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Abstract
The work developed in this thesis concerns the design and characterization of an inno-
vative hybrid TRS and DCS instrument for hemodynamic and metabolic measurements.
TRS and DCS are diffuse optics techniques that make use of infrared laser light in order
to probe biological tissue in a non-invasive manner. More specifically, TRS gives informa-
tion on the components of a tissue along with their concentration, while DCS allows to
quantify blood flow. The combination of the two thus allows a comprehensive all-optical
measurement of tissue oxygenation and hemodynamics. The TRS module makes use of a
state-of-the-art TD-NIRS system employing two wavelengths and featuring two detection
channels, which enables to separate between the contributions of superficial and deep
tissue. It was characterized in terms of stability as well as linearity and accuracy against
a previously built and validated instrument, showing that it is suitable for both absolute
and relative measurements. The DCS module similarly features multiple detection chan-
nels and makes use of a software autocorrelator, which gives more flexibility compared
to its hardware counterparts. Different autocorrelation algorithms were investigated in
terms of time performance, stability and capability of following variations of experimental
parameters. This allowed to identify the best options both for real-time measurements
and post-processing.

Keywords: diffuse correlation spectroscopy; near-infrared spectroscopy; diffuse optics;
photon migration; correlators
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Abstract in lingua italiana
Il lavoro affrontato in questa tesi riguarda la progettazione e caratterizzazione di un in-
novativo dispositivo ibrido TRS e DCS per misure emodinamiche e metaboliche. TRS
e DCS sono tecniche di ottica diffusiva che impiegano luce laser infrarossa per sondare
tessuti biologici in maniera non invasiva. Più precisamente, TRS dà informazioni sulle
componenti di un tessuto e la loro concentrazione, mentre DCS permette di quantificare il
flusso sanguigno. La combinazione delle due tecniche permette perciò una misura comple-
ta interamente ottica dell’ossigenazione e dell’emodinamica di un tessuto. Il modulo TRS
impiega un sistema TD-NIRS allo stato dell’arte che fa uso di due lunghezze d’onda e
due canali di rilevazione, i quali permettono di separare i contributi degli strati di tessuto
superficiali da quelli degli strati profondi. È stato caratterizzato in termini di stabilità
così come linearità e accuratezza rispetto a uno strumento precedentemente costruito e
validato, mostrando che è adatto sia per misure assolute che relative. Il modulo DCS
analogamente possiede diversi canali di rilevazione e impiega un autocorrelatore software,
che offre maggiore flessibilità rispetto alle sue controparti hardware. Sono stati investigati
diversi algoritmi di autocorrelazione in termini di velocità, stabilità e capacità di seguire
variazioni di parametri sperimentali. Ciò ha permesso di individuare le opzioni migliori
sia per misure in tempo reale che per elaborazione dati in post-processing.

Parole chiave: spettroscopia diffusiva di correlazione; spettroscopia nel vicino infra-
rosso; ottica diffusiva; migrazione di fotoni; correlatori
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Introduction
“Everything is interesting if you go into it deeply enough”

– Richard Feynman

The idea of using light in the biomedical field is everything but new: for example, 90
years ago it was used to see tumors in thick tissues [1]. Optical techniques for imaging
and diagnostic are particularly attractive due to them being non-invasive while still being
able to investigate several centimeters deep into the tissue [2]. This is made possible
by the employment of near-infrared (NIR) light, which as shown in fig. 1 is absorbed
relatively little in the 650 ÷ 950 nm range.

As light propagates through biological tissues it is both absorbed and scattered, with the
latter phenomenon being prevalent. Absorption is tied to which molecules are present
in the medium as well as their concentration, while scattering to their geometry and
distribution. The basic idea of diffuse optics techniques is to collect the photons that
have interacted with the sample in order to obtain information on the sample itself.
Three types of light sources are commonly employed (fig. 2):

Continuous-Wave (CW) sources are the simplest ones, emitting light with constant
intensity. After propagating through the medium, the detected light’s intensity is
likewise constant, and by measuring its attenuation it is possible to gain information
on the investigated sample. CW techniques allow fast data acquisition and simple
detection systems, but have the major drawback of not being able to differentiate
between absorption and scattering.

Intensity-modulated sources are more complex than CW ones, but also allow to gain
more information. They are employed for frequency-domain (FD) experiments, in
which the light intensity of the source oscillates in time (with angular frequency of
order 100 MHz ÷ 1 GHz): the collected light’s intensity also oscillates at the same
frequency, but with different amplitude and phase. By measuring these last two
quantities it is possible to separate the contributions of absorption and scattering.

Pulsed sources emit short light pulses (< 100 ps) that after propagating through the tis-
sue become broadened and attenuated. Time-domain (TD) approaches in principle
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Figure 1: Absorption spectra of the main components of biological tissue. In the so-called
physiological window water, lipid and hemoglobin absorptions are relatively low.
From [2].

convey the same amount of information as FD ones, since the two are related math-
ematically via a Fourier transform. Additionally, techniques such as time-gating
allow to pathlength-resolve the detected photons to separate the contributions of
different layers of tissue.

Perhaps the best-known family of diffuse optics techniques is near-infrared spectroscopy
(NIRS). NIRS allows to measure the tissue optical parameters and to retrieve from them
oxy- and deoxy-hemoglobin, water and lipid concentrations through their absorption
spectra. Applications of this technique include brain monitoring [3] and muscles ox-
idative metabolism assessment [4], but NIRS also allows optical imaging, which has been

(a) Continuous Wave (CW) (b) Frequency Domain (FD) (c) Time Domain (TD)

Figure 2: Summary of the signals measured in different diffuse optics approaches (adapted
from [2])
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harnessed to investigate brain functional activation during cognitive and somatosensory
tasks [5] and for spectroscopic tumor characterization [6].

Another diffuse optics technique that has been gaining increasing interest in recent years
is diffuse correlation spectroscopy (DCS). DCS exploits long-coherence laser light that
gets scattered by moving particles (red blood cells in biological tissue) and generates at
the detection plane a speckle interference pattern that fluctuates in time. By measuring
the temporal evolution of the intensity and calculating its autocorrelation, DCS allows
to obtain information on the movement of red blood cells. Since this technique is based
on physical principles that are very similar to NIRS, the two share the same advantages,
such as non-invasiveness, deep penetration and excellent temporal resolution [7].

DCS has been extensively validated in vivo against established techniques such as Doppler
ultrasound and MRI, showing that it is able to determine relative changes of tissue blood
flow quite well with respect to a baseline [7]. Examples of applications of DCS include
assessment of cerebral autoregulation in ischemic stroke patients [8] and continuous mon-
itoring of cerebral blood flow in comatose patients [9], but its range of applications goes
beyond the brain, including contexts such as cancer and peripheral arterial disease [7].

In order to obtain information on blood flow from DCS, tissue optical parameters must
be measured first [7], a task that is readily fulfilled by NIRS. As such, incorporating in
the same instrument NIRS and DCS allows to make comprehensive all-optical hemody-
namic and metabolic measurements. Moreover, the joint use of both techniques allows to
measure quantities that each single technique is not able to retrieve on its own. An ex-
ample of this is the cerebral metabolic rate of oxygen consumption (CMRO2) [10], whose
estimation requires fewer approximations when using both NIRS and DCS than it does
when employing NIRS alone [2].

In this thesis the development and characterization of one such hybrid TD-NIRS and
CW-DCS instrument is presented. Its performances were assessed in terms of stability,
linearity, accuracy, precision, and effect of varying source-detector separation. Addition-
ally, several different algorithms for calculating the autocorrelation of the DCS intensity
fluctuations were compared in terms of speed, precision and accuracy.
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“All models are wrong, some are useful”

– George Box

In this chapter the physical background of time-domain reflectance spectroscopy (TRS)
and diffuse correlation spectroscopy (DCS) will be presented. In particular, after dis-
cussing the basics of light interaction with turbid media, the physical models adopted to
describe photon migration in biological tissue will be illustrated.

1.1. Light interaction with turbid media
As far as light propagation is concerned, biological tissue falls into the category of turbid
media, that is, media which both absorb and scatter light propagating through them [11].
In a turbid medium several particles of varying size and refractive indices are suspended
in a background: this spatially varying distribution of size and refractive indices gives rise
to scattering [12]. On top of this, some amount of absorption will be present as well, due
to excitation of the molecules in the tissue [11].

In this section a simple quantitative model for absorption and scattering will be illustrated,
introducing some fundamental physical quantities.

1.1.1. Absorption

Absorption of light in an optical medium can be modelled in a heuristic way through the
concept of absorption cross section. Whenever light impinges on an absorbing particle,
only part of its intensity is absorbed, while the rest is transmitted. However, we can
instead model the absorber as a smaller particle which completely blocks all the light it
intercepts. The geometrical cross section of the particle in this equivalent description is
called the absorption cross section σa.

Let’s now consider a beam of light propagating through an optical medium made of several
absorbers whose volumetric density is ρa. Indicating with S the transverse area of the
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medium, a slice of thickness dz contains dN absorbers, with dN given by:

dN = ρaS dz

When light propagates through one such slice, the fraction of intensity I that gets absorbed
is equal to the fraction of surface area that absorbs radiation:

dI

I
= −σadN

S
= −ρaσa dz

where the negative sign indicates that light is lost during propagation. Integrating this
equation, we get Lambert’s law for absorption:

I(z) = I(0)e−µaz (1.1)

In eq. (1.1) we have introduced the absorption coefficient µa, defined by:

µa = ρaσa

As can be easily seen, µa has the dimension of the reciprocal of a length, and in biological
tissue typical values of this quantity for visible/NIR light are of the order of 0.1 cm−1. The
reciprocal of the absorption coefficient is called absorption mean free path, and represents
the average distance travelled by a photon before being absorbed [13]:

ℓa = 1
µa

When many different absorbing substances (also called chromophores) are present, the
total absorption coefficient can be calculated as the sum of the absorption coefficients of
each chromophore [14]:

µa =
∑

i

µa,i =
∑

i

ρa,i σa,i (1.2)

Equation (1.2), known as Beer’s law for absorption, assumes that the different chro-
mophores do not interact with one another. Of course, this hypothesis is not valid in
general, and the Beer-Lambert law is bound to fail in some cases, such as high absorption
or uneven distribution of chromophores [15].
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1.1.2. Scattering

Scattering in turbid media can be modelled in a totally analogous way to absorption: as
light propagates through a scattering medium, its intensity follows Lambert’s law:

I(z) = I(0)e−µsz (1.3)

It should be noted however that eq. (1.3) only holds when µsz ≪ 1, a condition known
as single-scattering regime. The scattering coefficient µs is given by:

µs =
∑

i

ρs,i σs,i (1.4)

where ρs,i and σs,i are the volumetric density and scattering cross-section of scatterer i,
respectively.

A fundamental quantity for modelling scattering is the so-called scattering phase function
p(ŝ, ŝ′), defined as the probability that a photon initially travelling along direction ŝ be
scattered within the unit solid angle around direction ŝ′. For isotropic scattering (scat-
tering by spherical particles or randomly oriented non-spherical ones) the phase function
only depends on the angle θ between ŝ and ŝ′: p(ŝ, ŝ′) = p(θ).

Being a probability density function, a normalization condition holds for p:
∫

4π
p(ŝ, ŝ′) dΩ′ = 2π

∫ π

0
p(θ) sin θ dθ = 1

When propagation is dominated by scattering, a single number is sufficient to characterize
p: the anisotropy factor g, defined as the average cosine of the scattering angle [11]:

g = ⟨cos θ⟩ = 2π
∫ π

0
cos θ p(θ) sin θ dθ (1.5)

The anisotropy factor gives information on the preferred direction of scattering: for ex-
ample, when g ≃ 1 scattering occurs mainly in the forward direction, while for g ≃ −1
backward scattering is prevalent. As such, after just a single scattering event the radiation
is not isotropic. Thus, an important parameter to characterize scattering is the reduced
scattering coefficient µ′

s = µs(1 − g), whose reciprocal is called transport mean free path
and represents the average distance a photon must travel before losing information on the
original direction of propagation due to scattering events [13]:

ℓ′ = 1
µ′

s

= 1
µs(1 − g)
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Typical values of g in biological tissue are around 0.8 ÷ 0.9, while µ′
s ∼ 10 cm−1.

Conversely to absorption, which depends on the chemical composition of the turbid
medium, scattering depends on refractive index mismatch between the background and
the scatterers, their geometry (size and shape), and the wavelength of the radiation [11].
In particular, two main scattering regimes can be identified:

• When the particles are small (r/λ ≤ 0.05 [16]), we speak of Rayleigh scattering.
In this regime the scattering coefficient strongly depends on the wavelength of the
radiation: µs ∝ λ−4. On the other hand, the phase function does not depend on λ

at all, and is simply given by:

p(θ) = 3
16π

(1 + cos2 θ)

The asymmetry factor is g = 0 even if scattering is not isotropic.

• For large particles (r ≫ λ), the scattering coefficient is almost independent of the
size, whereas the phase function strongly depends on it. In particular, for bigger
particles p becomes more forward peaked (p(θ = 0) increases), but the total power
scattered in the forward direction (θ < π/2) remains approximately constant, so that
g does not change by much and its value depends instead on the relative refractive
index between background and scatterers [16].

1.2. Photon migration through turbid media
In this section the mathematical model of the Radiative Transfer Equation (RTE) will
be presented, together with its Diffusion Approximation. The RTE represents a heuris-
tic way of modelling energy transport through a tissue, and is not rigorously derived
from Maxwell’s Equations. Nevertheless, it leads to useful models for many practical
problems [17].

1.2.1. Quantities used to describe radiative transfer

The main quantity used to describe photon migration through turbid media is the radiance
I, defined as follows: I(r, ŝ, t) is the average power that at position r and time t flows
through the unit area oriented in the direction of the unit vector ŝ, due to photons moving
within the unit solid angle around ŝ [11]. In other words, the power d2P that at time t

flows within the solid angle dΩ through the elementary area dΣ oriented along n̂ placed
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at r is given by:
d2P = I(r, ŝ, t)|n̂ · ŝ|dΣdΩ

Another important quantity is the fluence rate (or simply fluence) Φ, defined as the
integral of the radiance over the solid angle Ω:

Φ(r, t) =
∫

4π
I(r, ŝ, t) dΩ (1.6)

Dividing the fluence by the speed of photons inside the medium v, one gets the energy
density. Thus, the quantity:

U(r, t) = Φ(r, t)
vhν

where h is Planck’s constant and ν the frequency of light, represents the photon density
at position r and time t. The fluence is therefore proportional to the number of photons
per unit volume present in the medium.

Finally, the flux vector J is defined as:

J(r, t) =
∫

4π
I(r, ŝ, t)ŝ dΩ (1.7)

and represents the net flux of power, in both amount and direction.

1.2.2. The Radiative Transfer Equation

The RTE is an integro-differential equation that represents the energy balance for light
propagating through a medium. In the more general case, it assumes the form [11]:

1
v

∂

∂t
I(r, ŝ, t) = − ŝ · ∇[I(r, ŝ, t)] − (µa + µs)I(r, ŝ, t)

+ µs

∫
4π

p(ŝ, ŝ′)I(r, ŝ′, t) dΩ′ + ε(r, ŝ, t)
(1.8)

where dΩ′ is the unit solid angle around direction ŝ′ and ε(r, ŝ, t) represents the source
term, that is, the power emitted at time t per unit volume and solid angle around ŝ.

Considering the volume element dV around position r, the various terms have a clear
physical meaning:

• 1
v

∂
∂t

I(r, ŝ, t)dV dΩdt is the total change of the energy propagating along ŝ within
dV , dΩ and dt. This term is null for steady-state sources [17].
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• −ŝ ·∇[I(r, ŝ, t)]dV dΩdt is the energy loss due to propagation through dV along ŝ,
within dΩ and dt.

• −(µa +µs)I(r, ŝ, t)dV dΩdt is the fraction of energy propagating along ŝ within dV ,
dΩ and dt that is absorbed or scattered along a different direction.

• µs

∫
4π p(ŝ, ŝ′)I(r, ŝ′, t) dΩ′ dV dΩdt is the energy coming from any direction ŝ′ that

gets scattered along direction ŝ within dV , dΩ and dt.

• ε(r, ŝ, t)dV dΩdt is the energy generated inside dV along ŝ within dΩ and dt.

1.2.3. Diffusion Approximation for the RTE

Being an integro-differential equation, the RTE is difficult to solve as it appears in
eq. (1.8) [18]. No general analytical solutions are available [19], so approximations that
reduce it to an easier equation are usually employed. In particular, when scattering is
prevalent over absorption (µ′

s ≫ µa), the Diffusion Equation (DE) constitutes an approx-
imation able to deliver accurate solutions while being easier to solve.

The Diffusion Approximation consists of the following two assumptions:

• The radiance inside a diffusive medium is almost isotropic. As a consequence, it can
be expanded in the sum of an isotropic term and a linearly anisotropic one [11]:

I(r, ŝ, t) = 1
4π

Φ(r, t) + 3
4π

J(r, t) · ŝ (1.9)

Notice that, by the definition of fluence (eq. (1.6) on page 9), the first term represents
the average radiance. Mathematically, eq. (1.9) represents a series development
of the radiance in spherical harmonics, truncated at the second term [17], and
represents a good approximation if the contribution of the higher-order harmonics
is negligible.

A similar development is employed for the source term as well:

ε(r, ŝ, t) = 1
4π

q0(r, t) + 3
4π

q1(r, t) · ŝ

where:

q0(r, t) =
∫

4π
ε(r, ŝ, t) dΩ q1(r, t) =

∫
4π

ε(r, ŝ, t)ŝ dΩ

• The diffuse flux vector J exhibits slow variations. More precisely, the variation of
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the flux over a time range ∆t = 1/(vµ′
s) is negligible with respect to the value of

the vector itself:
1

vµ′
s

∣∣∣∣∣∂J(r, t)
∂t

∣∣∣∣∣ ≪ |J(r, t)|

As briefly mentioned, the previous assumptions hold true when photons undergo many
scattering events, since these tend to randomize the direction of propagation, making
the radiance almost isotropic. On the other hand, absorption hinders this effect, since it
destroys photons before they have the chance to cover long path lengths.

Employing the Diffusion Approximation, the RTE simplifies to two separate equations
for the fluence and the flux. For a homogeneous medium, the Diffusion Equation for the
fluence assumes the form: [

1
v

∂

∂t
− D∇2 + µa

]
Φ(r, t) = q0(r, t) (1.10)

while for the flux we get Fick’s law:

J(r, t) = −D∇[Φ(r, t)] (1.11)

In eqs. (1.10) and (1.11) D is the diffusion coefficient, given by:

D = 1
3(µa + µ′

s)
≃ 1

3µ′
s

1.2.4. Solution of the Diffusion Equation

The DE can have many different solutions depending on the geometry of the problem.
This is hardly surprising: being a differential equation, boundary conditions are needed.
For our applications we are interested in the solution for the semi-infinite medium (a
half-space), which will be obtained in this section.

In order to solve the DE in the semi-infinite case, it is convenient to first solve it for the
infinite medium. It can be shown that, for a delta-like source positioned in the origin
(q0(r, t) = Q0δ(r)δ(t)), the fluence in an infinite medium is [11]:

Φ(r, t) = vQ0

(4πDvt)3/2 exp
(

− |r|2

4Dvt
− µavt

)
(1.12)
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Boundary conditions
The boundary condition in the infinite case simply consists in imposing that the fluence
go to zero at infinite distance. In a more general case, for finite geometries, we must
impose that the radiation entering the diffusive medium at the boundary originates from
the Fresnel reflection of the outgoing radiation. Within the Diffusion Approximation, this
boundary condition assumes the form [2]:

Φ(r, t) = zbn̂ · ∇Φ(r, t) on the interface (1.13)

Here n̂ is the outgoing unit vector normal to the surface, and zb is given by:

zb = 2D
1 − Reff

1 + Reff
= 2

3µ′
s

1 − Reff

1 + Reff
(1.14)

where Reff is the effective Fresnel coefficient at the interface, which can be approximated as
a series development of the relative refractive index n = nmedium/nout: Reff ≃ −1.440n−2 +
0.710n−1 + 0.668 + 0.00636n.

Equation (1.13), also known as partial-current boundary condition, is relatively difficult
to apply in practice, so it is usually forgone in favour of the so-called extrapolated-zero
boundary condition. This is obtained by assuming that the derivative of the fluence
along the normal direction outside the medium is constant and equal to its value on the
boundary. Doing this, we get that the fluence reaches zero at a distance zb from the
interface outside the medium:

Φ(z = −zb) = 0 (1.15)

which is much easier to implement, while still approximating the exact condition quite
well [20].

Solution for the semi-infinite medium
The solution for the infinite medium is useful to describe situations where the boundaries
of the diffusive medium are far from the source with respect to the effective attenuation
length ℓeff = 1/

√
3µaµ′

s. In many applications we are interested instead in studying
the propagation of light through a medium with well-defined boundaries, detecting the
radiation exiting from the medium. Let’s suppose we are shining a collimated beam
of light perpendicular to the surface of a diffusive medium. In order to model such
a source with isotropic ones, we would need a line of point-like sources with decreasing
intensity described by Lambert’s law in which both absorption and scattering are present:
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I(z) = I(0)e−(µa+µ′
s)z where z is the depth coordinate. However, for the sake of simplicity

the source is typically modelled as one isotropic source placed at a depth z0 = ℓ′ [2]. This
approximation is justified by the fact that the center of mass of Lambert’s distribution is
z1 = (µa + µ′

s)−1 ≃ (µ′
s)−1 = z0.

Applying the extrapolated-zero boundary condition in this situation can be conveniently
done making use of the method of images, that is, introducing a negative source at
zs = −2zb − z0 with the same intensity as the positive one. The fluence can then be
calculated as the solution for the infinite medium with these two sources, which is the
sum of the two solutions. Using a cylindrical coordinate system, where z is the depth and
r the radial coordinate, we get:

Φ(r, z, t) = vQ0

(4πDvt)3/2 e−µavt

[
exp

(
−r2 + (z − z0)2

4Dvt

)
− exp

(
−r2 + (z − zs)2

4Dvt

)]
(1.16)

However, in practical applications we are not interested in the fluence, but rather in the
reflectance R, defined as follows: R(r, t) is the power per unit area leaving the medium
at time t and distance r from the injection point on the medium surface, irrespective of
exit direction. The reflectance can be obtained by the flux vector, as the component of
the flux in the direction orthogonal to the surface. Using Fick’s law we can write:

R(r, t) = |Jz(r, z = 0, t)| =
∣∣∣∣∣−D

∂Φ(r, z, t)
∂z

∣∣∣∣∣
z=0

Substituting eq. (1.16), we get:

R(r, t) = Q0

2t5/2(4πDv)3/2 exp
(

− r2

4Dvt
− µavt

)[
z0 exp

(
− z2

0
4Dvt

)
− zs exp

(
− z2

s

4Dvt

)]

(1.17)

The reflectance is plotted as a function of time and for different values of µa, µ′
s, r in fig. 1.1.

Notice that the absorption coefficient mainly influences the tail of the time distribution
of photons (fig. 1.1a): the lower the absorption, the later the last photons can arrive at
the detector before being absorbed. Scattering, on the other hand, influences the time of
detection of the earliest photons (fig. 1.1b): the lower the scattering, the sooner the first
photons are detected. Finally, the source-detector separation r determines the position
of the peak as well as the intensity of the signal (fig. 1.1c).
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(a) µa variable (units in the legend are mm−1),
µ′

s = 1 mm−1, r = 30 mm
(b) µa = 0.01 mm−1, µ′

s variable (units in the
legend are mm−1), r = 30 mm

(c) µa = 0.01 mm−1, µ′
s = 1 mm−1, r variable

(units in the legend are mm)

Figure 1.1: Plots of the reflectance (normalized to the source amplitude Q0) in a semi-
infinite medium as a function of time for different values of µa, µ′

s and r. Note
the logarithmic scale on the vertical axis.
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1.3. Diffuse Correlation Spectroscopy
In this section the physical basis of DCS will be presented. In a typical DCS experiment,
light is shone inside a tissue and then the emerging scattered radiation is detected, similar
to TRS. However, in DCS the quantity of interest is the temporal autocorrelation of
photons, rather than their density, since it contains information on the motion of scatterers
inside the medium.

1.3.1. Quantities used to describe scattering by fluctuations

When studying light-matter interaction we often assume that media are homogeneous,
however this is only true from a statistical point of view. For example, while the average
number of molecules is a certain volume can be assumed constant, their instantaneous
number varies. Such statistical fluctuations in concentration, density or orientation of
molecules give rise to a type of scattering different from the one that has been considered
so far.

The quantities used to describe this phenomenon are the first- and second-order auto-
correlation functions. The first-order autocorrelation function G1(t1, t2), also called field
autocorrelation function, is defined as:

G1(t1, t2) = ⟨E∗(t1) ·E(t2)⟩

where E(t) is the detected electric field at time t, the ∗ symbol denotes the complex
conjugate and the angled brackets have the usual meaning of ensemble average. In the
following we shall assume ergodic processes, so that the ensemble average can be substi-
tuted with the temporal average. Moreover, since ergodic processes are stationary, the
value of G1(t1, t2) only depends on the time difference τ = t2 − t1 rather than the absolute
time instants. We can therefore define G1 as:

G1(τ) = ⟨E∗(t) ·E(t + τ)⟩

A normalized version of the first-order autocorrelation is also used:

g1(τ) = G1(τ)
⟨E∗(t) ·E(t)⟩ = ⟨E∗(t) ·E(t + τ)⟩

⟨E∗(t) ·E(t)⟩

for which g1(0) = 1 holds.
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In practical application the electric field is not measured, rather the intensity of the
radiation is. For this reason we introduce the second-order autocorrelation, or intensity
autocorrelation, as:

G2(τ) = ⟨I(t)I(t + τ)⟩

where I(t) is the detected intensity. Its normalized version is obtained by dividing by the
square of the ensemble average of the intensity:

g2(τ) = G2(τ)
⟨I(t)⟩2 = ⟨I(t)I(t + τ)⟩

⟨I(t)⟩2

The following properties hold for g2(τ):

1. g2 is an even function: g2(−τ) = g2(τ);

2. g2 is a decreasing function: g2(τ) ≤ g2(0).

3. g2 → 1 for τ → ∞.

The physical meaning of the second property is clear: for small values of the delay the
particles have undergone small fluctuations, thus not influencing the intensity much. For
bigger values of τ the intensity loses autocorrelation, eventually decaying to 1 for long
delays. For perfectly coherent light (no fluctuations) g2(τ) ≡ 1, while the faster the
intensity varies, the sooner the autocorrelation decays.

The normalized first- and second-order autocorrelation curves are tied by the so-called
Siegert relation, which reads:

g2(τ) = 1 + β|g1(τ)|2 (1.18)

where β ≤ 1 is a dimensionless parameter that depends on the experimental conditions (in
particular on the coherence length of the light source, the wavelength, the source-detector
separation and the aperture of the optical detection system), being equal to 1 for an ideal
setup [2]. In a typical experiment its value cannot be determined a priori, and is instead
retrieved by the measured value of g2: β = g2(0) − 1.

1.3.2. The Correlation Transport Equation and its Diffusion Ap-
proximation

The first-order correlation function for light propagating through a turbid medium can
be obtained as the solution of the so-called Correlation Diffusion Equation (CTE), which
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is analogous to the RTE [2]:

1
v

∂

∂t
GT

1 (r, ŝ, t, τ) = − ŝ · ∇
[
GT

1 (r, ŝ, t, τ)
]

− (µa + µs) GT
1 (r, ŝ, t, τ)

+ µs

∫
4π

gs
1(ŝ, ŝ′, τ) p(ŝ, ŝ′) GT

1 (r, ŝ′, t, τ) dΩ′ + ε(r, ŝ, t)
(1.19)

Here the function gs
1(ŝ, ŝ′, τ) is the normalized first-order correlation obtained in single-

scattering regime. GT
1 (r, ŝ, t, τ) represents the correlation function depending on the

position r, direction ŝ and time t, on top of the delay τ . The unnormalized correlation
function G1(r, t, τ) is obtained by integrating GT

1 over all possible directions:

G1(r, t, τ) =
∫

4π
GT

1 (r, ŝ, t, τ) dΩ

With reference to the RTE (eq. (1.8) on page 9) then GT
1 is analogous to the radiance,

while G1 to the fluence.

Adopting the Diffusion Approximation it is possible to obtain a Diffusion Equation for the
correlation function, which in stationary regime (CW sources) in a homogeneous medium
assumes the form [7]:

[
−D∇2 +

(
µa + α

3 k2
0µ′

s

〈
∆r2(τ)

〉)]
G1(r, τ) = q0(r) (1.20)

where:

• α is the ratio of moving scatterers to total scatterers. In liquid phantoms used for
laboratory measurements α ≃ 1, while in biological tissue it is generally unknown.

• k0 = 2π/λ is the wave number of light in the medium;

• ⟨∆r2(τ)⟩ is the mean-square displacement of moving scatterers in time τ . In many
practical applications of DCS in living tissues the motion of scatterers (red blood
cells) is well approximated by a Brownian model, that is ⟨∆r2(τ)⟩ = 6DBτ , where
DB is the effective diffusion coefficient of the moving scatterers (larger by a few
orders of magnitude than the value given by the Einstein relation) [2].

It is immediate to see that the Correlation Diffusion Equation (eq. (1.20)) is analogous to
the Diffusion Equation for the fluence (eq. (1.10) on page 11), taking care of adding the
term αk2

0µ′
s ⟨∆r2(τ)⟩ /3 to the absorption coefficient. The solution for the semi-infinite
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medium is then [21]:

G1(r, τ) = vQ0

4πD

{
exp[−K(τ) r1]

r1
− exp[−K(τ) r2]

r2

}
(1.21)

where Q0 is the amplitude of the delta-like source, r1 =
√

r2 + z2
0 , r2 =

√
r2 + z2

s and
K(τ) =

√
3µaµ′

s + αk2
0µ′2

s ⟨∆r2(τ)⟩.

The normalized solutions in the case of Brownian motion for both the field and intensity
autocorrelation functions are plotted in fig. 1.2 for different values of DB and r. Notice
how higher values of DB (fig. 1.2a) and r (fig. 1.2b) cause the scattered light to lose
correlation sooner.
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Figure 1.2: Plots of the normalized first- and second-order correlation functions for light
scattered by particles undergoing Brownian motion. Note the logarithmic
scale on the horizontal axis. The value of the parameters are α = 1, β = 0.5,
λ = 784 nm, µa = 0.1 cm−1, µ′

s = 10 cm−1, n = 1.44.
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2| Materials and methods
“We are stuck with technology when what

we really want is just stuff that works”
– Douglas Adams

In this chapter the experimental setups used for both TRS and DCS will be illustrated,
along with explanations of the data collection modalities. Finally, a few different software
autocorrelation algorithms will be described.

2.1. Experimental setup
The overall instrument is made of two separate setups: a TRS module and a DCS one.
Time-domain Reflectance Spectroscopy allows to retrieve the tissue optical parameters µa

and µ′
s, which are then used in fitting the autocorrelation curve measured by the DCS

setup to retrieve the blood flow index BFI = αDB. Note that in principle the DCS
technique is able to retrieve all variables of interest by fitting eq. (1.21) with all of them
at once, however doing this would yield inaccurate results. In particular, errors in the
estimation of the optical parameters would cause further errors in the evaluation of the
diffusion coefficient [21]. Moreover, the use of both DCS and TRS allows to measure
quantities that the two techniques are not able to retrieve when only one of them is used,
such as the cerebral metabolic rate of oxygen consumption (CMRO2) [7, 10].

Both the TRS and DCS modules feature multiple detection channels that work in parallel,
allowing to collect light from different points of the investigated sample. This way it is
possible to perform measurements at different source-detector separations, which allows
to separate the contributions of the superficial layers from those of deeper tissue. Indeed,
since the DCS setup operates in continuous wave (CW), the penetration depth of the
photons depends on the source-detector distance: the further apart injection and detection
are, the deeper the detected photons have probed the medium (if r is the inter-fiber
distance, the mean penetration depth is ≃ r/2 [2]). This feature is not shared by time-
domain techniques such as TRS, for which penetration depth is independent of source-
detector separation [5]. Nevertheless, working simultaneously at two different inter-fiber
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Figure 2.1: Picture of the nirsbox used in the setup

distances allows the implementation of more complex models than the homogeneous one,
such as the bilayer geometry [22, 23].

As for the DCS module, a software correlator was chosen as opposed to a hardware one.
Being designed to fulfill a single task, hardware correlators are fast and easy to use, but
they lack flexibility (for example, they typically have a fixed lag-time scale). Software
correlators on the other hand are more cost-effective and flexible: since they operate on
the raw photon time-tag stream, it is possible to pre-process this signal before calculating
the autocorrelation, for example removing the noise of the laser source. Moreover, storing
the raw time tags holds the potential for post-processing, investigating other methods for
extracting blood flow information [24].

2.1.1. TRS setup

Time-domain reflectance spectroscopy is performed thanks to a nirsbox (manufactured
by pionirs s.r.l.) [25], the compact device represented in fig. 2.1. Actually, this instrument
differs from its standard commercial counterparts in that it features two detection channels
as opposed to a single one. The system employs two lasers at different wavelengths, which
operate in a time-multiplexing scheme in order to avoid cross-talk. This feature allows
to measure the concentrations of both oxy- and deoxy-hemoglobin: as shown in fig. 1 on
page 2 the two have different absorption spectra, so by measuring the total absorption
coefficient and inverting eq. (1.2) on page 6, it is possible to get both concentrations.
Since two unknowns must be retrieved, at least two equations are needed, hence the need
for two different wavelengths.
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Figure 2.2: Simplified block scheme of the nirsbox (adapted from [25])

Figure 2.2 shows a block scheme of the nirsbox. The light sources are pulsed-diode
lasers, operating in gain-switching mode at 50 MHz, emitting light at 690 nm (average
output power 4 mW) and 830 nm (average output power 3.5 mW), respectively. The light
produced by each source passes through an optical attenuator and is then coupled into a
100 µm graded-index glass optical fiber. In order to obtain a single injection point, the two
input fibers are bundled together. The light scattered by the sample is collected by two
graded-index plastic optical fibers with a core diameter of 0.9 mm and detected by two
silicon photomultipliers with an active area of 1.3 × 1.3 mm2. Time-to-digital conversion
is performed by an application-specific integrated circuit (ASIC), allowing reconstruction
of the distribution of photon time-of-flight (DTOF).

The instrument is connected to a computer, which controls the nirsbox through the
homonym software. This allows to adjust the optical attenuators that regulate the output
laser power, select the integration time for each iteration as well as visualize the DTOF
curves and save the data in real-time. Even though the second detector effectively doubles
the amount of data to be acquired compared to a standard nirsbox, the instrument is
fast enough to calculate both histograms during an iteration before the next one starts.

In a TRS experiment the reflectance is measured as a function of time for a fixed source-
detector separation. However, the resulting curve is not simply the one given by eq. (1.17)
on page 13, but it also contains the response of the measurement setup. More precisely,
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Figure 2.3: Picture of the IRF box used in the setup and example of an IRF

the detected reflectance is:

Rmeas(t) = [Rtheor ∗ IRF](t) =
∫

Rtheor(t′)IRF(t − t′) dt′

where ∗ denotes the convolution product and IRF represent the instrument response
function, that is, the output measured by the device when no sample is present. In an
ideal situation the IRF would be delta-shaped, and the measured curve would coincide
with the theoretical one. Ideally, every time a measurement is performed the IRF is taken
as well. By then convolving the theoretical solution with the measured IRF and fitting
the resulting curve to the measured reflectance it is possible to retrieve the values of the
tissue optical parameters (µa and µ′

s).

In order to measure the IRF of the TRS setup, the custom box represented in fig. 2.3a
was 3D-printed. The three holes on the top are positioned so as to align with the injection
and detection fibers; the inside is coated in aluminium in order to better reflect the light.
An example of IRF is plotted in fig. 2.3b.

2.1.2. DCS setup

The DCS module uses a single CW laser, four single-photon detectors and a time-tagging
module connected to a PC that calculates the autocorrelation of the incoming photon
stream. A block diagram of the setup is presented in fig. 2.4.
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Figure 2.4: Simplified block scheme of the DCS module

The light source is a laser diode (iBeam smart WL by toptica Photonics) emitting
at 784 nm with high coherence length (> 8 m). This feature is critical to DCS, since
the technique is based on measuring the interference of light diffused by the sample.
The maximum reachable output power is 120 mW. The light emitted by the laser is
coupled into a multi-mode glass/silica step-index fiber, whose core diameter is 400 µm.
The diffused light is collected by four single-mode fibers (core diameter 4.4 µm), which
ensure that the coherence of the diffused light is preserved. Four single-photon detectors
(SPCM-AQRH by Excelitas Technologies) work in parallel to convert the light signal
into an electric one. These are silicon avalanche photodiodes with 180 µm active area
diameter, characterized by 250 ps temporal resolution and 20 ns dead time. Finally, the
multi-channel time tagger (TimeTagger 20 by Swabian Instruments) allows digital data
acquisition.

Differently from previously developed systems the DCS module does not make use of
any hardware correlator, relying instead on the time-tagging module that reads the times
of arrival of the incoming photons on the four channels. This raw data must then be
analyzed by the computer. In order to achieve this the C# software shown in fig. 2.5 was
developed, that on top of processing the data also controls the laser source, allowing to
switch it on and off as well as adjust its output power. Once the measurement is started,
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Figure 2.5: Screenshot of the main software window. a) Plots of the g2(τ) functions (one
curve per detector). b) Plot of the g1(τ) function (brown) and the fitting
curve (green). c) Plot of the temporal evolution of the diffusion coefficient
DB(t). d) Count rates detected at each channel.

the time-tagger starts streaming the data to the software, which does the following:

• After the integration time has elapsed, four parallel threads calculate the second-
order autocorrelation functions (one per detection channel) and plot them on-screen.
The GUI also displays the count rates of each channel. Both the autocorrelations
and the count rate are calculated using the APIs provided with the time-tagger.

• The four resulting g2 curves are then averaged to obtain a single one, from which
β is retrieved as β = g2(0) − 1, where g2(0) is calculated as the average of the first
few data points. The value of β is used to calculate g1(τ), which is then fitted with
the theoretical model (eq. (1.21) on page 18) to obtain the diffusion coefficient DB.
A second plot shows the measured g1(τ) curve on top of the resulting fitting one.
The fitting algorithm is provided by the alglib library (www.alglib.net, Sergey
Bochkanov).

• The value of DB obtained from the fit is displayed on a third plot, which shows the
time evolution of this parameter.

• Two data files in binary format are generated, the former containing the raw photon
time-tags and the latter the autocorrelation curves and count rates. A third data
file is updated, adding the new values of DB and β.

www.alglib.net
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• After another integration time has elapsed the process repeats, calculating, display-
ing, fitting and saving the new curves and displaying and saving the fit results.

The fitting and data saving operations are performed on a dedicated thread, which runs
in parallel to the main data acquisition one. This ensures that no time tags are lost during
data analysis.

The software allows the selection of a number of measurement parameters, including the
integration time, how many and which detection channels to use, the refractive index of
the medium, the inter-fiber distance and the fit parameters.

2.2. Software autocorrelation
As explained in section 2.1.2, the real-time software autocorrelation is calculated by the
time-tagger API. However, several additional algorithms have been explored in post-
processing in order to compare their performance, as detailed in section 3.2. These algo-
rithms are illustrated in the following pages.

In a DCS experiment the intensity autocorrelation function is calculated by measuring the
correlation of the electric pulses that come from the detector. Making use of the photon
count rate n(t) (as opposed to the intensity that has been considered in section 1.3.1),
the normalized autocorrelation function can be written as:

gn(τ) = ⟨n(t) n(t + τ)⟩
⟨n(t)⟩2 (2.1)

This equation is based on the assumption that the time resolution of the detection system
is infinite, which is not safe to make in real experiments. In practice, the photon stream
is always integrated over a finite time ∆t, so that in place of n(t) what is measured is
actually the average count rate µ(t):

µ(t) = 1
∆t

∫ t+∆t/2

t−∆t/2
n(t′) dt′ = n(t) ∗ Π(t/∆t)

∆t

where Π(x) represents the rectangle function, that is equal to 1 for |x| < 0.5 and 0
elsewhere. Thus the measured correlation function gµ depends on the resolution ∆t,
being equal to [26]:

gµ(τ) = gn(τ) ∗ Λ(τ/∆t)
∆t

(2.2)

where Λ(x) is the triangular function, equal to 1 − |x| for |x| < 1 and 0 elsewhere.
Equation (2.2) shows that the measured autocorrelation is a smoothed version of the
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Figure 2.6: Error introduced by the finite resolution of the detection electronics for a single
exponential decay, plotted as a function of the ratio between the sampling time
∆t and the decay time t0 of a single-exponentially decaying autocorrelation
function. The various curves represent different values of α = τ/∆t. The
plots refer to the case A = 1. From [26].

actual one, being a good approximation when gn does not vary significantly over time
scales of the order of ∆t. Of course, in the limit ∆t → 0 (infinite temporal resolution)
the triangular function tends to a Dirac delta and gµ → gn.

It can be shown that the error introduced by the triangular average in the case of a single
exponential decay gn(τ) = 1 + A exp(−2τ/t0) is (for τ ≫ ∆t) [26]:

δgµ(τ) = gµ(τ) − gn(τ) = Ae−2τ/t0


[

sinh(∆t/t0)
∆t/t0

]2

− 1


A plot of this error is shown in fig. 2.6 for different values of the ratio α between time
delay τ and resolution ∆t. It can be seen that the error is always positive, the maximum
of the function is always in the range ∆t/t0 ∼ 0.1 ÷ 1, and for large and small values of
∆t/t0 the error decays to zero. As expected, the greater α is, the lower the systematic
error, in particular δgµ is always lower than 10−3 when α > 7. Such a small error can be
easily masked by shot noise if measuring time or count rate are not too high. Finally, the
reported case constitutes a “worst-case scenario”, since it can be shown that for multi-
exponential decays the error will always be bounded by the one calculated here [26].
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Figure 2.7: Schematic representation of the multi-tau scheme in the case P = 9, m = 3.
Only the first four linear correlators are represented. The rectangles represent
the bin size of each correlator, and the white ones are those that overlap with
the previous correlator and are therefore discarded.

Multi-tau algorithms are based on a simple consideration: as long as the lag time τ is much
greater than the sampling time ∆t (α is high), there is no point in sampling the signal
over time scales that are smaller than τ by orders of magnitude. Thus, before computing
the autocorrelation function at time τ the signal is averaged over an integration time ∆t

chosen so as to keep α higher than a selected value. This way it is possible to reach high
levels of accuracy while keeping computational efforts low, especially for big values of τ .

2.2.1. Classic multi-tau autocorrelation algorithm

This algorithm is based on a set of S linear correlators, with an integration time ∆ts that
increases exponentially:

∆ts = ms∆t0 s = 0, 1, . . . , S − 1

where ∆t0 is the binning rate of the counter and m the binning ratio. This way, if the first
linear correlator is fed N0 data points, the s-th correlator handles m−sN0 points. Each
correlator computes the autocorrelation function of the input stream, averaged over ∆ts

on a set of equally spaced lag times:

τs(p) = p∆ts s = 0, 1, . . . , S − 1

with p = 0, 1, . . . , P − 1, where P is the size of an array called shift register that is equal
for all the correlators. This way, the first P/m bins of the s-th correlator overlap with all
the bins of the (s − 1)-th one, and are therefore discarded as shown in fig. 2.7. The lowest
lag time for each correlator is τs, min = (P/m)∆ts, therefore the corresponding minimum
value of α is αmin = P/m and the actual values of P and m can be chosen as needed. In
most hardware correlators P = 16 and m = 2.
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Each linear correlator uses the following algorithm for computing the autocorrelation.
First, the shift register is loaded with the first P points. Then, the data stream is
processed as follows. The latest datum is used to update the shift register: all of its
components are moved to the right, the last one is discarded and the first one is replaced
with the latest datum. Finally, all the components are multiplied by the latest datum, and
the results are summed up in the autocorrelation array. Each multiplication corresponds
to a different lag time on the same set of linear correlators.

2.2.2. Asynchronous autocorrelation algorithm

This algorithm, described in [27], works directly on the arrival times of the photons,
without converting them into time-binned data beforehand. First, an integer B is chosen,
from which a set of logarithmically spaced lag times is created:

τj =

1 if j = 1

τj−1 + 2⌊(j−1)/B⌋ if j > 1

where ⌊x⌋ denotes the integer part of x. The result is a set of jmax = PB values of τ

aggregated in P groups of B elements each with equal spacing of 2⌊j/B⌋.

The asynchronous algorithm then works as follows. For a given lag time τ̄ , a vector of
shifted arrival times {t′

k} is calculated starting from the arrival times {tk} as {t′
k} =

{tk} + τ̄ , and the value of the correlation for τ = τ̄ is set to 0. Then the first array is
scanned starting from the first element until the first tj is found such that tj ≥ t′

1. If tj = t′
1

then the autocorrelation for τ = τ̄ is incremented by one. At this point, the algorithm
switches to operating on the second vector, and starts scanning for the first value t′

j1 that
is greater than or equal to tj1 . If t′

j1 = tj1 then the value of the autocorrelation for τ = τ̄ is
again increased by one. The algorithm then switches back to the first vector and iterates
the procedure until the last entries of both vectors are reached. This way, the obtained
quantity is proportional to the probability that a photon was detected at time t+τ , given
that another one was detected at t.

This version of the algorithm however loses any information on periodic signals with a
repetition time not included in the vector of lag times τ . To circumvent this, an averaging
procedure is applied to coarsen the time resolution, that works as follows. In addition to
the vectors {tk} and {t′

k}, all times are associated to weights {wk} and {w′
k} which are all

initially set to 1. When an equality tj = t′
ℓ is found, the autocorrelation is incremented by

the product wjw
′
ℓ. Then, after a cascade of B lag times has been processed, all values {tk}

used in the previous cascade are divided by 2 and rounded to the nearest lower integer.
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This can lead to repeated consecutive entries, which are condensed into a single one, whose
weight is increased by the sum of the weights of the eliminated entries. Finally, in order
to correct for the varying time scale, at each lag time τj the calculated autocorrelation
must be divided by 2⌊j/B⌋.

2.2.3. FFT-based autocorrelation algorithm

Finally, a simpler algorithm harnesses the efficiency of the well-known Fast Fourier Trans-
form (FFT) [24]. The unnormalized second-order autocorrelation function G2(τ) =
⟨I(t)I(t + τ)⟩ is similar to a convolution product of the intensity with itself, with the
difference that in the latter case the intensity is not only shifted, but also flipped. There-
fore, the autocorrelation function can be obtained as the convolution of I(t) with I(−t):

G2(τ) = [I(t) ∗ I(−t)](τ)

Thanks to the convolution theorem, the convolution product can be reduced to a simple
algebraic one by moving to the frequency domain:

G2(τ) = F −1{F{I(t)}F{I(−t)}} = F −1{Ĩ(ν)Ĩ∗(ν)} = F −1{|Ĩ(ν)|2}

where F{·} indicates the Fourier transform and Ĩ(ν) = F{I(t)}. Note that this result
is the Wiener-Khinchin theorem, according to which an autocorrelation in the temporal
domain corresponds to a square modulus operation in the frequency one.

Since the Fourier transform can be implemented efficiently by the FFT algorithm, the
autocorrelation can be obtained in a very fast and stable manner. Note however that this
algorithm is not a multi-tau one, since the FFT uses linearly spaced bins as opposed to
logarithmically spaced ones.
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“I don’t want to believe. I want to know”

– Carl Sagan

In order to assess the performance of both the TRS and DCS modules, a number of
measurements were carried out on phantoms. These experiments are described in the
present chapter, along with the results obtained.

3.1. Time-domain reflectance measurements
The nirsbox was characterized in terms of stability, linearity and accuracy. For the
stability measurement the DTOF photon counts, barycenter position and full width at
half-maximum (FWHM), as well as the retrieved optical parameters were measured for a
long time. The goal was to reveal possible short- or long-term drifts of the measurands
in time as well as fluctuations, which would be undesirable for clinical applications such
as long-time monitoring.

To assess linearity and accuracy, the measured µa and µ′
s were compared with the ones

yielded by a previously built instrument (a multi-wavelength TRS system used in the
phood laboratory [28]). Accuracy is critical for absolute measurements, to ensure that
the instrument can retrieve physiological information correctly (such as oxy- and deoxy-
hemoglobin concentration in tissue). Linearity is instead crucial for relative measure-
ments, that is to be able to follow variations of such parameters in time without distor-
tion.

The stability, linearity and accuracy of the TRS module were assessed through a set of
measurements employing 32 solid phantoms, as prescribed by the medphot protocol [29].
These are epoxy resin phantoms labelled by a letter (A to D) and a number (1-8), referring
to their scattering and absorption, respectively. In particular, the reduced scattering
coefficients at 800 nm range from ≃ 5 cm−1 for the A series to ≃ 20 cm−1 for the D series,
in steps of 5 cm−1; the absorption coefficients at the same wavelength range from ≃ 0 to
≃ 0.49 cm−1 in steps of 0.07 cm−1.
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3.1.1. Stability measurement

The B3 phantom was chosen for the stability measurement, due to its optical parameters
resembling those of human tissue (µ′

s ≃ 10 cm−1, µa ≃ 0.14 cm−1). The inter-fiber distance
was set to 3 cm for both detection channels, whose fibers were placed 2 cm apart. The
optical attenuators were adjusted so as to detect about 106 photons on channel 1 for every
reflectance curve. The measurement lasted about 4 hours, with integration time 1 s and
detectors operating in parallel.

The time evolution during the measurement of the photon counts, full width at half-
maximum (FWHM) and barycenter position of the curves is shown in figs. 3.1 to 3.3,
while the time trace of the optical parameters is plotted in figs. 3.4 and 3.5 for both
detectors and wavelengths. With the exception of the FWHM (fig. 3.3), whose average
value is constant over the whole measurement, after an initial transitory of about 30
minutes (1000 repetitions) the instrument reaches stability, and the measured quantities
are stationary. In all cases the oscillations stay within 3% of the mean value for the whole
duration.

The values of the optical parameters retrieved by the two channels show small discrep-
ancies (less than 2%) at 690 nm (fig. 3.4). This could be caused by inhomogeneities of
the phantom, as well as thermal differences between the detectors; indeed detector 1 is
placed inside the nirsbox, while detector 2 sits outside on top of the instrument (fig. 2.1
on page 22).
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Figure 3.1: Time evolution of the number of photons making up each curve during the sta-
bility measurement for both detection channels. The dashed lines are placed
at ±3% of the respective values at regime.
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Figure 3.2: Time evolution of the position of the barycenter of the photon time-of-flight
distribution during the stability measurement for both detection channels.
The dashed lines are placed at ±3% of the respective values at regime.
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Figure 3.3: Time evolution of the FWHM of the photon time-of-flight distribution during
the stability measurement for both detection channels. The dashed lines are
placed at ±3% of the respective values at regime.
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Figure 3.4: Time evolution of the optical parameters at λ = 690 nm during the stability
measurement for both detection channels. The dashed lines are placed at
±3% of the respective values at regime.
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Figure 3.5: Time evolution of the optical parameters at λ = 830 nm during the stability
measurement for both detection channels. The dashed lines are placed at
±3% of the respective values at regime.
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3.1.2. Linearity and accuracy measurements

To assess the linearity and accuracy of the instrument, a measurement on the full set of
medphot phantoms was carried out. Each of the 32 phantoms was measured for 40 s
with 1 s integration time so as to obtain 20 reflectance curves at each wavelength. Like
the stability measurement, the optical attenuators were set so that detector 1 received
about 106 photons per curve. The inter-fiber distance was 3 cm for both channels, whose
detection fibers were placed 2 cm apart.

The values of µa are plotted in figs. 3.6 to 3.9 for the various scattering series, while
the values of µ′

s are plotted in fig. 3.10. Both detection channels yield compatible values
of the absorption and scattering coefficients across all phantoms. For highly absorbing
ones (series 5-8) the values of µa measured are higher than the ones provided by the other
instrument, but they show higher linearity. The phantoms with higher levels of absorption
and scattering (C8, D6, D7, D8) give bigger error bars for both µa and µ′

s. This is due to
the photons being absorbed or scattered away before reaching the detector, which results
in lower signal-to-noise ratios: the peaks of the reflectance curves are higher than the
background by one decade or less. This in turn causes less robust fitting of the resulting
curves.

Figures 3.11 and 3.12 show the values of the optical parameters measured by the nirsbox
compared to the “nominal” ones of the phood instrument. In these plots each point
represents an absorption (fig. 3.11) or scattering (fig. 3.12) series as measured by one
detector, having as coordinates the average absorption (reduced scattering) coefficient
across all phantoms of the same absorption (scattering) series. In particular, the horizontal
coordinate is the average value yielded by the multi-wavelength instrument, while the
vertical one is the one measured by the nirsbox. As already observed, the concordance
on the values of µa is not perfect, while for µ′

s there is good agreement both at 690 nm
and at 830 nm.

The relative errors on the estimation of the optical parameters are reported in table 3.1.
The high relative errors of the absorption coefficients for series 1 are caused by the low
absolute values of µa of these phantoms (< 0.01 cm−1). Because of this, to obtain mean-
ingful values, the average error calculated in table 3.1a refers to phantoms belonging to
series 2-6, whose absorption coefficients mimic those of human tissue. For both optical
parameters, at a given wavelength the two detection channels yield very similar average
errors.
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Figure 3.6: Values of µa of the phantoms of the medphot A series measured by each
channel and by the phood instrument.
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Figure 3.7: Values of µa of the phantoms of the medphot B series measured by each
channel and by the phood instrument.
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Figure 3.8: Values of µa of the phantoms of the medphot C series measured by each
channel and by the phood instrument.
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Figure 3.9: Values of µa of the phantoms of the medphot D series measured by each
channel and by the phood instrument.
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Figure 3.11: Values of µa of the medphot phantoms measured by each channel plotted
against the ones yielded by the phood instrument.
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48 3| Phantom measurements

Table 3.1: Relative errors of µa and µ′
s measured by the nirsbox vs the multi-wavelength

phood instrument

(a) Error on µa

Relative error (%)
Absorption series 690 nm 830 nm

Channel 1 Channel 2 Channel 1 Channel 2
1 40.9 48.7 25.9 23.9
2 0.9 1.5 4.0 2.9
3 1.3 2.2 3.7 2.7
4 1.9 2.9 3.2 2.9
5 2.7 2.8 5.0 5.3
6 3.7 2.6 4.6 5.4
7 5.5 2.4 5.5 7.1
8 6.7 2.8 7.7 9.7

Average (2-6) 2.1 2.4 4.1 3.8

(b) Error on µ′
s

Relative error (%)
Scattering series 690 nm 830 nm

Channel 1 Channel 2 Channel 1 Channel 2
A 4.4 6.2 0.7 0.8
B 4.1 2.7 4.6 4.2
C 4.5 5.0 3.1 2.9
D 7.7 7.1 0.5 0.2

Average 5.2 5.2 2.2 2.0
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3.2. Comparison among autocorrelation algorithms
As for the DCS module, a set of measurements were carried out in order to compare the
performance of the following methods of calculating the autocorrelation curves:

1. Classic multi-tau autocorrelation algorithm (detailed on page 29).

2. Asynchronous autocorrelation algorithm (detailed on page 30).

3. FFT-based autocorrelation algorithm (detailed on page 31).

4. Autocorrelation algorithm provided by the API of the time-tagger.

5. Hardware correlator (ALV-7004/USB-FAST by ALV GmbH) installed on a previ-
ously built DCS instrument [21] that uses the same laser source, fibers and detectors
as the one developed in this work. The correlator implements the classic multi-tau
algorithm with P = 16 registers and a binning ratio m = 2, and has a temporal
resolution of 3 ns.

The algorithms were compared in terms of speed, stability and capability of following
variations of the autocorrelation curves due to different factors.

The stability measurement was carried out in order to gauge the fluctuations of the DB

and β parameters over a long measurement time. The lower the amplitude of these
oscillations, the more reliable the algorithm is on a single measurement.

As shown in fig. 1.2a on page 19, the autocorrelation curve exhibits different decays for
different values of the diffusion coefficient. This parameter in turn depends on temperature
and viscosity, according to the Einstein relation [30]:

DB = kBT

6πrη
(3.1)

where kB is the Boltzmann constant, T the absolute temperature, r the radius of the
scattering particles and η the dynamic viscosity of the solution. In order to test how well
the algorithms can follow variations of the correlation curve, measurements on phantoms
with different viscosities were carried out. The effect of T was instead not investigated,
since at higher temperatures the phantoms behave irregularly due to chemical changes in
their constituents.

On top of depending on DB, the decay of the autocorrelation also depends on the source-
detector separation, as shown in fig. 1.2b on page 19. Measurements at different inter-fiber
distances were therefore carried out as well.
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Figure 3.13: Example of autocorrelation curves calculated with the five different algo-
rithms

For the first three algorithms, the raw arrival times of the photons were saved during
the measurement and a matlab (Mathworks, Inc.) software later calculated the au-
tocorrelations in post-processing. The other two acted instead in real time, processing
data on-the-fly during the measurement. The photon count rate was the same in all the
experiments.

Figure 3.13 shows an example of the curves obtained with the aforementioned algorithms.
It can be noticed that they all exhibit approximately the same decay, but different levels
of noise. In particular, the autocorrelation calculated by the time-tagger (purple curve) is
much noisier than the other ones, especially for small values of τ . The FFT curve (blue)
has many more data points (∼ 5 × 107) than the other ones (∼ 200), and these points
become denser on the logarithmic axis for higher values of the time delay. This effect,
which causes the noisy tail, is due to the linearly spaced values of τ used by the FFT
algorithm.

As for time performance, the asynchronous algorithm proved to be the fastest one, taking
about 0.6 ÷ 1.0 s per curve for a count rate of 150 kHz. Each curve took 5 ÷ 7 s to be
calculated with the FFT-based algorithm, while the classic multi-tau one was the slowest,
taking 150 ÷ 180 s. It should be noted however that these times strongly depend on the
computational power of the PC used, so they should not be viewed as absolute. Rather, it
is their ratio that is significant and allows to compare the speeds of the various algorithms.
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3.2.1. Stability measurement

The first measurement that was performed was a stability one. The goal was to assess
the coefficients of variation of both DB and β, that is, the ratios between the stan-
dard deviations and the averages of these quantities over the whole measurement time:
CV(x) = σ(x)/ ⟨x⟩

The measurement lasted for 300 s, with integration time 1 s (one correlation curve calcu-
lated every second). The phantoms used were composed of distilled water, Intralipid and
black India ink. The relative concentrations of Intralipid and ink were chosen so as to
mimic typical values of optical parameters in human tissue (µ′

s ≃ 10 cm−1, µa ≃ 0.1 cm−1).
The inter-fiber distance was set to 1.5 cm and a single detection channel was used. The
photon count rate during the measurement was about 150 kHz.

The average value of DB retrieved by fitting the different autocorrelation curves is plotted
in fig. 3.14. As can be seen, the autocorrelation provided by the time-tagger has the worst
stability, with an error bar spanning one order of magnitude upward. Moreover, its average
value is much higher than the one obtained with the other algorithms. As for the other
algorithms, as shown in fig. 3.14b they all yield compatible values of DB, with relatively
low variations.

Figure 3.15 shows the average value of β retrieved by analyzing the different curves.
Rather than coming from a fitting procedure, as explained in section 2.1.2 this parameter
was obtained directly from the data as β = g2(0) − 1, and g2(0) was estimated as the
average of the first few data points. Again, the algorithm of the time-tagger shows the
highest variability; this is in line with what was already observed in fig. 3.13: the Swabian
curve is much noisier than the other ones in the region used to estimate β. Nevertheless,
all the curves show approximately the same value of β, in line with the fact that they all
have similar values for low time delays τ .

The coefficients of variation of both DB and β for the various algorithms are plotted in
figs. 3.16 and 3.17. The data relative to the time-tagger have been omitted for clarity, since
as already observed both values are much higher than the ones of the other algorithms.
As for DB (fig. 3.16), all values are lower than 5% except for the FFT. This is likely due
to the difficulty in finding the right fitting interval for its curve, due to the linearity of
the time bins and abundance of data points. The situation is different for the CVs of β

(fig. 3.17), which are all similar to one another. This is in line with the corresponding
curves of fig. 3.13 having similar fluctuations for low time delays. Finally, in all cases the
CV of β is lower than the one of DB. Indeed, the value of β is retrieved directly from the
curves, with a procedure that is more robust than fitting.
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(a) All algorithms

(b) Without Swabian

Figure 3.14: Average value of the diffusion coefficient DB over the whole stability mea-
surement yielded by the different algorithms
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Figure 3.15: Average value of the parameter β over the whole stability measurement
yielded by the different algorithms

Figure 3.16: Coefficient of variation of DB over the stability measurement relative to the
various algorithms (Swabian excluded)
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Figure 3.17: Coefficient of variation of β over the stability measurement relative to the
various algorithms (Swabian excluded)

3.2.2. Variable viscosity

In the second measurement four different phantoms were employed, each one containing
a different concentration of glycerol (from 0% to 30%, in steps of 10%). Glycerol affects
the dynamic viscosity η of the solution, which in turn changes the value of the Brown-
ian diffusion coefficient according to eq. (3.1). In particular, by increasing the glycerol
concentration the viscosity η increases, so we expect lower values of DB. The goal of
the measurement was to assess how well the different algorithms are able to follow the
variations of DB caused by the different viscosities.

Each phantom was measured for 30 s, with integration time 1 s. The inter-fiber distance
was set to 1.5 cm and a single detection channel was used. The count rate was about
150 kHz for all phantoms.

The average values of DB and β are shown in fig. 3.18. As can be seen in fig. 3.18a, all
algorithms except for the time-tagger one are able to detect the decrease of DB caused
by the increasing concentrations of glycerol. On top of showing the highest variability,
the algorithm implemented by the time-tagger is also wildly inaccurate at times, yielding
values of DB that are one order of magnitude greater than the others for the phantoms
with 0% and 30% glycerol concentration (not shown on the plot). All algorithms give
similar values of β (fig. 3.18b), with the classic multi-tau algorithm providing the smallest
one and the FFT and time-tagger the highest across all phantoms.
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(a) Average DB

(b) Average β

Figure 3.18: Average values of DB and β yielded by the different algorithms for the various
levels of viscosity
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(a) CV of DB

(b) CV of β

Figure 3.19: Coefficients of variation of DB and β yielded by the different algorithms for
the various levels of viscosity
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The coefficients of variation for both DB and β are plotted in fig. 3.19. Figure 3.19a shows
that the FFT and time-tagger algorithms exhibit the highest variabilities (for the 0% and
30% phantoms the time-tagger CV is ≃ 500%). All the other algorithms have an error of
about 5%, with the hardware correlator staying consistently below this threshold. As for
β (fig. 3.19b), all algorithms consistently show stabilities within 3% across all phantoms,
except the time-tagger one, whose CV is always higher than 10%.

3.2.3. Variable source-detection separation

Finally, a measurement at varying inter-fiber distances was performed. As shown in
fig. 1.2b on page 19, the further apart the injection and detection points are, the sooner
the scattered light loses correlation. The goal of the measurement was to test how well
each algorithm is able to follow such variation in the autocorrelation curve.

The phantom was measured for 30 s at each inter-fiber distance, with integration time 1 s.
Three detection fibers were placed 1 cm, 1.5 cm and 2 cm away from the injection point,
respectively and were connected to three detectors. The count rate was 150 kHz.

The average values of DB and β retrieved are plotted in figs. 3.20 and 3.21. Figure 3.20
shows that the time-tagger algorithm exhibits the highest variability for both DB and β,
overestimating the value of the former by one order of magnitude at the shortest inter-fiber
distance. Figure 3.21 reports the same results for the other algorithms. As can be seen,
the asynchronous, hardware and multi-tau correlations all agree on the value of DB, which
as expected is independent of the inter-fiber distance (fig. 3.21a). The FFT algorithm on
the other hand yields a higher value; this discrepancy is likely due to the difficulty in
fitting the data caused by the linearity of data points. As for β (fig. 3.21b), the hardware
correlator consistently measures a lower value across all distances. This effect, which was
not observed in the previous experiments, could be due to measurement problems. The
other algorithms suggest an increase in β when the source-detector separation increases
from 1 cm to 1.5 cm.

3.2.4. Conclusions

In light of the conducted experiments, the time-tagger algorithm used in the setup is the
worst in terms of both accuracy and precision among the investigated ones. It has however
the advantage of speed, being able to calculate the autocorrelation curves in real time.
This makes it suitable for giving a first visualization of the data during the measurement,
since it is able to follow at least qualitatively the variations of DB.
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(a) Average value of DB

(b) Average value of β

Figure 3.20: Average values of DB and β yielded by the different algorithms for the various
inter-fiber distances
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(a) Average value of DB

(b) Average value of β

Figure 3.21: Average values of DB and β yielded by different algorithms (time-tagger
omitted) for the various inter-fiber distances
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For post-processing, where speed is not an issue, one of the other more precise and accurate
algorithms should be preferred instead. The best candidates are the classic multi-tau and
asynchronous ones, which perform similarly in terms of both accuracy and precision. In
particular, while the classic algorithm sacrifices speed for accuracy, the asynchronous one
is also rather fast, and with sufficiently powerful computational hardware could potentially
be integrated in an experimental setup, to provide a real-time monitoring that is accurate
and stable.
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“We can only see a short distance ahead,
but we can see plenty there that needs to be done”

– Alan Turing

This thesis work focused on the development and characterization of an innovative com-
pact instrument for hemodynamic and metabolic measurements. The device makes use of
non-invasive diffuse-optics techniques, namely NIRS (more precisely TRS) and DCS. In
particular, NIRS allows the measurement of oxy- and deoxy-hemoglobin concentrations
and tissue oxygen saturation, while DCS provides quantitative information on blood flow.

As for TRS, the device makes use of a state-of-the-art TD-NIRS system featuring two laser
sources at different wavelengths, as well as two detection channels. The former feature
is needed in order to measure the concentrations of oxy- and deoxy-hemoglobin in tissue,
while the latter potentially allows to separate the contribution of the superficial layer from
that of deeper tissue. The TRS module was assessed in terms of stability, linearity and
accuracy. The stability measurement showed that the instrument reaches a stationary
regime in 30 minutes, after which the mean values of the measured optical parameters
remain constant. Additionally, their oscillations stay within 3% of the mean value the
whole time. Finally, the two detectors yield the same values within a 2% margin. The
linearity and accuracy measurements validated the instrument against a previously built
one. They showed good agreement between the two devices, with the one developed in
this thesis being closer to linearity in some cases. Overall, these results suggest that the
device is suitable for both absolute and relative measurements.

Just like the NIRS module, the DCS one features multiple detection channels, bringing
the same advantages already discussed to blood flow measurements as well. Alternatively,
employing all detectors to collect the signal from the same point allows to reduce noise.
Differently from previously built systems, which relied on dedicated hardware to calculate
the autocorrelation, the one developed here makes use of a software algorithm to achieve



62 4| Conclusions and future developments

the same task. This ultimately allows for more flexibility, as well as holding potential for
pre- and post-processing of the signal. Different algorithms were explored and compared in
terms of stability as well as capability of following variations in sample viscosity and inter-
fiber distance. The experiments showed that, though very fast, the algorithm provided by
the time-tagging module built into the device is both inaccurate and extremely imprecise,
making it a poor choice for anything but a qualitative visualization of the data during the
measurement. On the other hand, the explored asynchronous multi-tau autocorrelation
algorithm showed performance comparable to that of hardware correlators while still
keeping computation time low. This makes it a great choice for analyzing the data not
only in post-processing, but potentially in real-time too: a future version of the device
could implement this algorithm in place of the time-tagger one.

In this thesis the TRS and DCS modules were designed and assessed separately, but to
work as intended they ought to be integrated in the same instrument. The software that
was developed to control the DCS components could then be expanded to govern the
TRS one as well. This can be readily achieved through the DLLs that are available for
the nirsbox. Additionally, issues such as the synchronization of the two modules and
cross-talk of the laser sources would need to be addressed. It would then be possible
to make the complete measurement of oxy-, deoxy- and total hemoglobin concentration,
tissue oxygen saturation and blood flow index as well as visualize the data through a
single interface.

The device developed in this thesis lends itself to several applications. A multi-distance
system allows the implementation of a more complex multi-layer model in place of the
simple homogeneous one. While the latter is more sensitive to superficial tissue, the
former would allow to separate the contributions of deeper tissue from those of the top
layers [31]. Multi-distance devices allow to investigate blood flow and oxygenation of
skeletal muscles [32] (such as those of the arm and the leg) and head [31]. Besides
blood flow, DCS allows to observe directly skeletal muscle contraction [33] and neuronal
activity [34]: both of these applications require sub-second integration times, which are
achievable thanks to the flexible software autocorrelator as well as the multiple detection
channels, which allow to reach higher signal-to-noise ratios.
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Variable Description SI unit

D diffusion coefficient (Fick’s law) m
DB diffusion coefficient (Brownian motion) m2 s−1

g anisotropy factor [−]
g1 normalized first-order autocorrelation [−]
gs

1 normalized first-order autocorrelation
(single-scattering regime)

[−]

G1 first-order autocorrelation V2 m−2

GT
1 transport first-order autocorrelation V2 m−2 sr−1

g2 normalized second-order autocorrelation [−]
G2 second-order autocorrelation W2 m−4

h Planck’s constant J s
I radiance W m−2 sr−1

optical intensity W m−2

J flux vector W m−2

k0 wave number of light m−1

kB Boltzmann constant J K−1

ℓa absorption mean free path m
ℓ′ transport mean free path m
ℓeff effective attenuation length m
n refractive index [−]
n̂ normal unit vector [−]
p scattering phase function [−]
q0 isotropic source term W m−3

Q0 isotropic source amplitude J
q1 directional source term W m−3

r radial coordinate m
radius of a particle m
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⟨∆r2⟩ mean-square displacement of moving
scatterers

m2

r position vector m
R reflectance W m−2

Reff effective Fresnel reflectance [−]
ŝ direction unit vector [−]
t time s
dt unit time s
T absolute temperature K
U photon density m−3

v speed of light m s−1

dV unit volume m3

z depth coordinate m
z0 source depth m
zb extrapolated boundary m
zs extrapolated source depth m

α fraction of moving scatterers [−]
β Siegert relation parameter [−]
ε radiative source term W m−3 sr−1

η dynamic viscosity kg m−1 s−1

θ scattering angle rad
λ optical wavelength m
µa absorption coefficient m−1

µs scattering coefficient m−1

µ′
s reduced scattering coefficient m−1

ν optical frequency Hz
ρa volumetric density of absorbers m−3

ρs volumetric density of scatterers m−3

σa absorption cross section m2

σs scattering cross section m2

dΣ unit surface area m2

τ time delay s
Φ fluence W m−2

dΩ unit solid angle sr
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