Appendixes 241

Commit summary Date Contributor

Volvo DBC files for C1MCA and EUCD platform (#291) 29/09/2020 danielzmod

Table 90 - Contributions to the DBC files of Volvo cars

Commit summary Date Contributor

Create vw_golf_mk4.dbc 22/09/2017 jessrussell

Create vw_mqb_2010.dbc 01/10/2017 jessrussell

Volkswagen MQB platform DBC updates (#167) 29/05/2019 Jason Young

Updates for Volkswagen support (#191) 10/10/2019 Jason Young

Fixes and new message for VW MQB, fix for Accord

Touring (#193)

17/10/2019 Jason Young

Added VW comment about ignition bit 23/10/2019 rbiasini

Fixes to vw dbc 30/10/2019 rbiasini

Add Motor_20 CRC support (#229) 06/03/2020 Jason Young

Add TSK_06 CRC validation for VW MQB (#234) 16/03/2020 Jason Young

Add SWA_01 message detail and CRC support for VW

MQB (#236)

02/04/2020 Jason Young

VW MQB: Corrected CRC pad byte for ACC_10 (#353) 05/03/2021 Jason Young

VW MQB: Updated message and signal data, round 1

(#357)

11/03/2021 Jason Young

VW MQB: Updated message and signal data, round 2

(#358)

15/03/2021 Jason Young

VW PQ: New and updated CAN messaging (#380) 12/04/2021 Jason Young

VW MQB: EPS HCA status enum, comment cleanup

(#396)

27/05/2021 Jason Young

VW MQB: Add detail to Blinkmodi_02 (#402) 14/06/2021 Jason Young

Table 91 - Contributions to the DBC files of Volkswagen car

	1 Introduction
	2 The Openpilot framework
	2.1 What is Openpilot?
	2.2 Structure of Openpilot and management of the workflow
	2.3 Solution’s architecture description
	2.4 Research design

	3 Openpilot’s submodules: their purpose, the development process, and the community contributions
	3.1 Cereal
	3.1.1 Package structure
	3.1.2 Implementation
	3.1.2.1 Messaging
	3.1.2.2 VisionIPC

	3.1.3 Usage
	3.1.3.1 Messaging - usage
	3.1.3.2 VisionIPC - usage

	3.1.4 Testing
	3.1.5 Development and community contribution

	3.2 Common
	3.2.1 Package structure
	3.2.2 Implementation
	3.2.2.1 API
	3.2.2.2 Kalman
	3.2.2.3 Transformation

	3.2.3 Usage
	3.2.3.1 Api - usage
	3.2.3.2 Kalman - usage
	3.2.3.3 Transformations - usage

	3.2.4 Testing
	3.2.5 Development and community contribution

	3.3 Laika
	3.3.1 Package structure
	3.3.2 Implementation
	3.3.3 Usage
	3.3.4 Testing
	3.3.5 Development and community contribution

	3.4 OpenDBC
	3.4.1 Package structure
	3.4.2 Implementation
	3.4.3 Usage
	3.4.4 Testing
	3.4.5 Development and community contributions

	3.5 Panda
	3.5.1 Package structure
	3.5.2 Implementation
	3.5.3 Usage
	3.5.4 Testing
	3.5.5 Development and community contribution

	3.6 Rednose
	3.6.1 Package structure
	3.6.2 Implementation
	3.6.3 Usage
	3.6.4 Testing
	3.6.5 Development and community contributions

	4 Self-driving cars: an overview of the Openpilot framework and its quality assessment
	4.1 Package structure
	4.2 Implementation
	4.2.1 AthenaD
	4.2.2 BoardD/PandaD
	4.2.3 CameraD
	4.2.4 ControlsD
	4.2.5 PlannerD
	4.2.6 RadarD
	4.2.7 CalibrationD
	4.2.8 LocationD
	4.2.9 UbloxD
	4.2.10 ModelD
	4.2.11 DMonitoringModelD
	4.2.12 DMonitoringD
	4.2.13 LoggerD

	4.3 Testing
	4.4 Development and community contributions

	5 Conclusions and future work
	6 References
	7 Appendixes

