
Executive Summary of the Thesis

Deep Reinforcement Learning for Concentric Tube Robot Control

Laurea Magistrale in Biomedical Engineering - Ingegneria Biomedica

Author: Lorenzo Valente

Advisor: Prof. Elena De Momi

Co-advisor: Ing. Keshav Iyengar

Academic year: 2021-2022

1. Introduction
The Minimal Invasive Surgery (MIS) technique
offers a more efficient and less invasive way to
perform many surgical procedures. MIS uses
tiny incisions or natural orifices to enter the sur-
gical site, resulting in less pain, less tissue dam-
age, and reduced hospitalization time. How-
ever, during complex procedures where the path
to follow is deep and tortuous, MIS strategy is
more efficient if coupled with Robotic Assisted
(RA), dexterous and flexible instrumentation.
Multi-segmented arms with high degrees of free-
dom (DOF) like Concentric Tube Robot (CTR)
are one of the most investigated technologies in
those cases, they can deform and adapt to the
external environment, limiting tissue damage.
CTRs consist of concentrically arranged pre-
curved tubes, usually made of Ni-Ti alloy, that
can be singularly actuated through axial exten-
sion and rotation generating by means of their
interactions curvilinear shapes of the robot back-
bone. With the increased number of DOF and
reduced dimensions, CTRs may be beneficial for
ablation procedures like Fetoscopic Laser Co-
agulation for Twin-Twin Transfusion Syndrome.
In this procedure no tip forces are involved, how-
ever the robot tip position control is essential
since a correct distance from the tissue must be

maintained in order to deliver the correct laser
power. Due to complex tube’s interaction, mod-
elling and control of CTRs is challenging. From
literature analysis [1, 2], the control strategies
based on a kinematic model have some issues re-
garding the balance between modelled physical
phenomena and sufficient performance for real-
time integration. Thus, the proposed model-free
Deep Reinforcement Learning based controller
aims at overcoming model-based issues. The de-
veloped controller is intended for a real control
loop scenario where the surgeon is performing a
procedure through a teleoperated haptic device
for Cartesian position control of CTR tip posi-
tion and the proposed controller calculates the
inverse kinematics in order to reach that posi-
tion or follow that trajectory.

2. Background
Among robots’ control techniques, Reinforce-
ment Learning (RL) has had an emergence as
popular for solving complex control tasks. RL is
a subfield of machine learning (ML) concerned
with how an agent can learn to take actions in an
environment to maximize a reward signal. The
agent is a learner, while the environment is a
context in which the agent takes actions. The
goal is to optimize the policy of the agent such

1



Executive summary Lorenzo Valente

that it maximizes the reward it receives from the
environment.
Particularly, model-free learning methods be-
came popular among CTRs’ control strategies
being able to overcome tube interaction com-
plexity and modelling for kinematics. In this
work a model-free RL approach is experienced
where the agent learns directly from the data,
without building a model of the environment.
Instead, it learns to associate actions with states
based on the reward signals it receives. A typical
RL problem is described as a Markov Decision
Process (MDP) that is a classical formalization
of sequential decision-making, where actions in-
fluence not just immediate states but also sub-
sequent situations and it involves: agent, envi-
ronment, states, actions and rewards.
In this case high-dimensional states and ac-
tions are involved, thus is necessary to move to
a Deep Reinforcement Learning (DRL) frame-
work, which includes neural networks in the pol-
icy optimizing process. In particular two DRL
compatible algorithm has been tested, Proximal
Policy Gradient (PPO) and Advantage Actor
Critic (A2C).

3. Implementation
The agent is represented by the entire robot and
it interacts in a simulated environment where
the possible actions are extension and rotation
of each robot’s tube in a free space.
State. The observation state st at timestep t
is defined by a trigonometric joints representa-
tion γi of each tube, the Euclidean norm error
et between current tip position and desired tip
position, both defined through a Forward Kine-
matics (FK) problem solution where the input
values are the current and desired joint values
respectively, and the current error tolerance δ(t):

γi = {cos(αi), sin(αi), βi},
st = {γ1, γ2, γ3, et, δ(t)},

(1)

the current error tolerance δ(t) is a value use-
ful for reward function definition and is updated
during training following a constant, linear or
exponential decay with respect to timestep.
Action. At each step the agent selects joints
values in order to reach the target. Thus, ac-
tions are changes in extension and rotation for
each tube, these changes are constrained in a
range that is ±1mm for extension and ±5◦ for

rotation. The agent can select any values in the
continuous range between the limits, actions can
be then defined as:

a = (∆β1,∆β2,∆β3,∆α1,∆α2,∆α3) (2)

The joint constraints described in eq. 5 are im-
plemented through a check that happens after
each action is selected, actions values are clipped
in a way that constraints are respected.
Reward.The action taken will lead the agent to
a new state with new observations. The policy
will be updated according to a reward, which
is a scalar value returned by the environment
as feedback from the chosen action. Dense and
sparse reward function has been tested. The
sparse rewards strategy in RL aims to give feed-
backs for a small handful of states, in this case
is defined as:

r =

{
0, et ≤ δ

−1, otherwise, (3)

While, with dense reward function the feedback
signal is given at each step and defined as:

r =

{
0, et ≤ δ

−et, otherwise, (4)

4. Materials and Methods
4.1. CTR model
The current study will focus on the following
CTR system, made of three concentrically ar-
ranged tubes with index i going from the in-
nermost to the outermost tube as see Fig. 1,
where each tube length Li is the summation of
the curved Lc

i and straight Ls
i section. Each

tube has two DOFs, a rotation αi and an ex-
tension βi; defining in this way a full joint con-
figuration of the entire system in the form of
q = [β1, β2, β3, α1, α2, α3]. The extension con-
straints due to actuation limitations are the fol-
lowing:

βi ∈ [−Li, 0)

β1 ≤ β1 ≤ β1 ≤ 0

0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1

(5)

Where the zero position is defined based on the
reference frame represented in Fig. 1.

2



Executive summary Lorenzo Valente

Figure 1: CTR system notation. alphai relative
rotation, betai relative extension, Lc

i precurved
tube length, Ls

i straight tube length, (x̂0, ŷ0, ẑ0)
reference frame attached to the robot base where
tubes can fully retract.

4.2. Simulation environment
The environment that simulates a CTR interact-
ing in a free space has been developed following
the OpenAI framework to collect data and ex-
periences useful for the DRL algorithms to train
a policy. The environment takes as input the
CTR’s tube parameters listed in Tab. 1 and
the selected actions by the agent to compute the
overall CTR’s backbone shape.
The training process is divided in episodes
that are sets of training steps with a defined
maximum length. At the beginning of each
episode a target point is selected inside of CTR
workspace, through Forward Kinematics(FK)
problem solution based on the Constant Curva-
ture CTR kinematic model [4]. Then for each
step of the episode, the agent selects an ac-
tion and the reward feedback is assigned based
on the achieved end-effector position computed
through FK based on the same kinematic model.
The episode terminates if the number of steps
overcomes the maximum length or if the cur-
rent observed error is below the current toler-
ance. Once an episode is terminated the final
robot pose becomes the starting pose for the
next episode and another point in the workspace
is selected.

4.3. Methods
To train the model has been exploited Stable
Baselines 3(SB3) which is a set of reliable imple-
mentation of DRL algorithms. Among the types
of SB3 policy network, the Multi Layer Percep-
tron (MLP) one has been selected for this work.
Two different network for actor and critic have
been selected with two hidden layers of 256 units

each.
To the implemented simulation environment the
following methods have been applied to compare
the control performance:
• PPO, a DRL on-policy policy gradient al-

gorithm
• A2C, a DRL on-policy actor-critic algo-

rithm
• DDPG + HER, in a previous similar work

Iyengar et. al [3] applied Deep Determin-
istic Policy Gradient (DDPG) an off-policy
policy gradient algorithm to the same envi-
ronment with the addition of Hindsight Ex-
perience Replay (HER) strategy to improve
training convergence.

• Jacobian-based controller that is one of the
most common method for CTR control with
the following closed form law to steer the
CTR:

q̇d = J†[ẋd +Kp(xd − x)] (6)

where J† is the pseudoinverse of the robot
Jacobian, Kp is a symmetric positive def-
inite matrix, given a desired joint values
change q̇d as control input, ẋd the desired
change in Cartesian space and xd the de-
sired Cartesian position.

All the DRL algorithms has been tested with
both dense and sparse reward functions.

1st 2nd 3rd

Length 340.36 169.69 72.75

Length Curved 90.00 87.50 61.03

Inn. Diameter 0.51 0.70 1.15

Out. Diameter 0.66 1.00 1.63

Table 1: CTR tube parameters measured in mm
(1st is the innermost tube)

4.4. Hyperparameters Tuning setup
An essential step for an RL training process is
Hyperparameters Tuning, these parameters are a
set of values that will heavily impact on training
performance. Several automatic hyperparame-
ters optimization methods have been developed,
the one exploited in this study is a framework
called Optuna. The optimizer runs the environ-
ment for a predefined number of trials and steps

3



Executive summary Lorenzo Valente

per trial, for each trial a set of hyperparame-
ters values are sampled from a group of stan-
dard values. The result of this research is the
best combination of parameters that comes from
the best trail which is the trail with the high-
est reward. In this study a Random sampler
has been selected which determines the value of
a single parameter without considering any re-
lationship between parameters; while a Median
pruner has been chosen, which will terminate a
trial if its best intermediate result is worse than
median of intermediate results of previous tri-
als at the same step. The optimization has been
performed over 600 trials of 10000 episodes each.

5. Experimental Setup
The tuned hyperparameters have been used as
input for the training process. Both PPO and
A2C algorithms are compatible with continuous
state and action spaces environments, which is
a requirement for the reaching task involved in
this case. The algorithms have been applied
to the environment using SB3 implementations.
Each algorithm has been tested with longer and
shorter training, three and one million steps re-
spectively. SB3 implementation supports envi-
ronment parallelization, thus 1 and 8 parallel en-
vironments trainings have been tested. All the
three goal tolerance decay functions has been
evaluated, resulting the linear the one with bet-
ter performance. During each training every
10000 steps the policy is evaluated on the same
environment and the results of this evaluation
recorded. The training performance evaluation
has been conducted by looking into these met-
rics:
• episode reward mean, the average reward of

an episode for all the training’s episodes
• episode length mean, the average episode

length for all the training’s episodes
• error, distance between desired and

achieved end-effector position calculated at
the end of each training’s episode

• success rate, percentage of success among
the evaluation episodes. The success of an
episode is established if the distance be-
tween desired and achieved end-effector po-
sition is below the current tolerance.

Each trained policy has been evaluated on the
same simulation environment, thus with the
same tube parameters as input, through two

kind of experiments:
• targeting, the trained policy is used to pre-

dict joint values in order to reach a target
point inside of the task space. The policy
has been tested over 500 target points. The
trained agent interacts with the environ-
ment trying to reach the goal, the episode
stops if the error is below 1 mm and then,
in the next episode, a new target is se-
lected. The robot starting pose is resam-
pled at each episode.

• path following, the trained policy is used
to predict joint values in order to follow a
predefined path. Two kind of path have
been tested: line and circle. The trajectory
is built as a series of consecutive points that
the robot should reach in order to follow
the path. The first target point is sampled
inside of the task space and then the fol-
lowing target points form a line or a circle.
The path following test is repeated with 10
different starting points for each kind of tra-
jectory and the results averaged.

The quality of the obtained results from these
two experiments has been established by look-
ing at the error distance between the achieved
Cartesian tip position Ga and the desired one
Gd calculated as:

E =
√

(Gdx −Gax)2 + (Gdy −Gay)2 + (Gdz −Gaz)2 (7)

and episode length, that defines how fast is the
policy to find joint values that perform the re-
quired task. These kind of evaluation tests are
relevant as similar to a real surgical scenario
where a surgeon control the end-effector tip posi-
tion through a teleoperated haptic device giving
Cartesian coordinates as input for the trained
policy.

6. Results
6.1. PPO vs A2C
Training results show that PPO outperforms
A2C in both three and one million steps train-
ing and with both sparse and dense reward func-
tions. PPO converges to a 100% success rate in
less than 500000 steps, also reward and episode
length show better performance. Fig. 2 demon-
strates how PPO outperform A2C also in the
targeting evaluation test. The average error
distance with its standard deviation and the

4



Executive summary Lorenzo Valente

Figure 2: Evaluation error result of the three
DRL methods, distance between desired and
achieved end-effector position.

episode length mean of the targeting test are
described in Tab. 2.

Av. St. dev. Ep. Len.

PPO 0.88 mm 0.90 mm 26.33 steps

A2C 37.2 mm 17.9 mm 50 steps

DDPG+HER 0.83 mm 0.16 mm 25.81 steps

Table 2: Targeting results of the three DRL
methods: average and standard deviation of er-
ror E, episode length.

6.2. Dense vs sparse reward function

Observing training performance metrics for
PPO one million steps training for dense and
sparse reward comparison, it can be inferred
that dense reward converges to 100% success
rate while sparse does not. Both the trained
policies has been evaluated with a targeting ex-
periment, the average error distance measured in
the experiment is 0.8mm with 0.6mm standard
deviation for the dense reward policy, while for
sparse reward the mean is 29.3mm and the stan-
dard deviation 13.8mm.

6.3. PPO vs Jacobian
A line trajectory path-following test with 10 dif-
ferent starting points has been exploited to eval-
uate and compare a Jacobian controller, with
K = 2I, and a PPO policy trained with a dense
reward function for one million steps. In Fig. 3
is shown one of the most successful experienced
test, while in most of the case the Jacobian con-
troller steered the robot far away from the target

Figure 3: PPO vs Jacobian controller evaluation
test, the black dot is the starting point of the tra-
jectory and the red one is the ending point while
the green dots describe the trajectory. The pink
line is the actual end-effector trajectory. (A)
is the Jacobian controller trajectory, (B) is the
PPO trajectory.

trajectory, thus the error metric of this success-
ful test is not a clear evidence of the bad Jaco-
bian performance.

6.4. PPO vs DDPG+HER
In [3] has been demonstrated that DDPG needs
2 million steps and 19 parallel workers to con-
verge, while PPO method is able to converge
with 8 parallel workers and 1 million steps train-
ing showing on-policy method ability to learn
faster for this environment. This sample effi-
ciency is reflected also in the overall training
time parameter that settles around 10 hours for
DDPG+HER training and around 4 hours for
PPO training. DDPG+HER and PPO policies
has been evaluated over the same CTR simula-
tion environment with both targeting and path
following test. Observing path following results
in Fig. 4 and targeting results in Fig. 2 and
Tab. 2 the same accuracy for both methods can
be inferred.

6.5. Domain Randomization
The last experiment has been conducted as an
initial proof of concept of PPO ability to learn
a more general policy. The concept of domain
randomization is to sample at each episode a set
of parameters with a variation in tube’s parame-
ters inside of a defined range. The chosen range
in this experiment was 10%, at each episode a
random value of the parameter P among tube’s
parameters inside the range between P +0.1∗P

5



Executive summary Lorenzo Valente

Figure 4: Path following test. (A),(C) refers to
PPO policy evaluation, (B)(D) refers to DDPG
policy evaluation

and P − 0.1 ∗ P is selected and the episode ex-
ecuted with the selected parameters. This kind
of environment has been trained with PPO for
one million steps. The trained policy has been
evaluated with a targeting task for 200 points
in 10%, 20%, 30% and 40% randomization envi-
ronment and the average and standard deviation
of the distance error with the episode length are
listed in Tab.3.

Av. St. dev. Ep. Len.

10% Rand. 1.62mm 6.8mm 28.6 steps

20% Rand. 1.28mm 2.99mm 26.82 steps

30% Rand. 2.74mm 10.9mm 30.45 steps

40% Rand. 2.39mm 6.4mm 31.31 steps

Table 3: Targeting results from Randomiza-
tion: average and standard deviation of error
E, episode length

7. Conclusion
Analysing the results it is evident that PPO out-
perform A2C, this behaviour is justifiable by the
clipped feature of PPO’s loss function that keeps
the policy changes in a limited range increasing
the convergence to an optimal solution probabil-
ity. Moreover, being PPO an on-policy method

is reasonable that a dense reward function is
a better fit because the policy is updated on-
line based on current experiences, thus a more
frequent reward signal is necessary to push the
agent in the right direction. In addition, the
trained PPO policy can follow both a linear and
circular path with a 0.7mm average error, while
Jacobian controller most of the time fails mov-
ing far away from the target. This is mainly
due to the absence of joint limits in Jacobian
formulation that steers the robot to configura-
tion it cannot recover from. While the advan-
tage of PPO with respect to the previous work
DDPG method sample efficiency can be useful in
a real scenario where a procedure-specific control
strategy could be necessary, thus PPO’s ability
to learn a good policy with a smaller amount
of collected experiences is helpful. On-policy
nature of PPO is also useful to learn a pol-
icy in a dynamic environment where parameters
change during training as demonstrated in sec-
tion 6.5. In conclusion it has been demonstrated
that PPO is a valid method for CTR control, im-
proving both accuracy with respect to standard
methods and sample efficiency with respect to
previous work method, some initial proof of con-
cept for PPO policy generalization has been also
proved.

References
[1] Hessa Alfalahi, Federico Renda, and Cesare

Stefanini. Concentric tube robots for min-
imally invasive surgery: Current applica-
tions and future opportunities. IEEE Trans-
actions on Medical Robotics and Bionics,
2(3):410–424, 2020.

[2] Jessica Burgner-Kahrs, D. Caleb Rucker,
and Howie Choset. Continuum robots for
medical applications: A survey. IEEE Trans-
actions on Robotics, 31(6):1261–1280, 2015.

[3] Keshav Iyengar, Sarah Spurgeon, and Danail
Stoyanov. Deep reinforcement learning for
concentric tube robot path planning. arXiv
preprint arXiv:2301.09162, 2023.

[4] III Robert J. Webster and Bryan A. Jones.
Design and kinematic modeling of constant
curvature continuum robots: A review. The
International Journal of Robotics Research,
29(13):1661–1683, 2010.

6


	Introduction
	Background
	Implementation
	Materials and Methods
	CTR model
	Simulation environment
	Methods
	Hyperparameters Tuning setup

	Experimental Setup
	Results
	PPO vs A2C
	Dense vs sparse reward function 
	PPO vs Jacobian
	PPO vs DDPG+HER
	Domain Randomization

	Conclusion

