
Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in Computer Science and Engineering

Speaker-Independent
Microphone Identification via
Blind Channel Estimation in

Noisy Condition

Author:
Antonio Giganti

Id. Number:
925671

Supervisor:
Prof. Paolo Bestagini

Co-supervisor:
M.Sc. Luca Cuccovillo

Academic Year
2020-2021

Abstract

In recent years, we have witnessed a radical change in the way information
is exchanged, moving from simple text-based communications to the use
of multimedia elements such as audio and/or video messages. This trend
has been facilitated by the increasing speed of network connections as
well as the low cost of mobile-phones.

However, technological advancements often pave the way to illegal
use and new threatening scenarios that were previously unthinkable. For
instance, voice recordings are often subject to tampering, whose aim
ranges from deliberate manipulation to identity theft. It is no coincidence
that the field of audio forensics is attracting interest among the scientific
community, with an increasing number of publications on techniques for
audio recordings analysis.

Within this context, a relevant problem in forensic investigations is
that of device identification. Solving this problem means to recover in-
formation useful to trace the device that produced the speech recording
under analysis. These traces are always left on each recording during
the acquisition phase, and different methods in the literature have been
proposed to extract them. From a forensic perspective, this information
constitutes the fingerprint (or signature) of the adopted device and it is
used as a discriminating element in the device identification process.

In this work, a method for device identification from speech record-
ings is proposed. The considered fingerprint is based on an estimate of
the spectral fluctuations made by the device’s microphone during the
acquisition. In the literature this procedure is known as channel estima-
tion. However, the process of extracting this fingerprint requires an audio
recording as free as possible from external disturbances, such as speech
or noise. It is well known that the presence of these undesirable signals
causes a clear deterioration of the channel estimation, resulting in the

Abstract ii

unreliability of the device identification process. For this reason, we fo-
cus on the challenging problem of device identification in noisy condition
exploiting denoising techniques based on neural networks.

In validating the effectiveness of the method, we formulate the prob-
lem in a closed-set scenario, where the number of possible devices is
limited and known in advance. The results confirm our theoretical for-
mulation, showing a significant increase in performances with respect to
the model adopted as baseline, thus improving the final reliability of the
device identification process in presence of speech recordings corrupted
by noise.

Sommario

Negli ultimi anni, abbiamo assistito ad un cambiamento radicale nella
modalità di scambio di informazioni, passando da semplici comunicazioni
testuali all’utilizzo di elementi multimediali come audio e/o video mes-
saggi. Questa tendenza è stata facilitata dalla crescente velocità delle
connessioni di rete nonché dal basso costo dei telefoni cellulari.

Come spesso accade però, la tecnologia va di pari passo con l’illegalità,
aprendo le porte a possibili scenari che prima d’ora erano impensabili.
Dal furto d’identità, alla manipolazione volontaria, le registrazioni vocali
sono spesso vittime di manomissioni atte a distorcere il loro reale con-
tenuto. Non è un caso se nell’analisi forense di file multimediali, il settore
dell’audio forense stia raccogliendo un crescente interesse tra la comunità
scientifica, con un numero sempre maggiore di pubblicazioni riguardanti
tecniche per l’analisi delle registrazioni audio.

In questo contesto, un problema rilevante nelle indagini forensi è
quello dell’identificazione del dispositivo. Questo problema si pone l’obi-
ettivo di recuperare informazioni utili per risalire al dispositivo che ha
effettuato la registrazione vocale presa in analisi. Il dispositivo lascia
sempre delle tracce intrinseche su ogni sua registrazione durante la fase
di acquisizione e in letteratura sono stati proposti diversi metodi per es-
trarle. Nell’ottica forense, queste informazioni costituiscono l’impronta
(o firma) del dispositivo adottato e verranno utilizzate come elemento
discriminante nel processo di identificazione.

In questa tesi proponiamo un metodo per l’identificazione del dispos-
itivo partendo da una registrazione vocale. L’impronta considerata si
basa su una stima delle modifiche spettrali applicate dal microfono del
dispositivo in fase di acquisizione. Questa procedura è nota in letter-
atura come stima del canale. Il processo di estrazione di questa impronta
necessita però di una registrazione audio che sia il più possibile esente

Sommario iv

da componenti esterne, come il parlato o rumore. È ben noto infatti
come questi segnali provochino un netto deterioramento della stima, con
la conseguente diminuzione dell’affidabilità nell’identificare il dispositivo
utilizzato. Per questo motivo, ci concentriamo sul complesso problema
dell’identificazione del dispositivo in condizioni rumorose sfruttando tec-
niche di denoising basate su reti neurali.

Nel validare l’efficacia del metodo, formuliamo il problema in uno sce-
nario closed-set, dove il numero di dispositivi possibili è limitato e noto in
precedenza. I risultati ottenuti confermano la nostra formulazione teor-
ica, ottenendo un notevole incremento rispetto al modello adottato come
riferimento, migliorando quindi l’affidabilità finale nell’identificazione del
dispositivo di acquisizione in presenza di registrazioni vocali corrotte da
rumore.

Ringraziamenti

Un sentito grazie va in primis a tutta la mia famiglia, a mia sorella e ai
miei parenti milanesi per avermi dato la possibilità di raggiungere questo
obiettivo, sostenendomi lungo tutto il percorso accademico.

Grazie ai miei amici di una vita, perché la loro sincera vicinanza mi
ha permesso di credere in me stesso ed arrivare a questo traguardo. Un
ringraziamento particolare va ai miei compagni di studio, con i quali du-
rante questo percorso si è instaurato un rapporto di amicizia che va oltre
la semplice vita universitaria. Ringrazio tutti coloro che durante questo
periodo accademico hanno lasciato la città perseguendo i loro obiettivi,
ma nonostante ciò mi sono sempre accanto. Non posso dimenticare di
ringraziare la città di Milano, che ormai considero come una seconda
casa.

Un ringraziamento speciale va infine al mio relatore prof. Paolo
Bestagini e al dott. Luca Cuccovillo per i preziosi consigli, il continuo
supporto e la pazienza avuta lungo tutto questo lavoro di tesi a distanza.
Grazie di cuore per l’enorme professionalità.

A.G.

Contents

Abstract i

Sommario iii

Ringraziamenti v

List of Figures x

List of Tables xi

Glossary xii

1 Introduction 1

2 Theoretical Background 5
2.1 Signal Processing . 5

2.1.1 Time-Frequency Analysis 5
2.1.2 Mel-Frequency Cepstral Coefficients 8
2.1.3 RelAtive Spectral TrAnsform Filter 10

2.2 Machine Learning and Deep Learning Fundamentals . . . 11
2.2.1 Overview . 11
2.2.2 Taxonomy . 12
2.2.3 Architectures Used in this Work 14

2.3 Conclusive Remarks . 27

3 State of the Art and Problem Statement 28
3.1 State of the Art on Source Attribution 28

3.1.1 Device Identification 29
3.1.2 Device Identification in Noisy Conditions 31

3.2 Problem Statement . 32

vi

Contents vii

4 Proposed Method 36
4.1 Overview . 36
4.2 Building Blocks . 39

4.2.1 Clean Speech Model 39
4.2.2 Denoising . 43
4.2.3 Blind Channel Estimation 46
4.2.4 Feature Computation 52
4.2.5 Identification . 54

4.3 Conclusive Remarks . 55

5 Experiments and Results 56
5.1 Experiment Setup . 56

5.1.1 Datasets . 56
5.1.2 Parameters and Routines Design 58
5.1.3 Evaluation Metrics 60

5.2 Preliminary Experiments for Method Design 61
5.2.1 GMM . 61
5.2.2 Denoiser . 62

5.3 Results . 64
5.3.1 Baseline . 65
5.3.2 Ablation Studies 65
5.3.3 Proposed Method 71
5.3.4 Model Robustness 71

5.4 Conclusive Remarks . 75

6 Conclusions and Outlook 76

Appendices 79
A AS Experiment Flowcharts 79

A.1 AS Experiment I 80
A.2 AS Experiment II 80
A.3 AS Experiment III 81
A.4 AS Experiment IV 82

B Identification Reports . 83
B.1 AS Experiment I 83
B.2 AS Experiment II 84
B.3 AS Experiment III 85
B.4 AS Experiment IV 87

Contents viii

B.5 Proposed Method 88
B.6 MR Experiment I 89
B.7 MR Experiment II 90

List of Figures

1.1 Source attribution scenarios 3

2.1 Generic spectrogram . 7
2.2 Hz-Mel relationship . 8
2.3 Mel-Frequency Cepstral Coefficientss (MFCCs) extraction 10
2.4 Decision boundary for a linearly-separable problem . . . 15
2.5 Expectation-Maximization (EM) algorithm 21
2.6 Multi Layer Perceptron (MLP) architecture 22
2.7 Artificial neuron . 23
2.8 Two-dimensional convolution operation 25
2.9 Convolutional Neural Network (CNN) architecture 26

3.1 Audio signal recording model 33
3.2 Channel responses example 35

4.1 Proposed method - simplified flowchart 37
4.2 Proposed method - flowchart 38
4.3 Phoneme spectrum basis matrix 44
4.4 Effect of the Denoising CNN (DnCNN) on the spectrogram 45
4.5 DnCNN architecture . 46
4.6 Channel responses extracted using our modified algorithm 51
4.7 Feature components example 55

5.1 Effect of the pre-emphasis filter 62
5.2 AS Experiment I - confusion matrix 67
5.3 AS Experiment II - confusion matrix 68
5.4 AS Experiment III - confusion matrix 69
5.5 AS Experiment IV - confusion matrix 70
5.6 Proposed Method - confusion matrix 72

ix

List of Figures x

5.7 MR Experiment I - confusion matrix 73
5.8 MR Experiment II - confusion matrix 74

1 AS Experiment I - flowchart 80
2 AS Experiment II - flowchart 80
3 AS Experiment III - flowchart 81
4 AS Experiment IV - flowchart 82

List of Tables

5.1 MOBIPHONE mobile-phones list 58
5.2 Gaussian Mixture Model (GMM) design results 61
5.3 Baseline - accuracy results 65
5.4 Ablation studies settings 65

1 AS Experiment I - report 83
2 AS Experiment II - report 84
3 AS Experiment III - report - clean data 85
4 AS Experiment III - report - noisy data 86
5 AS Experiment IV - report 87
6 Proposed method - report 88
7 MR Experiment I - report 89
8 MR Experiment II - report 90

xi

Glossary

AAC Advanced Audio Coding. 2

Adam Adaptive Moment Estimation. 59

AI Artificial Intelligence. 3

AIC Akaike Information Criterion. 22

AMR Adaptive Multi-Rate. 32, 58

ANN Artificial Neural Network. 12, 22, 24, 63

AWGN Additive White Gaussian Noise. 31, 32, 34, 44, 58, 62–64, 74

BED Band Energy Difference. 30, 63, 66

BFCC Bark Frequency Cepstral Coefficient. 29

BIC Bayesian Information Criterion. 22, 59

CNN Convolutional Neural Network. ix, 2, 24–26, 30–32, 46, 55, 64

CQT Constant-Q Transform. 31

DC Direct Current. 32

DCT Discrete Cosine Transform. 10, 40–42

DFT Discrete Fourier Transform. 6, 32, 41, 44

DL Deep Learning. 5, 11, 12, 14, 27, 60

DnCNN Denoising CNN. ix, 45, 46, 48, 58, 59, 63, 65, 67, 71–73, 76,
77

xii

Glossary xiii

EM Expectation-Maximization. ix, 19, 21

FBP Filter Bank Power. 8, 41

FLAC Free Lossless Audio Codec. 57

GMM Gaussian Mixture Model. xi, 18, 19, 21, 29, 39, 40, 42, 47, 48,
55, 58–62, 65, 68, 69, 76, 77

GSV Gaussian Supervector. 29, 30

HHT Hilbert-Huang Transform. 5

HTK Hidden Markov Model Toolkit. 7, 40–42, 48, 76

IFT Inverse Fourier Transform. 8

IIR Infinite Impulse Response. 11

IMFCC Inverted MFCC. 30

LFCC Linear Frequency Cepstral Coefficient. 29

LPCC Linear Prediction Cepstral Coefficient. 29

LR Learning Rate. 59

LTAS Long-Term Average Spectrum. 66

MFCC Mel-Frequency Cepstral Coefficients. ix, 8, 10, 11, 29, 30, 40–42,
48, 76

MIR Music Information Retrieval. 8

ML Machine Learning. 3, 5, 11, 12, 14, 27, 59

MLP Multi Layer Perceptron. ix, 22, 24, 26

MSE Mean Square Error. 59

PCM Pulse-Code Modulation. 2, 57, 58

PSD Power Spectral Density. 30, 31

PSNR Peak SNR Ratio. 64

Glossary xiv

RASTA RelAtive Spectral TrAnsform. 10, 11, 39, 42, 48, 76

RASTA-MFCC RASTA filtered Mel-Frequency Cepstral Coefficients.
39, 40, 55

RBF Radial Basis Function. 17, 54, 60

RBF-NN Radial Basis Functions Neural Network. 29

SMO Sequential Minimal Optimization. 17, 30

SNR Signal-to-Noise Ratio. 32, 58, 60, 64, 72–74, 77

SSIM Structural Similarity Index. 64

STFT Short-Time Fourier Transform. 5–7, 33, 47

SVM Support Vector Machine. 14, 17, 29, 30, 54, 59, 60

TIMIT Texas Instruments/Massachusetts Institute of Technology. 57,
61, 62, 65

VGG Visual Geometry Group. 46

VQ Vector Quantization. 29

WAV Waveform Audio File. 57, 58

WT Wavelet Transform. 5

1
Introduction

Nowadays, the advancements in digital technologies led us to a massive
spread of low-cost mobile devices. These are mostly used to acquire
various forms of multimedia content such as videos, images, and audio
recordings [1]. It happens more and more frequently that these digital
materials are used as a piece of evidence in the court of law. Specifi-
cally, recorded audio through mobile devices is widely used due to the
fact that its speech content may contain many pieces of evidence [2].
Just think at how many voice messages we exchange every day and how
much sensitive information they might contain. Therefore, audio file au-
thenticity procedures are required to assess the veracity of a multimedia
object. Unfortunately, the vast majority of research has been carried out
in the field of image forensics at the expense of audio forensics, which is
comparatively less investigated [3].

Strictly concerning audio forensics, different methods have been pro-
posed to solve various kinds of problems, ranging from speech and speaker
recognition, acoustic environment identification, integrity verification,
transcoding and codec identification, audio enhancement and double
compression detection [4]. For instance, authors in [5] proposed a method

Chapter 1. Introduction 2

for Advanced Audio Coding (AAC) encoding detection using a CNN, es-
timating also the bitrate from Pulse-Code Modulation (PCM) data. To
assess integrity, the authors in [6] proposed an audio splicing detection
method based on the estimation of inconsistencies in the reverberation
time throughout a speech recording. The splicing tampering consists of
replacing portions of audio with others from different recordings. They
also addressed the problem of localization of the splicing point. Re-
cent works in [7, 8] addressed the problem of AI-Synthesized speech
signals detection by exploiting the weakness of the artificial generation
of speech signals using neural networks. The audio-matching problem
was addressed in [9] where the authors proposed a novel partial match-
ing algorithm that balances time-granularity analysis and computational
complexity with the amount of data to be analyzed.

One of the most important problems to be solved is that of authentic-
ity assessment. This means verifying whether a recording is authentic or
has been manipulated. Authenticity assessment using standard security
approaches often means the adoption of digitally signing content right af-
ter signal acquisition or watermarking techniques, but this is not always
applicable as it requires the modification of devices and workflows [4].
Pursuing this objective, most of the available passive1 authentication
methods relies on the extraction of a specific fingerprint directly from
the audio recording. This fingerprint is often referable to the multiple
tolerances of the hardware components adopted by the different manu-
facturers in the production process of the device, such as a mobile-phone.

This extracted device fingerprint can be used in the context of source
attribution to provide information about the acquisition device used to
capture the audio signal under analysis. This task encompasses two
known problems in forensics [10]:

• source identification: linking a file, i.e. audio recording, to one of
several suspected acquisition devices (Fig. 1.1a);

• source verification: confirmation that an investigated file was ac-
quired by a specific acquisition device (Fig. 1.1b).

Our work focuses on source identification. More specifically, we pro-
pose a method to determine with which device the audio track under

1methods not relying on any extrinsic security mechanism such as digital sign or
watermarking.

Chapter 1. Introduction 3

analysis was recorded. This scenario has two main constraints. The first
is that the true device is supposed to be in a closed-set of known devices.
The second one, we must have access to all the possible devices with the
aim of producing some reference recordings, or at least, have the chance
to access to a set of recordings whose source device is known.

(a) The device identification scenario.

(b) The device verification scenario.

Figure 1.1: The two main problems in source attribution.

In this work we develop a new and improved methodology to solve
the source identification task in a closed-set scenario. Our work improves
over a previous proposal by Cuccovillo et al. [11, 12], in which the authors
proposed to perform microphone identification by blindly estimating the
channel introduced by the microphone frequency response. In the original
work, however, the estimation procedure was disrupted by the presence
of any background noise, which greatly reduced its applicability in real
case scenarios.

In this work, the blind estimation of the microphone frequency re-
sponse integrates an explicit processing step for mitigating the influence
of background noise. The algorithm is based on a composition of classic
Machine Learning (ML), signal processing and Artificial Intelligence (AI)
tools. It allows for better performances than the reference state-of-the-art

Chapter 1. Introduction 4

techniques.
The rest of the work is organized as follows. Chapter 2 outlines the

theoretical aspects necessary to fully understand the rest of the work.
Chapter 3 gives an overview of the main state-of-the-art techniques ad-
dressing the device identification task. The chapter concludes by formally
defining the problem that we solve in this work, relying upon a mathemat-
ical formulation. Chapter 4 describes the methodology that we devised
to perform the device identification task. In particular, we will go into
the details of the proposed architecture. Chapter 5 analyzes in details
the results obtained in validating our method by means of the evaluation
metrics. Chapter 6 summarizes possible system improvements and future
developments to enhance performance. For the most interested readers,
Appendix A sets out in detail the architectures used in each experiment
while Appendix B contains the related identification statistics.

2
Theoretical Background

In this chapter we introduce the preliminary tools that will be used
throughout this work. We make a short overview of the topics related
to signal processing, to end up with a brief outline of some of the fun-
damental algorithms related to Machine Learning (ML) as well as Deep
Learning (DL).

2.1 Signal Processing

In this section, we focus our attention on some signal processing tools
which are an integral part of this work.

2.1.1 Time-Frequency Analysis

Time-frequency analysis refers to the techniques that study signals simul-
taneously, both in the time and in the frequency domain. These allow us
to characterize signals that have a natural time-varying meaning such as
a speech signal or music.

There are multiple time-frequency representations, such as the Wavelet
Transform (WT), the Hilbert-Huang Transform (HHT) and the Short-

Chapter 2. Theoretical Background 6

Time Fourier Transform (STFT). In the rest of the section we are going
to focus our attention on the STFT and on its modifications.

2.1.1.1 Short-Time Fourier Transform

The basic idea used to build an STFT representation of a signal consists
in partitioning it into shorter segments of equal length and performing
the Discrete Fourier Transform (DFT) over them. The signal partitioning
is performed through a sliding window function.

If we refer to s(n) as a discrete signal, its STFT can be defined as [13]:

STFT{s(n)}(k, l) = S(k, l) =
+∞∑︂

n=−∞

s(n)w(n− lR)e−j 2π
M

kn, (2.1)

where n is the current time instant, l is the time frame, k is the discrete
frequency, denoted as “bin”; w is a window function composed by M

samples, R is the hop size between two successive DFTs. At the time
instant n, the sliding window mechanism allows taking information only
on a portion of the signal around n. The time-frequency resolution trade-
off can be adjusted by the window function length M. The longer the
window, the higher the frequency resolution we have at the cost of a
smaller resolution in time; vice versa for narrower windows. There exist
many window functions in literature, each one with its own spectral
characteristic1.

The STFT of a signal is often visualized by means of a spectrogram,
which is a two-dimensional representation of its magnitude [15].

When generating a spectrogram, the vertical axis often represents
the frequency, the horizontal axis represents time, and the color of each
pixel indicates the magnitude of a particular frequency in a specific time
instant. In short, the procedure consists of creating a heat-map of the
STFT magnitudes, as the one in Figure 2.1. This STFT magnitude is
usually converted in a decibel scale, to better represent the sound inten-
sity range that the human ear-system can cover. Usually, this mapping
is done after squaring the values obtaining the so-called log-power spec-
trogram, i.e.:

P (k, l) = 10 log |S(k, l)|2. (2.2)
1for a further explanation we refer the reader to [14].

Chapter 2. Theoretical Background 7

Figure 2.1: A generic spectrogram.

2.1.1.2 Mel Spectrogram

Different variants of STFT have been used in order to make this represen-
tation more informative depending on the needs. In the case of the Mel
spectrogram, the frequency axis is mapped in a suitable way to emulate
the human auditory system behavior. Indeed, our perception of pitch
intervals is non-linearly correlated with linear intervals in frequency. For
this reason, different scales that reflect this nonlinear relationship exists;
one of the most used in the so-called Mel scale [16]. Due to their origin in
listening experiments, several formulas exist that try to approximate the
Hz-Mel frequency relationship. In this work we use the the one proposed
by the Hidden Markov Model Toolkit (HTK) [17]:

m = 2595 · log
(︃
1 +

f

700

)︃
. (2.3)

The inverse transform can be readily derived as:

f = 700
(︁
10

m
2595 − 1

)︁
. (2.4)

In Figure 2.2, we can see how the relationship between Hz and Mel fre-
quency is approximately linear for frequencies below 500Hz and highly
non-linear on the opposite side. Indeed, by using this relationship, equally
spaced points mk, corresponds to frequency points fk whose perceptual
distance is equal [18]. The scales reference point is 1000, which means
that 1000Hz equals 1000Mel.

Chapter 2. Theoretical Background 8

Figure 2.2: The Hz-Mel frequency relationship.

2.1.2 Mel-Frequency Cepstral Coefficients

The Mel-Frequency Cepstral Coefficients (MFCC) are a well-known fea-
ture used for speech recognition and most recently adopted in the Music
Information Retrieval (MIR) field. Their computation relies on the cep-
strum, which is the outcome of computing the Inverse Fourier Transform
(IFT) of the logarithm of a signal spectrum. This representation is a
powerful tool for investigating periodic structures in the frequency do-
main and has a strong acceptance in human speech analysis.

At first, we construct the so-called Mel-filter bank. This is a set of
triangular filters equally spaced on a Mel scale range. The construction
procedure requires that the filters must overlap each other, such that the
two extreme minima of each filter are located on the center frequency of
the two adjacent ones, as in Figure 2.3a.

The extraction process of the MFCCs is illustrated in Figure 2.3.
In specific, Figure 2.3b shows the log-power spectrogram of a speech
segment2. When each window of that spectrogram is multiplied with the
triangular filter bank, we obtain the Mel-weighted spectrum, illustrated
in Figure 2.3c. This operation enables us to calculate the Filter Bank
Power (FBP), which is a list of the power from each triangular filter.

Here we see that the main shape of the spectrogram is retained, but
2different version of the MFCCs computation exists in literature [19]; here we

report the one used in this work, in which we use the power spectrogram as input of
the filter bank.

Chapter 2. Theoretical Background 9

(a) The triangular Mel filter bank.

(b) A spectrogram of a speech segment.

(c) The spectrogram after multiplication with the Mel filter bank.

Chapter 2. Theoretical Background 10

(d) The extracted MFCCs.

Figure 2.3: The main steps of the MFCCs extraction procedure; images cour-
tesy of [18].

the fine-structure has been smoothed out. This procedure in practice re-
moves the details related to the harmonic structure. Indeed, the identity
of phonemes such as vowels is determined based on macro-shapes in the
spectrum. The MFCCs preserve that type of information and remove
“unrelated” information such as the pitch. Figure 2.3d illustrates the
outcome after the Mel-weighted spectrogram is multiplied with a Dis-
crete Cosine Transform (DCT) to obtain the final MFCCs. The purpose
of the DCT is to decorrelate the signal since the triangular filter bank is
highly overlapped, hence containing much frequency cross-information.

We can see that, differently from the Mel-weighted spectrogram, the
MFCCs does not retain the original spectrum shape. This is justified
by the fact that it is based on an abstract domain, in which we have
information about the spectral envelope of the speech signal and not on
the harmonic content, as in the spectrogram [18].

2.1.3 RelAtive Spectral TrAnsform Filter

Hermansky et al. in [20] proposed a filtering approach for a robust rep-
resentations for speech recognition and enhancement. This procedure
was meant to decouple the temporal properties of a generic channel ef-
fects from the temporal properties of a speech signal convolved with that
channel. They called this filtering procedure RelAtive Spectral TrAns-

Chapter 2. Theoretical Background 11

form (RASTA). For some time, it was successfully used to model human
voice for speaker (and speech) identification.

The main motivations that support the RelAtive Spectral TrAnsform
(RASTA) filtering procedure lie in the speech signal characteristics and
how a human perceives it. In particular, it has been proved that human
listeners do not seem to pay much attention to a slow change in the
frequency characteristics of a channel. In addition, steady background
noise does not severely impair human speech communication. Thus, they
band-pass filtering time trajectories of speech feature vectors using a filter
with a sharp spectral zero at the zero frequency.

In principle, the RASTA processing can be done on time trajectories
of any parameters, of course, with different effects depending on the
domain of application. In our work, we are going to perform RASTA
filtering of MFCCs vectors.

The RASTA filter is an Infinite Impulse Response (IIR) filter with
transfer function in the z-domain as follow:

H(z) = 0.1z4 ∗ 2 + z−1 − z−3 − 2z−4

1− 0.94z−1
. (2.5)

Having a long time constant for integration, this filter has a memory
effect. This characteristic allows an enhancement of the spectral transi-
tions and makes also the result dependent on the previous short segment
of speech, such as phoneme or syllable. In addition, this filtering accounts
also for channel equalization and noisy speech enhancement, which are
the reasons for its adoption in this work.

2.2 Machine Learning and Deep Learning
Fundamentals

In this section, we give a brief introduction to the core ideas and concepts
behind Machine Learning (ML) and Deep Learning (DL), explaining the
algorithms used in this work.

2.2.1 Overview

Machine Learning (ML) is a field of study which allow computers (“ma-
chines”) to learn from data or experience in order to make predictions

Chapter 2. Theoretical Background 12

that are based on this knowledge. These machines are not explicitly pro-
grammed, although they make data-driven decisions for carrying out a
certain task. These programs or algorithms are designed in a way that
they learn and improve over time when are exposed to new data. Deep
Learning (DL) instead, is a subcategory of machine learning where the
used algorithms attempt to find a mathematical representation of infor-
mation processing that emulates the structure and function of the brain.
For this reason, they are called Artificial Neural Network (ANN) [21].

2.2.2 Taxonomy

ML problems can be broadly divided in three classical categories:

• Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning.

In addition to these three main categories, there are two main subcat-
egories of supervised learning: Semi-Supervised Learning, which can be
considered a mix between supervised and unsupervised learning, and
Self-Supervised Learning that can be regarded as autonomous learning
in that the model does not necessarily require sample data classified in
advance by humans.

2.2.2.1 Supervised Learning

Supervised learning is focused on predicting a target value given input
observations. In machine learning, we call the model inputs features. The
target values instead are often called labels. The latter are the elements on
which the supervised models are trained to make a prediction. Supervised
learning problems can be categorized into two major subcategories [22]:
regression analysis and classification.

In regression analysis, the labels are continuous variables. In classifi-
cation, the labels are so-called class labels, which can be understood as
discrete class or group-membership indicators [23].

Chapter 2. Theoretical Background 13

2.2.2.2 Unsupervised Learning

While supervised learning is based on labeled data, unsupervised learning
aims to model the hidden structure in data without label information.
The main tasks addressed in unsupervised learning are:

• Feature Learning;

• Dimensionality Reduction;

• Clustering.

Feature learning techniques replace manual feature engineering and
allow a machine to automatically discover the representations needed to
perform a specific task.

Instead, dimensionality reduction aims at achieving a data transfor-
mation from a high-dimensional space into a low-dimensional one so that
the low-dimensional representation still preserve some meaningful proper-
ties of the original data. This is crucial since working in high-dimensional
spaces can be undesirable: raw data are often sparse as a consequence of
the curse of dimensionality, and analyzing the data in this way is usually
computationally intractable [22].

Lastly, clustering methods can be seen as a task similar to classifica-
tion but without labeling information in the training dataset. Without
this information, the main goal is to group data by similarity and de-
fine distinct groups based on similarity thresholds. These algorithms can
be divided into three major groups [23]: prototype-based, density-based,
and hierarchical clustering. While in the first type, the amount of clus-
ters is defined a-priori, in a density-based clustering this number is not
fixed but assigned by identifying regions of a high density of data. In
hierarchical clustering, however, a distance metric is used to group ex-
amples in a tree-like fashion, in such a way that examples at the root are
more related to each other. The depth of the tree defines the number of
clusters to be used.

2.2.2.3 Reinforcement Learning

Reinforcement learning is concerned with developing reward systems to
model complex decision processes and learning a series of actions that
lead to a particular outcome. In a reinforcement learning algorithm, a

Chapter 2. Theoretical Background 14

so-called agent learns how to act by interacting with its environment.
The agent receives rewards for performing correctly and penalties for
performing incorrectly. The agent learns without human intervention by
maximizing its reward and minimizing its penalty.

Since its discussion is beyond the scope of this work, a more compre-
hensive treatment of the subject is left to the reader in [24] and [25].

2.2.3 Architectures Used in this Work

In this section, we will see how some algorithms can help us in solving
general tasks that interest this work. In particular, we will start with
two more general ML algorithms and then move on to addressing two of
the basic building blocks which forms some of the DL architecture used
in this field.

2.2.3.1 Support Vector Machine

Support Vector Machine (SVM) is a supervised ML algorithm mostly
used for linear and non-linear classification problems.

Its working principle is based on the creation of a hyperplane in a
multidimensional feature space that separates data points into two or
more classes. The position and orientation of this hyperplane depend on
the features position in such a way that the distance between the nearest
points belonging to a different classes is maximized. These points are
called support vectors and decide the exact placement of the separating
hyperplane, maximizing the region3 between the possible classes. The
resulting separation hyperplane will be located in the middle point from
the support vectors. In Figure 2.4 we give a graphical example for a
two-class classification problem with a two-dimensional feature space.
The margin is represented by the dashed lines whereas the final decision
boundary is equispaced between them and represented by a single solid
line.

The learning step is therefore the process of finding the hyperplane
with the maximum margin (optimal solution), thus maximizing the dis-
tance of the closest point to the hyperplane.

In a simplified two-class classification scenario, using a linear model
in order to separate these data points, we can define an hyperplane as

3called functional margin in this context.

Chapter 2. Theoretical Background 15

Figure 2.4: The decision boundary for a linearly-separable problem, with three
support vectors (rounded dots) on the margin boundaries; image courtesy
of [26].

follow [22]:
y(x) = wTφ(x) + b, (2.6)

where x and w are N-dimensional vectors, φ denotes a fixed feature
space transformation and b a bias parameter. The training data set
is formed by N input vectors x1, . . . ,xN with the corresponding target
values t1, . . . , tN , where tn ∈ {−1, 1}. Assuming that the training dataset
is linearly separable in the feature space, there exist at least one choice
of parameters w and b such that y(xn) > 0 for points having tn = +1

and y(xn) < 0 for points having tn = −1. For the calculation of the
optimal solution, we are only interested in data points that are correctly
classified, so the ones that satisfy the relation tny(xn) > 0 for all n.
Knowing that the distance of a point xn to the decision surface in the
Equation (2.6), is given by |y(x)|

∥w∥ , we can narrow down the calculation to
the only correct points, such that:

tny (xn)

∥w∥
=

tn
(︁
wTφ (xn) + b

)︁
∥w∥

, (2.7)

where || · || represents the norm of a vector. The margin is given by
the perpendicular distance to the closest point xn from the data set (the

Chapter 2. Theoretical Background 16

support vector), and our final goal is to optimize the parameters w and b

in order to maximize this distance. Thus the maximum margin solution
is found by solving:

argmax
w,b

{︃
1

∥w∥
min
n

[︁
tn
(︁
wTφ (xn) + b

)︁]︁}︃
, (2.8)

where the factor 1
∥w∥ is outside the optimization over n because w does

not depend on n. This optimization problem leads us to a very complex
solution. We can overcome this by turning this problem into a simpler
one. We can make a rescaling w → kw and b → kb in such a way that
the distance from any point xn to the decision surface is unchanged [25].
This allows us to formulate the problem as follows:

tn
(︁
wTφ (xn) + b

)︁
= 1, (2.9)

for the points that are closest to the surface, so for the support vectors.
All the other data points have to satisfy the constraints:

tn
(︁
wTφ (xn) + b

)︁
⩾ 1. (2.10)

This is known as the canonical representation of the decision hyperplane.
In this formulation, the optimization problem simply requires to maxi-
mize ∥w∥−1, which is equivalent to minimize ∥w∥2, i.e.:

argmin
w,b

1

2
∥w∥2, (2.11)

subject to the constraints given in Equation (2.10). This is an example
of a quadratic programming problem in which we are trying to minimize
a quadratic function subject to a set of linear inequality constraints. Its
solution is obtained through the use of the Lagrange multipliers an ⩾ 0,
with one multiplier an for each of the constraints in Equation (2.10),
leading to the Lagrangian function:

L(w, b, a) =
1

2
∥w∥2 −

N∑︂
n=1

an
{︁
tn
(︁
wTφ (xn) + b

)︁
− 1
}︁
, (2.12)

with a = (an, . . . , aN)
T. The minus sign in front of the Lagrange mul-

tiplier term is reasonable because we are minimizing with respect to w

and b, and maximizing with respect to a. For an extensive discussion on
this subject, the reader can refer to [22] and [25].

Chapter 2. Theoretical Background 17

One of the most popular approaches to train a support vector ma-
chines is called Sequential Minimal Optimization (SMO), and it is based
on the concept of chunking4, considering only two Lagrange multipliers
at a time. In this simplified case, the sub-problem can be solved analyt-
ically, avoiding the use of numerical quadratic programming. Heuristics
are given for choosing the pair of Lagrange multipliers to be considered
at each step. SMO is found to have a complexity scaling with the num-
ber of data points that is between linear and quadratic depending on the
particular application [22].

In most cases, a well-known problem is that the resulting feature
space is non-linearly separable such that the hyperplane that divides the
class cannot be described in a linear form as stated in Equation (2.6).
To solve this problem, a data transformation is carried out using the
so-called kernel, that mapping the data points in a higher dimension in
which they become linearly separable. This procedure is known in the
literature as the kernel trick or kernel substitution. The concept is based
on a kernel formulated as an inner product in a feature space. This allows
an algorithm formulated in the same way to replace that scalar product
with some other choice of kernel. There exist different kernels, each one
with specific characteristics. The most popular are the Polynomial kernel,
the Gaussian kernel, the Radial Basis Function (RBF), the Hyperbolic
Tangent kernel, the Sigmoid kernel and the ANOVA RBF kernel. Among
them, the most commonly used is the RBF.

Whenever performing the tuning of a Support Vector Machine (SVM),
it is possible to change not only the kernel but also some other hyper-
parameters with the final goal of improving the total accuracy of the
system. The regularization coefficient, usually denoted with C, tells the
SVM optimization how much miss-classification rate we can accept. The
lower this parameter, the bigger the hyperplane’s margin will be, so the
number of the miss classified point will be higher, giving more flexibil-
ity. Another important hyperparameter is gamma, usually denoted with
γ and relevant for the RBF kernels. It controls the influences that the
points have on the hyperplane position. A low gamma implies that for
finding the optimal hyperplane we have to consider points that are dis-

4the technique of chunking exploits the fact that the value of the Lagrangian
function remains the same if we remove the rows and columns of the kernel matrix
corresponding to Lagrange multipliers that have zero value.

Chapter 2. Theoretical Background 18

tant from the plausible hyperplane, and vice versa.

2.2.3.2 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is an unsupervised method for
solving clustering problems. We often refer to this problem as a soft-
clustering [22] because, differently for the classical K-means algorithm5,
for each point in the cluster we can associate an uncertainty measure, i.e.
a probability. In addition, such information allows us to use a probability
distribution-based model instead of a classical distance-based model for
solving more generic clustering problems.

GMM assumes that there are a certain number K of Gaussian distri-
butions, usually called components or mixtures, that represent the clus-
ters, with the goal of grouping together data points belonging to the
same distribution. A GMM is parameterized by two types of values, the
mixture weights and the mixture means and covariances. Generalizing
for a K-dimensional input x, the Gaussian mixture distribution can be
written as a linear superposition of Gaussians in the form:

p(x) =
K∑︂
k=1

πkN (x | µk,Σk) , (2.13)

where πk represent the k-th component weight coefficient6 and are subject
to the constrains 0 ⩽ πk ⩽ 1 along with

∑︁K
i=k πk = 1, so that the total

probability distribution normalizes to 1. N (x | µk,Σk) instead, repre-
sents a single mixture, and is a multivariate Gaussian distribution with
its own mean µk and covariance Σk. This single multivariate Gaussian
distribution represents a single cluster and can be generally formulated
as:

N (x | µ,Σ) =
1

(2π)K/2

1

|Σ|1/2
exp

{︃
−1

2
(x− µ)TΣ−1(x− µ)

}︃
, (2.14)

where µ is a K-dimensional mean vector, Σ a K × K covariance matrix
and |Σ| denotes the determinant of Σ [22].

Let us introduce a K-dimensional binary random variable z ∈ {0, 1}
with

∑︁K
k=1 zk = 1. A single element zk of z is equal to 1 and all the other

5a hard-clustering algorithm because each point is associated to one and only one
cluster [27].

6also called mixing coefficient or prior.

Chapter 2. Theoretical Background 19

are 0, thus there are K possible states for the vector z according to which
element is nonzero. This vector can be considered as a selector index for
a specific mixture. We can define a marginal distribution p(z) and a
conditional distribution p(x | z) noting that the marginal distribution
over z is specified in terms of the mixing coefficients πk, such that:

p(zk = 1) = πk. (2.15)

The conditional distribution of x given a particular value for z instead,
is a Gaussian of the form:

p(x | zk = 1) = N (x | µk,Σk) . (2.16)

From Equation (2.15) and Equation (2.16) we can obtain the condi-
tional probability of z given x using the Bayes’ theorem, i.e.:

p (zk = 1 | x) = p (zk = 1) p (x | zk = 1)∑︁K
j=1 p (zj = 1) p (x | zj = 1)

=
πkN (x | µk,Σk)∑︁K
j=1 πjN (x | µj,Σj)

.

(2.17)

This quantity indicates the posterior probability once we have observed
the x data. Basically, πk is the prior probability of zk = 1 and p (zk = 1 | x)
can be viewed as the responsibility that the mixture k gives for “explain-
ing” the observation in x.

Training a GMM for a clustering problem means finding the right
mean vector µk, the covariance matrix Σk and the mixing coefficient πk

for each of our Gaussian mixtures. This problem is tackled using an
iterative statistical algorithm called EM [28].

E-M Algorithm The EM algorithm for Gaussian mixtures has the
goal to maximize the likelihood function with respect to the parameters7.
Suppose we have a dataset of observations x1, . . . ,xN . This iterative
procedure for Gaussian mixtures can be formulated in this way [22]:

1. Initialize the parameters and evaluate the initial value of the log
likelihood.

7speaking about GMM, these parameters are its mixing coefficient πk, the mean
vector µk and covariance matrix Σk that characterize a single multivariate Gaussian
distribution.

Chapter 2. Theoretical Background 20

2. Expectation-step: evaluate the posterior probabilities (Equa-
tion (2.17)) using the current parameter values:

γ (znk) =
πkN (xn | µk,Σk)∑︁K
j=1 πjN (xn | µj,Σj)

.

3. Maximization-step: re-estimate the parameters using the cur-
rent posterior probabilities:

µnew
k =

1

Nk

N∑︂
n=1

γ (znk)xn

Σnew
k =

1

Nk

N∑︂
n=1

γ (znk) (xn − µnew
k) (xn − µnew

k)T

πnew
k =

Nk

N
,

where

Nk =
N∑︂

n=1

γ (znk) .

4. Evaluate the log likelihood:

ln p(x | µ,Σ,π) =
N∑︂

n=1

ln

{︄
K∑︂
k=1

πkN (xn | µk,Σk)

}︄
,

and check for convergence of either the parameters or the log like-
lihood. If the convergence criterion is not satisfied return to step
2.

A graphical example of the algorithm is proposed in Figure 2.5, where
a mixture of two Gaussians was used. Figure 2.5a shows the data points
in green, together with the initial configuration of the mixture model in
which the one standard-deviation contours for the two Gaussian compo-
nents are shown as blue and red circles. Figure 2.5b shows the result of
the initial Expectation-step, in which each data point is depicted using a
proportion of blue color equal to the posterior probability of having been
generated from the blue component, and a corresponding proportion of
red color given by the posterior probability of having been generated by
the red component. To obtain these posterior probabilities the Equa-
tion (2.17) was used. In addition, we can see that points that have a

Chapter 2. Theoretical Background 21

Figure 2.5: An example of the EM algorithm for a mixture of two components;
image courtesy of [22].

significant probability of belonging to either cluster appear purple. The
situation after the first Maximization-step is shown Figure 2.5c, in which
the mean of the blue Gaussian has moved to the mean of the data set,
weighted by the probabilities of each data point belonging to the blue
cluster. We can see how it has moved to the center of mass of the blue
data. Similarly, the covariance of the blue Gaussian is set equal to the
covariance of the blue data. Analogous results hold for the red points.
Figure 2.5d, 2.5e, and 2.5f show the results after 2, 5, and 20 complete
cycles of EM, respectively. In plot Figure 2.5f the algorithm is close to
convergence.

It is important to notice that the EM algorithm takes many more
iterations to reach (approximate) convergence compared to the K-means
algorithm and that each cycle requires significantly more computation.
It is therefore common to run the K-means algorithm in order to find a
suitable initialization for a GMM that is subsequently adapted using the
EM.

The number of mixtures K is not known a priori. Indeed, it is typ-
ical to guess the number of components and fit that model to the data
using the EM algorithm. A much more rigorous approach to solve this
problem is based on the adoption of some information-theoretic criteria

Chapter 2. Theoretical Background 22

as the Bayesian Information Criterion (BIC) or the Akaike Information
Criterion (AIC). Based on these scores we can select the right number of
mixtures other than the covariance matrix type that will be used.

A more theoretical formulation of this problem is addressed in [22]
and in [25].

2.2.3.3 Multi Layer Perceptron

The Multi Layer Perceptron (MLP) is a specific class of feed-forward
ANNs used for different kinds of problems. Despite the name, the model
comprises multiple layers of logistic regression models [22] (with continu-
ous non-linearities) rather than multiple perceptrons (with discontinuous
non-linearities).

Any MLP is composed of layers containing multiple nodes, called
neurons. A common structure involves an ordered stack of these layers,
for instance, an input layer, one or more hidden layers and a final output
layer. The choice of the topology, as well as the type of input data, deter-
mines the effectiveness of the network. For example, the fully-connected
MLP structure provides that the neurons of a layer are connected to all
the neurons of both the previous and next layer, as we can see in the
Figure 2.6.

Figure 2.6: A fully-connected MLP architecture.

Let us consider x our input vector with N elements x1, . . . , xN , i the
input signal index and j the neuron index in the layer. The activation

Chapter 2. Theoretical Background 23

procedure for a specific neuron j can be seen as a composition of three
components:

• Activation value: the input of a neuron is composed of a sum of all
the elements of x weighted by a weight vector w, i.e.:

zj = f(x,w, b) =
N∑︂
i=1

wijxi; (2.18)

• Bias: bj = −w0j ∗ 1, utilized to offset the result;

• Activation function: gj(·), a non linear function.

Therefore, the final output for a single neuron is obtained as:

yj = gj (zj) = gj

(︄
N∑︂
i=1

wijxi − bj

)︄
. (2.19)

Figure 2.7: The basic elements of an artificial neuron.

In the beginning, the weights and biases are “randomly” assigned.
The weights help determine the importance of any given variable, in such
a way that the larger ones contributing more significantly to the output
compared to the other inputs. As we see from Figure 2.7, all inputs are
multiplied by their respective weights and summed. The final non-linear
output function gives the yj. The fact that the output function is non-
linear is important because if it were not, any composition of neurons
would still represent a linear function. The non-linearity is what allows
sufficiently large networks of neurons to represent arbitrary functions [21].

The output function can be different from network to network. Sev-
eral function exists, giving different benefit. The most common are listed
below [21]:

Chapter 2. Theoretical Background 24

• Sigmoid, σ(x) = 1
(1+e−x)

;

• ReLU, ReLU(x) = max(0, x);

• Softplus, softplus(x) = log(1 + ex);

• tanh, tanh(x) = e2x−1
ex+1

.

The training process has the purpose of getting the right weights and
biases for the model, minimizing a specific loss function. To do that, a
maximum likelihood framework is used, involving the solution of a non-
linear optimization problem. This requires the evaluation of derivatives
of the log likelihood function with respect to the network parameters
that can be obtained using the technique of error back-propagation [22].
The term back-propagation is explained by the fact that the weights and
biases update procedure starts from the final layer, returning back up to
the initial one.

The output function for the output layer is different from the one used
in the input and hidden layer; usually a softmax function is used, where
the resulting value can be interpreted as a probability. This function is
a generalization of the logistic function to multiple dimensions, i.e.:

σ(x) =
exi∑︁N
j=1 e

xj

. (2.20)

It is important to note that according to the task we need to solve,
the output layer can assume different configuration. In specific:

• for Classification problems: the number of neurons are of the same
number of the final number of classes. The output values must be
considered as the probabilities that the analyzed data belongs to
the class;

• for Regression problems: the number of neurons are of the same
number of the domain of the regression function. By convention,
the output values are considered as the regression values.

2.2.3.4 Convolutional Neural Network

The Convolutional Neural Network (CNN) is a specific feed-forward ANN
inspired by the behavior of the visual cortex. As in the MLP case, a CNN
is composed of an input layer, a variable number of hidden layers and

Chapter 2. Theoretical Background 25

an output layer. These hidden layers perform the convolution operation
between the input signal, i.e. image, with a series of filters that con-
tain the weights and biases that are learned during the training phase.
These filters are shared on the entire layer reducing the complexity of
the network keeping the number of parameters low [29]. The filter size
determines the respective receptive field. The result of each convolution
is called feature map and represents a specific feature extracted at all
locations of the input [30].

We can think of the convolution operation as an approximation of the
visual cortex behavior, in the way that a finite number of neurons respond
to certain portions of the visual field. For a generic two-dimensional
signal, i.e. image, this operation is defined as the scalar product of a
weight matrix, the kernel, with every neighborhood in the input as shown
in Figure 2.8, i.e.:

g(x, y) = ω ∗ f(x, y) =
a∑︂

s=−a

b∑︂
t=−b

ω(s, t)f(x− s, y − t), (2.21)

with f(x, y) the original signal, ω is the kernel, g(x, y) is the output signal
obtained from convolution, i.e. the feature map, and ∗ is the convolution
operation done on a two-dimensional rectangular block.

Figure 2.8: An example of a two-dimensional convolution operation.

In Figure 2.9 we can see a generic CNN structure. After the first
convolution, the resulting feature map g(x, y) firstly passes through one
of the non-linear activation functions previously seen in Section 2.2.3.3.
Then, the so-called pooling layer is used to decrease the dimension of the
feature map reducing the complexity, replacing the output at a certain

Chapter 2. Theoretical Background 26

location with a summary statistic of the nearby outputs. There exist
many types of pooling layers, depending on what kind of statistics is
used. The most popular ones are the max pooling and the average pooling
that take the maximum value and the average value respectively around
a certain area. After that, a stack of these layers is generally used to learn
the hidden structure of the signal. Indeed, we can think of the CNN as a
process that permits a gradually increase in the ability to detect complex
patterns as the hidden structure grows.

Often, the increase in hidden structure can lead to a problem known
as overfitting. This happens when the model tends to find the best fit
to the specific data used in training instead of learning their generic
statistics [31]. This problem may be alleviated using dropout layers.
The key idea is to temporarily remove neurons from the network during
training, along with all its incoming and outgoing connections, with the
aim of improving the performance on supervised learning tasks [32].

After the feature learning phase, the signal is usually flattened in a
one-dimensional signal. The resulting signal is then passed to an output
layer that is often made by a fully-connected MLP, with the goal of
learning the right final mapping (an image class in this case) starting
from data that have a high level of abstraction at that point.

Figure 2.9: A generic CNN architecture.

Also in this case, the training procedure aims at finding the right
weights and biases, minimizing a loss function using the back-propagation
procedure.

Chapter 2. Theoretical Background 27

2.3 Conclusive Remarks

In this chapter, we introduced some of the signal processing tools that
are used throughout this work. We also exposed the main motivation
behind ML and described its three broad categories which are supervised
learning, unsupervised learning and reinforcement learning. Lastly, in
order to give a better comprehension of our method, we talked about
some of the ML and DL algorithms adopted.

3
State of the Art and Problem

Statement

In this chapter we introduce the reader to the current challenges con-
cerning the Audio Forensic field. In particular, we cover the problem
of device identification from a speech recording. We report a general
overview of the current state-of-the-art in this field, briefly describing
some of the most remarkable works. Finally, we end up by reporting the
formal definition of the problem addressed in this work.

3.1 State of the Art on Source Attribution

In a real-world scenario, different devices (i.e., telephone handsets, mobile-
phones, desktop microphones) hardly share exactly the same frequency
response due to the tolerance in the nominal values of the electronic
components and the different designs criteria used by the various man-
ufacturers [33]. Thanks to this, we can characterize a specific device by
exploiting its own intrinsic traces and use these as signature, or finger-
print. Therefore, the way we extract this signature from the audio file is

Chapter 3. State of the Art and Problem Statement 29

crucial to the recognition of the audio recording source.
Considering that the vast majority of the audio acquisition systems

use mobile-phones as an essential tool for recording and given also the
fact that our work focuses on this particular scenario, here we proposed a
review of methods explicitly focused on mobile-phone identification from
a recorded audio signal.

3.1.1 Device Identification

The most common methods for device identification involve the extrac-
tion of the features directly using the speech audio file and computing
the MFCCs. This methodology was adopted by Hanilçi et al. in [33].
In this case, the dataset used for the recognition task comprises 14 dif-
ferent mobile-phone devices and the SVM classifier achieve 96.42% of
accuracy. They also explored the use of Vector Quantization (VQ) for
the mobile-phone identification task.

Hanilçi et al. in [34] explored the performances of different acoustic
features for the same task. The final results led to the conclusion that
in most of the cases, MFCCs perform better compared to other cepstral
based features such as Linear Frequency Cepstral Coefficients (LFCCs),
Bark Frequency Cepstral Coefficients (BFCCs), and Linear Prediction
Cepstral Coefficients (LPCCs). However, LPCCs perform better iden-
tification if mean and variance normalization is adopted. Benefits in
identification results were obtained by adding the corresponding delta
features1 to the original cepstral features.

Kotropoulos et al. in [36], built a device fingerprint by first extracting
the MFCCs feature vector at the frame level. Then, in order to model
the probability density function of these vectors, they trained a GMM
with diagonal covariance matrices. Finally, having trained a single GMM
for each device, a Gaussian Supervector (GSV) is built by concatenating
the mean vectors and the main diagonals of the covariance matrices of
all components, in order to construct a specific template for each de-
vice. Maximum identification accuracy of 97.6% has been achieved on
21 mobile-phones from seven different brands using a Radial Basis Func-
tions Neural Network (RBF-NN) classifier. Jiang et al. in [37] proposed a
kernel-based projection method that maps the raw GSV onto another di-

1an estimate of the first and second order derivatives [35].

Chapter 3. State of the Art and Problem Statement 30

mensional space where the useful microphone response information and
the useless speech signal can be separated more easily. The projected
GSVs outperform the raw GSVs in the microphone identification task.
GSVs were also used for mobile-phone device verification in [38].

Verma et al. in [39] proposed to characterize a mobile device by
concatenating MFCC and Inverted MFCC (IMFCC) feature vectors to
characterize a mobile-device. The reason in using the IMFCC lies in its
intrinsic ability to extract features from the high frequency region of the
audio, as opposed to the traditional MFCC. This work addresses also
double compression detection problem.

Da Luo et al. in [10] proposed the adoption of a new audio descriptor
for attribution task of digital speech recordings. The proposed descrip-
tor is called Band Energy Difference (BED) and relies on deviations that
some frequency bands present when compared to adjacent bands. This
behavior has been proven to be consistent across multiple devices and
various recording conditions, including different speakers and recording
environments. Similarity between frequency bands was also investigated
by Lin et al. in [40]. The authors tried to understand which frequency
ranges are most significant in device identification. To do this, they ex-
tracted the energy time variation from different sub-bands obtained by
dividing the spectrogram’s frequency axis of an audio recording in multi-
ple parts. These energy variations are then analyzed by a CNN architec-
ture with multiple inputs, one for each sub-band. Each input implements
an attention mechanism [41] to detect the most relevant information car-
ried by a single sub-band and dependent on the device under analysis.
The specific attention mechanism adopted [42] was also found to be very
useful in the analysis of noisy signals, leading to an increased robustness
of the system in the device identification problem.

Speech-free segments of the audio were used in [43] and in [44], where
the authors used them to estimate the Power Spectral Density (PSD) in
order to characterize the mobile-phone device. Aggarwal et al. in [45]
used the noise estimate to extract large numbers of MFCC feature vectors
that were clustered using the K-means algorithm. Then the feature vec-
tors corresponding to the centroid of these clusters were classified using
SMO based SVM classifier.

Noisy data was also used by Shen et al. in [2]. In this recent work,
the authors did not adopt MFCCs instead, they designed a novel neural

Chapter 3. State of the Art and Problem Statement 31

network to extract suitable features directly from the device noise. They
also built a new recording source dataset which contains some of the
latest mobile phones and tablet devices. As far as we know, this is the
most recent and updated dataset available in the literature that contains
recordings from different mobile-phones as well as from different speakers.

Mobile-phone clustering was addressed by Li et al. in [46]. They
proposed a method that aims to merge the recordings acquired by the
same device into a single cluster without having prior information about
the recordings. Deep auto-encoder networks were used to extract intrinsic
signatures of a device.

Baldini et al. in [47] made an evaluation of the influence of different
entropy measures in the microphone identification task. The entropy
measures were extracted from the spectrogram of the audio recordings
of the mobile-phones stimulated with three different types of sounds. In
this work, they also extensively analyzed the features selection process
with the aim of identifying the most discriminating entropy measures
related to the type of data to be analyzed.

3.1.2 Device Identification in Noisy Conditions

The papers which we presented up to this point all focused their atten-
tion on obtaining rich features which could convey the influence of the
microphone frequency response on the recordings, to obtain some sort of
device fingerprint. The extraction of these device fingerprints in presence
of noise, however, has been greatly underestimated in the literature, even
if the presence of unwanted noise in the audio file inevitably causes the
masking of signatures that are present in different parts of the spectrum
for a specific device. In particular, the Additive White Gaussian Noise
(AWGN), having uniform PSD can mask the entire spectrum, making no
distinction in contribution between frequencies. To our knowledge, de-
vice identification in noisy conditions was tackled only by the few works
which we are going to present hereafter.

Qin et al. in [48] extracted spectral distribution features from the
Constant-Q Transform (CQT) domain, which has a higher frequency
resolution in the mid-low frequency. This choice is justified by the fact
that this frequency interval contains the greatest discriminatory power,
especially in case of the distinction of different devices from the same
manufacturer. A CNN was used by Baldini et al. in [49] and [50]. In

Chapter 3. State of the Art and Problem Statement 32

these works, the authors proposed a method for both identifications and
authentication problems. The operating principle is based on the stim-
ulation of the built-in microphone with non-speech sounds at different
frequencies. That is because it was empirically found that the best iden-
tification result is obtained by using a specific part of the frequency mag-
nitude component located in a frequency band between Direct Current
(DC) (0 Hz) and the adopted stimulus frequencies (1 KHz or 2 KHz).
After that, the correspondent DFT was calculated and the classication
was performed using a CNN. One of the latest works addressing this
problem was proposed by Verma et al. in [1]. They proposed a CNN-
based system for capturing the device signature using DFT information.
The most remarkable contribution of this work was that they address
the problem of speaker-independent scenario2. The final prediction for
a single audio file was obtained by combining the single prediction at
frame level. In addition to variable Signal-to-Noise Ratio (SNR) noise-
corruption (AWGN) studies, they also investigated the effect in device
identification of double Adaptive Multi-Rate (AMR) compressed audio
recordings.

3.2 Problem Statement

The goal of this work is to develop a new and improved methodology
to solve the source identification task. This means being able to link an
audio recording to one of the available devices. In particular, we want
to address the problem in a closed-set scenario, thus a finite number of
possible devices.

More formally, given a set of J audio recordings R = {x1, x2, . . . , xJ}
and a set of K possible device models D = {c1, c2, . . . , cK}, our goal is to
associate x ∈ R to a specific c ∈ D producing the pair (xj, ck), indicating
that the j-th recording was recorded using the k-th device.

In this work, this identification task relies on the estimation of the
channel response associated with a specific device, i.e. a mobile-phone
microphone, that is used as a device fingerprint.

The channel response is extracted from the considered recording x ∈
R after some signal processing procedure, in order to enhance its infor-

2i.e. make the device identification independent from the speaker speaking in the
audio recording.

Chapter 3. State of the Art and Problem Statement 33

mative content. Here, we formulate the channel estimation problem from
a speech recording, which is the main core of this work.

Figure 3.1: The recorded audio signal model.

Let us consider a generic digital audio recording of a speaker x(n),
n ∈ [0;N − 1] as shown in Figure 3.1. The clean speech signal s(n) is
recorded by a device characterized by an impulse response h(n). The
device may also additionally corrupt the signal introducing some noise
v(n). The recorded audio signal can be modeled in the discrete time
domain as follows [51]:

x(n) = s(n) ∗ h(n) + v(n), (3.1)

where x(n) is the recorded audio signal, s(n) is the speech-only audio
signal at the microphone, h(n) is the impulse response of the microphone,
v(n) is the noise contribution and ∗ denotes the convolution operator.
Moving to the time-frequency domain, using the STFT, the equation in
(3.1) can be expressed as:

X(k, l) = S(k, l)H(k, l) + V (k, l), (3.2)

with k and l indicating the frequency and time frame correspondingly
and X(k, l), S(k, l), H(k, l), V (k, l) are complex number sequences.

If we assume that the frame length of the STFT is large compared to
the impulse response h(n) [51, 52], we can consider that the microphone
response H(k, l) is constant over time. This means that this response
varies more slowly than the speech content3, leading us to the following
approximation:

X(k, l) ≈ S(k, l)H(k) + V (k, l). (3.3)
3the microphone response does not vary significantly with l.

Chapter 3. State of the Art and Problem Statement 34

In addition, if we assume to be in an ideal noiseless case, i.e. V (k, l) = 0,
we can also write:

|X(k, l)|2 ≈ |S(k, l)|2|H(k)|2. (3.4)

Passing to the logarithms we obtain an additive relationship, i.e.:

log |X(k, l)| ≈ log |S(k, l)|+ log |H(k)|. (3.5)

If an estimate Ŝ(k, l) of the initial speech signal S(k, l) is present, then
we can compute an estimate Ĥ(k) of the channel frequency response, i.e.:

Ĥ(k) =
1

L

L∑︂
l=1

(log |X(k, l)| − log |Ŝ(k, l)|), (3.6)

where L is the total number of time frames.
As we can see in Figure 3.2 if we consider different devices the result-

ing frequency channel responses differ greatly from one another.
Unfortunately, in a real scenario, we are always dealing with speech

audio recordings affected by various kinds of noise signals. In particular,
the AWGN breaks down the majority of the modern methods adopted for
passive fingerprint extraction, such as the channel response. In addition,
most of the anti-forensic attacks relies on the voluntary noise injection
to the audio data, with the goal of obfuscating any device fingerprint,
making its extraction more challenging [53].

Our goal is therefore to limit the negative influences of the noise, in
the context of passive fingerprint extraction, trying to recover its dis-
criminant power for our final device identification.

Chapter 3. State of the Art and Problem Statement 35

(a) Sony Ericsson c902.

(b) Samsung E2121B.

Figure 3.2: The extracted channel response from two different mobile-phones.

4
Proposed Method

In this chapter we present the proposed method for device identification.
We first provide a general overview of the system. Then, we perform a
detailed analysis of all its elementary parts.

4.1 Overview

The proposed method is an improved version of a blind channel estima-
tion algorithm proposed by Cuccovillo et al. in [11, 12, 54].

Our system can be thought of as a composition of different principal
blocks that are shown in Figure 4.1. Starting from an audio recording,
we obtain the relative frequency representation by performing a time-
frequency transform. After that, a specific signal processing technique is
applied in order to remove unwanted noisy component. From the result-
ing denoised frequency representation, we are able to compute a reliable
estimation of the speech signal that is present in the initial recording. The
estimation procedure is carried out using a pre-computed clean speech
model. The estimated speech component is then removed from the orig-
inal signal. With the remaining information, we can compute a specific

Chapter 4. Proposed Method 37

Figure 4.1: The main components of our proposed method.

feature that is adopted in the identification problem. The final identi-
fication output represents a prediction of the device that was used to
capture the initial audio recording.

In Figure 4.2 a more detailed version of the proposed method is shown,
with a clear reference of the main components introduced in Figure 4.1.

C
hapter

4.
Proposed

M
ethod

38Figure 4.2: The proposed method flowchart.

Chapter 4. Proposed Method 39

4.2 Building Blocks

In the following sections, we explain all the various blocks that make up
our system, describing in detail their functionalities and the relationships
with the other blocks.

4.2.1 Clean Speech Model

There exist several robust methods for channel response estimation when
both the input signal and the observed signal are known. Indeed, as we
have seen in Section 3.2, if we assume to know the magnitude spectrum
of the speech signal, we can easily estimate our channel response Ĥ(k)

using Equation (3.6). However, in practical scenarios only the observed
signal is available. This leads to the need for a blind channel estimation1

procedure.
In this specific scenario, the input speech signal S(k, l) is unknown,

but we can try to get an estimate Ŝ(k, l) from the observed audio record-
ing X(k, l). The quality of the estimated channel depends on the match
between the estimated speech spectrum Ŝ(k, l) and the real one S(k, l).
Since the absolute level of the speech is unknown, the channel Ĥ(k) can
be estimated only within an unknown scale factor [51].

Different methodologies for modeling speech from a clean-speech sig-
nal can be found in the speaker recognition literature. Authors in [51, 52]
perform RASTA filtering in the cepstral domain leading to the use of the
so called RASTA filtered Mel-Frequency Cepstral Coefficients (RASTA-
MFCC). This feature has shown to be robust to the distortion introduced
by the acquisition device, i.e. microphone, reducing the channel effect2.
Using the RASTA-MFCC as a feature, the authors propose the use of
a classifier to find a finer grid of generic speech spectrum components.
They call this estimated grid a set of classes of average speech spectra. For
a greater self-explainability, from now on we refer to it as the phoneme
spectrum basis, in that it aims to be a composition of different spectra
related to the different phoneme sounds that may be found on a generic
speech corpus.

We use a GMM density estimator to provide this general structure.
Thanks to the estimated probability, the GMM then acts as a selector

1blind because the clean input signal is unknown.
2this property is explained in Section 2.1.3.

Chapter 4. Proposed Method 40

for the different phonemes spectrum that are present in the phoneme
spectrum basis. A convex combination of these phoneme spectra is used
to approximate the clean speech signal component Ŝ(k, l) of our observed
recorded signal X(k, l).

In this way we try to eliminate all the unnecessary components that
could influence our channel estimation, making this procedure as inde-
pendent as possible from the speaker involved3.

It should be noted that, differently from the original work, we adapt
the algorithm to use a sampling rate of Fs = 16kHz, doubling the original
one. This is in line with the new types of devices, which allow a higher
sampling rate compared to the one used in the original work.

We decompose this first block in five main steps:

1. HTK-MFCCs computation. We compute the MFCCs adopting
the HTK specification in [17]. These HTK parameters interest the
Pre-emphasis filter and the lifter coefficient as well as the adopted
DCT definition and the number of filters in the Mel filter bank. It
is worth saying that the HTK Hz-to-mel conversion formula used in
this work and reported in Equation (2.3) has been found to give a
smoothed channel estimation compared to the one obtained using
the classic one provided in [55] [11].

In line with Equation (3.1), we denote s(n) our speech-only audio
recording. s(n) is used as a training audio for the GMM density
estimator. From the recording, we compute the MFCCs as follow:

i Pre-emphasis filtering: in speech processing, a pre-emphasis
filter is often used to compensate for the energy drop at high
frequency, equalizing the levels of the formant resonances [56,
57]. Indeed, in every magnitude spectrum of a speech signal, a
majority of the energy is located in the lower end of the spec-
trum. The filtered signal results in a more flattened spectrum
and is more suitable for future signal processing applications.
We use the standard first-order auto-regressive pre-emphasis
filter, i.e.:

s(n) = s(n)− α · s(n− 1), (4.1)
3the RASTA-MFCC features has been proven to be independent also from the

speaker’s gender and its peculiar timbre [20, 11].

Chapter 4. Proposed Method 41

where α denotes the pre-emphasis coefficient. We use α = 0.97

since it matches the pre-emphasis filter used in the HTK im-
plementation of the MFCCs computation.

ii Windowing: the speech recording s(n) is split in a 50% over-
lapped frames with 32ms length4 and windowed using an han-
ning window5. We want to point out that this time condition
on frames is crucial for a successful clean speech estimation, as
we can assume stationary characteristics for a single phoneme
within this interval. We denote this windowed time frame as
sl(n).

iii Magnitude spectrum computation: we compute the DFT of
the l-th frame and take its absolute value:

MAGl(k) = |Sl(k)| = |F(sl(n))|, k ∈
[︃
1;

Nfft

2
+ 1

]︃
, (4.2)

where MAG stands for magnitude and F(·) represents the
DFT of a signal. The boundaries of k indicate that we only
take the first half part of the considered spectrum for symme-
try reasons.

iv Triangular filter bank application: as described in Section 2.1.2,
in order to calculate the MFCCs we have to map our power
spectrum onto the Mel-scale. We use a frequency range that
goes from 0Hz to 4kHz. On this, we adopt 26 different Mel
bands [17].
We denote with htriang the uniformly spaced triangular over-
lapping filter bank on this Mel-scale. Thanks to this filter,
we compute the relative FilterBankPower(FBP) for each of
the l-th recording frames, as follow:

FBPl = htriang ·MAGl(k)
2, (4.3)

resulting in a list of Mel powers.

v MFCC computation: we log-compress and decorrelate these
FBPs using a DCT:

fMFCCl
= dct(log(FBPl)). (4.4)

4that corresponds to 512 samples using a sampling rate of 16kHz.
5w(n) = 0.5− 0.5 cos

(︂
2πn
N−1

)︂
, with N denotes the window length.

Chapter 4. Proposed Method 42

To comply with the HTK [17] specifications, we use the dct

type iii6 definition in [58]. The MFCCs are the amplitudes of
the resulting spectrum. The first 13 are taken.

vi Cepstral liftering: we perform a sinusoidal cepstral liftering7

of the MFCCs with L = 22:

fHTK-MFCCl
(k) = fMFCCl

(k) ·
(︃
1 +

L

2
sin
(︂π
L
(k + 1)

)︂)︃
. (4.5)

2. RASTA filtering. Each one of the fHTK-MFCCl
is RASTA filtered:

fRASTA-HTK-MFCCk
(l) = fHTK-MFCCk

(l) ∗ RASTAfil, (4.6)

where ∗ symbol denotes the convolution operation and RASTAfil

represents the RASTA filter explained in Section 2.1.3. Note that
we are filtering each of the k-th MFCCs time-series independently
for each l-th frame. We obtain Ls different fRASTA-HTK-MFCCl

fea-
tures, since we have Ls frames on the training recording.

3. GMM training. We denote with rastaS,l the fRASTA-HTK-MFCC

referred to the l-th frame of the training audio recording s(n). We
use these as feature vectors (excluding the first coefficient8, k = 0)
to train a GMM with M = 1024 mixtures. After the training
procedure we obtain:

i GMM parameters: the mean µi, covariance matrix Σi, and
weight πi of each i-th mixture.

ii GMM mixture probability: similarly to the Equation (2.17),
we get the relative mixture probability, that is, the probability
that the feature vector rastaS,l belongs to the i-th mixture:

p(zi = 1 | rastaS,l) =
πiN (rastaS,l | µi,Σi)∑︁M

m=1 πmN (rastaS,l | µm,Σm)
, (4.7)

where zi is the selection variable9 for the i-th component of the
GMM and N (· | µi,Σi) denotes a multivariate Gaussian dis-
tribution, as in Equation (2.14). These probabilities are used

6often referred as “the inverse DCT”.
7filtering in the cepstrum domain.
8this coefficient represents the average log-energy of the input signal, which only

carries little speaker-specific information [59].
9as we have seen in Section 2.2.3.2, zi ∈ {0, 1}; i.e. zi = 1 denotes that the i-th

mixture is generating the current frame.

Chapter 4. Proposed Method 43

to build a matrix PS ∈ RM×Ls where M indicates the number
of mixtures and Ls indicates the total number of frames of the
training audio recording s(n). Formally we can write:

PS = (p (zi = 1 | rastaS,l)) , i ∈ [1;M] , l ∈ [1;Ls] . (4.8)

4. Log-power spectrum normalization. In order to avoid issues
with signal level differences that may arise in the identification
process, the log-power spectrum of each frame is normalized by
subtracting its mean value10, i.e.:

ZS,l = log
(︁
|Sl|2

)︁
− 1

Nfft

Nfft∑︂
k=1

log
(︁
|Sl(k)|2

)︁
,∀l ∈ Ls, (4.9)

where all the ZS,l form the matrix ZS ∈ RLs×Nfft that contains the
normalized log-power spectrum of all the training audio frames.

5. Phoneme log-power spectrum basis computation. We com-
bine the relative mixture probabilities PS and the normalized log-
power spectrum ZS matrices to obtain a weighted set of M aver-
age clean speech log-power spectra over all the available training
recording frames Ls and thus, the phoneme spectrum basis we have
been searching for, i.e.:

ẐS = ZS · PS. (4.10)

In this phoneme spectrum basis matrix ẐS ∈ RM×Nfft the i-th row
indicates the i-th mixture that provides the log-power spectrum as-
sociated with a specific phoneme, each column instead, represents a
specific frequency bin of the correspondent spectrum. In Figure 4.3
a graphical representation of the phoneme spectrum basis used in
this work is shown.

4.2.2 Denoising

The main contribution of this work is carried out by the denoising block.
Working directly on the time-frequency domain as in the Equation (3.2),

10this process should not be confused with cepstral mean subtraction which aims to
neutralize the channel [51]; this normalization only affects the level of the log-power
spectrum.

Chapter 4. Proposed Method 44

Figure 4.3: The phoneme spectrum basis matrix. In detail, we can see its
hidden structure, where the spectrum values are shown using a heat-map; from
here it can be easily seen that a specific phoneme spectrum can be selected by
choosing the respective row, that is associated with one of the 1024 Gaussian
components. The columns instead represent the different frequency bins of
the correspondent DFT.

the observed signal can be seen as the sum of multiple contributes:

X(k, l) ≈ S(k, l)H(k) + V (k, l), (4.11)

where X(k, l) is the only recording frame we can observe, S(k, l) is the
speech-only frame, H(k) is the transfer function of the microphone that
we want to preserve and V (k, l) is the AWGN contribution that we aim
to suppress. Our goal is therefore to lead us back to the noiseless case,
as assumed in Equation (3.4) since the noise contribution corrupts our
channel estimation irreversibly.

Formally, given a spectrogram X(k, l) as input to our denoiser, we
estimate a new spectrogram Xden(k, l) where the additive noise compo-
nent V (k, l) is nearly zero, attempting to preserve the intrinsic spectral

Chapter 4. Proposed Method 45

characteristics of the device’s microphone. Formally, we can write:

Xden(k, l) = DEN (X(k, l))

= DEN (S(k, l)H(k) + V (k, l))

≈ S(k, l)H(k),

(4.12)

where DEN(·) stands for the denoising operation carried out by our de-
noiser. A visual example of the denoising process performance is shown
in Figure 4.4.

(a) Original. (b) Denoised.

(c) Noisy.

Figure 4.4: The spectrogram denoising result performed by the DnCNN. The
noise corrupted spectra in 4.4c is processed to obtain a denoised version 4.4b.
Our goal is to obtain a denoised spectrogram as similar as possible to the
original one, in 4.4a.

As we will see in Section 4.2.3.1, this operation is made before the fea-
ture extraction, to get the best results on the channel estimation process.

Chapter 4. Proposed Method 46

After preliminary studies on audio denoising covered in Section 5.2.2, we
chose to tackle this problem in the time-frequency domain. By working
with the time-frequency representation of the audio signal we can take
great advantage of the well-established methods for image denoising.

In particular, we decided to adopt an architecture known as Denoising
CNN (DnCNN). The network is a very deep feed-forward CNN proposed
by Zhang et al. in [60] and inspired by the Visual Geometry Group
(VGG) network [61]. We chose to use a kernel size of 3 × 3 with 15

stacked convolutional hidden layers.
For a better comprehension of the DnCNN architecture, in Figure 4.5

the stacked layers structure is shown.

Figure 4.5: The architecture of the DnCNN network.

4.2.3 Blind Channel Estimation

This section concerns the denoising, the speech estimation and the speech
removal blocks. The main goal of this part is the extraction of the device’s
frequency channel response from an observed speech recording corrupted
by noise.

We remark the fact that we refer to this as a blind channel estimation
problem because the clean input signal is unknown. The observed signal
can be considered as the composition of speech, noise and microphone
contributes.

Let us denote with x(n) our observed audio recording. The blind
channel estimation procedure on an observed recording can be split into
two different sub-processes:

1. Speech Estimation;

2. Channel Estimation.

Chapter 4. Proposed Method 47

4.2.3.1 Speech Estimation

We assume that x(n) is a noise-corrupted speech audio recording. We
aim at suppressing both the noise and the speech contributions. For the
speech part we use the pre-trained GMM introduced in Section 4.2.1, to
obtain spectral information from the observed recording. In specific, we
use the triplets (πi,µi,Σi) associated with each mixture and the phoneme
spectrum basis contained in the ẐS matrix. For the noise part instead,
we use a denoiser acting in the time-frequency domain.

This procedure interests many blocks of our system. To better analyze
the process, we can divide it into eight different steps:

1. Re-sampling. The observed recording has to be re-sampled to
Fs = 16kHz - if needed - in order to match the training audio
recording sampling rate. This is necessary as the GMM estima-
tion procedure works properly only if the training and the testing
sampling rate are equal.

2. Pre-emphasis filtering. As before we perform a pre-emphasis
filtering adopting the filter in Equation (4.1).

3. Denoising. The denoising part needs some preliminary data ma-
nipulation in order to be properly done. Thus, for the sake of
clarity we decompose this procedure into three parts:

i STFT computation: the observed recording x(n) is trans-
formed into time-frequency domain using the STFT. This
time-frequency transformation is made adopting a 50% over-
lapping time frame with a window length of 512 samples. For
the frequency analysis, we use the same number of points of
the time analysis window, obtaining 256 frequency bins for
symmetry reasons.

ii Spectrogram splitting: the resulting spectrogram is split into
non-overlapping chunks X of dimension 256×256. Each spec-
trogram matrix represents a duration of 4.096 seconds of our
observed recording. It is important to notice that a time frame
window of 512 samples at Fs = 16kHz, corresponds to a frame
duration of 32ms. This is important because, as explained in
Section 4.2.1 point 1b, this is a necessary condition in order to

Chapter 4. Proposed Method 48

get a proper phoneme estimation for modeling a clean speech
signal.
We denote with Lx the 256 time frames composing a single
spectrogram chunk.

iii Denoising: all the spectrograms are converted into log-power
spectrograms before the denoiser block. Using these spectro-
grams, our pre-trained DnCNN denoising net is responsible
for suppressing the unwanted noise contribute contained in
them. The resulting denoised spectrogram Xden is used for
the next signal processing steps.

It is important to stress that only one spectrogram at a time is em-
ployed to perform a single channel estimation procedure. Indeed,
multiple spectrogram from the same recording will reveal very sim-
ilar channel response as they come from the same device. This
characteristics impose the maximum audio length adopted in the
channel estimation procedure. As explained above, in this case we
adopt 4.096 seconds.

4. HTK-MFCCs computation. From the denoised spectrogram
Xden, we compute a HTK-MFCC matrix. Following the steps done
in Section 4.2.1 point 1d, 1e and 1f, for each time frame we compute
the fHTK-MFCCl

feature vector referred to the l-th time frame of
the denoised spectrogram’s chunk Xden resulting from the observed
recording x(n).

5. RASTA filtering. All the fHTK-MFCCl
are RASTA filtered to ob-

tain Lx different fRASTA-HTK-MFCCl
feature vectors.

6. GMM mixture probability computation. Using the same no-
tation adopted earlier, with rastaX,l we refer to the fRASTA-HTK-MFCCl

feature associated to the l-th frame of the denoised spectrogram
Xden. Using the pre-trained GMM, we compute the probability
that the rastaX,l feature vector belongs to the i-th mixture. Thus,
in a specular way to Equation (4.7) we can write:

p(zi = 1 | rastaX,l) =
πi · N (rastaX,l | µi,Σi)∑︁M

m=1 πm · N (rastaX,l | µm,Σm)
. (4.13)

Even in this case, these probabilities are used to build a matrix
PX ∈ RM×Lx where M = 1024 indicates the number of mixtures

Chapter 4. Proposed Method 49

and Lx indicates the total number of time frames of the denoised
spectrogram.

7. Log-power spectrum normalization. As before, we normalize
the log-power spectrum of each l-th time frame of the denoised
spectrogram by subtracting its mean value. Note that since the
Xden spectrogram is already log-power, we do not have to perform
the log of the squared magnitude. We can write:

Zden
X,l =

(︁
|Xden

l |
)︁
− 1

Nfft

Nfft∑︂
k=1

(︁
|Xden

l |
)︁
,∀l ∈ Lx, (4.14)

where all the Zden
X,l form the matrix Zden

X ∈ RLx×Nfft that contains
the normalized log-power spectrum of all the frames composing the
denoised spectrogram Xden.

8. Speech-only power spectrum estimation. By using the rela-
tive mixture probability matrix PX as a selection matrix on the
phoneme spectrum basis ẐS, we are able to estimate the non-
filtered ideal clean-speech spectrogram of the observed recording.
Formally, we can write:

Z̃X = P t
X · ẐS, (4.15)

with Z̃X ∈ RLx×Nfft . Using this weighted combination approach
rather than a Maximum Likelihood selection can be advantageous
when there is any uncertainty in the classification [52].

4.2.3.2 Channel Estimation

This final procedure for the blind channel estimation part can also be
divided in three different steps:

1. Spectrum Normalization. To avoid issues with signal level dif-
ferences, both the estimated speech-only power spectrogram Z̃X

and the denoised normalized log-power spectrogram Zden
X need to

be normalized between 0 and 1:⎧⎨⎩ Z̃X = norm
[0,1]

(Z̃X)

Zden
X = norm

[0,1]
(Zden

X)
(4.16)

Chapter 4. Proposed Method 50

where norm
[0,1]

(·) stands for:

norm
[0,1]

(·) = (·)−min(·)
max(·)−min(·)

. (4.17)

2. Speech Removal. We compute our speech-free spectrogram by
spectral subtracting the estimated ideal speech spectrum Z̃X from
the observed denoised one, as in Equation (3.6), i.e.:

YX = Zden
X − Z̃X . (4.18)

Note that, in order to perform a proper spectral subtraction, both
the spectrograms have to be log-power.

3. Time Averaging. We estimate our final channel frequency re-
sponse by averaging the speech-free spectrogram YX through time,
i.e.:

Ĥ =
Y t
X · 1
Lx

, (4.19)

where Y t
X ∈ RNfft×Lx , Ĥ ∈ RNfft×1 and 1 is an all-ones vector of

dimension Lx × 1.

In Figure 4.6 we can see how this channel estimation gives a recogniz-
able pattern for a specific device. The “coloring” effect is distinguishable
from device to device, for each individual channel estimate.

C
hapter

4.
Proposed

M
ethod

51

(a) Apple iPhone 5. (b) Vodafone joy 845.

(c) HTC Sensation xe. (d) LG GS290B.

Figure 4.6: Multiple channel responses extracted using our modified algorithm. Each figure refers to a specific device model. We can notice
a remarkable trend (red line) on each single channel response (blue line) for a specific device.

Chapter 4. Proposed Method 52

4.2.4 Feature Computation

The channel response Ĥ computed in Equation (4.19) brings just a por-
tion of all the information available within the observed recording x(n).
To maximize the available information, we build a specific custom feature
denoted with f and composed by three multidimensional feature vector,
namely f1, f2, f3 [11, 12].

In particular, f1 contains all the information available from the chan-
nel estimation algorithm, f2 describes the correlation between the es-
timated channel response and the original log-power spectrum of the
observed audio recording, while f3 only describes the properties of the
observed audio recording.

As preliminary step, from the normalized log-power denoised spec-
trogram of the observed recording Zden

X , computed in Equation (4.16),
we derive p̂, i.e.:

p̂ =
Zden

X
t · 1

Lx

,

where 1 is an all-ones vector of dimension Lx × 1. Here, p̂ represents the
approximated normalized power of observed recording x(n).

Feature 1 The first feature f1 is responsible for enhancing the infor-
mation obtained by the channel estimation algorithm.

This feature can be computed as follow:

1. Apply a variable gain between the estimated channel response Ĥ

and the average value of p̂, dependent on the power of the channel,
i.e.:

h1 =
Ĥ + p̂

∥Ĥ∥2
,

where p̂ denotes the average value of p̂ and ∥·∥ denotes the l2-norm.

2. Compute the first derivative h′
1 of h1, as the inter-sample difference

of h1:
h′
1(k) = h1(k)− h1(k − 1),∀k ∈ [2, K],

where K is the total number of frequency bins.

3. Compute the second derivative h′′
1 of h1, as the inter-sample differ-

ence of h′
1:

h′′
1(k) = h′

1(k)− h′
1(k − 1),∀k ∈ [3, K].

Chapter 4. Proposed Method 53

4. The final feature f1 is obtained concatenating the three component:

f1 = [h1, h
′
1, h

′′
1] .

Feature 2 The second feature f2 is responsible for enhancing the de-
scriptive power of the correlation between the estimated channel response
and the original log-power spectrum of the observed recording.

This feature can be computed as follow:

1. Compute h0 as the division between the estimated channel and p̂:

h0 = Ĥ./p̂,

where the operation (a)./(b) performs the element-wise division by
dividing each element of a by the corresponding element of b.

2. Apply a variable gain on h0, dependent on its power:

h2 =
h0

∥h0∥2
.

3. Also in this case, we compute the first and the second derivative of
h2, resulting in h′

2 and h′′
2.

4. Apply a variable gain on h′
2 and h′′

2, dependent on their respective
powers: ⎧⎨⎩

˜︁h′
2 =

h′
2⃦⃦

h′
2

⃦⃦2˜︁h′′
2 =

h′′
2⃦⃦

h′′
2

⃦⃦2
5. The final feature f2 is obtained concatenating the three compo-

nents:
f2 =

[︂
h2, ˜︁h′

2,
˜︁h′′
2

]︂
.

Feature 3 The third feature f3 is responsible for decrease the redun-
dant information between f1 and f2 and reducing the noise due to the
content of the recording. For doing this, the feature is computed by ma-
nipulating the approximated normalized power p̂ of the observed record-
ing. We want to clarify that p̂ is generated both by the channel and by the
content. Thus, we must ensure that this influence is not strong enough
to affect by any means the outcome of the final device identification.

This feature can be computed as follow:

Chapter 4. Proposed Method 54

1. Apply a variable gain on the sum between p̂ and the average value
of the estimated channel response Ĥ, dependent on the power of p̂:

h3 =
p̂+ Ĥ

∥p̂∥2
.

2. Normalize h3 between 0 and 1:

h3 = norm
[0,1]

(h3),

where norm
[0,1]

(·) is the same function define in Equation (4.17).

3. Also in this case, we compute the first and the second derivative of
h3, resulting in h3

′ and h3
′′.

4. Compute h4, which contains the absolute value of each component
of h3

′′:
h4(k) =

⃓⃓
h3

′′(k)
⃓⃓
.

5. Normalize between 0 and 1 both h3
′ and h4:⎧⎨⎩

˜︁h′
3 = norm

[0,1]
(h3

′)˜︁h4 = norm
[0,1]

(h4)

6. The final feature f3 is obtained concatenating the three compo-
nents:

f3 =
[︂
h3, ˜︁h′

3,
˜︁h4

]︂
.

Final Feature The complete feature vector for each recording is com-
puted by collecting together the three features computed so far, i.e.:

f = [f1, f2, f3] . (4.20)

An example of the three components of the final feature f is shown
in Figure 4.7.

4.2.5 Identification

Finally, we use these features as discriminant elements for our final closed-
set identification problem. For doing this, we adopt a multi-class SVM
with an RBF kernel.

More specifics on the SVM parameters and the adopted data manip-
ulation will be discussed in Section 5.1.2.

Chapter 4. Proposed Method 55

Figure 4.7: The three parts f1, f2, f3, that make up the final feature f .

4.3 Conclusive Remarks

In this chapter, we tackled the problem of device identification from a
speech recording in noisy conditions. The main goal was to overcome
the negative influence that an additive noise signal has on the channel
response extraction. This negative effect was reduced by providing a
denoising CNN architecture working on spectrograms of the analyzed
recording.

The key principle of the final identification algorithm is based on
a modified blind channel estimation method. To suppress the speech
content, this method exploits the phoneme characteristics by training
a GMM density estimator with RASTA-MFCC features. The resulting
GMM is then used with frame-based features obtained from an observed
noisy speech signal to find the best matching of clean speech. The ob-
served signal that has undergone a channel influence is first denoised in
the time-frequency domain and then used along with the estimated clean
speech to perform a spectral subtraction. Then, the temporal mean of
the remainder after the subtraction is considered as the unknown channel
response. From this, a suitable feature vector is constructed and used as
discriminant feature for the final device identification task.

5
Experiments and Results

In this chapter we validate our proposed methodology. After a brief
presentation of the adopted datasets and some preliminary design crite-
ria, we go through the final results, performing an in-depth comparison
between each experiment.

5.1 Experiment Setup

This section describes the datasets used in our work as well as the data
manipulation decisions employed during all the experiments. Lastly, we
give a brief explanation of the system’s evaluation metrics.

5.1.1 Datasets

LibriSpeech This dataset was introduced by the Center for Language
and Speech Processing & Human Language Technology Center of Ex-
cellence of the Johns Hopkins University in Baltimore (USA) [62]. The
LibriSpeech1 corpus is derived from audio-books that are part of the

1https://www.openslr.org/12.

https://www.openslr.org/12

Chapter 5. Experiments and Results 57

LibriVox [63] project, a volunteer effort that is currently responsible for
the creation of public domain audio books, the majority of which are in
English. Most of the recordings are based on texts from Project Guten-
berg [64], also in the public domain.

It contains 1000 hours of English speech stored in multiple files with
a Free Lossless Audio Codec (FLAC) format. The sampling frequency
is 16kHz, with bit depth of 16bit, mono channel and variable bitrate.
From this corpus, we consider the subset train-clean-100, which contains
speech tracks for about 100 hours of recording. These tracks are coming
from speakers with low error rates on automatic transcription, thus are
easily intelligible.

TIMIT The Texas Instruments/Massachusetts Institute of Technol-
ogy (TIMIT) is a corpus of read speech, specifically designed to provide
speech data for the acquisition of acoustic-phonetic knowledge and for
development and evaluation of automatic speech recognition systems.
The Texas Instruments/Massachusetts Institute of Technology (TIMIT)
contains speech from 630 speakers representing 8 major dialect divisions
of American English, each speaking 10 phonetically rich sentences. The
recordings are stored in a Waveform Audio File (WAV) format, with a
sampling frequency of 16kHz, bit depth of 16bit, PCM encoded in mono
channel.

MOBIPHONE To the best of our knowledge, the only publicly avail-
able dataset that brings together audio recording from different mobile-
phone devices is the so-called MOBIPHONE2. This dataset was proposed
by Kotropoulos et al. in [36] where the authors used it for the same ob-
jective of this works, that is mobile-phone device identification.

This dataset contains 504 audio recordings from 21 mobile-phones
produced by 7 different manufacturers. The list of the available devices
is presented in Table 5.1. As we can see, the list includes some of the
major companies in the mobile market, like Samsung, Apple and LG.
The recordings consist of utterances from 12 male and 12 female speakers
randomly chosen from the TIMIT dataset [65]. Each speaker reads 10

sentences approximately of 3 seconds long. The first two sentences are
the same for every speaker, but the remaining are different. Basically, 10

2https://www.dropbox.com/sh/9n7fy7moi825bgk/WFLBKxUitV.

https://www.dropbox.com/sh/9n7fy7moi825bgk/WFLBKxUitV

Chapter 5. Experiments and Results 58

utterances per speaker were recorded for each device. These utterances
were concatenated in a single 30 seconds long recording, to give a total
of 24 recordings for each device. The recordings were captured in a silent
controlled environment with the same recording equipment. The raw
recordings were in AMR format and later converted into WAV format.
The sampling frequency is 16kHz, with bit depth of 16bit, PCM encoded,
stereo with a bit rate of 512kbps.

MOBIPHONEawgn This is a modified version of the original MO-
BIPHONE dataset. This was created by adding an AWGN signal to
all the original audio data. This noise-corruption is used to simulate a
real scenario, in which a noisy recordings is adopted to perform audio
forensic tasks, such as our device identification. In order to do this, we
use a specific function provided by the audiomentation v0.16.0 Python
library [66]. The noise level was set to 30dB SNR for all the recordings,
as it appears to be a suitable choice for a standard noise corruption.
The augmented dataset has the same technical specifics as the original
version.

5.1.2 Parameters and Routines Design

To perform our experiments we had to train three main architectures:

• GMM for the Clean Speech Model;

• DnCNN for the spectrogram Denoising;

Table 5.1: Mobile-phones available in the MOBIPHONE dataset [36].

Manufacturer Model Manufacturer Model
HTC desire c Apple iPhone5
HTC sensation xe Samsung E2121B
LG GS290 Samsung E2600
LG L3 Samsung GT-I8190 mini
LG Optimus L5 Samsung GT-N7100 (Galaxy Note2)
LG Optimus L9 Samsung Galaxy GT-I9100 s2
Nokia 5530 Samsung Galaxy Nexus S
Nokia C5 Samsung e1230
Nokia N70 Samsung s5830i
Sony Ericsson c902 Vodafone joy 845
Sony Ericsson c510i - -

Chapter 5. Experiments and Results 59

• SVM for the final device Identification.

GMM The GMM was trained on a speech audio file created by ran-
domly merging multiple speech tracks taken from the LibriSpeech dataset
until reaching a total duration of 45 minutes. The GMM was trained us-
ing M = 1024 mixtures and a diagonal covariance matrix. The granular-
ity adopted (number of mixtures M) and the covariance type was chosen
based on [11] and confirmed by an additional model selection procedure,
based on a BIC score. The combination with the lower score was taken.
The GMM was initialized by the use of the K-means algorithm. We used
the scikit-learn v0.24.1 [67] ML library to build our GMM model.

DnCNN The DnCNN was trained using a custom dataset. This dataset
contains spectrograms matrices extracted from the MOBIPHONE and
the MOBIPHONEawgndataset. To build this dataset, each audio record-
ing was filtered by a pre-emphasis filter and then its log-power spectro-
gram was computed using a 50% overlapping time frame with a window
length of 512 samples. For the frequency analysis, we adopted the same
number of points of the time analysis window, thus obtaining 256 fre-
quency bins for symmetry reasons. Then the resulting spectrogram was
sliced into multiple non-overlapped square-shaped matrices of dimension
256×256. Each segment covers a duration of 4.096 seconds. For comput-
ing the time-frequency representation of the audio we used the function
provided by the Librosa v0.8.0 library [68]. The weight initialization
of the DnCNN was performed using the Kaiming-He initialization [69].
We used a batch-size of 20 and a Mean Square Error (MSE) (squared
L2 norm) loss function with Adaptive Moment Estimation (Adam) opti-
mizer. It is important to note that the network needs as input the pair
clean/noise spectrogram, with the aim of finding a mapping between the
two to compute the denoised spectrogram. Thus, the loss function re-
turns the error between the predicted (denoised) and the original (clean)
spectrogram. The Learning Rate (LR) was dynamically adapted dur-
ing the training. More specifically, the LR was decreased by a factor
of 1.3 whenever the validation loss did not improve for 4 epochs. This
allowed us to start with a relatively high LR value, i.e. 10−3, boost-
ing the learning process. We imposed an early stopping on the training
procedure when the validation loss did not decrease for more than 13

Chapter 5. Experiments and Results 60

epochs. These values have been proven to be a good compromise during
preliminary tests. The model providing the best validation loss was se-
lected. Our final network with 30dB SNR noisy spectrograms as input
converged at epoch 116. A dataset split policy of 80% for train and 20%
for evaluation was used on a total number of 7188 spectrogram’s pair.
Data shuffling was performed at every epoch. The network was devel-
oped using the PyTorch v1.8.0 [70] DL framework. We performed the
experiments using a workstation equipped with one Intel® Xeon E5-2630
v2 (12 Cores @2.6GHz), RAM 126 GiB, and two Quadro P6000 (3840
CUDA Cores @1530MHz), 24GiB, running Ubuntu 20.04.2. LTS. The
training procedure took about 8 hours.

SVM The SVM classifier was trained using the custom features re-
sulting from our modified channel estimation procedure. We adopted
a RBF kernel type and we left the default values for the regularization
and gamma parameters. A dataset split policy of 80% for train and
20% for test was used, with data shuffling before the final classification
(i.e. device identification). Unfortunately, since the audio recordings of
the mobile-phone model Samsung s5830i were not of full length, we had
to limit our resulting spectrogram chunks to a total number of 85 for
each device, corresponding to 85 custom features. As for the GMM, the
scikit-learn implementation of the algorithm was used.

5.1.3 Evaluation Metrics

The accuracy of the resulting device identification task was taken as a
metric for evaluating the performance of all the experiments, compar-
ing the predicted mobile-phones models to the corresponding annotated
ground labels.

We also evaluated the device identification task by means of a confu-
sion matrix, an N×N matrix where N is the number of classes predicted
by our SVM classifier. In our case the number of classes were the number
of the different mobile-phones available in the MOBIPHONE dataset, i.e.
21. Each element ni,j of the matrix displays the number of elements with
predicted class j and having true class i. We used a normalized version
of the confusion matrix, dividing each value of the matrix by the sum of
the values of the row it belongs to.

Chapter 5. Experiments and Results 61

5.2 Preliminary Experiments for Method
Design

In this section we explain some of the reasons behind the design criteria
of our method.

5.2.1 GMM

The GMM density estimator used in this work has a huge impact on
the overall accuracy of the system since it is responsible for modeling a
generic clean speech, learning to distinguish the different phoneme spec-
tra that compose a generic speech corpus.

In this sense, the choice of the training audio data adopted is cru-
cial. To make comparisons, the training procedure was done using two
different datasets and performing the final identification task using our
baseline algorithm proposed by Cuccovillo et al. in [11].

From the identification task result in Table 5.2, we can notice the
benefits in using the LibriSpeech [62] instead of the TIMIT [65], which
is the one adopted in the original version of the baseline.

Table 5.2: Identification accuracy for a different version of our GMM’s
train audio recording.

Accuracy
Dataset Original Pre-emphasized
TIMIT 0.96195 0.97381
LibriSpeech 0.98095 0.98636

Another modification applied to the GMM training interested the
pre-emphasis filter. It has been proven that the final device identification
benefits from the adoption of this filtering on the training audio data,
as we can see from the results in the right column of Table 5.2. This
improvement is justified by the fact that this signal filtering procedure
gives more discriminant power also to speech formants that have the
major energy component on the higher part of the spectra, balancing the
overall spectral energy. This was the rationale behind the adoption of
the pre-emphasis filter pre-processing in all the experiments. Figure 5.1
shows its spectral effect on a log-power spectrogram.

Chapter 5. Experiments and Results 62

Figure 5.1: The speech pre-emphasis effect. From the spectrogram’s heat-
map we clearly see the spectral energy balancing before and after the filtering
process.

It is also important to notice that the use of two different datasets
avoids mutual influences between the train and the test data. For this
reason, we trained the GMM using the LibriSpeech corpus and tested the
classification baseline with recordings belonging to the MOBIPHONE-
dataset, which contains utterances from the TIMIT dataset. The TIMIT
dataset has completely different speech content compared to the Lib-
riSpeech, and this aspect increases the generalization of the model as we
adopted not only different corpus but also different speakers.

5.2.2 Denoiser

Here we expose the main motivations behind our choice of addressing
the device identification problem in noisy conditions. We also explain
the reasons that led us to address the denoising problem in the time-
frequency domain rather than on the raw audio waveform.

Motivation We know that our mobile-phone device identification prob-
lem is based on a blind channel estimation procedure. Unfortunately, this
process has weaknesses when using signals corrupted by various kinds of
perturbation, such as reverb, music, background sounds and noise.

In this work we chose to address the presence of the additive noise,
in specific by considering the AWGN case, trying to limit its negative
impact to our task. To confirm this problem, several device identifica-
tion tests were done using AWGN-corrupted data. The accuracy of our

Chapter 5. Experiments and Results 63

baseline algorithm dropped to 60.0% from the original 96.2% as we can
see from Table 5.3. In addition, we implemented Band Energy Difference
(BED) [10], which is a very popular feature used to perform device iden-
tification. Even in this case, the identification accuracy dropped down
from 98.5% to 60.1%.

At first, we tried to solve this problem by using a multi-scene data-
augmentation approach on training phase. We fed our system with half
of audio recording corrupted by noise and we left the remaining un-
changed. Unfortunately, this approach was ineffective, while at the same
time leading us to a low accuracy value of 47.6%.

Our final idea fell on the adoption of an “intelligent” denoising pro-
cess. The adjective “intelligent” refers to the ability of suppressing as
much as possible the additive noise contribution, leaving the intrinsic
device fingerprint nearly unchanged.

From Audio Waveform Initially, we tried to tackle the denoising task
working directly in the waveform domain, and used an ANN developed
by Facebook AI Research [71] that is based on an encoder-decoder ar-
chitecture with skip-connections. This network was an adaptation for a
causal speech enhancement problem of the DEMUCS architecture [72],
initially developed for music source separation. Even if this architecture
was capable of removing various kinds of background noise including sta-
tionary and non-stationary ones, it was not really suitable for our specific
denoising task. After some tests indeed, even with low denoising power
settings, the denoiser turned out to take away much of the intrinsic infor-
mation that makes up the device fingerprint. The best accuracy achieved
was 35.2% forcing us to find an alternative solution to solve this problem.

From Spectrogram After some research, we decided to perform a
denoising process using a time-frequency representation of audio data.
Thus, we represented the audio as a two-dimensional image as explained
in Section 2.1.1.1, and performed denoising on it. By doing so, we took
great advantage of the numerous architectures present in the literature
facing the image denoising problem.

Among the many architectures available, we decided to use an ar-
chitecture known as Denoising CNN (DnCNN) [60], designed to tackle
the AWGN contribution on images, but is also widely used for super-

Chapter 5. Experiments and Results 64

resolution and JPEG image deblocking problems. In order to increase
the denoising performance, the authors decided to use batch normaliza-
tion [73] and a residual learning [74] approach with only one residual
unit. Rather than directly outputting the denoised image, the net has
been designed to predict the residual image, i.e. the noisy component.
Then, the denoised image has been obtained by subtracting this residual
from the noisy image, as seen in Figure 4.5.

The motivation behind the adoption of residual learning strategies on
image denoising relies on the assumption that the residual mapping is
much easier to be learned than the original unreferenced mapping [60].
With such a residual learning strategy, extremely deep CNN can be easily
trained to improve the overall accuracy [74].

The use of a CNN-based architecture on a time-frequency representa-
tion is justified by the fact that the convolution operation in time makes
the model equivariant to shifts in time. Using convolution across the
frequency axis instead makes the model equivariant to frequency [30].
These properties reflects the AWGN spectral characteristics.

On image processing, the architecture achieved a Peak SNR Ratio
(PSNR) of 29, 02 and a Structural Similarity Index (SSIM) of 0, 8190 for
a Gaussian denoising task on the BSD68 [75] dataset with an SNR of
25dB [60]. The effectiveness of the network is affected by the kernel size
and the model depth: high noise level usually requires a larger effective
patch size to capture more context information for restoration. In this
work, we chose to use a kernel size of 3 × 3 with 15 stacked convolu-
tional hidden layers, replicating the structure used in [60] for Gaussian
denoising.

5.3 Results

This section is entirely devoted to illustrate the final identification per-
formance of our method, starting from the baseline adopted to finally
analyze the final configuration. To validate our design process, different
ablation studies are carried out.

Chapter 5. Experiments and Results 65

5.3.1 Baseline

We adopted the algorithm proposed by Cuccovillo et al. in [11, 12] as
a baseline for our device identification task. In this implementation, we
used the pre-emphasis filtering neither for the train audio of the GMM
nor for the test recordings, as not mandatory in the implementation
specifications. As in the original work, the TIMIT dataset [65] was used
to train the GMM clean speech estimator.

Table 5.3: The identification performance of our baseline in [11, 12].

Train Data Test Data Accuracy

MOBIPHONE
MOBIPHONE 0.96195
MOBIPHONEawgn 0.60000

Despite the good performance obtained in the clean case, from Ta-
ble 5.3 we can see how badly the noise disturbance contributed to the
final outcome, giving an accuracy in identification of 0.60000. For this
reason, the following sections are entirely devoted to demonstrate the
proposed approach adopted to deal with this signal perturbation.

5.3.2 Ablation Studies

In this section, we validate our proposed methodology following a bottom-
up approach. We are going to add the main blocks that form our system
one by one, to prove that they are all necessary.

Table 5.4: Summary of the various settings in our ablation studies.

Speech
Removal

Denoising
(DnCNN)

Feature
Computation

AS Experiment I - - -
AS Experiment II - 3 -
AS Experiment III 3 - -
AS Experiment IV 3 3 -
Proposed Method 3 3 3

For better comprehension, in Table 5.4 we created a grid showing the
different settings setup used during the experiments. In doing this, we
advise the reader to refer to them as we go on the experiments.

Chapter 5. Experiments and Results 66

All the architecture flowcharts and the identification reports related
to each experiment are available in Appendix A and Appendix B respec-
tively.

5.3.2.1 AS Experiment I – Averaging the Spectrum

For this first experiment, we performed device identification by making
a time-frequency representation of the signal and then computing the
channel response directly from the raw data. Indeed, we left the record-
ing untouched, without performing neither denoising nor speech removal.
The corresponding reduced system architecture can be found in the ap-
pendix, in Figure A.1.

This is the simplest setup we used, since only the time averaging
block was acting, being the only thing required for the computation of
the channel response from a spectrogram. Indeed, we did not use the
custom features for the final identification but the estimated channel
response directly.

As a side note, we can consider this procedure equivalent to com-
puting the Long-Term Average Spectrum (LTAS), which is one of the
naive approaches for excluding the hypothesis that two recordings were
acquired by the same device. In addition, the Band Energy Difference
(BED) [10] feature can be seen as an approximation of the derivative of
the channel obtained in the same way as the experiment under consider-
ation.

In Figure 5.2 the confusion matrix of this experiment is shown. We
can clearly see the poor performance obtained adopting this workflow for
the noisy speech audio input, having an accuracy of 0.09244. From here,
we notice how the noise confused the identification process, making the
final prediction fall on only two mobile-phone models. Also the clean au-
dio input case was addressed, giving 0.26611 of accuracy and confirming
the bad design of such a system.

The related identification report is also provided in the appendix for
completeness, in Table B.1.

Chapter 5. Experiments and Results 67

Figure 5.2: AS Experiment I confusion matrix - accuracy 0.09244.

5.3.2.2 AS Experiment II – Averaging of the Denoised Spec-
trum

In this case, we introduced the DnCNN denoiser with the aim to improve
the performance when using the noisy recordings in the MOBIPHONEawgn

dataset. Before retrieving the final channel response we performed a sig-
nal processing step in order to clean the recording, i.e. its time-frequency
representation. Therefore, the log-magnitude spectrogram was denoised
by the DnCNN and the time averaging block did the rest by computing
the final channel response as before. Even in this case we used the raw
estimated channel to perform the final identification. The corresponding
reduced system architecture can be found in the appendix, in Figure A.2.

Comparing the confusion matrix in Figure 5.3 with the one in the pre-
vious experiment, we can see how the signal process tried to clean up the
signal, with the aim of bringing back useful information for identification,

Chapter 5. Experiments and Results 68

Figure 5.3: AS Experiment II confusion matrix - accuracy 0.14006.

but with still poor results.
The related identification report is also provided in the appendix for

completeness, in Table B.2.

5.3.2.3 AS Experiment III – Blind Channel Estimation

The previous method seemed to be ill-posed as it focused on the problem
of the noise component while it did not address the speech component,
which contributes negatively to our channel estimation.

For this reason, in this experiment we wanted to test the impact
of the speech removal procedure. It is important to notice that this
procedure is based on a previous speech estimation performed by the
pre-trained GMM architecture, responsible for modeling a generic clean
speech corpus. The corresponding reduced system architecture can be
found in the appendix, in Figure A.3.

Chapter 5. Experiments and Results 69

Figure 5.4: AS Experiment III confusion matrix - accuracy 0.10364.

By testing this configuration on clean data contained in MOBIPHONE,
we obtain a final identification accuracy of 0.94118. If we compare this
with the one obtained in AS Experiment I using the same test data, we
can notice that the adoption of the GMM along with the final speech
spectral subtraction turned out to be a good way to address this prob-
lem, achieving an improvement of 0.67507. Therefore, we can confirm
that the speech estimation and removal procedure is the right way to
follow.

Unfortunately, the confusion matrix in Figure 5.4 illustrates the limit
of this configuration in addressing the problem when tested with noisy
speech recordings. Indeed, using the MOBIPHONEawgn recordings, we
obtained an accuracy of 0.10364, similar to the one achieved in AS Ex-
periment I, thus without performing the spectral subtraction.

The related identification reports are also provided in the appendix

Chapter 5. Experiments and Results 70

for completeness, in Table B.3.1 and in Table B.3.2, respectively.

5.3.2.4 AS Experiment IV – Blind Channel Estimation from
Denoised Spectrum

Driven by the previous bad result on noisy data, we did a further step by
adding a denoising stage to the AS Experiment III configuration. There-
fore, we expected a clear improvement in testing with noisy speech audio
recordings. Indeed, the denoising process should mitigate the negative
contribution of noise, at the same time the speech removal should limit
the one of the speech. The corresponding reduced system architecture
can be found in the appendix, in Figure A.4.

Figure 5.5: AS Experiment IV confusion matrix - accuracy 0.78711.

As we can see from the confusion matrix in Figure 5.5, the improve-
ment after a denoising stage was quite effective, passing from an accuracy

Chapter 5. Experiments and Results 71

of 0.10364 - AS Experiment III with noisy data - to 0.78711. Thus, the
benefit of the DnCNN was noticeable.

The related identification report is also provided in the appendix for
completeness, in Table B.4.

5.3.3 Proposed Method – Advanced Custom Fea-
ture from the Blind Channel Estimation of
the Denoised Spectrum

As final step, we introduced the custom feature rather than the raw
estimated channel response. The channel response used until now allowed
us to understand the main trend of the design process. The adoption of
the custom feature computed in Section 4.2.4 confirmed the results and
enhanced the informative power of the channel extraction process. The
complete flowchart in Figure 4.2 shows all the steps of the algorithm.

Performing the identification task with this feature led to an improve-
ment of 0.01961 on the overall accuracy from AS Experiment IV. Indeed,
we obtain a final device identification accuracy of 0.80672, as we can see
from the confusion matrix in Figure 5.6.

Nevertheless, we would like to point out that both the adopted fea-
tures were well-posed since they resulted in a fixed-length property to
represent variable-length speech recordings. This is a desirable charac-
teristic since in principle the intrinsic fingerprint of a device should be
independent from the amount of acquired data.

The related identification report is also provided in the appendix for
completeness, in Table B.5.

From this final result, we can see that there was still a margin of
improvement. The reasons behind this behavior are explained in the
following Section 5.3.4.

5.3.4 Model Robustness

With the next experiments we quantify the robustness and the general-
ization performance of our proposed method.

Chapter 5. Experiments and Results 72

Figure 5.6: Proposed Method confusion matrix - accuracy 0.80672.

5.3.4.1 MR Experiment I – Different SNR

The goal of the first robustness experiment was to point out the DnCNN
denoising performance on spectrograms that have an unknown SNR.

For this purpose, we tested the model with clean recordings, such as
the ones contained on the MOBIPHONE dataset. This implied that the
DnCNN had to perform a denoising process with a really high SNR, even
if it was trained to address a 30dB SNR.

From the confusion matrix in Figure 5.7 the result may look bad,
but this was actually expected. Indeed, the DnCNN was not capable
of tackle a perfect blind Gaussian denoising task3 and works fine only
within the training SNR.

The related identification report is also provided in the appendix for
3a denoising process where the SNR is unknown.

Chapter 5. Experiments and Results 73

Figure 5.7: MR Experiment I confusion matrix - accuracy 0.20728.

completeness, in Table B.6.
In Section 6 we propose an alternative solution to limit this problem

and preserve the intrinsic information of the device.

5.3.4.2 MR Experiment II – Residual Information

We have seen that the DnCNN performs badly if tested with SNR sub-
stantially different from the training one, as it is much more aggressive
in removing the information we use as a fingerprint of the device.

In this experiment, we tried to quantify how much of this intrinsic in-
formation was picked up by the denoiser in making the denoising process
on different SNR.

The removed information can be found by analyzing the residual sig-
nal. As we know, the residual is the estimation objective of the DnCNN.
Since the net aims to estimate the noise corruption, this residual sig-

Chapter 5. Experiments and Results 74

nal should correspond to AWGN noise, thus a signal that has a uniform
power across the frequency band. We expect this signal to be identical
for all the analyzed devices, since the noise corruption applied was the
same for all the recordings in the MOBIPHONEawgn. As a consequence,
if we estimate the channel response from this signal by performing a
time averaging on its spectrogram, the algorithm is supposed to give bad
result in the identification task.

Figure 5.8: MR Experiment II confusion matrix - accuracy 0.63585.

Unfortunately, as we can see from the confusion matrix in Figure 5.8,
the denoising process for a substantially different SNR also took away
part of the device fingerprint. This behavior partially justifies the margin
of improvement that we had in the previous robustness experiment as well
as on our proposed method in Section 5.3.3.

The related identification report is also provided in the appendix for
completeness, in Table B.7.

Chapter 5. Experiments and Results 75

5.4 Conclusive Remarks

In this chapter, we evaluated the proposed methodology through simu-
lations and experiments. We introduced the datasets involved and the
evaluation metrics used in this work. After that, we focused on the pre-
liminary studies that affected our method design. A detailed analysis of
the final system was done following a bottom-up approach, validating its
performance through some ablation studies. The last part of this chap-
ter was entirely devoted to the robustness aspect and the generalization
ability of the final algorithm.

6
Conclusions and Outlook

In this work, we proposed an approach to solve the device identifica-
tion problem using speech recordings corrupted by additive noise.

The proposed method is based on the extraction of a device finger-
print. A feature computed from an estimated device channel response
was chosen for this purpose. Since the clean speech signal was unavail-
able, a blind channel estimation was performed by creating a reliable
estimator of a generic speech signal. Using a GMM architecture trained
on a RASTA filtered HTK-MFCCs from clean speech frames, we were
able to create an efficient representation of the speech component. The
only objective of this procedure was the removal of unnecessary infor-
mation, leaving only the parts of the signal that characterize the device
allowing it to be unequivocally distinguished.

At first, we processed the real recording by getting rid of the negative
noise contribution. We performed this task in the time-frequency domain
using a residual denoiser known as DnCNN adapting it for this task.
Then, the GMM architecture allowed us to perform a speech removal on
real data also working in the time-frequency domain.

The algorithm was tested using noise corrupted speech recordings

Chapter 6. Conclusions and Outlook 77

from the MOBIPHONE dataset, lowering the original SNR.
The final algorithm was tested with a different speech corpus used in

the training phase of the GMM, thus solving the problem in a speaker-
independent perspective.

In addition, the algorithm involved a built-in pre-emphasis filtering
for all audio data. This signal processing turned out to be very beneficial
in the clean speech estimation procedure.

For what concerns experiments, the denoiser addition led us to an
accuracy improvement from 0.10 to 0.78 on the identification task. Fur-
thermore, adopting custom features, the accuracy reached 0.81.

After having performed some detailed ablation studies on the model
configuration, we concluded that the proposed approach seemed to be the
most appropriate to tackle this problem, even though an ample margin
of improvement exists.

Based on the results discussed throughout this work, future research
on this topic should focus on different aspects.

Generalization An extensive study to evaluate the influence of com-
pletely different training data in modeling clean speech is required. Specif-
ically, it is of significant interest to investigate how and if the different
languages or speakers’ age impact the performance of the algorithm, thus
studying its resiliency.

There is also the need for a broader and updated dataset that contains
recordings from recent mobile-phones devices. This will facilitate the
development of more flexible algorithms in this field.

To achieve robustness, particular attention should be paid at compres-
sion, reverberation, different kinds of noise and the minimum recording
duration, in order to state the usage limits of the method on real data.

Since our DnCNN fails in denoising signals that have a SNR substan-
tially different from the one used for training, the proposed method could
be adjusted as follow. In the modified method, multiple versions of the
DnCNN denoiser must be trained, each one with data having different
SNR. A preliminary SNR estimator should be placed before the entire
workflow, as it will serve for selecting the pre-trained DnCNN model that
is more suitable for the denoising process. This could help us creating a
model characterized by a good generalization power for recordings with
different SNR.

Chapter 6. Conclusions and Outlook 78

Challenging scenarios Since the effectiveness of voluntary manipu-
lation goes in parallel with technological progress, a deep study should
be carried out to cope with possible anti-forensic attacks. An example of
an attack could be done using the recent method proposed by Borsos et
al. in [76]. They proposed an algorithm to perform a microphone style
swapping with the aim to transform audio recorded with a microphone
as if it was recorded with another, given only a few seconds of audio
from the latter. It is clear how this could affect the performance of our
algorithm.

Different approaches The microphone-based fingerprinting techniques
can be integrated with other approaches, such as - for instance - Sensor
Fusion [77, 78].

Another possibility to widen the model could consists in exploiting
other ranges of signal’s frequency spectrum, i.e. ultrasound response,
and combing them with the presented method, which is mainly based on
voice.

Appendix

A AS Experiment Flowcharts

A
ppendix

80

A.1 AS Experiment I

Figure 1: AS Experiment I flowchart.

A.2 AS Experiment II

Figure 2: AS Experiment II flowchart.

A
ppendix

81

A.3 AS Experiment III

Figure 3: AS Experiment III flowchart.

A
ppendix

82

A.4 AS Experiment IV

Figure 4: AS Experiment IV flowchart.

Appendix 83

B Identification Reports

B.1 AS Experiment I

Table 1: AS Experiment I report.

mobile-phone model precision recall f1-score support

LG L3 0.0 0.0 0.0 17.0
LG GS290 0.0 0.0 0.0 17.0
Nokia C5 0.0 0.0 0.0 17.0
Nokia N70 0.0 0.0 0.0 17.0
Nokia 5530 0.15686 0.94118 0.26891 17.0
HTC desire c 0.0 0.0 0.0 17.0
LG Optimus L5 0.0 0.0 0.0 17.0
LG Optimus L9 0.0 0.0 0.0 17.0
Samsung E2600 0.0 0.0 0.0 17.0
Samsung e1230 0.0 0.0 0.0 17.0
Apple iPhone 5 0.0 0.0 0.0 17.0
Samsung E2121B 0.0 0.0 0.0 17.0
Samsung s5830i 0.0 0.0 0.0 17.0
HTC Sensation xe 0.06667 1.00000 0.12500 17.0
Vodafone joy 845 0.0 0.0 0.0 17.0
Sony Ericsson c902 0.0 0.0 0.0 17.0
Sony Ericsson c510i 0.0 0.0 0.0 17.0
Samsung GT-I8190 mini 0.0 0.0 0.0 17.0
Samsung Galaxy Nexus S 0.0 0.0 0.0 17.0
Samsung Galaxy GT-I9100 s2 0.0 0.0 0.0 17.0
Samsung GT-N7100 0.0 0.0 0.0 17.0
accuracy 0.09244 0.09244 0.09244 0.09244
macro avg 0.01064 0.09244 0.01876 357.0
weighted avg 0.01064 0.09244 0.01876 357.0

Appendix 84

B.2 AS Experiment II

Table 2: AS Experiment II report.

mobile-phone model precision recall f1-score support

LG L3 1.00000 0.05882 0.11111 17.0
LG GS290 0.0 0.0 0.0 17.0
Nokia C5 0.0 0.0 0.0 17.0
Nokia N70 0.0 0.0 0.0 17.0
Nokia 5530 0.15888 1.00000 0.27419 17.0
HTC desire c 0.0 0.0 0.0 17.0
LG Optimus L5 0.0 0.0 0.0 17.0
LG Optimus L9 0.0 0.0 0.0 17.0
Samsung E2600 0.0 0.0 0.0 17.0
Samsung e1230 0.0 0.0 0.0 17.0
Apple iPhone 5 0.0 0.0 0.0 17.0
Samsung E2121B 0.0 0.0 0.0 17.0
Samsung s5830i 0.0 0.0 0.0 17.0
HTC Sensation xe 0.62500 0.29412 0.40000 17.0
Vodafone joy 845 0.50000 0.47059 0.48485 17.0
Sony Ericsson c902 1.00000 0.41176 0.58333 17.0
Sony Ericsson c510i 0.0 0.0 0.0 17.0
Samsung GT-I8190 mini 0.90909 0.58823 0.71429 17.0
Samsung Galaxy Nexus S 0.0 0.0 0.0 17.0
Samsung Galaxy GT-I9100 s2 0.0 0.0 0.0 17.0
Samsung GT-N7100 0.10526 0.11765 0.11111 17.0
accuracy 0.14006 0.14006 0.14006 0.14006
macro avg 0.20468 0.14006 0.12756 357.0
weighted avg 0.20468 0.14006 0.12756 357.0

Appendix 85

B.3 AS Experiment III

B.3.1 Clean Data

Table 3: AS Experiment III report - clean data.

mobile-phone model precision recall f1-score support

LG L3 1.00000 1.00000 1.00000 17.0
LG GS290 0.89474 1.00000 0.94444 17.0
Nokia C5 0.9375 0.88235 0.90909 17.0
Nokia N70 0.93333 0.82353 0.87410 17.0
Nokia 5530 0.88889 0.94118 0.91428 17.0
HTC desire c 0.93750 0.88235 0.90909 17.0
LG Optimus L5 1.00000 1.00000 1.00000 17.0
LG Optimus L9 0.86667 0.76470 0.81250 17.0
Samsung E2600 1.00000 1.00000 1.00000 17.0
Samsung e1230 0.92308 0.70588 0.80000 17.0
Apple iPhone 5 0.94444 1.00000 0.97143 17.0
Samsung E2121B 1.00000 1.00000 1.00000 17.0
Samsung s5830i 1.00000 1.00000 1.00000 17.0
HTC Sensation xe 1.00000 1.00000 1.00000 17.0
Vodafone joy 845 1.00000 1.00000 1.00000 17.0
Sony Ericsson c902 1.00000 1.00000 1.00000 17.0
Sony Ericsson c510i 0.83333 0.88235 0.85714 17.0
Samsung GT-I8190 mini 1.00000 1.00000 1.00000 17.0
Samsung Galaxy Nexus S 0.83333 0.88235 0.85714 17.0
Samsung Galaxy GT-I9100 s2 0.89474 1.00000 0.94444 17.0
Samsung GT-N7100 0.89474 1.00000 0.94444 17.0
accuracy 0.94118 0.94118 0.94118 0.94118
macro avg 0.94201 0.94118 0.93995 357.0
weighted avg 0.94201 0.94118 0.93995 357.0

Appendix 86

B.3.2 Noisy Data

Table 4: AS Experiment III report - noisy data.

mobile-phone model precision recall f1-score support

LG L3 0.0 0.0 0.0 17.0
LG GS290 0.0 0.0 0.0 17.0
Nokia C5 0.0 0.0 0.0 17.0
Nokia N70 0.0 0.0 0.0 17.0
Nokia 5530 0.13934 1.00000 0.24460 17.0
HTC desire c 0.0 0.0 0.0 17.0
LG Optimus L5 0.0 0.0 0.0 17.0
LG Optimus L9 0.0 0.0 0.0 17.0
Samsung E2600 0.0 0.0 0.0 17.0
Samsung e1230 0.0 0.0 0.0 17.0
Apple iPhone 5 0.0 0.0 0.0 17.0
Samsung E2121B 0.0 0.0 0.0 17.0
Samsung s5830i 0.0 0.0 0.0 17.0
HTC Sensation xe 1.00000 0.05882 0.11111 17.0
Vodafone joy 845 0.0 0.0 0.0 17.0
Sony Ericsson c902 0.07359 1.00000 0.13710 17.0
Sony Ericsson c510i 0.0 0.0 0.0 17.0
Samsung GT-I8190 mini 1.00000 0.11765 0.21053 17.0
Samsung Galaxy Nexus S 0.0 0.0 0.0 17.0
Samsung Galaxy GT-I9100 s2 0.0 0.0 0.0 17.0
Samsung GT-N7100 0.0 0.0 0.0 17.0
accuracy 0.10364 0.10364 0.10364 0.10364
macro avg 0.10538 0.10364 0.03349 357.0
weighted avg 0.10538 0.10364 0.03349 357.0

Appendix 87

B.4 AS Experiment IV

Table 5: AS Experiment IV report.

mobile-phone model precision recall f1-score support

LG L3 0.72727 0.94118 0.82051 17.0
LG GS290 0.75000 0.70588 0.72727 17.0
Nokia C5 1.00000 0.52941 0.69231 17.0
Nokia N70 0.93333 0.82353 0.87410 17.0
Nokia 5530 0.70833 1.00000 0.82927 17.0
HTC desire c 0.66667 0.82352 0.73684 17.0
LG Optimus L5 1.00000 1.00000 1.00000 17.0
LG Optimus L9 0.50000 0.23529 0.31200 17.0
Samsung E2600 1.00000 0.82353 0.90322 17.0
Samsung e1230 1.00000 0.17647 0.30000 17.0
Apple iPhone 5 0.88889 0.94118 0.91428 17.0
Samsung E2121B 1.00000 1.00000 1.00000 17.0
Samsung s5830i 0.93333 0.82353 0.87410 17.0
HTC Sensation xe 0.87500 0.82353 0.84848 17.0
Vodafone joy 845 1.00000 0.58823 0.74074 17.0
Sony Ericsson c902 0.92857 0.76470 0.83871 17.0
Sony Ericsson c510i 0.80000 0.70588 0.75000 17.0
Samsung GT-I8190 mini 1.00000 1.00000 1.00000 17.0
Samsung Galaxy Nexus S 0.53333 0.94118 0.68085 17.0
Samsung Galaxy GT-I9100 s2 0.88235 0.88235 0.88235 17.0
Samsung GT-N7100 0.43590 1.00000 0.60714 17.0
accuracy 0.78711 0.78711 0.78711 0.78711
macro avg 0.83633 0.78711 0.77819 357.0
weighted avg 0.83633 0.78711 0.77819 357.0

Appendix 88

B.5 Proposed Method

Table 6: Proposed method report.

mobile-phone model precision recall f1-score support

LG L3 0.93750 0.88235 0.90909 17.0
LG GS290 0.78947 0.88235 0.83333 17.0
Nokia C5 0.88235 0.88235 0.88235 17.0
Nokia N70 1.00000 1.00000 1.00000 17.0
Nokia 5530 0.62963 1.00000 0.77273 17.0
HTC desire c 0.72727 0.47059 0.57143 17.0
LG Optimus L5 0.65385 1.00000 0.79070 17.0
LG Optimus L9 0.62500 0.58823 0.60606 17.0
Samsung E2600 1.00000 0.94118 0.96970 17.0
Samsung e1230 1.00000 0.64706 0.78571 17.0
Apple iPhone 5 0.92857 0.76470 0.83871 17.0
Samsung E2121B 1.00000 1.00000 1.00000 17.0
Samsung s5830i 0.88889 0.94118 0.91428 17.0
HTC Sensation xe 0.81250 0.76470 0.78788 17.0
Vodafone joy 845 1.00000 0.47059 0.63100 17.0
Sony Ericsson c902 1.00000 0.70588 0.82759 17.0
Sony Ericsson c510i 1.00000 0.35294 0.52174 17.0
Samsung GT-I8190 mini 0.68000 1.00000 0.80952 17.0
Samsung Galaxy Nexus S 0.72222 0.76470 0.74286 17.0
Samsung Galaxy GT-I9100 s2 0.83333 0.88235 0.85714 17.0
Samsung GT-N7100 0.58621 1.00000 0.73913 17.0
accuracy 0.80672 0.80672 0.80672 0.80672
macro avg 0.84270 0.80672 0.71000 357.0
weighted avg 0.84270 0.80672 0.71000 357.0

Appendix 89

B.6 MR Experiment I

Table 7: MR Experiment I report.

mobile-phone model precision recall f1-score support

LG L3 0.0 0.0 0.0 17.0
LG GS290 0.0 0.0 0.0 17.0
Nokia C5 0.0 0.0 0.0 17.0
Nokia N70 1.00000 0.05882 0.11111 17.0
Nokia 5530 0.17172 1.00000 0.29310 17.0
HTC desire c 0.02055 0.17647 0.03681 17.0
LG Optimus L5 0.0 0.0 0.0 17.0
LG Optimus L9 0.0 0.0 0.0 17.0
Samsung E2600 0.0 0.0 0.0 17.0
Samsung e1230 0.0 0.0 0.0 17.0
Apple iPhone 5 0.0 0.0 0.0 17.0
Samsung E2121B 1.00000 0.23529 0.38095 17.0
Samsung s5830i 0.0 0.0 0.0 17.0
HTC Sensation xe 1.00000 0.05882 0.11111 17.0
Vodafone joy 845 1.00000 0.05882 0.11111 17.0
Sony Ericsson c902 1.00000 1.00000 1.00000 17.0
Sony Ericsson c510i 0.0 0.0 0.0 17.0
Samsung GT-I8190 mini 0.73333 0.64706 0.68750 17.0
Samsung Galaxy Nexus S 0.75000 0.17647 0.28571 17.0
Samsung Galaxy GT-I9100 s2 1.00000 0.17647 0.30000 17.0
Samsung GT-N7100 0.20312 0.76470 0.32099 17.0
accuracy 0.20728 0.20728 0.20728 0.20728
macro avg 0.37518 0.20728 0.17325 357.0
weighted avg 0.37518 0.20728 0.17325 357.0

Appendix 90

B.7 MR Experiment II

Table 8: MR Experiment II report.

mobile-phone model precision recall f1-score support

LG L3 0.43478 0.58823 0.50000 17.0
LG GS290 0.65217 0.88235 0.75000 17.0
Nokia C5 0.40000 0.23529 0.29630 17.0
Nokia N70 0.78947 0.88235 0.83333 17.0
Nokia 5530 0.52941 0.52941 0.52941 17.0
HTC desire c 0.45833 0.64706 0.53658 17.0
LG Optimus L5 0.66667 0.70588 0.68571 17.0
LG Optimus L9 0.38889 0.41176 0.31000 17.0
Samsung E2600 0.88235 0.88235 0.88235 17.0
Samsung e1230 0.80000 0.47059 0.59259 17.0
Apple iPhone 5 0.50000 0.58823 0.54054 17.0
Samsung E2121B 1.00000 1.00000 1.00000 17.0
Samsung s5830i 0.61538 0.47059 0.53333 17.0
HTC Sensation xe 0.64706 0.64706 0.64706 17.0
Vodafone joy 845 0.50000 0.52941 0.51428 17.0
Sony Ericsson c902 0.90000 0.52941 0.66667 17.0
Sony Ericsson c510i 0.57692 0.88235 0.69767 17.0
Samsung GT-I8190 mini 0.58333 0.41176 0.48276 17.0
Samsung Galaxy Nexus S 0.85714 0.70588 0.77419 17.0
Samsung Galaxy GT-I9100 s2 0.80000 0.94118 0.86486 17.0
Samsung GT-N7100 0.63636 0.41176 0.50000 17.0
accuracy 0.63585 0.63585 0.63585 0.63585
macro avg 0.64849 0.63585 0.62989 357.0
weighted avg 0.64849 0.63585 0.62989 357.0

Bibliography

[1] V. Verma and N. Khanna, “Speaker-independent source cell-phone
identification for re-compressed and noisy audio recordings,” Multi-
media Tools and Applications, Jan. 2021.

[2] X. Shen, X. Shao, Q. Ge, and L. Liu, “RARS: Recognition of Audio
Recording Source Based on Residual Neural Network,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 29,
pp. 575–584, 2021.

[3] M. A. Qamhan, H. Altaheri, A. H. Meftah, G. Muhammad, and
Y. A. Alotaibi, “Digital Audio Forensics: Microphone and Envi-
ronment Classification Using Deep Learning,” IEEE Access, vol. 9,
pp. 62719–62733, 2021.

[4] M. Zakariah, M. K. Khan, and H. Malik, “Digital multimedia audio
forensics: past, present and future,” Multimed Tools Appl, 2017.

[5] D. Seichter, L. Cuccovillo, and P. Aichroth, “AAC encoding detec-
tion and bitrate estimation using a convolutional neural network,” in
2016 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), (Shanghai), pp. 2069–2073, IEEE, Mar.
2016.

[6] D. Capoferri, C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and
S. Tubaro, “Speech Audio Splicing Detection and Localization Ex-
ploiting Reverberation Cues,” in 2020 IEEE International Workshop
on Information Forensics and Security (WIFS), (New York, NY,
USA), pp. 1–6, IEEE, Dec. 2020.

[7] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and S. Tubaro,
“Synthetic speech detection through short-term and long-term

91

Bibliography 92

prediction traces,” EURASIP Journal on Information Security,
vol. 2021, p. 2, Apr. 2021.

[8] A. K. Singh and P. Singh, “Detection of AI-Synthesized Speech Us-
ing Cepstral & Bispectral Statistics,” arXiv:2009.01934 [cs, eess,
stat], Apr. 2021. arXiv: 2009.01934.

[9] M. Maksimovi, P. Aichroth, and L. Cuccovillo, “Detection and lo-
calization of partial audio matches in various application scenarios,”
Multimedia Tools and Applications, vol. 80, pp. 22619–22641, June
2021.

[10] D. Luo, P. Korus, and J. Huang, “Band Energy Difference for Source
Attribution in Audio Forensics,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 9, p. 11, 2018.

[11] L. Cuccovillo, “Classification of Microphones of Mobile Devices via
Blind Channel Estimation,” Master’s thesis, Politecnico di Milano,
Milan, 2011.

[12] L. Cuccovillo, S. Mann, M. Tagliasacchi, and P. Aichroth, “Au-
dio tampering detection via microphone classification,” in 2013
IEEE 15th International Workshop on Multimedia Signal Processing
(MMSP), (Pula (CA), Italy), pp. 177–182, IEEE, Sept. 2013.

[13] J. O. Smith, Spectral Audio Signal Processing. http://-
ccrma.stanford.edu/˜jos/sasp/, 2011. online book, 2011 edition.

[14] P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal Pro-
cessing: System Analysis and Design. Cambridge University Press,
2 ed., 2010.

[15] M. Müller, Fundamentals of Music Processing. Springer Interna-
tional Publishing, 2015.

[16] P. Knees and M. Schedl, Music Similarity and Retrieval, vol. 36
of The Information Retrieval Series. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016.

[17] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ol-
lason, V. Valtchev, and P. Woodland, “The htk book,” Cambridge
University Engineering Department, vol. 3, 2002.

http://ccrma.stanford.edu/~jos/sasp/

Bibliography 93

[18] “Cepstrum and MFCC - Introduction to Speech Processing -
Aalto University Wiki.” https://wiki.aalto.fi/display/ITSP/
Cepstrum+and+MFCCs.

[19] V. Tyagi and C. Wellekens, “On desensitizing the mel-cepstrum to
spurious spectral components for robust speech recognition,” in Pro-
ceedings. (ICASSP ’05). IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2005., vol. 1, pp. I/529–I/532
Vol. 1, 2005.

[20] H. Hermansky and N. Morgan, “RASTA processing of speech,”
IEEE Transactions on Speech and Audio Processing, vol. 2,
pp. 578–589, Oct. 1994.

[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd ed ed., 2010.

[22] C. M. Bishop, Pattern recognition and machine learning. Informa-
tion science and statistics, New York: Springer, 2006.

[23] S. Raschka and V. Mirjalili, Python Machine Learning, 3rd Ed.
Birmingham, UK: Packt Publishing, 3 ed., 2019.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: an intro-
duction. Adaptive computation and machine learning, Cambridge,
Mass: MIT Press, 1998.

[25] T. M. Mitchell, Machine Learning. McGraw-Hill series in computer
science, New York: McGraw-Hill, 1997.

[26] “Support Vector Machines - scikit-learn.” https://scikit-learn.
org/stable/modules/svm.html#id15.

[27] J. A. Hartigan, Clustering algorithms. John Wiley & Sons, Inc.,
1975.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likeli-
hood from Incomplete Data Via the EM Algorithm,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 39,
pp. 1–22, Sept. 1977.

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCCs
https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCCs
https://scikit-learn.org/stable/modules/svm.html#id15
https://scikit-learn.org/stable/modules/svm.html#id15

Bibliography 94

[29] N. Aloysius and M. Geetha, “A review on deep convolutional neural
networks,” in 2017 International Conference on Communication and
Signal Processing (ICCSP), pp. 0588–0592, 2017.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[31] T. Dietterich, “Overfitting and undercomputing in machine learn-
ing,” ACM Comput. Surv., vol. 27, p. 326327, Sept. 1995.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014.

[33] C. Hanilçi and F. Erta, “Recognition of Brand and Models of Cell-
Phones From Recorded Speech Signals,” IEEE Transactions on In-
formation Forensics and Security, vol. 7, no. 2, p. 11, 2012.

[34] C. Hanilçi and F. Ertas, “Optimizing acoustic features for source
cell-phone recognition using speech signals,” in Proceedings of the
first ACM workshop on Information hiding and multimedia security
- IH&MMSec ’13, (Montpellier, France), p. 141, ACM Press, 2013.

[35] “Deltas and delta-deltas - Introduction to Speech Processing -
Aalto University Wiki.” https://wiki.aalto.fi/display/ITSP/
Deltas+and+Delta-deltas.

[36] C. Kotropoulos and S. Samaras, “Mobile phone identification using
recorded speech signals,” in 2014 19th International Conference on
Digital Signal Processing, (Hong Kong, Hong Kong), pp. 586–591,
IEEE, Aug. 2014.

[37] Y. Jiang and F. H. F. Leung, “Source Microphone Recognition Aided
by a Kernel-Based Projection Method,” IEEE Transactions on In-
formation Forensics and Security, vol. 14, pp. 2875–2886, Nov. 2019.

[38] L. Zou, Q. He, and J. Wu, “Source cell phone verification from speech
recordings using sparse representation,” Digital Signal Processing,
vol. 62, pp. 125–136, Mar. 2017.

http://www.deeplearningbook.org
https://wiki.aalto.fi/display/ITSP/Deltas+and+Delta-deltas
https://wiki.aalto.fi/display/ITSP/Deltas+and+Delta-deltas

Bibliography 95

[39] V. Verma, P. Khaturia, and N. Khanna, “Cell-Phone Identifi-
cation from Recompressed Audio Recordings,” in 2018 Twenty
Fourth National Conference on Communications (NCC), (Hyder-
abad), pp. 1–6, IEEE, Feb. 2018.

[40] X. Lin, J. Zhu, and D. Chen, “Subband Aware CNN for Cell-Phone
Recognition,” IEEE Signal Processing Letters, vol. 27, pp. 605–609,
2020.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arXiv:1706.03762 [cs], Dec. 2017. arXiv: 1706.03762.

[42] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141, 2018.

[43] C. Hanilçi and T. Kinnunen, “Source cell-phone recognition from
recorded speech using non-speech segments,” Digital Signal Process-
ing, vol. 35, pp. 75–85, Dec. 2014.

[44] V. Pandey, V. K. Verma, and N. Khanna, “Cell-phone identification
from audio recordings using PSD of speech-free regions,” in 2014
IEEE Students’ Conference on Electrical, Electronics and Computer
Science, (Bhopal), pp. 1–6, IEEE, Mar. 2014.

[45] R. Aggarwal, S. Singh, A. K. Roul, and N. Khanna, “Cellphone
identification using noise estimates from recorded audio,” in 2014
International Conference on Communication and Signal Processing,
(Melmaruvathur, India), pp. 1218–1222, IEEE, Apr. 2014.

[46] Y. Li, X. Zhang, X. Li, Y. Zhang, J. Yang, and Q. He, “Mobile Phone
Clustering From Speech Recordings Using Deep Representation and
Spectral Clustering,” IEEE Transactions on Information Forensics
and Security, vol. 13, pp. 965–977, Apr. 2018.

[47] G. Baldini and I. Amerini, “An Evaluation of Entropy Measures for
Microphone Identification,” Entropy, vol. 22, p. 1235, Oct. 2020.

[48] T. Qin, R. Wang, D. Yan, and L. Lin, “Source Cell-Phone Iden-
tification in the Presence of Additive Noise from CQT Domain,”
Information, vol. 9, p. 205, Aug. 2018.

Bibliography 96

[49] G. Baldini and I. Amerini, “Smartphones Identification Through the
Built-In Microphones With Convolutional Neural Network,” IEEE
Access, vol. 7, pp. 158685–158696, 2019.

[50] G. Baldini, I. Amerini, and C. Gentile, “Microphone Identifica-
tion Using Convolutional Neural Networks,” IEEE Sensors Letters,
vol. 3, no. 7, p. 4, 2019.

[51] N. D. Gaubitch, M. Brookes, P. A. Naylor, and D. Sharma, “Single-
microphone blind channel identification in speech using spectrum
classification,” in 2011 19th European Signal Processing Conference,
pp. 1748–1751, 2011.

[52] N. D. Gaubitch, M. Brookes, and P. A. Naylor, “Blind Channel
Magnitude Response Estimation in Speech Using Spectrum Classi-
fication,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 21, pp. 2162–2171, Oct. 2013.

[53] A. T. Ho and S. Li, eds., Handbook of Digital Forensics of Multimedia
Data and Devices. Chichester, UK: John Wiley & Sons, Ltd, July
2015.

[54] L. Cuccovillo and P. Aichroth, “Open-set microphone classifica-
tion via blind channel analysis,” in 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2074–2078, 2016.

[55] M. Slaney, A MATLAB Auditory Toolbox: Toolbox for Auditory
Modeling Work, version 2. Interval Research Corporation, 1998.

[56] “Pre-emphasis - Introduction to Speech Processing - Aalto
University Wiki.” https://wiki.aalto.fi/display/ITSP/
Pre-emphasis.

[57] L. R. Rabiner and R. W. Schafer, Theory and applications of digital
speech processing. Upper Saddle River: Pearson, 1st ed ed., 2011.
OCLC: ocn476834107.

[58] J. Zhou, “On discrete cosine transform,” arXiv:1109.0337 [cs, math],
Sept. 2011. arXiv: 1109.0337.

https://wiki.aalto.fi/display/ITSP/Pre-emphasis
https://wiki.aalto.fi/display/ITSP/Pre-emphasis

Bibliography 97

[59] K. S. Rao, V. R. Reddy, and S. Maity, Language Identification Us-
ing Spectral and Prosodic Features by K. Sreenivasa Rao, V. Ramu
Reddy, Sudhamay Maity. SpringerBriefs in Speech Technology, Stud-
ies in Speech Signal Processing, Natural Language Understanding,
and Machine Learning, Cham: Springer International Publishing :
Imprint: Springer, 1st ed. 2015. ed., 2015.

[60] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a Gaussian Denoiser: Residual Learning of Deep CNN for Im-
age Denoising,” IEEE Transactions on Image Processing, vol. 26,
pp. 3142–3155, July 2017.

[61] K. Simonyan and A. Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition,” arXiv:1409.1556 [cs],
Apr. 2015. arXiv: 1409.1556.

[62] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An asr corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5206–5210, 2015.

[63] “LibriVox.” https://librivox.org/.

[64] “Project Gutenberg.” https://www.gutenberg.org/.

[65] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue, “Timit acoustic-phonetic continuous
speech corpus,” Philadelphia Linguistic Data Consortium, 1993.

[66] “Audiomentations - a python library for audio data augmentation.”
https://github.com/iver56/audiomentations.

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[68] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Bat-
tenberg, and O. Nieto, “librosa: Audio and music signal analysis
in python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

https://librivox.org/
https://www.gutenberg.org/
https://github.com/iver56/audiomentations

Bibliography 98

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
arXiv:1502.01852 [cs], Feb. 2015. arXiv: 1502.01852.

[70] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Ad-
vances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[71] A. Defossez, G. Synnaeve, and Y. Adi, “Real time speech enhance-
ment in the waveform domain,” in Interspeech, 2020.

[72] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music Source
Separation in the Waveform Domain,” arXiv:1911.13254 [cs, eess,
stat], Apr. 2021. arXiv: 1911.13254.

[73] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
arXiv:1502.03167 [cs], Mar. 2015. arXiv: 1502.03167.

[74] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015. arXiv:
1512.03385.

[75] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics,” in Proceed-
ings Eighth IEEE International Conference on Computer Vision.
ICCV 2001, vol. 2, pp. 416–423 vol.2, 2001.

[76] Z. Borsos, Y. Li, B. Gfeller, and M. Tagliasacchi, “MicAugment:
One-shot Microphone Style Transfer,” arXiv:2010.09658 [cs, eess,
stat], Oct. 2020. arXiv: 2010.09658.

[77] European Commission. Joint Research Centre., Microphone smart
device fingerprinting from video recordings: Project AVICAO Au-
thors and Victims Identification of Child Abuse On line. LU: Pub-
lications Office, 2018.

Bibliography 99

[78] S. Milani, L. Cuccovillo, M. Tagliasacchi, S. Tubaro, and
P. Aichroth, “Video camera identification using audio-visual fea-
tures,” in 2014 5th European Workshop on Visual Information Pro-
cessing (EUVIP), pp. 1–6, 2014.

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Glossary
	Introduction
	Theoretical Background
	Signal Processing
	Time-Frequency Analysis
	Mel-Frequency Cepstral Coefficients
	RelAtive Spectral TrAnsform Filter

	Machine Learning and Deep Learning Fundamentals
	Overview
	Taxonomy
	Architectures Used in this Work

	Conclusive Remarks

	State of the Art and Problem Statement
	State of the Art on Source Attribution
	Device Identification
	Device Identification in Noisy Conditions

	Problem Statement

	Proposed Method
	Overview
	Building Blocks
	Clean Speech Model
	Denoising
	Blind Channel Estimation
	Feature Computation
	Identification

	Conclusive Remarks

	Experiments and Results
	Experiment Setup
	Datasets
	Parameters and Routines Design
	Evaluation Metrics

	Preliminary Experiments for Method Design
	GMM
	Denoiser

	Results
	Baseline
	Ablation Studies
	Proposed Method
	Model Robustness

	Conclusive Remarks

	Conclusions and Outlook
	Appendices
	AS Experiment Flowcharts
	AS Experiment I
	AS Experiment II
	AS Experiment III
	AS Experiment IV

	Identification Reports
	AS Experiment I
	AS Experiment II
	AS Experiment III
	AS Experiment IV
	Proposed Method
	MR Experiment I
	MR Experiment II

