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Sommario

Al giorno d’oggi, componenti informatiche sono sempre più utilizzate per
sostituire l’uomo in attività complesse, dove è necessario che interagiscano
con l’ambiente fisico in cui sono collocati. Forme di trasporto automatizzato,
applicazioni di domotica, sistemi medicali di nuova generazione e la nascita
del cosiddetto “Internet of Things” sono solo esempi del fatto che è ormai
quasi impossibile trovare un dominio della tecnica in cui l’informatica non
sia penetrata, aumentando notevolmente le capacità, ma di pari passo anche
la complessità, dei macchinari che ci circondano. In sintesi, la maggior parte
dei nostri sistemi stanno diventando, o sono già diventati, ciber-fisici, e sono
spesso impiegati in situazioni in cui la sicurezza e l’affidabilità sono aspetti
critici. Ne consegue che lo sviluppo di tecniche che consentano un’analisi
rigorosa di questo tipo di sistemi è diventato di fondamentale importanza.
Tuttavia, analizzare i Sistemi Ciber-Fisici significa essere in grado di descri-
vere quello che spesso risulta essere un amalgama complesso di due dinamiche
molto diverse tra loro: l’evoluzione delle variabili fisiche, tipicamente rappre-
sentate come segnali continui, e il comportamento delle componenti software,
solitamente rappresentato da una sequenza di cambiamenti di stato e model-
lato attraverso sistemi ad eventi discreti. Inoltre, la maggior parte di questi
sistemi tendono ad essere notevolmente complessi e presentano un numero
elevato di variabili e parametri da tenere sotto osservazione per ottenere una
descrizione sufficientemente esaustiva del loro comportamento.

Questa quantità sempre crescente di dati da organizzare e interpretare ha
portato allo sviluppo di tecniche di verifica automatizzate ad essi dedicate.
Il Trace-checking è una di queste tecniche. Essa mira a produrre un verdetto
riguardante la conformità di un sistema ad un certo requisito, confrontando
la traccia di esecuzione di un sistema, ovvero la misurazione di un insieme di
variabili che ne descrivono lo stato durante le sue operazioni, con il suo com-
portamento ideale, espresso attraverso formule logiche scritte in un adeguato
linguaggio di specificazione. Può essere applicata sia a sistemi software che
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a sistemi hardware, purché sia possibile registrare una traccia, e più recen-
temente si è iniziato ad usarla anche per i sistemi ciber-fisici.

Ci sono due categorie principali di linguaggi usati per specificare i requisiti
logici: i linguaggi time-based, ovvero basati sul tempo e quelli basati sul con-
cetto di sequnza di eventi (sequence-based). I linguaggi basati sul tempo, che
interpretano le variabili come segnali in un dominio temporale, sono adatti
ad esprimere i requisiti relativi alle grandezze fisiche, ma non sono facilmente
adattabili a specificare i requisiti relativi ai componenti software. Al con-
trario, nei linguaggi sequence-based, le tracce sono definite tramite sequenze
ordinate di eventi consecutivi (come quelle prodotte dagli automi a stati
finiti) che risultano adeguate per descrivere la dinamica delle componenti
informatiche, ma non ottimali per rappresentare l’evoluzione di grandezze
del mondo fisico. Ad oggi sono stati sviluppati anche linguaggi ibridi che
tentano di supportare la specificazione di entrambi i tipi di comportamento,
ma sono solitamente estensioni ad hoc di linguaggi esistenti, focalizzati su
contesti specifici e che spesso ereditano alcune delle limitazioni del linguaggio
di partenza.

Oltretutto, esiste generalmente un rapporto di proporzionalità inversa tra
l’espressività del linguaggio di specifica e l’efficienza della procedura di trace-
checking; di conseguenza, occorre trovare un compromesso tra la potenza
espressiva del linguaggio e l’immediatezza della risposta, affinché sia possibile
avvalersi della tecnica sviluppata nella pratica. Questa è una delle principali
sfide da affrontare quando si progetta un approccio di trace-checking per uso
industriale.

In questo contesto, considerando le sfide e le necessità dello sviluppo e del
testing dei sistemi ciber-fisici, presentiamo Hybrid Logic of Signals, in breve
HLS, un nuovo linguaggio di specifica pensato per questa classe di sistemi,
e ThEodorE (Logic-based TracE checkEr for HLS ), un algoritmo di trace-
checking automatico svluppato per le proprietà espresse in HLS.

HLS supporta l’espressione di requisiti riferiti sia ai timestamps, ovvero ai
tempi di acquisizione dei record della traccia, che agli indici numerici dei
record. Diventa quindi possibile catturare il comportamento delle compo-
nenti sia informatiche che fisiche e le loro interazioni, utilizzando gli indici
per esprimere i cambiamenti discontinui di stato e i timestamp per catturare
le relazioni temporali degli aspetti continui del sistema.

ThEodorE riduce il problema del controllo delle proprietà HLS in un prob-
lema di Satisfiability Modulo Theories, che puo essere risolto da numerosi
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solver già esistenti, i quali incorporano procedure decisionali efficienti per
diverse teorie logiche, rendendo così possibile verificare se la fomula che rap-
presenta l’unione della proprietà espressa e del comportamento della traccia
è soddisfatta o meno.

ThEodorE è essenzialmente un Domain Specific Language (Linguaggio di
Dominio Specifico) sviluppato per esprimere le proprietà logiche in HSL e
assegnarle alla traccia a cui si riferiscono, dotato di un generatore di codice
per tradurre le strutture dati create in questo modo nella logica SMT di
destinazione.

Abbiamo implementato ThEodorE usando Eclipse Xtext, uno strumento per
sviluppare linguaggi di programmazione, e Xtend, un dialetto di Java pensato
per essere usato assieme a Xtext, e lo abbiamo finalizzato nella forma di un
plugin per Eclipse IDE.

Abbiamo valutato l’espressività di HSL e l’applicabilità di ThEodorE at-
traverso un caso di studio fornitoci dal nostro partner industriale, LuxSpace.

LuxSpace è un azienda del settore aerospaziale che ha sviluppato un satel-
lite per raccogliere informazioni di tracciamento dalle navi e per trasmettere
questi dati a terra. Rappresenta un caso emblematico di sistema ciber-fisco
composto da componenti software complessi che interagiscono con un gran
numero di attuatori e sensori e con l’ambiente fisico circostante. Visto il con-
testo di impiego, il settore industriale e l’utilizzo previsto per il satellite, esso
è oggetto di molti requisiti tecnici e di funzionamento che deve soddisfare.

Abbiamo preso in considerazione 212 di questi requisiti e abbiamo cercato
di esprimerli utilizzando HSL e due linguaggi di specifica all’avanguardia,
ovvero SB-TemPsy-DSL e STL, entrambi supportati, come HSL, da stru-
menti di trace-checking.

In primo luogo, abbiamo valutato la misura in cui i requisiti erano esprim-
ibili da ogni linguagggio. HSL è stato in grado di esprimere il 100% dei
requisiti, mentre SB-TemPsy-DSL e STL sono stati in grado di esprimerne
rispettivamente solo il 68% e il 48%.

LuxSpace ci ha anche fornito 20 tracce, ottenute simulando il comportamento
del satellite in diversi scenari e per tempi di simulazione che vanno dalle
quattro alle sei ore. La loro dimensione varia da 41844 a 1202241 voci.

L’applicabilità di ThEodorE è stata quindi testata su questo dataset con-
tro SB-TemPsy-Check e Breach, i due algoritmi di trace-checking relativi
ai suddetti linguaggi. Applicando i 212 requisiti alle tracce di simulazione
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abbiamo ottenuto 747 combinazioni di tracce e requisiti. ThEodorE è rius-
cito a calcolare un verdetto definitivo entro un’ora per il 74,5% del totale
delle combinazioni. In particolare, è riuscito a valutare il 67,9% delle 337
combinazioni che i linguaggi concorrenti non hanno potuto esprimere.

Quando i requisiti sono esprimibili in SB-TemPsy-DSL e STL, SB-TemPsy-
Check e Breach sono più veloci di ThEodorE. Tuttavia, dato lo scenario di
utilizzo (controllo delle tracce offline), la differenza nei tempi di esecuzione
non ha alcuna conseguenza pratica, poiché il tempo medio di controllo delle
tracce, nell’ordine dei minuti, è in ogni caso significativamente inferiore alle
ore necessarie per raccogliere le tracce.

Essendo in grado di esprimere un insieme di proprpietà molto più ampio
rispetto ad altri sistemi e di verificare le suddette tracce entro limiti di tempo
pratici, ThEodorE rappresenta un migliore compromesso tra espressività e
performance. Inoltre, si prevede che l’efficienza e l’efficacia di ThEodorE
miglioreranno in futuro insieme alla tecnologia SMT sottostante, in quanto
i solver in questione sono tuttora oggetto di ricerca e sviluppo continuo.
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Abstract

Software is no longer designed only to support humans in complex calcula-
tions, but it is more and more used to replace humans in complex activities,
where it performs its tasks interacting with a physical environment through
hardware systems like sensors and actuators.

Automated transportation, domotics, automated medical systems, and the
Internet of Things are just examples of the fact that is now almost impossible
to find a technical field in which software has not penetrated, greatly increas-
ing the capabilities, but also the complexity, of our machinery. In synthesis,
most of our systems are becoming, or have already become, Cyber-Physical,
and they are often deployed in situations where safety and reliability are
critical. This means that developing techniques that enable rigorous analy-
sis of these types of systems is of paramount importance. However, analyzing
Cyber-Physical Systems means being able to describe the complex amalga-
mation of two very different dynamics: the evolution of physical variables,
typically represented as continuous signals, and the behavior of the software
components, usually represented by a sequence of state changes and mod-
eled through discrete event systems. Moreover, most of these systems tend
to be fairly complex and present a high number of variables and parameters
that need to be kept under observation in order to have a useful insight into
their behaviour. This ever-increasing amount of data to organize and inter-
pret requires the development of automated verification techniques aimed at
complex systems. Trace-checking is a technique of runtime verification that
produces a verdict on the conformity of a system to a certain requirement by
comparing the execution trace of a system with its ideal behavior, expressed
through a suitable specification language. It can be applied to both software
systems and hardware systems, as long as a trace can be made available, and
more recently it has also been applied to CPS.

There are two main categories of languages used for specifying CPS require-
ments: time-based and sequence-based languages. Time-based languages,
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which interpret variables as signals over a time domain, are suitable to ex-
press CPS requirements related to physical quantities but are not easily
amenable to specifying requirements related to software components. On
the contrary, in sequence-based languages, traces are defined as sequences of
consecutive records of events, which is ideal to describe the dynamics of soft-
ware components, but not to represent the evolution of physical quantities.
Hybrid languages exist to support the specification of both kinds of behav-
iors, but they are usually ad-hoc extensions of existing languages, focused
on specific contexts.

Typically, there is a trade-off between the expressiveness of the specification
language and the efficiency of the trace-checking procedure; consequently,
there is a delicate balance to strike between the expressive power of the
specification language and the immediacy of the response, and this is one
of the main challenges to face when designing a trace-checking approach for
industrial use.

In this context, considering the challenges and necessities of CPS develop-
ment and testing, we present the Hybrid Logic of Signals (HLS), a new spec-
ification language tailored to specifying CPS requirements, and ThEodorE
(Logic-based TracE checkEr for HLS), an efficient trace-checking approach
for properties expressed in HLS.

HLS supports the expression of CPS requirements as properties referring
both to the time-stamps and the indices of the records of CPS traces, ex-
tending existing time and sequence-based languages. The behaviour of both
cyber and physical components and their interactions can be captured, using
the indices to express discontinuous changes of state, and the timestamps to
capture the time relations of the continuous aspects of the system.

ThEodorE translates the problem of trace-checking HLS properties to a sat-
isfiability problem, which can be solved using existing Satisfiability Modulo
Theories (SMT) solvers, which incorporate efficient decision procedures for
several background theories, thus making it possible to check whether a for-
mula expressed in first-order logic is satisfiable.

ThEodorE is essentially a Domain Specific Language developed to express
logic properties in HSL and assign them to the trace they refer to, augmented
with a code generator to translate the data structures created this way into
the target SMT logic.

We implemented ThEodorE as an Eclipse IDE plugin using Eclipse Xtext,
a tool for developing programming languages and DSLs, and Xtend, a Java
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dialect used in tandem with Xtext.

We assessed the expressiveness of HSL and the applicability of ThEodorE
through a case study provided by our industrial partner, LuxSpace.

LuxSpace developed a satellite to collect tracking information from ships and
to transmit those data to the ground, which is an emblematic case of a CPS
made of complex software components interacting with many actuators and
sensors and the surrounding physical environment, with critical requirements
to satisfy regarding all these aspects.

We considered 212 of these requirements and we attempted to express them
using HSL and two state-of-the-art specification languages: SB-TemPsy-DSL
and STL, both supported by publicly available trace checking tools.

First, we evaluated the extent to which the requirements were expressible
in each language. HSL was able to express 100% of the requirements, while
SB-TemPsy-DSL and STL were able to express respectively only 68% and
48% of the requirements.

LuxSpace also provided us with 20 traces, obtained by simulating the be-
havior of the satellite in different scenarios and for simulation times ranging
from four to six hours. Their size ranges from 41844 to 1202241 entries.

The applicability of ThEodorE was then tested on this dataset against the
aforementioned tools, SB-TemPsy-Check and Breach.

Applying the 212 requirements to the simulation traces we obtained 747
trace-requirement combinations. ThEodorE could compute a definitive ver-
dict within one hour for 74.5% of the total combinations and in particular for
67.9% of the 337 trace-requirement combinations that could not be checked
by the other tools due to language limitations.

When the requirements are expressible in SB-TemPsy-DSL and STL, SB-
TemPsy-Check and Breach are faster than ThEodorE. However, given the
usage scenario (offline trace checking), the difference in execution times does
not have any practical consequences since the average trace-checking time is
significantly lower than the time required to collect the traces.

Being able to support a much wider range of properties than other trace-
checkers and to verify them within practical time limits, our approach achieves
a better trade-off between expressiveness and performances. Furthermore,
the efficiency and effectiveness of ThEodorE are expected to improve in the
future along with the underlying SMT technology.
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Chapter 1

Introduction

This Chapter provides an overview of this thesis. First (Section 1.1) we de-
scribe the research context and we present the research problem addressed
by this thesis (Section 1.2). Then we describe the contribution of this work
(Section 1.3). Finally, we briefly go over the structure of the thesis (Sec-
tion 1.4).

1.1 Research Context

Software systems are becoming more and more ubiquitous, and one of the
reasons is that they are no longer just conceived to support humans in com-
plex calculations, but they are more and more used to replace humans in
complex, tedious, time-consuming, or even dangerous tasks. In many of
these applications, the software is required to autonomously sense and act
on its physical environment. Some examples are autonomous transportation
systems, smart electrical grids, domotic systems, and new-generation medi-
cal systems. Nowadays is become quite difficult to find a technical field in
which software is not employed in one way or another. Software systems
guarantee high levels of controllability, by enabling systems to monitor up
to hundreds or even thousands of variables, to process the data contained in
those variables, and to take the best course of action following a variety of
different algorithms and decision procedures. In one word, our systems are
now Cyber-Physical. As such, they are constantly monitoring their environ-
ment, analyzing their own status, and acting accordingly.

Cyber-Physical Systems (CPSs) monitor their environment using sensors to
detect changes in the surrounding conditions. Clear and accurate assessment
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of the environmental variables is crucial for the software decision processes
and control algorithms to work properly. Environmental conditions may
influence the state of the system, prompting changes in the set of variables
that describe its behavior. These changes can act as disturbances and very
well affect the performance of the system. That is why CPSs analyze their
status, gathering and interpreting pieces of information about the conditions
of their components, their performances, and their eventual malfunctioning
and fail-states.

One example of CPSs is our case-study (see Chapter 4), a satellite developed
by the european space-system contractor LuxSpace [7]. Satellites usually rely
on a set of magnetometers to monitor the status of the magnetic field which
changes as they move on their orbits. Earth’s magnetic field changes over
time, interacting with the solar wind, a stream of charged particles generated
by the Sun and can cause disturbances to various functions of the machine,
for example, communications. For a system as complex and isolated as a
satellite, the ability to collect critical pieces of information about its state,
act on them when needed, and relay them to ground is extremely important.
For example, it needs to monitor the light exposure on its solar panels to
ensure they provide enough energy to sufficiently charge the batteries to
keep working when passing into Earth’s shadow. Solar trackers orient the
panels to the most convenient position, acting on inputs from autonomous
subsystems that follow optimized procedures.

Therefore, CPSs must be able to act autonomously, influencing themselves
and the environment in which they are deployed using actuators, that enable
decision taken by software components to reflect on the physical domain. The
attitude control on the satellite from our case study uses reaction wheels to
act on the position and orientation of the vessel, causing changes in the
values of various environmental variables depending on them such as the
magnetic field. Another, more subtle but equally important way for CPSs
to interact with their environment is by exchanging information with other
systems and with operators.

This monitor-analyze-act cycle creates a system in which the software and
its physical environment are deeply intertwined and subjected to feedback
loop dynamics that may be very difficult to fully comprehend. Moreover,
to analyze CPS systems, engineers need to rely on very different formalisms
to describe the software and the physical components. Software components
are usually executed with a certain frequency and their behavior is regulated
by a clock and captured by discrete sequences of events, such as the one pro-
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duced by finite state machines. Differently, physical variables are subjected
to a continuous evolution, which is better captured by mathematical for-
malisms like differential equations. CPSs, combining both continuous and
discrete aspects into their structure, exhibit hybrid dynamics. This adds
another layer of difficulty to the challenge of predicting and verifying the
correctness of their behaviour. However, cyber-physical systems are often
deployed in situations where safety and reliability are critical which makes
developing techniques to enable the rigorous analysis of these types of sys-
tems of paramount importance.

This thesis was conducted in collaboration with the Interdisciplinary Centre
for Security, Reliability, and Trust [56] (SnT) of the University of Luxem-
bourg [55] and LuxSpace [7], a European space systems contractor based in
Luxembourg. Specifically, this thesis was developed within the context of
the H2020-EU project “Testing the Untestable: Model Testing of Complex
Software-Intensive Systems” [3] (TUNE). The TUNE project aims at devel-
oping Verification and Validation (V&V) techniques for software-intensive
systems. Specifically, it aims at proposing novel test solutions for systems
that are untestable [29], meaning that traditional testing methods are highly
expensive, time-consuming, or infeasible. The main goal of TUNE is to en-
able, propose, and develop scalable, solutions for test automation. The final
goal is shifting towards well-defined engineering approaches with the intent
of bringing early and cost-effective automation to the testing of many critical
systems.

TUNE aims at supporting a large spectrum of testing activities. It includes
the development of schedulability analysis for real-time systems [54], proce-
dures to automatically derive the assumptions under which software com-
ponents work properly [44], approaches to enable an efficient model-based
simulation of satellite systems [69], and solutions to reduce the manual effort
required by automating the generation of test cases from requirements speci-
fications [71]. This thesis was conducted within the project “Trace-Checking
CPS Properties”.

1.2 Research Problem

Engineers collect traces (i.e., logs) describing the behavior of a CPS both
when the CPS is simulated and, using instrumentation and logging mecha-
nisms, also during the actual execution of its tasks. A trace is a sequence
of records that contain some information about the execution (or the simu-
lation) of the various components of the system (e.g., the state of the sys-
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tem variables). Trace records are usually labeled with time-stamps repre-
senting the time instants at which the recorded information was obtained.
These traces are analyzed to check whether they conform to the system’s
requirements specifications; this activity can be automated by employing
trace-checking tools. Specification-driven trace-checking tools usually take
as input a trace to be analyzed and a requirement specification; they yield
a boolean verdict indicating whether the trace satisfies the specification.
The algorithms implemented by trace-checking tools are typically language-
specific.

Problem 1.

In the context of trace checking, there exist two main categories of languages
used for specifying CPS requirements: time-based and sequence-based lan-
guages. However, CPSs asks for more expressive languages able to express
properties that are related both to the cyber and the physical components.

Time-based languages used within run time-verification frameworks (e.g.,
Signal Temporal Logic [57], Restricted Signals First-Order Logic [58], Signal
First Order Logic [17], and SB-TemPsy-DSL [27]) interpret the records of the
cyber and physical components as signals over a time domain. Specifications,
written in a time-based language, express time relations over the occurrence
of events. Such languages are suitable to express CPS requirements related to
physical quantities; an example of such requirement is P1: “between 2 s and
10 s (measured starting from the origin of the trace) the speed of the satellite
is lower than 10m/s”. However, (usually) time-based languages are not easily
amenable to specifying requirements related to software components by users
with a limited background on temporal logic. As an example, let us consider
the requirement P2: “whenever the satellite changes its mode from safe to
normal, the speed of the satellite decreases”. To express the first part of this
requirement (marked in italics), one should specify that 1) in the trace there
are two consecutive records; 2) the first record captures that the satellite is in
“safe mode”; and 3) the second record captures that the satellite is in “normal
mode”. This requirement cannot be easily expressed in time-based languages
since they cannot specify the first condition, i.e., that a record immediately
follows another one in the trace. Indeed, expressing such a condition requires
the specification language to provide access to the indices (i.e., positions in
the trace) of the different records.

On the other hand, in sequence-based languages—such as Linear Temporal
Logic [37] (and domain-specific languages based on one of its extensions, like
the one used for the SpeAR tool [42], fretish [46], and CoCoSpec [30])—
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traces are sequences of consecutive records, whose temporal model is rep-
resented by the sequence of discrete indices of the records. This class of
languages interprets the records of the CPS software and physical compo-
nents as discrete-time signals. Specifications in these languages constrain
the indices in which events can occur; such specifications are used to express
properties that mostly refer to the CPS software components, such as the
first part of the aforementioned P2 property. However, these languages can-
not express time relations over the occurrence of events, such as “the satellite
angular rate shall reach a value lower than 1.5 °/s within 10 s”.

A third class of specification languages is hybrid languages (e.g., STL-MX [41],
HyLTL [28], HRELTL [31], Differential Dynamic Logic [63], Hybrid Tem-
poral Logic [52]), which supports the specification of both continuous and
discrete behaviors. However, these languages typically extend existing lan-
guages (e.g., LTL) to support the specification of hybrid behaviors in specific
contexts (e.g., using signal derivatives). Therefore, they provide ad-hoc so-
lutions that inherit some of the intrinsic limitations of the base language,
thus hindering the expressiveness of the resulting hybrid language. For ex-
ample, a hybrid language based on LTL cannot support metric operators to
constrain the time distance between events.

Since Cyber-physical systems combine cyber and physical characteristics [64],
trace-checking tools should support languages that allow engineers to express
properties that refer to both the cyber and the physical components.

Problem 2.

We define a trace as the recording of a set of variables that describe the
behaviour of a system, or the model of said system, during a single run.
In the case of complex Cyber-Physical Systems, it could mean following
the evolution of hundreds of variables representing both software states and
physical quantities, sometimes for extended periods. Therefore, manually
checking if a trace representing the behaviour of the system under observation
satisfies a requirement of interest would be an extremely time-consuming
endeavour, and prone to many errors.

Automated trace-checking procedures are developed to reduce the time and
effort requested for this kind of procedure while increasing their reliability.
To perform a trace-checking procedure, once the requirement has been ar-
ticulated in a sufficiently expressive specification language and a trace of the
system has been obtained, they need to be checked against each other to de-
termine if the trace respects the requirement through a method that ideally
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must be as efficient and as robust as possible to be of practical use.

Typically, there is a trade-off between the expressiveness of the specification
language and the efficiency of the trace-checking procedure; consequently,
there is a delicate balance to strike between the expressive power of the
specification language and the immediacy of the response, and this is one
of the main challenges to face when designing a trace-checking approach for
industrial use.

Since their purpose is reducing the time and effort required to analyze the
behavior of complex CPS, trace-checking tools should support automated
procedures that guarantee reliable results without being excessively resource-
intensive and time-consuming.

1.3 Contribution of the Thesis

The contribution of this work is an automated trace-checking tool for CPS.
This thesis solves the problems identified in Section 1.2 as follows.

• We present the Hybrid Logic of Signals (HLS). HLS is a new speci-
fication language tailored to specifying CPS requirements. HLS allows
engineers to express CPS requirements as properties (i.e., specifica-
tions) referring both to the time-stamps and the indices of the records
of CPS traces. In this way, HLS specifications can easily express the
behavior of both cyber and physical components, as well as their in-
teractions, exploiting the indices to express changes of state and the
timestamps for describing the continuous aspects of the system.

• We present ThEodorE (Logic-based TracE checkEr for HLS),
an efficient trace-checking approach for properties expressed in HLS.
ThEodorE reduces the problem of checking an HLS property on a trace
to a satisfiability problem, which can be solved using off-the-shelf Sat-
isfiability Modulo Theories (SMT) solvers. The latter have efficient
decision procedures for several background theories, thus making it
possible to check whether the requirements expressed over the execu-
tion traces are satisfiable in the light of sound and time-proven math-
ematical and logical paradigms.

The thesis was evaluated using an industrial case study in the satellite do-
main, in collaboration with the engineers who developed the satellite’s on-
board system. We evaluated the support provided by the ThEodorE trace-
checker by assessing its applicability on 20 large traces provided by LuxSpace
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and obtained by simulating the behaviour of the satellite across different sce-
narios, representative of its working conditions.

• We assessed the expressiveness of HLS by checking whether it could
express the 212 requirements of our case study that were directly de-
rived from LuxSpace’s technical documentation. Our results show that
HLS could fully express all these requirements. We also compared HLS
with SB-TemPsy-DSL [27] and STL [57], two specification languages
proposed in the literature, and for which trace-checking tools are avail-
able. The results show that HLS is significantly more expressive than
SB-TemPsy-DSL and STL, which could only express 145 and 102 re-
quirements, respectively.

• We evaluated the trace-checking support provided by ThEodorE by
assessing its applicability on 20 large traces provided by our indus-
trial partner, LuxSpace, and obtained by simulating the behavior of
the satellite across representative, different scenarios. We ran the
ThEodorE trace-checker on 747 trace- requirement combinations. The
ThEodorE trace-checker completed the verification in 74.5% of the
cases within one hour, a reasonable time-out considering typical CPS
development contexts. ThEodorE yielded a verdict for 67.9% of the 337
trace-requirement combinations containing a requirement that cannot
be verified by any of the other trace-checkers. We compared the appli-
cability of ThEodorE with SB-TemPsy-Check [27] and Breach [35],
for the trace-requirement combinations containing requirements ex-
pressible in SB-TemPsy-DSL and STL. For these combinations, SB-
TemPsy-Check and Breach were 21.9% and 4.9% more often applica-
ble than ThEodorE, respectively. SB- TemPsy-Check and Breach were
also more efficient, but not to a point where it had practical implica-
tions.

Our results show that ThEodorE is broadly applicable as it allows engineers
to specify a large variety of requirements while providing an efficient trace-
checking procedure.

1.4 Structure of the Thesis

This thesis is organized as follows:

• Chapter 2: Background. It describes background concepts and no-
tations necessary to understand this work. We provide a high-level de-
scription of specification-driven trace-checking. We introduced Xtext,
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the tool used to implement the specification language of ThEodorE and
describe some of its features. We present Satisfiability Modulo Theory
(SMT), a decision problem for logical formulas that allow considering
theories including classical first-order logic.

• Chapter 3: State of the Art. It reports on related work. It presents
1. Alternative languages that allow engineers to specify the require-
ments of interest. We discuss how these languages express the proper-
ties of CPS, and why we decided to introduce a new language. 2. Al-
ternative trace-checking tools that allow engineers to check whether
a trace is compliant with its requirements. We discuss the design of
alternative trace-checking tools proposed in the literature. We discuss
how these tools solved the trace-checking problem.

• Chapter 4: Case Study. It presents our case study: a maritime
satellite designed to collect tracking information from vessels operating
on Earth and to relay those data to the ground. We show a fragment of
an execution trace from our case study and an exemplar requirement.
Finally, we show the limitations of current languages and motivate
the need for an expressive language for specifying hybrid behaviors of
CPSs.

• Chapter 5: Hybrid Logic of Signals. It first introduces a dis-
cussion on the design goals of the language. Then, the mathemati-
cal model of the traces considered in this work is defined. Finally, it
presents the syntax and the semantics of the Hybrid Logic of Signals,
the language we introduced.

• Chapter 6: Theodore. It introduces ThEodorE, a trace-checker
for HLS that will be described and analyzed from a theoretical point
of view. We show how ThEodorE reduces the problem of checking
an HLS property on a trace to a satisfiability problem, which can be
solved using off-the-shelf SMT solvers.

• Chapter 7: Implementation. It provides a general overview of the
main components of ThEodorE. It describes how ThEodorE’s gram-
mar was written using Eclipse Xtext and how a code generator was
implemented to perform the translation of the traces and their relative
properties to Satisfiability Modulo Theory using Xtend, a Java dialect
developed to be used in tandem with Xtext.

• Chapter 8: Evaluation. It reports on the evaluation of our contri-
butions. It evaluates the expressiveness of HLS, and compare it with
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state-of-the-art specification languages. Additionally, it evaluates the
applicability of the ThEodorE trace checker, and compare it to state-
of-the-art tools.

• Chapter 9: Conclusions. Summarizes our theoretical contributions
and our practical findings. We draw conclusions and briefly touch on
future works.
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Chapter 2

Background

This chapter aims to clarify and describe the concepts and tools necessary for
the comprehension of this thesis. First, we define the trace-checking problem
(Section 2.1). Then (Section 2.2), we give an overview of Xtext, the tool
used for developing ThEodorE. Finally, we describe Satisfiability Modulo
Theories and their role in the verification process performed by ThEodorEs
(Section 2.3).

2.1 Trace-Checking

Ensuring that a system behaves as expected in different environmental con-
ditionss is critical for Cyber-Physical Systems, which often tend to operate
autonomously, without constant human supervision, even on critical tasks.
However, due to the complexity of most of the systems in question and the
unpredictability of their surroundings, it is not reasonable nor feasible to
manually check the compliancy of every single part of them to its expected
standards, leading to the introduction of multiple kinds of automated anal-
ysis techniques

For the same reasons, even when using automated tools, it is nearly impos-
sible to explore all the possible scenarios, since they are, for all intents and
purposes, practically infinite. A common solution is to use lightweight tech-
niques to explore a finite set of use cases that provides good coverage on the
expected working conditions to which the system will be subjected.

Trace-checking is one of these techniques, belonging to the field of Runtime
Verification [21]. Runtime Verification is a verification approach that consists
of obtaining information from a system executing its task, extrapolating its
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behaviour, and checking if it satisfies or violates certain properties, expressed
through some kind of formal specifications.

It can be applied to both software systems and hardware systems, as long
as an execution trace is available, and more recently it has also been applied
to CPS and hybrid systems in general [20, 27, 58, 35, 61, 16]. It can also be
applied to the model of a given system, for example, a Simulink® file, which
is very useful during model-based design processes.

A trace is an ordered sequence of records that contains information about
the state of the system during a period of activity. In the case of CPSs,
it is often composed of multiple records following the evolution of different
variables during the execution time. These variables may belong to a physical
part of the system or to a software component and their behaviour can be
vastly different even in the context of the same system. Some of them may
present discontinuous changes of state and others may be characterized by
continuous evolution, depending on the nature of the component from which
they originated, being it cybernetic or physical.

In property-driven trace checking, the formal requirements to verify over
the traces can be expressed in different ways, such as regular expressions,
state machines, and, most commonly for CPSs and hybrid systems, logical
propositions.

Most of the logical languages employed for this kind of formalizations have
their roots in temporal logic [21]. Linear Temporal Logic, for example, was
one of the first logics adopted for formal verification of software systems,
in 1977 [66]. Some of its extensions are specifically targeted at CPSs and
hybrid systems (see Chapter 3)

Properties and traces are then interpreted, put together, and compared by
software tools with a variety of methods to produce boolean verdicts over
the satisfaction of the requisites under scrutiny.

While it does not produce a comprehensive analysis of the system and all
its failure states, trace checking can be a valuable tool to verify if critical
requirements are respected in a range of plausible scenarios and to identify
the causes of failure states by analyzing which properties were violated and
which variables did not conform to the expected behavior.
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2.2 Xtext

The HLS specification language is the core of ThEodorE, our trace-checking
tool, where was used as a base for a domain-specific language focused on ex-
pressing logical requirements and verifying their satisfiability over the traces
produced by Cyber-Physical Systems.

A Domain-Specific Language (DSL) is a programming language dedicated
to a particular application, in opposition to a General Purpose Language,
which can be used across multiple domains. The advantage of a DSL is often
its ease of use; these languages are accessible also to users that do not have
extensive programming skills because they are very lean and focused, with
a smaller number of keywords and functions.

Xtext [11] is a framework for developing programming languages and domain-
specific languages. It is an open-source software maintained as part of the
Eclipse Project [43], specifically of the Eclipse Modeling Framework [48].
It is designed for easy integration with the Eclipse Integrated Development
Environment.

The first step in defining a DSL with Xtext is writing a grammar file with
the dedicated grammar language. The Xtext grammar language is itself a
DSL [12], designed to describe textual languages. It expresses the syntax
of the language and how it will be mapped to the semantic model by the
parser. Listing 2.1 is an example of a simple Xtext grammar file: the various
components of the language are described through the use of keywords and
Backus-Naur form [45] expressions.

The keywords of the language are simple strings defined by the DSL creator
so that a parser will use them as a guide to read and separate the code.

A parser is a software component that takes as input a string of text and
then builds a data structure, such as an Abstract Syntax Tree. Xtext auto-
matically generates a parser for the DSL under development using the rules
expressed in the grammar.

Listing 2.1 provides an example grammar specified using Xtext functions.

• Lines 2-3: The rule StudentBody specifies that StudentBody can con-
tain an arbitrary number of instances of the object Student stored in
the students feature.

• Lines 6-7: The rule Students specifies that a Students can be either a
BachelorStudent or a MasterStudent.
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• Lines 10-11: BachelorStudent is defined, with keyword ‘bachelor’ fol-
lowed by the feature name, which take as input the terminal rule ID.

• Lines 14-15: MasterStudent is defined much in the same way as Bach-
elorStudent, albeit with a different keyword.

Listing 2.1: A simple example of Xtext grammar

1

2 StudentBody:
3 (students+=Student)*;
4

5

6 Student:
7 BachelorStudent | MasterStudent;
8

9

10 BachelorStudent:
11 'bachelor' name=ID;
12

13

14 MasterStudent:
15 'master' name=ID;

The terminal rule ID is defined this way with regular expressions in the Xtext
documentation 2.2:

Listing 2.2: The terminal rule ID

1 terminal ID:
2 ('^')?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_

'|'0'..'9')*;

It says that a token ID starts with an optional “^” character, followed by
a letter or underscore followed by any number of letters, underscores, and
numbers.

Based on this grammar, the user can defined the code in Listing 2.3 defines:

1. a BachelorStudent with the feature name equal to JonhSmith

2. a MasterStudent with the feature name equal to JaneDoe

The objects are stored in the students feature of StudentBody, to be used by
an interpreter or, as in ThEodorE’s case, a code generator.
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Listing 2.3: An example of code to interpret

1 bachelor JonhSmith
2 master JaneDoe

Xtext has the feature to easily integrate a code generator thanks to Xtend [10],
a Java dialect designed for this purpose. ThEodorE code generator is actu-
ally a translator from HLs to the input language of Z3 Prover [33], a solver
for Satisfiability Modulo Theories formulas.

2.3 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is a deduction framework for checking
the satisfiability of first-order logic formulas. The satisfiability problem con-
sists of determining whether a logical formula admits a solution, also called
a model, that is compatible with its constraints.

In an SMT problem, the logical symbols that make up the structure of the
formulas are interpreted in the light of different background theories restrict-
ing their meaning. Such theories represent logical formalizations of a variety
of different topics, from linear arithmetics to arrays and data structures,
amongst others. In essence, a theory is a set of logical sentences that con-
straint the interpretation of symbols in a formula.

Given a formula φ and a theory T , if T∪{φ} is satisfiable, then φ is satisfiable
modulo T , which means that is satisfiable in the context of the underlying
theory T .

For example, we can interpret the a + b = b + a equality as true in light
of the theory of linear arithmetics. Multiple theories can be applied to the
interpretation of a single formula if required by the content of the latter;
integrating different theories to make them work together is, in fact, one of
the challenges when designing automated solutions for this kind of problem.

SMT-LIB [2] is an initiative that promotes and maintains a library of SMT
background theories and their description, in addition to developing and
promoting the standard input/output language for SMT solvers, the SMT-
LIB Standard [18]. Many such solvers exist to check SMT problems and there
is even an annual competition SMT-COMP [1] promoting their development.

ThEodorE was designed to reduce the problem of checking logical properties
over CPS traces to an SMT problem. This approach has the merit of being
able to choose amongst different SMT compatible solvers and take advantage
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of the continuous improvement in the field. As mentioned in Section 2.2, the
solver chosen for this thesis is Z3 Theorem Prover [33], which was developed
by Microsoft Research.
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Chapter 3

State of the Art

In this chapter, we will analyze the contributions relative to the state of
the art and highlight the similarities and differences with respect to our
work. First, we present alternative specification languages that can be used
to express properties of CPSs (Section 3.1). Then, we describe alternative
trace-checking tools and compare them with ThEodorE (Section 3.2).

3.1 Specification Languages

A significant amount of work has been done by the software engineering and
formal methods communities to develop logic-based languages for support-
ing the specification of the properties of systems. This section provides an
overview of existing specification languages and summarizes their benefits
and limitations.

Time-based Languages

Our work is focused on languages that allow specifying how signals should
change over time. Signal-based logic languages are a subset of time-based
languages proposed in the literature to specify properties on signal behaviors
that change over time.

• Signal Temporal Logic (STL) [57]. STL represents signals as functions
from real time points to values. This logic admits predicates over the
signals’ values, for example G[0,10](s1 > 0), specifies that within the
time interval [0, 10] “globally”, the value of the signal s1 is grater than
ten. Since the properties are defined over dense time, STL lacks the
“next” temporal operator.
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• Mixed Time Signal Temporal Logic (STL-MX) [41] extends STL to
define properties both on discrete-time and on dense time. The lan-
guage includes two layers, one based on LTL to express properties of
discrete-time Boolean signals (sampled at a fixed sample rate), and
another one based on STL, to express properties on dense-time real-
valued signals. Time mapping operators define the conversion between
dense-time and discrete-time signals and formulae. Compared to HLS,
STL-MX restricts discrete-time Boolean signals to be sampled at a
fixed sample rate and lacks first-order quantifiers on variable values.

• Restricted Signals First-Order Logic (RFOL) [58] is an extension of
STL that enables to use of absolute bounds and arithmetic operators
to define the boundaries of the intervals of the temporal operators.
Similar to STL, it lacks the “next” temporal operator.

• Signal First Order logic (SFO) [17] is an extension of first order logic
with continuous signal variables. Similarly to STL and RFOL, it rep-
resents signals as functions from real time points to values. Therefore,
it does not allow to use universal and existential quantifiers on index
variables, and can not express the “next” temporal operator.

• SB-TemPsy-DSL [27] is a pattern-based logic language that allows the
specification of signal-based temporal properties covering the most fre-
quent requirement types in CPS domains. It was defined in collabora-
tion with engineers from the CPS field and supports the specification
of recurrent and common types of signal-based temporal properties,
identified in a taxonomy [26].

There are many other time-based languages in the literature. However, these
logics are not explicitly tailored for specifying signal-based properties. A par-
tial listing of would include Metric Temporal Logic (MTL) [53], an extension
of temporal logic that integrates the classical until, next, since and previous
temporal operators with time-constraints, and SOLOIST [24] a specification
language for formalizing the interactions of service compositions.

Sequence-based Languages

In sequence-based languages traces are represent as sequences of consecu-
tive records, whose temporal model is based on the sequence of discrete
indices of the records. This class of languages interprets the records of the
CPS software and physical components as discrete-time signals. A subset of
sequence-based languages related to our work is reported in the following:
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• Linear Temporal Logic (LTL) [37] is a modal temporal logic with
modalities referring to time. LTL enables users to specify properties
using the temporal operators (e.g., “globally”, “eventually”, “release”,
“until”, “release”). However, this logic does not possess an “explicit no-
tion” of time that can be used to specify the properties of interest.
For example, it is not possible to specify that within the time interval
[0, 10] the value of the signal s1 is greater than ten.

• SpeAR [42] is a tool that allows capturing and analyzing requirements
in a domain-specific language designed to read like natural language.
The language is built on the top of LTL, and its formal semantics is
specified using Past LTL.

• fretish [46] is a structured natural language for specifying proper-
ties of Cyber-Physical Systems. fretish provides different constructs,
such as scope, condition, timing, and response operators. The seman-
tics of fretish is defined by relying on its equivalence with LTL.

• CoCoSpec [30] is an assume-guarantee-based contract language for em-
bedded systems. It is an extension of the Lustre [49] language. It
enables the specification of properties using past linear temporal logic
(pLTL).

• Pattern bAsed Mission specifier (PsALM) [60, 59] is a pattern-based
domain-specific language tailored for the specification of robotic mis-
sions. Similarly to other languages, it is based on LTL.

Hybrid Languages

Different works have tackled the challenge to express hybrid properties by
extending the LTL logic, which presents a discrete concept of time, to be able
to handle continuous variables and signals. Some of them are also supported
by trace checking procedures and tools.

• HyLTL [28], extends LTL to with flow constraints. Flow constraints
are conditions specified by us inequalities between arithmetic expres-
sions among the value of the variables of the system. They enable the
users to define sets of valuations, sets of trajectories, and jump rela-
tions. A property expressed in HyLTL can be converted to a hybrid
automaton and then verified on the trace using a composition between
the translated property (negated) and the automaton representing the
system.
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• RELTL [31], extends LTL with regular expressions. It expresses con-
straints on discrete and continuous behaviors by expressing constraints
over, respectively, instantaneous transitions and derivatives. Being
based on LTL, it does not support metric operators to constrain the
time distance between events. Moreover, using the derivatives of the
variables to specify hybrid behavior limits HRELTL’s usefulness to spe-
cific contexts, and only a subset of HRELTL is the object of automated
verification procedures.

• Differential Dynamic Logic [63] uses differential expression to repre-
sent continuous evolutions. It differs from HLS since it is designed
for specifying properties of systems expressed using the hybrid sys-
tem [15] modeling formalism. As such, its modal operators enable
references to the states that are reachable after firing the transitions of
the hybrid system model. An automated tool [65]has been proposed
as a model checking theorem prover for hybrid systems based on DDL,
but it requires extensive knowledge of the model of the system. HLS
and ThEodorE, on the contrary, are optimized for trace-checking, a
different procedure that can be applied both on data produced by a
model and on data derived from the real system, with no additional
knowledge needed save from the requirement to verify.

• Constraint LTL over clocks (CLTLoc [23]) is a quantifier-free exten-
sion of LTL allowing variables behaving like clocks over real numbers.
Clocks on real numbers can be used to represent, time-based proper-
ties. However, CLTLoc does not allow users to quantify on real-value
variables.

• The SCR requirements model [51] (i.e., special tables that encode the
desired behavior of the system) was extended [50] to support hybrid
systems. It considers continuous variables and the specification of their
timing and accuracy requirements, by adding some timing information
to the events encoded within the SCR tables. As such, it cannot express
most of the properties in our case study. Furthermore, the language is
not supported by any trace-checking tool.

• Lola [32, 38] is a rule and stream-based specification language. It
enables the specification of properties that specify correct behavior,
and properties that specify statistical measures that allow profiling the
system that produces the input streams. Striver [47] is another general
language that allows to express other real-time monitoring languages.

22



3.2 Trace-checking Tools

In recent years, with the explosion in the complexity of the systems and
therefore in the quantity of data to analyze, the need for automated trace-
checking procedures has arisen. A large portion of these algorithms and tools
is based on expression languages such as HLS. In this section, we present a
subset of automated trace-checking tools developed for systems verification.
We referred to recent surveys [67, 20], for a complete description of existing
tools. In the following, we will briefly go over them.

• AMT 2.0 [61] is a tool for the analysis of hybrid signals with both
continuous and Boolean components, combining discrete events with
numerical values. The specifications are expressed in extended Signal
Temporal Logic (xSTL) an integration between Signal Temporal Logic
and Timed Regular Expressions.

• S-TaLiRo [16] is a trace-checking tool for Metric Temporal Logic (MTL)
properties, designed mainly to automatically produce inputs for and
analyze the output of non-linear hybrid systems modeled in Simulink/S-
tateflow (TM). The output traces of the model are ranked with a
robustness-based metric; a negative robustness score means that the
system trace falsified the property.

• The approach of reducing the trace-checking problem to the verifica-
tion of the satisfiability of a logical formula has been also used on
SOLOIST [25], which is an extension of Metric Temporal Logic, tai-
lored for service-based applications, through a field study on specifica-
tion patterns in the context of that field.

• SOCRaTes [58] is an automated generator of online test oracles for
CPS Simulink models with or without uncertainties. The oracles are
derived from requirements declared in Restricted Signals First-Order
Logic (RFOL), a fragment of Signal First Order logic, and are initial-
ized as Simulink® blocks, that can determine if the model has passed or
failed a given test. Although SOCRaTes is targeted at the same class
of system as ThEodorE, it is geared more towards online monitoring
of models than to trace-checking. This means that its specification
language, RFOL, is constrained to be less expressive than HLS due to
efficiency reasons.

• StreamLAB [39] is a monitoring framework for RTLola specifications.
StreamLAB performs a static analysis of the specification. It identifies
parts of the specification with unbounded memory consumption, and
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compute bounds for all other parts of the specification. It also includes
the computes the worst-case memory consumption of the specification.

• Striver [47] is another tool that supports run-time verification when
observations are described as output streams of data computed from
input streams of data.

• MonPoly [68, 22] is a monitoring tool for metric first-order temporal
logic (MFOTL). MFOTL can express complex dependencies between
data values coming from different events in the stream.

Out of all the tools we considered, we choose two, based on their significant
similarities with ThEodorE and their availability, to provide a benchmark
for its performances (Chapter 8). These approaches are described below:

• SB-TemPsy-Check [27] is a tool designed to verify SB-TemPsy-DSL,
designed to express Signal-based temporal properties (SBTPs), ex-
pressed with SBTPs are commonly used to characterize the behav-
ior of a system with input and output interpretable as signals over
time; amongst many DSL capable of expressing this kind of proper-
ties, SB-TemPsy distinguishes itself for supporting the specification of
important types of properties such as spikes or oscillations. The trace
checking procedure of SB-TemPsy-Check reduces the problem of check-
ing an SBTP over an execution trace to the problem of evaluating an
Object Constraint Language constraint on a model of the execution
trace. SB-TemPsy was one of the tools selected for evaluating the
expressiveness and efficiency of HLS and ThEodorE and while it rep-
resented a more efficient solution, SB-TemPsy-DSL proved itself to be
significantly less expressive than HLS.

• BREACH [34] is a Matlab/C++ toolbox designed for the analysis
of models, which was recently extended [35] with an algorithm that
assigns robustness values to the satisfaction or violation of an STL
formula by an execution trace. Based on the same language as S-
TaLiRo [16], but more efficient, BREACH was one of the tools selected
as benchmark for ThEodorE’s applicability.
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Chapter 4

Case Study

LuxSpace [7] developed, in collaboration with a large space agency, a mar-
itime satellite to collect tracking information from vessels operating on Earth
and to relay those data to the ground. This is a representative CPS made
of complex software component interacting with many actuators and sensors
and the physical environment where the satellite is to be deployed. This
system should satisfy many varied requirements regarding the behavior of
the software system itself but also its interactions with hardware and the
satellite physical dynamics in space. Its development relies on technologies
and practices typically seen in CPS contexts, e.g., Model-in-the-loop devel-
opment with Simulink®.

Software engineers check the compliance of the satellite behavior to its re-
quirements [9] both while the software is being developed and at run time.
This is done by

• collecting execution traces of the system, and

• checking whether those traces satisfy the system requirements.

This kind of work can be extremely time-consuming if done manually, due
to the vast amount of data involved, hence the need of automating the trace-
checking procedure.

Figure 4.1 shows a fragment of an execution trace, which we will use to
motivate this work. A trace is a sequence of records that contain some in-
formation about the execution of the system. In this example, the records
include data about the angular rate (ang-rate) and the (satellite) mode
(mode). The angular rate is a physical quantity represented by a real value
measured by sensors; this record represents a continuous dynamic. The mode
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ang-rate 20.1 22.2 23.3 20.4 21.1 3.2 1.1

mode 0 1 0 0 3 3 3

timestamp 0 0.2 0.9 1.8 3.0 4.9 5.7

index 0 1 2 3 4 5 6

Record r3

Figure 4.1: A fragment of an execution trace of our case study.

is an enumeration of values that represent the state of the satellite software:
their evolution in time is stricly discreet. There are four different modes:
“Idle Mode”, “Safe Spin Mode”, “Normal Mode Coarse”, and “Normal Mode
Fine”, which are represented in the trace by the values 0, 1, 2, and 3, respec-
tively. In addition, each record is associated with a timestamp, representing
the time instant at which the recorded information was obtained, and with
a progressive index value.

The requirements to be checked on the system traces refer both to the soft-
ware and to the physical dynamics of the satellite. For example, let us
consider requirement R1:

Whenever the satellite mode switches from “Idle Mode”
to “Normal Mode Fine” , the satellite angular rate shall reach
a value lower than 1.5 °/s within 10 s. Moreover, the angular
rate shall stabilize around an arbitrary value c lower than or
equal to 1.5 °/s.

R1 specifies a constraint on a physical quantity, i.e., the angular rate of
the satellite, which shall be ensured as a reaction to a software change, i.e.,
the satellite switching its mode from “Idle” to “Normal Mode Fine”. This
is a perfect example of how the software states and physical dynamics of
the satellite frequently influence one another, and must be taken both into
account when trying to correctly describe this kind of systems.

One way to express that the mode of the satellite switches from “Idle
Mode” to “Normal Mode Fine” , is to specify that the trace contains:

1. two records with consecutive indices;

2. the first record captures that the satellite is in “Idle Mode”;

3. the second record captures that the satellite is in “Normal Mode Fine”.
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This requirement cannot be expressed using time-based languages since they
do not provide access to the indices of the different records. To compen-
sate for this limitation when using time-based languages, engineers can
apply ad-hoc solutions, such as adding a new Boolean flag to the trace
records. In our example, such a flag would be true whenever the mode
of the satellite switches from “Idle Mode” to “Normal Mode Fine”. In this
way, the aforementioned requirement fragment would be rephrased as the
flag switch-from-IDLE-to-NORMAL-MODE-FINE is true. However, this is
impractical in real scenarios because:

1. The number of flags to add in the trace records can quickly grow and
become unmanageable. For example, given the four possible values for
the satellite mode in our case study, to consider all possible combi-
nations for switching satellite mode, engineers would need to add 16
values in each record (one for each mode switching combination).

2. The requirement is reformulated and its connection to the actual soft-
ware component behavior is lost, making the expression of the proper-
ties less clear and the results harder to interpret.

Furthermore, requirement R1 cannot be expressed using sequence-based lan-
guages because they do not support time relations over the occurrence of
events. More specifically, expressing that “the [. . . ] angular rate shall reach
[. . . ] within 10 s” requires to access the timestamps associated with the
trace records (and compute a distance). This feature is not provided by
sequence-based languages.

Moreover, to the best of our our knowledge, among the time-based and
sequence-based languages mentioned in the previous chapters, SFO [17] is the
only language that allows users to use quantified variables in specifications,
(as in “(there exist) an arbitrary value c lower than or equal to 1.5 °/s
around which [. . . ] shall stabilize”. This type of requirements is extremely
common in practical CPS applications, since engineers often want to check
that the system stabilizes around a given value (e.g., the steady-state value).
Although engineers know some properties of the steady-state value c (i.e., c
shall be lower than or equal to 1.5 °/s), they generally do not know its exact
value, which has to be indicated as a generic variable in the requirement
specification. This example, extracted from our case study, shows the need
for an expressive language for specifying hybrid behaviors of CPSs. In the
next chapter, we will introduce a new specification language for CPSs, which
overcomes the limitations—in terms of expressiveness—of state-of-the-art
languages and is supported by an effective trace-checking procedure.
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Chapter 5

Hybrid Logic of Signals

In this chapter, we indroduce the Hybrid Logic of Signals (HLS), a new spec-
ification language for CPS. We first explain the design goals of the language
(section 5.1). Then, we describe the mathematical model of the traces con-
sidered in this work (section 5.2). Finally, we explain the syntax (section 5.3)
and the semantics (section 5.4) of the language, and go over the grammar
for some additional contructs (section 5.5).

5.1 Design goals

HLS was conceived as a language for specifying CPS properties in a way
that would seamlessly merge the features of sequence-based and time-based
languages, to express with accuracy the hybrid behaviour of CPS. For this
reason, HLS extends existing time-based languages (e.g., STL [57], MTL [53],
RFOL [58], and SFO [17]) and sequence-based languages (e.g., LTL [37],
fretish [46], and CoCoSpec [30]) to allow to refer both to trace indices and
to timestamps in the logical specifications and to arbitrarily combine them
to define properties describing the behavior of a CPS. More specifically, HLS
allows engineers to use first-order existential and universal quantifiers with:

• timestamp variables, to declare properties referring to specific time
instants and to the interval between them, such as “there exists a time
instant t within 10 s from the current time instant [. . . ] ”;

• (trace) index variables, to declare properties that refer to the array-like
indices of trace records, such as “for every trace index i, such that the
corresponding record captures that the satellite is in “Idle Mode”, and
the immediately following record (at trace index i+1) captures that the
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satellite is in “Normal Mode Fine” [. . . ] ”;

• real-valued variables, to declare properties that refer to arbitrary signal
values, such as “there exists a value c lower than or equal to 1.5 °/s
around which the signal ang-rate shall stabilize”.

Moreover, HLS supports specifications including:

• the value of a signal at a certain timestamp or associated with a record
at a certain index ;

• the timestamp associated with the record at a certain index ;

• the index of the record with a certain timestamp;

• expressions including and combining time variables, trace indices, and
real-valued variables, using arithmetic and relational operators.

5.2 Traces

Let J = {0, 1, 2, . . . , j, . . . ,m}, with elements j ∈ N, be a set of indices.
Let T be an interval of R; T is then defined as a time domain. Let S =

{s1, s2, . . . , si, . . . , sn} be a set of variables (hereafter called “signals”) of the
systems being monitored, with si ∈ R. A trace π is a finite sequence of
records r0, r1, . . . , rj , . . . , rm, with j ∈ J.

Each record rj is a tuple 〈j, t, v1, v2, . . . , vn〉, where j ∈ J is the index linked
with the record, t ∈ T is the timestamp at which the recorded informa-
tion was obtained, and v1, v2, . . . , vn ∈ R are the values relative to signals
s1, s2, . . . , sn in the record. For a trace π the array notation “[j]” stands for
the j-th record of π, and we use the dot notation to denote an element of a
record; we also introduce the notation tj , short for π[j].t for a given trace π.
For example, let πe be the fragment of the trace represented in Figure 4.1; it
is composed of seven records. Record r3 is denoted by πe[3]; it is defined by
the tuple 〈3, 1.8, 0, 20.4〉, where πe[3].t = t3 = 1.8 is the value of the times-
tamp, πe[3].mode = 0 is the value of signal mode, and πe[3].ang-rate = 20.4

is the value of signal ang-rate.

The values of the timestamps are monotonically increasing, i.e., tj < tj+1,
since records refer to consecutive timestamps. We say that a trace has a
fixed sample rate sr if, for every j, 0 ≤ j < m, tj+1 − tj = sr , where sr is a
constant value; otherwise, we say that the trace presents a variable sample
rate. For example, trace πe in Figure 4.1 has a variable sample rate.

30



Additionally, we define the function ιπ : T → J: given a timestamp value t,
ιπ(t) is the value of the index j of the record in π with the highest timestamp
tj such that tj <= t; the trace subscript will be omitted when it is clear from
the context. For example, for trace πe in Figure 4.1, ιπe(2.5) = 3. In this
work, we consider two definitions of ι:

ιV (t) ::= [t0 ≤ t] · [t < t1] · 0 + [t1 ≤ t] · [t < t2] · 1 +
. . . + [tm−1 ≤ t] · [t < tm] · (m− 1) + [tm = t] ·m

ιF (t) ::=

⌊
t

sr

⌋

Definition ιV (t) assumes that the trace shows a variable sample rate. Notice
that the notation [P ], where P is a logical predicate, is the Iverson bracket;
it evaluates to 1 if P is true, and to 0 otherwise. The resulting arithmetic
formula find where the timestamp t, provided in input, is situated w.r.t.
the timestamps of the trace (i.e., t0, t1, . . . , tm), and returns the value of the
index of the record that presents the highest timestamp smaller than or equal
to t. For example, if the value of t is greater than timestamp t2 and lower
than timestamp t3, the only expression in ιV (t) that does not evaluate to 0
is [t2 ≤ t] · [t < t3] · 2; therefore the index returned will be 2.

Definition ιF (t) is valid when the trace has a fixed sample rate. In such
a case, the index associated with a timestamp can be simply retrieved by
computing the floor of the ratio of the timestamp t over the sample rate sr .

All the variables are expected to be sampled at each timestamp. This is
a necessary requirement to permit the evaluation of the satisfaction of the
system requirements at each timestamp. For systems that do not sample all
the variables at each timestamp, pre-processing can be used to interpolate
the values to assign to variables for which the value is missing at certain
timestamps. In this work, we consider two parallel pre-processing strategies:

A1: In each record, an interpolation function (e.g., piece-wise constant, lin-
ear, cubic) specific to each signal, is used to produce values for unas-
signed variables. Notice that this strategy does not alter the original
sample rate of the trace, since it retains the same records as the origi-
nal trace and only generates (in each record) values for the unassigned
variables.

A2: If the trace has a variable sample rate, it is transformed into a trace
with a fixed sample rate. This is done by creating new records with a
fixed sample rate equal to the smallest sample rate (i.e., the minimum
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Term tm ::= tt | vt | it

Time Term tt ::= τ | t | i2t(it) | f(tt1, tt2)

Index Term it ::= σ | j | t2i(tt) | f(it1, it2)

Value Term vt ::= ρ | x | (s @i it) | (s @t tt) | f(vt1, vt2)

Formula p ::= tm1 < tm2 | not p | p1 or p2
| exists τ in IT such that p
| exists σ in IJsuch that p
| exists ρ such that p

t ∈ T, j ∈ J, x ∈ R, τ ∈ TV , σ ∈ SV , ρ ∈ RV , s ∈ S

Figure 5.1: Syntax of the Hybrid Logic of Signals.

time interval between two records) of the initial trace, and by using
the interpolation functions (as in the case of strategy A1) to generate
the values of all variables.

As we will address in Chapter 8, the strategy used to generate the values of
unassigned variables decides the accuracy of the trace. The latter impacts the
trace checking verdict and may affect the correctness of the trace-checking
procedure.

5.3 Syntax

We define an HLS formula according to the grammar in Figure 5.1, whose
start symbol is p. In the grammar, the symbol f is used to represent a generic
(binary) arithmetic function; the symbol | separates alternatives. In the
following, the various language constructs are explained. From now on, we
will refer to the set TV = {τ0, τ1, . . . } of timestamp variables over T, the set
IV = {σ0, σ1, . . . } of index variables over J, and the set RV = {ρ0, ρ1, . . . }
of real-valued variables over R.

• A term (non-terminal tm) can be either a time term, an index term, or
a value term.

• A time term (non-terminal tt) allows users to refer to timestamps in
the specifications. A time term may be a timestamp variable τ ∈ TV ,
a literal denoting a value t ∈ T, the value returned by the operator i2t,
or an arithmetic expression over these entities. The operator i2t(it)
takes an index term as argument and returns the timestamp associated
with the record at the (trace) index it. An example of time term is
the expression τ0 + 5.5 + i2t(2).
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• An index term (non-terminal it) is used to refer to trace indices in the
specifications. An index term can be an index variable σ ∈ IV , a literal
denoting a value j ∈ J, the value returned by the operator t2i, or an
arithmetic expression over these entities. The operator t2i(tt) takes
a time term as argument and returns the index j of the trace record
with timestamp tj , where tj is the highest timestamp value for which
tj ≤ tt. An example of index term is the expression σ0+2+ t2i(3.3).

• A value term (non-terminal vt) allows users to refer to real values (e.g.,
signal values) in the specifications. A value term can be a real-valued
variable ρ ∈ RV , a literal denoting a value x ∈ R, the value of a signal
returned by the operators @i (“at index”) and @t (“at timestamp”), or
an arithmetic expression over these entities.

1. The @i operator is an infix operator that takes two arguments:
a signal s and an index term it; it returns the value of signal s
associated with the record at the (trace) index it.

2. The @t operator is an infix operator that takes two arguments:
a signal s and a time term tt; it returns the value of signal s
associated with a record at timestamp tj , where tj is the highest
timestamp value in the trace for which tj ≤ tt.

An example of value term is the expression (s1@i2)+(s2@t3.3)+ρ0+5.2,
where s1 and s2 are signals, 2 is an index term, 3.3 is a time term, ρ0
is a real-valued variable, and 5.2 is a numeric literal.

• A formula (non-terminal p) is a relational expression over terms, a
logical expression over other formulae defined by Boolean connectives,
or an existentially quantified formula. As anticipated in section 5.1,
we design HLS to be able to support three types of quantification:

1. over timestamp variables, as in “exists τ in IT [. . . ]”, where IT
is a time range with bounds in T;

2. over index variables, as in “exists σ in IJ [. . . ]”, where IJ is a
range of index values with bounds in J;

3. over real-valued variables, as in “exists ρ [. . . ]”.

For example, the formula exists σ0 in [3, 5] such that (s1@iσ0) < 2.5

specifies that there exists a record with index greater than or equal to
3 and lower than or equal to 5, in which the value of signal s1 is less
than 2.5.
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We further extended the language with additional relational operators and
logical connectives (e.g., implication (implies), conjunction (and)), in ad-
dition to universal quantifiers (forall) on timestamp variables, index vari-
ables, and real-valued variables, using the standard logical conventions.

An application of HLS for the specification of one of the requirements in our
case study is presented in the following.

Let us consider a fragment of requirement R1:

Whenever the satellite mode switches
from “Idle Mode” to “Normal Mode Fine”,

the satellite angular rate shall reach
a value lower than 1.5 °/s within 10 s.

recalling that the satellite mode is represented by the signal mode, for which
value 0 corresponds to “Idle Mode” and value 3 corresponds to “Normal
Mode Fine”; also, the angular rate is represented by the signal ang-rate.
This fragment can be specified in HLS as:

forall σ0 in [0, 5] such that

((mode @i σ0) = 0 and (mode @i (σ0 + 1)) = 3)

implies exists τ0 in [0 s, 10 s] such that

(ang-rate @t (τ0 + i2t(σ0)) < 1.5))

The sub-formula ((mode @i σ0) = 0 and (mode @i (σ0 +1)) = 3) detects when
the satellite switches from “Idle Mode” to “Normal Mode Fine” over two
consecutive records (notice the use of the “at index” operator to refer to the
consecutive indices σ0 and σ0 + 1). This expression lies within the scope of
the outer universal quantifier, which iterates over a range of values for the
index variable σ0. This range depends on the length of the trace and the use
of σ0 in the formula. In this case, since the requirement states “whenever
[the satellite mode switches. . . ]”, in the specification the full length of the
trace fragment πe in Figure 4.1 has to be covered; its record index values
span from 0 to 6. We achieve this by setting the lower bound to zero and
the upper bound to five; in this way, the term mode @i (σ0 +1) always refers
to a record index of the example trace.

The inner quantification over the timestamp variable τ0 checks whether the
angular rate of the satellite reaches a value lower than 1.5 °/s in a 10 s time-
frame. More specifically, the expression (ang-rate @t (τ0 + i2t(σ0)) < 1.5)

represents the value of signal ang-rate at timestamp τ0 + i2t(σ0), where
τ0 is in the interval [0 s, 10 s], which corresponds to the distance of 10 s, and

34



Time Term Interpretation

JτKπ,µ = µTV (τ), for all τ ∈ TV ; JtKπ,µ = t, for all t ∈ T;
Ji2t(it)Kπ,µ = π[JitKπ,µ].t;

Jf(tt1, tt2)Kπ,µ = JfKπ,µ(Jtt1Kπ,µ, Jtt2Kπ,µ);

Index Term Interpretation

JσKπ,µ = µIV (σ), for all σ ∈ IV ; JjKπ,µ = j, for all j ∈ J;
Jt2i(tt)Kπ,µ = ιπ(JttKπ,µ);

Jf(it1, it2)Kπ,µ = JfKπ,µ(Jit1Kπ,µ, Jit2Kπ,µ);

Value Term Interpretation

JρKπ,µ = µRV (ρ), for all ρ ∈ RV ; JxKπ,µ = x, for all x ∈ R;
J(s @i it)Kπ,µ = π[JitKπ,µ].s; J(s @t tt)Kπ,µ = π[ιπ(JttKπ,µ)].s

Jf(vt1, vt2)Kπ,µ = JfKπ,µ(Jvt1Kπ,µ, Jvt2Kπ,µ);

Formula Satisfaction

(π, µ) |= tm1 < tm2 iff Jtm1Kπ,µ < Jtm2Kπ,µ
(π, µ) |= not p iff (π, µ) 6|= p
(π, µ) |= p1 or p2 iff (π, µ) |= p1 or (π, µ) |= p2
(π, µ) |= exists τ in IT iff (π, µ) |= p[τ ← tj ]

such that p for some tj ∈ IT
(π, µ) |= exists σ in IJ iff (π, µ) |= p[σ ← j]

such that p for some j ∈ IJ
(π, µ) |= exists ρ iff (π, µ) |= p[ρ← v]

such that p for some v ∈ R

Figure 5.2: Semantics of the Hybrid Logic of Signals.

i2t(σ0) is the timestamp at which the satellite switches from “Idle Mode” to
“Normal Mode Fine”, i.e., the timestamp associated with the record at index
σ0.

5.4 Semantics

To evaluate whether an HLS formula is true or false over a trace π, it must
first be defined how time, index, and value terms are interpreted and evalu-
ated.

Let µTV , µIV , µRV be variable assignments, respectively, for timestamp, in-
dex, and real-valued variables; for example, µTV is a mapping from a times-
tamp variable in TV to a value in T. Let µ denote, collectively, the family of
variable assignment functions µTV , µIV , µRV . A generic term tm is evaluated
on a trace π, using the variable assignment functions in µ, by means of an
interpretation function JtmKπ,µ.
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We represented the interpretation of HLS terms inductively at the top of
figure 5.2.

• For all three term types, the interpretation of a literal is the value
denoted by the literal itself;

• a variable is interpreted using the variable assignment function for the
corresponding type;

• an arithmetic expression defined using a function f is interpreted ap-
plying the interpretation of the function symbol f to the interpretation
of the corresponding arguments.

• The operators i2t, t2i, @i, and @t are interpreted according to the
informal semantics provided in the previous section.

The semantics of an HLS formula φ is defined over a trace π and a variable
assignment µ; the notation (π, µ) |= φ indicates that trace π satisfies formula
φ under variable assignment µ. The satisfiability relation of HLS formulae
is defined inductively at the bottom of figure 5.2.

• The formula tm1 < tm2 is satisfied if and only if (iff) the interpretation
of term tm1 is lower than the interpretation of term tm2.

• The semantics of the Boolean connectives or and not is the standard
one.

• A formula with an existential quantifier over a timestamp variable, of
the form exists τ in IT such that p, is satisfied iff there exists a
timestamp tj ∈ IT , such that when substituting timestamp tj for τ in
the formula p (denoted by p[τ ← tj ]), the resulting formula is satisfied.

• A formula with an existential quantifier over an index variable, of the
form exists σ in IJ such that p, is satisfied iff there exists an index
j ∈ IJ , such that when substituting index j for σ in the formula p
(denoted by p[σ ← j]), the resulting formula is satisfied.

• Finally, a formula with an existential quantifier over a real-valued vari-
able, of the form exists ρ such that p, is satisfied iff there exists
a value v ∈ R, such that, when substituted for ρ in the formula p
(denoted by p[ρ← v]), the formula is satisfied

.
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Spike
p ::= spike in interval IT and signal (s @i tt) with width ρ and amplitude ρ

Oscillation
p ::= oscillation in interval IT and signal (s @i tt) with p2pAmp ρ and period ρ

Rise
p ::= Signal (s @i tt) rises in interval IT reaching ρ

Rise
p ::= Signal (s @i tt) rises monotonically in interval IT reaching ρ

Fall
p ::= Signal (s @i tt) falls in interval IT reaching ρ

Monotonic Fall
p ::= Signal (s @i tt) falls monotonically in interval IT reaching ρ

Overshoot
p ::= Signal (s @i tt) overshoots in interval IT value ρ

Monotonic Overshoot
p ::= Signal (s @i tt) overshoots monotonically in interval IT value ρ

Undershoot
p ::= Signal (s @i tt) undershoots in interval IT value ρ

Monotonic Undershoot
p ::= Signal (s @i tt) undershoots monotonically in interval IT value ρ

τ ∈ TV , σ ∈ SV , ρ ∈ RV , s ∈ S

Figure 5.3: Additional construct representing common signal patterns

5.5 Additional Constructs

We extended the grammar in Figure 5.1 with additional constructs. These
constracts represent recurrent patterns for signal-based properties included
within the SB-TemPsy [27] language and identified in a recent taxonomy [26].
These constructs act as shortcuts to express properties, relative to the com-
mon behaviour of signals in industrial cases. They are automatically com-
piled into HLS specifications.

Figure 5.3 presents an overview of these patterns. These patterns are among
the most commonly employed to describe the properties of signal, and they
can be of major practical utility, especially when considering the behaviour
of physical variables. For example, the oscillation pattern allows designers
to easily express properties such that “The velocity of an object along one of
its axes shall oscillate with a maximum amplitude of 10m/s and a maximum
period of 30s”.
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Chapter 6

ThEodorE

In this chapter, we introduce ThEodorE, our trace checker for HLS. We
first provide a high-level overview of the trace-checking approach used by
ThEodorE (Section 6.1). ThEodorE reduces the problem of checking an HLS
property on a trace to a satisfiability problem, which can be handled using
off-the-shelf SMT solvers. Then, we present how the trace (Section 6.2) and
the property of interest (Section 6.3) are translated into the input language
of the SMT solvers. Finally, we describe how existing SMT solvers are reused
to solve the trace-checking problem (Section 6.4).

6.1 Trace Checking Approach

ThEodorE takes as input a property φ expressed in HSL and a trace π.
Figure 6.1 provides a high-level view of the components of ThEodorE and the
data flow among them: function t, function h, and the Satisfiability Checking
module. The ThEodorE trace-checking approach follows two steps:

• Step 1: ThEodorE automatically translates property φ and trace π
into formulae, expressed using a target logic L. This translation re-
lies on two translation functions t (for traces, see Section 6.2) and h

(for HSL formulae, see Section 6.3) and guarantees, given a variable
assignment µ, that

(π, µ) |= φ iff h(¬φ) ∧ t(π) is not satisfiable.

• Step 2: ThEodorE (Section 6.4) checks satisfiability of formula ψ ≡
h(¬φ) ∧ t(π), expressed in the target logic L using an SMT solver.
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Figure 6.1: ThEodorE: a trace checker for HLS.

The target logic L to be selected for trace checking of HSL properties in
ThEodorE shall fulfill two goals:

G1: being sufficiently expressive to encode the logic-based representation
of a trace π and the (semantics of an) HLS formula φ. This means
that it should include linear real arithmetic (to support real-valued
and timestamp terms), quantifiers (since HLS is a first-order logic),
and arrays (since a trace can be seen as an array of records).

G2: being supported by an efficient solver, so that the trace checking proce-
dure for HSL formulae can be completed within practical time limits.

We have identified the AUFLIRA (Closed linear formulae with free sort and
function symbols over one- and two-dimensional arrays of integer indices
and real values) fragment of the SMT-LIB (Satisfiability Modulo Theories
LIBrary) logic [19] as a suitable target logic for ThEodorE. The theories
used by AUFLIRA are identifiable through its name: A: arrays; UF: exten-
sion allowing free sort and function symbols; LIRA: linear integer and real
arithmetics. Furthermore, AUFLIRA does not restrict the formulae to be
quantifier-free. Based on the list of supported theories, AUFLIRA satisfies
G1. It also satisfies G2, since it is included in the SMT-LIB logic, whose
satisfiability can be verified using highly efficient and optimized solvers, as
shown in the annual SMT competition [72].

For simplicity, and to better reflect ThEodorE’s implementation, instead of
describing a translation from HLS to the SMT-LIB language [19], we will
present a translation from HLS to a specification expressed using the more
compact and high-level syntax provided by the Z3 Python API [13] (which
internally represents the specification in a form equivalent to the SMT-LIB
language). Function t translates a trace π into a logic formula expressed
using the target logic L.
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6.2 Translating a Trace into the Target Logic

The sequence of timestamps in π is translated creating an array variable t;
the type of the array indices (i.e., the domain of t) is Z, whereas the type of
the array values (i.e., the range of t) is R. Then, a series of constraints on
the values in t are enforced: the value of the array t at position i (denoted
by t[i]) is constrained to be equal to the value of the timestamp contained
in the record at index i of trace π.

Also, the translation procedure initializes an array variable for each signal
whose values are used in the expression of the requirement; the variable name
is obtained by concatenating v_ with the name of the signal. For each signal,
represented by an array variable, a series of constraints are asserted on the
values of the array: the value of the array in position i is constrained to be
equal to the value of the corresponding signal in the record at index i of
trace π.

For example, Listing 6.1 illustrates the translation in our target logic of the
trace depicted in Figure 4.1. Line 4 of Listing 6.1 declares the array variable
t. Line 8 forces the timestamp in position 6 to be equal to 5.7. Line 9
declares the array variable associated to the signal ang-rate. Line 10 sets
the value of the array variable v_ang-rate to be equal to 20.1 in position 0.

Listing 6.1: An excerpt of the formula generated for the trace depicted in Figure 4.1.

1

2 s=SolverFor(`AUFLIRA')
3 ...
4 t=Array(`t',IntSort(),RealSort());
5 s.add(t[0]==0)
6 s.add(t[1]==0.2)
7 ...
8 s.add(t[6]==5.7)
9 v_ang-rate=Array('ang-rate',IntSort(),RealSort());

10 s.add(v_ang-rate[0]==20.1)
11 s.add(v_ang-rate[1]==22.2)
12 ...
13 s.add(v_ang-rate[6]==1.1)
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6.3 Translating an HLS Formula into the Target
Logic

Function h translates an HSL statement into a formula expressed using the
target logic L.

Firstly, the translation declares a new variable for each timestamp, each
index, and each real-valued variable; the name of the new variable is created
by concatenating v_ with the name of the initial variable. The type of the
new variables is Real for timestamps and real-valued variables, and Int for
index variables.

Afterward, the translation recursively evaluates each node in the parse tree of
the input formula, commencing from the root node; each node is translated
using the rules presented in Figure 6.2.

The translation of time, index, and values term nodes are established as
follows.

• Nodes referring to HSL variables are translated into the corresponding
variables in the target logic formula.

• Literal nodes are mapped into literals in the target logic formula.

• Arithmetic expressions using a function f are translated by converting
the function symbol into the equivalent in the target language, and
then by applying it to the translation of its arguments.

• A time term node of the form i2t(it) is translated into an expression
that accesses the element of the array t in position h(it).

• An index term node of the form t2i(tt) is translated into the appli-
cation of the translation of function ι to h(tt).

• A value term of the form (s@iit) is translated into an expression that
retrieves the value of variable v_s at index h(it).

• A value term of the form (s@ttt) is translated into an expression that
retrieves the value of variable v_s at the index obtained through the
evaluation of h(ι)(h(tt)).

The translation of function ι provides solutions for both definitions presented
in section 5.2. It consists of a rewriting of the definition into the corrispond-
ing syntax of the target logic. it is important to mention that the size of the
arithmetic expression to compute h(ιV ) in the case of a variable sample rate
is linear in the length of the trace and the number of timestamp variables.

42



Time Term

h(τ) = v_τ , for all τ ∈ TV ;
h(t) = t, for all t ∈ T;
h(f(tt1, tt2)) = h(f)(h(tt1), h(tt2));
h(i2t(it)) = t[h(it)];

Index Term

h(σ) = v_σ, for all σ ∈ IV ;
h(j) = j, for all j ∈ J;
h(f(it1, it2)) = h(f)(h(it1), h(it2));
h(t2i(tt)) = h(ι)(h(tt));

Value Term

h(σ) = v_σ, for all σ ∈ RV ;
h(x) = x, for all x ∈ R;
h(f(vt1, vt2)) = h(f)(h(vt1), h(vt2))
h((s @i it)) = v_s[h(it)];
h((s @t tt)) = v_s[h(ι) (h (tt))];

Formula (with IT = [ta, tb] and IJ = [a, b])

h(tm1 < tm2) = h(tm1) < h(tm2);
h(p1 or p2) = Or(h(p1), h(p2));
h(not p) = Not(h(p));
h(exists τ in IT such that p) = Exists (v_τ, And (And (ta ≤ v_τ, v_τ ≤ tb) , h (p)))
h(exists σ in IJ such that p) = Exists (v_σ, And (And (a ≤ v_σ, v_σ ≤ b) , h (p)))
h(exists ρ such that p) = Exists(v_ρ, h(p))

Figure 6.2: Rules for translating HSL formulae into L.

Evaluating the impact of our translation and the selection of the definition
of function ι on the performance of the trace-checking procedure is part of
our evaluation.

The translation of HSL formulae is then basically their rewriting into the
equivalent syntax of the target logic, modulo the translation of the variables
and the sub-formulae. For example, an expression of the kind:

exists ρ such that p

is rewritten as

Exists(v_ρ, h(p))

where the target logic variable v_ρ corresponds to variable ρ in the HSL
formula, and h(p) is the translation of sub-formulae p.

For example, the encoding of the portion of requirement R1 introduced in
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Section 5.3, considering the function ι′ encoding for the variable sample-rate,
is presented in Listing 6.2 as translated in our target logic.

Listing 6.2: The formula generated for the fragment of requirement R1 presented in
Section 5.3.

1 v_$\sigma_0$=Int(`v_$\sigma_0$')
2 v_$\tau_0$=Real(`v_$\tau_0$')
3 s.add(Not(Exists(v_$\sigma_0$,
4 And(And(0 <= v_$\sigma_0$,v_$\sigma_0$ <= 5),
5 Not(Exists(v_$\tau_0$,
6 And(And(0 <= v_$\tau_0$ ,v_$\tau_0$ <= 10),
7 v_ang-rate[v_$\tau_0$ +
8 (((0 <= v_$\tau_0$ )*(v_$\tau_0$ <0.2))*0 +
9 (0.2 <= v_$\tau_0$)*(v_$\tau_0$ <0.9))*1 + $\ldots$ +

10 (5.7 <= v_$\tau_0$ )*6]
11 ) < 1.5))))))

6.4 Satisfiability Checking

We verify the satisfiability of the formula ψ = h(¬p) ∧ f(π). The formula
φ holds on the trace π, if the formula ψ is not satisfiable. Indeed, if ψ is
not satisfiable the assignments of the trace π do not make ¬p satisfiable.
Viceversa, if ψ is satisfiable it is possible to perform an assignment that
satisfies ¬p. Therefore, p does not hold on the trace π.

The final verdict yielded by ThEodorE can be “satisfied ”, “violated ” or “un-
known”; it is based on the answer of the solver. ThEodorE yields the defini-
tive verdicts “satisfied” or “violated” when the solver returns “UNSAT” or
“SAT”, indicating, respectively, that ψ is unsatisfiable or satisfiable. How-
ever, the solver may return an “UNKNOWN” answer, since the satisfiability
of the underlying target logic L is generally undecidable. In our case, this
indicates that no conclusion is drawn on the satisfiability of formula ψ, re-
sulting in an “unknown” verdict returned by ThEodorE. Assessing whether
this is a frequent case in practical applications is part of our evaluation
(Chapter 8).

ThEodorE ensures that (π, µ) |= φ iff h(¬φ) ∧ t(π) is not satisfiable. The
correctness of our procedure is based on two arguments:

(i) t translates the trace π into a set of array variables whose values are
set according to the values of the original trace, and
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(ii) h rewrites the HLS formula into the target logic without applying any
change (that could alter the semantics) to the structure of the formula.
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Chapter 7

Implementation

In this chapter, we describe the implementation of ThEodorE. First (Sec-
tion 7.1), we provide an overview of ThEodorE, its components, how they
were implemented, their inputs and their outputs. Then, we describe the
grammar of ThEodorE’s specification language (Section 7.2) and the code
generator that translates the requirements into an SMT instance (Section 7.3).
We describe some of the options provided by ThEodorE (Section 7.4) and
the structure of ThEodorE’s outputs (Section 7.5). Finally, we describe some
options provided by ThEodorE (Section 7.6).

7.1 Overview

An overview of ThEodorE is provided in Figure 7.1. ThEodorE consists of
three main components:

• A Domain-Specific Language (DSL) designed to express requirements
in Hybrid Logic of Signals. This language was developed with Xtext [11]
and it is defined by the grammar illustrated in Section 7.2. ThEodorE
provides a GUI that enables users to write their specifications using this
domain specific language. The GUI support provided by ThEodorE to
write specifications is represented within the blue squared box labelled
with (2) in Figure 7.1.

• A code generator developed in Xtend [10], a Java dialect created to be
used with Xtext. It translates the declared requirements from HSL to
the target Satisfiability Modulo Theories [2] logic and specify the val-
ues of every record of the signals contained in the traces into the same
SMT formula as their relative requirements. It uses a pre-processing
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algorithm for the system traces, also written in Xtend, that extracts
the relevant values from the raw traces and can convert them from
a variable-sample to a fixed-sample step if requested, interpolating
missing values when needed (see Section 7.4). The outputs of the
ThEodorE’ code generator are represented within the red squared box
labelled with (1) in Figure 7.1.

Figure 7.1: ThEodorE as a plugin installed on Eclipse

In practice, ThEodorE takes as inputs an “.hls” file written in the DSL (see
Subsection 7.6), and the execution traces of the systems in “.tsv” or “.csv”
format (more on their structure in Subsection 7.4). Its output is a Python [8]
executable file (see Section 7.5) for every trace-requirement couple. Every file
contains the expression of one requirement plus the relevant signals extrapo-
lated from the trace’s contents, declared in Z3py [14], the Python front-end
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of our chosen SMT compatible solver, Z3 [33], developed by Microsoft Re-
search.

ThEodorE was packaged into a plugin for the Eclipse IDE [43], a very popular
Java Integrated Development Environment, which was also used to write
most of the source-code of ThEodorE.

Once installed, ThEodorE’s interface will be that of a typical Eclipse editor,
complete with syntax highlighting for HLS, as shown in Figure 7.1.

To create a ThEodorE project, it is sufficient to initialize a generic project
on Eclipse and then create a file with the “.hls” extension inside the main
folder.

A more detailed description of the structure and functions of the aforemen-
tioned file format will follow, in subsection 7.6.

7.2 Grammar

The underlying structure of ThEodorE’s input files is described in the Xtext
grammar language, which is itself a DSL [12] used to define textual lan-
guages. Xtext automatically generates a parser for the grammar, that will
consume any “.hls” file and instantiate an Abstract Syntax Tree (AST) that
ThEodorE’s code generator (see Section 7.4) will translate into the target
logic.

In Xtext, a language is described through a series of parser rules and ter-
minal rules that act as instructions for the creation of a parse tree from
the consumed text. A terminal rule will produce a single terminal token,
a "leaf" in the tree, while a parser rule will act as a "node" that can be
followed by both terminal and non-terminal tokens. The parse tree is also
called "node model". The nodes of the tree, generated by the parser rules,
are the building template for the EObjects ?? that form the AST.

One of the way used by the parser to differentiate between the various rules
is the use of keywords, which are defined as reserved strings in the grammar.

In the following subsections, we will describe how the components of the
language and the structure of the relative file format are represented in Xtext.

7.2.1 File Structure and Saving Options

Listing 7.1: The Xtext grammar file of ThEodorE (Structure)
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1 grammar lu.svv.theodore.Hls with org.eclipse.xtext.common.
Terminals

2

3 generate hls "http://www.theodore.svv.lu/theodore"
4

5 Hls:
6

7 instructions=SavingInstructions
8 samplestep=SampleStep
9 requirements+=Requirement*

10 traces += Trace*
11 ;
12

13 SavingInstructions:
14 "Goal:" instructions=("save"|"generate")
15 ;
16

17 SampleStep:
18 s="Sample_Step:" sample=('variable'|'fixed-manual'|'fixed-

min')
19 ;

The first rule in the grammar, Hls, (Listing 7.1) defines the structure and
the components of the “.hls” file:

• One instance of the rule SavingInstructions, which describes the
language component used to specify whether to run the code-generator
or only edit is contained in the feature instructions;

• One instance of the rule SampleStep, that presents a similar structure,
but is linked to the preprocessing phase is contained in the feature
samplestep;

• An arbitrary number of (Requirement) rules are contained into requirements;

• An arbitrary number of traces (Trace) rules are contained into traces

The next lines describe the rules SavingInstructions and SampleStep: the
components that they define allow the user to express parameters concerning
the interpolation of the traces and the generated output file. More on their
function will be explained in Section 7.6.
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7.2.2 Traces and Requirements

Listing 7.2: The Xtext grammar file of ThEodorE (Trace objects)

1 Trace:
2 "Trace" name=ID filePath=STRING ('SampleStep=' sampleStep=

Value unit=('[h]'|'[min]'|'[s]'|'[ms]'|'[micros]'|'[
nanos]'))?

3 '{' ('Properties=' '{' requirementref+=[Requirement] (','
requirementref+=[Requirement])* '}')?'}'

4 ;

The structure of the rule Trace is shown in Listing 7.2. The language com-
ponent defined by this rule allows the user to specify the path of the trace
file and assign an arbitrary number of requirements to be verified on that
trace.

Listing 7.3: The Xtext grammar file of ThEodorE (Requirement object)

1 VariableDefinition returns Variable:
2 SampleVariable| TimeVariable | Signal |NumericVariable
3 ;
4

5

6 SampleVariable returns SimpleVariable:
7 'Index' {SampleVariable} name=ID ";"
8 ;
9

10 TimeVariable returns SimpleVariable:
11 'Timestamp' {TimeVariable} name=ID ";"
12 ;
13

14 NumericVariable returns SimpleVariable:
15 'Num' {NumericVariable} name=ID ";"
16 ;
17

18 Signal returns Variable:
19 'Signal' {Signal} name=ID ('Interpolation'

interpolationType=('Linear'|'Constant'))?";"
20 ;
21

22 Requirement:
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23 name=ID '::=' '{' variables+=VariableDefinition* ('
Requirement' '::=' notes=STRING ';')? (spec=
Specification)? '}'

24 ;
25

26 Specification returns Specification:
27 ('Specification' '::='expression=Expression ';')
28 ;

Listing 7.3 shows the structure of a Requirement rule. Requirement define
the language feature that contains the property to express and verify, plus
some ancillary components:

• The name feature, defined by the terminal rule ID allows the require-
ment to be univocally identified;

• An arbitrary number of VariableDefinition rules are assigned to the
feature variables;

• The notes feature, defined by the terminal rule STRING after the Requirement::=
keyword;

• The spec feature is defined by the Specification rule.

Specification is then defined as the keyword Specification::= followed
by the the feature spec that contains an Expression rule. Expression rules
define the proper HLS grammar operators.

7.2.3 Expressions

The rest of the grammar is dedicated to the definition as Xtext rules of all
the various logical and arithmetic operations that make up HLS. Everyone
of them, while differentiated by the various operators acting as keyword,
return the same rule type defined by the Expression label.

The rules describing logical expressions and first-order quantifiers are shown
in Listing 7.4. The logical operators share with the arithmetic operations a
binary structure, with a left-hand expression connected through an operator
to the right hand one, while the quantifiers present a more complex structure.

Listing 7.4: The Xtext grammar file of ThEodorE (Logical operators)

1 TimeQuantifier returns Expression: (
2 ({TimeQuantifier} op=("ForAll"|"Exists") 'Timestamp'

function=[Variable]
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3 ("In" bracketdown=("["|"(") lower=TimeTermPlusOrMinus ","
upper=TimeTermPlusOrMinus bracketup=("]"|")"))?

4 (":" suchthat=Expression)));
5

6 SampleQuantifier returns Expression: (
7 ({SampleQuantifier} op=("ForAll"|"Exists") 'Index' function

=[Variable]
8 ("In" bracketdown=("["|"(") lower=SampleTermPlusOrMinus ","

upper=SampleTermPlusOrMinus bracketup=("]"|")"))?
9 (":" suchthat=Expression)));

10

11 VariableQuantifier returns Expression: (
12 ({VariableQuantifier} op=("ForAll"|"Exists") 'Value'

function=[Variable]
13 ("In" bracketdown=("["|"(") lower=ValueTermPlusOrMinus ","

upper=ValueTermPlusOrMinus bracketup=("]"|")"))?
14 (":" suchthat=Expression)));
15

16 Implication returns Expression:
17 Or ({Implication.left=current} op=("->") right=Or)*;
18

19 Or returns Expression:
20 And ({Or.left=current} op=("Or") right=And)*
21 ;
22

23 And returns Expression:
24 Negation ({And.left=current} op=("And") right=Negation)*;
25

26 Negation returns Expression:
27 Primary | ({Neg} op="Not" '(' neg=Primary ')');
28

29 Primary returns Expression:
30 TermRelation | '(' Expression ')'
31 ;
32

33 TermRelation returns Expression:
34 Term {TermRelation.left=current} op=(">="|"<="|">"|"<" | "

=="|"!=")
35 right=Term
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Then rules describing the traditional arithmetic operations are defined over
the different types of terms defined by the HLS grammar (see Chapter 5):
time, sample, and value terms.

Listing 7.5 shows the defitions of the rules TimeTermPlusOrMinus and TimeTermMulOrDiv
as an example.

Listing 7.5: The Xtext grammar file of ThEodorE (Arithmetic operations)

1 TimeTermPlusOrMinus returns Expression:
2 TimeTermMulOrDiv (
3 {TimeTermPlusOrMinus.left=current} op=('+'|'-')
4 right=TimeTermMulOrDiv
5 )* ;
6

7

8 TimeTermMulOrDiv returns Expression:
9 TimeTermExponential (

10 {TimeTermMulOrDiv.left=current} op=('*'|'/')
11 right=TimeTermExponential
12 )*
13 ;

7.2.4 Singular Values

In this last section of the grammar (Listing 7.6), the terminal rules for the
numeric values are defined, completing the definition of the rules regarding
mathematical and logical operations.

Listing 7.6: The Xtext grammar file of ThEodorE (Numerals)

1 Value returns Expression:
2

3 'FinalIndex' {SampleTraceEnd}|
4 {IntNumber} value=INT (unit=('[h]'|'[min]'|'[s]'|'[ms]'|'[

micros]'|'nanos'))? |
5 {DoubleNumber} upper=INT '.' lower=INT (unit=('[h]'|'[min]'|'

[s]'|'[ms]'|'[micros]'|'nanos'))?|
6 {NegativeIntNumber} '(-' value=INT ')'(unit=('[h]'|'[min]'|'[

s]'|'[ms]'|'[micros]'|'nanos'))?|
7 {NegativeDoubleNumber}'(-' upper=INT '.' lower=INT ')'(unit=(

'[h]'|'[min]'|'[s]'|'[ms]'|'[micros]'|'nanos'))?|
8 'FinalTimestamp' {TimeTraceEnd}
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9 ;

7.3 Code Generator

ThEodorE’s code generator produces the Python code of the output file. As
specified in Section 7.1, we implemented the code generator using Xtend [10],
a Java dialect developed by Eclipse to be used in tandem with Xtext.

We used Python as a translation language to have access to Z3py [14] a more
readable front-end for the Z3 Solver [33]. We selected Z3 as SMT solver since
it is an award-winning [4, 6], industry-strength tool and it is also compatible
with AUFLIRA, the underlining logic chosen for the verification step (see
Chapter 6).

Some of the notable components of the code generator are:

• arithmethicRecursion: a function that translates the arithmetic ex-
pressions contained in the Specification of every Requirement to the
target logic: its output is a String that is appended to the output file.

• formulaRecursion: a function that translates the logic formulae con-
tained in the Specification of every Requirement to the target logic:
its output is a String that is appended to the output file.

• processfile: this function takes the pre-processed trace and writes
the code for the initialization of the arrays representing the signals.

arithmethicRecursion and formulaRecursion together form the imple-
mentation of function h (see Section 6.3), while processfile plays the role
of function t (see Section 6.2).

An example of the code generator functioning is observable in Listing 7.7,
which contains an excerpt of the function that handles the expressions shown
in Listing 7.5.

Listing 7.7: The arithmethicRecursion function from ThEodorE’s code generator

1 def String arithmethicRecursion(Expression expression) {
2 var text = ""
3 switch (expression) {
4 [...]
5

6 TimeTermMulOrDiv: {
7 val left = arithmethicRecursion(expression.left)
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8 val right = arithmethicRecursion(expression.right)
9 val op = expression.op

10 text += left + op + right
11 }
12

13 [...]
14

15 TimeTermPlusOrMinus: {
16 val left = arithmethicRecursion(expression.left)
17 val right = arithmethicRecursion(expression.right)
18 val op = expression.op
19 text += left + op + right
20 }
21

22 [...]
23 }
24 return text
25 }

This is a recursive function that takes as input an expression object form
the AST, extracts its features, translate them into strings of the target logic
code, and appends them to the text string that is then returned. It iterates
on both sides of every operator until the expressions are fully translated.
The function formulaRecursion shares the same structure.

The function processfile is a function that opens the “.csv” file containing
the preprocessed trace, saves the records for every signal into a list, and then
proceeds to declare the corresponding arrays in a string of Z3py compatible
code.

7.4 Trace Processing

The traces that ThEodorE accepts as inputs are written in the form of “.csv”
or “.tsv” files, The files with the “.tsv” format are structured as the one shown
in Listing 7.8. The “.tsv” and “.csv” formats were chosen due to being the
output format for the logs of the satellite from our case-study (Chapter 4).

For every timestamp, listed in the first line of every block, there is a tabular
structure with the name of the signal on the left and the respective value on
the right; a line is allocated for every name-value couple.
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To render the traces in a form that ThEodorE’code generator (see Sec-
tion 7.3) can efficiently translate to the target logic, the traces are put trough
a preprocessing phase in which:

• Only the signals that have been declared as variables for the current
requirement are selected, to keep the preprocessed trace and, conse-
quently, the executable file to a reasonable size.

• The trace can be converted to a fixed timestamp, if requested by the
user, to allow for more efficient property verification since the function
converting timestamps to index numbers and vice versa is less resource-
intensive (see Chapter 8). This is especially useful when the size of the
traces is particularly large.

• The values are rearranged in a more compact and simple structure and
stored on a “.csv” file.

• The timestamps are changed to reflect the number of microseconds
passed from the beginning of the trace recording.

Listing 7.8: Example of the structure of a "raw" trace

1

2 2020.102.11.39.01.521769
3 signal_1 0
4 signal_2 15
5 signal_3 100
6 signal_4 100
7

8 2020.102.13.39.02.753245
9 signal_1 0

10 signal_2 20
11 signal_3 100
12 signal_4 80
13

14 2020.102.18.39.02.753500
15 signal_1 0
16 signal_2 40
17 signal_3 100
18 signal_4 60
19

20 2020.102.19.00.02.753851
21 signal_1 1
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22 signal_2 20
23 signal_3 100
24 signal_4 40
25

26 2020.102.20.39.02.754041
27 signal_1 1
28 signal_2 35
29 signal_3 100
30 signal_4 30
31

32 2020.102.23.00.03.455142
33 signal_1 1
34 signal_2 25
35 signal_3 100
36 signal_4 20
37

38 2020.103.01.15.03.455384
39 signal_1 2
40 signal_2 30
41 signal_3 100
42 signal_4 5
43

44 2020.103.02.39.03.457201
45 signal_1 3
46 signal_2 40
47 signal_3 100
48 signal_4 5
49

50 2020.103.05.43.44.186342
51 signal_1 3
52 signal_2 0
53 signal_3 100
54 signal_4 5
55

56 2020.103.07.43.55.198743
57 signal_1 3
58 signal_2 0
59 signal_3 100
60 signal_4 5
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The trace represented in Listing 7.8 presents a total of ten timestamps,
recorded with a variable sample-step. This raw trace was fed to ThEodorE
to verify the property depicted in Listing 7.9, using the different options for
the header value Sample_Step (Listing 7.14). This particular requirement
was chosen to demonstrate an important detail of the preprocessing phase:
it presents two signals with two different Interpolation methods selected:
Constant and Linear.

Listing 7.9: Example of property

1

2 property_01::=
3 {
4 Signal signal_4 Interpolation Constant;
5 Signal signal_2 Interpolation Linear;
6 Index s;
7 Requirement::='signal 4 must always stay under the 1000

threshold and signal 2 must be greater than or equal to
-15.27';

8 Specification::=ForAll Index s In (0,FinalIndex): (signal_4
(@index s)<1000 And signal_2(@index s)>=(-15.27));

9 }

Figure 7.2 depicts the differences between the two methods:

• The Constant options are the most basic kind of interpolation and it
is based on keeping the value of the signal constant until a new record
comes along in the trace; this makes it more suited for signals from the
digital domain such as status changes.

• The Linear options, as the name suggests, fills the missing data points
with values taken from the hypothetical line connecting the two nearest
known records. It is a more accurate representation of the continuous
behavior of physical systems.

In the following sections, we will describe how a raw trace differs after being
preprocessed according to the different choices available to the user: variable
sample-step (Section 7.4.1), fixed sample-step using the shortest interval in
the original trace (Section 7.4.2), and fixed sample step selected by the user
(Section 7.4.2).

The trace shown in Listing 7.8 was fed to ThEodorE to demonstrate the
results of the pre-processing phase with a practical example.
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Figure 7.2: An example of Constant vs Linear Interpolation of the same trace.

7.4.1 Variable Sample-Step

In cases where is necessary to adhere as much as possible to the original
trace, the user may elicit to keep a variable sample step.

This solution is guaranteed to leave the processed trace with:

• The same amount of records as the original trace.

• The exact same values for every signal at every timestamp, without
interpolation unless the value of a signal is missing for one or more
timestamps.

The processed trace (Listing 7.10), as expected, presents the same number
of records and the same values as the original, with no signs of interpolation;
only Signal_2 and Signal_4 are contained in the trace since they were the
ones initialized in the property.

Listing 7.10: Trace after preprocessing mantaining the variable sample step of the raw
trace

1

2 0,signal_4,100.0,signal_2,15.0
3 7201232000,signal_4,100.0,signal_2,20.0
4 25201232000,signal_4,80.0,signal_2,40.0
5 26461232000,signal_4,60.0,signal_2,20.0
6 32401233000,signal_4,40.0,signal_2,35.0
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7 40861934000,signal_4,30.0,signal_2,25.0
8 48961934000,signal_4,20.0,signal_2,30.0
9 54001936000,signal_4,5.0,signal_2,40.0

10 65082665000,signal_4,5.0,signal_2,0.0
11 72293677000,signal_4,5.0,signal_2,0.0

When complete adherence to the original logs is not requested, the user may
opt to convert the trace to a fixed sample-step, which represents a more
efficient solution (see Chapter 8).

7.4.2 Fixed Sample-Step: Minimal

By selecting the fixed-min option, the user can choose to use the shortest
interval in the original trace as a fixed-sample step. The shortest interval
between records in the raw trace in Listing 7.8 was 1260000000 microsec-
onds (21 minutes). Although it tends to increase the number of records in
the trace, using fixed-min is a convenient solution to keep a high level of
detail on the processed trace, avoiding the risk of canceling particularly fast
dynamics. In this case, the number of records in the traces was increased
from 10 to 58.

Listing 7.11: Excerpt of the trace after pre-processing using as a fixed sample-step the
shortest interval of the raw trace

1

2 0,signal_4,100.0,signal_2,15.0
3 1260000000,signal_4,100.0,signal_2,15.874850303392531
4 2520000000,signal_4,100.0,signal_2,16.749700606785062
5 3780000000,signal_4,100.0,signal_2,17.624550910177593
6 5040000000,signal_4,100.0,signal_2,18.499401213570124
7

8 ...
9

10 60480000000,signal_4,5.0,signal_2,16.615025960837052
11 61740000000,signal_4,5.0,signal_2,12.066588759638467
12 63000000000,signal_4,5.0,signal_2,7.518151558439882
13 64260000000,signal_4,5.0,signal_2,2.969714357241294
14 65520000000,signal_4,5.0,signal_2,0.0
15 66780000000,signal_4,5.0,signal_2,0.0
16 68040000000,signal_4,5.0,signal_2,0.0
17 69300000000,signal_4,5.0,signal_2,0.0
18 70560000000,signal_4,5.0,signal_2,0.0
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19 71820000000,signal_4,5.0,signal_2,0.0
20 73080000000,signal_4,5.0,signal_2,0.0

For readability’s sake the full extent of the trace is not reported, but, in
Listing 7.11, the difference between the two interpolation strategies described
in Section 7.4 is evident when looking at the values of the two different
signals:

• signal_4 records were generated with Constant Interpolation. There
are long periods of constant values with abrupt changes from one value
to the next.

• signal_2 records were generated with Linear Interpolation, so the vari-
ations are more gradual and the trace rarely presents back to back
constant values, unless the signal is actually constant, for example in
the last part of the trace.

Fixed Sample-Step Manual

The trace shown in Listing 7.12 was interpolated with a manually adjusted
fixed sample-step of one hour. This option allows for flexibility in the level of
detail and in the number of records obtained after preprocessing. If interested
only in the slow dynamics of a process, for example, a longer sample step
might be useful in reducing the length of a particularly resource-intensive
trace to a more manageable size.

Listing 7.12: Trace after preprocessing using as a fixed sample-step 1 hour

1

2 0,signal_4,100.0,signal_2,15.0
3 3600000000,signal_4,100.0,signal_2,17.49957229540723
4 7200000000,signal_4,100.0,signal_2,19.99914459081446
5 10800000000,signal_4,80.0,signal_2,23.99863111111111
6 14400000000,signal_4,80.0,signal_2,27.99863111111111
7 18000000000,signal_4,80.0,signal_2,31.99863111111111
8 21600000000,signal_4,80.0,signal_2,35.99863111111111
9 25200000000,signal_4,80.0,signal_2,39.99863111111111

10 28800000000,signal_4,60.0,signal_2,-17.12330158730159
11 32400000000,signal_4,40.0,signal_2,34.996886364160545
12 36000000000,signal_4,30.0,signal_2,30.746490745861365
13 39600000000,signal_4,30.0,signal_2,26.491524165669013
14 43200000000,signal_4,20.0,signal_2,26.44325061728395
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15 46800000000,signal_4,20.0,signal_2,28.665472839506172
16 50400000000,signal_4,5.0,signal_2,32.853304423291895
17 54000000000,signal_4,5.0,signal_2,39.99615873168304
18 57600000000,signal_4,5.0,signal_2,27.011453849290962
19 61200000000,signal_4,5.0,signal_2,14.015918988723577
20 64800000000,signal_4,5.0,signal_2,1.0203841281561878
21 68400000000,signal_4,5.0,signal_2,0.0
22 72000000000,signal_4,5.0,signal_2,0.0
23 75600000000,signal_4,5.0,signal_2,0.0

7.5 Trace-Checking Procedure

For every trace-property couple, ThEodorE’s code generator produces an
executable file that, once run, verifies the assumptions made in the property
declaration against the values contained in the trace.

Listing 7.13 shows the output file for the property-trace couple represented
in Listing 7.9.

Listing 7.13: ThEodorE output file

1 from z3 import *
2 import time
3 def property_01():
4 start_time=time.time()
5 z3solver=Solver()
6

7 s=Int('s')
8

9 timestamps=Array('timestamps', RealSort(), IntSort())
10 signal_4=Array('signal_4', RealSort(), IntSort())
11 signal_2=Array('signal_2', RealSort(), IntSort())
12

13 z3solver.add(timestamps[ 0]==0)
14 z3solver.add(signal_4[0]==100.0)
15 z3solver.add(signal_2[0]==15.0)
16 z3solver.add(timestamps[ 1]==3600000000)
17 z3solver.add(signal_4[1]==100.0)
18 z3solver.add(signal_2[1]==17.49957229540723)
19

20 ...
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21

22 z3solver.add(timestamps[ 21]==75600000000)
23 z3solver.add(signal_4[21]==5.0)
24 z3solver.add(signal_2[21]==0.0)
25

26 interval_s=And(s>0, s<21)
27 conditions_s=And(signal_4[s]<1000, signal_2[s]>=-(15.27))
28 z3solver.add(Not(ForAll([s], Implies(interval_s,

conditions_s))))
29 status=z3solver.check()
30 print(status)
31

32 print("--- %s seconds ---" % (time.time() - start_time))
33 if status == sat:
34 print("REQUIREMENT VIOLATED")
35 return 0
36 if status == unsat:
37 print("REQUIREMENT SATISFIED")
38 return 1
39 else:
40 print("UNDECIDED")
41 return 2
42

43

44 if __name__ == "__main__":
45 property_01()

The proper verification script is contained in a function, which is defined
with the same name as the property to verify, and is composed as follows:

• The different variables involved in the expression of the property are
initialized in the first part of the script. Timestamp and Num variables
are initialized as real numbers, while Index variables are initialized as
natural numbers since they represent the indices of an array.

• The signals and the timestamps array are declared after the variables.
Then for every index of the array, the code generator writes an asser-
tion that declares the value of that specific record. Conflicts between
these assertions and the ones declared by the property are what usually
prompt Z3 to declare it unsatisfied.
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• The property itself is declared in the last section in the Z3py logic. It
is divided into different code snippets to increase legibility in the case
of complex properties.

To run the script is sufficient to have a machine with Python and the Z3py
library installed.

Figure 7.3: Running the script with Python from a Linux terminal

In Figure 7.3 is depicted an example of successful execution of the script. The
verdict yielded by ThEodorE can be REQUIREMENT SATISFIED , REQUIREMENT VIOLATED
or UNKNOWN .

The execution time is also reported.

The script can be run by itself, but it can also be easily executed by other
Python files since is wrapped in a function. This feature is very helpful to
automatically verify large numbers of properties, as we did in the testing
and evaluation phases of this thesis in Chapter 8.

7.6 Additional Options of Provided by ThEodorE

Below we describe some of ThEodorE’ options.

Goal

The “.hls” file contains multiple properties and refer to multiple traces, but
it always starts with a brief header section in which some options relative
to the trace-checking process are selected by using a different keyword. (see
Listing 7.14).

Listing 7.14: The header section of an ".hls" file

1 Goal: generate
2 Sample_Step: fixed-min

The header section contains the options for the generation of the output file
and the preprocessing of the traces: Goal has two options:
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1. if Save is selected, when saving, the only file that will be modified will
be the “.hsl”.

2. if Generate is selected, on saving the traces will be preprocessed and
the output files generated.

Sample Step

The second option is Sample_step: that has three options:

1. Writing fixed-min instructs ThEodorE to use the smallest sample-
step in the original trace as a fixed sample-step when preprocessing
the trace, interpolating to replace missing values if necessary.

2. If fixed-manual is selected instead, on saving, the traces will be pre-
processed using a fixed sample-step, specified trace by trace.

3. Finally, variable will prompt ThEodorE to use the variable sample-
step of the original trace, without any interpolation in the preprocess-
ing.

Listing 7.15: Property declarations in a ".hls" file

1

2 property_01::=
3 {
4 Signal signal_4 Interpolation Constant;
5 Signal signal_2 Interpolation Linear;
6 Index s;
7 Requirement::='signal 4 must always stay under the 1000

threshold and signal 2 must be greater or equal than
-15.27';

8 Specification::=ForAll Index s In (0,FinalIndex): (signal_4
(@index s)<1000 And signal_2(@index s)>=(-15.27));

9 }
10

11 property_02::=
12 {
13 Signal signal_7 Interpolation Linear;
14 Num c;
15 Timestamp t;
16 Requirement::= 'In the first 10 hours of operation, signal

7 must stay around a value c between -200 and 200,
17 with a maximum error of 10';
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18 Specification::=Exists Value c In ((-200),200):
19 ForAll Timestamp t In (0, 10 [h]): (signal_7(@timestamp t)<

c +10 And signal_7(@timestamp t)> c-10);
20 }
21

22 ...

An example of a portion of the “.hls” file is shown in Listing 7.15. The
property declaration is made by four different parts:

1. The name chosen for the property, followed by ::= and by the rest of
the declaration between curly brackets;

2. The variable declarations, using different keywords that may be used
multiple times and a different name for every one of the variables:

• Num for initializing simple numeric variables;

• Timestamp for timestamp variables;

• Index for index variables;

• Signal for selecting a particular signal from the trace: the name
of the signal in the declaration and in the trace must coincide;

3. The optional keyword Requirement::= followed by a string that de-
scribes the requirement, to make the subsequent code easier to inter-
pret;

4. The keyword Specification::= followed by the property expressed in
HLS;

The properties expressed this way may be assigned to one or more traces
and also left unassigned without causing any error.

Listing 7.16: Trace assignment in a ".hls" file

1

2 Trace one 'trace1.tsv' SampleStep= 1 [h]
3 {
4 Properties={property_01, property_03, property_06}
5 }
6

7 Trace two 'trace2.tsv' SampleStep= 3 [h]
8 {
9 Properties={property_02, property_04, property_05}

67



10 }

The last section, represented in Listing 7.16, is dedicated to the coupling of
the specifications with the traces they need to be verified on.

Every “.tsv” file containing an unprocessed trace produced is given a name
and subjected to an arbitrary number of properties. On a syntactic level,
the keyword Trace is followed by the name assigned to the trace by the user
and then by a string containing the path to the file.

For every trace-property couple assigned this way, ThEodorE will produce
an output script that will verify, once run, if the requirement expressed in
the property is verified by the trace’s behaviour.

The script’s name will be the combination of the name of the trace and the
requirement, which are both unique identifiers.

Measuring units can also be used to better quantify Time variables in HLS
specifications; the notations are explained in Table 7.1.

Table 7.1: Units of measure for the sample-step and their respective symbols

Symbol Unit

[h] hours
[m] minutes
[s] seconds
[ms] milliseconds

[micros] microseconds
[nanos] nanosenconds

Then, within curly brackets, the user can assign the set of properties to ver-
ify employing this notation Properties::= followed again by curly brackets
containing the names of the desired properties separated by commas. LuxS-
pace
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Chapter 8

Evaluation

In this Chapter, we report on the evaluation of our contributions. First,
we evaluate the expressiveness of HSL, and compare it with state-of-the-art
specification languages (Section 8.1). Second, we evaluate the applicabil-
ity of the ThEodorE trace checker, and compare it to state-of-the-art tools
(Section 8.2).

Specifically, we aim to answer the following research questions:

RQ1 To which extent can HSL express requirements from industrial CPS
applications and how does it compare with state-of-the-art specification
languages in terms of expressiveness?

RQ2 Can ThEodorE verify CPS requirements on real-world execution traces
within practical time and how does it compare with state-of-the-art
tools?

8.1 Expressiveness of HSL (RQ1)

To answer RQ1, we collected a set of industrial CPS requirements expressed
in plain English text, and verified whether they could be expressed in HSL
and in other state-of-the-art specification languages.

Dataset. We considered 212 industrial requirements from our satellite case
study, coming from three different sources:

S1: 61 requirements were randomly selected from 745 requirements con-
tained in the requirement specification document of the satellite on-
board software (OBSW). Due to the prohibitive effort (more than 20

hours spanned across several working days) involved, both on our part
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Table 8.1: Number of requirements expressible in each of the languages for each set of
requirements.

S1 S2 S3 Total

HSL 61/61 101/101 50/50 212/212 (100%)

SB-TemPsy-DSL 34/61 92/101∗ 19/50 145/212 (68%)

STL 38/61 51/101∗ 13/50 102/212 (48%)

and that of the domain experts who helped us formalize these require-
ments, we could only process a subset. Such requirements mostly re-
fer to the software dynamics of the satellite, as in “When the satellite
switches to “Idle Mode”, the OBSW shall checkout the GPS, wait 50ms,
and then checkout the sun sensors”.

S2: 101 requirements were provided by the authors of SB-TemPsy-DSL [27].
They mostly refer to the physical dynamics of the satellite, as in “the
beta angle [5] shall show an oscillatory behavior with a maximum period
of 2500 s”.

S3: 50 requirements were extracted from the design and architectural doc-
uments of the satellite. These documents describe the relations and
interactions among the different components of the satellite. They
contain cyber-physical requirements that relate the software and the
physical dynamics of the satellite, as in “if the satellite mode switches
from “Idle Mode” to “Safe Spin Mode” and the satellite is not in eclipse,
the magnetic field recorded by the magnetometer shall contain a spike
with a maximum amplitude of 0.02T”.

Methodology. We tried to express the requirements from our dataset using
HSL and two state-of-the-art specification languages, namely SB-TemPsy-
DSL [27] and STL [57]. We selected these languages because they are both
supported by trace checking tools. We assessed the extent to which require-
ments were expressible in each language.

Results. Table 8.1 reports1 the number of requirements that we were able to
express in each of the languages, for each set of requirements (S1, S2, and
S3). HSL was able to express 100% (212/212) of the requirements, while

1The values in Table 8.1 marked with an asterisk are slightly different from those
reported in [27]. In the latter, quantification on real-valued variables (not supported in
STL and SB-TemPsy-DSL) was handled by artificially selecting a value for the quantified
variables within their quantification range. In this work, we marked such requirements as
not specifiable.
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SB-TemPsy-DSL and STL were able to express 68% (145/212) and 48%
(102/212) of the requirements, respectively. These results confirm that HSL
is highly expressive and much more so than alternatives. We remark that
all the HSL constructs were useful to express at least some of the considered
CPS requirements, though in very different proportions.

The answer to RQ1 is that HSL could express all the requirements of our
case study, many more than SB-TemPsy-DSL and STL

8.2 Applicability of ThEodorE (RQ2)

To answer RQ2, we (i) assessed to which extent ThEodorE can be applied
to check the execution traces of our case study; (ii) compared, in terms
of applicability, ThEodorE with two other trace-checking tools: SB-TemP-
sy-Check [27] and Breach [35]. SB-TemPsy-Check is the trace checker for
SB-TemPsy-DSL; Breach is a trace checker for STL. We chose Breach among
other similar tools listed in a recent survey [20] (i.e., AMT [61, 61] and S-
TaLiRo [16]), because AMT 2.0, in contrast to Breach, is not publicly avail-
able, and because Breach is faster than S-TaLiRo [35]. Furthermore, we
excluded from our comparison tools tailored for online trace checking (e.g.,
SOCRaTEs [58] and RTAMT [62]).

Dataset. LuxSpace provided 20 traces, obtained by simulating the behavior
of the satellite in different scenarios; the simulation time ranged from four
to six hours. Their size (in number of entries) ranges from 41844 to 1202241
entries (avg = 389771, sd = 393718); the corresponding file size ranges
from 1.7MB to 58.9MB (avg 17.6MB, sd 19.4MB). The traces have a
considerably large (yet variable) number of records and size.

For each trace in our dataset, LuxSpace indicated which requirements to
check. Indeed, since only a subset of the satellite signals is recorded in
each simulation scenario, not all the requirements have to be checked on
each trace. In total, we considered 747 trace-requirement combinations: 320
obtained from requirements in S1, 178 obtained from requirements in S2,
and 249 obtained from traces in S3. We remark that, out of these 747
combinations, 337 involve a requirement that can be expressed neither in
SB-TemPsy-DSL nor in STL.

LuxSpace used a variable sample-rate for generating the trace records; hence
not all the signal values were recorded at each sample index. Since our ap-
proach assumes that all the signals are assigned a value at each sample index,
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we pre-processed the traces. First, for each trace-requirement combination,
we filtered out from the trace all the records that contained only signals that
were not used in the HSL specification of the requirement. This step prevents
the trace checker from handling an unnecessarily large set of records. Then,
we transformed the traces using both pre-processing strategies A1 and A2
presented in section 5.2; in both cases, the interpolation function to use for
each signal was indicated by the engineers of LuxSpace.

By applying the A1 and A2 strategies on the original 747 trace-requirement
combinations, the final dataset contains 1494 trace-requirement combina-
tions (with half of them obtained using one of the two strategies). The
size of the traces obtained using A1 ranges from 2 to 17321 entries (avg =

2071, sd = 3840); the corresponding file size ranges from 15B to 5.9MB

(avg 0.1MB, sd 0.4MB). The size of the traces obtained using A2 ranges
from 2 to 2360674 entries (avg = 52406, sd = 185875); the file size ranges
from 15B to 90.0MB (avg 2.3MB, sd 8.4MB).

Methodology. We ran ThEodorE over the 1494 trace-requirements combina-
tions in our dataset. When translating the HSL properties in the target logic,
we used function ιV for the trace-requirement combinations generated using
strategy A1 (since the pre-processed traces have a variable sample rate), and
function ιF for those generated using strategy A2 (since the pre-processed
traces have a fixed sample rate).

We conducted our evaluation on a high-performance computing platform,
using nodes equipped with Dell C6320 units (2 Xeon E5-2680v4@2.4GHz,
128GB).2 Each run (checking a distinct combination of a trace and a
property) was repeated 10 times, to account for variations in the perfor-
mance of the HPC platform and of the SMT solver. In total, we executed
1494×10 = 14940 runs of ThEodorE. We allocated 4GB of memory for each
run and considered a timeout of one hour. We recorded whether the trace-
checking procedure ended within the timeout, the trace checking result, and
the time required to yield a verdict.

As for the comparison with SB-TemPsy-Check and Breach, we only consid-
ered the requirements from S2 since it has the highest number of require-
ments expressible in SB-TemPsy-DSL and STL, and it was recently used for
comparing SB-TemPsy-DSL with STL [27]. More specifically, we considered
the 162 trace-requirement combinations (with requirements from the set S2)
expressible in SB-TemPsy-DSL, and the 103 trace-requirement combinations

2We executed our experiments on the HPC facilities of the University of Luxem-
bourg [70].
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Table 8.2: Output of ThEodorE (percentage and execution time) when using the pre-
processing strategies A1 and A2.

Output % avg min max sd

A1

satisfied 53.9 80.2 0.01 2693.0 334.7
violated 12.1 14.2 0.01 513.9 57.9
unknown 1.6 6.5 5.8 7.4 0.6
timeout 0.5 - - - -
max_depth_exceeded 13.0 - - -
out_of_memory 18.9 - - -

A2

satisfied 53.8 102.5 0.01 3432.9 331.7
violated 20.7 96.5 0.01 3143.5 379.8
unknown 2.2 8.7 5.4 12.3 2.1
timeout 23.3 - - - -

expressible in STL. We ran the tools following the same methodology de-
scribed above. Since each run was repeated ten times, in total we considered
1620 runs of SB-TemPsy-Check and 1030 runs of Breach.

Results - Applicability of ThEodorE. Table 8.2 shows the different types of
output returned by ThEodorE for checking the 7470 trace-requirement com-
binations generated using the variable sample rate interpolation (row A1)
and the fixed sample rate interpolation (row A2). Column “%” indicates the
percentage of cases in which each type of verdict was returned. For each of
the cases in which ThEodorE finished within the timeout (i.e., it yielded a
satisfied, violated, or unknown verdict), Table 8.2 also provides the average
(avg), minimum (min), maximum (max ) and standard deviation (sd) of the
ThEodorE execution time (s).

The results in row A1 show that ThEodorE finished within the timeout in
67.6% of the cases. In 66.0% of the cases, ThEodorE produced a defini-
tive verdict (i.e., satisfied or violated); in 0.5% of the cases, ThEodorE
timed out. ThEodorE returned a “max_depth_exceeded - maximum recur-
sion depth exceeded during compilation” error in 13.0% of the cases, and an
“out_of_memory” error in 18.9% of the cases; both errors are generated by
the Z3 solver. The root cause of these errors is the translation of function
ιV , used in the case of variable sample rate traces: the size of the arithmetic
expression resulting from the translation is linear in the length of the trace.
As expected, ThEodorE inherits the limitations of SMT solvers and its ap-
plicability is expected to improve along with the quick pace of progress in
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that field.

The results in row A2 show that ThEodorE finished within the timeout in
76.7% of the cases. In 74.5% of the cases, ThEodorE produced a definitive
verdict; in 23.3% of the cases, ThEodorE timed out. When using strat-
egy A2, the number of times ThEodorE reached the timeout was higher
than when using A1. Indeed, many trace-requirement runs that generated
max_depth_exceeded and out_of_memory errors in the case of A1, timed
out when using A2. As discussed for the case of A1, the applicability of
ThEodorE when using A2 is determined by the scalability of the underlying
SMT solver.

To evaluate whether ThEodorE is applicable in cases in which neither SB-
TemPsy-Check nor Breach is applicable, we considered the subset of 3370
runs associated with the 337 trace-requirement combinations that involve a
requirement that can be expressed neither in SB-TemPsy-DSL nor in STL.
For those combinations, ThEodorE was able to produce a verdict in 67.9%
of the cases.

To evaluate the impact of the trace accuracy (as determined by the appli-
cation of the pre-processing strategies A1 and A2) on the correctness of the
trace-checking procedure, we considered the 449 runs in which ThEodorE
returned a definitive verdict both when using A1 and when using A2, and
we compared the verdicts. In 95.1% of the cases (427 over 449), the verdicts
coincided. For the 22 cases in which the verdicts were different, we manu-
ally inspected the generated traces and confirmed that differences in verdicts
were caused by the pre-processing strategies.

Overall, these results show that ThEodorE, when configured with the pre-
processing strategy based on a fixed sample rate (A2), produced a defini-
tive verdict for a considerable number of trace-requirement combinations
(74.5%), thus confirming ThEodorE’s applicability in practical scenarios.
Relying on the A2 strategy led to a significantly wider applicability of
ThEodorE than with the A1 strategy (74.5% vs 66.0%), while resulting in
negligible differences in trace accuracy. Therefore, for comparing ThEodorE
with other tools, we resorted to using the A2 pre-processing strategy.

Results - Comparison with other tools. Table 8.3 reports the percentage of
cases in which ThEodorE, SB-TemPsy-Check, and Breach provided a ver-
dict within the timeout and the minimum, maximum, average and standard
deviation of the time required to yield the verdict.

The results show that, when the requirements are expressible in SB-TemPsy-
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Table 8.3: Comparison of ThEodorE, SB-TemPsy-Check, and Breach in terms of the
execution time.

Tool % avg min max sd

ThEodorE 72.2 69.6 0.01 2506.2 317.6
SB-TemPsy 94.1 30.1 0.09 3440.0 310.1

ThEodorE 95.1 81.4 0.01 2506.2 345.7
Breach 100 0.03 0.02 0.1 0.007

DSL and STL, SB-TemPsy-Check and Breach are faster than ThEodorE.
However, given the usage scenario considered in our work (offline trace check-
ing), the difference in execution times reported in Table 8.3 does not have
significant practical consequences since the average trace-checking time (less
than two minutes) is significantly lower than the time required to collect the
traces (several hours). Note that all tools were consistent in terms of ver-
dicts: when ThEodorE returned a definitive verdict, it matched the verdict
returned by SB-TemPsy-Check and Breach (when they did not time out).

The answer to RQ2 is that ThEodorE could compute a definitive verdict,
within one hour, for 74.5% of the trace-requirement combinations of our
industrial case study, and produced a verdict for 67.9% of the 337 trace-
requirement combinations that could not be checked by the other tools.

8.3 Discussion and Threats to Validity

Based on results, we recommend the following workflow. Developers should
initially use ThEodorE since its language (HSL) is the most expressive, and
it is generally difficult to know in advance which requirement types engineers
will need to specify. If the property to be verified does not contain the t2i
HSL operator, which causes the generation of large arithmetic expressions,
engineers should use ThEodorE with the pre-processing strategy based on
a variable sample rate (A1). If the property contains the t2i operator,
engineers should use the pre-processing strategy based on a fixed sample
rate (A2). If ThEodorE was not able to produce a definitive verdict, and
the requirement is expressible in SB-TemPsy-DSL or STL, engineers should
use SB-TemPsy-Check or Breach.

Threats to validity. The requirements and traces we used in our evaluation
come from a single case study in the satellite domain. Although this could
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influence the generalization of our results, our industrial case study is repre-
sentative of what can be found in other cyber-physical domains, where the
system requirements are complex properties related to the software system,
its environment and their interactions, and traces are obtained by simulating
(or executing) the behavior of the CPS in many different scenarios.
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Chapter 9

Conclusions

Software verification and validation requires specification-driven trace-checking
techniques that strike a balance between the expressiveness of the specifica-
tion language and the efficiency of its trace-checking procedures. In this
paper, we specifically address this problem in the CPS domain.

• We proposed the Hybrid Logic of Signals (HLS), a specification lan-
guage tailored to the specifics of CPS requirements. HLS allows en-
gineers to specify complex CPS requirements related to its cyber and
the physical components, as well as their interactions.

• We developed ThEodorE, an efficient SMT-based trace-checking pro-
cedure for HLS.

We evaluated our solutions through a large-scale, complex industrial case
study involving an on-board satellite system. Results show that our ap-
proach achieves a better trade-off between expressiveness and performance
than existing solutions.

• HLS was able to express all system requirements in contrast to exist-
ing languages. As a result, ThEodorE supports a much wider set of
property types than other trace checkers.

• In most cases, ThEodorE was able to check those properties within
practical time limits. Furthermore, the applicability of ThEodorE is
expected to improve in the future along with the underlying SMT
technology.

Last, based on results, we suggest a way to effectively combine various trace-
checking tools.

77



As part of future work, we plan to develop trace diagnostics methods for
HLS, inspired by existing work [36, 40], to explain the violations found by
ThEodorE.

Another desirable pursuit would be offering support to the engineers employ-
ing ThEodorE by determining what factors contribute to the undecidability
of some specifications, to better delimit the applicability of its approach.

We also plan, through an ongoing work of verification of industrial properties,
to extend the grammar of HLS with more construct amenable to practical
use in the field, such as the ones described in Section 5.5.
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