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Abstract

The use of machine learning and deep learning algorithms in many industrial fields is
becoming an established reality day by day. In particular, the study of neural networks
is still in constant evolution.

The goal of this thesis is to outline a method aimed at improving the prediction perfor-
mances of a neural network in order to solve regression problems. The method described
and tested in the thesis is called Optimal Feature Rescaling (OFR). This technique con-
sists in multiplying the dataset variables with parameters chosen in an optimal way by
solving a global optimization program through the use of a genetic algorithm. The OFR
method is useful when the training problem is non-convex, since it tries to avoid the trap
of local minima.

To test the OFR technique, a case study was taken into consideration: the roundness
prediction in a centerless grinding machining operation. The tests carried out showed
positive results demonstrating how, by re-scaling the variables in an optimal way, it is
actually possible to obtain better prediction performances.

The non-convexity of the training problem is demonstrated by the fact that different
rescaling factors lead to different network performances, i.e. different local minima of the
validation error, while in convex problems each local minimum is also global.

The proposed method compensates the non-convexity of the training procedure. Then,
if desired, any feature scaling can be recovered by modifying the first layer weights of
the considered neural network. In this thesis, the parameters obtained through the OFR
technique were used so that the network is able to implicitly perform the rescaling of the
variables during the prediction phase.

Keywords: optimal rescaling, neural network, global optimization, non-convex





Abstract in lingua italiana

L’utilizzo di algoritmi di machine learning e deep learning sta diventando giorno dopo
giorno una realtà affermata in molti settori. In particolare, lo studio delle reti neurali è
tutt’oggi in continua evoluzione.

Lo scopo di questa tesi è di delineare un metodo volto a migliorare le performance di
predizione di una rete neurale al fine di risolvere problemi di regressione. Il metodo
descritto e testato nella tesi prende il nome di Optimal Feature Rescaling (OFR). Tale
tecnica consiste nel moltiplicare le variabili del dataset con dei parametri scelti in modo
ottimale risolvendo un programma di ottimizzazione globale mediante l’utilizzo di un
algoritmo genetico. Il metodo OFR è utile quando il problema di addestramento è non-
convesso, in quanto cerca di evitare la trappola dei minimi locali.

Per testare la tecnica OFR è stato preso in considerazione un caso di studio: la predizione
della rotondità dei pezzi in uscita da un processo di rettifica senza centri. I test effet-
tuati hanno portato risultati positivi dimostrando come, ri-scalando in modo ottimale le
variabili, si riesca effettivamente ad ottenere migliori performance di predizione.

La non-convessità del problema di addestramento è dimostrata dal fatto che fattori di
riscalamento diversi portano a diverse prestazioni della rete, ovvero a diversi minimi locali
dell’errore di validazione, mentre nei problemi convessi ogni minimo locale è anche globale.

Il metodo proposto compensa la non-convessità della procedura di addestramento. Quindi,
se lo si desidera, qualsiasi ridimensionamento delle variabili può essere recuperato modi-
ficando i pesi del primo livello della rete neurale considerata. In questa tesi, i parametri
ottenuti attraverso la tecnica OFR sono stati utilizzati in modo che la rete sia in grado
di eseguire implicitamente il rescaling delle variabili durante la fase di predizione.

Parole chiave: scalamento ottimo, rete neurale, ottimizzazione globale, non-convesso
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Acronymous associated words
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1| Introduction and goals

The advent of Industry 4.0 has radically changed the way companies manufacture, improve
and distribute their products. Nowadays the intertwining between automation and data
exchange is becoming a common practice for the manufacturers and in a world where
resources are getting scarcer day by day we all need to do more with less. In particular,
artificial intelligence and machine learning are playing an increasingly central role in this
landscape where the physical and virtual worlds are fused together. Similar trends are
observed in many other industrial sectors.

As of today, neural networks are the basis of many of the most successful algorithms
in machine learning. These networks, which try to emulate the human brain, are used
to solve many prediction problems, e.g. to predict stock market prices, the effect of an
actuation in robotics, etc. and for this reason they have been taken into consideration
during this thesis.

1.1. Problem definition

Given a regression problem and a Feed Forward Neural Network (FFNN), this thesis fo-
cused on increasing the neural network performances via problem variables rescaling. This
technique consists of multiplying the dataset features with a set of rescaling parameters
which were chosen in an optimal way by solving a global optimization problem.

For this reason, this technique was called Optimal Feature Rescaling (OFR). Through-
out the thesis a metaheuristic approach was used in order to find the best parameters.
Typically, the loss function of a global optimization problem is non-convex. Therefore,
searching for a better minimum via feature rescaling is an interesting and not trivial topic.

OFR method was then applied in a real scenario to verify its effectiveness: the roundness
prediction in a centerless grinding machining operation.
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1.2. Centerless grinding

Centerless grinding is a machining process characterized by a high degree of difficulty in
predicting the quality of the machined parts based on process parameters. The classical
machine learning-based approach, even enhanced by physics-based features embedding
some apriori knowledge, achieved non-satisfactory prediction performances. As the quality
of the worked part mainly depends on the choice of process parameters, e.g. work piece
height, feed velocity, etc., which are inhomogeneous in terms of absolute numerical values,
an "Optimal Feature Rescaling" was investigated in order to make the roundness of the
worked piece more predictable.

1.3. Thesis structure

In the second Chapter of this thesis, the OFR approach is described in-depth by providing
all the tools needed to understand it, and a brief overview of the concepts behind regres-
sion problems and FFNN are given. Furthermore, the method used to solve the global
optimization program (genetic algorithm) is presented.

In the third Chapter, the centerless grinding problem is introduced: a description of
the process variables are provided, the roundness prediction problem is formulated as a
regression problem, and all the results, obtained by applying Optimal Feature Rescaling,
are presented.

Lastly, conclusions and future development proposals are presented.

1.4. Original contributions

Although neural networks are nowadays a mature and widely used technique in the field
of machine learning and deep learning, they are still a topic of study, in particularly with
regard to the training phase. In fact, the search for the optimal network weights is one
of the key elements to obtain better performances. For this reason, alongside the more
common backpropagation technique, several global optimization algorithms have been
tested in order to globalize the neural network training [12][13][6].

On the other hand, variable scaling is a well-established technique used during the pre-
processing phase of many machine learning algorithms, e.g. the neural networks. In
fact, rescaling the variables leads to an improvement in the efficiency of training neural
networks [1].
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Regarding the considered case study, i.e. the roundness prediction in a centerless grinding
machining operation, several physics-enhanced machine learning techniques have been
applied. By testing these, it was noted that the use of hybrid models led to better
performances [11].

Among these hybrid models, a new approach has recently been tested. It exploits both
the prediction of a physics-based simulation model and a reduced set of experimental
data for a data-driven correction. The approach relies on a hierarchical semi-supervised
classification, where the training data, classified on the basis of the three quality intervals
of interest, are divided in a certain number of sub-clusters with respect to the process input
parameters (primary features) and enhanced with the classification prediction provided
by a physics-based model (apriori knowledge injection). These sub-clusters are then used
in the prediction phase, either directly or through a support vector machine predictor.
This approach is called Semi-Supervised Physics-Informed Classifier (SPIC) and, as in
the previously mentioned cases, it achieves better performances than using non-hybrid
techniques [8].

In the end, throughout the thesis, the main pointers to the state of the art are given
alongside each treated aspect.
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2| Proposed method

A new approach, called Optimal Feature Rescaling (OFR), was proposed during this the-
sis in order to improve a Feed Forward Neural Network (FFNN) prediction performances
in a regression problem. This method consists in globally optimize the training phase of
a neural network model in order to obtain a set of optimal parameters, which are sub-
sequently used to rescale the regression problem features. Since the FFNN training is
typically non-convex, the performances of the network are expected to increase, demon-
strating the effectiveness of this approach. Furthermore, OFR was tested in order to set
the weights of the first layer of the considered network, allowing it to apply rescaling
internally.

In this Chapter a brief overview of the main techniques that were applied throughout the
thesis is presented:

• the regression problems are defined, describing their main elements and goal. More-
over, the cross-validation method is presented to test the performances of the con-
sidered model (Section 2.1);

• the FFNNs are then introduced, listing the characteristics of the model that was
tested throughout the work. Several pre-processing techniques suggested in lit-
erature are presented as the state of the art. Furthermore, Early Stopping (ES)
technique is proposed as a way to counteract the overfitting problem (Section 2.2);

• OFR method is described, highlighting the differences between the pre-processing
techniques commonly used in the machine learning field (Section 2.3);

• the global optimization problems are then defined together with the used loss func-
tion and the Genetic Algorithm (GA) implemented to minimize it (Section 2.4);

• The procedures followed in Chapter 3 are presented (Section 2.5).
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2.1. Regression problems

Regression problems are the most widespread machine learning problems. Given a data
set composed by N input-output pairs (xi, yi) where i = 1, ..., N , the goal of a regression
problem is to find a good approximation of the unknown function (a model) which maps
inputs into continuous outputs and generalizes well on test data, e.g. predicting the house
price based on the size of the house, a mobile robot energy consumption based on the
followed path, etc. [2]:

ŷi = f(xi)

Given a data set X ∈ RN×M composed by N sample with M features (or variables) and
representable by a data matrix with N rows and M columns, where each row is a sample
xn = (xn1, ..., xnM), n = 1, ..., N :

X =


x11 · · · x1M
... . . . ...

xN1 · · · xNM


and a target variable y = (y1, ..., yN)T , the goal of a regression problem is to make
predictions ŷ of the value of the target variable y for a new value of the input variable x.

The observed data are affected by noise so, for a given x, there is an uncertainty concerning
the appropriate value for y. In order to take into account the mismatch between the real
function and the chosen model a loss measure L has to be defined. Some common choices
are Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, Coefficient of
determination, etc.:

• Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|yi − ŷi| (2.1)

where ŷi is the predicted value of yi and N is the number of samples;

• Mean Squared Error (MSE):

MSE =
1

N

N∑
i=1

(yi − ŷi)2
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• Root Mean Squared Error (RMSE):

RMSE =
√

MSE =

√√√√ N∑
i=1

(yi − ŷi)2

N
(2.2)

• Coefficient of determination (R2):

R2 = 1− SSE

TSS
(2.3)

where

SSE =
N∑
i=0

(yi − ŷi)2

TSS =
N∑
i=1

(yi − ȳi)2

(2.4)

(2.5)

are respectively the Sum of Squared Error (SSE) and the Total Sum of Squared Error
(TSS), and ȳ is the mean of the target variables. The coefficient of determination
R2 ∈ (−∞, 1] describes how well the model approximates the real function:

– if R2 < 0 it means that the model predicts the output worse than the mean
value;

– if 0 < R2 < 1 it means that the model predicts the output partially, but more
accurately than the average value;

– if R2 = 1 it means that the model perfectly predicts the output.

Once a loss measure has been defined, an hypothesis space H has to be chosen; this latter
is the set of models among which the appropriate one for the problem (h) has to be found.
At the end of the process, an optimization problem has to be solved in order to find the
best model h, which is the one minimizing the error function L.

2.1.1. 10-fold cross-validation

In regression problems the goal is to find a hypothesis h (or model) that generalizes well on
unseen data. In order to measure the performances of the chosen model several techniques
can be applied; with k-fold cross-validation being one of the most reliable. This technique
consists in partitioning the dataset in k = 10 separate folds; then, k − 1 of the groups
are used to train the model, which is subsequently evaluated on the remaining group [2].
This procedure is repeated for all the k possible choices for the held-out groups. In the
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end, in order to obtain the final evaluation the k performances are averaged (see Figure
2.1 for a visual representation of the process).

Figure 2.1: Cross-validation process representation with k = 4 (image taken from [2]).

During the thesis this technique was applied to the FFNN because neural networks require
a large number of datapoints for the training phase. Exploiting the majority of them for
the training was the preferred choice. The performances on the k folds were calculated
by using as a metric the Coefficient of determination R2 (2.1).

2.2. Feed Forward Neural Networks

Neural networks are one of the most powerful techniques used nowadays in machine
learning. Most of the times, they show a multilayer structure composed by several neurons
connected together by synapses in a way that simulates the human brain. An artificial
neural network computes a function of the inputs by propagating the computed values
from the input neurons to the output neuron(s) and using the weights as intermediate
parameters. Learning occurs by changing the weights connecting the neurons.

The weights between neurons in a neural network are adjusted in response to prediction
errors. In this way, the computed function is modified in order to make the predictions
more correct in future iterations. By successively adjusting the weights between neurons
over many input-output pairs, the function computed by the neural network is refined
over time.

Multilayer neural networks contain multiple computational layers; between the input and
output ones there are a few additional intermediate layers that are referred to as hidden
layers because the computations performed there are not visible to the user. The specific
architecture of multilayer neural networks is referred to as Feed Forward Neural Network
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(FFNN), because successive layers feed into one another in the forward direction from
input to output [1].

An example of a neural network used to solve a classification problem with 3 classes
("blue", "green" and "red") is shown in Figure 2.2. This network is characterized by 5
input nodes, 2 hidden layers, composed by 3 neurons each, and 3 output nodes.

Figure 2.2: Example of neural network (image taken from [1]).

In order to improve its efficiency in the training phase, usually a pre-processing phase is
carried out. The network might be able to automatically adapt to heterogeneous data,
but it would make learning more difficult. A widespread best practice to deal with such
data is to do feature-wise standardization [3]. During this thesis the OFR approach was
tested both on raw data, i.e. no rescaled ones, and on standardized data.

2.2.1. Neural network pre-processing in literature

In literature, three are the main pre-processing operations which are usually implemented
to improve the efficiency of the neural network training phase [1]:

1. mean centering : mean-centering the data can be useful in order to remove certain
types of bias effects; in these cases, to each variable its mean is subtracted.

2. feature normalization: each feature is divided by its standard deviation. By combin-
ing this technique with mean-centering, the data is said to have been standardized;

3. whitening : the axes system is rotated in order to create a new set of de-correlated
features, each scaled to unit variance. One way to achieve this result is by using
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Principal Component Analysis (PCA).

When it is preferable to have all features with non-negative values, further types of pre-
processing are used. In these cases, the absolute value of the most negative entry of a
variable is added to the corresponding feature value of each data point. This technique
is combined with min-max normalization which can be useful when the data needs to be
scaled in range (0, 1). In min-max normalization, each sample xij (where j is the feature
and i is the number of the entry) is scaled as follows:

xij ⇐
xij −minj

maxj −minj

Where minj and maxj are respectively the minimum and maximum values of the j-th
attribute.

The goal of this thesis is to understand if OFR might lead to achieve better performances
in comparison to the ones obtained without its use.

2.2.2. The overfitting problem in regression

When the FFNN performs well on the training data but has low cross-validated perfor-
mances, it means that it is overfitting, i.e. the neural network is too complex for the
considered problem. There are several techniques which can be used in order to coun-
teract the overfitting problem, e.g. increasing the number of datapoints, regularizing the
model, reducing the complexity of the hypothesis space (of the model), etc.

During this thesis, two approaches were followed:

• in the first instance, a technique called Early Stopping was used in order to stop
the FFNN training when the training and validation errors begin to diverge. Early
Stopping is described in Section 2.2.3;

• subsequently, also a simplified neural network with Early Stopping was also tested.

2.2.3. Early Stopping

When the FFNN is affected by the overfitting problem, as explained in the previous
section, a technique called Early Stopping (ES) can be used in order to contrast the
problem [1].

This technique consists in stopping the training of the network after only a few iterations.
A portion of the training data is held out as a validation set. The FFNN is then trained
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on the portion of the training data that does not include the validation set, while at the
same time, the error of the model on that specific set is continuously monitored. After
a certain number of iterations, a specific point can be identified where, while the error
on the training data keeps decreasing, it begins to rise on validation data. This point
is therefore chosen for termination, as further training causes overfitting. This technique
allows to control overfitting even though the considered neural network is more complex
than necessary.

It is important to not perform ES after tiny increases in the out-of-sample error, because
it may be due to noisy variations. Thus, it is important to keep track of the best solution
achieved so far on the validation data and to continue the training in order to check if the
error keeps rising. If the increment persists for a certain number of epochs called patience,
the training is stopped.

2.3. Optimal Feature Rescaling (OFR)

Feature rescaling is one of the most critical parts of the pre-processing phase in machine
learning. In fact, it can make the difference between weak and strong machine learning
models. In feature rescaling the problem variables are differently transformed depending
on the method applied. Classical feature scaling techniques are Normalization and Stan-
dardization. The first one is used when a variable has to be bound between two extremes,
e.g. [0, 1]. The second one, instead, is used to transform the data so that their mean is
equal to zero and they have unitary variance. Usually, these techniques are used to:

• make the features comparable;

• make a few algorithms converge faster, e.g. training processes of neural networks
(see Section 2.2.1).

In this work, feature rescaling was proposed in order to improve FFNN performances.

The idea behind this thesis is to find a set of rescaling parameters w = {w1, ..., wM} that
can be used to rescale the M input variables of a regression problem. Given a dataset
X ∈ RN×M and a vector of rescaling parameters w ∈ RM , the rescaled dataset X̃ ∈ RN×M

is obtained as:

X̃ = wX =

w1 ·


x11
...

xN1

 , · · · , wM ·


xN1

...
xNM


 (2.6)
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and x̃i = (wix1i, ..., wixNi)
T , i = 1, ...,M is the i-th rescaled feature of the problem.

In order to improve the prediction capabilities of the model (in this study, a FFNN),
a vector of optimal parameters w∗ has to be chosen, hence the name Optimal Feature
Rescaling. Therefore, an optimization problem was defined. Since the analytical form of
the cost function is not known in advance a global optimization approach was followed.

2.3.1. Fixing the FFNN input layer weights

An interesting aspect of the FFNN is that, in the first layer, it implicitly performs an
input rescaling, multiplying the dataset features by the input layer weights [1]. If alj is
the j-th input to the layer l, and βl

jk is the weight from the k-th neuron in the (l − 1)-th
layer to the j-th neuron in the l-th layer, such that:

alj = f(
∑
k

βl
jka

l−1
j + blj) (2.7)

where blj is the j-th bias to the layer l and f(·) is the activation function of the considered
layer.

Extending this concept by exploiting the OFR technique, it can be possible to set the first
layer weights in order to optimally rescale the neural network inputs. If wk is the k-th
rescaling parameter, it can be incorporated into the k-th weight of the first layer in order
to enable the network to perform input OFR without any data preprocessing. In this case
the weight from the k-th neuron in the first layer to the j-th neuron in the second layer,
becomes:

β̃1
jk := β1

jkwk

while the Equation 2.7 changes into:

alj = f(
∑
k

β̃1
jka

0
j + b1j) = f(

∑
k

β1
jkwka

0
j + b1j) (2.8)

This particular application of the OFR technique was tested during the thesis, and the
obtained results were described and discussed in Section 3.6.

2.4. Global optimization

The main goal of global optimization is to find the global optimal point x∗ (minimum
or maximum) of the given possibly non-linear and non-convex continuous function f(x)
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(where x are the decision variables and f is the objective function) from a solution space
Ω (called feasible region) f : Ω → T , where T is any ordered set (usually ∈ R) and
Ω is usually a subset of Rn [9][14]. The solution space Ω can be subjected to equality
and inequality constraints, but during this thesis an unconstrained global optimization
approach was followed, so no further details are required.

Then, a loss function for the parameters optimization problem has then to be defined.
Since the target model for this thesis is a FFNN, the considered objective function takes
as inputs the vector of parameters (the optimization problem decision variables) and the
training/validation sets, performs the feature rescaling using the input parameter vector,
then trains a FFNN using the training set and returns the RMSE (2.1) calculated on the
validation data (see Appendix A for the code):

RMSEvalidation = f(w,Xtrain,ytrain,Xval,yval) (2.9)

In this scenario, the analytical form of the objective function is not known beforehand.
But, since the considered cost function, i.e. the training of the neural network, turns
out to be non-convex, it is possible to find a better minimum point and therefore obtain
different performances following different scalings. If the cost function was convex, then
its convexity would remain unchanged even through a rescaling, and it would not be
possible to reach a better minimum point:

• affine input transformation: if f : Ω → R is convex (where Ω ⊆ Rn), then also
f̃(x) = f(Ax + b) is convex on the domain Ω̃ = {x ∈ R : Ax + b ∈ Ω}, with
A ∈ Rn×m,b ∈ Rm [5].

Once the optimization problem is set, a solver should be used in order to get to a solution.
Thus, during the thesis a Genetic Algorithm was implemented.

2.4.1. Genetic Algorithms

Genetic Algorithms (GA) are metaheuristics that belong to the family of evolutionary
algorithms; they are inspired by the natural evolutionary theory and try to emulate the
process of natural selection where the next generation of offspring is produced by a group
of individuals selected for reproduction [10].

A GA follows 5 steps in order to provide a solution:

1. initialization: a population of candidate solutions is generated (the so-called indi-
viduals);
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2. evaluation: the fitness function (the objective function 2.9) is evaluated for every
individual;

3. selection: among the individuals the best candidate solutions are chosen;

4. variation: variations are carried out on the candidate solutions chosen in the previ-
ous step in order to produce new offspring;

5. replacement : the old solutions are replaced with the new offspring in the candidate
population and the previous 4 steps are repeated until one or more convergence
criteria are matched.

Throughout the thesis, the algorithm (see Appendix A for the code) was initialized with
20 individuals sampled randomly from a uniform distribution (in log-scale) and it was
executed for 100 iterations, i.e. 2020 function evaluations.

The GA individuals, i.e. the parameter vectors that compose the initial population, were
sampled from a uniform distribution between [−3, 3] in logarithmic scale. They were
then converted in decimal scale, i.e. w ∈ [−103, 103], before being applied to the dataset
features.

2.5. Proposed procedure

The procedure proposed in this work and tested on the case study described in Chapter
3 is reported below.

General procedure (Optimal Feature Rescaling):

1. the regression problem is defined by identifying its input and target variables;

2. a holdout procedure is performed to define the training, validation and test sets;

3. the structure of the neural network that has to be trained is chosen, i.e. the hy-
pothesis space H;

4. the loss function that has to be minimized through the global optimization problem
is defined:

• it takes as input the decision variables of the problem, i.e. the weights to be
optimized, and the training and validation sets;

• it transforms the input parameters from logarithmic scale to decimal scale,
performs the rescaling of the input variables of the training set, trains the
neural network chosen at point 3 and tests it on the validation set;
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• it returns the RMSE (2.1) calculated on the validation data;

5. a solver is chosen to minimize the loss function defined in step 4. During the thesis
a Genetic Algorithm has been used;

6. the Genetic Algorithm is initialized by sampling from a uniform distribution 20 sets
of parameters;

7. the global optimization problem is solved in order to obtain the optimal parameters
set;

8. the optimal parameters calculated in step 7 are used to rescale the variables of the
training, validation and test set;

9. the neural network chosen in step 3 is then trained on the rescaled training set and
tested by using the cross-validation technique;

10. in order for the neural network to be able to carry out the OFR internally, the
optimal parameters calculated in point 7 must be integrated within the weights of
the first level of the network.
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3| Case study

All the tools introduced in the previous chapter were applied in order to test OFR in a
real scenario: roundness prediction for a centerless grinding machining process. Centerless
grinding is a machining operation where material is removed from the workpiece using an
abrasive wheel. The work part is not clamped during the machining process, making it
prone to inherent instability, and therefore the overall quality of the final piece is difficult
to predict on the basis of the chosen process parameters.

A regression problem was defined to predict the roundness of the worked part and three
tests were carried out in order to understand if OFR can effectively improve the perfor-
mances of a neural network. In this Chapter:

• the dataset was prepared by defining the input and the target variables of the
problem. The considered features were the centerless grinding process parameters,
while the target variable was the roundness of the worked part (Section 3.1);

• A first FFNN was trained both on the raw data, i.e. the non-rescaled data, and
on the standardized ones in order to define two baselines. Afterwards, both of the
datasets were optimally rescaled by applying the OFR procedure and the FFNN
was trained on them. The obtained results were then compared with the baselines
(Section 3.2);

• In order to counteract the overfitting problem, the ES technique was applied and a
second test was carried out (Section 3.3);

• the second test demonstrated that the overfitting problem could not be solved only
with ES, so a simplified neural network was implemented and tested as done before
(Section 3.4);

• the FFNN first layer weights were fixed by using the optimal parameters in order to
apply OFR internally. The obtained performances were then compared to the ones
achieved by applying the optimal rescaling outside the network (Section 3.6).
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3.1. Dataset definition

In centerless grinding the workpiece is supported on three points by two wheels, the so-
called grinding and control wheels, and a work rest, also known as the supporting blade.
The worked part and its supports are represented in Figure 3.1:

Figure 3.1: Centerless grinding setup (image taken from [8]).

The workpiece is pushed against the grinding wheel according to a feed movement, and
the material is removed due to the contact between them. Each grinding operation can
be defined by 12 parameters which are listed in Table 3.1.

x0: workpiece height (hw) x6: grinding wheel diameter
x1: blade angle (γ) x7: control wheel diameter
x2: feed velocity x8: control wheel velocity
x3: total diametric removal x9: grinding specific energy
x4: workpiece length x10: edge force component
x5: workpiece diameter x11: grit stiffness

Table 3.1: Centerless grinding process parameters [8].

There are 9 other parameters that are characteristic of the grinding machine and not
of the process. For this reason, they will be considered as fixed for this study. These
parameters are listed in Table 3.2.
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α0: grinding wheel velocity α5: mass matrix (dynamics)
α1: Number of workpiece elements α6: stiffness matrix(dynamics)
α2: initial workpiece profile distribution α7: damp.matrix (dynamics)
α3: grit diameter α8: mode shape vector (dynamics)
α4: abrasive/bond ratio

Table 3.2: Centerless grinding process fixed parameters [8].

The model of the centerless grinding process (Figure 3.2), the so-called high fidelity model
(details and equations can be found, for instance, in [4]), was then used in order to obtain
a dataset for the regression problem:

D := {yi,xi}, i = 1, 2, ..., Ns

where yi ∈ R+ is the continuous value of the roundness of the final piece that measures
the process performances of the i-th sampled grinding operation (i.e. the target variable),
xi ∈ R12 is the corresponding vector of process parameters (i.e. the input variables), and
Ns = 4069 is the number of samples.

Figure 3.2: High fidelity model (image taken from [8]).

The feature set (that consisted of the 12 aforementioned parameters) was further expanded
by using the output of the so-called low fidelity model, which is a simplified version of the
(more complicated) high fidelity one (all the assumptions made for the low fidelity model
are reported in [8]).

The dataset thus obtained was divided in 3 subsets by applying a hold-out procedure:

• 70% of the data was reserved for training;
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• the remaining 30% was further divided in two equal sets:

– 50% for validation;

– 50% for test.

In order to reserve the majority of the data for the FFNN training, only a small portion
of them was held out for the test phase. For this reason, as described in Section 2.1.1,
during the thesis a cross-validation procedure was used in order to test the performances
of the FFNN. Because of the dimensions of the test set, it was only used in cases where
the cross-validation procedure was not a viable option.

3.2. Optimal Feature Rescaling (OFR) application

Once the dataset was defined, the OFR approach was tested by training a FFNN on an
optimally rescaled set of data. The tested FFNN, i.e. the considered hypothesis space H,
was composed by:

• an input layer with 128 neurons and relu activation function;

• 3 hidden layers with 256 neurons each and relu activation functions;

• an output layer with a single neuron with linear activation function.

MAE (2.1) was used as loss metric for the training and validation phases, while an opti-
mizer implementing the Adam algorithm was used for the optimization phase. In the end,
500 epochs were considered during the training phase and the neural network was trained
with all the training data in each one of them. As a result, the considered network was
trained 500 times in order to define the final set of parameters for each layer.

The FFNN described above was implemented in Python making use of Keras. Keras is
a deep learning framework for Python that provides a practical way to define and train
many different deep learning models [3].

The FFNN in exam was trained on two different datasets and the performances thus
obtained were used in order to define the baselines for the test. The neural network was
tested on:

1. the raw data, i.e. data without feature rescaling;

2. the standardized data.

The two baselines were then compared to the performances obtained training the FFNN
on:
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1. the data rescaled by applying OFR on the raw ones;

2. the data rescaled by applying OFR on the standardized ones.

3.2.1. Baseline 1: performances on raw data

The first baseline was obtained by training and cross-validating 100 FFNNs on the raw
data. The performances were then averaged and reported in Table 3.3.

Test R2 (Train) CV Mean CV Std

No rescaling 0.515098 0.285996 0.168344

Table 3.3: Baseline performances using raw data.

As it can be seen from Table 3.3, the network performances are rather poor. Because
the FFNN training phase is very sensitive to data with different scales, the obtained
performances could depend from the absence of a preliminary standardization phase (see
Section 2.2).

In addition, by observing the difference between the performances obtained on the train
set and the ones obtained by applying the cross-validation, an overfitting phenomenon
can be seen (Section 2.2.2).

3.2.2. Baseline 2: performances with standardization

The second baseline was obtained by applying a standardization procedure. The data
were rescaled by subtracting the mean and dividing by the standard deviation in order to
have mean equal to zero and unitary variance, as described in Section 2.2.1. Considering a
sample xi, with i = 1, ...,M , where M is the number of features, its standardized version
is:

x̃i =
xi − µi

σi

where µi is the mean and σi is the standard deviation of the i-th feature.

As in the previous case, 100 FFNNs were trained and cross-validated, and their perfor-
mances were averaged and reported in Table 3.4.
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Test R2 (Train) CV Mean CV Std

Standardized 0.990043 0.369556 0.337064

Table 3.4: Baseline performances using standardized data.

It can be seen that the network is completely overfitted; the cross-validated performances
improved slightly but the coefficient of determination on the training data increased
substantially, thus dramatically increasing the gap between the training and the cross-
validated performances, i.e. the model generalizes badly on test data.

3.2.3. OFR applied to raw data

The OFR technique was applied to the raw data in order to understand if the absence
of a common standardization procedure could be compensated. In this phase, an uncon-
strained global optimization program (Section 2.4) was defined in order to determine the
optimal parameter vector w∗ for feature rescaling. The GA described in Section 2.4.1
was used to minimize a loss function which performs feature rescaling, trains the FFNN
described above and computes the RMSE (2.1) on validation data (2.9).

The optimal parameter vector w∗ = (w0, ..., w12) is reported in decimal scale in Table 3.5.

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

19.553 18.242 0.303 65.383 37.113 0.005 0.279

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

0.017 4.958 1.303 0.019 1.662 30.657

Table 3.5: Optimal parameters for raw data in dec-scale.

Just like the two baselines, 100 FFNNs were trained and cross-validated and their perfor-
mances were averaged and reported in Table 3.6.

Test R2 (Train) CV Mean CV Std

OFR on raw data 0.822084 0.475483 0.092552

Table 3.6: Performances obtained applying OFR to raw data.
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In the end, the execution time of the GA was reported in Table 3.7.

Test Function calls [s] [h]

GA with raw data 2020 119369.0 33.16

Table 3.7: GA execution time working on raw data.

3.2.4. OFR applied to standardized data

Subsequently, the OFR method was applied to the standardized data in order to un-
derstand if it was able to further improve the performances. Similar to what was done
in the previous section, a global optimization program was solved (Section 2.4) and the
parameters obtained as output were reported in decimal scale in Table 3.8.

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

1.919 0.032 0.374 0.495 0.184 0.185 0.128

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

0.022 0.239 0.517 0.937 0.030 29.463

Table 3.8: Optimal parameters for standardized data in dec-scale.

The performances obtained training 100 FFNNs on the standardized and optimally rescaled
data were averaged and reported in Table 3.9.

Test R2 (Train) CV Mean CV Std

OFR on std data 0.844512 0.561060 0.117817

Table 3.9: Performances obtained by applying OFR to standardized data.

The execution time is similar to the one obtained working with raw data, and it is re-
ported in Table 3.10
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Test Function calls [s] [h]

GA with std data 2020 119886.0 33.30

Table 3.10: GA execution time working on standardized data.

3.2.5. Performances comparison

All the results obtained in Sections 3.2.1 to 3.2.4 were collected in Table 3.11 in order to
make some considerations.

Test R2 (Train) CV Mean CV Std

OFR on std data 0.844512 0.561060 0.117817

OFR on raw data 0.822084 0.475483 0.092552

Standardized 0.990043 0.369556 0.337064

No rescaling 0.515098 0.285996 0.168344

Table 3.11: Performances comparison ordered with respect to "CV Mean".

The first thing to take into account is the difference between the performances obtained
using the raw data and the standardized ones. If the standardization is not applied, the
performances tend to be worse. Nevertheless, the performances increase on the training
data makes the overfitting problem more incisive.

The second important aspect to pay attention to is the clear improvement guaranteed by
the application of the OFR technique to the non-rescaled dataset. It improves not only
the cross-validated performances obtained on the raw data, but also the ones obtained on
the standardized ones. In fact, these performances improved by 66.3% compared to the
raw data:

0.285996→ 0.475483

and by 28.66% compared to the standardized data:

0.369556→ 0.475483

Although the neural network in exam does not have good prediction performances, an
improvement can be seen, underlining the fact that, with a better network, the OFR
procedure could guarantee good results. Furthermore, it can be noticed that the OFR



3| Case study 27

mitigates the overfitting problem, reducing the gap between train error and the cross-
validation output.

Last but not least, the performance improvement obtained by applying OFR to a stan-
dardized dataset is far greater than all of the previous cases, guaranteeing an increment
of 95.69% compared to using of raw data:

0.285996→ 0.559659

and of 51.44% compared to using the standardized data:

0.369556→ 0.559659

Furthermore, the performances obtained by applying OFR on the raw data were overcome
by 17.70% as well:

0.475483→ 0.559659

demonstrating the fact that a previous standardization can be useful even when an OFR
procedure is carried out. Although these results are promising, the test makes it clear
that OFR cannot compensate the effect of a simple standardization, making the latter
a desired step. Probably, the reason lies in the fact that removing the mean helps to
improve the quality of the model, i.e. FFNN, while OFR is unable to do so as it acts only
on the scale factors.

Nevertheless, analyzing the discrepancy between the performances on the train set and
the ones obtained with cross-validation, it can be seen that, although the OFR mitigates
the overfitting problem and reduces the gap, the ES technique described in Section 2.2.3
has to be applied in order to further reduce it.

For completeness, the GA execution times are reported in Table 3.12.

Test Function calls [s] [h]

GA with std data 2020 119886.0 33.30

GA with raw data 2020 119369.0 33.16

Table 3.12: Comparison between GA execution times working on raw and standardized
data.

In conclusion, in order to gain a better understanding of the cross-validated performances
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and their sort, they are reported in Figure 3.3.

Figure 3.3: Comparison between FFNN cross-validated performances.

From Figure 3.3 the improvement brought by the application of the OFR procedure on
both performances and the reduction of the overfitting problem of the used models (as it
can be deduced from the previous considerations) is evident. In the next Section, tests
were taken modifying the neural network by implementing the ES technique described in
Section 2.2.3 in order to reduce the overfitting problem.

3.3. OFR combined with Early Stopping technique

In order to counteract the overfitting problem, an ES approach was followed as described
in Section 2.2.3. The number of epochs for the FFNN training was increased to 10000,
while the ES patience (see Section 2.2.3) was set to 100. The goal of this choice is to make
sure that the ending of the training phase is reached before the end of the epochs. In this
way, it is guaranteed that the FFNN training stops when the validation error begins to
rise.

As it was done in the previous Sections, two baselines were defined in order to have a
ground truth with which to compare the performances obtained by applying the OFR
technique. The FFNN implementing the ES was trained both on:

1. raw data, i.e. the non rescaled data;

2. the standardized data, as described in Section 3.2.1.

Afterwards, the OFR was applied to both the dataset and the same neural network was
trained and tested. All the performances were then compared and discussed.
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3.3.1. Baselines with Early Stopping

The first baseline was set by training the FFNN on raw data and the obtained perfor-
mances are reported in Table 3.13. The second one was defined by training the FFNN on
the standardized data, as explained in Section 3.2.2 and the obtained results are reported
in Table 3.14.

Test R2 (Train) CV Mean CV Std

No rescaling (ES) 0.655322 0.357649 0.080880

Table 3.13: Performances obtained by training FFNN with ES on raw data.

Test R2 (Train) CV Mean CV Std

Standardized (ES) 0.808376 0.456640 0.116470

Table 3.14: Performances obtained by training FFNN with ES on standardized data.

Because the ES technique was implemented, it makes sense to visualize the evolution of
the loss metric, i.e. the MAE (2.1), on the training (loss) and validation data (val loss).
The two plots, one for each test, are respectively reported in Figure 3.4a and 3.4b.

(a) Loss and val loss calculated on the raw data (ES). (b) Loss and val loss calculated on the standard-
ized data (ES).

Figure 3.4: Loss and val loss evolution on the baselines defined for the FFNN with ES.

As it can be seen from Figures 3.4a - 3.4b, the FFNN stops the training before the end of
the set epochs. Furthermore, by standardizing the data, the training error was reduced
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more rapidly compared to the case with raw data. Another consideration that can be done
by observing the images is that in the second baseline, i.e. the one obtained using the
standardized data, the training phase lasts much less compared to the first baseline thanks
to the standardization, which improves the efficiency of the training phase. In order to
further minimize the overfitting effect one possibility could be to stop the training around
the 15th epoch, i.e. the epoch where the validation loss reaches the minimum value.

3.3.2. OFR application with Early Stopping

Once the baselines were defined the OFR technique was tested in order to evaluate its
performances. Differently from the previous cases, the loss function for the optimization
problem was modified in order to take into account the ES approach.

The optimal parameters (converted in dec-scale) obtained by applying the GA with the
modified cost function to the two sets of data (see Section 2.4.1) are reported in Table
3.15 and 3.16.

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

62.424 1.010 2.521 20.619 19.503 0.079 0.167

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

0.747 3.112 0.079 0.799 0.765 9.226

Table 3.15: Optimal parameters for raw data in dec-scale (ES).

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

11.671 0.213 1.803 1.623 0.302 0.121 0.039

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

0.005 0.608 1.544 0.112 0.248 150.160

Table 3.16: Optimal parameters for standardized data in dec-scale (ES).

While the times required by the GA to provide the optimal parameters are reported in
hours and seconds respectively in Table 3.17.



3| Case study 31

Test Function calls [s] [h]

OFR on raw data (ES) 2020 69992.0 19.44

OFR on std data (ES) 2020 61768.0 17.16

Table 3.17: GA execution times when ES is implemented.

As expected, the GA provides the optimal parameters in less time than the case without
ES. This is due to the fact that the validation error starts to increase before the 500th
epoch (planned for the previous cases), so the training phase is stopped earlier.

As for the case without ES, the optimal parameters in Table 3.15 and 3.16 were re-
spectively applied to the raw and standardized data. The obtained performances are
respectively reported in Table 3.18 and 3.19.

Test R2 (Train) CV Mean CV Std

OFR on raw data (ES) 0.888022 0.488795 0.111678

Table 3.18: Performances obtained by applying OFR to raw data (ES).

Test R2 (Train) CV Mean CV Std

OFR on std data (ES) 0.818443 0.527066 0.137574

Table 3.19: Performances obtained by applying OFR to standardized data (ES).

While the loss and val loss evolutions are represented in Figure 3.5a and 3.5b.
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(a) Loss and val loss calculated on the raw data
optimally rescaled (ES).

(b) Loss and val loss calculated on the standard-
ized data optimally rescaled (ES).

Figure 3.5: Loss and val loss evolution obtained training the FFNN with ES on the
optimally rescaled datasets.

From Figures 3.5a and 3.5b it can be noticed how the standardization procedure improves
the efficiency, reduces the training time and allows a smaller training error to be achieved.

3.3.3. Performances comparison - the effects of ES

Once the baselines and the performances obtained by applying OFR were collected, it was
possible to analyze and comment them. The performances are reported in Table 3.20.

Test R2 (Train) CV Mean CV Std

OFR on std data (ES) 0.818443 0.527066 0.137574

OFR on raw data (ES) 0.888022 0.488795 0.111678

Standardized (ES) 0.808376 0.456640 0.116470

No rescaling (ES) 0.655322 0.357649 0.080880

Table 3.20: OFR performances comparison ordered with respect to "CV Mean" (ES).

The improvement achieved by using the OFR technique can be seen from Table 3.20.
However, the performances of the FFNN are still rather poor despite the implementation
of ES. This probably depends on several factors:

1. the FFNN is too complex for the considered problem;

2. the parameters that were set for the ES were too permissive;
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3. the numerosity of the data;

4. the noise on the data.

The prediction performances of the network would surely benefit from a model selection
procedure, where several models are tested on a validation set in order to choose the best
among them. However, since the prediction problem was not the topic of this thesis, this
step was avoided.

As previously done, the cross-validated performances are resumed in Figure 3.6 in order
to visualize them more clearly.

Figure 3.6: Comparison between all the FFNN (with ES) cross-validated performances.

Concerning the first of the possible causes of the persistence of the overfitting problem, a
simpler net was tested in Section 3.4. In this way, it was possible to figure out what the
effects of a model selection procedure would be.

3.4. OFR effects on a simplified FFNN with ES

In order to test the efficacy of the OFR method with a model not subjected to the
overfitting problem a simpler neural network was tested. As described in Section 2.2.2,
simplifying the structure of the FFNN is possible in order to reduce the overfitting effects.

For these reasons, the neural network described in Section 3.2 (i.e. the hypothesis space
H) was simplified by drastically reducing the number of layers and neurons. The resulting
model is composed by:

• an input layer with 13 neurons and relu activation function;

• 1 hidden layer with 100 neurons and relu activation function;

• an output layer with a single neuron with linear activation function.
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Furthermore, the objective function for the optimization program was changed, reflecting
the new considered model.

The ES patience was incremented to 200, in order to gain more training time for the
FFNN.

As it was done in the previous paragraphs, the two baselines (one obtained by using the
raw data and one by using the standardized ones) were defined in order to compare the
performances obtained by applying the OFR technique. Furthermore, the evolution of
loss and val loss can be visualized as before. The two plots are reported in Figure 3.7a
and 3.7b.

The optimal parameters obtained by solving the global optimization problems are re-
ported (in decimal scale) in Table 3.21 (considering the raw data) and 3.22 (considering
the standardized data).

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

7.801 0.114 7.126 0.015 0.092 0.059 0.082

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

0.208 1.862 0.006 0.416 0.112 253.964

Table 3.21: Optimal parameters (dec-scale) for raw data (simplified FFNN with ES).

w∗
0 w∗

1 w∗
2 w∗

3 w∗
4 w∗

5 w∗
6

1.092 2.238 0.500 0.264 0.152 0.034 1.070

w∗
7 w∗

8 w∗
9 w∗

10 w∗
11 w∗

12

1.069 0.547 0.500 1.362 0.674 13.034

Table 3.22: Optimal parameters (dec-scale) for standardized data (simplified FFNN with
ES).

While the GA execution times are reported in Table 3.23.
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Test Function calls [s] [h]

OFR on raw data (simplified NN) 2020 173807.0 48.28

OFR on std data (simplified NN) 2020 134213.0 37.28

Table 3.23: GA execution times for the simplified neural network (with ES).

All the performances obtained by testing the simplified FFNN are reported and compared
in Table 3.24, the cross-validation results can be visualized in Figure 3.8, and the loss and
val loss evolutions are reported in Figure 3.7c and 3.7d.

As it can be seen from Table 3.24 the networks trained on the optimally rescaled datasets
achieve better performances compared to the baselines. Furthermore, the overfitting
problem was almost completely solved, significantly reducing the gap between the train-
ing error and the cross-validated performances.

Test R2 (Train) CV Mean CV Std

OFR on std data (simplified NN) 0.615985 0.595238 0.098966

Standardized (simplified NN) 0.629364 0.540791 0.147672

OFR on raw data (simplified NN) 0.674978 0.533133 0.147843

No rescaling (simplified NN) 0.335624 0.237633 0.464777

Table 3.24: Performances comparison obtained by training a simplified FFNN (with ES),
ordered with respect to "CV Mean".

As expected, from Figure 3.7 it can be noticed that the training phase lasts much longer
than the cases considered in the previous section. This is due to the fact that in this case
the patience was set to 200. By observing Figure 3.7d (which corresponds to the best
case scenario) it can be deduced that an optimal termination point for the training phase
is reached around the 250th epoch. In fact, the validation loss after that point remains
more or less constant, thus making the trade-off between training time and performance
improvement no more profitable.
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(a) Loss and val loss calculated on the
raw data (simplified FFNN with ES).

(b) Loss and val loss calculated on the
standardized data (simplified FFNN
with ES).

(c) Loss and val loss calculated on the raw
data with OFR (simplified FFNN with
ES).

(d) Loss and val loss calculated on the
standardized data with OFR (simplified
FFNN with ES).

Figure 3.7: Loss and val loss evolution during the simplified FFNN training phase with
ES.

Although the performances obtained by applying OFR to the standardized dataset were
better compared to the baselines, from Figure 3.8 it is evident that even with the sim-
plification of the neural network the performances achieved by applying a common stan-
dardization to the data are almost equal (greater in this case) to the ones obtained by
optimally rescaling the raw data. Therefore, the usefulness of a standardization procedure
prior to the application of the OFR technique has been confirmed in this case as well as
it was already done in the Section 3.2.2.
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Figure 3.8: Comparison between all the simplified FFNN (with ES) cross-validated per-
formances.

This test was carried out to demonstrate that the application of both the OFR and the
model selection procedures can guarantee an interesting improvement in the prediction
performances of a FFNN applied to a regression problem, confirming, in every case, the
usefulness of the OFR technique in order to improve the performances of the network.

3.5. Final comparisons

In conclusion, the best performances obtained in the three tests are reported in Table
3.25 and in Figure 3.9 in order to take some final considerations.

Test R2 (Train) CV Mean CV Std

OFR on std data (simplified NN) 0.615985 0.595238 0.098966

OFR on std data 0.808739 0.559659 0.133694

OFR on std data (ES) 0.818443 0.527066 0.137574

Table 3.25: Comparison between the best performances obtained in the three tests.

Figure 3.9: Comparison between the best cross-validated performances obtained in the
three tests.

From Table 3.25 it can be seen that the simplified neural network described in Section 3.4
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performs better than the more complex ones and, at the same time, it is not affected by
the overfitting problem. Performing a model selection procedure before the application of
the OFR technique, as demonstrated by the results obtained with the simplified network,
would guarantee even better results.

In the next section a different application of the OFR technique was tested, highlighting
how the combination of the method and the flexibility of neural networks can be useful
in machine learning and deep learning applications.

3.6. Fixing the input layer weights of the FFNN

By exploiting the feature of neural networks to apply the rescaling of the variables within
the input level, it was possible to test the particular application of the OFR technique
described in Section 2.3.1.

Table 3.26 shows the performances obtained by FFNN (Section 3.2) by carrying out the
optimal rescaling outside and inside the network, i.e. modifying the first level of the neu-
ral network.

Test RMSE (Test) R2 (Train) R2 (Test)

Inside rescaling 5.092644 0.82803 0.247903

Outside rescaling 5.092644 0.82803 0.247903

Table 3.26: Performances obtained by fixing with OFR the FFNN input layer.

Observing the Table 3.26, it can be seen that the performances obtained by applying the
optimal rescaling outside the neural network coincide with those obtained by using the
unscaled data, but by modifying the weights of the first level of the network.

Thanks to the non-convexity of the training problem it is always possible to pass from
the neural network original weights to the ones optimally selected. For this reason, the
global optimization can be used to "globalize" the training phase of the FFNN and, in
particular, the initial values of its first layer.
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developments

4.1. Conclusions

In this thesis, a new method to improve the performances of a Feed Forward Neural
Network in regression problems was defined and tested. This method was called Optimal
Feature Rescaling (OFR) and consists in multiplying the variables of the problem, i.e.
the features of the input dataset, by an optimal parameter set obtained by solving a
global optimization problem. Since the training of the neural network is non-convex, the
performances of the network should have improved, demonstrating the effectiveness of
this approach.

In order to solve the global optimization problem a loss function and a solver were selected.
The considered objective function takes as inputs the decision variables, i.e. the rescaling
parameters, and the training and validation sets, performs the feature rescaling using the
input parameter vector, then trains the chosen neural network and returns as output the
Root Mean Squared Error (2.1) calculated on the validation data. As solver, a Genetic
Algorithm was chosen.

The Optimal Features Rescaling approach was then applied to a real scenario to test its
efficacy: the roundness prediction for a centerless grinding machining process. Because the
workpiece is not fixed during the grinding process, the roundness prediction is a difficult
task and represents the perfect scenario on which to test the OFR technique.

In principle the dataset was prepared. Each sample was composed by 13 variables: 12
were the centerless grinding process parameters, while the last was the output of the
low fidelity model, i.e. a simplified version of the more complex process model (the high
fidelity one).

A first neural network was then trained on 4 different datasets:

• the raw data;
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• a standardized one, i.e. from each feature was removed the mean and the variance;

• an optimal rescaled one starting from the raw data;

• an optimal rescaled one starting from standardized data.

The results demonstrated the OFR efficacy, in fact the cross-validated performances were
better than the two baselines. Nevertheless, the performances of the model were poor.

For this reason an Early Stopping technique was implemented in order to stop the training
of the network when the error on validation data would begin to rise. Despite the fact
that the obtained performances still confirmed the good qualities of the optimal rescaling
approach, the overfitting problem did not disappear, demonstrating that a preliminary
model selection was needed.

A simplified neural network was then tested with the Early Stopping technique in order
to counteract the overfitting issue. In that case the problem was almost completely
solved, and the cross-validated performances obtained on the optimal rescaled dataset
still remained the best.

In the end, a particular application of the optimal rescaling method was tested. Because
the Feed Forward Neural Network rescales the first layer inputs with its weights, the op-
timal parameters used in the OFR method can be incorporated in the first layer, allowing
the network to perform optimal rescaling internally and thus obtaining results that are
equal to the ones achieved by pre-processing the data outside the network. Furthermore,
the possibility of conducting from one form of rescaling to another granted by the non-
convexity of the training problem justifies the use of global optimization techniques in
order to globalize the training of the neural network.

In conclusion, all the techniques described in this thesis highlighted the pros guaranteed
by the use of the OFR approach, making it an interesting topic for future studies.

4.2. Future developments

This thesis has shown the potentiality offered by the Optimal Feature Rescaling. Never-
theless, several aspects of the method can be further analyzed to understand its efficacy
in the machine learning and deep learning fields. A list of possible future developments
derived from the tests used in this thesis is proposed here:

• the OFR method could also be tested on more complex problems compared to the
case analyzed during this work. In a case with more variables, the time required by
the solver to provide the optimal parameters could be too much compared to the
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benefits guaranteed by the method. In that case, a classical standardization could
be more suitable;

• at the same time, OFR could also be tested on a technique with less computational
requirements like k-nearest neighbor. In that case, conversely, the trade-off between
time and performances could be advantageous, justifying the application of the
method;

• concerning the FFNN, a more accurate model selection phase could be followed,
in order to understand how OFR performs on a network refined for the considered
problem;

• considering the results obtained setting the FFNN first layer weights, the OFR
technique could be applied in order to set the weights for all the other network
layers. However, this approach would probably be prohibitive, since the size of the
search space of the global optimization problem becomes very large by using many
levels and neurons;

• last but not least, a different solver, like the one developed by Lorenzo Sabug Jr.,
Fredy Ruiz and Lorenzo Fagiano (SMGO [7]) could be applied in order to seek a
more efficient way to obtain the optimal parameters for OFR.
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In this appendix, the main parts of the optimal feature rescaling code are reported:

• Main code;

• genetic algorithm code;

• the used loss functions.

Listing A.1: OFR Main.

1 # Basic libraries
2 import numpy as np
3 import pandas as pd
4

5 # Others
6 import time
7 from loss_genetic_regress import cost_function_NNregress_complex_noES
8 from loss_genetic_EStopping import cost_function_NNregress_complex_ES ,

cost_function_NNregress_simple_ES
9 import ga

10 from ypstruct import structure
11

12 # Preprocessing
13 from sklearn.preprocessing import StandardScaler
14

15 # Grab Currrent Time Before Running the Code
16 start = time.time()
17

18 # Import data
19 train = pd.read_csv("/Users/federicovitro/Desktop/Tesi_Magistrale/

Step_11/Dataset/train_base.csv")
20 val = pd.read_csv("/Users/federicovitro/Desktop/Tesi_Magistrale/Step_11/

Dataset/val_base.csv")
21 test = pd.read_csv("/Users/federicovitro/Desktop/Tesi_Magistrale/Step_11

/Dataset/test_base.csv")
22

23 # I/O definition
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24 X_train = train.loc[:,’x0’:’x12’]
25 y_train = train[’t’]
26 X_val = val.loc[:,’x0’:’x12’]
27 y_val = val[’t’]
28 X_test = test.loc[:,’x0’:’x12’]
29 y_test = test[’t’]
30

31 #%% De -comment if you want to standardize the data
32 # scaler = StandardScaler ()
33 # Xs_train = scaler.fit_transform(X_train)
34 # Xs_val = scaler.transform(X_val)
35 # Xs_test = scaler.transform(X_test)
36

37 # columns = [’x0 ’,’x1 ’,’x2 ’,’x3 ’,’x4 ’,’x5 ’,’x6 ’,’x7 ’,’x8 ’,’x9 ’,’x10 ’,’
x11 ’,’x12 ’]

38 # Xs_train = pd.DataFrame(Xs_train , columns=columns)
39 # Xs_val = pd.DataFrame(Xs_val , columns=columns)
40 # Xs_test = pd.DataFrame(Xs_test , columns=columns)
41

42 #%% Problem definition
43 N_decision_var = X_train.shape [1]
44 problem = structure ()
45 # problem.costfunction = cost_function_NNregress_complex_noES
46 # problem.costfunction = cost_function_NNregress_complex_ES
47 problem.costfunction = cost_function_NNregress_simple_ES
48 problem.nvar = N_decision_var # number of decision variables
49 problem.varmin = -3 # decision variables min bound (in log -scale)
50 problem.varmax = 3 # decision variables max bound (in log -scale)
51

52 problem.xtrain = X_train
53 problem.xval = X_val
54 # De -comment if you want to standardize the data
55 # problem.xtrain = Xs_train
56 # problem.xval = Xs_val
57 problem.ytrain = y_train
58 problem.yval = y_val
59

60 #%% Genetic Algorithm (GA) parameters
61 params = structure ()
62 params.maxit = 100 # max iterations
63 params.npop = 20 # max population elements
64 params.pc = 1 # proportion of the children compared to the initial

population
65 params.gamma = 0.1
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66 params.mu = 0.2 # normal distribution mean and variance
67 params.sigma = 0.1
68

69 #%% Run GA
70 out = ga.run(problem , params)
71

72 # Grab Currrent Time After Running the Code
73 end = time.time()
74

75 # Subtract Start time from the End time
76 total_time_s = end - start
77 print("\ntotal time = "+ str(total_time_s)+" [s]")
78 total_time_h = (end - start)/3600
79 print("\ntotal time = "+ str(total_time_h)+" [h]")
80 total_time = np.zeros ((1,2))
81 total_time [0,0] = total_time_s
82 total_time [0,1] = total_time_h
83

84 #%% Save the execution time
85 np.savetxt(’/Users/federicovitro/Desktop/Tesi_Magistrale/Step_11/

GA_ex_time/total_time_complexNN_siEStopping_Standardized.csv’,
total_time , delimiter=’,’)

86

87 #%% Save Results (best population + best solution)
88 columns = [’th0’, ’th1’, ’th2’, ’th3’, ’th4’, ’th5’, ’th6’, ’th7’, ’th8

’, ’th9’, ’th10’, ’th11’, ’th12’, ’best_cost ’]
89 pop_mat = np.zeros ((20, 14))
90

91 for i in range (0,20):
92 for j in range (0,14):
93 if j!=13:
94 pop_mat[i,j] = out.pop[i]. position[j]
95 else:
96 pop_mat[i,j] = out.pop[i].cost
97

98 pop_df = pd.DataFrame(pop_mat , columns = columns)
99 pop_df.to_csv(’/Users/federicovitro/Desktop/Tesi_Magistrale/Step_11/

GA_output/population/population_complexNN_siEStopping_Standardized.
csv’)

100

101 best_sol = np.zeros ((1 ,14))
102

103 for i in range (0,14):
104 if i!=13:



48 A| Appendix A

105 best_sol[0,i] = out.bestsol.position[i]
106 else:
107 best_sol[0,i] = out.bestsol.cost
108

109 bestsol_df = pd.DataFrame(best_sol , columns = columns)
110 bestsol_df.to_csv(’/Users/federicovitro/Desktop/Tesi_Magistrale/Step_11/

GA_output/bestsol/bestsol_complexNN_siEStopping_Standardized.csv’)

Listing A.2: Genetic algorithm.

1 import numpy as np
2 from ypstruct import structure
3

4 def run(problem , params):
5

6 #%% STEP:
7 # 1- Initialization
8

9 # Problem information
10 costfunction = problem.costfunction
11 nvar = problem.nvar
12 varmin = problem.varmin
13 varmax = problem.varmax
14

15 X_train = problem.xtrain
16 X_val = problem.xval
17 y_train = problem.ytrain
18 y_val = problem.yval
19

20 # Parameters
21 maxit = params.maxit
22 npop = params.npop
23 pc = params.pc
24 nc = int(np.round(pc*npop /2)*2)
25 gamma = params.gamma
26 mu = params.mu
27 sigma = params.sigma
28

29 # Empty individual template
30 empty_individual = structure ()
31 empty_individual.position = None
32 empty_individual.cost = None
33

34 # Best solution ever found
35 bestsol = empty_individual.deepcopy ()
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36 bestsol.cost = np.inf
37

38 # Initialize population
39 print(’START Initialization ’)
40 pop = empty_individual.repeat(npop)
41 for i in range(0, npop):
42 pop[i]. position = np.random.uniform(varmin , varmax , nvar)
43 pop[i].cost = costfunction(pop[i].position , X_train , X_val ,

y_train , y_val)
44 if pop[i].cost < bestsol.cost:
45 bestsol = pop[i]. deepcopy ()
46

47 print(’END Initialization ’)
48

49 # Best cost of iterations
50 bestcost = np.empty(maxit)
51

52 #%% STEP:
53 # 2- Select parents & Crossover
54 # 3- Mutate offspring
55 # 4- Merge main population and offsprings
56 # 5- Evaluate , Sort & Select
57 # 6- go to step 2, if it is needed
58

59 # Main loop
60 for it in range(maxit):
61

62 popc = []
63 for _ in range(nc//2):
64

65 # Select parents randomly
66 q = np.random.permutation(npop)
67 p1 = pop[q[0]]
68 p2 = pop[q[1]]
69

70 # Perform Crossover
71 c1 , c2 = crossover(p1 , p2, gamma)
72

73 # Perform mutation
74 c1 = mutate(c1 , mu, sigma)
75 c2 = mutate(c2 , mu, sigma)
76

77 # Apply bounds
78 apply_bounds(c1 , varmin , varmax)
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79 apply_bounds(c2 , varmin , varmax)
80

81 # Evaluate first offspring
82 c1.cost = costfunction(c1.position , X_train , X_val , y_train ,

y_val)
83 if c1.cost < bestsol.cost:
84 bestsol = c1.deepcopy ()
85

86 # Evaluate second offspring
87 c2.cost = costfunction(c2.position , X_train , X_val , y_train ,

y_val)
88 if c2.cost < bestsol.cost:
89 bestsol = c2.deepcopy ()
90

91 # Add offspring to popc
92 popc.append(c1)
93 popc.append(c2)
94

95 # Merge , Sort and Select
96 pop += popc
97 pop = sorted(pop , key=lambda x: x.cost)
98 pop = pop[0: npop]
99

100 # Store best cost
101 bestcost[it] = bestsol.cost
102

103 #Show iteration information
104 print("Iteration {}: Best Cost = {}".format(it, bestcost[it]))
105

106 # Output
107 out = structure ()
108 out.pop = pop
109 out.bestsol = bestsol
110 out.bestcost = bestcost
111

112 return out
113

114 def crossover(p1, p2 , gamma =0.1):
115 c1 = p1.deepcopy ()
116 c2 = p1.deepcopy ()
117 alpha = np.random.uniform(-gamma , 1+gamma , *c1.position.shape)
118 c1.position = alpha*p1.position + (1-alpha)*p2.position
119 c2.position = alpha*p2.position + (1-alpha)*p1.position
120 return c1, c2
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121

122 def mutate(x, mu , sigma):
123 y = x.deepcopy ()
124 flag = (np.random.rand(*x.position.shape) <= mu)
125 ind = np.argwhere(flag)
126 y.position[ind] += sigma*np.random.randn (*ind.shape)
127 return y
128

129 def apply_bounds(x, varmin , varmax):
130 x.position = np.maximum(x.position , varmin)
131 x.position = np.minimum(x.position , varmax)

Listing A.3: Loss function for the global optimization problem (without Early Stopping).

1 # Basic libraries
2 import numpy as np
3

4 # regression models
5 from sklearn.ensemble import RandomForestRegressor
6

7 # Neural Network
8 from keras.models import Sequential
9 from keras.layers import Dense

10

11 # Model evaluation
12 from sklearn.metrics import mean_squared_error
13

14 def cost_function_NNregress_complex_noES(th_log , X_train , X_val , y_train
, y_val):

15

16 # Make a copy of the train and validation sets
17 X_train0 = X_train.copy()
18 X_val0 = X_val.copy()
19

20 # Log to Dec scale transformation
21 th = 10** th_log
22

23 # Train and validation data rescaling
24 X_train0 = X_train0*th
25 X_val0 = X_val0*th
26

27 # Define NN
28 nn_regressor = Sequential ()
29

30 # The Input Layer
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31 nn_regressor.add(Dense (128, kernel_initializer=’normal ’, input_dim =
X_train0.shape[1], activation=’relu’))

32

33 # The Hidden Layers
34 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
35 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
36 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
37

38 # The Output Layer
39 nn_regressor.add(Dense(1, kernel_initializer=’normal ’,activation=’

linear ’))
40

41 # Compile the network
42 # lr = 0.01 #leaning rate for Stochastic Gradient Descent
43 # opt = keras.optimizers.SGD(learning_rate=lr , momentum =0.95)
44 nn_regressor.compile(loss=’mean_absolute_error ’, optimizer=’adam’,

metrics =[’mean_absolute_error ’])
45

46 # Train the model
47 nn_regressor.fit(X_train0 , y_train , epochs =500, batch_size =32,

verbose =0) # callbacks =[es]
48

49 # Computing the Root Mean Square Error
50 rmse_nn_val = (np.sqrt(mean_squared_error(y_val , nn_regressor.

predict(X_val0))))
51

52 return rmse_nn_val

Listing A.4: Loss function for the global optimization problem (with Early Stopping).

1 # Basic libraries
2 import numpy as np
3

4 # Neural Network
5 import tensorflow as tf
6 from keras.models import Sequential
7 from keras.layers import Dense
8

9 # Model evaluation
10 from sklearn.metrics import mean_squared_error
11

12 def cost_function_NNregress_complex_ES(th_log , X_train , X_val , y_train ,
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y_val):
13

14 # Make a copy of the train and validation sets
15 X_train0 = X_train.copy()
16 X_val0 = X_val.copy()
17

18 # Log to Dec scale transformation
19 th = 10** th_log
20

21 # Train and validation data rescaling
22 X_train0 = X_train0*th
23 X_val0 = X_val0*th
24

25 # Define NN
26 nn_regressor = Sequential ()
27

28 # The Input Layer
29 nn_regressor.add(Dense (128, kernel_initializer=’normal ’, input_dim =

X_train0.shape[1], activation=’relu’))
30

31 # The Hidden Layers
32 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
33 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
34 nn_regressor.add(Dense (256, kernel_initializer=’normal ’,activation=’

relu’))
35

36 # The Output Layer
37 nn_regressor.add(Dense(1, kernel_initializer=’normal ’,activation=’

linear ’))
38

39 # Compile the network
40 opt = tf.keras.optimizers.Adam(learning_rate =0.001)
41 nn_regressor.compile(loss=’mean_absolute_error ’, optimizer=opt ,

metrics =[’mean_absolute_error ’])
42

43 # Early stopping
44 callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss ’,

patience =100, mode=’min’)
45

46 # Train the model
47 nn_regressor.fit(X_train0 , y_train , validation_data =(X_val0 , y_val),

epochs =10000 , callbacks =[ callback], verbose =0)
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48

49 # Computing the Root Mean Square Error
50 rmse_nn_val = (np.sqrt(mean_squared_error(y_val , nn_regressor.

predict(X_val0))))
51

52 return rmse_nn_val
53

54 def cost_function_NNregress_simple_ES(th_log , X_train , X_val , y_train ,
y_val):

55

56 # Make a copy of the train and validation sets
57 X_train0 = X_train.copy()
58 X_val0 = X_val.copy()
59

60 # Log to Dec scale transformation
61 th = 10** th_log
62

63 # Train and validation data rescaling
64 X_train0 = X_train0*th
65 X_val0 = X_val0*th
66

67 # Define NN
68 nn_regressor = Sequential ()
69

70 # The Input Layer
71 nn_regressor.add(Dense(X_train0.shape[1], kernel_initializer=’normal

’, input_dim = X_train0.shape[1], activation=’relu’))
72

73 # The Hidden Layers
74 nn_regressor.add(Dense (100, kernel_initializer=’normal ’,activation=’

relu’))
75

76 # The Output Layer
77 nn_regressor.add(Dense(1, kernel_initializer=’normal ’,activation=’

linear ’))
78

79 # Compile the network
80 opt = tf.keras.optimizers.Adam(learning_rate =0.001)
81 nn_regressor.compile(loss=’mean_absolute_error ’, optimizer=opt ,

metrics =[’mean_absolute_error ’])
82

83 # Early stopping
84 callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss ’,

patience =200, mode=’min’)
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85

86 # Train the model
87 nn_regressor.fit(X_train0 , y_train , validation_data =(X_val0 , y_val),

epochs =10000 , callbacks =[ callback], verbose =0)
88

89 # Computing the Root Mean Square Error
90 rmse_nn_val = (np.sqrt(mean_squared_error(y_val , nn_regressor.

predict(X_val0))))
91

92 return rmse_nn_val
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