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Abstract

This dissertation introduces a Convolutional Neural Network (CNN) based pipeline for
estimating the pose of an uncooperative spacecraft using a single grayscale monocular
image. Close-proximity autonomous navigation about an uncooperative spacecraft is a
crucial problem in the modern space industry for in-orbit servicing missions as well as
Active Debris Removal (ADR) operations. Using a low Size-Weight-Power-Cost (SWaP-C)
sensor like a monocular camera is preferred over heavier and more energy consuming
sensors, but introduces the need of a very robust software to perform pose estimation.
The main contribution of this work is AIKO-NET, a multi-task, deep learning based
CNN that leverages state-of-the-art architectures to enable the parallelization of diverse
yet related tasks that synergically contribute to the main task: the proposed software
is capable of localizing the target and extracting features such as keypoints Heatmap,
Depthmap, Normalmap and Shadowmap from a single grayscale image. Ultimately, the
relative pose estimation is performed by the means of two different methods: the direct
approach consists in retrieving the 6D pose directly as the EfficientPose head output; the
indirect one relies on the predicted heatmaps and exploits the Efficient Perspective-n-
Point (EPnP) algorithm to deliver an estimate of the pose. Despite the Next-Generation
Spacecraft PosE Estimation Dataset (SPEED+) is the benchmark dataset in this field, the
data-centric nature of this project made it necessary to generate a new one from scratch:
the Multi-Feature Spacecraft Pose Estimation Dataset (MFSPED) introduces three novel
feature maps and fuels the aim of this research of testing a modular, extensively multi-task
approach. Finally, AIKO-NET is embedded in a complete pipeline consisting of relative
trajectory simulation, images sequence generation, pose estimation and position filtering
through an Extended Kalman Filter (EKF). The work presented in this dissertation
guaranteed a millimeter-level and degree-level accuracy on relative position and orientation
predictions respectively, as resulted from testing on synthetic imagery from MFSPED. The
work has been developed with an eye on future improvements of the whole pose prediction
pipeline and implementation of techniques to overcome problems such as domain gap.
Keywords: spacecraft pose estimation, monocular camera, multi-task learning, deep
learning, autonomous navigation
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Abstract in lingua italiana

Questa tesi presenta una pipeline basata su una rete neurale convoluzionale (CNN) per la
stima della posa di un satellite non cooperativo utilizzando un’unica immagine monoculare
in scala di grigi.
La navigazione autonoma in prossimità di un satellite non cooperativo è un problema
cruciale nell’industria spaziale moderna, che sta suscitando interesse per applicazioni quali
missioni di servizio in orbita e operazioni di rimozione di detriti spaziali (ADR). L’uso di
sensori leggeri, poco costosi e a basso consumo energetico come le fotocamere monoculari
è preferibile rispetto a sensori più pesanti e ad alto consumo energetico, ma implica lo
sviluppo di software più robusti per una stima della posa efficace e accurata.
Il contributo principale di questo lavoro è AIKO-NET, una CNN basata su logiche multi-
task e su tecniche di deep learning. La rete sfrutta architetture allo stato dell’arte
per consentire l’esecuzione parallela di compiti diversi ma correlati che contribuiscano
sinergicamente alla stima della posa relativa. AIKO-NET è in grado di localizzare il target
nell’immagine e di estrarre le seguenti feature: Heatmap relative a punti del satellite
pre-selezionati, Depthmap, Normalmap e Shadowmap. Inoltre, esegue la stima della posa
relativa attraverso due metodi: l’approccio diretto consiste nel recuperare la stima della
posa 6D direttamente dall’output della "prediction head" EfficientPose; quello indiretto si
basa sulle heatmap ed utilizza l’algoritmo Efficient Perspective-n-Point (EPnP) per fornire
una stima accurata della posa.
Nonostante il "Next-Generation Spacecraft PosE Estimation Dataset" (SPEED+) sia il
dataset di riferimento in questo campo, la natura datacentrica di questo progetto ha reso
necessario costruire un nuovo dataset da zero: il "Multi-Feature Spacecraft Pose Estimation
Dataset" (MFSPED) introduce tre nuove feature maps e rende possibile l’analisi di un
approccio modulare e estensivamente multi-task.
Infine, AIKO-NET viene introdotta in una pipeline completa, composta dalla simulazione
di traiettorie relativa, generazione delle rispettiva sequenze di immagini, stima della posa e
applicazione di un "Extended Kalman Filter" (EKF) per la posizione. Il lavoro presentato
in questa tesi ha dimostrato una precisione millimetrica nella stima della posizione e
dell’ordine del grado nella stima dell’orientamento sulle immagini sintetiche di MFSPED.



Questo progetto è stato sviluppato tenendo in considerazione la possibilità di sviluppi
futuri e l’implementazione di tecniche per affrontare problemi tipici di questo dominio
come il domain gap.
Parole chiave: stima della posa di un satellite, immagine monoculare, approccio multi-
task, deep learning, navigazione autonoma
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1| Introduction

1.1. Problem statement and motivation

Pose estimation of uncooperative spacecrafts is a crucial problem in modern space op-
erations [43]. An uncooperative spacecraft is one that lacks supportive means such as
light-emitting markers and cannot establish a communication link, which makes it difficult
to determine its position and orientation.
This dissertation aims to address this problem in a close-proximity scenario through a
system capable of estimating the relative pose of an uncooperative S/C from a single
grayscale monocular image.
In recent years, this approach has become increasingly interesting and important due to
its potential to support various mission concepts aimed at ensuring the sustainability of
near-Earth space, such as refueling space assets, Active Debris Removal (ADR), extending
the functional lifetime of spacecrafts, performing in-situ Space Situational Awareness
(SSA) or inspection to diagnose orbiting objects. By estimating the relative pose of the
target spacecraft in real time, an autonomous servicer spacecraft can generate safe and
fuel-efficient rendezvous and docking trajectories. Furthermore, a new rule adopted by the
FCC on the 29th of September 2022 addresses the growing risk of orbital debris requiring
satellite operators in LEO to dispose of their satellites within 5 years of completing their
missions [10], shortening the decades-old 25-year guideline for deorbiting satellites post-
mission. This may also open other scenarios for the application of some of the solutions
discussed in this dissertation, such as the removal of satellites that reach their end-of-life
(EOL) and that are not pre-engineered for servicing.
Two main approaches exist to estimate the pose of an uncooperative target S/C: ground-
based and spaceborne solutions. However, the use of the former approach is unfeasible
for accurate estimation, because of the inherent high uncertainty when observing a small,
far away object from a ground station on Earth, and because of the dependency on the
S/C visibility [43]. On the other hand, using onboard sensors such as Light Detection And
Ranging devices (LiDAR) and/or stereo cameras overcome these problems, but such instru-
ments can be expensive, heavy and highly energy consuming. An optimal solution would
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be found in a low Size-Weight-Power-Cost (SWaP-C) sensor, like a grayscale monocular
camera, that also fits the limited onboard capacity of small spacecraft such as Cubesats.
Of course, there are significant challenges associated with using a monocular camera for
relative pose estimation, the first of which is the high complexity of the image process
algorithms required to extract the necessary information and the weaker robustness to
lighting conditions and variable backgrounds compared to LiDAR [43].
Despite these challenges, the estimation of the relative pose by means of a SWaP-C monocu-
lar camera is an appealing possibility, especially within the framework of on-orbit servicing
missions. Among the most innovative missions in this framework, ESA ClearSpace-1 [2] is
the first that will rendezvous with, capture and bring down a large derelict object: this is
the first example of Active Debris Removal mission, and is planned to be launched in 2026.
NASA OSAM-1 (On-orbit Servicing, Assembly, and Manufacturing 1) [5] servicer will
rendezvous with, grasp, refuel, and relocate a US government-owned satellite to extend its
life. This mission is scheduled for launch in 2024 and will demonstrate various world’s
firsts from the refueling of a satellite not designed to be serviced, to In-space robotic
precision assembly. Between the private companies taking part in the new rising space
economy, Northrop Grumman [25], Astroscale [11], D-Orbit [3], Infinite Orbits [4] and
AIKO [1] are pioneering in-orbit servicing and space logistics.
In conclusion, accurate estimation of the relative pose of uncooperative spacecraft using
minimal hardware is critical in various space scenarios. The use of a monocular camera
for pose estimation represents a promising solution due to its low cost, light weight,
and suitability for a range of space missions. However, significant challenges need to be
overcome in terms of algorithm complexity and robustness. With the upcoming space
missions and the growing importance of space operations, the development of accurate
and cost-effective relative pose estimation methods will continue to be a critical research
area in the future.

1.2. State of the art

In this section, the current state-of-the-art (SOTA) techniques used for spacecraft pose
estimation from a monocular image are presented. All the image-processing algorithms
share the common logic of recognizing and locating specific semantic features of the space-
craft within the image frame. These features are then used by some kind of subsystem to
match these features to the prediction of the pose.
There are three main approaches for pose estimation: pure feature-based estimation, pure
deep learning estimation, and hybrid methods [15]. The earliest methods proposed for
relative pose estimation in space were feature-based, relying on hand-crafted features (like
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corner [49] or edges [18]) extracted from a single image of the target, along with informa-
tion from a 3D CAD model, to solve the Perspective-n-Points (PnP) problem. The first
algorithm allowing proximity operations among uncooperative spacecraft was introduced
by S. D’Amico [23] in 2014 and tested on spaceborne images from the PRISMA mission. In
2018, the Sharma-Ventura-D’Amico (SVD) algorithm [53] was proposed as an improvement
on the 2014 algorithm, achieving SOTA performance in terms of robustness and efficiency.
A further enhancement to the SVD was proposed in 2019, utilizing a three-stream image
processing approach [19]: three parallel streams independently extract corners or edges,
but in the end only the features that are common to all the streams are used to solve the
PnP, compensating for possible false detections in one of the streams. Despite the slight
improvement in robustness, this approach was not computationally feasible for real-world
scenarios. On the other hand, deep learning-based methods utilize convolutional neural
networks (CNNs) and can estimate the relative pose through either direct regression
([39, 44]), pure classification, or a hybrid regression-classification problem [52]. To attain a
satisfactory level of pose accuracy, classification-based methods entail dividing the pose
space into numerous pose labels. In contrast, direct regression-based methods necessitate
cautious parameter selection to prevent unpredictable performance when learning the
transformation from input 2-D pixel data to output regression parameters that describe
the 6-D pose space [52]. The hybrid approach combines features extracted from a 3D
CAD model with CNN-regressed landmarks or feature points to solve the PnP problem
and estimate the relative pose.
Methods utilizing deep learning for computer vision applications, such as object detec-
tion, have exhibited noteworthy advancements in terms of precision and resilience when
contrasted with feature-based techniques [52].

In this framework, the Space Rendezvous Laboratory (SLAB) [6] of Stanford University
proposed various solutions ([40, 52]) throughout the last years, and has collaborated with
the ESA to the organization of a pose estimation competition called Kelvin Spacecraft
Pose Estimation Challenge (SPEC). There have been two editions of such challenge, in
2019 [8] and in 2021 [9]. The results of the 2019 ESA’s Kelvins Pose Estimation Challenge
indicate that the most effective approach to relative pose estimation via monocular images
is using hybrid methods, where CNNs aid PnP solvers [15].

The main problem with CNNs is that they require a large number of labeled images
to be trained, and such spaceborne images for the specific application are not available.
Furthermore, the SOTA models need to be trained on images of the specific S/C that
is the target of the pose estimation. This means that datasets have to be generated
synthetically, taking care of the domain gap problem. The SLAB actively contributed to
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the challenges by making available what have been the benchmark datasets for SPEC2019
and SPEC2021: SPEED [52] and SPEED+ [38], respectively.

1.2.1. Next-Generation Spacecraft PosE Estimation Dataset

SPEED+ (Spacecraft Pose Estimation Dataset +) is the evolution of SLAB’s SPEED [52]
and aims at bridging the gap between the current synthetic images and real, spaceborne
images. The first version of SPEED consisted of 1500 synthetic as well as 300 actual camera
images of a mock-up of the Tango spacecraft from the PRISMA mission, although the real
spaceborne images are part of the validation and test sets only to evaluate the robustness
and the domain adaptation capabilities of the pose estimation techniques. Synthetic
images of a target spacecraft are easy to mass-produce but fail to resemble the visual
features and illumination variability inherent to spaceborne images. In order to address
this problem, SPEED+ introduces hardware-in-the-loop (HIL) images of a spacecraft
mock-up model captured from the Testbed for Rendezvous and Optical Navigation (TRON)
facility, which is a robotic testbed made to generate target images with accurate pose
labels and high-fidelity spaceborne illumination conditions. SPEED+ comprises images
from the synthetic domain, and from two simulated HIL domains with different sources
of illumination as shown in Figure 1.1: lightbox and sunlamp.

(a) Tango mock-up illuminated by light
boxes.

(b) Tango mock-up illuminated by a
sun lamp.

Figure 1.1: TRON facility. (credits to: [38])
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In this way, more than just hundreds of spaceborn images of a single target are available
to comprehensively evaluate the robustness of a Machine Learning (ML) model. The
dataset compositions for different domains and splits are reported in Table 1.1, while the
parameters of the camera model used for simulating the images are reported in Table 1.2.
Finally, Figure 1.2 shows some example images from the dataset.

Table 1.1: SPEED+ dataset composition for different domains and splits.

synthetic lightbox sunlamp

Train 47966 - -

Validation 11994 - -

Test - 6740 2791

Table 1.2: SPEED+ camera parameters.

Parameter Value

Resolution (Nu ×Nv) 1920× 1200 px

Focal length (fx = fy) 17.6 mm

Pixel pitch (ρu = ρv) 5.86 µm/px

Horizontal FoV 35.452◦

Vertical FoV 22.595◦

Figure 1.2: Example images from different domains of SPEED+.

While they were not public before, on January 12, 2023 also the lightbox and sunlamp
domain test labels were made available. The complete dataset can be found in the Stanford
Digital Repository [7].
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The last work proposed by the SLAB is the Spacecraft Pose Network v2 [39] (SPNv2),
a multi-scale, multi-task CNN for spacecraft pose estimation that bases its training and
performance evaluation on SPEED+. The new BiFPN-enabled, multi-scale features logic
allows the network to parallelize different tasks such as object localization and pose
estimation, differently from what was done in previous works. The SLAB’s baseline
for SPEC2019 [40] consisted in 2 subsystems working one after the other, as shown in
Figure 1.3, with the output of the first one being the input for the second one.

Figure 1.3: Architecture of SLAB’s baseline for SPEC2019. (credits to: [40])

An Object Detection Network (ODN) was responsible for the bounding box prediction,
which was used to crop the image into a Region of Interest (RoI) which would be passed to
a Keypoints Regression Network (KRN) that output the 2D keypoints locations. This was
necessary since the different scales of the satellite in the images did not make it possible
to efficiently learn the keypoints related features, needed for estimating the relative pose.

On the other hand, the new SPNv2 architecture manages to perform object detection and
pose prediction simultaneously, and is capable of generalizing feature maps at different
scales.
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1.2.2. Spacecraft Pose Network v2

Spacecraft Pose Network v2 [39] is a multi-scale, convolutional neural network (CNN) for
pose estimation of uncooperative spacecraft based on a multi-task architecture consisting
in a shared feature encoder and multiple prediction heads performing different tasks
on a shared feature encoder. As depicted in Figure 1.4, the tasks are the prediction of
pre-defined satellite keypoints, direct pose regression, and binary segmentation of the
satellite foreground. While these tasks differ from each other, they share some fundamental
information related to the target’s geometry and pose. The "multi-scale" feature refers to
the fact that the network can be scaled due to the nature of its EfficientNet [55] backbone:
through a single parameter ϕ, compound scaling allows to optimize performance and
accuracy changing the depth, width, and input resolution of the CNN following a scaling
principle that will be later described in Section 2.2.1. For completeness, it has to be
noticed that all the SPNv2 performance metrics that will be reported here are referred to
a set scaling parameter ϕ = 3, and to an input resolution of the images of 768× 512. The
GitHub repository is available at https://github.com/tpark94/spnv2.

Figure 1.4: The SPNv2 architecture. (credits to: [39])

Since SPNv2 has also the objective of bridging the domain gap due to training on synthetic
images, the previously introduced SPEED+ dataset is used. By jointly training on the
different yet related tasks and by using extensive data augmentation on synthetic images
only, the shared encoder is encouraged to "learn features that are common across image
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domains that have fundamentally different visual characteristics compared to synthetic
images" [39].

The proposed architecture is based on EfficientPose [17], which utilizes EfficientDet’s
backbone and neck as its feature encoder. This encoder includes the EfficientNet [55]
backbone and a Bi-directional Feature Pyramid Network (BiFPN) that combines features
from various scales. The shared feature encoder output is fed into different prediction
heads, which are:

• EfficientPose head (hE)

• Heatmap head (hH)

• Segmentation head (hS)

The EfficientPose head includes subnets responsible for object presence binary classification,
bounding box (BB) prediction, and target rotation and translation regression, and it will
be detailed in Section 2.2.2; the Heatmap head predicts the 2D heatmaps of pre-defined
spacecraft surface keypoints; the Segmentation head enables pixel-wise binary segmentation
of the spacecraft foreground.

Training hE focuses on the minimization of three losses:

• focal loss [33] for the classification subnet;

• Intersection-over-Union loss (IoU loss) [61] for the bounding box subnet;

• SPEED score [30] for the rotation and translation prediction subnets.

The SPEED score, or SPEED loss, is the official performance metric of the SPEC, and is
defined as

Epose = ER(R̂,R) +
ET(t̃, t)

∥t∥
, (1.1)

with the ground-truth rotation matrix and translation vector are (R, t) and the respective
predictions are (R̂, t̂), and where the rotation error ER and the translation error ET are
respectively defined as in Equation 1.2.

ER(R̂,R) = arccos
tr(R⊤, R̂)− 1

2

ET(t̂, t) = ∥t̂− t∥
(1.2)

Finally, hH minimizes pixel-wise mean squared error loss with respect to the ground-truth



1| Introduction 9

heatmaps, and hS minimizes the pixel-wise binary cross entropy loss. All these losses are
associated with equal weights so that they have a balanced impact on the model training.
Moreover, to address the issue of overfitting to synthetic images, SPNv2 is trained using
extensive data augmentation techniques. The implementation details can be retrieved in
the original paper [39].

Due to the architecture modularity, SPNv2 has been tested in different configurations,
which are reported in Table 1.3 along with the respective performances.

Table 1.3: Bounding box and pose predictions of SPNv2 different head configurations.
Bold numbers indicate the best performances.

Heads Source lightbox sunlamp

IoU [-] ET [m] ER [◦] Epose [-] IoU [-] ET [m] ER [◦] Epose [-]

E E 0.878 0.400 21.921 0.446 0.901 0.293 32.066 0.608

H H - 0.368 13.577 0.298 - 0.424 19.739 0.414

E + H E 0.915 0.181 8.757 0.183 0.911 0.251 14.175 0.288
H - 0.272 6.924 0.165 - 0.314 12.323 0.268

E + H + S E 0.918 0.175 8.004 0.169 0.919 0.225 12.433 0.254
H - 0.271 6.4779 0.158 - 0.307 11.065 0.245

The letters E, H, and S stand for hE, hH, and hS, respectively. Here, all the configurations
were trained for 20 epochs but the one with hH only, which was trained for 10 epochs only
since heatmap prediction resulted easier to learn. Analyzing the performances, it is clear
that having more prediction heads in the architecture improves the CNN robustness on
the SPEED+ HIL domains. This interesting result will be taken as a starting point for
the work presented in this dissertation, which has SPNv2 as a baseline and tries to extend
its architecture by introducing new tasks to enhance the multi-task learning synergy.

SPNv2 also introduces Online Domain Refinement (ODR) to fine-tune the affine transfor-
mation parameters of the normalization layers of the feature encoder: since spaceborne
images have never been integrated into the offline training procedure, the CNN perfor-
mance during real missions lacks fundamental guarantee. This problem is addressed by
making the SPNv2 architecture such that it can be refined on the target domain images
on-board the spacecraft avionics. Although this approach is interesting and innovative,
we will not go into its details in this dissertation since the aim of this study is to further
analyze the multi-task nature of pose estimation CNNs to test whether it can provide
better performance by enhancing the informative level of the dataset and the capability of
the network itself to fully use it and minimize the estimation errors.
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1.3. Development Framework

The work presented in this thesis was developed in collaboration with AIKO [1], an
Italian company pioneering AI solutions for the space industry. The project involved
the development of a deep learning model using Python1 and PyTorch 2, an open-source
machine learning library for Python that provides a wide range of functionalities for
building and training deep neural networks. This project was my first experience working
with Python and its libraries, and I had the opportunity to learn the language and its
ecosystem through the development of the model. To access the computational resources
required for training the deep learning model, a remote machine was used. The remote
machine was accessed via Bash, which allowed me to interact with the machine’s terminal
and run commands. The development and training environments were set up using Docker3,
which is a containerization platform that enables the creation and deployment of portable
environments. Docker allowed me to create an isolated environment with all the necessary
dependencies and libraries required for the project, ensuring reproducibility and portability
of the work. The project was managed using GitLab4, which is a web-based Git repository
manager that allowed for effective collaboration and version control among the team
members. These tools provided the necessary infrastructure for the development, training,
and deployment of the deep learning model.

1.4. Outline

This thesis is divided into 6 chapters.
Chapter 1 introduces the problem statement and motivation, highlighting the importance
of accurate spacecraft pose estimation in various applications. The existing literature
and the advancements made in spacecraft pose estimation are reviewed, including the
Next-Generation Spacecraft Pose Estimation Dataset and the Spacecraft Pose Network
v2. Chapter 2 will cover the mathematical background to understand the artificial
intelligence (AI) techniques used in this thesis work, such as deep learning (DL), gradient-
based learning, multi-task learning (MTL), and convolutional neural networks (CNNs).
Additionally, it provides an overview of the EfficientDet and EfficientPose architectures and
of the Perspective-n-Point problem. Finally, the relative orbital dynamics is faced and the
equations of motion (EOM) are retrieved, concluding the chapter with extended Kalman
filters (EKFs). In Chapter 3, the main work of this thesis, AIKO-NET, is presented

1Python. https://www.python.org/
2PyTorch. https://pytorch.org/
3Docker. https://www.docker.com/
4Gitlab. https://gitlab.com/



1| Introduction 11

and analyzed in all its parts. AIKO-NET uses a custom dataset necessary to provide
novel feature maps introduced as inputs for the CNN architecture. The full relative pose
estimation pipeline is presented in Chapter 4, which includes trajectory generation, image
sequence generation, and the implementation of the EKF. Finally, in Chapter 5, the
results of the proposed AIKO-NET are evaluated through the presented error metrics, the
predictions are visualized for an immediate understanding of the architecture potentialities,
and the full pose prediction pipeline is tested. In Chapter 6, the work and the results are
summarized, and future developments and improvement scenarios are presented.
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2.1. Artificial Intelligence

Artificial Intelligence (AI) is a rapidly growing field of computer science that aims to create
intelligent machines capable of performing tasks that typically require human intelligence,
such as learning, problem-solving, decision-making, and natural language processing.
Artificial Neural Networks (ANNs) are a fundamental component of the field of Machine
Learning (ML), a subset of AI that focuses on creating algorithms that enable computers
to learn and improve from experience. ANNs are inspired by the structure and function of
biological neurons in the human brain, as depicted in Figure 2.1, and are used to simulate
complex decision-making processes. In ANNs, inputs are processed through interconnected
layers of nodes [14], with each node using a mathematical function to transform the input
before passing it on to the next layer. The weights and biases associated with each node
are adjusted during training to optimize the network’s performance in solving specific
tasks.

Figure 2.1: Biological neurons in comparison to an ANN. (a) human neuron; (b) artificial
neuron; (c) biological synapse; (d) ANN synapses (credits to: [54])
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A generic ANN is typically composed of one or more layers of neurons that process input
data and produce output predictions. The architecture can be visualized as a directed
acyclic graph, where each neuron in a layer is connected to all the neurons in the previous
layer, and its output is passed as input to the next layer. The first layer of neurons is the
input layer and receives the input data. The last layer is the output layer, which produces
the final predictions. The layers between the input and output layers are called hidden
layers. Each neuron in a layer applies an activation function to the weighted sum of its
inputs and a bias term. The weights and biases of all the neurons in the network are the
learnable parameters that are updated during training. The choice of activation function
depends on the task and the nature of the data. During training, the input data is fed
into the network, and the output predictions are compared to the true labels using a loss
function. The goal of training is to adjust the network parameters to minimize the loss
function. Once trained, the network can be used to make predictions on new data.

In this section, we present a theoretical background on artificial intelligence. Most of
the material covered is based on two main reference books, "Neural Networks and Deep
Learning: A Textbook" by Aggarwal (2019) [14] and "Deep Learning: A Practitioner’s
Approach" by Patterson and Gibson (2017) [41].

2.1.1. Deep Learning

One of the most significant developments in the field of ANNs has been the emergence
of Deep Learning (DL), a type of ML that relies on deep neural networks. The "deep"
architecture of these networks, meaning that they consist of multiple layers, allows them to
model highly nonlinear relationships between inputs and outputs, making them particularly
effective for tasks such as image and speech recognition, natural language processing,
autonomous driving, and medical diagnosis.

The principal drawbacks of Deep Learning models are that they require large amounts of
labeled data and computing resources to train effectively, and can be difficult to interpret
and debug.

2.1.2. Gradient-based learning

In ML algorithms, the learning process relies on the minimization of a cost function to
optimize the model parameters. Such cost function is defined as the sum of a loss function
cost and a regularization cost. Let m be the number of training samples and L be the
number of layers in a generic network.
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J =
1

m

m∑
i=1

L
(
Yi, Ŷi

)
︸ ︷︷ ︸

loss function cost

+
λ

2m

L∑
l=1

∥W[l]∥F︸ ︷︷ ︸
regularization cost

(2.1)

The loss function cost is the average of the loss function L evaluated on the model’s
predictions Ŷi and the true output Yi for each training sample i. The summation over m
training samples represents the total cost of the model on the training data. Regarding
the regularization cost, it is a penalty term related to the weights of the model to prevent
overfitting. The standard technique used for this task is L2-regularization and exploits
the Frobenius norm of the weights ∥W [l]∥ at layer l. The term λ is the regularization
hyper-parameter, and it can be tuned to provide the best performance. For a generic
matrix A of size (m× n), the Frobenius norm is defined as:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 (2.2)

Thus, the regularization cost adds a penalty to the overall cost for having large weight
values in the model, encouraging it to prefer simpler solutions that generalize better
to the new data. The iterative minimization of the cost function requires computing
dW[l] = ∂J

∂W[l] and db[l] = ∂J
∂b[l] , namely the gradients of J with respect to the learned

weights and biases, which is done by means of the backpropagation algorithm [21].

Gradient Descent Method

The most basic gradient-based learning algorithm is the Gradient Descent Method (GDM),
which reduces the cost function by iteratively adjusting the model parameters in the
direction of the negative gradient of the cost function, as shown in equations 2.3 for a
model’s weights and biases:

W[l] ←−W[l] − α dW[l]

b[l] ←− b[l] − α db[l]
(2.3)

where k represents the current step in the iterative process, and α is the learning rate that
determines the step size of the updates. The learning rate (LR) is a hyperparameter that
needs to be tuned carefully to ensure efficient and effective learning. Using a constant
LR throughout the whole training process is not desirable: a lower LR used early on will
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cause the algorithm to take too long to come even close to an optimal solution; a large
initial LR will allow the algorithm to come reasonably close to a good solution at first,
but will then make it oscillate around a local minimum for a very long time or diverge in
an unstable way. A common approach is to use step decay, in which the LR is reduced by
a particular factor every few epochs.

Gradient-based methods are not guaranteed to converge to the global optimum of a non-
convex objective function. While these methods were initially limited to linear systems, it
was later discovered that the presence of local minima did not pose a significant problem
in practice [31].

Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) method is a variant of the GDM that randomly
samples a subset of the training data (also known as a mini-batch) to compute the gradient
of the cost function. The SGD method updates the model parameters based on the gradient
computed from the mini-batch, rather than the entire training data set (what is done
with a Batch Gradient Descent (BGD) approach), which leads to faster convergence and
reduced computational complexity. In this way, the gradient-based optimization only has
to be executed on a small subset of training examples prior to performing the parameter
update. This is very common in deep-learning applications, where the size of training
datasets can be very large.

ADAM optimization

The basic GDM is a simple optimization algorithm that updates the model parameters
based on the gradients of the cost function. However, it is not guaranteed to converge to
the global optimum of the objective function, which is generally non-convex. To overcome
this limitation, more sophisticated gradient-based algorithms have been developed. One
such algorithm is the ADAptive Momentum (ADAM) optimization [29], which combines
the momentum update [45] with RMSProp [14] and bias correction. The GDM with
momentum term accelerates convergence whenever mini-batches are used. Unlike the basic
GDM which updates the parameters proportional to the gradients, this method instead
employs an exponentially-weighted moving average of the gradients. As a result, the
convergence is smoother, which allows for the use of larger learning rates. The RMSProp
method reduces the oscillations that occur in high-curvature vector-space directions and
promotes faster convergence in directions with smooth and consistent gradients. Thus,
ADAM calculates a dynamic learning rate based on the normalized estimates of the first
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and second moments of the gradients, which are approximated by exponentially-weighted
moving averages of the past gradients. Normalization is necessary since the moments are
usually biased towards zero due to their initialization. This is especially true during the
early iterations of the optimization process. The algorithm is reported here below.

Algorithm 2.1 ADAM
1: Require: α: Learning rate

Require: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates
Initialize: mdW,mdb,vdW,vdb

2: for t in mini-batches do
3: Backpropagation: compute dW, db
4: mdW = 1

1−βt
1
β1mdW + (1− β1)dW

mdb = 1
1−βt

1
β1mdb + (1− β1)db

vdW = 1
1−βt

2
β1vdW + (1− β2)dW2

vdb = 1
1−βt

2
β1vdb + (1− β2)db2

5: Update weights and biases:
W←−W − α mdW√

vdW+ϵ

b←− b− α mdb√
vdb+ϵ

6: end for

Here, ϵ is a small number added to the denominator in order to prevent division by zero,
typically set to ϵ =1e−8. The learning rate is adaptively computed by ADAM, but still
requires manual tuning. While the remaining hyper-parameters β1 and β2 could be tuned,
they are often set to the default values of β1 = 0.9 and β2 = 0.999 as suggested by the
authors of [29].

2.1.3. Multi-Task Learning

The Multi-Task Learning (MTL) [20] approach involves utilizing domain information
present in the training signals of related tasks as an inductive bias to enhance generaliza-
tion. This is achieved by simultaneously learning multiple tasks and utilizing a shared
representation. The knowledge gained from one task can aid in the learning process of
other tasks, resulting in improved performance. In Figure 2.2, four distinct ANNs are
depicted, with each net being a function of identical inputs and having a single output.
To train these nets, backpropagation is used in isolation for each net. As these nets are
not interconnected, the knowledge gained by one net cannot aid in the learning of another
net. This method of training is referred to as Single Task Learning (STL).
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Figure 2.2: Single Task Backpropagation (STL) of four tasks with the same inputs. (credits
to: [20])

Figure 2.3 shows a singular net which possesses the same inputs as the four nets in
Figure 2.2. However, this net has four outputs, each corresponding to one of the tasks
that the nets in Figure 2.2 were being trained on. It is important to notice that these four
outputs are completely connected to a shared hidden layer. Backpropagation is performed
concurrently on all four outputs of the MTL net. As the four outputs are linked to a
common hidden layer, internal representations that are formed in the hidden layer for
one task can be utilized by the other tasks. The fundamental concept behind multi-task
learning is to share the knowledge gained from distinct tasks while they are being trained
in parallel.

Figure 2.3: Multi-Task Backpropagation of four tasks with the same inputs. (credits to:
[20])

Multi-task learning uses the training signals for related tasks as an inductive bias to
improve generalization. Inductive bias is anything that causes an inductive learner to
prefer some hypotheses over other hypotheses. For example, the addition of noise to
backpropagation can occasionally enhance generalization: when tasks are uncorrelated,
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their contribution to the combined gradient (which aggregates the errors fed back from
the outputs of each layer) may be perceived as noise by other tasks. Thus uncorrelated
tasks might improve generalization by acting as a source of noise.

2.1.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of ANNs that are specifically designed for
computer vision applications. CNNs offer a significant advantage, compared to traditional
ANNs. This is due to the utilization of two fundamental operations: convolution and
pooling, which enable the network to efficiently analyze the input image data.

Architecture Overview

CNNs transform input data through a series of connected layers, ultimately producing a
set of class scores at the output layer. While various architectures exist, all CNNs follow a
specific pattern of layers, as shown in Figure 2.4.

Figure 2.4: High-level general CNN architecture. (credits to: [41])

The three main parts depicted in the Figure 2.4 are: input layer, feature-extraction layers,
and classification layers.

The feature-extraction layers contain operations that define CNNs: convolution and pooling,
which progressively construct higher-order features by finding a number of features in the
images. The process of automatically learning features is a key aspect of deep learning, as
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opposed to traditional hand-engineering methods.

Input Layer

The input layer typically accepts 3D input data, typically organized as a spatial grid with
dimensions of width and height, corresponding to the image size, and a depth dimension
representing the color channels.

Convolutional Layers

In convolutional layers, the input data undergoes a convolution operation which consists
in sliding a small matrix called a kernel or filter over the input data, performing an
element-wise multiplication between the filter and the corresponding part of the input data,
and summing up the results to produce a single output value, as depicted in Figure 2.5.
The filter is usually of a smaller size compared to the input data and is applied across the
entire input volume to generate a feature map.

(a) (b)

Figure 2.5: Graphical representation of convolution layer and operation.

By sliding different filters over the input data, the convolutional layer produces multiple
feature maps, each highlighting different patterns or features in the input data. The values
making up the kernels are the weights to be learned by the net to extract features that
are useful for the main task. To obtain multiple feature maps, the convolution operation
is applied to the input tensor using multiple filters with different sets of weights. Each
filter produces a separate feature map that captures a different aspect of the input data.
These feature maps are stacked together to form the output tensor of the convolutional
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layer. The convolution operation is a computationally efficient way to perform this feature
extraction process, as it involves only a small number of learnable parameters and is easily
parallelizable.

The expression

Yij =
∑
m

∑
n

XmnW(i−m),(j−n) (2.4)

represents the convolution operation between an input tensor X and a kernel tensor W,
resulting in an output tensor Y. The indices i and j correspond to the spatial position
of the output tensor, while the indices m and n correspond to the spatial position of the
kernel tensor. Specifically, for each position (i, j) in the output tensor, the kernel tensor is
centered at position (m,n) in the input tensor, and the element-wise multiplication and
summation are performed over all positions (m,n) that overlap with the kernel.

After obtaining the collection of feature maps from the convolutional layer, an activation
function is applied to each element of each convolution output to introduce non-linearity
into the model. This results in a set of "activation maps", where each activation map
corresponds to a specific feature map. The most commonly used activation functions for
convolutional layers are:

1. ReLU (Rectified Linear Unit): g(z) = max(0, z)

2. Hyperbolic Tangent: g(z) = tanh(z) = ez−e−z

ez+e−z

3. Sigmoid: g(z) = 1
1+e−z

4. Leaky ReLU: g(z) = max(αz, z), where α is a small positive value (e.g., 0.01)

By introducing non-linearity through activation functions, the convolutional neural network
can learn more complex and abstract features from the input data.

In summary, convolutional layers play a crucial role in CNNs by extracting features from
input data, and the convolution operation is performed using a filter that is slid over the
input data. The output feature maps are then passed through activation functions, with
ReLU being the most commonly used.

Pooling Layers

Pooling layers are used to reduce the spatial size of the feature maps and to introduce some
amount of translation invariance to the learned features. The translational invariance is the
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property that allows CNNs to recognize a feature regardless of its position in the image. A
pooling layer takes a set of feature maps as input and outputs a smaller set of feature maps
with reduced spatial resolution. The pooling process also utilizes a filter/kernel, albeit one
without any elements. It essentially involves sliding this filter over sequential patches of
the image and processing pixels caught in the kernel in some kind of way. This process is
characterized by the filter size and the stride: this parameter determines how much a filter
is shifted in either dimension when performing sliding window operations like convolution
and pooling. There are different kinds of pooling operations. The most common type
of pooling is max pooling, which divides the input feature map into non-overlapping
rectangular regions and outputs the maximum value in each region, an example of which
is depicted in Figure 2.6.

Figure 2.6: Max pooling example.

Other types of pooling include average pooling, which outputs the average value in each
region, and L2 pooling, which outputs the L2 norm of the values in each region. The size
of the pooling window is usually 2-3 pixels. This operation reduces the spatial size of
the feature maps improving the computational efficiency of the network, and introduces
some amount of translation invariance to the learned features making them more robust
to small translations in the input image.

Classification Layers

The classification layers consist of one or more fully connected layers. These layers take
the higher-order features and produce class probabilities or scores. As their name implies,
these layers are fully connected to all neurons in the previous layer. The output of the
fully connected layer is usually passed through a softmax activation function to ensure
that the probabilities sum to one. During training, the weights of the fully connected
layer are learned through backpropagation, and the cross-entropy loss is used to measure
the difference between the predicted class probabilities and the true class labels. During
inference, the final prediction is typically the class with the highest predicted probability.
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The use of a classification layer allows the learned features to be transformed into a form
that is suitable for making class predictions. The fully connected layer effectively computes
a linear combination of the learned features, followed by a non-linear transformation
through the softmax activation function. This allows the network to learn complex
decision boundaries that can discriminate between the different classes in the dataset.

2.2. Object Detection and Pose Estimation

Object Detection

By object detection we refer to the process of localizing and classifying a variable number
of objects of interest within an image, thus drawing Bounding Boxes (BBs) enclosing such
objects. When the problem reduces to the task of finding and identifying a fixed set of
objects, it is referred to as object localization. There are two main ways to tackle this
problem: region proposal-based methods and one-stage methods. The first approach acts
in 2 steps: in the first step, potential object regions are proposed (also called proposals);
in the second step, the proposals are classified into object categories and refined to better
localize the object. On the other hand, one-stage methods directly predict the presence and
location of objects in a single step. One of the main drawbacks of region-based methods is
that generating proposals can be computationally expensive [16].

In this work, although the object to be detected is just one, an object detection algorithm
will be used as it is part of the architecture inherited from state-of-the-art CNNs. Further-
more, for the same reason, in this section we will focus on one-stage methods since the
search for proposals would be excessive given the simplicity of the problem.

In this field, the use of Anchor Boxes (ABs) has become a standard technique. ABs
are a mechanism used in object detection algorithms to help the model detect objects
of different sizes and aspect ratios and are based on the idea of pre-defining a set of
BBs with different sizes and aspect ratios, centered at various locations in an image. In
order to more precisely localize objects in the image, during training, the object detection
model learns to predict offsets to these pre-defined ABs. For each AB, the model learns
to predict the offset values that minimize a loss function that assesses the discrepancy
between the predicted and actual BB coordinates. The use of anchor boxes for object
detection was introduced in 2015 by Ren, He, Girshick, and Sun in [48], where a two-stage
object detection framework that uses a region proposal network (RPN) to generate object
proposals using anchor boxes of different scales and aspect ratios is presented. However,
the use of ABs has become a standard also in one-stage detection frameworks, the first
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of which to adopt them was "SSD: Single Shot MultiBox Detector" [34], followed by the
second version of the famous "You Only Look Once" network, YOLOv2 [47].

For ABs on a S × S grid, the object detection network output dimensionality would be
S × S× #ABs × (#classes + 5). This implies that for each grid cell, the neural network
will produce a prediction represented by stacking up vectors like the following ABiYij for
each anchor box ABi:

ABiYij =
[
ABipc,

ABibx,
ABiby,

ABibh,
ABibw,

ABiC1, . . . , ABiCN

]⊤ (2.5)

where pc is the confidence score (i.e., the probability that the BB contains an object of
interest), bx and by are the BB center coordinates, and bh and bw are its height and width.
The vector part from C1 to CN contains boolean variables and encodes the predicted class.

In order to eliminate overlapping detections and choose the most certain ones after an
object detection model generates a set of candidate bounding boxes for each object instance,
the post-processing step known as non-maximum suppression (NMS) is frequently used in
object detection. This is how the algorithm operates:

1. Based on their confidence scores, the candidate bounding boxes are ordered.

2. All the other bounding boxes that have significant overlap (such as intersection
over union (IoU) greater than a threshold) with the bounding box with the highest
confidence score are removed.

3. Repeat step 2 until there are no more bounding boxes left.

The result of NMS is a set of non-overlapping bounding boxes that have high confidence
scores and represent the detected objects in the image. By combining anchor boxes with
non-maximum suppression, a highly effective and precise algorithm is produced, capable
of detecting multiple objects within the same grid cell.

One of the most advanced methods for selecting anchor boxes involves performing K-means
clustering [35] on the dataset.

Pose Estimation

Pose estimation is the task of estimating the position and the attitude (pose) of an object
within an image. One way of facing pose estimation through CNNs is using a heatmap
regression approach: this method involves predicting the probability of the presence of a
specific keypoint in a specific location by generating a heatmap for each keypoint. Such
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heatmaps are images in which the brighter the pixel, the more likely the presence of the
associated keypoint. Another approach is to use a direct regression method: the keypoints
coordinates are directly regressed without generating a heatmap. A third approach is to
directly predict the pose in terms of orientation and translation, without using keypoint
regression. The architecture of these networks typically consists of a backbone that extracts
the features from the image, and one or a set of prediction heads (subnetworks) that
predict the pose.

A state-of-the-art object detection and direct pose estimation method is EfficientPose
[17], the approach used in SPNv2 and in the work presented in this dissertation. This
architecture makes use of EfficientDet [56] as backbone, which will be presented here to
better understand how the full configuration works.

2.2.1. EfficientDet

EfficientDet [56] is an object detection model introduced by Tan et al. in 2020, designed
to achieve high accuracy and efficiency through its ability to scale the network architecture
in a principled manner, and through the implementation of an efficient multi-scale feature
fusion logic. The objective of multi-scale feature fusion is to integrate features at multiple
resolutions. In other words, the aim is to find a transformation f that can effectively
combine different features of a given list of multi-scale features P⃗ in = (P in

l1
, P in

l2
, ...), where

P in
li

represents the feature at level li, to produce a new list of features P⃗ out = f(P⃗ in).
The conventional top-down FPN shown in Figure 2.7(a) takes level 3-7 input features
P⃗ in = (P in

3 , ..., P in
7 ) where P in

i corresponds to a feature level with resolution of 2−i of the
input image. These multi-scale features are aggregated in a top-down manner:

P out
7 = Conv(P in

7 )

P out
6 = Conv(P in

6 +Resize(P out
7 ))

. . .

P out
3 = Conv(P in

3 +Resize(P out
4 ))

(2.6)

where Resize is usually an upsampling or downsampling operation to match the features
resolutions and Conv is a convolution operation to process such features.
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Figure 2.7: (a) FPN introduced a top-down pathway to fuse multi-scale features (P3 -
P7); (b) PANet adds an additional bottom-up pathway on top of FPN; (3) NAS-FPN use
neural architecture search to find irregular feature network topology and the repeatedly
apply the same block; (d) BiFPN with better accuracy and efficiency trade-offs. (credits
to: [56])

Non-conventional solutions presented before EfficientDet and sketched in Figure 2.7(b) and
Figure 2.7(c) try to enhance the limited top-down approach typical of FPN. BiFPN takes
the best of both architectures and implements a new flow of cross-scale connections between
the features: the nodes with a single input edge are removed since they contribute less to
the feature network, lowering the number of parameters and computations; furthermore,
an extra edge is added from the original input to output node if they are at the same
level, in order to fuse more features without adding much cost. Each bidirectional path
is treated as one feature network layer and is repeated multiple times to enable more
high-level feature fusion. Since different input features are at different resolutions, they
usually contribute to the output feature unequally. Thus, BiFPN adopts fast normalized
fusion, adding an additional weight for each input, and letting the network learn the
importance of each input feature. As an example, here are described the two fused features
at level 6 for BiFPN shown in Figure 2.7(d):

P td
6 = Conv

(
w1 · P in

6 + w2 ·Resize(P in
7 )

w1 + w2 + ϵ

)
P out
6 = Conv

(
w′

1 · P in
6 + w′

2 · P td
6 + w′

3 ·Resize(P out
5 )

w′
1 + w′

2 + w′
3 + ϵ

) (2.7)

where wi ≥ 0 is ensured by applying ReLU to each wi, and ϵ =1e−4 is to avoid numerical
instability. In the proposed example, P td

6 is the intermediate feature at level 6 on the
top-down pathway, and P out

6 is the output feature at level 6 on the bottom-up pathway.
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Figure 2.8: EfficientDet architecture. (credits to: [56])

The full EfficientDet architecture is presented in Figure 2.8: it employs EfficientNet [55]
as the backbone network, and classification/bounding box prediction subnetworks. The
peculiarity of EfficientNet is its ability to be scaled maintaining optimal accuracy and
efficiency: this feature is called "compound scaling" and, unlike conventional practice that
arbitrarily scales the network width, depth, and/or resolution of the input image, it is
based on scaling these factors uniformly with a scaling coefficient ϕ. The principle on
which the scaling is based is expressed in the following Equation 2.8:

depth: d = αϕ

width: w = βϕ

resolution: r = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(2.8)

The regular convolution operation computational cost expressed in FLOPS (FLoating
point Operations Per Second) is directly proportional to d, w2, and r2. If we double the
network depth, the FLOPS doubles, and if we double the network width or resolution, the
FLOPS increases by a factor of four. Since convolution operations consume most of the
computation cost in CNNs, scaling a CNN using Equation 2.8 will roughly increase the
total FLOPS by (α · β2 · γ2)ϕ. As stated in Equation 2.8, the original paper constrains
(α · β2 · γ2) ≈ 2 so that, for any ϕ, the total FLOPS will increase by roughly 2ϕ.
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Table 2.1: EfficientNet-B0 baseline network.

Stage Operator Resolution #channels #layers
i F̂i Ĥi × Ŵi Ĉi L̂i

1 Conv3x3 224× 224 32 1
2 MBConv1, k3x3 112× 112 16 1
3 MBConv6, k3x3 112× 112 24 2
4 MBConv6, k5x5 56× 56 40 2
5 MBConv6, k3x3 28× 28 80 3
6 MBConv6, k5x5 28× 28 112 3
7 MBConv6, k5x5 14× 14 192 4
8 MBConv6, k3x3 7× 7 320 1
9 Conv1x1 & Pooling & FC 7× 7 1280 1

Table 2.1 shows the architecture of the baseline architecture EfficientNet-B0, whose main
building block is the mobile inverted bottleneck MBConv [50, 57], optimized by the
squeeze-and-excitation method [26]. Each row describes a stage i with L̂i layers, with
input resolution Ĥi × Ŵi and output channels Ĉi. In order to adapt EfficientDet to the
same scaling flexibility of EfficientNet, the width, and depth of the BiFPN are scaled with
the following equation [56]:

WBiFPN = 64 ·
(
1.35ϕ

)
DBiFPN = 3 + ϕ

(2.9)

and the width of the box/class prediction network is fixed to be the same as BiFPN, while
the depth of the box network is linearly increased as shown in Equation 2.10 [56].

Wpred = WBiFPN

Dbox = 3 + ⌊ϕ/3⌋
(2.10)

Since BiFPN uses the features from levels 3 to 7, the network input resolution must be
dividable by 27 = 128, thus the resolution is scaled using the following equation [56]:

Rinput = 512 + ϕ · 128 (2.11)
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Starting from Equations 2.9, 2.10, 2.11, a series of scaled networks can be developed. In
Table 2.2, EfficientDet D0 to D4 are reported.

Table 2.2: Scaling configurations for EfficientDet D0-D4.

Input Backbone BiFPN Box/class
size Network #channels #layers #layers
Rinput WBiFPN DBiFPN Dclass

D0 (ϕ = 0) 512 B0 64 3 3
D1 (ϕ = 1) 640 B1 88 4 3
D2 (ϕ = 2) 768 B2 112 5 3
D3 (ϕ = 3) 896 B3 160 6 4
D4 (ϕ = 4) 1024 B4 224 7 4

2.2.2. EfficientPose

EfficientPose [17] is an approach for 6D pose estimation designed to be both fast and
accurate. The architecture is made of an EfficientDet backbone extended through two
subnetworks: these are analogous to the classification and bounding box regression
subnetworks, but instead of predicting the class and BB for each AB, predict the rotation
R and the translation t respectively. Since they share the input feature maps with the
already existing subnets in EfficientDet, the additional computational cost is very low.
Thus, EfficientPose can efficiently detect the

• Class

• 2D bounding box

• Rotation

• Translation

of one or more object instances and categories for a given image in a single shot. A
high-level view of the architecture is presented in Figure 2.9. In order to maintain the
scalability of EfficientDet, the size of the rotation and translation networks is also controlled
by the scaling parameter ϕ.
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Figure 2.9: Schematic representation of EfficientPose architecture including the EfficientDet
backbone and the prediction subnetworks. (credits to: [17])

Rotation Network

The rotation network is responsible for predicting the rotation of an object in 3D space and
is designed to be efficient, accurate, and scalable. Throughout the description of this subnet,
an axis-angle representation of the rotation r ∈ R3 will be used. Yet, as stated in the
original EfficientPose paper, this representation is not crucial for the developed approach
and can be switched. The architecture is similar to the classification and box network in
EfficientDet, but instead of using the output rinit directly as the regressed rotation, an
iterative refinement module inspired by Kanazawa et al. [28] is added. This module takes
the concatenation along the channel dimension of the current rotation rinit and the output
of the last convolution layer prior to the initial regression layer which outputs rinit as the
input and regresses ∆r so that the final rotation regression is r = rinit +∆r.

As depicted in Figure 2.10, the iterative refinement module consists of Diter depthwise
separable convolution layers, each followed by group normalization [58] and SiLU activation
function [46]. Lastly, a single depthwise separable convolution layer with a linear activation
function outputs ∆r. Both the number of times this module is applied Niter and the single
refinement module depth Diter are scaled as in the following equation:

Diter = 2 + ⌊ϕ/3⌋

Niter = 1 + ⌊ϕ/3⌋
(2.12)
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(a) Rotation network architecture. (b) Ref. module.

Figure 2.10: EfficientPose rotation subnetwork architecture and refinement module. Each
conv block consists of a depthwise separable convolution [22] layer followed by group
normalization and SiLU activation. (credits to: [17])

Translation Network

The translation subnetwork is basically the same as the rotation one, but it outputs a
translation t ∈ R3 for each anchor box. Here, the approach of PoseCNN [59] is adopted:
instead of directly regressing all the components of the translation vector t = (tx, ty, tz)

⊤,
the prediction of the 2D center point p = (px, py)

⊤ and of the depth coordinate tz are
treated as two different tasks. Assuming a pinhole camera with principal point c = (cx, cy)

⊤

and focal lengths (fx, fy), the missing translation components can then be retrieved using
the following Equation 2.13.

tx =
(px − cx) · tz

fx

ty =
(py − cy) · tz

fy

(2.13)

To predict the 2D center point, for each AB the subnet predicts the offset in pixels from
the center of the AB to the center point of the corresponding object: these offsets are
normalized with the stride of the input feature map from every level of the feature pyramid.

The approach of predicting the relative offset at each point in the feature maps is preferred
over directly regressing the absolute coordinates px and py due to the translational
invariance of the convolution. Because the convolution operation is translationally invariant,
predicting the relative offset is more efficient and robust than predicting the absolute
coordinates, which would require predicting the precise location of an object in the image.
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2.3. Perspective-n-Point problem

The Perspective-n-Point problem is a computer vision problem that involves estimating
the pose of an object from a set of n 3D points of a known model in its body frame and
their corresponding 2D projections in an image taken by a calibrated camera, by mapping
the 3D points to their 2D projections [24].

!!

!"

!#

"#
""

"!

$$/&

Camera frame

Body frame
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Figure 2.11: Reference frames involved in the PnP problem.

Taking Figure 2.11 as a reference, let’s define as C the camera frame, P the image frame,
and B the target body frame. Cz is aligned with the camera boresight, while Cx and Cy

are parallel to Px and Py, respectively. Let tB/C be the translation vector from the camera
frame to the body frame in C, and let RB/C be the DCM expressing the rotation to align
B to C. Thus, the coordinates of a generic point rB of the target can be expressed in the
camera frame as:
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rC =

x
C

yC

zC

 = RB/Cr
C + tB/C (2.14)

By referring to the pinhole camera model, let’s call (fx, fy) the camera focal lengths, and
(cx, cy) the camera principal points. The generic target point expressed in the camera
frame rC can be projected onto the image frame P as:

p =

[
u

v

]
=


xC

zC
fx + cx

yC

zC
fy + cy

 (2.15)

The equations for perspective projection can be obtained by combining Equations 2.14
and 2.15, then rewriting them in terms of homogeneous coordinates:

uwvw
w

 = K
[
RB/C tB/C

]
︸ ︷︷ ︸

unknown: P

[
rB

1

]
, (2.16)

where

K :=

fx 0 cx

0 fy cy

0 0 1

 (2.17)

is called the camera intrinsic matrix.
The matrix P, which represents the problem’s unknown, has 6 degrees of freedom. The
relative attitude must be described by three parameters (e.g. Euler angles), and the
relative translation must be described by three other parameters. Modern PnP solvers
can be broadly categorized into two groups:

• iterative solvers, which minimize a measure of the fit error between the projected
model points and the image points;

• multi-stage analytical methods, which use a linearized version of the projection
equations.

Since the work presented in this dissertation uses the Efficient Perspective-n-Point (EPnP)
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algorithm, which is a multi-stage analytical method, we will focus on this one.

2.3.1. EPnP: Efficient Perspective-n-Point

In a multi-stage analytical approach, the PnP problem is broken down into multiple
sub-problems or stages, and each is solved analytically. These stages typically involve
estimating the camera’s internal parameters (intrinsic matrix) and its external parameters
(rotation and translation), as well as minimizing the reprojection error between the observed
2D image coordinates and the predicted 2D coordinates of the 3D points based on the
estimated camera pose. One popular multi-stage analytical method for solving the PnP
problem is the EPnP (Efficient Perspective-n-Point) algorithm [32].

As summarized in [42], EPnP requires n ≥ 4 point correspondences and its main idea is
to express the n points as the weighted sum of 4 virtual control points {cj}j=1,...,4 that
become the unknowns of this formulation:

ri =
4∑

j=1

αijcj (i = 1, 2, . . . , n) (2.18)

Equation 2.16 can be rewritten for a generic landmark i in terms of the 4 control points.
Since every control point is described by 3 coordinates cj = [cxj , c

y
j , c

z
j ]

⊤, we end up with
12 control point coordinates:

ũi

ṽi

w̃i

 = K
4∑

j=1

αij

c
x
j

cyj
czj

 (2.19)

By substituting the third equation into the other two, the following equations can be
obtained for each model-point/image-point pair:

4∑
j=1

αijfxc
x
j + αij(u0 − ũi)c

z
j = 0

4∑
j=1

αijfyc
y
j + αij(v0 − ṽi)c

z
j = 0

(2.20)

Thus, Equation 2.20 yields 2n equations that can be arranged in matrix form as Ax = 0,
where A is (2n× 12) and the unknown vector x contains the 12 control point coordinates.
Since the image points are estimated and are not perfect projections of the true model
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points, A may have up to 4 linearly dependent columns, meaning that there could be 4
possible solutions. Among these, the one associated with the lowest reprojection error is
selected.

2.4. Relative Orbital Dynamics

In this section, we will develop the general relative orbit Equations of Motion (EOM).
The description of such dynamics and all the steps that will be shown are developed in
"Analytical Mechanics of Space Systems" (Schaub & Junkins, 2003) [51].

Figure 2.12: Illustration of a closed relative orbit. (credits to: [51])

In the framework shown in Figure 2.12, the problem is treated like a chief-deputy system,
deriving from the formation flying nomenclature. Referring to the work presented in this
dissertation, the chief can be seen as the satellite with the camera, and the deputy can be
seen as the target spacecraft. The inertial chief position is rc(t), while the inertial deputy
position is given by rd(t). To express the deputy relative orbit as seen from the chief, we
introduce the Hill coordinate frame that we will call H. It is defined in Equation 2.21,
where ôr is a vector in the orbit radius direction, ôh is parallel to the orbit momentum
vector in the orbit normal direction, and ôθ completes the right-hand coordinate system.

ôr =
rc
rc

ôθ = ôr × ôh

ôh =
h

h
=

rc × ṙc
∥rc × ṙc∥

(2.21)

The relative orbit position vector ρ is expressed in H frame components as:
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ρ =
[
x, y, z

]⊤
(2.22)

The (x, y) coordinates define the relative orbit motion in the chief orbit plane, the z

coordinate defines any motion out of the chief orbit plane. The deputy satellite position
vector can be rewritten as:

rd = rc + ρ = (rc + x)ôr + yôθ + zôh (2.23)

Knowing that the angular velocity vector of the Hill frame H relative to the inertial frame
N is given by ωH/N = ν̇ôh with ν being the chief frame true anomaly, the second time
derivative of rd in the inertial frame is given by:

r̈d = (r̈c + ẍ− 2ẏν̇ − ν̈y − ν̇2(rc + x))ôr

+ (ÿ + 2ν̇(ṙc + ẋ) + ν̈(rc + x)− ν̇2y)ôθ + z̈ôh

(2.24)

The chief orbit angular momentum magnitude is given by h = r2c ν̇, and since we can
assume Keplerian motion, ḣ = 0. Thus,

ḣ = 2rcṙcν̇ + r2c ν̈ = 0 −→ ν̈ = −2 ṙc
rc
ν̇ (2.25)

Then, we can express the chief acceleration vector as in Equation 2.26 by writing the
chief satellite position as rc = rcôr and by taking two time derivatives with respect to the
inertial frame, where µ is the main attractor’s gravitational parameter.

r̈c = (r̈c − rcν̇
2)ôr = −

µ

r3c
rc = −

µ

r2c
ôr (2.26)

Equating the vector components in Equation 2.26, the chief orbit radius acceleration is
expressed as:

r̈c = rcν̇
2 − µ

r2c
= rcν̇

(
1− rc

p

)
(2.27)

where p is the chief orbit semi-latus rectum.
Substituting Equations 2.25 and 2.27 into Equation 2.24, the deputy acceleration is reduced
to:
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r̈d =

(
ẍ− 2ν̇

(
ẏ − y

ṙc
rc

)
− xν̇2 − µ

r2c

)
ôr

+

(
ÿ + 2ν̇

(
ẋ− x

ṙc
rc

)
− yν̇2

)
ôθ + z̈ôh

(2.28)

Let’s now consider the orbit EOM for the two-body problem, for a generic orbit of radius
r:

r̈ = − µ

r3
r (2.29)

By substituting the kinematic acceleration expression in Equation 2.28 into Equation 2.29,
we retrieve the deputy satellite EOM:

r̈d = −
µ

r3d

Hrc + x

y

z

 (2.30)

with rd =
√

(rc + x)2 + y2 + z2. Thus, by equating Equations 2.28 and 2.30, we obtain
the exact nonlinear relative EOM for the deputy satellite in the Hill frame of the chief
satellite as expressed in Equation 2.31.

ẍ = 2ν̇

(
ẏ − y

ṙc
rc

)
+ xν̇2 +

µ

rc
− µ(rc + x)

((rc + x)2 + y2 + z2)3/2

ÿ = −2ν̇
(
ẋ− x

ṙc
rc

)
+ yν̇2 − µy

((rc + x)2 + y2 + z2)3/2

z̈ = − µz

((rc + x)2 + y2 + z2)3/2

(2.31)

2.5. Kalman Filtering

In the field of navigation, filtering is used to estimate the state of a system based on
measurements. One of the most commonly used filters is the Kalman filter, which is a
mathematical algorithm that uses a series of measurements over time, along with knowledge
of the system’s dynamics and noise characteristics, to estimate the system’s state with
minimal error [27]. The Kalman filter is widely used in aerospace applications, including
spacecraft navigation [43].

The Kalman filter operates in two stages: prediction and correction. In the prediction
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stage, the filter uses the current estimate of the system state to predict its state at the
next time step, based on the known system dynamics. In the correction stage, the filter
updates the predicted state estimate with new measurements, using a weighting factor
that depends on the relative uncertainty of the predicted state and the measurement.

In some cases, the system being estimated may be characterized by nonlinear dynamics,
or the measurement model may be nonlinear. When this happens, an Extended Kalman
filter (EKF) or an Unscented Kalman Filter (UKF) can be used, depending on the
nonlinearity degree of the model. Since in the presented work the filtering is applied only
to the translation predictions, and by referring to the underlying dynamics expressed in
Section 2.4, only the EKF will be treated because it is considered enough to deal with
such nonlinearity.

2.5.1. Extended Kalman Filter

The EKF linearizes the nonlinear functions around the current state estimate and mea-
surement and applies the Kalman filter algorithm to the resulting linear system [36]. Let
us consider a generic nonlinear model for the state x in Equation 2.32, where uk represents
the input at the time step k, f(·) is the state transition function, h(·) is the measurement
function which maps the state to the measured quantity y, wk and vk identify the process
and measurement noise respectively.

xk+1 = f (xk,uk,wk)

yk = h (xk,vk)
(2.32)

To linearize the state transition and the measurement functions, their Jacobian matrices
can be computed as:

F =
∂f

∂x

∣∣∣∣
x̂+

H =
∂h

∂x

∣∣∣∣
x̂−

(2.33)

The prediction phase consists of the propagation of both the state x̂+
k and the related

covariance P̂+
k based on their values at the previous time step as follows:

x̂−
k+1 = f

(
x̂+
k ,uk, 0

)
P−

k+1 = FP+
k F

⊤ +Qk

(2.34)

where Qk represents the covariance matrix associated with process noise. The correction
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phase, reported in Equation 2.35, exploits the incoming measurements and an optimal
weighting factor called Kalman gain and Kk+1.

Kk+1 := P−
k+1H

⊤ (
HP−

k+1H
⊤ +Rk+1

)−1

x̂+
k+1 = x̂−

k+1 +Kk+1

(
yk+1 − h

(
x̂−
k+1, 0

))
P+

k+1 = (I−Kk+1H)P−
k+1

(2.35)

Note that and Rk is the covariance matrix associated with measurement noise. The filter
consists in a recursive algorithm, so the outputs become the inputs of the successive
iteration.
The application of an EKF fits the relative orbital dynamics introduced in Section 2.4
because the model does not present a high level of nonlinearity. When this is not the
case, the EKF should be avoided because the linearization could lead to an inaccurate
propagation of the state. Instead, the Unscented Kalman Filter (UKF) [37] overcomes
these problems by introducing three tuning parameters and by relying on an Unscented
Transform (UT) for the propagation of the mean and the covariance state. This type of
filter will not be treated, because the pose estimation pipeline implemented in the work
discussed in this dissertation introduces only filtering for the position of the target, thus
an EKF is sufficient.
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3| AIKO-NET

In this chapter we present AIKO-NET, a Convolutional Neural Network (CNN) developed
to enhance the current state-of-the-art MTL-based pose estimation of uncooperative
spacecrafts through monocular images.

Recalling the problem statement, the objective of AIKO-NET is to estimate the position
and attitude of the body frame B of the target spacecraft relative to the camera frame C.
Figure 3.1 illustrates that tB/C represents the relative position between the origins of the
target’s body reference frame and the camera’s reference frame. Likewise, qB/C denotes
the quaternion that describes the rotation required to align the target’s body reference
frame with the camera’s reference frame.
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Figure 3.1: Definition of the reference frames, relative position, and relative attitude.
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The main purposes of AIKO-NET are to demonstrate the reproducibility of the declared
multi-task learning related improvements of SPNv2 in [39], and to push such MTL nature
of the network to further improve the estimation accuracy by exploiting a researched
synergy between different prediction heads. The presented architecture is a deep multi-task
network that is built on top of the SPNv2, which serves as the baseline as discussed in
Section 1.2.2. New features and the respective prediction heads are introduced, aiming at
improving the network’s accuracy by assigning it new parallel tasks to achieve, which may
influence each other and ultimately lead to a better minimum with respect to a single-task
network, as explained in Section 2.1.3.

It is important to note that the baseline has not only been modified by adding prediction
heads, as the public code has a strong focus on inference, which means that it lacks
many features for the evaluation of training performance. The work from SLAB is highly
structured and interconnected, which has made it challenging to incorporate the necessary
modules for training evaluation. Nonetheless, the architecture’s flexibility has made it
easy to implement new prediction heads and parallelize them with the main task.

Obviously, wanting to add tasks to solve, and therefore other features to identify, implies
that ground-truths must exist for these features. This is why the SPEED+ dataset could
not be used to train AIKO-NET. A completely customized dataset had to be generated
to implement the multi-task approach, and also pre-processing and dataset generation
pipelines were developed in order to build an extremely flexible and interconnected
framework which finally led to ease of use and modularity of the whole network and
training conditions. The dataset from AIKO takes Tango from the PRISMA mission as
the target, but the underlying idea is that these datasets can be generated easily for any
available 3D model.

The ODR technique used in SPNv2 is not considered in the presented AIKO-NET version
because it goes beyond the scope of the current research.

3.1. Custom Dataset

Given the data-centric nature of this project and the need to propose an architecture that
uses multi-task learning, a fully tailored dataset was developed and utilized to train, validate
and test AIKO-NET. This dataset, namely the Multi-Feature Spacecraft Pose Estimation
Dataset (MFSPED), was created especially for the needs of this investigation with Unity1.
The MFSPED consists of 60,000 Tango synthetic images with unique metadata and feature

1All 3D simulations and visualization were performed in Unity version 2022.2.1 - https://unity.com/



3| AIKO-NET 41

maps, as well as 20,000 Earth background images. With MFSPED we will not refer to
the dataset used for the training and evaluation of AIKO-NET: MFSPED contains the
building blocks which can be used at will to generate the actual dataset used for the
network. The full modularity of this project makes the dataset inherently flexible and
tunable. The same MFSPED can be modified in order to tweak the camera parameters,
change all the pose labels distributions, or even by changing the satellite model. This
flexibility may help if different operative conditions are to be met, and to use the same
dataset generation logic for other applications. In this context, this project can be included
in a larger domain that exploits data exploration processes to efficiently train a network.
Working with data-centric AI (DCAI) [60] and having complete control of a dataset, makes
it possible to build accurate and robust models.

Building a dataset for multi-task learning purposes on a CNN involves brainstorming some
feature maps that could help the network in solving its main task. In addition to the
features used in SPNv2, three other features have been thought of:

a) Depthmap: a segmentation mask of the satellite with additional information about
the distance from the camera. The closer to the camera, the whiter the mask pixels;
the further from it, the darkest.

b) Normalmap: a colormap related to the normal directions to the satellite surfaces
in the target’s body frame: the same surface results associated with the same color
for every image in the dataset.

c) Shadowmap: an image where the shadowed part of the satellite corresponds to
white pixels. This feature should help the net to better manage different lighting
conditions.

An example of these maps, associated with an example image of the dataset, is shown in
Figure 3.2.
Regarding the Depthmap, the effect of the gray scaling is not really noticeable with an
object of small dimensions like Tango2. Thus, for this specific application, the Depthmap
will be substituting the Segmentation mask that is used in SPNv2, but the additional
information provided by this new feature map remains valuable for bigger and more
complex objects.

2[295× 570× 740] mm; data retrieved from: "Flight Results From PRISMA Formation Flying and
Rendezvous Demonstration Mission" (S. Persson et al., 2010). https://core.ac.uk/display/11152525
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(a) Satellite synthetic image. (b) Depthmap.

(c) Normalmap. (d) Shadowmap.

Figure 3.2: An example of a synthetic image of Tango and the associated feature maps.

The dataset images are associated with a final feature derived from SPNv2, namely the
keypoints Heatmap. This feature provides 2D heatmaps associated with each keypoint
of the synthetic images. Differently from SPNv2, the selected keypoints here are 18 and
are displayed on the model in Figure 3.3. The choice of doubling the number of keypoints
to teach to the network aims at giving the CNN more reference points that could be useful
in the context of MTL.
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K12 K13 K14 K15 K16 K17

Figure 3.3: Model of Tango and the selected 18 keypoints.

The ground-truth heatmaps are generated as 2D normal distributions with means equal to
the ground-truth locations of each keypoint, and a standard deviation σk. The standard
deviation used in the current dataset is 2 pixels because this value has shown great
performance across different ranges, but it can be tuned to modify the feature maps.
Examples of heatmaps generated with different values of the standard deviation, derived
from the metadata relative to the previously displayed satellite image, are shown in
Figure 3.4.

(a) σk = 2 pixels. (b) σk = 6 pixels. (c) σk = 10 pixels.

Figure 3.4: An example of keypoint heatmaps generated with different values of standard
deviation. The superimposed satellite images is displayed just to give a visual reference
for the keypoints locations, but are obviously not part of the ground-truths used during
training.
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3.1.1. Building the dataset

The satellite images are synthesized in Unity starting from pose data that is distributed
as displayed in Figure 3.5: the distance from the target is considered to be normally
distributed on a range between 2 and 15 meters, and a random divergence of the camera
is considered to account for an imperfect pointing of the target. The parameters of the
simulated camera used in Unity are provided in Table 3.1.

(a) Position labels distribution. (b) Orientation labels distribution.

Figure 3.5: Position (a) and orientation (b) labels distributions in the dataset. The
position label is represented in the camera frame C, whose z-axis is along the camera
boresight, and the xy-axes form the image plane. The relative orientation distribution is
parametrized as Euler angles.

Table 3.1: MFSPED camera parameters.

Parameter Value

Resolution (Nu ×Nv) 1024× 1024 px

Focal length (fx = fy) 39.47 mm

Pixel pitch (ρu = ρv) 5.86 µm/px

Horizontal FoV 35.0◦

Vertical FoV 35.0◦

The following Figure 3.6 depicts different levels of accuracy of the software module
that simulates the appearance of objects in Unity. On the left, the simplest simulation
considering only the different colors of the materials is shown. In the center, a simulation
of both the colors and shading of the object based on the direction of light is presented. On
the right, a more comprehensive simulation is displayed, which includes reflection effects
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given by the reflective capacity of the materials that the object is made of. Even though
the study presented in this dissertation focuses on the analysis of the performance of a
MTL architecture of a neural network, it is important to notice that adding these basic
layers of realism is really important in order to train the model on a dataset that best
represents real pictures taken in space. The problem of training on synthetic images that
are inherently different from real images is known as domain gap. In later development
phases of AIKO-NET, domain gap will have to be strongly addressed in order to deliver
a product that can be trained on synthetic images and work on real, spaceborne images
without losing significant performance.

Figure 3.6: Synthetic images details

We will call synthetic dataset the Unity output, and final dataset the one that will be used
for training, validation, and testing. In the synthetic dataset, the images of the satellite
and of the Earth are generated separately and not in single scenes, thus it consists of
satellite images with black background (SAT dataset) and Earth background images (BG
dataset). Building the final dataset involves an editing step where satellite and background
images are randomly chosen and merged to produce the final images for the model to
be trained on. In the synthetic dataset, the position of the Sun is random and normally
distributed such that the neural network can learn to generalize the prediction in any light
condition. The fact that the satellite and background images are generated separately
inherently implies that the final dataset will be made of final images for which the lighting
is generally not consistent between the background and the foreground. In this way, the
neural network can be trained with images including worst-case scenarios and enhance its
robustness with respect to lighting conditions.

As shown in Figure 3.9, which describes the whole processing pipeline, the synthetic dataset
needs to go through a "pre-processing" phase to make the "dataset generation" process
possible. The dataset generation output will be the final dataset.
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Figure 3.7: Full dataset pipeline.

The synthetic dataset comes with a JSON file containing the following metadata for each of
the generated images of the satellite:

1. the intrinsic matrix K of the camera used in the simulated scene in Unity;

2. the ground-truths (GTs) of the relative pose: tC/B and qC/B;

3. the normalized keypoints coordinates {xk, yk}k=1,...,18;

4. the rotation quaternion from the Hill frame of the camera satellite to the camera
frame qHC ;

5. the paths to the relative feature maps.

The rotation quaternion qHC is collected only if the pose labels used for the generation of
the synthetic dataset derive from a trajectory simulation discussed in Section 4.1, and sets
up the whole pose prediction pipeline to be integrated with a navigation filter.

This data is extracted during the pre-processing phase, which is extremely important not
only to extract all the labels linked to each image but also to start an underlying tracking
of the original synthetic images that will be used throughout the whole training, validation,
and testing phases.
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3.1.2. Pre-processing pipeline

The pre-processing of the synthetic dataset starts from collecting the metadata from the
JSON files output by the Unity dataset generation step, and is displayed in Figure 3.8.
This data is extracted for each image, and is collected in a CSV that will contain:

• the relative pose ground-truths;

• the normalized coordinates localizing the 2D positions of the keypoints;

• the quaternion representing the rotation from the Hill to the Camera frame;

• the normalized coordinates defining the Bounding Box;

• the image file name.

Unity

Camera intrinsic matrix !

Relative pose GTs
"!/#
#!/#

Normalized keypoints
coordinates

{%$ , '$}$%&,…,&)

HILL2CAM rotation #*/!
Image file name -

Feature maps paths -

Depthmap Normalmap Shadowmap

resize

Normalized BBOX 
coordinates

BG SAT
dataset metadata

SAT

resized 
input and 

feature 
maps

camera parameters

%+,- , '+,- ,
%+./ , '+./

Figure 3.8: Synthetic dataset preprocessing pipeline.

The BB coordinates are retrieved by taking the minimum and maximum x and y coordinates
of the pixels turned on in the depthmap. Both the BB and the keypoints coordinates are
normalized with respect to the original size of the image, such that they can be used for
any input size. The quaternion qHC is stored to be accessible by the Kalman filter that
will be introduced in Section 2.5. Furthermore, another JSON file containing exclusively
the intrinsic camera matrix is generated, to be used by the prediction heads that need
them.
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3.1.3. Dataset generation

Once the data is pre-processed, the satellite and background images can be merged to
obtain the final dataset. The number of images to be in the final dataset can be flexibly
decided once the pre-processing is complete because all the necessary metadata is already
stored and the images from the synthetic dataset are resized based on the selected input
size for the neural network. Together with the number of images, also the percentages of
the training, validation, and test splits can be chosen.

IMAGE
GENERATION 

MODULE
dataset metadata

FINAL DATASET

train.csv

validation.csv

test.csv

normalization 
parameters

Figure 3.9: Dataset generation pipeline.

While a complete overview of this pipeline is depicted in Figure 3.9, the generation process
for a single sample is sketched in Figure 3.10: this operation is repeated for each of the
randomly selected images from the resized synthetic dataset. The entire process is built
making sure that:

• the same satellite image is never repeated in the same split;

• the same satellite image is never present in more than one split;

• if the same background image has to be used multiple times, it is flipped and/or
rotated such that no final image will have the same background;

This, of course, limits the maximum size of the final dataset to the number of synthetic
satellite images produced with Unity. Obviously, these images cannot undergo any
geometric transformation, because they have to stay consistent with the associated labels.
The final images are exported as grayscale images.
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Figure 3.10: Image generation module.

Each of the generated images that are part of the final dataset is associated with a row in
one of three CSV files (one for each split) containing the pose labels and all the available
metadata, as well as the original image name from the synthetic dataset to be able to
analyze the network performances in the best way possible, fitting the data exploration
approach. The CSV files contain the names and metadata of the exported final dataset,
and are built to be used by data loaders during the training, validation, and test phase
respectively. At the end of the dataset generation process, the images in the training set
are used to compute the normalization parameters to be used by AIKO-NET on the input
images.

Twelve example images from the dataset are shown in Figure 3.11.
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Figure 3.11: Example images with background from the generated dataset.
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3.2. Architecture

The AIKO-NET architecture is an expansion of SPNv2 [39]. The "Shared Feature
Encoder" is essentially an EfficientDet [56], which is made of a backbone and a neck that
are EfficientNet [55] and the BiFPN, respectively. All these blocks on which the CNN is
built are detailed in Section 2.2.
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Figure 3.12: The AIKO-NET architecture.

The key difference with respect to SPNv2 here is the addition of several prediction heads
that, as depicted in Figure 3.12, can be switched on or off with ease. This modular feature
makes such that AIKO-NET is a valid test-bed for experimenting a MTL approach with
different combinations. The following prediction heads are currently implemented:

1. EfficientPose [17] head hE, that is responsible for a direct pose estimation;

2. Heatmap head hH, responsible for an indirect pose estimation;

3. Depthmap head hD;

4. Normalmap head hN;

5. Shadowmap head hS.

Obviously, one between the EfficientPose and the Heatmap heads has to be on in order to
enable the neural network to output a pose prediction. The segmentation head used in the
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original SPNv2 architecture is replaced by hD: for the motivations discussed in Section 3.1,
the two heads would provide a really similar output. Thus, only hD is implemented because
a depthmap is slightly more informational with respect to a segmentation map. Regarding
the architecture of all the subnets, it resembles the one of EfficientPose [17], thus the
convolution blocks consist of depthwise separable convolution [22] layers followed by group
normalization and SiLU activation.
While the outputs from hD, hN, and hS are not directly related to the main task of AIKO-
NET, hE performs a direct pose estimation as explained in 2.2.2, and hH is responsible for
an indirect pose estimation by outputting a prediction of the keypoints locations in the
form of a heatmap and by letting them be processed by means of the EPnP algorithm
introduced in Section 2.3.1.

3.2.1. Training losses

The EfficientPose head loss can be seen as the sum of a:

• Focal loss [33] for the classification task;

• Complete Intersection over Union (C-IoU) loss [61] for the object localization task;

• SPEED loss (introduced in Section 1.2.2) for the pose estimation task.

Since all the other heads output an image, they are associated with a pixel-wise Mean
Squared Error (MSE) loss.
It is important to notice that the total loss Ltot that is backpropagated is a weighted
sum of all the losses. Let LE, LH, LD, LN, LS be the losses of the single prediction heads
identified by the subscripts. Then, the total loss is

Ltot = wELE + wHLH + wDLD + wNLN + wSLS (3.1)

and the EfficientPose head loss can be written as the weighted sum of the classification,
localization, and pose losses as follows:

LE = wcls
E Lcls

E + wbbox
E Lbbox

E + wpose
E Lpose

E (3.2)

All these weights can be individually tuned to analyze the performance of the network in
different configurations.
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Pipeline

In this chapter, we will introduce the full pipeline implemented to estimate the relative
pose of an uncooperative target, which is illustrated in the image below.
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Figure 4.1: Full relative pose estimation pipeline.

The pipeline consists of four main steps:

1. Trajectory generation by means of relative orbital dynamics in MATLAB1: this step
outputs data that will be used by Unity2 for step 2 and by the EKF in step 4.

1MATLAB version 2021b was used for all simulations and data processing in this work -
https://it.mathworks.com/products/matlab.html

2The Virtual Simulation department of AIKO, who I had to interface and collaborate with, was
responsible for developing the Unity processes.
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2. Processing of the trajectory data in Unity to produce a sequence of synthetic images
representing the target in the camera frame. In this step, also the pointing plus a
random divergence is set up. The outputs are the image sequence and a JSON file
containing all the metadata described in Section3.1.2.

3. Pose estimation through AIKO-NET. The CNN takes the synthetic images as input
and outputs two estimates of the relative pose between the spacecraft and the
target: one directly from the EfficientPose head (direct estimation) and one from
the Heatmap head’s output processed by the EPnP algorithm (indirect estimation).

4. Filtering of the estimated position using an EKF.

In the following sections, we will describe each step of the pipeline in detail, including the
implementation, challenges, and results.

4.1. Trajectory Generation

The trajectory generation process was built with the scope of setting up a framework to
produce pseudo-random trajectories to be used as simulation scenarios in the full pose
estimation pipeline. Before presenting the logic behind the orbit generation, it is important
to note that only the relative translational dynamics is taken into account. This is due to
the limited time during which the work presented in this dissertation was developed, but
the relative rotational dynamics could be ideally implemented and embedded in this phase
with the aim of filtering the whole relative pose in step 4 of the pipeline presented in the
previous section.

For the sake of readability, from now on Tango will be the target spacecraft and AIKO-
CAM will be the name of the chief satellite that we can virtually control, the state of
which will be considered as exactly known. The subscript "t" will be referred to the
target, while the subscript "c" will be for the chief. To generate realistic relative movement
between AIKO-CAM and Tango, it is crucial to take into account the orbital parameters
characterizing Tango’s orbit. Therefore, we obtain the initial conditions for Tango from
Two-Line Elements (TLEs) and then add a pseudo-random displacement to the state to
obtain an initial state for AIKO-CAM. The TLEs of Tango have been retrieved from the
CelesTrak [12] database and fed into the NASA Horizons System [13] tool, which returned
the state of the satellite on a selected date. Thus, Tango state in the Earth Centered
Inertial (ECI) frame is available.

xECI
t0

=
[

rECI
t0

⊤, ṙECI
t0

⊤ ]⊤ (4.1)
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Then, a bounded random initial state displacement

x̃ECI
t0−→c0

=
[

r̃ECI
t0−→c0

⊤, ˙̃rECI
t0−→c0

⊤ ]⊤
(4.2)

is added to Tango’s initial state xECI
t0

in order to retrieve an initial state for AIKO-CAM
xECI
c0

=
[

rECI
c0

⊤, ṙECI
c0

⊤ ]⊤:

rECI
c0

= rECI
t0

+ r̃ECI
t0−→c0

ṙECI
c0

= ṙECI
t0

+ ˙̃rECI
t0−→c0

(4.3)

The randomness of these random displacements can be tuned to obtain different relative
initial conditions resulting in different relative orbits. In order to implement the relative
dynamics introduced in Section 2.4, we need to convert the initial relative state of the
target in the chaser’s Hill reference frame H, as done in Equation 4.4. To match the
notation used in the description of the dynamics, ρ will be used to represent the target
position in the chief’s Hill frame.

ρ0 = RECI−→H
(
−r̃ECI

t0−→c0

)
ρ̇0 = RECI−→H

(
− ˙̃rECI

t0−→c0

) (4.4)

The matrix RECI−→H is the DCM representing the rotation between the two frames, and
is a function of the AIKO-CAM orbital parameters as displayed in Equation 4.5, which
are now known since its initial state in the ECI frame is defined.

RECI→H =

cos(ω + ν) − sin(ω + ν) 0

sin(ω + ν) cos(ω + ν) 0

0 0 1


1 0 0

0 cos i − sin i

0 sin i cos i


cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

 (4.5)

The rotation depends on the true latitude θ = ω+ ν that is the sum of the argument of periapsis
and the true anomaly, the chief’s orbit inclination i, and the right ascension of the ascending
node Ω.

By defining the target state x in H as

x =
[
ρ⊤ ρ̇⊤

]⊤
=

[
x y z ẋ ẏ ż

]⊤
, (4.6)
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we can write down the state space form of the model expressing the relative translational dynamics
with the EOM in Equation 2.31 from Section 2.4, where f is the state transition function of the
model.

ẋ = f (x) =



ẋ

ẏ

ż

2ν̇
(
ẏ − y ṙc

rc

)
+ xν̇2 + µ

rc
− µ(rc+x)

((rc+x)2+y2+z2)3/2

−2ν̇
(
ẋ− x ṙc

rc

)
+ yν̇2 − µy

((rc+x)2+y2+z2)3/2

− µz
((rc+x)2+y2+z2)3/2


(4.7)

Note that this formulation needs to be completed with the orbital dynamics of the chaser in terms
of true anomaly ν and orbital radius rc, through the Equations 2.27 and 2.25 from Section 2.4
that are here reported for completeness.

r̈c = rcν̇
2 − µ

r2c

ν̈ = −2 ṙc
rc
ν̇

(4.8)

The images below show some examples of obtained trajectories for a full orbital period of the
chief satellite. In the title of the plots, the operative range and the relative operational time are
reported, highlighting the flexibility of the trajectory generation process.

Figure 4.2: Generated trajectory: example 1.
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Figure 4.3: Generated trajectory: example 2.

Figure 4.4: Generated trajectory: example 3.



58 4| Relative Pose Estimation Pipeline

4.2. Images sequence generation
As this process was developed by the Virtual Simulation team within AIKO, we will not go into
detail. Nevertheless, it is useful to briefly recap the inputs and outputs of this block and to
describe the relation between the reference frames characterizing them. Unity receives as input
the trajectory in the Hill reference frame H of AIKO-CAM, and outputs:

• a sequence of images at 2 FPS;

• the associated relative pose ground truths in the Camera reference frame C;

• the quaternion qHC for each frame, expressing the rotation from H to C, considering an
imperfect target pointing calibrated with respect to the camera parameters.

Figure 4.5 gives a complete overview of the frames involved in the problem.
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Figure 4.5: Overview on reference frames.
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4.3. Extended Kalman Filter implementation
Let us recall the EKF algorithm in Equation 4.9.

x̂−
k+1 = f

(
x̂+
k ,uk, 0

)
P−

k+1 = FP+
k F

⊤ +Qk

Kk+1 := P−
k+1H

⊤
(
HP−

k+1H
⊤ +Rk+1

)−1

x̂+
k+1 = x̂−

k+1 +Kk+1

(
yk+1 − h

(
x̂−
k+1, 0

))
P+

k+1 = (I−Kk+1H)P−
k+1

(4.9)

We already defined the state transition function f in Equation 4.7, and it is easy to retrieve the
analytical form of its Jacobian

F =
∂f

∂x
=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂ẍ
∂x

∂ẍ
∂y

∂ẍ
∂z 0 ∂ẍ

∂ẏ 0

∂ÿ
∂x

∂ÿ
∂y

∂ÿ
∂z

∂ÿ
∂ẋ 0 0

∂z̈
∂x

∂z̈
∂y

∂z̈
∂z 0 0 0


(4.10)

as well as the Jacobian of the measurement function [43].

H =
∂h

∂x
=

 0 0 0

0 0 0RCH(qCH)

0 0 0

 (4.11)

The noise measurement matrix R and the process matrix Q have been tuned to ensure a good
performance of the filter. Regarding the inputs to the EKF block depicted in Figure 4.1, it
is important to notice that all the parameters needed for the computation of the Jacobians,
namely rc, ṙc, ν̇c and qCH , are considered as exactly known as they derive from the state of
AIKO-CAM, which is virtually under our control. This is an assumption that is not realistic
since such parameters should derive from a number of measurements made on and off-board,
thus they would be affected by some degree of error and uncertainty. However, this work aims
just at implementing a basic form of Kalman filtering to demonstrate the validity of the process
and of the whole pipeline.
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5.1. Error metrics
In order to evaluate the performance of AIKO-NET, it is necessary to define and use appropriate
error metrics. These metrics are critical for understanding the accuracy of the network and
determining its effectiveness in real-world scenarios.
Taking inspiration from the approach presented in [42], both the mean and the median of each
error will be reported along with the standard deviation and the interquartile range, respectively.
For the translation, we will call Et the vector containing the absolute error on the (x, y, z)

components, and Et its norm, as expressed in Equation 5.1 where t̂C/B represents a prediction
of the translation vector and tC/B is the corresponding GT.

Et = ∥Et∥ = ∥
(
|t̂C/B − tC/B|

)
∥ (5.1)

Then, et is the normalized translation error, and is defined as the absolute translation error
divided by the GT distance:

et =
Et

∥tC/B∥
(5.2)

Regarding the error relative to the rotation, it will be measured in two different ways: in terms
of quaternion error, to represent the overall attitude error with a single scalar value, as

Eq = 2 · arccos |q · q̂|, (5.3)

where q̂ represents a prediction of the relative orientation and q is the GT, and in terms of Euler
angles as

Eθ =
[
|θ̂x − θx|, |θ̂y − θy|, |θ̂y − θy|

]
, (5.4)

where (θ̂x, θ̂y, θ̂z) are predictions and (θx, θy, θz) are the GTs. The overall pose error is expressed
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using the SPEED score introduced in Section 1.2.2:

SPEED = et + Eq (5.5)

5.2. AIKO-NET Performance
Since AIKO-NET is based on a multi-scale, multi-feature architecture, there are some important
assessments to be made before presenting the performances.
The compound scaling parameter used for all the presented models is ϕ = 3, because this value
showed the best trade-off between the accuracy of the net and computational cost in SPNv2 [39].
Furthermore, the chosen input size for the network is 512× 512. The generated dataset is made
of 40000 images, and the splits used for the training, validation, and testing phases are presented
in Table 5.1.

Table 5.1: Generated dataset splits.

training validation testing

Split 70% 20% 10%

Nimages 28000 8000 4000

Exploiting the modularity of the architecture, the different configurations reported in Table 5.2
have been trained, validated, and tested.

Table 5.2: Prediction heads configurations for 9 versions of the network.

V0 V1 V2 V3 V4 V5 V6 V7 V8

hE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

hH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

hD ✓ ✓ ✓ ✓

hN ✓ ✓ ✓ ✓

hS ✓ ✓ ✓ ✓

BGs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The V0 configuration was used for the first tests, and the background images are excluded from the
final dataset to assess the performance of AIKO-NET in full configuration and optimal scenario
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conditions. The aim of this process was to find suitable configurations that may over-perform
others. It is very important to remember that the configurations from V0 to V7 were trained
using loss functions that equally concur to the total loss. This decision was taken to initially
identify how much each prediction head enhances the "benchmark performance" associated with
V0.
The last version, V8, has the same configuration as V1 but the losses weights are modified based
on the previous results.

Each configuration is trained for 50 epochs with a batch size of 10 and validated every 2 epochs.
A learning rate of 5e−4 is used, which is scaled by a factor of 1e−1 at the 75% and 90% of the
training process. For clarity of the exposition, these values are reported in Table 5.3, where fval

denotes the validation frequency.

Table 5.3: Training parameters.

Epochs fval batch size LR LR steps LR factor

50 2 10 5e−4 75%− 90% 1e−1

5.2.1. Benchmark: AIKO-NET V0

In Figure 5.1, the evolution of the losses of V0 to be used as a benchmark. Tables 5.4 and 5.5
show the mean, standard deviation, median and interquartile range (IQR) relative to the results
of testing the final model on the whole testset of 4000 images, from both the direct and indirect
estimations. The training and validation losses for multiple heads are plotted over the epochs,
and it can be observed that the validation losses closely follow the training losses. This indicates
that the CNN does not underfit or overfit the data. This result is likely due to the narrow domain
of the images used in this study, which results in macroscopic similarities between the training,
validation, and test data splits. Furthermore, it is also noticeable how the network benefits from
the LR steps, and it is clear that the LR and the LR factor used correspond to a good training
behavior since the CNN continues to learn even after scaling the LR at the 75% and 90% of the
training epochs. Since the images on which AIKO-NET is trained contain just one object, the
classification loss is the easiest task and because of this it is useful as a benchmark to check that
the CNN training is behaving fine despite the multi-task architecture. For the bounding box task,
even though the validation loss is often lower than the training one, the global evolution of the
losses on the two splits confirms the validity of the dataset by converging to really close values.
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(a) Classification loss Lcls
E . (b) Bounding Box loss Lbbox

E .

(c) Pose loss Lpose
E . (d) Heatmap loss LH .

(e) Depthmap loss LD. (f) Normalmap loss LN . (g) Shadowmap loss LS .

Figure 5.1: Evolution of the losses during the training of AIKO-NET V0.

Analyzing the losses related to more difficult tasks, such as the pose and the heatmap, the
validation loss results in reaching a slightly higher value with respect to the training one. As has
been already said, this is probably due to the higher level of complexity of such tasks. Specifically
for the heatmap loss, the validation loss looks to stay constant during the last epochs, while the
training loss continues to go down: this might be a signal of starting overfitting, so training the
heatmap head for more than 50 epochs in these conditions might not be helpful for the network.

The results reported in the tables below show an overall good performance of AIKO-NET V0,
with a generally better accuracy for the EfficientPose head.
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Table 5.4: Global performance of V0 - mean values and STDs.

EfficientPose Heatmap + EPnP

Mean STD Mean STD

Et [mm] [9.0, 9.0, 50.6] [8.6, 9.1, 66.3] [23.8, 22.7, 188.5] [19.6, 17.6, 137.0]

Et [mm] 52.2 67.5 191.3 139.3

et 0.007 0.007 0.028 0.027

Eθ [deg] [1.9, 1.2, 2.0] [2.6, 1.9, 2.5] [2.2, 1.5, 2.6] [5.3, 4.1, 6.0]

Eq [deg] 2.6 2.3 3.5 7.2

SPEED 0.05172 0.04259 0.08308 0.10281

Table 5.5: Global performance of V0 - median values and IQRs.

EfficientPose Heatmap + EPnP

Median IQR Median IQR

Et [mm] [6.9, 6.7, 28.6] [8.9, 8.8, 54.3] [20.7, 20.1, 167.3] [17.7, 16.9, 182.1]

Et [mm] 30.2 55.7 169.7 183.7

et 0.005 0.005 0.021 0.026

Eθ [deg] [1.3, 0.9, 1.4] [1.7, 1.2, 1.8] [0.9, 0.5, 0.9] [1.6, 0.9, 1.8]

Eq [deg] 2.2 1.6 1.4 1.9

SPEED 0.04457 0.03042 0.05618 0.04537

These results derive from an error analysis excluding some outliers: inputs are considered as
attitude outliers when

the error on any of the Euler angles is > 100◦,

and position outliers when

the error on the normalized range is > 0.2.

The number of the resulting outliers and their kind, associated to each pose prediction method
are shown in Table 5.6 as percentages of the total testset.



5| Results 65

Table 5.6: Percentages of outlier images in the testset. Values are categorized with respect
to the estimation method and estimated state.

EfficientPose Heatmap + EPnP

Position outliers 0.0% 1.9%

Attitude outliers 1.8% 2.0%

In Figure 5.2, all the losses are displayed on the same plot to compare their order of magnitude.
It is easy to notice that there are some losses that have a more significant impact on the total
loss, meaning that the heads they are associated with are forcing the backpropagation to update
the network weights to better perform their task. Since these losses are the ones related to the
feature maps, they are making it harder for the main task loss to reach a better minimum. The
classification loss is left out of this comparison since it ranges between ∼1e−4 and ∼1e−10. We
can find the motivation for these different behaviors in the nature of the feature maps: estimating
the shadowmap is a really challenging task since the geometrical features of the satellite get
completely altered; the normalmap is a RGB image, thus the error is high when compared to other
feature maps as expected; the depthmap is easier to estimate with respect to the aforementioned
features because, with the used dataset, it can be approximated to a simple segmentation mask.

Figure 5.2: Comparison of V0 training loss orders of magnitude. All the losses apart from
the classification loss are reported.

It is also interesting to analyze the accuracy of the model with respect to the GT distance from
the target.
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(a) hE : et (b) hH + EPnP : et

(c) hE : Ex, Ey (d) hH + EPnP : Ex, Ey

(e) hE : Ez (f) hH + EPnP : Ez

Figure 5.3: Effect of relative distance on translation errors. Results from direct estimation
through the EfficientPose head on the left (a)-(c)-(e), and from indirect estimation through
the Heatmap head + EPnP on the right (b)-(d)-(f).



5| Results 67

Figure 5.4: Error on the quaternion vs. relative distance

In order to perform this analysis, the test images were grouped by their associated distance GT,
and for each group, the corresponding mean performance is plotted against the mean distance.
Figure 5.3 shows the results of the analysis for the translation errors, while in Figure 5.4 the
quaternion error is taken into consideration.

Starting from the translation errors in Figure 5.3, the results deriving from the direct estimation
made by the EfficientPose head are reported on the left column, while the ones deriving from the
indirect estimation, i.e. Heatmap head + EPnP, are placed on the right. In order to extract
the most information from the data, the plots relative to the same quantities, so on the same
row, have the same limits on the y axis. This way, not only the single head’s performance can be
appreciated, but also an efficient comparison between the two estimations results immediately
available.

At a first glance, it is obvious how the EfficientPose head has an overall better performance, as
already seen in Tables 5.4 and 5.5. However, both estimation approaches show an increase in
translation errors with the distance from the target. This is likely to be due to the fact that
the features of the satellite become more and more difficult to extract as the target gets smaller
and smaller in the input images that are already low resolution ones. In particular, the depth
component z in the camera frame results more difficult to estimate with respect to x and y: first
of all, the position components on the camera xy plane are more bounded due to the nature of
the problem, and it would be interesting to see how this behavior changes with different FoVs;
moreover, the BB detection task surely helps in the x and y components estimation, while has a
lower impact on the prediction of the z coordinate. Small distances also result in less accurate
position predictions: while the errors for the EfficientPose head remain contained, the EPnP
finds it really hard to precisely estimate the position of the target when it is really close to the
camera. This is probably due to keypoints that might be off the FoV of the camera, or to the
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sigma value chosen for the heatmaps ground-truths generation discussed in Section3.1.

Moving on to quaternion errors, the results from both estimation approaches are plotted together
in Figure 5.4. It can once again be noticed how the overall EfficientPose predictions accuracy is
more stable, while the indirect estimation presents issues with both smaller and bigger distances.
The analysis for the pitch, roll, and yaw angles is not reported since the results obtained are
similar for each of the three Euler angles for both estimation approaches.

5.2.2. Configurations performance comparison

As introduced at the beginning of this chapter, different configurations were tested to understand if
and how the architecture is capable of solving different tasks in parallel and if such a parallelization
can, in some cases, enhance the performance of the principal tasks that are the pose estimation
through both the direct and indirect approach.

It is important to recall that all the configurations apart from V0 are trained, validated, and
tested on a dataset made of satellite images with background. Figures 5.5, 5.6 and 5.7 depict the
boxplots of the normalized translation error, quaternion error, and SPEED scores respectively,
obtained for each configuration tested on the whole testset, and for both the estimation methods.

Figure 5.5: AIKO-NET versions normalized translation error comparison. Direct estimation
on the left, indirect estimation on the right. Config. V3 errors are replaced by a red-shaded
region because they are notably higher.
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Figure 5.6: AIKO-NET versions quaternion error comparison. Direct estimation on the
left, indirect estimation on the right. Config. V3 errors are replaced by a red-shaded region
because they are notably higher.

Figure 5.7: AIKO-NET versions SPEED score comparison. Direct estimation on the left,
indirect estimation on the right. Config. V3 errors are replaced by a red-shaded region
because they are notably higher.
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AIKO-NET V1 is directly comparable to V0 since they share the same configuration except for
the backgrounds on the images. The experiments show that the performance of AIKO-NET V1 is
slightly worse than V0, as the increased difficulty of the problem affects the overall performance.
Nonetheless, the architecture demonstrates robustness to different datasets, which is evidenced
by the results convincing quality. In addition, the lighting conditions in the background images
do not match the foreground scene, which is a more challenging condition than a realistic one.
This mismatch can be seen as a limitation of the dataset, which aims to cover a wide range
of diverse cases rather than being representative of real-world scenarios only. The boxplots
for V3 are not included in the plots and are replaced by a red-shaded region due to their high
errors, which is primarily because the architecture is not optimized solely for keypoint detection.
Specifically, the heatmap head does not work on a cropped RoI as in [40], and no keypoint
outlier detection method is applied. As a consequence, the performance of this configuration is
considerably lower compared to the other ones. It is noteworthy to observe that the performance
of the Heatmap head + EPnP method improves significantly when another parallel head, such as
EfficientPose, is added to the architecture, as demonstrated by the V4 configuration. The indirect
estimation method appears to benefit from the tasks performed by the head responsible for the
direct estimation, as the bounding box detection is likely to enhance the quality of the keypoints
detection process. It should be noted that the indirect estimation method may not perform well if
the architecture is not designed to support it, and if there are no parallel, object-detection related
tasks operating. Also EfficientPose benefits from the parallelization with the keypoints heatmap
estimation task: its predictions in V4 result more accurate than V2 both for position and attitude.
The two heads result to be synergic. Despite the fact that the configurations from V5 to V7

exhibit similar levels of performance, it is interesting to note that the worst results are obtained
with V7, which involves using the shadowmap feature in addition to hE and hH . The inferior
performance of V7 can be attributed to the greater difficulty posed by the shadowmap feature.
When compared to V4, both the direct and indirect methods of V5 show worse performance for
both the position and attitude estimations. This can be attributed to the high depthmap loss
magnitude and its low informative level. On the other hand, V6 with the normalmap head shows
slightly better performance than V4, despite the high loss magnitude associated with it. This
could be due to the high informative level of the RGB feature, which seems to aid the network in
its primary tasks. The boxplots depicting the errors associated with the Heatmap head + PnP
method predictions (right column) indicate that the interquartile ranges (IQRs) are typically
more spread out. Additionally, in some instances, the range from the median to the third quartile
(Q3) is wider than the range from the median to the first quartile (Q1), which indicates that the
distribution of errors is skewed towards higher values. It is also worth noting that the means
occasionally lie outside of the IQR. This behavior suggests that the model may have difficulty
handling certain cases, and it may be worth investigating those cases in more detail to improve
the overall performance.

We will now briefly discuss V8, which was set up to be an optimized version of V1. The loss
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weights used by V1 and V8 are summarized in Table 5.7. The reference nomenclature can be
found in Section 3.2.1.

Table 5.7: Loss weights on different AIKO-NET configurations.

wE wcls
E wbbox

E wpose
E wH wD wN wS

V1 1 1 1 1 1 1 1 1
V8 1 0.1 0.5 1 1 0.3 0.5 0.2

The reason behind choosing the specific loss weights is based on the following observations:

• the classification loss is consistently low during the entire training process, and hence, it is
considered less important than the other losses;

• the bounding box prediction loss has a lower priority than the pose loss in the EfficientPose
head;

• the losses associated with the primary tasks should carry the most significant weights;

• the shadowmap loss has the highest value and should be lowered relatively to focus on
more critical tasks;

• among the three additional features, namely depthmap, normalmap, and shadowmap, the
normalmap is the most informative and beneficial for the network, and thus, it should
have the highest priority among the three.

The test results reveal that V8’s EfficientPose head exhibits improved performance in predicting
both the relative position and attitude as expected when compared to V1. However, there is no
significant improvement observed in the relative pose estimation through the indirect method.
Finally, the overall performance metrics of V8 are reported in Tables 5.8 and 5.9 and show a
slight worsening with respect to V0.
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Table 5.8: Global performance of V8 - mean values and STDs.

EfficientPose Heatmap + EPnP

Mean STD Mean STD

Et [mm] [9.2, 8.8, 57.8] [9.9, 8.7, 80.0] [24.3, 23.6, 200.2] [23.2, 22.8, 159.3]

Et [mm] 59.2 81.1 203.1 162.6

et 0.007 0.008 0.030 0.028

Eθ [deg] [2.1, 1.2, 2.2] [3.1, 1.8, 3.6] [2.7, 1.7, 3.2] [6.0, 4.1, 6.9]

Eq [deg] 2.7 2.9 4.1 8.0

SPEED 0.05476 0.05413 0.09404 0.11634

Table 5.9: Global performance of V8 - median values and IQRs.

EfficientPose Heatmap + EPnP

Median IQR Median IQR

Et [mm] [6.6, 6.6, 29.6] [9.4, 8.6, 59.9] [20.5, 20.2, 177.5] [18.2, 17.9, 188.8]

Et [mm] 31.0 61.2 179.8 190.5

et 0.005 0.006 0.023 0.026

Eθ [deg] [1.3, 0.9, 1.5] [1.8, 1.2, 1.9] [1.0, 0.6, 1.1] [2.1, 1.2, 1.4]

Eq [deg] 2.3 1.7 1.6 2.5

SPEED 0.04593 0.03142 0.06091 0.05277

To provide a final and clear overview of the comparison between all the tested configurations,
Figure 5.8 displays the performance from both the direct and indirect methods of AIKO-NET
V0-V8 (V3 is excluded because the errors are orders of magnitude higher) in a median et vs.
median Eq plot. Circular markers refer to results from direct estimations, while triangular
markers refer to those from indirect ones. The size of the markers is directly related to the
SPEED score IQR.
The overall accuracy on the normalized translation is higher for the direct method, while the
indirect approach provides a more stable estimation of the relative orientation: generally, the
predictions made by the EfficientPose head are more dependant on the network configuration
with respect to the ones deriving from the Heatmap head. Looking at the circular markers, we
can say that the better the overall prediction quality, the smaller their size. This means that low
median errors correspond to low IQRs for the EfficientPose head: as the performance gets better,
also the robustness of the network increases, resulting in an enhanced generalization capability.
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Figure 5.8: AIKO-NET versions: et vs. Eq. Marker size depends on the SPEED score
IQR. Errors from V3 are not displayed since they are notably higher with respect to the
other versions.

5.2.3. Prediction visualization

In this section, we will visualize the predictions made by our object detection network. We
will show the output of the network on sample test images from three different distance ranges:
close range (0-5 meters), medium range (5-15 meters), and long range (10-15 meters). For each
test image, we will display the input image with overlapped predicted bounding boxes and the
output heatmap in the first row. The Tango wireframe will be superimposed on the heatmap
to make the visualization more readable and immediate. On the second row, the depthmap,
normalmap and shadowmap are reported in this order. This visualization will help us gain a
better understanding of how the network is making its predictions and will allow us to identify
any areas for improvement. Figures 5.9 and 5.10 show AIKO-NET V8 predictions of close range
images. Although only the EfficientPose head pose prediction is reported, it is interesting to see
how the keypoint detection task suffers from high uncertainty, denoted by the halos around the
predicted landmarks. This might be one of the issues that cause the indirect method to result
in worse performance with respect to the direct one. It has to be noticed that all the feature
maps outputs, namely the heatmap, depthmap, normalmap and shadowmap, have a 128× 128

resolution. This is because the BiFPN feeds inputs to the prediciton heads only from its 3rd

to 7th levels. Consequently, the maximum resolution input available to any prediction head is
one-third of the original input 512× 512, which corresponds to a 128× 128 image.
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Figure 5.9: Prediction visualization for the close range image rgb_36434.png.

Figure 5.10: Prediction visualization for the close range image rgb_36369.png.
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Figure 5.11: Prediction visualization for the medium range image rgb_36002.png.

Figure 5.12: Prediction visualization for the medium range image rgb_36166.png.
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Figure 5.13: Prediction visualization for the long range image rgb_36171.png.

Figure 5.14: Prediction visualization for the long range image rgb_37300.png.
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In both medium and long range prediction visualizations it can be noticed that, even though
EfficientPose can still provide very good pose predictions, the predicted keypoints heatmap
feature starts to be a bit more chaotic. It can be observed that the halos around the predicted
keypoints start to be more impactful with respect to the 2D relative positions between the single
keypoints. As a result, the performance of the indirect method deteriorates as the distance from
the target increases. This issue can be attributed mainly to the fixed standard deviation used
for generating the heatmap ground-truths. Also, the shadowmap prediction results to be poorly
performed in long range scenarios like in Figures 5.13 and 5.14: this feature map gets more
difficult to generalize when the target is small, a condition which worsens the already hard task
due to the geometric inconsistency with respect to the other feature maps.

5.3. Pose Estimation Pipeline Performance
In order to evaluate the whole pipeline, an example of the full processing of a sequence of images
is shown in this section. This test was performed on the orbit displayed in Figure 5.15, generated
through the procedure explained in Section 4.1.

Figure 5.15: Tested relative orbit.

The trajectory data was passed to Unity, and the output sequence of images is briefly presented
in the mosaic in Figure 5.16. The ground-truths on the images represent their position in the
camera frame. This test was done by assuming a perfect pointing without any divergence so that
the x and y ground-truths in the camera frame are always zero. Moreover, the backgrounds are
excluded from the scene to work with a simple case, so that the overall results are cannot be
affected by any unexpected issue. Thus, the architecture used for prediction is AIKO-NET V0.
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t = 0.0 s t = 62.0 s t = 124.0 s t = 186.0 s

t = 246.0 s t = 308.0 s t = 370.0 s t = 431.0 s

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 7.01 m

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 7.87 m

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 8.87 m

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 9.96 m

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 11.08 m

𝑥!" 𝑦!" 𝑧!"
0.00 m 0.00 m 12.31 m

𝑥!" 𝑦!" 𝑧!"
0 m 0 m 13.60 m

𝑥!" 𝑦!" 𝑧!"
0 m 0 m 15.00 m

Figure 5.16: Mosaic of images: output sequence from Unity.

In order to enhance the clarity of the data, the filtered and raw measurements were overlaid
on the graphs and a logarithmic scale was used. Also, the plots report the 3σ limit: the black
line derives from the propagation of uncertainties on the position and defines the range within
which the 99.73% of the data points are expected to fall. Error values above the 3σ limit identify
outliers. As a first observation, it is good to notice that the CNN predictions on a dynamic,
simulated scene result consistent: the errors do not present strange behaviors or sudden spikes,
meaning that the proposed architecture robustly handles the pose prediction problem. This is a
promising result as it suggests a first step towards the applicability of AIKO-NET to real-world
scenarios. Although the predictions made by the CNN are already very accurate, with errors
in the order of centimeters and millimeters, Figure 5.17 demonstrates the effectiveness of the
filtering action. In this specific test, the EKF may not provide significant additional benefits from
the error point of view, but its filtering action would be useful in a more complete application
for control purposes by removing excessive noise in the measured states.



5| Results 79

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
x
 [

m
]

EKF effect on AIKO-NET position estimations

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
y
 [

m
]

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
z
 [

m
]

Figure 5.17: Effect of EKF on AIKO-NET position predictions.

To perform a more rigorous evaluation of the EKF’s performance, additional noise was deliberately
added to the measurements, and the noise measurement matrices were fine-tuned accordingly.
Specifically, two levels of disturbances were introduced: the first level was in the order of
centimeters, while the second level was in the order of decimeters. The results for each magnitude
of disturbance are presented in Figures 5.18 and 5.19, respectively. With these more inaccurate
measurements, the beneficial effect of the EKF is clear: the filtering often manages to lower the
errors by an order of magnitude. Based on the results, it is clear that the EKF has demonstrated
robustness in dealing with inaccurate inputs. Despite the initial inaccuracy, the EKF was able to
converge quickly to low error levels, which are comparable to those obtained in the previous test
case presented in Figure 5.17.
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EKF effect on AIKO-NET position estimations with additional ~cm noise
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Figure 5.18: Effect of EKF on AIKO-NET disturbed (∼ cm) position predictions.
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EKF effect on AIKO-NET position estimations with additional ~dm noise
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Figure 5.19: Effect of EKF on AIKO-NET disturbed (∼ dm) position predictions.
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Thus, the development of such a tool can be useful for lowering measurements errors in scenarios
where the predictions are not as accurate as the ones provided by AIKO-NET V0: this opens
scenarios that may consider pose estimation on satellites beyond the trained range, or the
application of a lighter, smaller network for which the quality of the predictions may deteriorate
with respect to the tested benchmark configuration.
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6| Conclusions and Future work

6.1. Conclusions
This thesis investigates the parallelization capabilities of an AI architecture for relative pose
estimation of a known, uncooperative satellite from greyscale, monocular camera images. The
study contributes by demonstrating the reproducibility of SLAB’s SPNv2 SOTA results and by
developing and exploring different configurations of AIKO-NET. AIKO-NET is a MTL based,
modular architecture made of a total of 5 prediction heads. Three of such heads do not explicitly
solve the pose estimation task but try to help the network in being more accurate. The aim is to
assess the architecture’s ability to solve multiple tasks simultaneously in order to improve the
principal tasks’ performance, namely, pose estimation using both the direct and indirect approach.
The direct approach involves estimating the 6D pose of a target directly from the output of the
EfficientPose head. The indirect approach, on the other hand, relies on the Heatmap head output
as input for a PnP solver (EPnP) to output another pose estimate.

We began our investigation by conducting a comprehensive review of the most advanced techniques
for pose estimation, focusing on those based deep learning approaches, and paying special attention
to the strategies employed by Park et al. in their "Spacecraft Pose Estimation Network v2"
[39]. Building upon the foundation laid by this baseline work, we developed a complete relative
pose estimation pipeline. As AIKO-NET introduces novel feature maps, it was necessary to
create a new dataset to ensure a fully adaptable framework. This led to the development of
the Multi-Feature Spacecraft Pose Estimation Dataset (MFSPED), which provided us with the
necessary resources to train AIKO-NET in all of its configurations. Our study explored nine
distinct configurations and tested them on 4000 test images, ultimately showcasing state-of-the-art
performance and the benefits of a modular architecture that can be trained with a virtually
unlimited dataset.

The CNN developed in this work was integrated into a comprehensive pipeline that begins with
the custom generation of trajectories to test the network’s performance. This data is then used
to generate synthetic images that simulate relative trajectory scenarios. The pipeline concludes
with the improvement of pose predictions through the application of an Extended Kalman
Filter (EKF), which has shown robustness in handling errors even higher than those provided
by AIKO-NET. The aforementioned results highlight the potential of the EKF in effectively
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filtering out high errors, which opens up avenues for several possible solutions. For instance, a
simpler and smaller network with lower performance but also lower computational costs could be
considered. Additionally, simpler backbones could be used, and training for less than 50 epochs
could be explored. Furthermore, the modularity of AIKO-NET can be leveraged to modify the
network based on real-world scenarios.

6.2. Future work
There is certainly a lot of work to be done and many directions to explore that could make the
work presented in this thesis more complete and suitable for real-world scenarios. The most
relevant observations and hypotheses on future work are listed here below:

1. Addressing the domain gap problem is crucial: the domain gap problem in computer
vision refers to the performance degradation of a model trained on data that does not
correctly represent the domain of real application. Training on synthetic images a software
that should work with real, spaceborne images introduces a series of biases that may lead
to inaccurate real-world estimations. To face this problem, one approach would be to
improve the training dataset by using, for example, better digital assets which can provide
higher-quality images. Data augmentation is a typical method used to face the domain
gap: by introducing augmentations to the synthetic imagery, one can increase the diversity
of the training set and improve the model’s robustness to different conditions.

2. The standard deviation used for generating the ground-truth heatmaps for the keypoints
prediction could be optimized based on the relative distance from the target, introducing
a dynamic selection of such quantity. This would allow for a more precise representation
of the keypoints, which would lead to more accurate pose estimation by indirect method.

3. Exploring other loss types would be interesting: the current loss functions used for the
different prediction heads in AIKO-NET could be replaced with other types of loss functions
that might be more suitable for the task at hand.

4. Applying a dynamically weighted loss function could be a great optimization method for
AIKO-NET: changing the heads’ losses weights throughout the training by ensuring, for
example, a balanced total loss would be extremely beneficial for the CNN and could make
the prediction heads even more synergic.

5. Implementing the Kalman filtering also for the relative orientation measurements would
make the prediction pipeline more complete.

Finally, future research directions should pave the way for the deployment of a complete vision-
based relative navigation architecture for space systems.
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