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Abstract

Ion electrodynamics across the Ciliary Epithelium (CE) results to be a fun-

damental mechanism in the secretion of aqueous humor (AH), which is the

biological solution that permits the transport of nutrients in the internal

structures of the eye. A malfunction of the AH secretion process, as well as

a defect in the outflow of AH can lead to an increase of intraocular pressure

and to the onset of diseases of the visual apparatus. A study of the mech-

anisms involved in the transepithelial flow of ions across the ciliary body is

an important physiological question and represents an obligatory step for an

accurate analysis of AH secretion and, eventually, the design of therapeutical

treatment of ocular pathologies such as glaucoma.

This Master thesis deals with the study of a mathematical model for the sta-

tionary description of ion electrodynamics in the human ciliary epithelium.

The model represents an adaptation to the specific case of the well known

velocity-extended Poisson-Nernst-Planck model (VE-PNP), which has been

used for the continuous description of intracellular and extracellular spaces.

In Chapter 1 we give a review of eye physiology, focusing our attention to

the biological structures that are most relevant in our description. Moreover,

we illustrate the processes involved in the AH formation and introduce the

concept of compartmental model, which we will use for the description of

the interested area. Chapter 2 deals with the transmembrane transport:we

report theoretical concept and description of transmembrane transporters.

In Chapter 3 we derive the general VE-PNP model, that we will adapt for

our purpose in Chapter 4. Chapter 4 also contain an accurate description

of the domain upon which we applied the derived model. In Chapter 5 we

discuss the numerical discretization of the problem, introducing a solution

map for its iterative solution which is the extension to the present model

xv



of the Gummel Decoupled Algorithm conventionally employed in semicon-

ductor device simulation. In Chapter 6 we illustrate and discuss the model

predictions obtained by running a computer code written using the MatLab

scientific environment in the simulation of numerical tests in working condi-

tions of increasing complexity.

Summarizing conclusions and future model developments are discussed in

Chapter 7.
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Sommario

L’elettrodinamica ionica attraverso l’epitelio ciliare (CE) è un meccanismo

fisico fondamentale nel processo di secrezione dell’umor acqueo (AH), il

quale è una soluzione biologica che permette il trasporto dei nutrienti nelle

strutture interne dell’occhio. Un malfunzionamento di tale processo, o un

difetto nel deflusso di umore acqueo attraverso i canali preposti, possono

portare ad un aumento della pressione intraoculare e all’insorgenza di pa-

tologie dell’apparato visivo. Lo studio dei meccanismi coinvolti nel flusso

transepiteliale degli ioni all’interno del corpo ciliare rappresenta un passaggio

obbligato per un’analisi accurata della secrezione di umor acqueo, pertanto

esso è senza dubbio un argomento di grande interesse medico.

In questa tesi viene trattato lo studio di un modello matematico per la de-

scrizione dello stato stazionario dell’elettrodinamica ionica nell’epitelio ciliare

umano. In particolare, il noto modello Poisson-Nernst-Planck generalizzato

(VE-PNP) viene adattato al caso specifico ed utilizzato per la descrizione

delle concentrazioni ioniche in spazi intracellulari ed extracellulari.

Nel Capitolo 1 sono presenti dei richiami alla fisiologia dell’occhio, in parti-

colare alle strutture biologiche più rilevanti per la nostra descrizione. Inoltre,

vengono illustrati i processi coinvolti nella formazione di umore acqueo ed in-

trodotto il concetto di modello compartimentale, utilizzato per la descrizione

dell’area interessata. Il Capitolo 2 tratta del trasporto ionico attraverso la

membrana epiteliale: vengono descritti i concetti teorici del trasporto trans-

membranale ed i diversi tipi di trasportatori esistenti, dandone una carat-

terizzazione matematica. Nel Capitolo 3 viene derivato il modello VE-PNP,

adattato per il nostro scopo nel Capitolo 4, che contiene una descrizione accu-

rata del dominio su cui abbiamo applicato il modello derivato. Nel Capitolo

5 si discute la discretizzazione numerica del problema, introducendo un algo-

xvii



ritmo iterativo chiamato Mappa di Gummel. Nel Capitolo 6 sono riportati

alcuni risultati numerici. Infine, il lavoro viene concluso illustrando alcune

future direzioni di ricerca.

Per le simulazioni numeriche è stato utilizzando un codice sviluppato in

MATLAB.
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Chapter 1

Introduction

The particular functions that the visual system performs make the eye an

extremely complicated biological structure. In fact, being the eye a receptor

of light signals, the tissues that compose it must necessarily be transparent,

so that the transmission of light cannot be disturbed by the blood supply.

Furthermore, since the eye is responsible for sending signals to the brain for

image creation, it is of fundamental importance to maintain optimal optical

alignment between cornea, retina and lens. To comply with these restrictions,

the eye is incessantly employed in the production, circulation and drainage

of aqueous humor (AH), a transparent liquid that contributes to the nour-

ishment of the tissues not reached by the blood vessels and keeps constant

the pressure inside the eye (intraocular pressure, IOP) (≈ 15mmHg) [15].

Aqueous humor therefore plays a very important role within the dynamics of

the bulb and an imbalance in its functioning may lead to the development of

pathological conditions. For example, excessive production of AH or insuffi-

cient drainage are responsible for an excess of fluid that causes high intraoc-

ular pressure. This pathological condition is referred to as glaucoma and can

cause partial or total loss of vision. It is clear then that understanding the

1



1.1. EYE PHYSIOLOGY

mechanisms of AH production is relevant to understand eye pathophysiology.

1.1 Eye Physiology

With the aim of analyzing the physical mechanisms behind the production of

aqueous humor, in this section is given a brief review of the anatomy of the

eye. In particular, the focus will be given to the Ciliary Body, a ring of tissue

positioned just behind the posterior surface of the iris, which is responsible

for the production of AH.

1.1.1 Eye structure

The eye has a spherical shape, with an averaged diameter of 24 mm, and it

is inserted within a bone cavity, called ocular cavity or orbit, which contains

and protects it. The bulb wall of the eye is composed of three concentric

tunics (see figure 1.1):

• Fibrous tunic, containing sclera and cornea. It acts as an external

attachment for the muscles that allow the movement, providing the

mechanical support for the eye. The sclera is composed of connective

tissue and it covers most of the eye, while the cornea is located in the

front and, unlike the sclera, it contains no blood vessels.

• Vascular tunic, formed by the choroid, the ciliary body (CB) and the

lens. Its primary functions are to provide a pathway for blood and

lymphatic vessels, to supervise the amount of light entering the eye,

to modify the shape of the lens and to manage the production and

absorption of aqueous humor.

2



1.1. EYE PHYSIOLOGY

• Neural tunic, containing the retina. The inner part of the tunic is

called neural part and contains the photoreceptors of the eye. The

outer part is called pigmented part and its primary function is to avoid

reflection of light that has passed through the neural part, in order to

prevent the return of the light into the eye structure.

Figure 1.1: The eye’s bulb wall subdivision in tunics. Source:

Mescher AL. Junqueira’s Basic Histology: Text and Atlas, 12th Edition:

http://www.accessmedicine.com

The interior portion of the eye in composed of two chambers: the anterior

cavity and the posterior cavity, which are separated by the lens and the CB.

The anterior cavity is in turn subdivided into two chambers connected by

the pupil aperture: the anterior chamber (AC), delimited by the cornea and

the iris, and the posterior Chamber (PC), which is between the iris and the

lens. These two chambers are filled with aqueous humor, a mixture composed

3



1.1. EYE PHYSIOLOGY

by water, electrolytes, organic solutes, and other proteins, produced by the

ciliary body in the PC at a rate of approximately 2.4±0.6µl/min [8]. AH then

flows into the AC and is drained outside the eye by following two different

pathways, which will be described later.

The posterior cavity, also named vitreous chamber, occupies approximately

the 90% of the hollow portion of the eye and it is filled with the vitreous body,

a jelly-like substance composed by water and proteins. This very viscous fluid

is only produced during fetal development.

1.1.2 Anatomy of the Ciliary Body

The Ciliary Body (CB) is a ring of tissue positioned behind the iris. It has

two roles that make it fundamental for the natural functioning of the system:

it is responsible for the production of aqueous humor and contains the ciliary

muscles, which regulate, through their contraction, the shape of the lens to

which they are linked by means of ligaments called zonules.

Since the aqueous humor is an extremely important component, the shape

of the ciliary body is modeled to allow for as much AH production as pos-

sible. Indeed, in order to increase the surface available for fluid secretion, it

is organized into a series of ridges, called ciliary processes, arranged radially

and oriented towards the pupil.

Each ciliary process is composed by: blood vessels, stroma and ciliary

epithelium (CE), see fig 1.2.

The internal part of the ciliary processes is supplied by a complex network of

blood vessels, which play an active role in the production of aqueous humor.

In fact, they not only offer nutrients to the cells of the ciliary epithelium, but

the constituents of the blood plasma are also used directly in the production

4



1.1. EYE PHYSIOLOGY

Figure 1.2: Anatomy of the Ciliary Body. (a) Detail of a portion of Ciliary

Body: a series of Ciliary Processes, (b) Detail of a single Ciliary Process, (c)

Sectional picture of a portion of the eye. Source Histology of human ciliary

body (Prof. Ruth Santo).

of aqueous humor. This dual role indicates that the body probably regulates

the secretion of aqueous humor by regulating the blood supply in the ciliary

processes [15].

The surface of the ciliary processes is covered by a double epithelial layer,

the ciliary epithelium, generated by the cooperation of two layers that have

different origins: the outermost layer, placed in contact with the posterior

chamber, is called non-pigmented ciliary epithelium (NPE), while the inner-

most layer, placed in contact with the stroma, is called pigmented ciliary

epithelium (PE). The two epithelial layers are connected to each other by

junctions placed on the apical membranes of the cells. The cells of the NPE

layer are much wider than the cells of the PE layer and exhibit a higher

rate of metabolic activity. Furthermore, the basolateral membrane of the

non-pigmented cells, placed in contact with the posterior chamber, presents

5



1.1. EYE PHYSIOLOGY

invaginations which allow to increase even more the available secretion area

(the surface area available for the secretion is approximately 6cm2) .

This particular double layer structure composed by different cell types is a

unique example in the whole human body and the advantages over a single

layer conformation are not yet clear.

Certainly, the ciliary epithelium plays an extremely important role, as it acts

as a barrier between a compartment heavily supplied with blood vessels and

a compartment that is not supplied at all. In fact, one should take in mind

that the main activity of the ciliary body is the production of a watery like

substance starting from the blood carried by the blood vessels. To accom-

plish this task, the CB is organized into a series of filters that act as a sieve.

The combination of these filters is generally referred to as the Blood-Aqueous

barrier.

1.1.3 The Blood-Aqueous barrier

Fortunately, the internal structures of the eye, such as the cornea, the anterior

chamber or the lens, are not reached by the vascular network. The blood in

fact does not allow the passage of light at all. Even if deprived of blood cells,

blood contains a high concentration of protein molecules that scatter light.

A series of laboratory experiments [17] [10] have shown that the CE is

able to filter blood step by step along a path that goes from the blood vessels

to the anterior chamber thanks to a series of ”obstacles” that form the Blood-

Aqueous barrier. From a pharmacological point of view, understanding the

functioning of this barrier is essential to find components that reach the eye

in an acceptable concentration.

The Blood-Aqueous barrier is formed by:

1. The vascular endothelium layer that covers the vessels. Capillaries in

6



1.2. AQUEOUS HUMOR FORMATION

the ciliary processes are fenestrated, permitting the passage of plasma

proteins into the stroma, while blocking blood cells.

2. The ciliary epithelium. It blocks the diffusion of large protein molecules,

that cannot move from the stroma into the PC, mainly thanks to the

presence of the tight junctions in the epithelium.

Tight junctions are protein structures that form a bridge between adjacent

cells of the non-pigmented layer. This tangled network of protein fibrils pre-

vents the diffusion of large protein molecules from the extracellular space

between the epithelial cells towards the PC. The result is that the liquid

obtained from the filtration of the tight junctions is a transparent mixture

containing water and mostly ionic compounds.

Moreover, tight junctions mark the separation boundary between the two

different types of membrane that cover epithelial cells (apical membrane and

basolateral membrane). As we will see, the distinction between these two

types of membrane is fundamental in the secretion process of AH, as each of

them is specialized in a specific task.

1.2 Aqueous Humor formation

The production of aqueous humor is a complex electric-fluid-dynamic mech-

anism. The volumetric flow secreted through the epithelium layer is mainly

driven by three forces [15] (see figure 1.3):

1. Hydrostatic pressure. Between the stroma and the PC there is a

pressure gradient due to the difference between the IOP and the blood

pressure in the capillaries. This jump of pressure generates a flow of

water from the stroma to the posterior chamber.

7



1.2. AQUEOUS HUMOR FORMATION

2. Oncotic pressure. Thanks to the presence of tight junctions, a con-

centration gradient of large molecules is generated between the stroma

and the posterior chamber. This is the result of a mechanism known as

ultrafiltration. Ultrafiltration establish a difference in oncotic pressure

which generates a direct flow of water from the PC towards the stroma.

3. Osmotic pressure. Ions are actively transported through the ciliary

epithelium. This generates a difference in osmotic pressure across the

layer due to a difference in ion concentrations. As a result, a net water

flow is generated from the stroma towards the PC, as the water is forced

to follow the ion flow.

This driving force has been highlighted by more recent studies which

reveal how the concentration of some solutes in PC is different from

that expected from ultrafiltered plasma.

1.2.1 Active transport of ions

Tight junctions represent a dividing line between the two types of membrane

that cover the cells of the ciliary epithelium. The fundamental distinction

between the apical part and the basolateral part of the surface is the different

distribution of ionic transporters, which are not uniformly distributed on the

cell surface. This condition is known as polarized distribution [15].

A polarized distribution of ionic transporters appears to be a fundamental

characteristic of cells, which in this way can preferentially import some so-

lutes on one side and export them on the other side. Laboratory experiments

[3] have shown that the active Na-K-ATPase transporter is much denser on

the basolateral surface of the NPE layer cells. Furthermore, the presence

of different molecular variants of the same transporter denote how the non-

8



1.2. AQUEOUS HUMOR FORMATION

Figure 1.3: Forces involved in the process of AH secretion. Source: Shahidul-

lah, Mohammad Al-Malki, Waleed Delamere, Nicholas. (2011). Mechanism

of Aqueous Humor Secretion, Its Regulation and Relevance to Glaucoma.

10.5772/26559.

pigmented cell is specialized in the transport of sodium from the plasma

present in the stroma towards the AH. On the other hand, the apical mem-

brane of non-pigmented cells has different transporters which have the task

of importing sodium into the cytoplasm. This combined action generates

a rather high difference in transmembrane sodium concentration. Similarly,

chlorine also passes through cells by exploiting the polarized distribution of

transporters. This transepithelial movement generates a potential difference

across the CE which tends to influence the movement of other ions through

the extracellular space.

Active transport results to be fundamental for the secretion of aqueous hu-

mor: the efflux of ions described above causes an increase in the osmotic

9
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pressure of the intracellular space and, in order to balance this force, wa-

ter moves from the stroma into the posterior chamber, passing through the

intercellular space.

1.3 Flow of aqueous humor

After the secretion within the intercellular space of the ciliary processes, AH

passes throughout the anterior chamber of the eye and it flows through a

trabecular meshwork, which acts as a filter, removing the debris that may

come from bacterial infections. From the trabecular, AH passes into the

Schlemm canal which is a thin-walled vein that connects the extraocular

vein to the vascular tunic. Flow of AH through the Schlemm canal can be

represented by a pressure-flow relationship [4]:

dQ

dx
=
IOP − p(x)

R
(1.1)

where Q is the flow rate of AH, IOP is the intraocular pressure, p(x) is the

pressure within the canal, R is the resistance to flow and x is the distance

along the canal’s length [12].

Although almost the whole flux of AH follows the pathway described above,

a small quantity of AH enters the posterior cavity (on the order of a few

nanoliters every hour), where it is diffused slowly inside the vitreous body.

1.4 Glaucoma

Glaucoma is an optic neuropathy characterized by damage to the optic nerve

and visual field loss [5]. This degeneration results to be progressive and

irreversible since glaucoma brings to the death of the retinal ganglion cell

(RCG). Although the mechanism which leads to the ganglion cell injury is
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not clear, researchers are focusing their attention to a defect in the blood

supply to the optic nerve caused by high IOP.

One can distinguish between two types of glaucoma (see figure (1.4)):

1. Primary glaucoma: caused essentially by a defection in the circulat-

ing pathway of AH. The most important types of primary glaucoma

are Primary open angle glaucoma (POAG), which is the most preva-

lent type of glaucoma, characterized by a an significant optic nerve

damage associated with an open anterior chamber angle, and Primary

closed angle glaucoma (PCAG), occurring in patients with obstruction

of trabecular meshwork and glaucomatous optic neuropathy.

2. Secondary glaucoma: glaucomatous symptoms are caused by ocular or

systemic disease such as uveitis, ocular trauma or ocular neovascular-

ization.

Despite there may be different causes to glaucoma, the most important

risk factor results to be an elevated intraocular pressure, which in chronic

conditions can conduct to optic nerve damage. In fact, an increase of the

IOP to about 30 mmHg is common during glaucoma and, under severe condi-

tions, the intraocular pressure can even rise to 60 mmHg, leading to blindness

within weeks. For this reason medical treatments of glaucoma include the

use of drugs to reduce IOP by reducing the secretion of AH [19]. These types

of medical care are not curative, but they can prevent the progression of the

disease.

It is therefore evident how a deep knowledge of production and drainage of

aqueous humor can bring significant benefits and influence future treatments

of the disease.
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Figure 1.4: Two types of primary glaucoma: Open angle glaucoma (left),

Closed angle glaucoma (right). Source: Wiggs JL, Pasquale LR. Genet-

ics of glaucoma. Hum Mol Genet. 2017 Aug 1;26(R1):R21-R27. doi:

10.1093/hmg/ddx184. PMID: 28505344; PMCID: PMC6074793.

1.5 Compartmental model

The aim of this section is to provide a mathematical approach to the analysis

of the production of aqueous humor. This is in line with the trend of recent

years, during which the use of mathematical models to describe complex

biophysical phenomena is becoming indispensable alongside experimental re-

search.

A mathematical model offers a simplified view of the physical phenomenon,

making a trade off between model complexity and biological accuracy. A

well-constructed model can be a useful tool for clinical researchers, who are

provided with a kind of virtual laboratory. Furthermore, the mathemati-

cal formalism can help to better understand complex biological phenomena,

making a synthesis of all the physical processes that occur simultaneously.
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1.5.1 A multiscale problem

The production of aqueous humor involves several physical processes at dif-

ferent spatial scales. At the highest scale, AH production occurs through the

synergistic action of all the structures of the ciliary body. Having the possi-

bility to shrink ourselves until we can walk among the zonules, we would see

how the plasma present in the stroma is filtered passing through the ciliary

epithelium. However, if we want to know how this filter works we should

equip ourselves with a magnifying glass, approach the ciliary epithelium and

observe its structures. At this point, we would observe how the different

particles enter and leave the epithelial cells following a path that depends

on the type of particle itself. At this level, which corresponds to the cellular

level, we would observe a flow of particles, but we would not be able to ob-

serve the different mechanisms that take place on the membranes that cover

the cells. Having decided that we want to know more, let’s reduce ourselves

further, until we reach the size of a molecule. Now we would observe special

entrance doors on the cellular membrane, which only certain types of ions

are allowed to pass through and thanks to which the cell communicates with

the extracellular environment.

Therefore, to correctly describe all the mechanisms of our problem, we should

be aware that it is necessary to describe physical phenomena that occur at

different spatial scales. In the model presented in this thesis, this objective

is pursued considering the cellular level and trying to take into account the

membrane transporters through lumped models.
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1.5.2 Derivation of a compartmental geometry

The focus of this thesis is on a portion of the ciliary body which includes

stroma, ciliary epithelium and posterior chamber. Due to the extremely

complicated morphology of the interested area, we introduced a simplified

version of the geometry as a reference domain on which to apply the model

equations.

To this purpose, the interested portion of the Ciliary Body is described by

means of a compartmental model. It results that this idea fits very well in

this context, because CB is naturally divided in compartments, separated by

biological barriers.

In figure 1.5 a portion of the ciliary epithelium layer is shown, together with

its compartmental counterpart. The domain is divides into 5 compartments:

Stroma (S), pigmented epithelial cell (PE), non pigmented epithelial cell

(NPE), paracellullar side (P), posterior chamber (PC). These compartments

communicate through biological mechanisms illustrated in the following sec-

tion.
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Figure 1.5: (left) Portion of the cilary epithelium layer. (right) Schematic

compartmental description of the interested area

1.5.3 Communication between different compartments

PE - NPE commumication Intracellular fluids of pigmented and non-

pigmented ciliary epithelial cells result to be strictly linked thanks to special

conduits: the gap junctions. Gap junctions are specialized cell-cell junc-

tions which form a mirror image of protein units (connexons) between apical

membranes of cells. They directly connect the cytoplasms, allowing various

molecules, ions and electrical impulses to directly pass through a regulated

gate. For this reason,we assume that the two epithelial layers actually con-

stitute a connected region, so that the electrical potential and intracellular

ion concentrations are continuous across the separation surface [16].
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Communication via channels and transporters As mentioned above,

the cytoplasm of the cells is in communication with the extracellular region

thanks to special transmembrane proteins distributed along the cell mem-

brane. These proteins act as gateways to permit the transport of specific

substances across the membrane. In cellular biology, the characterization of

the mechanisms that regulate the passage of substances through the cellular

membrane is extremely important, since the physiology of distinct cells is

related to their capacity to attract elements from the extracellular side.

Transport across the membrane can be classified as passive transport or active

transport. Passive transport, or passive diffusion, occurs thanks to the so-

called transmembrane channels, and is a spontaneous phenomenon (linked

to a decrease in free energy) that depends on the concentration gradients

across the membrane. In the context of the ciliary epithelium, two types of

channels are particularly important: ion channels, which are responsible for

the passive transport of charged ions (sodium, potassium, calcium, hydrogen,

hydrogen carbonate), and the so-called Aquaporins, which are channels spe-

cialized to handle the movement of water through the hydrophobic interior of

the cell membrane. Active transport occurs when a solute is moved against

a concentration gradient. Since this process requires energy, the proteins

involved in active transport consume metabolic energy, such as ATP.

Both active and passive transporters will be used to describe the flux of

solutes between the intracellular compartments and the extracellular sides.

A more detailed analysis of these concepts will be the subject of the next

chapter.

Tight junctions Tight junctions constitute the barrier to the passage of

plasma proteins from the stroma of the ciliary process into the posterior
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chamber. However, they allow the passage of small molecules and ions, so

that we can define a membrane permeability Pα for each ion α, physically

determined by claudins and occludins, which are the main components of the

tight junctions.

The conductance of a tight junction depends lineraly on the ion permeabil-

ities: given Pα and the concentrations cMα and cNα in the two compartments

M and N separated by the barrier, the conductance to a charged solute α is

[12]:

Gα =
Pαz

2
αF

2c̄α
RT

(1.2)

where zα is the chemical valence of the charged solute, R and T are the gas

constant and temperature, respectively, whereas c̄α is a mean transmembrane

concentration defined as:

c̄α =
cMα − cNα

ln cMα − ln cNα
(1.3)

The overall transepithelial conductance can be then calculated as:

GTJ =
∑
α

Gα =
F 2

RT

∑
α

z2
αPαc̄α (1.4)

17





Chapter 2

Transmembrane transport

Solutes and water can be transported across the ciliary epithelium following

a transcellular pathway or through the paracellular side between the ep-

ithelial cells (figure 1.5). Laboratory experiments have demonstrated that,

despite the significant paracellular contribution, the secretory pathway is

largely transcellular, thus it is basically driven by transfer of net solute from

stroma to AH passing through the ciliary epithelium. Secretion of NaCl

assumes a central role in this mechanism and, as a first approximation, the

formation of the AH can be viewed as an energy dependent transfer of NaCl

which induces a transfer of water across the ciliary epithelium. Minor con-

stituents present in the extracellular fluids (HCO−3 , K+, Ca2+, H+) are

known to modulate secretion and act indirectly on Na+ and Cl− transfer.

The transcellular epithelial transfer is due to an ensamble of ion and water

channels and other types of transmembrane proteins, such as co-transporters

(symports) and counter-transporters (antiports).

In the following, the basic concepts of transmembrane transport will be dis-

cussed, then we will introduce the mathematical characterization of all the

processes included for the description of the mechanisms occurring among
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the compartments of figure 1.5.

2.1 Theoretical concepts

One of the most important characteristics of the lipid bilayer that composes

the cell membrane is its selective permeability. In fact it constitutes a barrier

for the transit of polar molecules, which pass through the membrane only

thanks to special constituents, named membrane transporters. The main

subdivision of transmembrane transport is:

• Passive transport. It occurs without expenditure of energy by the

cell. One can distinguishes between simple diffusion (e.g. osmosis),

and the passive transport dependent by transmembrane proteins. In

particular, the two types of protein transporters are: channel proteins,

which contain aqueous spaces for the transit of H2O (aquaporins) or

ions (ion channels), and carrier proteins which, combining with the

ions to be transported, carry them through conformational modifica-

tions of the protein structure.

• Active transport. It is characterized by cellular energy expenditure

and it occurs through transmembrane proteins. In particular, it is

possible to further subdivide this type of transport by distinguishing

between primary and secondary transport.

Figure 2.1 reports a schematic subdivision of the transport mechanisms.
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Figure 2.1: A block scheme of the transmembrane transport process

Diffusion through channels. The diffusion of H2O and small ions occurs

thanks to protein channels (aquaporins and ion channels). Some channels,

named passive channels, are constantly open, allowing a continuous transit

of H2O or ions, while in others, named gates, the opening is regulated by a

series of extracellular or intracellular signals. The forms of energy capable

of regulating the opening of the gates can be of a chemical, electrical or

mechanical nature. The permeability (Pα) of the membrane to a given ion α

depends on the number of open channels allowing the transit of the ion α.

Facilitated diffusion: Uniports. Uniports are membrane proteins capa-

ble of carrying a single molecule. In this case the transport is bidirectional

and occurs passively, according to the concentration gradient. Uniports, like

other types of proteins, are characterized by saturating transport, meaning

that the flow rate does not increase linearly to the gradient, but tends asymp-

totically to a maximum level.
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Primary and secondary active transport. Active transport always

takes place thanks to the presence of a transporter protein and involves the

direct or indirect consumption of ATP by the cell. In this case ions move (all

or at least in part) against an electrochemical concentration gradient.

1. Primary active transport. In this case the hydrolysis of the energy sup-

plier is directly related to the transport of the solute. An example of

primary transporter is the ATP-asic pumps. A pump is a protein that

draws the necessary energy from the hydrolysis of ATP. The basolat-

eral membrane of the non-pigmented cell has a large concentration of

Sodium-Potassium ATPase pump which helps to create a negative rest-

ing membrane potential in the intracellular side and to limit the entry

of Na+ ions. The sodium concentration gradient generates a potential

energy source that can be used with different purposes and it is often

exploited by secondary active transporters.

2. Secondary active transport. In this case the hydrolysis is indirectly

linked to the transport of solutes. An example of secondary trans-

porters are the so-called co-transporters. These proteins transport two

molecules at the same time: one against a gradient and the other in

favor of the gradient. Two types of co-transporters are the exchangers,

or antiporters, in which the molecules that move against the gradient

and those that move along their gradient have opposite directions, and

the symporters, in which the molecules have the same direction.

The ciliary epithelium expresses a wide range of ion channels and trans-

porters responsible for facilitated diffusion and active transport. These mech-

anisms are distributed along the basolateral membrane of PE and NPE cells,

inducing secretion of AH from the stroma to the posterior chamber (figure
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2.2), but also reabsorption across the CE from the posterior chamber to the

stroma.

2.1.1 Transmembrane secretion of AH

The transepithelial secretion pathway can be described into three main steps,

through which the ciliary epithelium layer maintains a net flux of sodium:

1. Uptake of Stromal NaCl. Among all the transporters, at least three

electroneutral mechanisms support uptake of NaCl from the stroma:

the Na+−K+− 2Cl− cotransporter, the Na+−H+ antiport and the

Cl−−HCO−3 antiport. The symport Na+−K+− 2Cl−, which is con-

sidered the major mechanism for uptake of NaCl by both secretory and

absorptive epithelia, is responsable for a thermodynamic driving force

which favors net uptake of Na+, K+, and Cl− from the stromal side

into the PE. The two antiports are stimulated directly and indirectly

by the action of the Carbonic anhydrase II, an enzyme which increases

the turnover rates of the antiports by catalyzing the production of H+

and HCO−3 from CO2 and H2O.

2. Transit of NaCl from PE to NPE. The PE-NPE cell couplets can

be viewed as the functional unit of the ciliary epithelium. In fact, as

already mentioned, a massive presence of the PE-NPE gap junctions

have been demonstrated through numerous experimental techniques

[16]. These observations justify the fact that the transit of ions takes

place undisturbed, thus we can consider the difference in concentration

of ionic species across the two layers to be null.

3. Extrusion of NaCl from NPE Cells to PC. Finally, Na+ ions are

transported to the posterior chamber through the Na+−K+−ATPase
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pump, which exploits the hydrolysis of ATP to ADP for the extrusion

of three intracellular Na+ ions in exchange for two extracellular K+

ions. Moreover, the hydrolysis of ATP not only provides the secretion

of Na+ but also maintains the membrane potential necessary for the

secretion of other ions. This mechanism is accompanied by the action

of the Cl− channels and the K+ channels.

K+ channels are fundamental at least for three functions: they provide

a pathway for release of K+ to the aqueous humor, maintain the in-

tracellular potential more negative than the Cl− equilibrium potential

and provide a conduit for K+ to act as a catalyst.

Figure 2.2: Secretion pathway
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2.1.2 Transmembrane reabsorption of AH

In parallel to a flow of ions and water to the posterior chamber, one can

identify a path that allows the translocation of fluid to the stromal compart-

ment. On the basolateral surface of NPE cells, NaCl is reabsorbed by the

action of two antiports, Na+ − H+ and Cl− − HCO−3 , and two symports,

Na+ − K+ − 2Cl− and Na+ − Cl− [6]. Once the reabsorbed fluid reaches

the basolateral membrane of the PE cells it is extruded by the action of the

Na+−K+ pump, which are also present on the basolateral membrane of the

pigmented epithelium, albeit in smaller quantities.

Figure 2.3: Reabsorption pathway

2.1.3 Aquaporins

Aquaporins are small water permeable channels whose contribution is cru-

cial in the maintenance of body fluid homeostasis. Denoting M and N two
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compartments which are in communication via aquaporins, the transport of

water across aquaporins from M to N is driven by three forces: the osmotic

pressure, which results to be predominant, the hydraulic pressure difference

(∆P := PM −PN , where PM and PN are the values of hydraulic pressure in

M and N respectively) and the oncotic pressure difference (∆Π := ΠM−ΠN ,

where ΠM and ΠN are the values of oncotic pressure in M and N respec-

tively). The water flux is expressed by the following formula [12]:

JAQPH2O
= LAQPp (∆P −∆Π−RT

∑
α

γα∆cα) (2.1)

where LAQPp is the aquaporin permeability to water, γ is a solute activity co-

efficient, ∆cα is the difference of ion concentration across the surface between

M and N , and the sum is over the ions present in the solution.

2.1.4 Acid-base balance

The ionization of a large number of components in the cytoplasm of the cells

is determined by the intracellular pH value. For this reason, maintaining a

stable pH is a vital task for the cell and is pursued by means of different

mechanisms [12]. In particular, cells can control pH stabilization with the

help of buffers, composed by a weak acid and its conjugate weak pair, such as

the carbonic acid/bicarbonate pair (H2CO3/HCO
−
3 ) in the ciliary epithelium

layer.

Since spontaneous diffusion across the membrane could lead to an imbalance

in the concentration of acid molecules, the cell is equipped with so called

acid loaders and acid extruders. An example of acid extruder present on the

basolateral membranes of the CE layer is the Na+/HCO−3 cotransporter,

while the HCO−3 /Cl
− exchanger represents an example of acid loader.

26



2.2. MATHEMATICAL DESCRIPTION OF TRANSMEMBRANE
TRANSPORT

2.2 Mathematical description of transmem-

brane transport

In this section we will introduce the mathematical description of the several

transmembrane transporters that are included in the model of the basolateral

membranes of the double epithelium layer.

Notice that we will consider from now on the AH as a homogeneous

mixture [1] composed mainly by 5 ionic species, namely the Sodium cation

Na+, the Potassium cation K+, the Hydrogen cation H+, the Chlorine anion

Cl− and the Hydrogen carbonate anion HCO−3 , while we will consider water

as fluid solvent. For the computation of the ionic flux between extracellular

and intracellular side we will consider as transmembrane mechanisms the

following transporters:

1. the Na+/K+ATPase pump, which is a primary active transporter;

2. the HCO−3 /Cl
− anion exchanger which is a secondary active mecha-

nism;

3. the Na+/H+ cation exchanger which is a secondary active mechanism;

4. the Na+/K+/2Cl− cotransporter which is a secondary active trans-

porter;

5. the Na+/HCO−3 symport which is a secondary active transporter as

well;

6. ionic channels for all the species, which are passive transporters.

The aim is the description of the net molar flux density Jα ([mol m−2s−1])

passing through a given membrane that separates two compartments. Since
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we will adopt a one dimensional spatial description for each compartment of

the model, the membrane can be viewed as a node that separates two regions.

We will denote as M and N the regions adjacent to the considered node (see

figure 2.4). Moreover, we will use the superscript M and N to denote the

quantities on the M -side and on the N -side of the junction. In particular,

ciα, i = M,N denotes the molar concentration ([mM]) for the ion species α on

the left and right side of the node, while φi, i = M,N is the electric potential

([V ]). Note that we are considering a lumped version model for a biological

membrane, so that a jump in the electric potential φMN = φM − φN is

perfectly admissible and it represents the so called transmembrane potential.

Figure 2.4: Junction separating two compartments M and N

In figure 2.4 JMN
α ([mol m2s−1]) represents the net molar flux density that

flows across the junction from M to N , namely, denoting by ζ the junction

point, we have:

JMN
α = JMα (ζ)nM(ζ) (2.2)

where nM(ζ) is the normal unit vector at M -side at node ζ. Similarly, we

have:

JNMα = JNα (ζ)nN(ζ) (2.3)
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2.2.1 Na+/K+ATPase pump

Figure 2.5: Na+/K+ pump

This active transporter exploits the

energy retrieved from ATP hydrolysis.

For each ATP molecule, three Na+

ions are exported towards the extra-

cellular region and two K+ ions are

imported in the cytoplasm.

The ionic flux across the Na+/K+ATPase pump can be evaluated con-

sidering the binding of each ion to the enzyme E as an independent process

[12]. Let us consider the first order, reversible reaction between one intracel-

lular Na+ ion and the enzime E:

Na+ + E ←→ NaE (2.4)

Denoting as konNaE and koffNaE the association and dissociation kinetic constants

for the reaction (2.4), the rate of NaE formation is given by:

dcNaE
dt

= konNaEc
M
Na+cE − k

off
NaEcNaE = 0 (2.5)

At steady state, one can neglect the temporal derivative, thus obtaining

κonNaEc
M
Na+(ctotE − cNaE) = κoffNaEcNaE (2.6)

where we used the relation ctotE = cE+cNaE, ctotE being the total concentration

of the enzyme E. Introducing the so called apparent dissociation constant

KM
Na+ = koffNaE/k

on
NaE, one can reformulate eq. (2.6) as:

cNaE =
cMNa+

cMNa+ +KM
Na+

ctotE (2.7)
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From (2.7) we can deduce that the probability pNa of having one pump

unit bound to one Na+ ion is proportional cMNa+/(c
M
Na+ + KM

Na+). Similarly,

the probability to pK of having one pump unit bound to one K+ ion is

proportional to cNK+/(cNK+ +KN
K+).

Introducing the following relations:

KM
Na+ = Kpump

M,Na+(1 +
cMK+

Kpump
M,K+

) (2.8)

KN
K+ = Kpump

N,K+(1 +
cNNa+

Kpump
N,Na+

) (2.9)

the flux density across the pump JMN
pump can be expressed as:

JMN
pump = γMN [ATP ]

(
cMNa
φNa+

)3(
cNK
φ+
K

)2

(2.10)

where γ ([ms−1]) is a membrane permeability and [ATP ] ([mM ]) is the ATP

molar concentration.

The functions φMNa+ and φNK+ take the form

φNa+(cMNa+ , c
M
K+) = cMNa+ +Kpump

M,Na+

(
1 +

cMK+

Kpump
M,K+

)
(2.11)

φK+(cNNa+ , c
N
K+) = cNK+ +Kpump

N,K+

(
1 +

cNNa+

Kpump
N,Na+

)
(2.12)

Kpump
N,Na+ and Kpump

M,K+ ([mM ]) are called inhibition constants, while Kpump
M,Na+

and Kpump
N,K+ ([mM ]) are called Michaelis constants.

For stoichiometric considerations, denoting the extracellular region as N -

side, one has that the flux density across the pump is:

J
Na/K,MN

Na+ = JMN
pump (2.13)

J
Na/K,NM

K+ =
2

3
JMN
pump. (2.14)
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2.2.2 HCO−3 /Cl
− anion exchanger

This antiport works as an acid loader

for the cell, importing Cl− in the cyto-

plasm (M side) and extruding HCO−3 .

Figure 2.6: HCO−3 /Cl
− exchanger

The mathematical description is the following

JMN
exch,1 = κHCO−3 /Cl−

cNCl− c
M
HCO−3

− cMCl− cNHCO−3
φ(cMCl− , c

N
Cl− , c

M
HCO−3

, cN
HCO−3

)
(2.15)

where the function φ takes the form φ = φ̃MN + φ̃NM , with

φ̃ij =

(
1 +

ciCl−

KCl−
+

ci
HCO−3

KHCO−3

)(
1 +

cjCl−

KCl−
+

cj
HCO−3

KHCO−3

)
(2.16)

while κHCO−3 /Cl− ([m4mol−1s−1]) can be described as

κHCO−3 /Cl− =
GHCO−3 /Cl

−

KCl−KHCO−3

(2.17)

where GHCO−3 /Cl
− ([mol m−2s−1]), KCl and KHCO3 ([mM ]) are given con-

stants.

Assuming the direction depicted in the figure, one obtains

J
HCO3/Cl,MN

HCO−3
= JMN

exch,1 (2.18)

J
HCO3/Cl,NM

Cl− = JMN
exch,1 (2.19)
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2.2.3 Na+/H+ cation exchanger

Figure 2.7: Na+/H+ exchanger

The aim of this antiport is to regulate

the intracellular pH by expelling H+

ions generated from metabolic pro-

cesses and cellular respiration. Na+

ions enter in the cytoplasm (M side)

whileH+ ions are expelled against gra-

dient.

Similarly to what we saw previously, its mathematical description is the

following

JMN
exch,2 = κNa+/H+

cMH+ cNNa+ − cNH+ cMNa+

φ(cMNa+ , c
N
Na+ , c

M
H+ , cNH+)

(2.20)

where φ = φ̃MN + φ̃NM and in this case one has

φ̃ij =

(
1 +

ciNa+

KNa+
+

ciH+

KH+

)(
1 +

cjNa+

KNa+
+

cjH+

KH+

)
(2.21)

moreover κHCO−3 /Cl− can be described as

κNa+/H+ =
GNa+/H+

KNa+KH+

(2.22)

where GNa+/H+ ([mol m−2s−1]), KNa+ and KH+ ([mM ]) are given constants.

Then, the molar flux densities are

JMN
H+ = JMN

exch,2 (2.23)

JNMNa+ = JMN
exch,2 (2.24)
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2.2.4 Na+/K+/2Cl− cotransporter

It is an electroneutral transporter

whose main activity is the control of

cell volume. Na+ ions enter accord-

ing to gradient while K+ ions and Cl−

ions enter against gradient.

Figure 2.8: Na+/K+/2Cl− co-

transporter

The mathematical description is the following

JNMco = Jco,max

[
φ(cNNa+ , c

N
K+ , cNCl−)− φ(cMNa+ , c

M
K+ , cMCl−)

]
(2.25)

where Jco,max represents the maximum molar flux density that can pass

through the transporter at steady state and the function φ takes the fol-

lowing form

φ(x, y, z) =

(
x

x+Kco
Na+

)(
y

y +Kco
K+

)(
z

z +Kco
Cl−,1

)(
z

z +Kco
Cl−,2

)
(2.26)

where Kco
Na+ , Kco

K+ , Kco
Cl−,1 and Kco

Cl−,2 are suitable constants.

The resultant molar flux densities are

JNMNa+ =
1

2
Jco (2.27)

JNMK+ =
1

2
Jco (2.28)

JNMCl− = Jco (2.29)
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2.2.5 Na+/HCO−3 symport

Figure 2.9: Na+/HCO−3 symport

This symport shows two essential

functions: import of sodium and

import of bicarbonate in variable

proportions. The result is an increase

of the intracellular pH.

The mathematical description of the symport is

JNMsymp = κNa+/HCO−3

cN
HCO−3

cNNa+ − cMHCO−3 cMNa+

φ(cMNa+ , c
N
Na+ , c

M
HCO−3

, cN
HCO−3

)
(2.30)

where κNa+/HCO−3 has the following form

κNa+/HCO−3 =
GNa+/HCO−3

Kc,Na+Kc,HCO−3

(2.31)

while φ can be written as φ = φ̃MN + φ̃NM , where

φ̃ij =

(
1 +Rlk

ciNa+ ci
HCO−3

Kc,Na+Kc,HCO−3

)(
1 +

cjNa+

Kc,Na+
+

cjNa+ cj
HCO−3

Kc,Na+Kc,HCO−3

)
(2.32)

Kc,Na+ , Kc,Na+ , Rlk and GNa+/HCO−3
being suitable parameters.

Finally, the molar flux densities are

JNMNa+ = JNM
HCO−3

= JNMsymp (2.33)

2.2.6 Ion channels

For ion channels we use the Goldman-Hodgkin-Katz model [1]:

JMN
α = Pα[cMα Be(−ηMN

α )− cNαBe(ηMN
α )] (2.34)
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where Pα is the permeability of the membrane to the specific ion α, Be(x) =

ex/(x− 1) is the inverse of the Bernoulli function and

ηMN
α =

vMN
f

Pα
+ zα

ψM − ψN

Vth
(2.35)

where Vth = KBT/q is the so called thermal potential and vMN
f is the fluid

velocity throughout the channel.

Note that if one wants to obtain the current densities Jel,MN
α ([Cm−2s−1]),

the following relation should be applied

Jel,MN
α = FzαJ

MN
α (2.36)

where F = 96.485, 336 Cmol−1 is the Faraday constant.

In Table 2.1 the values of the coefficients that appeared in this section

are reported.

Figure 2.10 represents the schematic distribution of the transporters along

the basolateral membranes of the PE-NPE cells. As previously underlined,

transporters are not evenly distributed, as each of them plays a different role

in the transmembrane transport of ions.
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Figure 2.10: A schematic representation of transmembrane mechanisms in

the ciliary epithelium.
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Coefficient Value Unit Transporter

Kpump
M,Na+ 1.3 mM Na+/K+ATPase

Kpump
N,K+ 0.14 mM Na+/K+ATPase

Kpump
N,Na+ 12 mM Na+/K+ATPase

Kpump
M,K+ 32 mM Na+/K+ATPase

KCl− 10 mM HCO−3 /Cl
−

KHCO−3
1 mM HCO−3 /Cl

−

GHCO−3 /Cl
− 1.5 · 10−3 mol cm2s−1 HCO−3 /Cl

−

KH+ 5 · 10−4 mM Na+/H+

KNa+ 100 mM Na+/H+

GNa+/H+ 3 · 10−3 mol cm2s−1 Na+/H+

Kco
Na+ 105 mM Na+/K+/2Cl−

Kco
K+ 1.22 mM Na+/K+/2Cl−

Kco
Cl−,1 103 mM Na+/K+/2Cl−

Kco
Cl−,2 23.9 mM Na+/K+/2Cl−

Kc,Na+ 500 mM Na+/HCO−3

Kc,HCO−3
30 mM Na+/HCO−3

GNa+/HCO−3
1.5 · 10−3 mol cm2s−1 Na+/HCO−3

Rlk 100 - Na+/HCO−3

Table 2.1: Values of the coefficients used in the numerical simulations.
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Chapter 3

The mathematical model of ion

and fluid transport

This chapter is devoted to the derivation of the Velocity extended Poisson-

Nernst-Planck (VE-PNP) system, for the description of electrodiffusion phe-

nomena involved in the AH secretion.

3.1 Velocity Extended PNP model

The VE-PNP model is widely used in biophysical applications for the de-

scription of ion electrodynamics coupled with fluid-dynamics mechanisms

(see [1]). It results to be a continuum-based model composed by:

1. the Poisson equation, which takes into account the electric field gen-

erated by moving and fixed charged ions;

2. the Nernst-Planck equation, which describes the conservation of

mass and the balance of momentum for each ion species;

3. the Navier-Stokes equations, which describe the conservation of
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3.1. VELOCITY EXTENDED PNP MODEL

mass and the balance of momentum for the fluid.

In the following, we carry out the derivation of the equations starting from

the integral form for the balance of mass charge and momentum. We consider

a homogeneous mixture composed by the fluid solvent and Mion ion species,

which means that the mixing between ions and fluid occurs at the molecular

level. Our description is based on the treatment made in [1].

3.1.1 Balance laws in local form

Let us consider a scalar quantity u = u(x, t) in the Eulerian framework. The

general balance law of u in a material volume Vt ⊆ Ωt of a moving material

domain Ωt takes the form

d

dt

∫
Vt
u(x, t)dΩ =

∫
∂Vt

(γ · n)(x, t)dσ +

∫
Vt
βdΩ (3.1)

where n(x, t) is the outward unit normal vector at the point x on the bound-

ary ∂Vt. γ is a vector field which describes the dynamics of u through the

boundary ∂Vt, while β, also called net production rate, acts as a source or

sink in Vt.

In a similar way one can describe the balance law for a vector-valued physical

quantity. Given the vector field u = u(x, t), the balance law of u in Ωt takes

the form

d

dt

∫
Vt
u(x, t)dΩ =

∫
∂Vt

(Σn)(x, t)dσ +

∫
Vt
β(x, t)dΩ (3.2)

where the second order stress tensor Σ and the vector field β, as in the scalar

case, model the dynamics of u.
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Starting from a balance law in integral form, one can derive the local

form by means of the transport theorem (A.1), to move the time derivative

inside the corresponding volume integrals, and the divergence theorem (A.2),

to retrieve a volume integral from the first term on the right hand side.

In a general framework of a moving material domain, applying the transport

theorem to the scalar quantity u one obtains

d

dt

∫
Vt
u(x, t)dΩ =

∫
Vt

∂u

∂t
(x, t)dΩ +

∫
∂Vt

(uv · n)(x, t)dσ (3.3)

where v(x, t) is the vector field describing the velocity of the medium at each

point x ∈ ∂Vt. Applying the divergence theorem to the second term on the

right hand side we get

d

dt

∫
Vt
u(x, t)dΩ =

∫
Vt

(
∂u

∂t
(x, t) +∇x · (uv)(x, t)

)
dΩ (3.4)

The quantity appearing as integrand in the right hand side is called material

derivative of u

Du

Dt
(u, t) :=

∂u

∂t
(x, t) + (v · ∇x)u(x, t) (3.5)

Finally, applying the divergence theorem in (3.1) and considering that the

integral form should be valid for any material volume Vt ⊆ Ωt, the balance

law in a local form for the scalar quantity u takes the form

Du

Dt
= ∇x · γ(x, t) + β(x, t), ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.6)

Balance of mass and electric charge In order to retrieve a balance for

mass and electric charge, one should apply (3.6) to the mass density field

ρ(x, t) and the charge density field ζ(x, t) respectively , obtaining

∂ρ

∂t
(x, t) +∇x · (ρv)(x, t) = β(x, t), ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.7)
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∂ζ

∂t
(x, t) +∇x · (ζv)(x, t) = π(x, t) ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.8)

where γ(x, t) has been considered null since the boundary of Ωt moves with

the mass (and the charge as well) contained in it, thus implying γ = 0 for

u(x, t) = ρ(x, t) and u(x, t) = ζ(x, t).

In the case when β = 0 and π = 0, the balance equations of mass and charge

reduce to the following conservation laws:

∂ρ

∂t
(x, t) +∇x · (ρv)(x, t) = 0, ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.9)

∂ζ

∂t
(x, t) +∇x · (ζv)(x, t) = 0, ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.10)

Moreover, if one assumes ρ to be constant in time and space, (3.7) reduces

to the incompressibility constraint on the velocity, namely

∇x · v(x, t) = 0 ∀x ∈ Ωt, ∀t ∈ (0, T ) (3.11)

It is worth to notice that one can link the mass density ρα of the ion species

α to the number density function nα(x, t) ([m−3]), which represents the aver-

aged number of ions of type α per unit volume contained in the infinitesimal

volume dΩt located at x at time t, through the following relation

ρα(x, t) := mαnα(x, t), x ∈ Ωt, t ∈ (0, T ) (3.12)

where mα ([Kg]) is a positive constant representing the mass of the ion α.

Equation (3.12) connects a kinetic description of the phenomena to the con-

tinuum approach and it allows us to identify the two balance laws (3.7) and

(3.8), since the electric charge density for the ion α can be defined as

ζα(x, t) := qzαnα(x, t), x ∈ Ωt, t ∈ (0, T ) (3.13)

and thus (3.8) is obtained multiplying (3.7) by the factor qzα/mα.
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Balance of momentum Applying the Reynold’s theorem (A.3) to each

component of (3.2) with ρη = ρvk, k = 1, 2, 3, one obtains the following local

balance law in vectorial form for the linear momentum

ρ
∂v

∂t
+ ρ(v · ∇x)v + βv = ∇x · T + b (3.14)

where the second order tensor T is the Cauchy stress tensor and the vector

field b(x, t) is the resultant of external body forces per unit volume.

3.1.2 Ion charged fluid

If we assume to work with an isothermal mixture, the Velocity extended

PNP model for an homogeneous multicomponent mixture can be derived

considering the balance law for mass, electric charge and momentum. For this

reason, we will apply here the general concepts illustrated above, considering

first the balance equations for each α ion, with α = 1, ...,Mion, and then

dealing with the equations for the fluid, denoted with the subscript f .

Ion species For each ion species α, the balance laws for mass and linear

momentum, valid for x ∈ Ωt and t ∈ (0, T ), can be written as

mα
∂nα
∂t

+∇x · (ραvα) = βα (3.15)

mαnα
∂vα
∂t

+mαnα(vα · ∇x)vα + βαvα = ∇ · T α + bα (3.16)

The net production rate βα is strongly related to the specific application.

In the study of biological systems, such as protein channels, one can safely

neglect the effects of generation/recombination, and thus set βα = 0 for each

ion α = 1, ..,Mion. However, in an intracellular environment, cellular activity

is linked to internal chemical reactions, which therefore may contribute with

a significant generation/recombination rate to the mass balance of the ionic
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species.

The stress tensor T α can be described using the following constitutive rela-

tion [1]

T α = −pαI + λα(∇x · vα)I + 2µαD(vα) (3.17)

where pα is the hydrostatic pressure exerted by ions of the same species,

λα is the ion bulk modulus, µα is the ion dynamic viscosity and D is the

symmetric part of ∇xv. The force density bα can be considered as the sum

of two contributions [1]

bα = mα + fα (3.18)

The contribution mα takes into account the effect of viscous drag forces on

the ions of species α exerted by other components of the mixture. Introducing

the viscous drag coefficients cαγ (cαγ = cγα), mα assumes the following form:

mα = −
Mion∑

γ=1,γ 6=α

cαγ(vα − vγ)− cαf (vα − vf ) (3.19)

The contribution fα takes into account gravitational and Lorentz forces:

fα = ραg + qzαnα(E + vα ×B) (3.20)

Fluid solvent For the fluid component one has, for x ∈ Ωt and t ∈ (0, T ),

∂ρf
∂t

+∇x · (ρfvf ) = βf (3.21)

ρf
∂vf
∂t

+ ρf (vf · ∇x)vf + βfvf = ∇x · T f + bf (3.22)

where the description of βf , T f and bf is similar to that performed in the

case of ion species. If the fluid is water, as in the case of AH production, one

can simplify (3.21) considering the incompressibility constraint, thus writing

∇x · vf = 0 (3.23)
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Moreover, the stress tensor T f and the force density bf can be written in the

form

T f = −pfI + 2µfD(vf ) (3.24)

bf = ρfg −
Mion∑
α=1

cfα(vf − vα) (3.25)

Electromagnetic field To solve the electromagnetic field generated by

the charged ions, it is necessary to introduce the Maxwell equations:

∇x ×E = −∂B
∂t

(3.26)

∇x ×H = J +
∂D

∂t
(3.27)

∇x ·D = ρel (3.28)

∇x ·B = 0 (3.29)

where

ρel(x, t) =

Mion∑
α=1

ζα(x, t) + ρfixed(x, t) (3.30)

J(x, t) =

Mion∑
α=1

qzαnα(x, t)vα(x, t) (3.31)

ζα being the electric charge density of the ion species α and ρfixed being the

charge density of fixed ions and/or charged immobile proteins.

Moreover, to complete the system, one can consider the following constitutive

relationships

D = εmE, B = µmH (3.32)

where εm is the dielectric permittivity of the mixture and µm is the magnetic

permittivity of the mixture.
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3.1.3 Derivation of the VE-PNP model

In order to derive the VE-PNP from equations (3.15), (3.16), (3.21), (3.22),

coupled with the Maxwell system, we introduce the following assumptions:

1. Bulk modulus coefficients are negligible for each ion species, thus λα =

0, ∀α = 1, ...,Mion;

2. Dynamic viscosity coefficients are negligible for each ion species, thus

µα = 0, ∀α = 1, ...,Mion;

3. Viscous drag coefficients among ion components are negligible, thus

cαγ = 0, ∀α, γ = 1, ...,Mion;

4. Characterization of viscous drag coefficients between fluid and ion species

using Stokes’ drag theory

cαf = 6πµfRh,αnα (3.33)

where

Rh,α =
KBT

6πα
(3.34)

is the hydrodynamic radius ([m]) of the ion species α. Dα ([m2s−1]) is

the molecular diffusion coefficient of the species α in the fluid and T is

the temperature of the mixture;

5. Einstein’s relation holds, thus

Dα =
KBT

q|zα|
µelα (3.35)

where µel is the electrical mobility ([m2V −1s−1]) of the ion species α;

6. Inertial terms are negligible in (3.15) and (3.21), thus

Dvf
Dt

= 0,
Dvα
Dt

= 0, ∀i = 1, ...,Mion (3.36)
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7. The effects of the gravitational field are negligible;

8. The contribution of the magnetic field H is small in comparison with

that of the electric field. Moreover, the temporal variation of B is

negligible in comparison with the spatial variation of E.

Under the assumptions 1.-8., we obtain the following system of equations:

∂nα
∂t

+∇x · Jα = βα (3.37)

Jα = nαvf + µelα
zα
|zα|

nαE −Dα∇xnα (3.38)

∇x · vf = 0 (3.39)

−2µf∇x ·D(vf ) +∇xpf = −
Mion∑
α=1

KBT∇xnα +

Mion∑
α=1

qzαnαE (3.40)

εm∇x ·E = q

Mion∑
α=1

zαnα (3.41)

E = −∇xψ (3.42)

where in (3.42) ψ represents the electrical potential. The model is composed

by the Nernst-Planck equations, which describe conservation of mass and

balance of momentum for the ion component, the Stokes equations, which

describe the fluid dynamics, and the Poisson equation, which describes the

electric field E in the system.

In (3.38) the flux density Jα ([m−2s−1]) results to be the sum of three con-

tributions

Jα = Jα,f + Jα,E + Jα,diff (3.43)

where

1. Jα,f = nαvf is the contribution due to the convective effect of the

velocity of the fluid solvent;
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2. Jα,E = µelα
zα
|zα|nαE is the contribution due to the convective effect of

the electric field on ions;

3. Jα,diff = −Dα∇xnα is the contribution due to the diffusion process,

described through Fick’s law.

It is worth to remember that one can associate with the flux density Jα an

ion current density J elα ([Am−2]), namely

J elα = qzαJα (3.44)
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Chapter 4

The model for AH secretion

In this chapter we apply the VE-PNP model to the description of ion elec-

trodiffusion across the ciliary epithelium. With this aim, we first introduce

a one-dimensional network based on the compartmental model described in

chapter 1. Then, we derive a PNP differential system to describe ion motion

along the network.

4.1 Description of the simplified domain

In this section we will describe the geometry upon which to apply the final

system that we will derive starting from the VE-PNP equations.

With this aim, we will consider a portion of Ciliary Body which includes

the double Ciliary epithelial layer, the Stroma, the paracellular side and the

Posterior chamber, as represented in figure 4.1.

The process of aqueous humor secretion starts with the ultrafiltration of

blood through the vascular endothelium layer that covers the vessels. The

filtrated plasma flows from the Stroma to the Posterior chamber passing

through the double epithelial layer. In particular, it can be transported ac-
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tively through the cytoplasm of the cells or it can flow along the paracellular

side, where it will be eventually filtrated by the tight junctions.

Figure 4.1: A three dimensional scheme of the ciliary epithelium illustrating

the flow direction of the homogeneous mixture. The blood transported by the

ciliary capillary reaches the stroma. The ultrafiltrated plasma flows across

the ciliary epithelium.

As a first step, we will assume that the z component of the AH flow can

be neglected, thus we are allowed to study the flow along the x− y plane.

Let us consider now a compartmental subdivision of the interested area, as

depicted in figure 4.2. Different compartments are in communication with

each other. In particular the NPE and PE compartments communicate with

the extracellular compartments (Stroma (S), paracellular side (PS), poste-

rior chamber (PC)) thanks to the transporters located along the basolateral

membrane of the cells. Moreover, PE and NPE are in a strict communication

with each other thanks to the gap junctions distributed along the apical sur-

faces. Tight junctions are positioned between two PS compartments, which
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in turn communicate with S and PC.

Figure 4.2: A two dimensional cross-section in the x-y plane of the scheme

shown in figure 4.1.

In our model, we will investigate a portion of the scheme in figure 4.2, as

illustrated in figure 4.3. In particular, we will consider half of a single cell

both for PE and NPE cells, and half of the paracellular space between two

adjacent cells. This choice will allow us to introduce an important assumption

on the AH flux, namely, null flux on the left boundary of the PE and NPE

compartment and on the right boundary of the PS compartments. This

assumption is justified by symmetry motivations.
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Figure 4.3: Two-dimensional geometrical model for the AH secretion

Finally, a network scheme is derived for the interested area. The use of a

network for the description of the problem turns out to be a good trade-off

between model simplicity and the need to describe all the electro-chemical

phenomena that contribute to the secretion of AH. In fact, this network

approach allows us to model the dynamics inside the compartments, which

will be represented by the edges of the network, but it also prevents us from

neglecting the phenomena that occur at the interfaces of the compartments,

which are treated by including lumped models at the nodes of the network

that separate two compartments.

The geometrical description of the network is depicted in figure 4.4 and

it is composed by 11 edges distributed along the PE-NPE-PS compartments,

7 nodes (named from A to G) which represent the interface surfaces where

it is necessary to establish the laws governing the flow of particles, and the

Lj, j = 1, .., 6, nodes which do not represent a physical membrane, but
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simply serve to connect adjacent sides of the network.

Figure 4.4: The transition between the compartmental model and the net-

work model

It is important to notice that, passing to the network configuration, we

decided not to insert any node at the interface between PE-NPE, this be-

cause we will assume that the gap junctions allow an undisturbed flow of

information between the two compartments, thus we can consider the couple

PE-NPE as a single compartment.

Comparing figure 2.10 to the network diagram illustrated in figure 4.5,

one can observe that the transporters placed between the ciliary epithelium

and the posterior chamber characterize the ionic behavior of the node F , the
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Figure 4.5: Network geometrical representation of the Ciliary epithelium.

transporters placed between the stroma and the ciliary epithelium character-

ize the node A, the mechanisms placed between the ciliary epithelium and

the paracellular side characterize the nodes C and E, while the nodes B,

D, and G have been described assuming the presence of channels for all the

ionic species.

4.2 A PNP model on the network

The aim of this section is the derivation of the final equations used for the

description of ion electrodynamics in the ciliary epithelium. Since our goal is

just to model the concentration of ions inside the compartments, we decided

to neglect the advective contribution of the fluid velocity, thus imposing

vf = 0. However, one should keep in mind that if the goal is to evaluate the

hydrostatic pressure supporting the flow of aqueous humor, then the Stokes

part of the model must be included.

We also make the assumption that phenomena occur at a smaller temporal

54



4.2. A PNP MODEL ON THE NETWORK

scale compared to our observation. This allows us to look for the stationary

solution of the PNP model, thus neglecting all the temporal derivatives in

(3.37)-(3.42).

The resulting one dimensional formulation of the PNP equations reads:

∂Jα
∂s

= βα (4.1)

Jα = µelα
zα
|zα|

cαE −Dα
dcα
ds

(4.2)

ε
∂E

∂s
= F

Mion∑
α=1

zαcα + F (c+
fixed − c

−
fixed) (4.3)

E = −∂ψ
∂s

(4.4)

where cα ([mM ]) is the molar concentration of the ion α (nα = cαNAV ), s

is the curvilinear coordinate along the network, and c+
fixed ([mM ]) and c−fixed

([mM ]) are the positive and negative fixed molar density in the intracellular

side,respectively. Equations (4.1)-(4.4) hold in Ωi, i = 1, .., 11. The system

must be completed imposing suitable boundary conditions and compatibility

conditions in correspondence of the network nodes.

4.2.1 Electric part

Collecting out µelα cαzα/|zα| in (4.2) and using (3.35), one obtain the following

relation:

Jα = −µelα
zα
|zα|

cα
∂ϕecα
∂s

(4.5)

where ϕecα ([V ]) is the electrochemical potential of ion α defined as:

ϕecα = ψ +
Vth
zα

ln

(
cα
cref

)
(4.6)

where Vth = Dα|zα|/µelα is the thermal voltage ([V ]) and cref ([mM ]) is a

positive constant that represents the reference concentration in the ionic
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solution, which we take equal to the ion bulk maximum molar density. By

inverting (4.6) we obtain the generalized Maxwell-Boltzmann statistics:

cα = cref exp

(
zα
ϕecα − ψ
vth

)
(4.7)

Replacing (4.7) in (4.3) one obtains the following nonlinear Poisson equation

in mixed form, valid in Ωi, i = 1, ..., 11:
∂D(ψ)
∂s

= F (c+
fixed − c

−
fixed) + Fcref

∑Mion

α=1 zα exp

(
zα

(ϕecα −ψ)
Vth

)
D(ψ) = −ε∂ψ

∂s

(4.8)

To close the system we need to enforce suitable compatibility conditions at

the nodes of the networks.

With this aim, let us consider the nomenclature used in figure 4.6, where the

membrane that separates the regionsM andN is represented with a thickness

tm 6= 0. Away from ion channels and transmembrane proteins, the normal

component of the electric displacement vector D · n and the electrostatic

potential ψ should be continuous functions along x. Therefore, if we make

the assumption that the amount of membrane area occupied by proteins is

negligible, we have:

ψM = ψin; ψN = ψout; (4.9)

ε
∂ψM

∂n1
= εm

∂ψin

∂n1
; ε

∂ψN

∂n2
= εm

∂ψout

∂n2
; (4.10)

where εm is the dielectric constant of the cell membrane. Let us now in-

troduce two more assumptions: tm is small compared to the typical length

scale of the system and the bulk of the membrane behaves electrically as an

insulator with a uniform dielectric constant [14]. Under these assumptions

we have that ψ varies linearly in the membrane, thus we obtain the following

conditions:

DM · n1 = ε
∂ψM

∂n1
= εm

∂ψin

∂n1
= εm

ψM − ψN

tm
= cm(ψM − ψN) (4.11)
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Figure 4.6: Schematic representation of the nomenclature used in this section.

DN · n2 = ε
∂ψN

∂n2
= εm

∂ψout

∂n2
= εm

ψN − ψM

tm
= cm(ψN − ψM) (4.12)

Considering (4.11) and (4.12) we now make explicit the boundary condi-

tions at each edge of the network.

• Node A

D1(A) · n1(A) = cm,A(ψ1(A)− ψS) (4.13)

where ψS is the electric potential in the Stroma compartment, cm,A

([Fm−1]) is the membrane capacitance per unit area at node A and

n1(A) is the outward normal unit vector at A of the Ω1 edge.

In the following we will adopt the same convention, indicating the edge

number as a subscript.

• Node B

D4(B) · n4(B) = cm,B(ψ4(B)− ψS) (4.14)

where cm,B ([Fm−2]) is the capacitance per unit area of the paracellular

membrane.

• Node C

D2(C) · n2(C) = cm,C(ψ2(C)− ψ3(C)) (4.15)
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D3(C) · n3(C) = cm,C(ψ3(C)− ψ2(C)) (4.16)

Here cm,C ([Fm−2]) represents the membrane capacitance per unit area

of the basolateral membrane of the PE.

• Node D

D6(D) · n6(D) = cm,D(ψ6(D)− ψ7(D)) (4.17)

D7(D) · n7(D) = cm,D(ψ7(D)− ψ6(D)) (4.18)

where cm,D ([Fm−2]) is the membrane capacitance per unit area due

to the presence of the tight junction.

• Node E

D8(E) · n8(E) = cm,E(ψ8(E)− ψ9(E)) (4.19)

D9(E) · n9(E) = cm,E(ψ9(E)− ψ8(E)) (4.20)

where cm,E ([Fm−2]) represents the membrane capacitance per unit

area of the basolateral membrane of the NPE.

• Node F

D10(F ) · n10(F ) = cm,F (ψ10(F )− ψPC) (4.21)

where ψPC is the electric potential in the posterior chamber and cm,F

([Fm−2]) is the capacitance of the basolateral membrane of the NPE.

• Node G

D11(G) · n11(G) = cm,G(ψ11(G)− ψPC) (4.22)

where cm,G ([Fm−2]) is the capacitance per unit area of the membrane

separating the paracellular side and the PC.

Together with conditions (4.13)-(4.22), one should impose a Kirchoff law for

the normal component of the electric displacement D and the continuity of

the electric potential ψ at nodes Li, i = 1, .., 4:
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• Node L1

ψ1(L1) = ψ2(L1) (4.23)

ψ1(L1) = ψ5(L1) (4.24)

D1(L1) · n1(L1) +D2(L1) · n2(L1) +D5(L1) · n5(L1) = 0 (4.25)

• Node L2

ψ3(L2) = ψ4(L2) (4.26)

ψ3(L2) = ψ6(L2) (4.27)

D3(L2) · n3(L2) +D4(L2) · n4(L2) +D6(L2) · n6(L2) = 0 (4.28)

• Node L3

ψ5(L3) = ψ8(L3) (4.29)

ψ5(L3) = ψ10(L3) (4.30)

D1(L3) · n1(L3) +D2(L3) · n2(L3) +D5(L3) · n5(L3) = 0 (4.31)

• Node L4

ψ7(L4) = ψ9(L4) (4.32)

ψ7(L4) = ψ11(L4) (4.33)

D7(L4) · n7(L4) +D9(L4) · n9(L4) +D11(L4) · n11(L4) = 0 (4.34)

4.2.2 Ionic part

Let us now describe the remaining part of the model, the balance law for ion

momentum. For each ion α, in Ωi, i = 1, ..., 11, one has to solve:
∂Jα
∂s

= βα

Jα = µelα
zα
|zα|cαE −Dα

dcα
ds

(4.35)
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To close the system we introduce suitable boundary conditions, by impos-

ing ion concentration in the Stromal compartment (S) and in the posterior

chamber (PC):

cSα(A) = c̄Aα , ∀α = 1, ..,Mion (4.36)

cSα(B) = c̄Bα , ∀α = 1, ..,Mion (4.37)

cPCα (F ) = c̄Fα , ∀α = 1, ..,Mion (4.38)

cPCα (G) = c̄Gα , ∀α = 1, ..,Mion (4.39)

where c̄Aα , c̄Bα , c̄Fα and c̄Gα are given data.

Moreover, we need to introduce suitable conditions for the molar flux den-

sities Jα at the boundary points of each edge i = 1, .., 11. Referring to the

scheme of figure 2.10 we now consider a characterization for each Jα.

Let us introduce the notation J i,M→Nα , where α is the current ion, i is the

transporter and M → N represents the direction of the flux (for example,

given two adjacent edges of the network e1 and e2, Je1→e2α represents molar

flux density of α from Ω1 to Ω2 ), we have:

• Node A

Je1→SNa =J
Na/K,e1→S
Na + J

Na/HCO3,e1→S
Na +

J
Na/H,e1→S
Na + J

Na/K/2Cl,e1→S
Na + JNa,e1→SNa

Je1→SK =J
Na/K,e1→S
K + J

Na/K/2Cl,e1→S
K + JK,e1→SK

Je1→SH =J
Na/H,e1→S
H + J

Na/HCO3,e1→S
H + J

Na/K/2Cl,e1→S
Na + JNa,e1→SNa

Je1→SCl =J
Cl/HCO3,e1→S
Cl + J

Na/K/2Cl,e1→S
Cl + JCl,e1→SCl

Je1→SHCO3
=J

Cl/HCO3,e1→S
HCO3

+ J
Na/HCO3,e1→S
H

• Node B

Je4→Sα = Jα,e4→Sα ∀α ∈ [Na+;K+;H+;Cl−;HCO−3 ]
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• Node C

Je2→e3Na =J
Na/K,e2→e3
Na + J

Na/HCO3,e2→e3
Na +

J
Na/H,e2→e3
Na + J

Na/K/2Cl,e2→e3
Na + JNa,e2→e3Na

Je1→SK =J
Na/K,e2→e3
K + J

Na/K/2Cl,e2→e3
K + JK,e2→e3K

Je2→e3H =J
Na/H,e2→e3
H + J

Na/HCO3,e2→e3
H + J

Na/K/2Cl,e2→e3
Na + JNa,e2→e3Na

Je2→e3Cl =J
Cl/HCO3,e2→e3
Cl + J

Na/K/2Cl,e2→e3
Cl + JCl,e2→e3Cl

Je2→e3HCO3
=J

Cl/HCO3,e2→e3
HCO3

+ J
Na/HCO3,e2→e3
H

• Node D

Je6→e7α = Jα,e6→e7α ∀α ∈ [Na+;K+;H+;Cl−;HCO−3 ]

• Node E

Je8→e9Na =J
Na/K,e8→e9
Na + JNa,e8→e9Na

Je8→e9K =J
Na/K,e8→e9
K + JK,e8→e9K

Je8→e9Cl =J
Cl/HCO3,e8→e9
Cl + JCl,e8→e9Cl

Je8→e9H =0

Je8→e9HCO3
=J

Cl/HCO3,e8→e9
HCO3

• Node F

Je10→ePCNa =J
Na/K,e10→ePC
Na + JNa,e10→ePCNa

Je10→ePCK =J
Na/K,e10→ePC
K + JK,e10→ePCK

Je10→ePCCl =J
Cl/HCO3,e10→ePC
Cl + JCl,e10→ePCCl

Je10→ePCH =0

Je10→ePCHCO3
=J

Cl/HCO3,e10→ePC
HCO3
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• Node G

Je11→PCα = Jα,e11→PCα ∀α ∈ [Na+;K+;H+;Cl−;HCO−3 ]

Note that, denoting ζ the intersection node between sides M and N , then

JM→Nα = JM,α(ζ) · nM(ζ). Moreover JM→Nα = −JN→Mα .

4.2.3 Scaling of the Poisson equation

Let us now non-dimensionalize (4.3). For this discussion we refer to [14],

considering c+
fixed = c−fixed = 0.

We denote by ψ̄ and c̄ the positive scaling factors for the electric potential

and ion molar density, respectively, [ψ̄] = V and [c̄] = mM .

Then, we introduce the dimensionless dependent variables ψ̃, c̃α:

ψ̃ =
ψ

ψ̃
(4.40)

c̃α =
cα
cref

(4.41)

We set henceforth ψ̄ = Vth = kBT/q and c̄ = cref .

Rescaling, one obtains:

r2
d

∂2ψ̃

∂s2
= −

Mion∑
α=1

zαc̃α (4.42)

where rd :=
√

εkBT
qFcref

is called Debye length. Moreover, introducing a charac-

teristic length l0 such that s = l0s̃, we have:

β2∂
2ψ̃

∂s̃2
= −

Mion∑
α=1

zαc̃α (4.43)

where β = rd
l0

. Thanks to (4.43) we are able to investigate an important

property of the PNP model, namely the electroneutrality in the bulk of the
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compartments (away from membranes). In fact, we can observe that, by let-

ting β → 0, which holds away from the cell membranes, the Poisson equation

degenerates into the following limit:

Mion∑
α=1

zαc̃α = 0 (4.44)

which corresponds to the condition of electroneutrality away from mem-

branes.

We can also note that the small parameter β is multiplying the highest order

derivative, thus the smallness of β implies the appearance of boundary layers

at the membranes whose thickness is on the order of rd.

Regarding the boundary conditions, introducing the dimensionless parameter

c̃m = cm
ε/rd

, one has:

c̃m(ψM − ψN) = rd
∂ψM

∂nM
(4.45)
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Chapter 5

Numerical discretization

In this chapter we illustrate the fixed-point map for the iterative solution

of the PNP model introduced in chapter 4. Then, we describe a numerical

discretization of the decoupled equations by using the finite Element method.

5.1 Gummel’s map

To solve problem (4.1)-(4.4) we will use a decoupling method, known as Gum-

mel’s map. The main idea of the method, which was proposed for the first

time in 1964 by H.K. Gummel [9], is successively solve the nonlinear Poisson

equation (4.8) and then update the electrochemical potentials ϕecα by solving

the continuity equation for each ion α.

In the following the steps for the solution of the iterative algorithm are

reported. One can notice that the Gummel map is a block nonlinear Gauss-

Seidel iteration for the variable ϕec = [ϕec1 , ..., ϕ
ec
Mion

].



5.1. GUMMEL’S MAP

1. Set suitable initial data for the electric potential ψ0 and the ionic

concentrations c0
α, ∀α = 1, ..,Mion.

Fix a positive tolerance tolGummel > 0 for the inner loop related to

the nonlinear Poisson equation, and a positive tolerance tolNLP > 0,

for the outer loop;

2. By using the Newton method, ∀k = 0, ... find ψk+1 solving the lin-

earized Non Linear Poisson equation until the following stopping cri-

terion is met

||δψk||L∞ > tolNLP

where k is the counter of the newton iteration. Then, set

ψj+1 = ψk+1

3. Find cj+1
α by solving the linear continuity equations for each ion α;

4. Update the electrochemical potential ϕjα, ∀α = 1, ..,Mion:

ϕec,j+1
α = ψj+1 +

Vth
zα

ln

(
cj+1
α

cref

)
(5.1)

Restart from step 2 until the following convergence criterion is met

max
α
||ϕec,j+1

α − ϕec,jα ||L∞ < tolGummel

restart from step 2.

Gummel’s map
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5.2 Newton’s method

Equation (4.8) is semilinear because of the presence of the exponential term in

the right hand side. To treat the nonlinearity we apply the Newton iterative

method, which is briefly recalled in the following.

Let us consider the generic nonlinear equation

N(u) = f in Ω (5.2)

coupled with suitable boundary conditions on ∂Ω. In eq. (5.2) u is the

dependent variable, N is a nonlinear differential operator and f is a given

function. Denoting by V the Hilbert space in which we seek the solution of

(5.2), we want to solve the following nonlinear problem:

Find u ∈ V such that

G(u) := N(u)− f = 0 (5.3)

where G : V −→ V is a nonlinear differential operator.

The iterative algorithm for the solution of (5.3) reads:

Given u0 ∈ V , for all j ≥ 0 until convergence, solve the following lin-

earized problem:

G′(uj)δuj = −G(uj) (5.4)

uj+1 = uj + δuj (5.5)

Definition 5.1 (Frechet derivative) Given a non linear operator G, evalu-

ated at u ∈ V , the operator G′ : V → L(V ;V ) is defined as

G′(u) := lim
η→0

G(u+ ηv)−G(u)

η
∀v ∈ V (5.6)

where L(V ;V ) is the space of linear operator from V to V .
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5.2.1 Nonlinear Poisson equation

In the case of eq. (4.8), the operator G is

G(ψ) =
∂

∂s

(
−εm

∂ψ

∂s

)
−Fcref

Mion∑
α=1

zα exp

(
zα
ϕecα − ψ
Vth

)
−Fcfixed = 0 (5.7)

Evaluating the Frechet derivative one obtains:

G′(ψ)δψ = − ∂

∂s

(
εm
∂δψ

∂s

)
+

(
Fcref
Vth

Mion∑
α=1

z2
α exp

(
zα
ϕecα − ψ
Vth

))
δψ = 0

(5.8)

Introducing the following notation

σk =
Fcref
Vth

Mion∑
α=1

z2
α exp

(
zα
ϕec,kα − ψk

Vth

)
(5.9)

we obtain the Newton linearization of the nonlinear Poisson equation (4.8):
− ∂
∂s

(
εm

∂δψk

∂s

)
+ σkδψk = −G(ψk) in Ωi, i = 1, ..., 11

ψk+1 = ψk + δψk
(5.10)

which has the structure of a diffusion-reaction problem.

The system reported above should be completed introducing suitable com-

patibility conditions at the nodes of the network.

To this purpose, we observe that

δµk(s) := (Dk+1(s)−Dk(s)) · n(s)

= −εm
(
∂ψk+1

∂s
− ∂ψk

∂s

)
· n(s)

= −εm
∂δψk

∂s
· n(s)

(5.11)

To obtain the conditions for δψk at the network nodes we proceed as follows.

At node A, using (4.13), one obtains (unlike the previous chapter, we now
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indicate the edge as subscript to ease the notation):

δµk1(A) := Dk+1
1 (A) · n1(A)−Dk

1(A) · n1(A)

= cm,A(ψk+1
1 (A)− ψS)− cm,A(ψk+1

1 (A)− ψS)

= cm,Aδψ
k
1(A)

Similarly, for nodes B, F , and G, using (4.14), (4.21) and (4.22), we retrieve

the following relations:

δµk4(B) = cm,Bδψ
k
4(B)

δµk10(F ) = cm,F δψ
k
10(F )

δµk11(G) = cm,Gδψ
k
11(G)

(5.12)

At node C, which links two edges of the network, using (4.15)-(4.16) one

obtains:

δµk2(C) = cm,C(δψk2(C)− δψk3(C)) (5.13)

δµk3(C) = cm,C(δψk3(C)− δψk2(C)) (5.14)

and the same reasoning could be applied to find suitable conditions at nodes

D and E.

At nodes Lj, j = 1, ..., 4, denoting by ej1, e
j
2, e

j
3 the edges that converge at

node j, we have:

δψk
ej1

(Lj) = δψk
ej2

(Lj) (5.15)

δψk
ej1

(Lj) = δψk
ej3

(Lj) (5.16)

δµk
ej1

(Lj) + δµk
ej2

(Lj) + δµk
ej3

(Lj) = 0 (5.17)

5.3 Linear continuity equations

Once the updated electric potential ψj+1 has been obtained, according to the

structure of Gauss-Seidel iteration, one needs to solve Mion linear boundary

value problems for the ion concentrations cj+1
α :
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For each ion α = 1, ..,Mion, in Ωi, i = 1, ..,Mion, solve
∂Jj+1
α

∂s
= βj+1

α

J j+1
α = µelα

zα
|zα|c

j+1
α

∂ψj+1

∂s
−Dα

∂cj+1
α

∂s

(5.18)

From a physical standpoint a crucial characteristic of system (5.18) is that

ion concentrations are strictly positive, thus one should be aware of the fact

that a numerical algorithm for the solution of (5.18) must guarantee a strictly

positive solution in the computational domain. In the following this require-

ment will be satisfied by introducing a stabilized finite element discretization

scheme, referred to as Scharfetter-Gummel method, which adds an artificial

viscosity to the formulation.

To close the system (5.18) we must give a form to the molar flux density

passing through the boundary of each edge of the network. In section 4.2.2 we

deduced the mathematical formula for each Jα, α = 1, ..,Mion. Unfortunately,

the derived equations are nonlinear, thus we need to introduce an alternative

linearized form, taking advantage of the fact that we are dealing with an

iterative algorithm.

The idea is to write the molar flux density evaluated at step j + 1 for each

transporter at node ζ as:

JM→N,j+1
α (ζ) = βMα c

M,j+1
α (ζ) + βNα c

N,j+1
α (ζ) (5.19)

where cM,j+1
α (ζ) and cN,j+1

α (ζ) represent the ion concentrations at ζ respec-

tively on the M and N sides, βMα and βNα are two coefficients such that:

βiα = βiα(ψM,j(ζ), ψN,j(ζ), cM,j
1 (ζ), cN,j1 (ζ), ..., cM,j

Mion
(ζ), cN,jMion

(ζ)), i = M,N

(5.20)

For example, the molar flux density due to the Na+/K+ATPase pump at

node ζ is obtained inserting in eq.(2.10) the ion concentrations computed at
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the previous step and multiplying it by the factor cM,j+1
Na (ζ)/cM,j

Na (ζ) for the

sodium continuity equation and cN,j+1
K (ζ)/cN,jK (ζ) for the potassium continu-

ity equation:

JM→N,j+1
pump,Na (ζ) =

cM,j+1
Na (ζ)

cM,j
Na (ζ)

γ[ATP ]

(
cM,j
Na

φjNa

)3(
cN,jK

φjK

)2

(5.21)

JM→N,j+1
pump,K (ζ) = −2

3

cN,j+1
K (ζ)

cN,jK (ζ)
γ[ATP ]

(
cM,j
Na

φjNa

)3(
cN,jK

φjK

)2

(5.22)

From equations (5.21) and (5.22) we obtain for this particular active trans-

porter the following coefficients:

βMNa = γcM,j
Na (ζ)[ATP ]

(
cM,j
Na

φjNa

)3(
cN,jK

φjK

)2

, βNNa = 0 (5.23)

βMK = 0, βNK = −2

3
γcN,jK (ζ)[ATP ]

(
cM,j
Na

φjNa

)3(
cN,jK

φjK

)2

(5.24)

Observing the coefficients just calculated it is clear how important it is

to correctly orient the transporter within the network. Since the role of the

pump is to extrude Na+ into an extracellular environment, in this case the

M region represents the cytoplasm.

On the contrary, the equations obtained in section 2.2 for the remaining

transporters are characterized by a symmetric shape with respect to the M

and N sides. Let us examine for example the HCO−3 /Cl
− anion exchanger:

JM→N,j+1
exch1,HCO3

(ζ) = κHCO−3 /Cl−

[cN,jCl (ζ) cM,j+1

HCO−3
(ζ)− cM,j

Cl (ζ) cN,j+1

HCO−3
(ζ)

φjexch1

]
(5.25)

JM→N,j+1
exch1,Cl (ζ) = −κHCO−3 /Cl−

[
cN,j+1
Cl (ζ) cM,j

HCO3
(ζ)− cM,j+1

Cl (ζ) cN,jHCO3
(ζ)

φjexch1

]
(5.26)

71



5.4. WEAK FORMULATION

where φjexch1 = φexch1(cM,j
Cl−(ζ), cN,jCl−(ζ), cM,j

HCO−3
(ζ), cN,j

HCO−3
(ζ)). In this case the

coefficients take the following form:

βM
HCO−3

= κHCO−3 /Cl−
cN,jCl−(ζ)

φjexch1

, βNHCO3− = −κHCO−3 /Cl−
cM,j
Cl−(ζ)

φjexch1

(5.27)

βMCl− = κHCO−3 /Cl−
cN,j
HCO−3

(ζ)

φjexch1

, βNCl− = −κHCO3−/Cl−

cM,j

HCO−3
(ζ)

φjexch1

(5.28)

5.4 Weak formulation

Let Ω =
∑11

i=1 Ωi be the domain formed by the edges of the network. Let us

introduce the Sobolev space V := H1(Ω) defined as

V = {φ ∈ L2(Ω) :
∂φ

∂s
∈ L2(Ω)} (5.29)

5.4.1 Weak form of the nonlinear Poisson equation

In order to use the Finite Element method for the numerical solution of the

problem, we will now proceed finding the weak formulation.

Let us first multiply (5.10) by a test function φ ∈ V and then integrate over

the domain Ω∫
Ω

∂

∂s
(−ε∂δψ

k

∂s
)φ dΩ+

∫
Ω

σkδψkφ dΩ =

∫
Ω

−G(ψk)φ dΩ ∀φ ∈ V (5.30)

Integrating by parts the first integral on the left hand side one obtains:∫
Ω

ε
∂δψk

∂s

∂φ

∂s
dΩ +

∫
Ω

∂

∂s
(δµkφ) dΩ +

∫
Ω

σkδψkφ dΩ =

∫
Ω

−G(ψk)φ dΩ

(5.31)

where we used (5.11).

Applying the divergence theorem, we derive the following weak formulation:
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5.4. WEAK FORMULATION

Given ψk, find δψk ∈ V such that, for each φ ∈ V∫
Ω

ε
∂δψk

∂s

∂φ

∂s
dΩ +

∫
∂Ω

φδµkn d(∂Ω) +

∫
Ω

σkδψkφ dΩ =

∫
Ω

−G(ψk)φ dΩ

(5.32)

where n(s) is the outward unit normal vector.

In order to introduce the interface conditions at each node of the domain, we

now virtually detach every edge of the network and we treat them separately.

Let us consider the local coordinate x for the single edge i. We define ai the

point with x = 0 (see figure 5.1) and bi the point at x = li (li is the length

of the edge i). Moreover, we define δψki = δψk|Ωi that is the solution δψk

evaluated on edge i.

Figure 5.1: Schematic representation of 3 edges of the network. Each side is

”detached” from the network and studied as a single one dimensional domain.

Given these assumptions, the weak formulation of the problem applied to

the network reads:
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5.4. WEAK FORMULATION

For each i = 1, .., 11, find δψki ∈ V i := H1(Ωi), such that, for each φ ∈ V i

φ(ai)δµ
k
i (ai) + φ(bi)δµ

k
i (bi) +

∫
Ωi

ε
∂δψki (x)

∂x

∂δφ(x)

∂x
dΩi+∫

Ωi

σkδψki φ dΩi = −
∫

Ω

G(ψki (x))φ(x) dΩi

(5.33)

where

δµki (ai) = (Dk+1
i (ai)−Dk

i (ai)) n(ai) = (Dk
i (ai)−Dk+1

i (ai))

δµki (bi) = (Dk+1
i (bi)−Dk

i (bi)) n(bi) = (Dk+1
i (bi)−Dk

i (bi))

Note that to close (5.33) one needs to impose 22 boundary/interface condi-

tions, that we already described in section 5.2.1.

5.4.2 Weak form of the linear continuity equation

Let us now consider the weak formulation of (5.18) for each ion species α.

For the net production rate βα we can suppose the following general relation:

βj+1
α = σαc

j+1
α + πα (5.34)

thus we obtain the general form of an advection-diffusion-reaction problem.

As above, multiplying by a test function φ ∈ V , integrating over the volume

Ω and applying the divergence theorem, the weak form reads:

Given ψj+1 and cjα, ∀α = 1, ..,Mion, find cj+1
α ∈ V such that, for each

φ ∈ V : ∫
Ω

Dα
∂cj+1

α

∂s

∂φ

∂s
dΩ−

∫
Ω

µel
zα
|zα|

∂ψj+1

∂s

∂φ

∂s
cj+1
α dΩ +∫

∂Ω

φJ j+1
α n d(∂Ω)−

∫
Ω

σαc
j+1
α φ dΩ =

∫
Ω

παφ dΩ

(5.35)

while, considering the detached structure described above, the weak form is:

For each i = 1, ..., 11, given ψj+1 and cjα, ∀α = 1, ..,Mion, find cj+1
i,α :=
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5.5. FINITE ELEMENT APPROXIMATION

cj+1
α |Ωi ∈ V i such that, for each φ ∈ V i:∫

Ωi

Dα

∂cj+1
i,α

∂x

∂φ

∂x
dΩi −

∫
Ωi

µel
zα
|zα|

∂ψj+1
i

∂x

∂φ

∂x
cj+1
i,α dΩi −

∫
Ωi

σαc
j+1
iα
φ dΩi +

φ(bi)J
j+1
i,α (bi)ni(bi) + φ(ai)J

j+1
i,α (ai)ni(ai) =

∫
Ωi

παφ dΩi

(5.36)

To close (5.36) we need to impose 22 boundary/interface conditions that we

discussed in section 5.3

5.5 Finite element approximation

We now discretize problems (5.33) and (5.36) using a Galerkin formulation.

Let us define a discrete space Vh ∈ V , such that dim(Vh) = Nh and the

discrete spaces V i
h ∈ V, ∀i = 1, ..., 11, such that dim(V i

h) = N i
h. Note that

Vh =
∑11

i=1 V
i
h . Moreover, let us take {φij}

N i
h

j=1 as basis for V i
h .

5.5.1 FEM for the nonlinear Poisson equation

Given ψkh,i, for each i = 1, ..., 11, find δψkh,i ∈ V i
h , such that, for each m =

1, .., N i
h

φim(ai)δµ
k
i (ai) + φim(bi)δµ

k
i (bi) +

∫
Ωi

ε
∂δψkh,i(x)

∂x

∂φim(x)

∂x
dΩi+∫

Ωi

σkδψkh,iφ
i
m dΩi = −

∫
Ω

G(ψkh,i(x))φim(x) dΩi ∀m = 1, .., N i
h

(5.37)

Since δψkh,i ∈ V i
h , we can express it as a linear combination of the basis

{φij}
N i
h

j=1:

δψkh,i(x) =

N i
h∑

n=1

δψk,nh,i φ
i
n(x) (5.38)

We define the matrices Ak
i and Rk

i , and the vectors δΨk
i , F

k
i and δMk

i :

Aki,mn =

∫
Ωi

ε
∂φim(x)

∂x

∂φin(x)

∂x
dΩi (5.39)
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Rk
i,mn =

∫
Ωi

σk φimφ
i
n dΩi (5.40)

F k
i,m = −

∫
Ωi

G(ψkh,i(x))φim(x) dΩi (5.41)

δΨk
i = [δψk,1h,i , ..., δψ

k,N i
h

h,i ]T (5.42)

δMk
i = [δµki (ai), 0, ...0, δµ

k
i (bi)]

T (5.43)

Then, the final algebraic formulation of (5.37) is:

Find δΨk
i such that

(Ak
i +Rk

i )δΨ
k
i + δMk

i = F k
i (5.44)

The system above of size N i
h× (N i

h+2), thus one needs to include 2 interface

conditions.

In order to derive a FEM formulation, let us now introduce a suitable

triangulation T =
∑11

i=1 Ti for the domain Ω. We divide each edge i into N i
el

elements of equal length (see figure 5.2).

Figure 5.2: Triangulation for the one dimensional domain Ωi.

As space of basis functions V i
h we choose

V i
h := {φ ∈ C(Ω̄i) : φ|K ∈ P 1(K) ∀K ∈ Ti} (5.45)

where P 1(K) is the space of polynomials of degree at most 1 in K. As basis

functions we use the hat functions defined on the node of the triangulation.
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5.5.2 The Scharfetter-Gummel method

The Scharfetter-Gummel method [18] is an exponential fitting discretization

scheme for convection-dominated problems, thus it provides an appropriate

tool to approximate the Nernst-Planck equation.

Let us now consider βα = 0. For each edge i, we have:

d

dx
Jα(x) = 0, ∀x ∈ (0, li) (5.46)

where

Jα = µelα
zα
|zα|

Ecα(x)−Dα
dcα(x)

dx
(5.47)

Assuming that µelα , E, Dα and Jα are constant within Km (see figure 5.2),

we have from (5.47):

dcα(x)

dx
= µelα

zα
|zα|

E

Dα

cα(x)− Jα
Dα

= γαcα(x)− Jα
Dα

(5.48)

where we introduced the coefficient γα = µelα
zα
|zα|

E
Dα

. We now manipulate

(5.48) in the following manner [13]:

γα =
1

cα(x)− Jα
γαDα

dcα(x)

dx
=

γα =
d

dx
ln

∣∣∣∣cα(x)− Jα
γαDα

∣∣∣∣
γαx+ c = ln

∣∣∣∣cα(x)− Jα
γαDα

∣∣∣∣ (c is a constant)

eαx+c = ±
(
cα(x)− Jα

γαDα

)
on Km

(5.49)

The molar flux density Jα,m+1/2 = Jα(xm+1/2) (xm+1/2 = xm+xm+1

2
) can
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be written as:

cα,m+1 −
Jm+1/2

γαDα

cα,m −
Jm+1/2

γαDα

= eγαhm , where cα,m = cα(xm)

cα,m+1 −
Jm+1/2

γαDα

=

(
cα,m −

Jm+1/2

γαDα

)
eγαhm

(eγαhm − 1)
Jm+1/2

γαD
= (−cα,m+1 + eγαhmcα,m)

Jm+1/2 =
γαDα

eγαhm − 1
(−cα,m+1 + eγαhmcα,m)

=
Dα

hm
[−Be(−ηm)cα,m+1 +Be(ηm)cα,m]

(5.50)

where Be(x) = x/(et − 1) is the inverse of the Bernoulli function and ηm =

(ψm+1 − ψm)/Vth.

Therefore, the Scharfetter-Gummel approximation for (5.46) is:

d

dx
Jα(xm) ≈ 2

hm + hm−1

(Jm+1/2 − Jm−1/2)

=
2

hm + hm−1

[
D

hm
(−Be(−ηm)cα,m+1 +Be(ηm)cα,m)+

D

hm−1

(−Be(−ηm−1)cα,m +Be(ηm−1)cα,m−1)

]
= −Be(ηm−1)cα,m−1 + [Be(−ηm−1) +Be(ηm)]cα,m −Be(−ηm)cα,m+1 = 0

(5.51)

The approximation in (5.51) can be derived in an alternative manner, by

adding artificial viscosity to the scheme, which has the aim of prevent spuri-

ous oscillations (see [1]).

Let us consider the following discrete formulation of (5.36) (where we assume

βα=0):

For each i = 1, ..., 11, given ψj+1
h and cjh,α, ∀α = 1, ..,Mion, find cj+1

h,i,α :=
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cj+1
h,α |Ωi ∈ V i such that, for each m = 1, ..., N i

h:∫
Ωi

Dα

∂cj+1
h,i,α

∂x

∂φim
∂x

dΩi +

∫
Ωi

vj+1
α

∂φim
∂x

cj+1
h,i,α dΩi +

φim(bi)J
j+1
i,α (bi)ni(bi) + φim(ai)J

j+1
i,α (ai)ni(ai) = 0

(5.52)

where vj+1
α = −µel zα|zα|

∂ψj+1
h,i

∂x
. Since cj+1

h,i,α ∈ V i
h we can express it by the

following linear combination:

cj+1
h,i,α(x) =

N i
h∑

n=1

cj+1,n
h,i,α φ

i
n(x) (5.53)

Let us introduce now the matrices Ai,α, Bi,α and the vectors Ci,α and

J i,α, such that:

Amn =

∫
Ωi

Dα
∂φjm
∂x

∂φin
∂x

dΩi (5.54)

Bmn =

∫
Ωi

φin
∂φim
∂x

cj+1
h,i,α dΩi (5.55)

Ci,α = [cj+1,1
h,i,α , ..., c

j+1,N i
h

h,i,α ]T (5.56)

J i,α = [J j+1
i,α (ai)ni(ai), 0, ..., 0, J

j+1
i,α (bi)ni(bi)]

T (5.57)

The algebraic formulation reads:

Find Ci,α such that

(Ai,α +Bi,α)Ci,α + J i,α = 0 (5.58)

that must be completed with suitable interface conditions.

Finally, we introduce the same discrete space of test functions and the same

basis as in the previous section. Moreover, let us define the local Peclet

number

Pek =
|vj+1,m
α |hm
2Dm

α

(5.59)

where vj+1,m
α = vj+1

α ((xm+1−xm)/2) and Dm
α = Dα((xm+1−xm)/2). In order

to add artificial viscosity to the scheme, we replace the diffusion coefficient
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Dα in the finite element formulation, introducing the Scharfetter-Gummel

modified coefficient:

DSG
α = Dα(1 + ΦSG(Pek)) (5.60)

where ΦSG(x) = x− 1 +Be(2x).
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Chapter 6

Numerical simulations

The aim of this chapter is to illustrate some numerical results obtained by

running a computer code written in Matlab, implementing the methodologies

described in chapter 5. To start, we will investigate some test cases in a

simplified geometry and we will comment the main relevant results.

In particular, we are interested in the Na+ molar flux densitiy and the Cl−

molar flux density, since we know that a net current of Na+ and Cl− ions

from the Stroma to the PC is crucial in AH secretion (see section 2.1.1).

In our simplified models, we assume a membrane specific capacitance of

10−2Fm−2 for each membrane. The specific capacitance of biological mem-

branes can be estimated dividing the dielectric constant of lipids εm by the

thickness of the bilayer tm [11].

Values for membrane permeabilities Pα for each ion species α at each mem-

brane and the diffusion coefficients Dα used in the simulations are set equal

to those proposed in [7] and they are reported in tables 6.2 and 6.3. Bound-

ary conditions used for ψ and cα in the (S) and (PC) compartments, taken

from [19], are reported in table 6.1.
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Value Unit Value Unit

ψS 0.0 V ψPC 0.02 V

cSNa 137.5 mM cPCNa 143.0 mM

cSK+ 4.25 mM cPCK+ 4.0 mM

cSH+ 7.4 mM cPCH+ 7.21 mM

cSCl− 110.0 mM cPCCl− 131.0 mM

cS
HCO−3

27.0 mM cPC
HCO−3

20.0 mM

Table 6.1: Boundary conditions: Values of the electric potential and ion

concentrations in the Stroma and in the posterior chamber ([19]).

Dα [m2s−1]

Na+ 1.33 · 10−9

K+ 1.96 · 10−9

H+ 1.96 · 10−9

Cl− 2.03 · 10−9

HCO−3 1.18 · 10−9

Table 6.2: Values for the ions diffusion coefficients [7]

6.1 Test cases for the Debye length

Figure 6.1: Geometrical domain used in the following tests. We consider the

presence of ion channels for each species α in the membranes at x = 0 and

x = l.
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Membrane Na+ K+ H+ Cl− HCO−3

PE Basoloateral

membrane
0 5.20 · 10−7 0 1.08 · 10−7 0

NPE Basoloateral

membrane
3.0 · 10−8 1.58 · 10−5 0 4.5 · 10−7 0

Tight junction 3.0 · 10−7 4.42 · 10−8 4.42 · 10−8 3.0 · 10−8 1.74 · 10−8

PS-S & PS-PC

membrane
3 · 10−2 4.42 · 10−3 4.42 · 10−2 3.0 · 10−3 1.74 · 10−2

Table 6.3: Values for membrane permeabilities. [7]

The principal objective of this series of test problem is to verify whether the

code is able to correctly describe the condition of electroneutrality away from

membranes. For this purpose, we take as domain Ω = [0, l], and we consider

only the presence of ion channels for each ion α ∈ [Na+, K+, H+, Cl−, HCO−3 ]

in the membranes placed in x = 0 and x = l. We take Pα = 10−4ms−1 for

each ion α and we set c−α (0) = c̄Lα and c+
α (l) = c̄Rα (see figure 6.1).

Since we know that the Debye length is inversely proportional to the

quantity

cref = max

{
max
α

(c̄Lα),max
α

(c̄Rα )

}
(6.1)

we simulate different tests by varying the concentrations at the boundary

c̄Lα and c̄Rα : first we consider c̄Lα = c̄Rα = 100 mM , then c̄Lα = c̄Rα = 1 mM ,

then c̄Lα = c̄Rα = 10−2 mM and finally c̄Lα = c̄Rα = 10−4 mM .

Based on the different choices of c̄Lα, c̄Rα , we expect the Debye length to assume

increasing values. This has the consequence that the boundary layers in the

neighborhood of the membranes will be larger as c̄Lα, c̄Rα become smaller.

For each test we plot the electric potential ψ and the total charge density Q
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([Cm−3]), defined as

Q(x) = F

Mion∑
α=1

zαcα(x) (6.2)

Test 1. c̄Lα = c̄Rα = 100 mM

Considering cref = 100mM as reference value, the resulting Debye length is

rd =

√
εWVth
Fcref

= 1.4004 · 10−9 (6.3)

where εW = ε0εW (εW = 80) ([Fm−1]) is the dielectric permittivity of water.

Since we have l = 10−6 m, in our computation we need to use a mesh with

1000 elements at least, in order to correctly catch the scale of the boundary

layers. We choose nel = 2000 elements.

The Gummel map required 6 iterations to converge, with a final relative error

errGummel = 4.0136 · 10−11, where

errGummel = max
α

||ψec,j+1
α − ψec,jα ||L∞
||ψec,j+1

α ||L∞
(6.4)

Figure 6.2 shows the spatial distribution of electric potential and total

charge density. Figure 6.3 shows that a proper choice of the mesh size allows

us to numerically resolve the boundary layers and, away from membranes,

verify the electroneutrality of the ionic solution. Consistently, the spatial

distribution of the electric potential turns out to be linear.

In figure 6.4, we decreased the number of elements used in the mesh. In

particular, we can note that as soon as we choose an unsuitable refinement

(that is, a mesh size larger than rd), the solution is unable to catch the

boundary layers at the membranes.
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Figure 6.2: Test case 1: electric potential (a) and total charge density (b)

obtained using a mesh with nel = 2000 elements.

Figure 6.3: Test case 1: (a) zoom of Q(x) in the neighborhood of x = 0. (b)

zoom of Q(x) in the neighborhood of x = 0. Notice the formation of two

marked boundary layers of the order of rd.
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Figure 6.4: Test case 1: total charge density obtained using nel = 200 (a)

and nel = 30(b).

Test 2. c̄Lα = c̄Rα = 1 mM

The resulting Debye length is cref = 1.4004 · 10−8, thus we should take a

mesh refinement with nel = 100 at least.

Using nel = 1000, Gummel map requires 9 iterations to converge, with a final

relative error errGummel = 5.5369 · 10−11.

Figure 6.5 shows the spatial distribution of electric potential and total charge

density. In figure 6.6 we plot Q(x) computed using two different values of nel.

We observe that taking nel = 200 does not significantly spoil the accuracy of

the result, as the graphs for the total charge Q are almost identical. This is

not the case when nel = 30 (right panel of figure 6.6).

86



6.1. TEST CASES FOR THE DEBYE LENGTH

Figure 6.5: Test case 2: electric potential (a) and total charge density (b)

obtained using a mesh with nel = 1000 elements.

Figure 6.6: Test case 2: total charge density obtained using nel = 200 (a)

and nel = 30(b).

Test 3. c̄Lα = c̄Rα = 10−2 mM The resulting Debye length is cref = 1.4004 ·

10−7, thus we should take a mesh refinement with nel = 10 at least.

Using nel = 1000, the code converges within 13 Gummel iterations, with a

final relative error errGummel = 6.4762 · 10−11.
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Figure 6.7: Test case 3: electric potential (a) and total charge density (b)

obtained using a mesh with nel = 1000 elements.

Comparing the spatial distribution of Q(x) shown in figure 6.8 and figure

6.7, we see that the choice of the mesh size does affect model predictions, as

expected.

Figure 6.8: Test case 3: total charge density obtained using nel = 200 (a)

and nel = 30(b).
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Test 4. c̄Lα = c̄Rα = 10−4 mM The resulting Debye length is cref = 1.4004 ·

10−6, thus it is of the same order of magnitude as the domain length. In this

case, we expect that we are not able to see any boundary layers.

Using nel = 1000, the code converges in 17 iterations, with a final relative

error errGummel = 4.5566e− 11. Results are shown in the figure 6.9 and 6.10

and they are in agreement with our expectation.

Figure 6.9: Test case 4: electric potential (a) and total charge density (b)

obtained using a mesh with nel = 1000 elements.

Figure 6.10: Test case 4: total charge density obtained using nel = 200 (a)

and nel = 30(b).
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FROM S TO PC

6.2 1-edge domain: Unidirectional flow of Na+

and from S to PC

Figure 6.11: Domain of the 1-edge domain. PE and NPE compartments are

described by a single edge.

Here we want to implement the scheme described in figure 2.2, which we

report in figure 6.12. The aim of this simulation is to study the unidirec-

tional flow of ions from the Stroma to the PC taking into consideration just

a transmembrane pathway. Under this configuration, we expect to observe

a net molar flux density of sodium and chloride from S to PC and a flow of

potassium in th opposite direction.

Figure 6.12: Scheme of the transmembrane transporters considered in this

simulation

We will consider as computational domain a single edge structure of

length l = 10−6m, that represents the PE-NPE intercellular spaces (see fig-

ure 6.11). Moreover, since we have as reference concentration cref = 101 ∼
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102mM , we consider a mesh refinement with nel = 1000, in order to have an

element length of the order of the Debye length.

In figure 6.11, node S represents the basolateral membrane of the PE,

thus values for membrane permeabilities for each ion species α are set as in

table 6.3, first row. Node PC represents the basolateral membrane of the

NPE, thus for the membrane permeabilities we refer to table 6.3, second row.

Diffusion coefficients and boundary values are reported in table 6.2 and 6.1,

respectively.

the molar densities for each ionα. Figure 6.15 shows the electric potential

and the total electric charge density. In figure 6.13 we reported a graphic

description of the values obtained for the molar flux densities Jα.

Figure 6.13: Molar flux densities obtained in the 1-edge simulation. The

arrows represent the flow directions of the ions.

In agreement with biphysical expectations, we obtained zero molar flux

densities for HCO−3 and H+, as we did not insert transporters for these ions

on the NPE basolateral membrane. Furthermore, we obtained a net flow of

Chlorine and Sodium from the Stroma to the posterior chamber.
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Figure 6.14: Results for the 1-edge test case: (a) Cl− concentration, (b)

HCO−3 concentration, (c) K+ concentration, (d) H+ concentration, (e) Na+

concentration.
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Figure 6.15: Results for the 1-edge test case: (a) Electric potential, (b) Total

charge density

6.3 Network geometry

As final step we will now investigate the molar flux densities obtained using

the Network geometry of figure 4.5, since we want to try to give a description

of both transmbembrane and paracellular flows.

For the simulation we assume a length of 10−6 m for each edge of the Network

and we will consider the presence of the transporters depicted in figure 2.10,

which for convenience we report in figure 6.16. Boundary conditions are

reported in table 6.1, in particular we assume ψS and cSα on the stromal

side in A and B and ψS and cSα on the PC side in F and G. Membrane

permeabilities and diffusion coefficients are reported in tables 6.3 and 6.2.

For the simulation, we used nel = 500 element for each edge of the network.

The algorithm converged in 43 iterations with errGummel = 8.8920 · 10−11.

Results for the spatial distribution of each ion molar density and the electric

potetial are plotted in the following graphs.
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Figure 6.16: Scheme of the trasmembrane transporters included in the Net-

work test case.

Figure 6.17: Network test: Cl− concentration. TJ: Tight junction, NPE-BL:

NPE basolateral membrane, PE-BL: PE basolateral membrane.

94



6.3. NETWORK GEOMETRY

Figure 6.18: Network test: HCO−3 concentration. TJ: Tight junction, NPE-

BL: NPE basolateral membrane, PE-BL: PE basolateral membrane.

Figure 6.19: Network test: K+ concentration. TJ: Tight junction, NPE-BL:

NPE basolateral membrane, PE-BL: PE basolateral membrane.
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Figure 6.20: Network test: H+ concentration. TJ: Tight junction, NPE-BL:

NPE basolateral membrane, PE-BL: PE basolateral membrane.

Figure 6.21: Network test: Na+ concentration. TJ: Tight junction, NPE-BL:

NPE basolateral membrane, PE-BL: PE basolateral membrane.
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Figure 6.22: Network test: Electric potential distribution. TJ: Tight junc-

tion, NPE-BL: NPE basolateral membrane, PE-BL: PE basolateral mem-

brane.
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Figure 6.23 is a schematic representation of the Na+ molar flux density

obtained in the simulation. In accordance with biophysical expectations, we

can observe the Na+ is flowing from S to PC following a transmembrane

pathway. Nevertheless, the paracellular side is characterized by a backward

flow of sodium, which recirculates from PC to the stroma. Therefore, the

total flux density is the sum of two contributions with opposite sign.

Although the orders of magnitude of the two molar flux densities are the

same in figure 6.23, one should remember that the secretion surface of the

NPE basolateral membrane is much higher than the secretion surface of the

paracellular space. For this reason, in the calculation of the total ionic cur-

rent, we can consider the contribution due to the paracellular pathway to be

negligible.

Figure 6.23: Schematic representation of JNa+ along the Network.The arrow

direction indicates the direction of the flux.
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Figure 6.24: Schematic representation of JCl− along the Network.The arrow

direction indicates the direction of the flux.

In Figure 6.24 we illustrate the obtained Cl− molar flux density. In this

case we have that both the paracellular pathway and the transmembrane

pathway promote a flow of chlorine from the stroma towards the posterior

chamber. Moreover, as above, the orders of magnitude of the two contribu-

tions are the same, thus also in this case the transmembrane pathway plays

a relevant role in the computation of th total current of Cl− flowing across

the ciliary epithelium.

It is interesting to notice that, besides having a similar intracellular pathway,

Chloride and Sodium shows an opposite flow direction in the paracellular

path.

Finally, in figure 6.25 we represented the obtained values for JK+ along

the Network. Consistently with what was expected, in this case we obtained

that the the potassium flows from the posterior chamber to the Stroma.
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Figure 6.25: Schematic representation of JK+ along the Network.The arrow

direction indicates the direction of the flux.
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Chapter 7

Conclusions and perspectives

In this thesis we proposed and numerically implemented a continuum-based

model for the description of ion electrodiffusion across the ciliary epithelium

of the human eye. In particular, using the PNP equations we have devel-

oped a cellular scale model, treating the membrane scale by means of the

inclusion of lumped models for the ionic molar flux densities passing through

the different transporters present on the basolateral membranes of PE and

NPE cells. Then, we performed several numerical tests in order to investi-

gate if the model is able to predict correctly what we discussed in chapter

2, namely, that the osmotic pressure driving the secretion of AH is due to

a flow of Na+ and Cl− through the ciliary epithelium from stroma to the

posterior chamber.

The results of our simulations are in agreement with biological expectations.

In particular, we observed that in the case of Na+ we obtained a recircula-

tion from PC to the stromal compartment through the paracellular pathway.

However this contribution turns out to be negligible with respect to the trans-

membrane flow, thus the net molar flux density flows from the stroma to the

posterior chamber.
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For the Cl− we found a positive flow of ions from S to PC both for the para-

cellular and the transmembrane pathway. Moreover, we concluded that also

in this case the transmembrane pathway plays the major role.

Despite being able to accurate describe ion electrodiffusion across the

ciliary epithelium, the proposed model is affected by several important limi-

tations due to the numerous simplifying assumptions made in the description

of the biological processes. In this sense, we can say that th model is at its

early stages. In particular, we have neglected the intracellular chemical re-

actions and we the presence of a fixed charge inside the cytoplasm. The

inclusion of these aspects, which are known to play an important role in de-

termining the ion distribution in the compartments, could be a valid theme

for future projects.

Moreover, the final step for model improvement is the inclusion of the fluid

part in order to provide a complete description of AH secretion. To this pur-

pose, one must include in the model the Navier-Stokes equations to describe

the fluid component of the mixture.
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Appendix A

A.1 Transport theorem

Theorem (Transport theorem) Let φ = φ(x, t) be a scalar field defined on

Vt × (0, T ), where Vt is a material volume. Let v̄ be the Eulerian velocity in

Vt, then:

d

dt

∫
Vt
φ(x, t)dVt =

∫
Vt

(
∂φ

∂t
(x, t) +∇x · (φv̄)(x, t)

)
dVt (A.1)

A.2 Divergence theorem

Theorem (Divergence theorem) Let Ω ⊂ R be a compact set with smooth

boundary ∂Ω, and φ be a continuously differentiable vector field defined on

Ω̄. The following relation holds:∫
Ω

∇x · φ dΩ =

∫
∂Ω

φ · n d(∂Ω) (A.2)



A.3. Reynold’s theorem

A.3 Reynold’s theorem

The Reynold’s theorem can be derived by applying the transport theorem to

a scalar function φ of the form φ(x, t) = ρ(x, t)η(x, t) where ρ(x, t) is the

mass density and η(x, t) is a scalar field, and then applying the balance of

mass in local form:

d

dt

∫
Vt
ρηdVt =

∫
Vt
ρ
Dη

Dt
dVt +

∫
Vt
βηdVt (A.3)
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