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1.  INTRODUCTION  

Rotorcraft development is a highly complex 

process, joining different technical fields for a 

heterogeneous description. Apart from design and 

manufacturing stages, helicopters must satisfy 

specific certification requirements in order to 

operate in safe and controlled conditions, 

minimizing the failure occurrences and providing 

specific maneuvers in case of emergency. 

Compliance with certifications relies on both test 

and model analysis to cover all the possible design 

conditions, making simulations and computer 

modeling useful tools to derive quantities of 

interest. In addition, constructing reliable models 

allow to reduce the number of experiments, and 

to test different emergency cases without 

incurring particular danger situations for both 

pilots and vehicles. The ROtorcraft Certification by 

Simulation (ROCS) project tries to identify the 

possibilities and limitations of using simulations as 

a Means of Compliance (MOC) for helicopter 

certifications [1]. Model predictions must lead to 

accurate results and be compared with test data in  

 

 

order to be accepted as certification tools. This 

presumes an exact knowledge of the model and its 

input data, which is something difficult to 

accomplish due to both systematic and random 

measurement and model errors. In this view, 

uncertainties must be taken into account to not 

incur misleading conceptions and erroneous 

results. This thesis aims on establishing a complete 

uncertainty quantification (UQ) for a scaled 

experimental rotor model. Different numerical 

methods are exploited to derive statistical 

descriptions on input variables starting from test 

data (Inverse UQ) and vice versa (Forward UQ). 

Their implementation is possible thanks to a 

Dakota-MBDyn interface. Dakota is an open-

source software that provides a vast variety of 

engineering-type problems, such as optimization, 

calibration, sensitivity analysis, and uncertainty 

quantification. Its main feature is the possibility of 

connecting with external dynamic solvers without 

concerning about their internal structure. It only 

provides iteratively input data and collects 
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responses to infer the desired analysis. MBDyn is 

a free-general purposes multibody dynamics 

analysis software developed at Politecnico di 

Milano, used to build the main rotor model which 

is able of reproducing the scaled experimental 

helicopter. Figure 1.1 shows a loop schematization 

of the Dakota-MBDyn interface.  
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Figure 1.1: Interface loop Dakota-MBDyn 

 

 

2.   UQ METHODS 

Uncertainty quantification is the process of 

identifying input uncertainties, propagating them 

through the computer code, and estimating 

statistical contents of quantities of interest. This 

thesis is mainly focused on Inverse Propagating 

UQ techniques which are used to infer calibration 

type problems in a statistical sense. From the 

knowledge of output values from experiments, in 

fact, a statistical assessment of unknown input 

parameters is performed. Two different methods, 

implemented in Dakota, will be performed for this 

purpose in a consecutive approach. 

In Bayes Calibration (BC), prior distributions of 

input variables are updated through experimental 

data in order to derive posterior distributions 

which are more likely to reproduce the observed 

data. Given input parameters 𝜃, a model 𝑀 used 

to make predictions of the process and a set of 

experimental data 𝐷, the problem can be 

formalized using Bayes Theorem [2]:  

𝑃(𝜃) =  
𝜋(𝜃)𝐿(𝜃)

𝑍
                      (2.1) 

in which 𝜋(𝜃) is the prior distribution, 𝐿(𝜃) the 

Likelihood function, 𝑍 =  ∫ 𝜋(𝜃)𝐿(𝜃)𝑑𝜃 the 

model evidence, and 𝑃(𝜃) the posterior 

distribution. More than computing posterior 

distribution itself, Bayes Calibration’s main scope 

is to derive probability moments and expected 

values of generic functions 𝑓(𝜃). To estimate 

integrals and move into the parameter space, 

Bayes Calibration makes use of the Markov Chain 

Montecarlo (MCMC) technique. The initial 

probability information derived through BC can 

then be used and processed by a Calibration Under 

Uncertainty (CUU) algorithm, which identifies 

model parameters resulting in a “best fit” 

between experimental data and simulation results 

in a non-deterministic context. Specifically, input 

variable statistical moments can be calibrated 

according to output ones. Considering standard 

deviations as quantities indicating parameter 

uncertainty levels, CUU toolkits allow the 

identification of the accepted uncertainties on 

input variables in order to obtain a pre-set margin 

on response functions. The latter can be set as 

multiples of the output standard deviations. In 

Dakota, CUUs are implemented as nested models, 

in which an internal method exchanges 

information with an external one until 

convergence. The inner one is usually an 

uncertainty quantification method that derives 

statistical measures given input probability 

distributions, while, the outer one, is a least 

squares algorithm that tries to minimize the 

residual between model results and test data. 

Mean Value Method will be used as uncertainty 

quantification internal algorithm, while, NL2SOL 

[3] as least squares external one. The former 

computes all the statistical measures of interest 

from a single evaluation of response functions and 

their derivatives on input mean values, while the 

latter is a secant-based least squares algorithm 

that iteratively chooses between the Gauss-

Newton Hessian approximation and this 

approximation augmented by a correction secant 

term. 

Dakota 

Dakota 

parameter file 

MBDyn input 

file  

MBDyn 

MBDyn 

output file  

Dakota result 

file  
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3.   VALIDATION 

Before running the described methods on real 

conditions, a validation analysis is mandatory to 

establish the level of accuracy that can be 

addressed to the used toolkits. According to the 

guideline published by the American Society of 

Mechanical Engineers (ASME), “validation is the 

process of determining the degree to which a 

model is an accurate representation of the real 

world from the perspective of the intended uses of 

the model” [4]. Usually the predictive capability of 

the models is inferred by comparing the 

simulation results with real experimental data. 

Since this thesis concerns uncertainty 

quantifications, test data are directly created 

assuming input probability distributions. This 

ensures a direct comparison between the defined 

distributions and the calibrated ones, giving a 

direct insight into the confidence level of the 

simulations. Validation analysis is performed using 

a multibody model of Bo105 main rotor on 

MBDyn. Input variables are chosen from both 

aerodynamic and structural fields after 

performing a sensitivity analysis to derive the 

most influential ones. The latter is carried out by 

computing sensitivity indices through the 

Variance-based Decomposition (VBD) technique, 

which summarizes how uncertainties in model 

outputs can be linked to uncertainties of single 

input variables. Lift slope coefficients 𝐶𝐿𝛼
𝑠 at 

Mach numbers 𝑀 = [0.3; 0.5; 0.6] and flap hinge 

stiffness value 𝐾𝑓 are chosen as characteristic 

input variables. The aerodynamic related 

coefficients have been obtained after linear 

interpolation on the c81 data file of NACA 23012, 

used as aerodynamic profile to describe rotor 

blades. Test data consist of 100 values of mean 

thrust 𝑇̅ and torque 𝑄̅ obtained through Latin 

Hypercube Sampling (LHS) forward uncertainty 

technique assuming Gaussian distributions, of 

known means and standard deviations, on input 

variables. These are given back to the Bayes 

Calibration method in order to derive input 

distributions and compare results. Bayes 

Calibration is performed using a total chain length 

of 100.000 samples and assuming uniform prior 

distributions for all the variables. The large 

number of iterations required to derive reliable  

statistical posterior moments makes Bayes 

Calibration impractical if performed with real 

model evaluations. For this reason, the usage of 

surrogate models to approximate responses is 

recommended especially for time-consuming 

single running models. In this case, a Gaussian 

process surrogate model collects 500 load 

evaluations to derive response surfaces used as 

approximation values. Tables 3.1 and 3.2 report 

the first two statistical moments of the real 

distributions and derived posterior ones. Mean 

values are accurately reproduced by the Bayes 

Calibration algorithm, with a relative error of less 

than 1% with respect to the nominal values, while 

standard deviations are overestimated and 

underestimated respectively for aerodynamic 

coefficients and flap hinge stiffness. A comparison 

between all probability distribution types for 𝐶𝐿𝛼
 

at Mach 0.3 is shown in figure 3.1, where the 

posterior distribution is approximated as Gaussian 

type using mean and standard deviation derived 

from Bayes Calibration. The obtained results are 

then passed to a Calibration Under Uncertainty 

CUU nested model to derive the allowable 

uncertainties given constructed test data. The 

latter consist of thrust and torque standard 

deviations obtained again through the LHS 

technique, assuming input Gaussian distributions 

with means deriving from Bayes Calibration and 

arbitrarily chosen standard deviations. 

Comparison between real standard deviations and 

calibrated ones are shown in table 3.3. As can be 

seen, only aerodynamic lift coefficients are taken 

into consideration when performing CUU analysis. 

This is because the method shows correct 

operational behavior only when variables of the 

same sensitivity indices are considered. This 

ensures that only one values combination leads to 

the desired result, with no parameters of higher 

influence overcoming lower ones. 

 

Variable Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.1075 5.375𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.1172 5.860𝑒 − 3 

𝐶𝐿𝛼
(0.6) 0.1135 5.675𝑒 − 3 

𝐾𝑓 [𝑁/𝑚] 15035.467 751.774 

Table 3.1: Real distribution moments 
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Variable Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.1082 7.844𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.1170 1.298𝑒 − 2 

𝐶𝐿𝛼
(0.6) 0.1154 1.034𝑒 − 2 

𝐾𝑓 [𝑁/𝑚] 14995.33 269.75 

Table 3.2: Posterior distribution moments 

 

 

Variable Real Std Dev Cal Std Dev 

𝐶𝐿𝛼
(0.3) 3.608𝑒 − 3 3.223𝑒 − 3 

𝐶𝐿𝛼
(0.5) 3.900𝑒 − 3 4.356𝑒 − 3 

𝐶𝐿𝛼
(0.6) 3.867𝑒 − 3 3.803𝑒 − 3 

Table 3.3: Standard deviation comparison  

 

 

 

Figure 3.1: 𝐶𝐿𝛼
(0.3) distribution comparison 

( -- initial ; -- nominal ; -- calibrated) 

 

 

4.   EXPERIMENT 

After deriving the confidence level that can be 

entrusted to uncertainty quantification and 

calibration methods, the explained techniques can 

be used in a real engineering application, where 

no complete prior knowledge is assumed and 

where the computational model is covered by 

uncertainty. The helicopter experiment was 

conducted in the large test chamber of GVPM 

(Galleria del Vento Politecnico di Milano) with 

13.84 m wide, 3.84 m high, and length of 35 m. The 

helicopter model is composed of a fuselage and a 

rotor with four untapered and untwisted 

rectangular blades made of carbon-fiber 

composite materials. The rotor has a diameter of 

970 mm and includes a complete swashplate 

mechanism, allowing collective and cyclic 

commands to be applied to the blades to obtain 

trim conditions at specific forces and moments. 

The fuselage is mounted on an internal metallic 

structure with a six-component strain gauge 

balance which measures forces and moments in all 

six degrees of freedom. A driving motor system, 

consisting of a brushless motor of 3.3kW 

continuous power, is installed inside the fuselage 

as well. The rotorcraft model was attached to a 

horizontal strut connected to a system of two 

orthogonal sliding guides, which allow the 

translation of the helicopter in both vertical and 

longitudinal directions as shown in figure 4.1. The 

helicopter is considered in hover at 4 different 

altitudes, respectively of four, three, two, and one 

time the rotor radius, in order to simulate both 

OGE (Out of Ground Effect) and IGE (In Ground 

Effect) conditions. Experimental data consist of 

averaged values of thrust, roll, pitch, and power 

(obtained multiplying the mean torque moment 

with the rotor rotational speed) after 10 seconds 

of flight test. These have been used to derive 

probability distributions of unknown parameters 

through the combination of Bayes Calibration and 

CUU algorithm.  

 

 

Figure 4.1: Experiment setup 

 

 

5.   CALIBRATION AND UQ 

MBDyn model of helicopter main rotor is used to 

simulate all the experimental conditions. Bayes 

Calibration is performed using the loads described 
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above at an altitude of four times the rotor radius 

(𝐻 = 4𝑅) as test data. Input parameters have 

been selected from different fields, and after 

sensitivity analysis, in order to be representative 

of the uncertainty related to the model in 

conditions as general as possible. They consist of 

lift slope coefficients 𝐶𝐿𝛼
𝑠 and zero lift drag 

coefficients 𝐶𝐷0
𝑠 at Mach 𝑀 = [0.2; 0.3], pitch 

link stiffness 𝐾𝑝, bending stiffness 𝐸𝐼𝑦  and 

collective and cyclic commands. Aerodynamic 

coefficients have been extrapolated through 

linear and quadratic interpolation from the c81 

data file of NACA 0012 used as aerodynamic 

profile for the rotor blades. As for the validation 

case, Bayes Calibration makes use of 100.000 

chain samples and uniform prior distributions to 

derive posterior quantities. A Gaussian process 

surrogate model approximates response functions 

after collecting 300 real model load evaluations. 

The obtained parameter means and standard 

deviations, characterizing Normal distributions, 

are then passed to a Forward Uncertainty LHS 

analysis to derive load statistical contents and 

confirm results. Table 5.1 shows the obtained 

means and standard deviations for the loads at 4R 

altitude. Good agreement with experimental data 

is obtained since all the values differ from their 

respective means less than one standard 

deviation. Figure 5.1 reports the obtained 

Probability Density Function (PDF) for thrust at the 

same altitude. Calibration under Uncertainty 

(CUU) is performed considering only command 

controls due to the sensitivity requirement. 

Command allowable uncertainties, in form of 

standard deviations, are obtained considering 

arbitrarily chosen load standard deviations and 

maintaining all the other variables at their 

respective mean values obtained from Bayes 

Calibration. To confirm the obtained results, LHS 

computes load standard deviations when input 

commands follow Normal distributions with the 

new obtained standard deviations. Table 5.2 

compares such results showing algorithm success. 

Since operating near the ground introduces 

special features in flight dynamic behavior, crucial 

point is to assess if the calibrated variables, and 

their distributions, are optimal estimations even in 

IGE conditions. For this reason, a forward 

uncertainty quantification is run characterized by 

the same features explained above, and with input 

parameters following Normal distributions with 

Bayes results. The model is considered operating 

at reduced altitudes. Particularly heights of two 

and one time the rotor radius are chosen as done 

in laboratory. The 3R case is not reproduced since 

it is still in OGE condition and no variations from 

the previous results are expected. No particular 

differences of Roll and Pitch moments are 

obtained with respect to the OGE case 

independently on the altitude considered. On the 

other hand, an increase in thrust and power is 

observed especially in the 1R case, since the 

ground effect acquires greater prominence at 

altitudes equal to or less than the rotor radius. 

Nevertheless, the great number of variables and 

uncertainty considered, allows to keep the 

differences between experimental data and 

response means below the one standard deviation 

threshold. Since model predictions of thrust and 

power (and equivalently torque) in IGE conditions 

underestimate experimental data, the last step of 

the thesis concerns the identification of a possible 

cause for such behavior. The idea is to address the 

difference between model computed loads and 

data, in the uncertainty related to the pitch link 

value, that can change in ground proximity due to 

the swashplate flexibility and its non-linear 

behavior. To set up the problem, only pitch link 

stiffness is assumed as an uncertainty variable 

following the Normal probability distribution 

constructed from Bayes Calibration results. A 

statistical assessment of thrust and torque 

coefficients is performed through LHS. Figure 5.2 

shows the obtained results in terms of thrust 

coefficient normalized with respect to a nominal 

value obtained at 4R altitude. The vertical bars are 

constructed considering 3 times the obtained 

standard deviations. Also, the Fradenburgh 

equation is shown, which is usually used as 

reference result for rigid rotor test cases. 
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Load Mean Std Deviation 

Thrust 𝑇 [𝑁] 26.1148 3.5505 

Roll 𝑅 [𝑁𝑚] −0.0069 0.5604 

Pitch 𝐿 [𝑁𝑚] −0.2501 0.5661 

Power 𝑃 [𝑊] 353.4290 47.0523 

Table 5.1: Load statistics at 4R altitude 

 

 

Load Cal. Std Dev Exp Std Dev 

𝑇ℎ𝑟𝑢𝑠𝑡 𝑇 [𝑁] 1.1638 0.8600 
𝑅𝑜𝑙𝑙 𝑅 [𝑁𝑚] 1.6650 0.1670 
𝑃𝑖𝑡𝑐ℎ 𝐿 [𝑁𝑚] 1.6693 0.1670 
𝑃𝑜𝑤𝑒𝑟 𝑃 [𝑊] 11.6875 11.6600 

 

Table 5.2: Load standard deviations 

 

 

Figure 5.1: Thrust PDF 

 

 

 
                     Figure 5.2: Normalized thrust coefficient 

                      (° Experiment; -- Model; -- Fradenburg) 

 

 

 

 

 

 

6.   CONCLUSIONS 

Dakota-MBDyn interaction has provided a 

comprehensive investigation tool to validate and 

assess different types of analyses on helicopter 

multi-body models. When no precise variable 

information is available, Bayesian Calibration is 

capable of deriving input parameter main 

statistical moments from experimental data, 

allowing the possibility of reproducing the test 

conditions within an uncertainty perspective. This 

initial information can be augmented by a 

Calibration under Uncertainty nested model, 

which in return provides the limit uncertainty 

conditions that can be accepted in order to obtain 

a pre-set margin on response functions. The cases 

taken into consideration in this work are of simple 

nature, where the rotorcraft, in hover, changes its 

altitude. More complete and difficult conditions, 

as for certification requirements, are left for 

future researches. 
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I 
 

Abstract 
 
Nowadays flight simulations and computer modeling are well-established instruments 

that run in parallel with the development of fixed and rotary-wing aircraft. Their primary 

advantage is the possibility of reproducing different environmental and flight conditions, 

reducing the time and costs of experimental campaigns and real flight tests. Furthermore, 

if consolidated and validated, they can help simulate emergency case maneuvers 

increasing pilots’ safety. To obtain such benefits, a validation analysis is mandatory to 

ensure the correct operation of the tools, through the comparison between simulation 

results and experimental data. Both of them can be characterized by uncertainties and 

errors that must be taken into consideration to estimate the accuracy and the credibility 

of the processes. This thesis aims to infer a complete uncertainty quantification (UQ) 

analysis considering a multi-body model. This is constructed to reproduce experimental 

data obtained through a scaled helicopter. A Dakota-MBDyn interaction allows the 

execution of different methods, chosen according to the type of information available and 

the time required for a single run. Particular interest is posed on Bayes Calibration used 

to derive parameter probability distributions given test data. Previously, a validation 

analysis is executed to gain a higher understanding of the algorithms and to determine 

the level of confidence of the results. 
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Riassunto in italiano  
 
I simulatori di volo e la modellazione sono strumenti che stanno acquisendo una maggiore 

importanza e rilevanza nello sviluppo di velivoli ad ala fissa e rotante. La possibilità di 

riprodurre un gran numero di condizioni ambientali e di volo, senza ricorrere a lunghe ed 

eccessive campagne sperimentali, li rendono vantaggiosi sotto molti punti di vista. Inoltre, 

possono essere utilizzati per simulare manovre di emergenza senza la possibilità che il 

pilota incorra in qualche rischio. Prima di poterli utilizzare in condizioni operative, è 

necessario che questi vengano validati confrontando i dati simulati con quelli 

sperimentali. Entrambi possono essere caratterizzati da incertezze ed errori che devono 

essere considerati e valutati per assicurare e stimare la credibilità dei risultati. Questa tesi 

ha come scopo la completa valutazione statistica di un modello multicorpo tramite 

quantificazione di incertezza. Il modello è stato concepito per simulare dati sperimentali 

ottenuti tramite un elicottero in scala. L’interazione tra Dakota e MBDyn permette 

l’esecuzione di vari metodi numerici per l’analisi statistica, scelti in base alle informazioni 

e alle risorse disponibili. Particolare attenzione è posta sulla Calibrazione di Bayes, che 

permette di ottenere le funzioni di distribuzione delle variabili in input grazie ai dati 

sperimentali. Prima di ciò, viene eseguita un’analisi di validazione dei modelli per ottenere 

il livello di confidenza attribuibile ai risultati.   
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Chapter 1 
 

Introduction  
 
Rotorcraft design is a highly complex process, joining different application fields for a 

heterogeneous technical description [1]. The design of aeronautical vehicles is usually 

divided into three different stages: conceptual design, preliminary design, and detailed 

design [2]. The conceptual design stage lies the foundation and the basic description of 

the machine according to the given specifications. These are subsequently controlled and 

increased in complexity within the preliminary design, while the detailed stage establishes 

the final concept that has to be passed to the manufacturing process. These early stages 

have a huge impact on rotorcraft development cost and time involving, therefore, 

particular attention. In addition rotorcraft vehicles must satisfy specific certification 

requirements in order to operate in safe and controlled conditions, minimize the 

likelihood of failure occurrence, and provide emergency recovery procedures in case the 

latter happen [3,4]. The first quantitative safety and reliability analyses are mainly 

provided at the final stages of the development cycle, which can be too late. Providing 

results at earlier stages can influence in a stronger way design decisions, leading to a more 

robust and dependable product [5]. To this aim, modern project cycles have become 

shorter and more parallelized, with the development of methods used to infer 

quantitative dependability predictions at early stages. Simulations and computer 

modeling are the main tools used to access results and to simulate helicopter behavior at 

different flight and environmental conditions. These are especially useful when little 

experimentally derived information is available and advantageous in terms of economy 

and safety. Constructing a reliable numerical model allows to reduce the number of 

experiments conducted in flight, and to replicate different emergency maneuvers without 

incurring risky conditions. Compliance with certifications usually relies on both test and 

model analysis in order to cover all the critical design conditions [6]. The compliance 

demonstration is the most time demanding and expensive part of the certification 

requirements due to the amount of test data needed in both ground and flight conditions. 

From this view, the ROtorcraft Certification by Simulation (ROCS) project is trying to 

identify the possibilities of applying flight simulations to obtain compliance with respect 

to the certification standards for helicopters and tiltrotors [7]. Specifically, in which 

conditions the simulations can be used as a substitute for flight testing as a Means of 

Compliance (MOC) for helicopter certifications (CS-29). These include risk conditions or 

environmental and aircraft ones that are difficult to obtain. Model predictions must lead 

to accurate results and be compared with test data in order to be accepted as certification 

tools. No clear foundation is present about simulation fidelity metrics that can encompass 

all the requirements giving rational tolerances. For these reasons, the acceptable 

tolerances are directly linked to the demonstration requirement. A verification and 

validation process is mandatory to assess the model’s credibility. More precisely, 
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verification is the process of determining that the computational model accurately 

represents the mathematical one, while validation is used to determine if the model is a 

reliable representation of the real world by comparison with test data. All the steps 

involved presume the exact knowledge of the model and its input data, which is 

something difficult to accomplish due to both systematic and random errors on 

measurements and model representation. Uncertainties and related errors must be taken 

into account to not incur misleading conceptions or complete erroneous results. In 

addition, comparing model responses to test data in a non-deterministic sense requires 

the use of appropriate methods and valuation models, since no precise knowledge of the 

test conditions is available. The problem can be addressed either through an uncertainty 

quantification, which evaluates output statistical behavior given the input statistical 

characterization, or with a more deterministic approach relying on safety factors. The 

latter are in general not derived directly by probabilistic considerations, but are based on 

experience and used to increase the conservativeness of the design process. In the 

present work, various types of uncertainty-related methods are described and exploited 

in conjunction with multibody helicopter models. Particular attention is posed to Bayes 

Calibration techniques used to derive input parameter uncertainty distributions starting 

from experimental data. All the methods considered are not intended directly as 

certification tools, since much simpler operating flight and environmental conditions will 

be taken into account. They are instead exploited to verify the level of accuracy and the 

operative capabilities of Bayes calibration, even in conditions as general as possible. The 

proposed approaches could be used as guidelines to derive the possible applications when 

joined with more sophisticated and complete rotorcraft aerodynamic and structural 

models. All the mathematical techniques that will be presented are implemented in the 

software Dakota, while rotorcraft models are described using Mbdyn multibody solver. 

The interaction of the two allows a complete description and assessment of different 

rotorcraft problem types, including uncertain ones. 
 

 

1.1 MBDyn 
 

MBDyn is a free general-purposes multi-body dynamics analysis software developed at 

Politecnico di Milano. MBDyn features the integrated multidisciplinary simulation of 

multi-body systems, including nonlinear mechanics of rigid and flexible bodies subjected 

to kinematic constraints, along with smart materials, electric and hydraulic networks, 

active control, and essential elements of fixed-wings and rotorcraft aerodynamics [8]. 

Mbdyn is a command-line tool, since, to run it, executables have to be started from the 

terminal. All the indications and information needed for the simulation, such as problem 

type, numerical solver, and mechanical model geometry are passed through input files. 

The constrained nonlinear dynamics of both rigid and flexible bodies are formulated as 

sets of Differential-Algebraic Equations. Nodes are the basic structure of an MBDyn 

model, configuring kinematic degrees of freedom and the corresponding equilibrium 

equations [9]. Elements connect nodes, thus forming the main components of the multi-
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body model and writing connective and constitutive contributions to equations. 

Maximum flexibility is left to the user concerning the identification and description of 

elements’ orientations through local reference frames. It is also possible to exchange 

kinematic and dynamic information from external software or to describe in a completely 

arbitrary way functions representing loads distributions or input applied time histories. 
 

 

1.2 Dakota 
 

Dakota is an open-source software that provides a flexible interface between simulation 

codes and different analysis types. It can be used to cover a vast variety of engineering-

type problems, such as optimization, calibration, sensitivity analysis, and uncertainty 

quantification. All the numerical methods and criteria are already implemented in specific 

libraries, without requiring a user-defined algorithm. Dakota can work either by internal 

dynamic solvers or by combination with external ones. Dakota’s internal interface 

structure (called direct mode) is limited by the small number of solvers implemented in 

Dakota itself. The external structure (called fork mode) instead, allows Dakota to interface 

with a user-defined software and to implement all the analysis listed above. The main 

advantage is that Dakota does not affect the internal structure of the dynamic solver, 

considering it as a “black box”. It only provides iteratively new input data and collects 

responses to infer the analysis taken into consideration. This exchange of information is 

possible thanks to text files that are passed from Dakota to the simulation code and vice-

versa. A visual schematization of the loop running during operating conditions between 

Dakota and MBDyn is visualized in figure 1.1. A more detailed and complete description 

of the steps involved when interfacing the two will be presented in the following chapters. 

More information is available in the Dakota users’ manual [10].  

 

 

1.3 Overview 
 

This thesis is structured as follows: in chapter 2 an introduction and explanation of 

uncertainty-related methods are presented with particular attention on those that will be 

used to infer the study cases. It has been chosen to give a complete overview, even for 

the methods not considered in this specific application, to provide a general 

understanding of the different ways in which uncertainty problems can be described. 

Chapter 3 is about validation analysis, in which computer model results will be compared 

with known quantities, to test methods’ reliability when working in unknown conditions. 

After this, the real test case will be presented in chapter 4, where uncertainty calibration 

and quantification techniques are used on the helicopter multi-body model constructed 

to reproduce experimental data. Finally, all the considerations and limitations of the 

obtained results will be discussed in chapter 5.  
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Figure 1.1: Interface loop Dakota-MBDyn 
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Chapter 2 

 

Numerical Methods  
 

2.1   Uncertainty Types 
 

Computer modeling is nowadays a crucial part of studying and predicting physical and 

engineering system behaviors. The implemented mathematical model can be challenging 

and complex, leading to simulation codes that are very time-consuming even for a single 

run. Nevertheless, their usage is still highly recommended instead of direct reproductions 

and measurements of the real process. Moreover, experimental data can be achieved 

only for a limited range of parameters and environment values, depending on setting 

conditions and on the time/cost required for every evaluation. This limitation can be 

overcome using codes that in principle can reproduce the required analysis for the entire 

space of variables and conditions of interest, replicating the experiments and giving new 

results, leading to a deeper understanding of the phenomenon involved.  

Simulation codes are deterministic, i.e., replicating the analysis when the same input 

values are provided. This is in contrast with the common conception of a physical process. 

Especially in engineering applications and experiments, reproducing the same outcome is 

not an easy task. A slight modification of configuration or environmental conditions can 

change the measurements, forcing one to repeat the process and average the results to 

obtain valuable measures with a sufficient level of confidence. In addition, various sources 

of uncertainties are embedded in real engineering problems, such as those coming out 

from production processes and material variability, initial conditions, and system 

surroundings. The model itself can be known up to a certain level of uncertainty due to 

physical simplifications, lack of knowledge, and not-so-detailed assumptions of the real 

process.  

Considering and measuring these uncertainties has become a priority to investigate their 

effect on responses and ensure a more reliable and robust understanding of the problem 

under investigation. Various methods of uncertainty quantification (UQ) have been 

developed to achieve this task, and some of them will be reviewed in the next paragraphs.  

An outline of the various types of uncertainties is presented [11], with a specific focus on 

those characterizing computer models. 

1. Parameter uncertainties: Uncertainty related to variable values of computer code 

input. They specify particular features or applications of the simulation, driving 



 
 

7 
 

the dynamical behavior of the system. This type of uncertainty can be classified 

as either aleatory or epistemic [12]: 

Aleatory uncertainties are irreducible variabilities. The randomness nature of the 

variable of interest is generally characterized by a probability distribution function 

(PDF) or by a cumulative distribution function (CDF), which describes the possible 

variable values and their probability of occurrence.  

Epistemic uncertainties arise from a lack of knowledge of the variables under 

consideration. No probability or cumulative distributions can be assigned to 

them. The uncertainty is typically addressed through intervals where no values 

are more likely to occur than others. Epistemic uncertainties can be reduced with 

a deeper understanding and knowledge of the parameters and of the problem 

itself. 

2. Model inadequacy: Running the model with the same input variables as the real 

process will not give the same result. Even if no parameter uncertainty is present, 

and the variables are characterized by deterministic values, there will be a 

discrepancy between model predictions and actual responses. This difference is 

model inadequacy. 

3. Residual variability: The model is supposed to reproduce the real process results 

under the same conditions written as input variables. In practice, the process may 

not exhibit the same behavior every time due to intrinsic randomness. The 

residual variability is the deviation of results when all conditions are determined. 

4. Observation error: When performing calibration analysis, experimental data are 

used to derive unknown model parameter values. The data are usually subjected 

to measurement errors which should be taken into account. 

 

 

2.2   Uncertainty Quantification (UQ) 
 

All kinds of uncertainties presented so far can influence the model and its capability of 

assessing the real dynamic behavior of the system. Nevertheless, the majority of the 

uncertainty quantification and analysis tools rely on the estimation of randomness via 

input variables. More precisely, Uncertainty Quantification (UQ) is the process of 

identifying input uncertainties, propagating them through the computer code, and 

performing statistical estimations of the response functions.  

The way the propagation part of the analysis is handled by the method divides the 

Uncertainty Quantification into two main families [13]: 

• Forward Propagating UQs are designed to evaluate the way input 

parameter uncertainties affect the result functions. They are the most 

used methodologies for statistical analysis and require the knowledge 
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and the characterization of input uncertainties through probability 

distributions. 

• Inverse Propagating UQs work in the opposite way. From the knowledge 

of the output values or uncertainties, a statistical assessment of unknown 

input variables is performed. These methods are mostly used in 

calibration analyses since model responses must be known in advance in 

some manners (mainly by experimental campaigns) 

The employment and implementation of such methods vary depending on the means 

available and the final purpose of the study.  

An overview of the methods belonging to both classes of UQ is presented, with a 

particular focus on Inverse Propagation methodologies such as Bayes Calibration. This will 

serve as clarification on the choice of the methods used later on. 
 

 

2.3   Forward Propagating UQ   
 

This section provides a review of the main methods for forward propagating uncertainty 

quantification. Many other mathematical techniques, different from the ones listed 

below, have been implemented and are present in the literature.  

The principal classes are: 

• Sampling Techniques 

• Reliability Methods 

• Stochastic Expansion Methods 

• Interval Analysis Methods 

The description of uncertainties related to input variables through distributions (PDFs) is 

a common feature of all the methodologies presented. The differences rely on how these 

distributions are treated to propagate uncertainties and obtain statistical measures of 

responses. Interval Analysis Methods concern epistemic type input variables. 

 

2.3.1   Sampling Techniques    

 

Sampling techniques rely on the identification of samples. These are iteratively used as 

input values for the model to simulate system response functions. Statistical quantities 

are then constructed by simple operations on the results obtained. Sampling methods are 

the most effective algorithms for stochastic simulations thanks to their simplicity and 

convergence behavior assessed independently from the number of input variables. The 

major drawback is the time needed for running an uncertainty quantification. The amount 

of samples required to obtain reliable statistical results depends on the number of input 
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variables under investigation and their respective distribution functions, making these 

types of simulation often impractical for large problems. On the other hand sampling 

techniques are easy to implement since external to the simulation codes used to assess 

the dynamic behavior of the system.  

MonteCarlo method (MC) is the most popular sampling algorithm. Given a vector of 

random variables  𝒙 = {𝑥𝑖} with 𝑖 = 1, … 𝑛 and assigned probability distribution functions 

𝑷(𝑥𝑖), MC computes statistics on desired functions  𝒇 = 𝑓𝑗(𝑥𝑖)  with 𝑗 = 1, … 𝑚, by 

randomly sampling among 𝒙 according to 𝑷, and computing iteratively the response 

functions. Given 𝑁 samples [14], the expected values and variances of 𝒇 are respectively   

 

                                                                   𝐸(𝒇) =  
1

𝑁
∑ 𝒇𝑖

𝑁

𝑖=1

                                                       (2.1) 

                                                    𝑉𝑎𝑟(𝒇) =  
1

𝑁2 ∑ 𝑉𝑎𝑟(𝒇)

𝑁

𝑖=1

=  
𝑉𝑎𝑟(𝒇)

𝑁
                                (2.2) 

 

i.e., the sample means and variances. 

MonteCarlo sampling is the simplest algorithm but also the more time-demanding. To 

obtain reliable results a large number of evaluations is needed depending on problem 

dimensionality.  

Another sampling technique is the Latin Hypercube Sampling (LHS). LHS basic idea is the 

stratification of the probability density functions to improve the coverage of the input 

space. Every PDF is divided into n non-overlapping intervals of equal probability [15]. The 

number of intervals in a specific parameter region will depend on the shape of the 

probability distribution. One value from each interval is selected at random and then 

combined with the others. The Latin Hypercube Sampling derives from the augmentation 

in N dimensions of the “Latin Square” technique. The latter operates in 2D space, dividing 

the distributions of the variables in a grid, forming a matrix, and picking one sample from 

each row and column. LHS shows faster rate convergence than Monte Carlo sampling 

without any significant reduction of statistical responses accuracy. In addition, LHS 

ensures that the entire range of each input variable is completely covered, even in the tail 

regions of the probability distribution. Despite that, LHS still requires a large number of 

evaluations, making the algorithm inappropriate for code with a time-demanding single 

run. 
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2.3.2   Reliability Methods 
 

Reliability methods provide a different approach in uncertainty quantification that is less 

computational and time demanding than classical sampling techniques. These methods 

are mainly focused on computing threshold problems, i.e. the probability that an aleatory 

function lies under a certain limit, as shown in figure 2.1. More precisely, given random 

variables 𝒙 and a generic scalar function 𝑔(𝒙), reliability methods estimate the probability 

that 𝑔 is below a certain level 𝑧̅ ; 

 

    𝑃[𝑔(𝒙) ≤ 𝑧̅] = 𝐹𝑔(𝑧̅)                                                         (2.3) 

  

This probability calculation involves a multi-dimensional integral over the domain of 

interest. A mapping transformation can turn, the, usually non-normal and correlated, 

input variable distributions into independent Gaussian distributions with zero mean and 

unit standard deviation (standard normal distribution). This procedure allows more 

tractable calculations, making the multidimensional integrals function of a single 

parameter 𝛽 called the reliability index. In the transformed space, 𝛽 is the minimum 

Euclidean distance from the origin to the response surface.  

 

Figure 2.1: Threshold probability problem 

 

Mean value method (MV, also called MVFOSM in [16]) is the simplest and less expensive 

of the reliability family. It evaluates all the statistical measures of interest (Mean, Standard 

Deviation, cumulative distribution function CDF, complementary cumulative distribution 

function CCDF) and response levels from a single evaluation of response functions and 

their derivatives computed at the uncertainty input variable means. The efficacy and 

accuracy depend on the particular numerical model, with less trusted results in the case 
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of non-linear models and response probabilities far from Gaussian ones. The expression 

for approximated means and variances are: 

 

𝜇𝑔 = 𝑔(𝜇𝑥)                                                               (2.4) 

𝜎𝑔
2 = ∑ ∑ 𝐶𝑜𝑣(𝑖, 𝑗)

𝑑𝑔

𝑑𝑥𝑖
(𝜇𝑥)

𝑑𝑔

𝑑𝑥𝑗
(𝜇𝑥)𝑗                                       (2.5)𝑖   

 

where 𝑥 are the aleatory input variables, and 𝑔(𝑥) the response functions for which the 

statistical measures are needed. These two moments are then used for mapping from 

response thresholds to reliability indices and vice-versa:  

 

𝑧̅ →  𝛽 ∶        𝛽𝐶𝐷𝐹 =  
𝜇𝑔 − 𝑧̅

𝜎𝑔
 ,    𝛽𝐶𝐶𝐷𝐹 =  

𝑧̅ −  𝜇𝑔

𝜎𝑔
                         (2.6)  

    𝛽 →  𝑧 ̅:       𝑧 =  𝜇𝑔 − 𝜎𝑔𝛽̅𝐶𝐷𝐹 ,   𝑧 =  𝜇𝑔 + 𝜎𝑔𝛽̅𝐶𝐶𝐷𝐹                         (2.7) 

 

where 𝛽𝐶𝐷𝐹 and 𝛽𝐶𝐶𝐷𝐹  are the reliability indices related to the cumulative distribution 

function and complementary distribution function (CDF/CCDF). 

The CDF probability 𝑝(𝑔 ≤ 𝑧 ) and CCDF probability 𝑝(𝑔 > 𝑧) are related to the reliability 

indices  

 

𝑝(𝑔 ≤ 𝑧) =  Φ(−𝛽𝐶𝐷𝐹)                                                  (2.8) 

𝑝(𝑔 > 𝑧) =  Φ(𝛽𝐶𝐶𝐷𝐹)                                                   (2.9) 

 

with Φ() indicating the standard cumulative distribution function and recalling the 

assumption of response function Gaussian distributions.  

Mean Value method’s main advantage is the low computational cost since only a few 

model evaluations are needed to derive responses and derivatives with respect to input 

variables. It is the optimal solution in the case of long-running computer models. Since 

linear Taylor series approximation is adopted to recover statistical measures, other 

algorithms can be best fitting when high nonlinear behavior is expected from the 

simulation model. 

MPP Search Methods are local reliability methods that apply an equality-constrained non 

linear optimization algorithm to compute the Most Probable Point (MPP), integrating 

around the latter to extrapolate probabilities. Given a limit state surface (the space 

domain where the response function is below the threshold), the MPP is defined as the 

shortest distance of the limit state function from the origin. Recalling that the transformed 

domain has the origin at the mean response value, this distance has the meaning of 

number of input standard deviations separating the mean response from the limit 

threshold. A mapping transformation 𝑢 = 𝑇(𝑥) is defined to transform the general 

correlated non-normal distributions of the variables (𝑥 space) to uncorrelated standard 
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normal distributions (𝑢 space). Rosenblatt [17] and Nataf [18] transformations are 

generally used for this purpose. In the transformed domain the usually irregular-shaped 

probability contours are circular in nature, allowing more simple calculations. The Most 

Probable Point in the standard normal space has the highest probability of producing the 

limit state function, and it is the point contributing the most to the integral for statistical 

evaluations. The inverse transformation 𝑥 = 𝑇−1(𝑢) is then applied to retrieve the 

original correlated input variables. The Most Probable Point search involves an 

optimization problem with equality constraints, while different integral approximations 

can be used to extrapolate statistics measures. Two main reliability analysis types are 

defined according to what is specified and what is searched for.  

The Reliability index approach (RIA) is a forward reliability analysis algorithm for 

computing probability/reliability levels and CDF/CCDF from prescribed response levels. 

The Performance measure approach (PMA) is an inverse reliability analysis algorithm for 

obtaining response levels starting from probability/reliability levels and CDF/CCDF. The 

difference lies in the definition of the objective function and equality constraint.  

For RIA, the MPP search is formulated as computing the minimum distance in the 𝑢 space 

from the origin to the 𝑧̅ contour of the limit state response to achieve the response level 

𝑧̅ : 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑢𝑇𝑢                                                        (2.10)  

𝑤𝑖𝑡ℎ 𝐺(𝑢) =  𝑧 ̅

 

where 𝑢 is the vector centered at the origin in 𝑢-space and 𝑔(𝑥) = 𝐺(𝑢) by definition. 

The optimal MPP solution 𝑢∗ defines the reliability index 𝛽 used to find the CDF/CCDF 

probabilities. 

For PMA, the MPP search is about finding the minimum/maximum response function 

value after prescribing the distance from the origin in 𝑢 space: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ± 𝐺(𝑢)                                                   (2.11) 

𝑤𝑖𝑡ℎ 𝑢𝑇𝑢 =  𝛽̅2 

 

After obtaining the reliability index, integration approaches are needed to infer 

probabilities.  

First Order Reliability Methods (FORM) [19] estimates the failure probability as: 

 

𝑃𝑓 = =  Φ(−β)                                                         (2.12) 

 

where Φ is the Gaussian distribution of the standard normal law. The precision of such 

approximation depends on the non-linearity of the model and surface of interest. More 
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precise evaluations can be obtained by Second Order Reliability Methods (SORM) 

involving curvature correction obtained by asymptotic analysis near the limit state 

surface:  

 

𝑝 = Φ(−β) ∏
1

√1 + 𝛽𝑘𝑖

𝑁−1

𝑖=1

                                            (2.13) 

 

with 𝑘𝑖  indicating the principal curvatures of the limit state function. 

 

2.3.3   Stochastic Expansion Methods 

 

Stochastic expansion methods are another class of non-sampling techniques for 

uncertainty quantification. They rely on the ability to approximate system input-output 

responses to assess statistical contents. Different methodologies are present in the 

literature according to the way such estimates are derived such as Stochastic Collocation 

(SC) and Polynomial Chaos Expansion (PCE). For the sake of brevity, only an introduction 

of the latter will be presented, referring to other literature for more details [20,21]. 

Polynomial Chaos Expansion (PCE) methods use orthogonal polynomial functions from 

Wiener-Askey [22,23] schemes to capture the functional relationship between a set of 

responses and a set of input variables. The value of these polynomials is to be orthogonal 

with respect to the specific set of probability distribution functions (PDFs), forming a basis 

for the latter, and allowing the solution of second-order random processes with finite 

variance. It is straightforward to understand the relevance of such methods since most of 

the engineering problems exhibit finite variance behavior.  

A second order random process 𝑌(𝒙), function of random parameters 𝒙 can be expressed 

according to the PCE model as:  

 

𝑌(𝒙) =  ∑ 𝑐𝑖𝜓𝑖(𝐱)

∞

𝑖=0

                                                       (2.14) 

 

where 

• 𝑐𝑖 is the i-th real deterministic coefficient  

• 𝜓𝑖 is the i-th Wiener-Askey polynomial basis of order P  

The choice of the i-th adopted multivariate polynomial 𝜓𝑖 depends on the statistical 

content of the model aleatory variables 𝒙 in form of their probability distribution 

functions. As shown in table 2.1, for each PDF a particular Wiener-Askey polynomial class 



 
 

14 
 

is associated with orthogonal properties. Each of the multivariate polynomials involves 

products of related one-dimensional polynomials. How these are built is beyond the scope 

of this work and can be found in [24]. 

Ideally, the equality equation (2.14) is an exact representation of the process in the case 

of infinite summation. In reality, such operation is impossible and the summation must be 

truncated after N values, leading to the approximation  

 

𝑌̃(𝒙) =  ∑ 𝑐𝑖𝜓𝑖(𝐱)

𝑁

𝑖=0

                                                    (2.15) 

 

The polynomial chaos expansion contains the complete set of bases up to the fixed 

specified order. The total number of terms 𝑁𝑇  depends on the number of variables 𝑛 and 

on the particular order of the expansion 𝑃: 

 

𝑁𝑇 = 1 + 𝑁 =
(𝑛 + 𝑃)!

𝑛! 𝑃!
                                             (2.16) 

 

The calculation of the deterministic coefficients of the expansion 𝑐𝑖  depends on the 

specific application. Several methods are used and usually rely on the possibility of 

reducing some defined error between the real model and the approximated one. The 

coefficient tuning can be performed by projection methods, that follow the definition (eq. 

2.14) and make use of the orthogonal properties, by computing the coefficients as 

expected values of the inner product between system responses and polynomials, that  

 

DISTRIBUTION POLYNOMIAL SUPPORT RANGE 

Normal Hermite [−∞ , +∞] 

Uniform Legendre [−1 , +1] 

Beta Jacobi [−1 , +1] 

Exponential Laguerre [0 , +∞] 

Gamma Generalized Laguerre [0 , +∞] 

Table 2.1: Wiener-Askey polynomials for different distributions 

 

can be solved by integral approximation scheme techniques. 

 

𝑐𝑖 = 𝐸[𝜓𝑖(𝐱) ∙ Y]                                                        (2.17) 

 

Whatever methodology is selected, the coefficient tuning needs function evaluations by 

direct simulation of the computer code to collect data points. Usually, PCEs are non-

intrusive type algorithms and the coefficients are the result of post-processing of the set 
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of model evaluations. The required number of samples is well below with respect to 

sampling techniques since they are only required for tuning purposes and not to recover 

the entire probabilistic specter.  

Statistical moments can be directly computed from expansion coefficients as  

 

𝐸[𝑌] = 𝑐0                                                            (2.18) 

𝜎𝑌
2 = ∑ 𝑐𝑖

2

𝑁

𝑖=1

                                                           (2.19) 

 

respectively the output mean and variance. Also, higher moment statistics can be 

extrapolated from direct coefficient operations.  

 

2.3.4   Interval Analysis Method 

 

All the methods discussed until now require input variables statistical description in order 

to extrapolate the uncertainty-related quantities of the output. This input-related 

knowledge not always is accessible since a great number of information is required to 

assess the statistical contents of the variables. Furthermore, uncertainties can be related 

to a mere lack of knowledge about some characteristics, instead of inherent randomness. 

When this is the case, epistemic variables must be considered within interval analysis. 

Since no probability distributions (PDF/CDF) can be assigned, an interval is linked to each 

variable. In this situation, it is not assumed that the value has a uniform probability within 

the interval, but that every value within the interval is a possible realization of the 

variable. Interval analysis purpose is to determine the resulting bounds of the output 

given the input ones.  

Dempster-Shafter Theory of Evidence (DSTE) is the main method used to infer response 

function intervals. Mathematical details can be found in [25]. DSTE allows the user to 

specify more than one interval per variable, each of them linked to a basic probability 

assignment (BPA). BPA is a weight indicating how likely it is that the variable falls within 

the interval. The weights are not associated with some real probability but derive from 

the critical sense acquired from experience. Two primary and complementary 

uncertainties quantities are pulled out from evidence analysis, i.e, Beliefs, and Plausibility.  

• Belief 𝐵(𝜁) is interpreted to be the minimum likelihood that is associated with 

event 𝜁 

• Plausibility P(𝜁) is interpreted to be the maximum amount of likelihood that can 

be associated with event 𝜁 

Belief and Plausibility define the lower and upper limits or intervals on probability values. 
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2.4   Inverse Propagating UQ 

Inverse Propagating UQ is the process of quantifying the uncertainties of input 

parameters starting from experimental data or statistical quantities of the response 

functions. In this view, the problem can be seen as similar to calibration. The main 

difference relies on the information acquired after the process. Calibration (usually 

defined as deterministic calibration) determines the values of unknown variables resulting 

in a “best-fit” with respect to experimental data, i.e., trying to reduce as low as possible 

the difference between data and code responses. On the other hand, Inverse Propagating 

UQ tools produce statistical descriptions of the variables (distributions and moments), 

which allow more insight into the problem considering the uncertainties related to the 

model. In the sections below two methods will be explored: 

1. Bayes Calibration  

2. Calibration Under Uncertainty (CUU) 

An implementation of the Forward Propagating UQ techniques listed above is also 

possible in their inverse form, though they are not very practical and efficient as their 

forward counterpart.  

 

2.4.1   Bayes Calibration (BC) 

 

Bayes calibration is a calibration method different from conventional ones. Instead of 

minimizing the difference between observed data and model outputs, it evaluates 

uncertainties of input parameters, in form of probability distributions, that produce 

output distributions in which test data are more likely. This is done by updating prior 

probability distributions of the input parameter, through the experimental data, in order 

to derive posterior ones and their statistical moments. 

Given input parameters 𝜃, a model 𝑀 used to make predictions of the process and a set 

of experimental data 𝐷, the problem can be formalized using Bayes Theorem [26]: 

 

𝑃(𝜃) =  
𝜋(𝜃)𝐿(𝜃)

𝑍
                                                       (2.20) 

 

Each term presented in equation 2.20 has its own meaning and importance in inferring 

the calibration [27]. 

• 𝜋(𝜃) = 𝑃(𝜃|𝑀) is the prior distribution. This describes the probability of having 

a particular set of values 𝜃 given the model 𝑀 before considering the 

experimental data 𝐷. Since it is indipendent from the data, the prior distribution 
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is an estimate of parameter values based on previous experiments, physical 

considerations and experiences about the problem under consideration. 

• 𝐿(𝜃) = 𝑃(𝐷|𝜃, 𝑀) is the Likelihood function, i.e., the probability of seeing the 

data 𝐷 collected, assuming (conditioned on) a particular choice of parameter 

values and the model. Different variable values will give different likelihoods, 

giving an insight into which parameter choice best describes the data. 

• 𝑍 =  ∫ 𝑃(𝐷|𝜃, 𝑀)𝑃(𝜃|𝑀)𝑑𝜃 is the evidence or marginal Likelihood of the model. 

It quantifies, integrating over all possibile parameter values, if the model 𝑀 is a 

good model to describe the observed data 𝐷. 

• 𝑃(𝜃) = 𝑃(𝜃|𝐷, 𝑀) is the posterior variable distribution, that describes 

parameter probabilities after combining prior belief, likelihood function and 

normalizing with respect evidence.  

Generating the posterior distribution is useful to derive model predictions, quantify 

uncertainties, and make correct guesses running the code in conditions not allowed or yet 

tried with experiments. 

More than computing the posterior distribution itself, the main focus of Bayes Calibration, 

and of the sampling techniques used to generate results, is to derive probability moments 

and estimate the expected value of generic functions 𝑓(𝜃) when 𝜃 follows the posterior 

𝑃(𝜃).  

 

𝐸𝑃[𝑓(𝜃)] = ∫ 𝑓(𝜃)𝑃(𝜃)𝑑𝜃                                         (2.21)               

 

This requires the computation of integrals with some numerical approximation methods. 

Most of them make use of the Markov Chain Montecarlo (MCMC) technique, and its 

related algorithms, to infer unknown posterior distributions by sampling and obtain 

quantities of interest. A detailed explanation of MCMC derivation is given in Appendix.  

 

2.4.2   Bayes Calibration in Dakota 
 

The Likelihood function used in Dakota is of Gaussian type, meaning that the differences 

between the model responses and the observed data are gaussian  

 

𝑑𝑖 = 𝑞𝑖(𝜃) + 𝜀𝑖                                                        (2.22) 

 

where 𝜃 are the uncertain parameters, 𝑞𝑖 are the model responses, 𝑑𝑖  the experimental 

data, and 𝜀𝑖  is a random variable describing both measurements and modeling errors.  

Considering 𝑛 observation, the likelihood function is expressed as  
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𝐿(𝜃) =
1

√(2𝜋)𝑛|Σ𝑑|
exp (−

1

2
𝑟𝑇𝛴𝑑

−1𝑟)                          (2.23) 

 

with 𝑟 the residual vector ( 𝑟𝑖 = 𝑑𝑖 − 𝑞𝑖(𝜃), 𝑖 = 1, . . , 𝑛) and  Σ𝑑 the covariance matrix of 

the gaussian data uncertainties. 

The negative log-likelihood is the misfit function  

 

𝑀(𝜃) =
1

2
𝑟𝑇Σ𝑑

−1𝑟                                                (2.24) 

 

Dakota uses as proposal distribution, to move into the parameter space, a multivariate 

normal (MVN) distribution with mean value centered at the current chain point and a 

covariance matrix designed to describe accurately the local curvature of the posterior 

distribution. The proposal covariance is the inverse of the Hessian of the negative log 

posterior 

 

∇𝜃
2 (− log(𝑃(𝜃)) = ∇𝜃

2𝑀(𝜃) − ∇𝜃
2 (log(𝜋(𝜃))                     (2.25) 

 

The Hessian of the misfit function is computed from code simulations through Gauss-

Newton approximation  

 

∇𝜃
2 𝑀(𝜃) ≈ ∇𝜃𝑞(𝜃)𝑇Σ𝑑

−1∇𝜃𝑞(𝜃)                                    (2.26) 

 

while the Hessian of the negative log prior distribution is assumed to be the inverse of the 

initial covariance 

 

−∇𝜃
2 (log(𝜋(𝜃)) = Σ0

−1                                              (2.27) 

 

Through this equality is exact for normal prior distributions, it will be used also for other 

prior distribution types.  

Dakota allows the implementation of different MCMC algorithms including Delayed 

Rejection DR, Adaptive Metropolis AM, and the combination of the two DRAM. 

 

2.4.3   Calibration Under Uncertainty (CUU) 

 

Calibration is the process of estimating unknown parameters according to experimental 

data. This allows the computer code to reproduce as close as possible the observed 

measurements when run with the calibrated variables and with the same conditions as 

the real test. Moreover, the acquired knowledge of the missing input values enables the 
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possibility of obtaining further information about the system behavior also in situations 

where no experiments have been performed.  

The system output 𝑦, function of the input variables 𝑥, can be written as 

  

𝑦 = 𝑓(𝑥, 𝜃) + 𝛿                                                       (2.28) 

 

where 𝑓(𝑥, 𝜃) is the, usually nonlinear, model output, 𝜃 the parameters to be calibrated, 

and 𝛿 is an error term.  

Calibration can be seen as an optimization algorithm where the objective function trying 

to be minimized is the residual between observed data and system outputs. Usually, the 

problem is formulated as a non-linear least square algorithm with the objective function 

𝑆(𝑥) as the sum of the square of the residual terms.  

 

𝑆(𝑥) =
1

2
∑ 𝑅𝑖

2

𝑛

𝑖=1

=
1

2
∑(𝑦𝑖 − 𝑓𝑖)2

𝑛

𝑖=1

                                   (2.29) 

 

Calibration under Uncertainty (CUU) algorithm is concerned with identifying model 

parameters that result in a “best fit” between experimental data and simulation results in 

a non-deterministic sense. Statistical assessments of data can be derived by a test 

campaign in which multiple simulations are observed to extrapolate the required 

measurements. These could be statistical moments (mean, variance…) or percentiles of a 

CDF/CCDF. In the same way, the calibrated variables can be uncertain quantities themself 

characterized by specific distributions, whose parameters may be unknown.  

In Dakota, CUU methods belong to “nested” models, in which, an inner loop algorithm 

exchanges information with an external algorithm. The inner one is usually an uncertainty 

quantification method that derives statistical measures given input probability 

distributions, the outer one is a calibration algorithm that confronts the uncertainty 

results of the model with their experimental respectives, changing accordingly the 

calibrated parameters. The process is repeated in a loop until stopped by a convergence 

criterion [28]. Figure 2.2 shows a visual scheme of the nested model where 

• 𝑑 = design variables  

• 𝑢 = uncertainty variables characterized by probability distributions 

• 𝑟𝑢(𝑑, 𝑢) = response functions from the simulation  

• 𝑠𝑢(𝑑) = statistics generated from UQ on the responses 𝑟𝑢 

Any of the uncertainty quantification methods described so far can be used as an inner 

loop in a CUU study. Since every calibration iteration is performed after the statistical 

assessment, the overall number of iterations required for the entire process can become 
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impractical when sample techniques are used for uncertainty quantification. The choice, 

therefore, falls into one of the other algorithms in order to reduce the computational cost.  

As for the inner case, also the outer loop can be equipped with one of the many least-

squares algorithms present in the literature. Since it is beyond the scope of this work, an 

overview of these methods is not presented here and only the main concepts related to 

the one that will be used later on are reported.  

Consider a generic non-linear least square problem 

 

𝑚𝑖𝑛∅𝑥 =
1

2
|𝑔(𝑥)|2                                                    (2.30) 

 

where 𝑥 is an n-dimensional real vector and 𝑔(𝑥) is a m-dimensional real vector function. 

The Jacobian and Hessian of ∅(𝑥) are respectively  

 

∇∅(𝑥) = 𝐽(𝑥)𝑇𝑔(𝑥)                                                       (2.31) 

   ∇2∅(𝑥) = 𝐽𝑇(𝑥)𝐽(𝑥) + 𝑄(𝑥)                                             (2.32) 

 

with 𝐽(𝑥) = 𝑔′(𝑥) and  𝑄(𝑥) denoting the second term  

 

𝑄(𝑥) = ∑ 𝑔𝑖(𝑥)∇2𝑔(𝑥)

𝑚

𝑖=1

                                              (2.33) 

 

In many cases the second term is difficult and impractical to compute and, as in the case 

of residuals, it tends to zero faster than the other terms. Ignoring this term will lead to the 

classical Gauss-Newton algorithm [29] which can be described in a few steps:  

1. Choose an initial 𝑥0 

2. Repeat until convergence: 

 

Solve  𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘)𝑠𝑘 = −𝐽(𝑥𝑘)𝑇𝑔(𝑥𝑘) 

Set     𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘  

In practice, the method is based on solving the linearized version of the problem  

 

𝑚𝑖𝑛
1

2
|𝐽(𝑥𝑘)𝑠𝑘 + 𝑔(𝑥𝑘)|2                                        (2.34) 

 

i.e., a linear Taylor expansion of 𝑔(𝑥) around 𝑥𝑘.  
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Figure 2.2: Dakota CUU nested model 

The solution is sought through a quadratic approximation in which 𝑄(𝑥) is not involved: 

 

𝑞𝑘 =
1

2
𝑔(𝑥𝑘)𝑇𝑔(𝑥𝑘) + 𝑠𝑘

𝑇𝐽(𝑥𝑘)𝑔(𝑥𝑘) +
1

2
𝑠𝑘

𝑇𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘)𝑠𝑘            (2.35) 

 

The calibration method that will be used is NL2SOL [30], which is a secant-based least-

squares algorithm that iteratively chooses between the Gauss-Newton Hessian 

approximation and this approximation augmented by a correction secant term 𝑆𝑘.  

 

𝑞𝑘 =
1

2
𝑔(𝑥𝑘)𝑇𝑔(𝑥𝑘) + 𝑠𝑘

𝑇𝐽(𝑥𝑘)𝑔(𝑥𝑘) +
1

2
𝑠𝑘

𝑇[ 𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘) + 𝑆𝑘  ]𝑠𝑘        (2.36) 

 

This method provides more reliable results and convergence rates even when the initial 

residuals are large. 
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2.5   Surrogate Models 

 

When running a method of any kind, time is one of the main features to keep in mind. 

Despite the utility and the number of information that can be gotten from a specific 

analysis, the latter could become meaningless if the required time is excessive. In this 

sense, time is one of the elements that tip the scales between doing or not a job. For 

example, Bayes Calibration algorithms could necessitate hundreds of thousands of 

iterations to converge or to, at least, obtain reasonable and accurate results, making them 

impractical when put besides physical models with time-demanding single runs.  

Surrogate Models are inexpensive approximate models with the purpose of acquiring the 

main features of the real high-fidelity model. A surrogate model can be used as a tool to 

explore system responses in different configurations without relying on the real model 

itself. Obviously a specified set of responses and analyses are necessary to allow them to 

capture what is needed to approximate results. A wide choice and classes of surrogate 

models are present in literature, according to the approximation methodology. Without 

going into the merits, here a review of the Kringing emulator that will be used later on is 

given.  

Gaussian Process or Kringing Interpolation is a data fits type surrogate model [31]. It uses 

a specified number of response functions from the high-fidelity model to construct a 

response surface from which to extrapolate the approximated results. The approximation 

of a real function 𝑓(𝑥) can be written as  

 

𝑓(𝑥) = 𝑔(𝑥)𝑇𝛽 + 𝜀(𝑥)                                           (2.37) 

 

where  

𝑓(𝑥) is the Kringing emulator 

𝑔(𝑥)𝑇𝛽 is a trend function (usually a least squares fit to data) 

𝜀(𝑥) is a Gaussian error model used to correct the trend function  

The Gaussian error model 𝜀(𝑥) is added in order to have zero uncertainty and error at the 

data points. The trend function value determines the various types of Kringing models: 

1. Simple Kringing assumes that the trend function is a known constant, usually zero 

(𝑔(𝑥)𝑇𝛽 = 0) 

2. Universal Kringing [32] uses a general polynomial model with the coefficients 

determined by least squares regression. 

3. Ordinary Kringing is essentially Universal Kringing when the polynomial order of 

the trend function is zero ( 𝑔(𝑥) = 1 ) 
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The trend function is in some sense a “global” model for the entire design space based on 

the 𝑁 given observations. The 𝜀(𝑥) Gaussian error, instead, is used to “locally” deviate 

from the global model. It is assumed as having zero mean and a covariance error matrix 

depending on the distance between the two analyzed points:  

 

𝐶𝑜𝑣(𝜀(𝑥), 𝜀(𝑥′)) = 𝜎2𝑟(𝑥, 𝑥′)                                   (2.38) 

 

where 𝜎2 is a known variance and 𝑟(𝑥, 𝑥′) is the distance between points 𝑥 and 𝑥′  

If measurement errors are available, these can be explicitly added to the model through 

the covariance matrix  

 

𝐶𝑜𝑣(𝜀(𝑥), 𝜀(𝑥′)) = 𝜎2𝑟(𝑥, 𝑥′) + ∆2𝛿(𝑥 − 𝑥′)                   (2.39) 

 

where 𝛿 is the Dirichlet function that is equal to 1 if 𝑥 = 𝑥′ and 0 otherwise, and ∆2 is the 

variance of the measurement error. 
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Chapter 3  

 

Validation Analysis 
 
Virtual engineering implementation with computer models is a foundation for 

establishing approaches that can drive and support decisions for all the rotorcraft lifecycle 

[33]. In whatever field of competence, from the initial structural design to the last 

certification requirements, building robust and reliable models is a useful step to confirm 

and acquire knowledge, without using a large number of physical tests. To achieve such 

benefits, a high level of confidence must be addressed to the used toolkits, in order to 

rely on them without incurring excessive errors. According to the guideline published by 

the American Society of Mechanical Engineers (ASME), “validation is the process of 

determining the degree to which a model is an accurate representation of the real world 

from the perspective of the intended uses of the model” [34]. In practice, the validation 

process aims to assess the predictive capability of the model. This is inferred by comparing 

the model responses with some real experiment data, usually obtained considering simple 

and not time demanding configurations. If the model faithfully reflects, according to some 

criteria, the real experimental setup and its results can be used to make the desired 

predictions with confidence. Validation is a necessary step when working with not well-

known instruments or toolkits, to derive if a particular model, method, or algorithm can 

correctly assess the main aspects of the problem under investigation.  

Before trying to reproduce experimental data, a validation analysis is performed to ensure 

the level of fidelity of the mathematical models. This is not intended as a way to verify the 

correct operation of Dakota toolkits, which have already been fully tested in different 

fields and with different dynamic solvers [35,36] but to give a perspective on how the 

methodologies work and how to assess and choose the different parameters governing 

the behavior of the numerical tools. As already stated, validation usually relies on 

specifically built experiments, used to extrapolate data to be compared with model 

responses. Since the interest of the presented work concerns uncertainty quantification 

and calibration, data are created directly on computer models assuming parameter 

distributions. This allows the comparison of the original and correct user-defined 

distributions with the derived and calibrated ones, giving an insight into the confidence 

level of the simulations. 

 

 

3.1   Multibody Model 

 

Validation analysis has been performed using a multi-body model of the Bo105 on MBDyn. 

The Bo105 is a small helicopter used for different purposes thanks to its extreme 
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maneuverability, such as transport, offshore, police, and military missions [37]. It has a 

four-bladed hingeless main rotor and a two-bladed teetering tail rotor working as a 

pusher on the left side of the helicopter. For simplicity reasons, only the main rotor has 

been implemented. The multibody model consists of a rotor with four rigid blades 

connected to the hub through spherical and deformable hinges, which allow rotations 

about feathering, lead, and flapping axes. The blades are at a constant chord (untapered) 

and twisted through a constant linear slope, with nodes positioned at the tip. Table 3.1 

summarizes the main technical features of the model with blades inertia matrix written 

with respect to the hub. A flexible pitch link, connected to a complete swashplate 

mechanism, allows collective and cyclic controls to be applied to the rotor. The latter 

rotates counterclockwise with constant rotational speed. The aerodynamic model 

description relies on the definition of an aerodynamic body element, which assumes a 

rigid aerodynamic surface that takes its configuration from a single node. 

 

Description Symbol Value Unit 

Angular Velocity Ω 44.4 [𝑟𝑎𝑑/𝑠] 

Rotor Radius 𝑅 4.912 [𝑚] 

Hinges offset 𝑑 0.746 [𝑚] 

Flap Stiffness 𝐾𝑓 15035.467 [𝑁/𝑟𝑎𝑑] 

Flap Damping 𝐶𝑓 0.0 [𝑁 ∙ 𝑠/𝑟𝑎𝑑] 

Lag Stiffness 𝐾𝑙  70698.042 [𝑁/𝑟𝑎𝑑] 

Lag Damping 𝐶𝑙 4093.662 [𝑁 ∙ 𝑠/𝑟𝑎𝑑] 

Pitch Link Length 𝐿𝑝 0.2 [𝑚] 

Pitch Link Stiffness 𝐾𝑝 1.0𝑒9 [𝑁/𝑚] 

Pitch Link Damping 𝐶𝑝 100.0 [𝑁 ∙ 𝑠/𝑚] 

Pitch Inertia 𝐼𝑝 0.257 [𝐾𝑔 ∙ 𝑚2] 

Flap Inertia 𝐼𝑓 140.001 [𝐾𝑔 ∙ 𝑚2] 

Lag Inertia I𝑙  140.257 [𝐾𝑔 ∙ 𝑚2] 
Blade Span 𝑏 3.812 [𝑚] 

Blade Chord 𝑐 0.270 [𝑚] 

Twist slope 𝜃𝑟 −6.2 ∗ 𝜋/180 [𝑟𝑎𝑑/𝑚] 

Table 3.1: Model technical features 

The aerodynamic center and the velocity measurement point (the point where 

aerodynamic boundary conditions are evaluated) are aligned to the centerline of the 

element, which is assumed to be at 25% of the airfoil chord. Each blade is equipped with 

four Gauss integration points over the span, which will be used by the solver to evaluate 

forces at specific spanwise locations. Aerodynamic loads are computed based on Blade 

Element/Momentum Theory [38] using the c81 data file of NACA23012, used as airfoil for 

the entire blades. The inflow of the rotor is represented by a uniform model which works 

well in hover conditions. The overall rotor multibody model is shown in figure 3.1.  

The validation carried out here mainly concerns the replication of a Bayes Calibration 

analysis to test the accuracy level of the method itself. The basic idea is to manually 
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generate, from known variables distributions, a number of test data and to give them back 

to the calibration model in order to retrieve the original distributions from the defined 

prior ones. Input variables are chosen from both aerodynamic and structural fields, in 

particular:  

• Aerodynamic Lift Coefficient Slopes 𝐶𝐿𝛼
 at different Mach numbers  

• Structural Stiffnesses from Pitch Link 𝐾𝑃 , Flap Hinge 𝐾𝐹  and Lag Hinge 𝐾𝐿  

This particular choice tries to reflect a real engineering situation, in which aerodynamic 

conditions and manufacturing tolerances are characterized by uncertainties on their 

nominal values. As output responses/experimental data, mean Thrust 𝑇̅ and Torque 

moment 𝑄̅ generated by the rotor is selected. These are extrapolated by averaging the 

last two rotor laps over 10 seconds of simulation, with constant collective and longitudinal 

commands of 6° and -2° respectively. 

 

 

Figure 3.1: Bo105 model representation 

    

3.1.1   Aerodynamic Interpolation 

 

To retrieve 𝐶𝐿𝛼
 coefficients a linear interpolation scheme has been applied to the 

aerodynamic Lift coefficients contained in the c81 data file 

 

𝐶𝐿 = 𝐶𝐿𝛼
𝛼 + 𝐶𝐿0

                                                           (3.1)  

    

at Mach numbers 𝑀 ∈ [0.1 ; 0.6] and with angle of attacks 𝛼 ∈ [−10° ; 10°], considering 

the commands amplitudes and the tip velocity of the rotor 𝑣𝑇𝐼𝑃 = Ω𝑅. Results of such 

linear assumption are displayed in table 3.2 and figures from 3.2 to 3.7, which compare 

the nominal lift coefficient values with the interpolated ones. The interpolation scheme 
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has been implemented using the “polyfit” function on Matlab. A python script, “airfoil.py” 

rewrites the overall c81 data file, changing the Lift Coefficient values in the previous range 

of application.  

 

Mach values 𝑪𝑳𝜶
 𝑪𝑳𝟎

 

0.1 0.1075 0.1270 
0.2 0.1075 0.1270 
0.3 0.1075 0.1270 
0.4 0.1126 0.1270 
0.5 0.1172 0.1405 
0.6 0.1135 0.1327 

Table 3.2: Interpolated aerodynamic lift coefficients 

 

                    Figure 3.2: 𝐶𝐿(0.1) comparison                                    Figure 3.3: 𝐶𝐿(0.2) comparison                                                                 

                   (° test data,  -- interpolated data)                                 (° test data,  -- interpolated data)                                                       

 

 

                        Figure 3.4: 𝐶𝐿(0.3) comparison                                     Figure 3.5: 𝐶𝐿(0.4) comparison 

                       (° test data,  -- interpolated data)                                 (° test data,  -- interpolated data) 
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                       Figure 3.6: 𝐶𝐿(0.5) comparison                                    Figure 3.7: 𝐶𝐿(0.6) comparison 

                      (° test data ,  -- interpolated data)                                (° test data ,  -- interpolated data) 

 

 

3.2   Dakota-MBDyn  
 

As already mentioned, the main advantage of the Dakota toolkit is of being external to 

dynamic simulation codes, considered as “black boxes”. Regardless of the type of study 

conducted, Dakota provides a set of, user-defined, input variables and collects the 

response functions to derive final results, without concerning about the simulation tool’s 

internal structure. This is possible thanks to a user-defined interface that allows Dakota 

to call and communicate with external scripts and solvers. Usually, Dakota writes and 

iteratively changes the input parameters of the dynamic solver and retrieves each 

response after these have been transferred to specific text files. All the operations 

involved are written in a shell script, namely “driver.sh”, which is called by Dakota input 

file and contains all the terminal commands that have to be executed to run the external 

scripts or software. Figure 3.8 shows a graphical representation of the steps involved in 

running a Dakota-MBDyn simulation with both aerodynamic and structural parameters, 

contained respectively in the c81 data file and parameters.set text file. These are 

independent of the type of analysis required and will be the same for all the studies. The 

steps can be described in sequence as: 

1. Specification of input variables, expected outputs, and analysis type, with a 

related algorithm, in Dakota input file Dakota.in 

2. Insertion of input values in airfoil.py and parameters.set, creating two new files, 

respectively airfoil_set.py and parameters_final.set 

3. Execution of airfoil_set.py to create the new c81 aerodynamic data file 

4. Execution of Mbdyn with multibody model conditioned by parameters_final.set 

file 

5. Execution of data.sh shell script to select the desired response quantities from 

the simulation and write them in Loads.out text file  
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6. Execution of mean.py python script to average Loads.out values and write the 

final mean responses in results.out text file 

Steps from 2. to 6. are iteratively repeated until the number of iterations, specified in the 

Dakota input file, is achieved. Final analysis outputs are extrapolated at the end by Dakota, 

considering all the evaluated mean responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Dakota-MBDyn interaction scheme 

 

 

3.3   Sensitivity Analysis 

 

Uncertainty quantification analysis is usually run in tandem with sensitivity one. The latter 

relates how the uncertainty in the output of a mathematical model or system can be 

divided into different sources of uncertainties in its inputs [39]. Determining the impact 

of a variable under sensitivity analysis can be useful for different purposes: 

• Testing the robustness of a model in presence of uncertainties 

• Increasing the understanding of the relationships between inputs and outputs 

• Reducing the uncertainty by identifying the variables that most affect outputs and 

should therefore be given more attention  

Dakota allows sensitivity studies under its design and analysis of computer experiments 

(DACE) capabilities, which seek to extract as much trend data from a parameter space as 

possible using a limited number of sample points. Many DACE techniques have been 

Dakota input file 

Dakota.in 
Dakota Executable Dakota output file 

Dakota.out 

Dakota parameters file 

airfoil_set.py 

parameters_final.set MBDyn 

Python3 airfoil_set.py c81 

Dakota results file 

./data.sh 

Python3 mean.py 

driver.sh 
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developed in order to characterize the behavior of the response functions of interest 

through the parameter ranges of interest. Here sensitivity analysis is carried out by 

computing sensitivity indices through Variance-based Decomposition (VBD). VBD is a 

global sensitivity method that summarizes how the uncertainties in model outputs 𝑌 can 

be distributed to uncertainties of single input variables 𝑥. Two primary measures are used: 

the main effect sensitivity index 𝑆𝑖 and the total effect sensitivity index 𝑇𝑖: 

 

𝑆𝑖 =
𝑉𝑎𝑟𝑥𝑖

[𝐸(𝑌|𝑥𝑖)]

𝑉𝑎𝑟(𝑌)
                                                       (3.2) 

𝑇𝑖 =
𝐸[𝑉𝑎𝑟(𝑌|𝑥−𝑖)]

𝑉𝑎𝑟(𝑌)
=

𝑉𝑎𝑟(𝑌) − 𝑉𝑎𝑟(𝐸[𝑌|𝑥−𝑖])

𝑉𝑎𝑟(𝑌)
                        (3.3) 

 

where 𝑌 = 𝑓(𝑥), and 𝑥−𝑖 = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1 , … , 𝑥𝑚) 

The main effect sensitivity index 𝑆𝑖 corresponds to the fraction of the uncertainty in the 

output 𝑌, that can be related to the input variable 𝑥𝑖  alone, while, the total effect 

sensitivity index 𝑇𝑖, corresponds to the fraction of output uncertainty that can be 

attributed to input 𝑥𝑖  and its interaction with other variables. These are obtained by 

comparing the variance of the conditional expectation against the total output variance.  

Three different sensitivity analyses have been conducted to separate aerodynamic and 

structural contributions. Latin Hypercube Sampling (LHS) technique generates samples 

from the defined probability distributions shown in table 3.3 to derive sensitivity indices. 

For a specified number of samples 𝑁 in Dakota input file, and a number of non-

deterministic variables 𝑀, variance based decomposition requires the evaluation of 

𝑁(𝑀 + 2) samples. 𝑁 = 200 has been set for all the simulations. Input variables are 

iteratively updated following Gaussian distributions with mean value 𝜇 equal to the 

nominal values, and standard deviation 𝜎 such that the overall parameter space, defined 

as 𝜇 ± 3𝜎 produces a 15% deviation from nominal values. Results of sensitivity analyses 

with respect to mean thrust 𝑇̅ are shown in tables 3.4, 3.5, 3.6. Firstly aerodynamic and 

structural variables are considered separately in order to derive the most useful ones on 

each field. Then a mixed sensitivity analysis extrapolates the indices on the parameters 

having the higher sensitivity indices from the aerodynamic and structural fields 

respectively. This final set of variables will be the one used in the uncertainty 

quantification later on. No big differences can be noted on main sensitivity index values 

𝑆𝑖 with respect to total ones 𝑇𝑖. This means that the output uncertainty can be mainly 

linked to single variables, with no particular interaction contributions. As expected Lift 

coefficients dominate the behavior of forces and moments generated by the rotor, with 

half of the output variance dictated by 𝐶𝐿𝛼
 coefficient at 𝑀 = 0.3. This will be helpful in 

understanding how Bayes Calibration works in different configurations and with variables 

of different nature and importance.  
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Variable Distribution Type Mean Std. Deviation 

𝐶𝐿𝛼
(0.1) Gaussian 0.1075 5.375𝑒 − 3 

𝐶𝐿𝛼
(0.2) Gaussian 0.1075 5.375𝑒 − 3 

𝐶𝐿𝛼
(0.3) Gaussian 0.1075 5.375𝑒 − 3 

𝐶𝐿𝛼
(0.4) Gaussian 0.1126 5.630𝑒 − 3 

𝐶𝐿𝛼
(0.5) Gaussian 0.1172 5.860𝑒 − 3 

𝐶𝐿𝛼
(0.6) Gaussian 0.1135 5.675𝑒 − 3 

𝐾𝑓 [𝑁/𝑟𝑎𝑑] Gaussian 15035 751 

𝐾𝑙  [𝑁/𝑟𝑎𝑑] Gaussian 70698 3534 

𝐾𝑝 [𝑁/𝑚] Gaussian 1.0𝑒9 5.0𝑒7 

Table 3.3: Input variable distributions 

 

Variable Main Sensitivity Index 𝑺𝒊 Total Sensitivity Index 𝑻𝒊 

𝐶𝐿𝛼
(0.1) 7.013𝑒 − 4 2.615𝑒 − 4 

𝐶𝐿𝛼
(0.2) 2.270𝑒 − 3 3.709𝑒 − 3 

𝐶𝐿𝛼
(0.3) 5.424𝑒 − 1 5.153𝑒 − 1 

𝐶𝐿𝛼
(0.4) 2.502𝑒 − 3 2.107𝑒 − 3 

𝐶𝐿𝛼
(0.5) 1.924𝑒 − 1 1.905𝑒 − 1 

𝐶𝐿𝛼
(0.6) 2.395𝑒 − 1 2.457𝑒 − 1 

Table 3.4: Aerodynamic sensitivity results with respect to 𝑇̅ 

 

Variable Main Sensitivity Index 𝑺𝒊 Total Sensitivity Index 𝑻𝒊 

𝐾𝑓 [𝑁/𝑟𝑎𝑑] 8.938𝑒 − 1 8.893𝑒 − 1 

𝐾𝑙  [𝑁/𝑟𝑎𝑑] 7.458𝑒 − 2 8.763𝑒 − 2 
𝐾𝑝 [𝑁/𝑚] 2.417𝑒 − 4 1.185𝑒 − 5 

Table 3.5: Structural sensitivity results with respect to 𝑇̅ 

 

 

Variable Main Sensitivity Index 𝑺𝒊 Total Sensitivity Index 𝑻𝒊 

𝐶𝐿𝛼
(0.3) 5.424𝑒 − 1 5.153𝑒 − 1 

𝐶𝐿𝛼
(0.6) 2.396𝑒 − 1 2.457𝑒 − 1 

𝐶𝐿𝛼
(0.5) 1.924𝑒 − 1 1.905𝑒 − 1 

𝐾𝑓  [𝑁/𝑚] 7.435𝑒 − 2 8.093𝑒 − 2 

 
Table 3.6: Mixed sensitivity results with respect to 𝑇̅ 
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3.4   Bayes Calibration 

 

Sensitivity analysis has been helpful in identifying the suitable parameters for Bayes 

Calibration, namely, aerodynamic Lift Slope Coeffients 𝐶𝐿𝛼
𝑠 at 𝑀𝑎𝑐ℎ = 0.3|0.5|0.6 and 

the Flap Hinge Stiffness 𝐾𝑓. As discussed in the previous chapter, to derive posterior and 

most probable density distributions of input parameters, Bayes Calibration techniques 

make use of experimental data. Since the scope of validation analysis is to compare results 

with known quantities, these latter are manually created by taking out response function 

samples of mean thrust 𝑇̅ and mean torque moment 𝑄̅ from a forward uncertainty 

quantification analysis. By doing so, a direct comparison of calibrated and original 

distributions is available. To clarify, a visual scheme of the steps involved in the validation 

process is shown in figure 3.9. Experimental data consist of 100 thrust and moment 

samples, extrapolated by Latine Hypercube Samples (LHS) technique, with Gaussian input 

distributions. Parameter means and standard deviations are chosen to be the same as 

sensitivity analysis. Statistical normal distributed error with zero mean and variance of 

0.25 is added to the data in order to simulate measurement errors. A Bayes Calibration 

study is then executed through a DRAM algorithm, starting with an initial uniform 

distribution for all the parameters and a total chain length of 100.000 samples. An initial 

“burn-in” of 5000 samples is set up in order to eliminate points in low probability regions. 

The large number of chain samples, required to derive reliable results, makes it 

mandatory to use an emulator. For this reason, a Gaussian process surrogate model 

makes use of 500 real model evaluations to collect load outputs and extrapolate response 

surfaces that will be used for calculating likelihood functions for the Bayes calibration. The 

trend function of the emulator is a reduced quadratic polynomial that includes main 

effects but not mixed interaction terms. In addition to the lower computational cost, 

another advantage of using a surrogate model is the possibility of having easy access to 

derivatives. These are computed by default in a global optimization process to obtain the 

hyperparameters of the Gaussian process and will be used to derive the covariance of the 

proposal distribution used to move into the chain space. As discussed, Dakota uses a 

multivariate normal (MVN) jumping distribution to create new points within a Markov 

chain. That is, a new point in the chain is determined by sampling within an MVN 

probability density with prescribed covariance that is centered at the current chain point. 

Derivatives allow to approximate, through the Gauss-Newton technique, the Hessian of 

the misfit function (negative log-likelihood), and to use it as proposal covariance, 

decreasing the rejection rate of the chain. Table 3.7 shows the results of the Bayes 

Calibration process with the first four statistical moments of the computed posterior 

distributions. Markov Chain MonteCarlo methods, as explained above, are not intended 

to derive distributions directly, but to approximate integrals of the latter. Table 3.8, 

instead, reports a comparison between prior and calibrated variable distributions 

considering only means and standard deviations.  
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Figure 3.9: Bayes Calibration validation scheme 

 

 

Variable Mean Std. Deviation Skewness Kurtosis 

𝐶𝐿𝛼
(0.3) 1.082𝑒 − 1 7.844𝑒 − 3 −1.468𝑒 − 1 −6.556𝑒 − 1 

𝐶𝐿𝛼
(0.5) 1.170𝑒 − 1 1.298𝑒 − 2 −1.471𝑒 − 1 −9.951𝑒 − 1 

𝐶𝐿𝛼
(0.6) 1.154𝑒 − 1 1.034𝑒 − 2 3.146 − 2 −5.321𝑒 − 1 

𝐾𝑓  [𝑁/𝑚] 14995.33 269.75 1.936𝑒 − 2 −1.1016 

Table 3.7: Bayes calibration results 

 

 

 

Variable Lower Bound Upper Bound Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.09 0.14 0.1082 7.844𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.09 0.14 0.1170 1.298𝑒 − 2 

𝐶𝐿𝛼
(0.6) 0.09 0.14 0.1154 1.034𝑒 − 2 

𝐾𝑓 [𝑁/𝑚] 11000.00 18000.00 14995.33 269.75 

Table 3.8: Comparison between prior and calibrated distributions 

 

In the end, table 3.9 shows the difference in terms of means and standard deviations 

between the real Gaussian distribution, used to derive experimental data, and the 

calibrated one. Mean values are accurately evaluated by the calibration process with a 

relative error of the order of 1% with respect to nominal values. Standard deviations are 

overestimated for the aerodynamic coefficients and underestimated for the flap stiffness. 

However, these incorrect evaluations are not of concern since calibration’s main goal is 

to quantify unknown parameters that have to be set for running computer models. A 

Uniform distribution Calibrated distribution 
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visual representation of the various distribution types for each input parameter is shown 

in figures going from 3.10 to 3.13, where a Gaussian distribution approximation is 

performed for the calibrated density probabilities.  

 

 

 

Variable Mean Std Deviation Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.1075 5.375𝑒 − 3 0.1082 7.844𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.1172 5.860𝑒 − 3 0.1170 1.298𝑒 − 2 

𝐶𝐿𝛼
(0.6) 0.1135 5.675𝑒 − 3 0.1154 1.034𝑒 − 2 

𝐾𝑓 [𝑁/𝑚] 15035.467 751.774 14995.33 269.75 

Table 3.9: Comparison between real and calibrated distributions 

 

 

        Figure 3.10: 𝐶𝐿𝛼
(0.3) distribution comparison           Figure 3.11: 𝐶𝐿𝛼

(0.5) distribution comparison  

                    ( -- initial ; -- nominal ; -- calibrated )                            ( -- initial ; -- nominal ; -- calibrated )                                                          

           

                 

                              

 

                 Figure 3.12: 𝐶𝐿𝛼
(0.6) distribution comparison          Figure 3.13: 𝐾𝑓  distribution comparison  

                         ( -- initial ; -- nominal ; -- calibrated )                        ( -- initial ; -- nominal ; -- calibrated )                                                          

Real distribution Calibrated distribution 
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3.5   Calibration Under Uncertainty 

 

The last validation step concerns another often met situation in engineering application, 

that is, the evaluation of parameter statistics given experimental ones. In other words, 

the study tries to answer the following question: “what are the acceptable input variable 

uncertainties that ensure the measured response function uncertainties ? “. This is a well-

established problem since many rotorcraft certification requirements set boundaries or 

specific ranges for loads in different fly conditions, and establishing acceptable value 

intervals for given parameters allows to ensure these criteria are imposed upstream. 

Calibration under uncertainty (CUU) toolkits permit such evaluations since, as discussed, 

these try to identify model variables resulting in a “best fit” between responses and data 

in a nondeterministic sense. Assuming Gaussian distributions, input standard deviations 

can be calibrated according to output ones, giving an estimate of the acceptable 

uncertainties. Boundaries and ranges are satisfied if they fall respectively beyond or inside 

of, a certain multiple of the standard deviation. As shown in the scheme presented in 

figure 3.14, experimental data standard deviations are obtained through LHS analysis with 

300 samples, considering, as before, mean thrust and mean torque values as output 

responses and the three aerodynamic slope lift coefficients and the flap hinge stiffness as 

input variables. These follow Gaussian distributions with means derived from Bayes 

calibration and standard deviations such that the overall parameter space of 𝜇 ± 3𝜎 

produces a 10% deviation from mean values. A Dakota nested model is constructed in 

which an inner uncertainty quantification method exchanges information and statistical 

results with the least squares algorithm to infer the calibration. The loop keeps going until 

the convergence criteria, usually set in terms of difference threshold between model 

responses and calibration data, is obtained. The Mean Value method is chosen as the 

inner uncertainty quantification algorithm due to its capability of inferring statistical 

contents with few iterations, while, an NL2SOL algorithm is used as a gradient-based 

optimization process to move into the input variable space. Also in this case input 

variables are forced to follow Gaussian distributions with means and initial standard 

deviations taken from Bayes Calibration results to give continuity between the two 

studies. Table 3.10 compares the nested model results with the real ones, while table 3.11 

highlights the difference between experimental data means and standard deviations, with 

the same obtained using a forward uncertainty LHS technique with 300 samples from 

calibrated variables. As can be seen, even if the statistical measures are accurately 

reproduced, input standard deviations are far from being the real ones, except for the 𝐶𝐿𝛼
 

at Mach equal to 0.6. This miscalculation is due to the fact that more than one statistical 

combination leads to the same result when working with variables of different 

sensitivities. To derive more reliable results, the same steps have been repeated 

considering only aerodynamic coefficients thanks to their comparable order of 

magnitudes in sensitivity indices. Tables 3.12 and 3.13 report again the comparison 

between real and calibrated variables and uncertainty output measures. In this case, more 

accurate results are obtained since no input parameter overhangs others in the  
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optimization process. Finally figures 3.15 and 3.16 show a comparison between 

cumulative distribution functions (CDFs) obtained for mean thrust and mean torque in the 

case of nominal input distributions and calibrated ones. Figures 3.17 and 3.18 plot 

probability distribution functions (PDFs) for both output responses using CUU 

aerodynamic results. The forward uncertainty quantification is essentially run to confirm 

the obtained results and check if the response function statistical descriptions are in line 

with the certification conditions. 
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Figure 3.14: CUU validation scheme 

 

 

Variable Mean Std Deviation Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.10825 3.608𝑒 − 3 0.10825 1.896𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.11700 3.900𝑒 − 3 0.11700 6.870𝑒 − 3 

𝐶𝐿𝛼
(0.6) 0.11538 3.867𝑒 − 3 0.11538 3.506𝑒 − 3 

𝐾𝑓 [𝑁/𝑚] 14995.33 499.844 14995.33 1523.05 

Table 3.10: Mixed CUU results 

 

 

 Mean Std Deviation Mean Std Deviation 

Thrust [𝑁] 2009.065 11.453 2009.182 11.533 

Torque [𝑁𝑚] −2360.925 2.100 −2360.945 2.120 

Table 3.11: Load statistical moments  

 

Experimental Output Data Calibrated Output Data 

Experimental Input Data Calibrated Input Data 
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Variable Mean Std Deviation Mean Std Deviation 

𝐶𝐿𝛼
(0.3) 0.10825 3.608𝑒 − 3 0.10825 3.223𝑒 − 3 

𝐶𝐿𝛼
(0.5) 0.11700 3.900𝑒 − 3 0.11700 4.356𝑒 − 3 

𝐶𝐿𝛼
(0.6) 0.11538 3.867𝑒 − 3 0.11538 3.803𝑒 − 3 

Table 3.12: Aerodynamic CUU results 

 

 Mean Std Deviation Mean Std Deviation 

Thrust [𝑁] 2009.067 11.423 2009.102 11.470 

Torque [𝑁𝑚] −2360.925 2.093 −2360.931 2.106 

Table 3.13: Final load statistical moments  

 

 

 

                                Figure 3.15: Thrust CDF                                                   Figure 3.16: Torque CDF 

                             ( -- Nominal ; -- Calibrated )                                            ( -- Nominal ; -- Calibrated ) 

 

 

                        Figure 3.17:  Calibrated Thrust PDF                           Figure 3.18:  Calibrated Torque PDF 

Experimental Input Data Calibrated Input Data 

Experimental Output Data Calibrated Output Data 
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Chapter 4 

 

Experimental Analysis 

 
Validation analysis has been helpful in determining the confidence level of uncertainty 

quantification and calibration methods, showing optimal and accurate results under 

specific conditions and observations. Bayes calibration estimates with high precision 

parameter mean values, while lower confidence can be assigned to derived standard 

deviations. The level of accuracy mainly depends on parameter influence about related 

response functions and on the number of experiments available. In most cases few 

experiments can be conducted, based on the number of accessible resources, and critical 

judgment is required to evaluate results. Nevertheless, Bayes calibration is a well- 

established technique to infer unknown parameter values when various kinds of 

uncertainties can be related to them. On the other hand, calibration under uncertainty 

(CUU) nested models are characterized by correct and optimal operation only when 

variables with comparable sensitivity indices are taken into account in the problem 

development. All the techniques explained in the previous chapters can now be used in 

real engineering applications, where no complete prior knowledge is assumed and where 

the computational model is covered by uncertainty. The chapter starts with a brief 

introduction and explanation of the helicopter experiment and its related multibody 

constructed model. Numerical methods for uncertainty quantification and calibration are 

then exploited in a Dakota-MBDyn interface environment to derive unknown input 

parameters and statistical descriptions of the desired response functions. 

 

 

4.1   Experiment Setup 

 

The experiment was conducted in the large test chamber of GVPM (Galleria del Vento 

Politecnico di Milano) with 13.84 m wide, 3.84 m high, and length of 35 m. Figure 4.1 

shows the setup mounted for performing the test cases and the measurements. The 

experiment considered is part of a larger one concerning the simulation and testing of 

helicopter-ship interactions [40]. The helicopter model is composed of a fuselage and a 

rotor with four untapered and untwisted rectangular blades made of carbon-fiber 

composite materials. The sectional profile of the blade is obtained through a 3D scan with 

NACA 0012 airfoils. The rotor has a diameter of 970 mm and includes a complete 

swashplate mechanism. In this way, collective and cyclic commands can be applied to the 

blades to obtain trim conditions at specific forces and moments. The fuselage is made of 

polycarbonate and tries to represent a 1:10 scaled model of a Bo105, considered as 

generic medium-size helicopter. A visual representation of the model is shown in figure 

4.2. The fuselage is mounted on an internal metallic structure with a six-component strain 
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gauge balance (Koris F6D-80e-60) measuring forces and moments in all the six degrees of 

freedom (𝐹𝑥, 𝐹𝑦, 𝐹𝑧, 𝑀𝑥, 𝑀𝑦 , 𝑀𝑧), and it is specialized for laboratory and research 

applications. A driving motor system, inside the fuselage structure, is installed as well. It 

consists of a brushless motor with 3.3kW continuous power directly connected to the 

rotor shaft by means of a joint coupling. The rotor rotational speed is kept thanks to an 

Electronic Speed Controller (ESC) connected to the rotor. To obtain load coefficients 

based on instantaneous RPM measures, the ESC is recorded with the same sampling 

frequency of the loads. The helicopter model was attached to a horizontal strut connected 

to a system of two orthogonal sliding guides, allowing the translation of the helicopter in 

both vertical and longitudinal directions.  

 

 
 

                                                      Figure 4.1: Experiment setup 

                   

 

 

Figure 4.2: Helicopter model 
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The experiment setup allows to reproduce helicopter aerodynamic loads in different 

environmental conditions, including in and out of ground effect, hover, and forward flight. 

For this particular application, the helicopter is considered in hover condition at four 

different altitudes, in order to simulate both OGE (Out of Ground Effect) and IGE (In 

Ground Effect) cases. Measurements of Thrust 𝑇, Roll 𝑀𝑥, Pitch 𝑀𝑦 and Torque 𝑀𝑧 

moments are obtained from 10 second simulations for each height 𝐻, respectively of four, 

three, two, and one time the rotor radius 𝑅. Test data for calibration and uncertainty 

quantification are then extrapolated after averaging process. Figures 4.3 and 4.4 show the 

time histories of aerodynamic loads and rotor RPM for the OGE case at 𝐻 = 4𝑅. Force 

and Moment signals are obtained after being sampled at 100 Hz frequency and filtered 

with a lowpass filter of 15 Hz. Table 4.1 reports the averaged load values for all the 

different altitudes, normalized with respect to rotor radius. 

 

 

Figure 4.3: Load time histories 

 

 

Figure 4.4: RPM time history  
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Height [𝑯/𝑹] Thrust [𝑵] Roll [𝑵𝒎] Pitch [𝑵𝒎] Torque [𝑵𝒎] 

4 25.6849 −0.0388 −0.2371 1.5621 
3 25.8241 −0.1483 −0.2193 1.5835 
2 29.0067 −0.2525 −0.3082 1.7789 
1 35.8256 −0.2401 −0.2490 1.8520 

Table 4.1: Experimental load mean values 

 

 

4.2   Multibody Model 

 

A multibody model of the experimental helicopter has been developed using MBDyn. The 

model, lacking fuselage description, consists of a hingeless, stiff-in plane rotor with four 

elastic blades connected to the hub through a revolute hinge, allowing the rotation about 

the feathering axis of the blade. This degree of freedom, along with a flexible pitch link, 

allows pitch control. The pitch link is connected to a complete swashplate mechanism 

which consists of two static structural nodes, connected together through a revolute 

hinge allowing relative rotation about the vertical axis. Technical features of the rotor 

model are reported in table 4.2. Each blade is modeled by three finite volume beam 

elements composed of three nodes [41]. Constitutive properties can be defined 

separately. MBDyn provides maximum topological flexibility since each node of the beam 

can be related to a structural node by an offset and an optional relative orientation. A 

linear viscoelastic constitutive law matrix is associated with each beam section so that 

internal forces can be computed as functions of the straining of the reference line and 

orientation at selected points, called evaluation points, which lie between two pairs of 

beam nodes. To introduce the aerodynamic model, Aerodynamic Beam Element is used, 

which relies on the structural beam element to compute the aerodynamic section 

configuration at each integration point. A c81 data file of NACA 0012, provides 

aerodynamic lift, drag and moment coefficients at different Mach numbers and angles of 

attack. These are used to compute aerodynamic loads based on Blade 

element/Momentum theory. Blade element theory assumes that blades can be divided 

into smaller elements that work independently and as two-dimensional airfoils so that 

aerodynamic forces can be computed based on local flow conditions. The elements then 

can be summed together over the span to provide the total forces and moments exerted 

on the rotor. On the other hand, momentum theory estimates the induced velocity by 

momentum lost in the rotor plane, affecting the inflow in the rotor plane and therefore 

the forces calculated by element theory. The coupling between the two sets up an 

iterative process to determine aerodynamic loads and induced velocities near the rotor 

[42]. The inflow is represented by a Glauert-Trees model assuming linear distribution over 

the rotor disk. 

This work aims for establishing a correct statistical calibration analysis in conditions as 

general as possible. For this reason, a large number of parameters from different fields 

have been chosen to be representative of the uncertainty related to the model, in order 
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to derive a stable methodology when poor information is given. The variables are picked 

up from:  

• Aerodynamic field 

• Structural field 

• Command control inputs 

In particular, lift slope coefficients 𝐶𝐿𝛼
s and zero lift drag coefficients 𝐶𝐷0

s at different 

Mach numbers and angles of attack, pitch link stiffness 𝐾𝑝, flapping bending stiffness 𝐸𝐼𝑦, 

collective and cyclic commands. These are representative of the uncertainty related to 

almost the entire helicopter applications, validating the study for different kinds of 

operating environments. 

 

Description Symbol Value Unit 

Blade span 𝑏 0.425 [𝑚] 

Hub radius 𝑟 0.06 [𝑚] 

Rotor radius 𝑅 0.485 [𝑚] 

Blade chord 𝑐 0.042 [𝑚] 

Axial stiffness 𝐸𝐴 1.0𝑒6 [𝑁] 

Shear stiffness 𝐺𝐴𝑦 1.0𝑒6 [𝑁] 

Shear stiffness 𝐺𝐴𝑧 1.0𝑒6 [𝑁] 

Bending stiffness 𝐸𝐼𝑦 7.0 [𝑁𝑚2] 

Bending stiffness 𝐸𝐼𝑧 2.26𝑒3 [𝑁𝑚2] 
Torsional stiffness 𝐺𝐽 1.0𝑒2 [𝑁𝑚2] 
Pitch Link stiffness 𝐾𝑝 10.0 [𝑁/𝑚] 

Pitch Link damping 𝐶𝑝 0.05 [𝑁𝑠/𝑚] 

Table 4.2: Model technical features 

 

4.2.1   Aerodynamic Interpolation  

 

Before simulations run, aerodynamic variables have been extrapolated from the c81 data 

file using interpolation function “polifit” on Matlab. Considering the maximum tip velocity 

of the rotor 𝑣𝑡𝑖𝑝
𝑚𝑎𝑥 = 108.9 𝑚/𝑠  for the 4𝑅 altitude case, a specific range of interest have 

been delimited for the aerodynamic coefficients, with 𝑀 ∈ [0 ; 0.4] and 𝛼 ∈ [−10° ; 10°]. 

For 𝐶𝐿𝛼
 values a linear interpolation is assumed, while a quadratic one is used to derive 

𝐶𝐷0
s due to function profile shape in the domain. 

 

𝐶𝐿 = 𝐶𝐿𝛼
𝛼 + 𝐶𝐿0

                                                            (4.1) 

𝐶𝐷 = 𝑘𝐶𝐿
2 = 𝐶𝐷

𝛼2 𝛼2 + 𝐶𝐷𝛼
𝛼 + 𝐶𝐷0

                                         (4.2) 

 

with 𝛼 in degrees. Tables 4.3 and 4.4 show the obtained results for Lift and Drag 

coefficients after interpolation, while figures from 4.5 to 4.12 compare the interpolated 
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functions with c81 data. An interpolation process is also used by MBDyn to derive 

aerodynamic coefficients at Mach values and angle of attacks not listed in the c81 data 

file. As for the validation case, a python script, namely “airfoil.py” iteratively substitutes 

the original data with the new ones, creating a new c81 data file, when interfacing with 

Dakota simulation. 

 

Mach Number 𝑪𝑳𝜶
 𝑪𝑳𝟎

 

0.0 0.1055 0.0 
0.2 0.1055 0.0 
0.3 0.1080 0.008 
0.4 0.1112 0.0 

Table 4.3: Interpolated aerodynamic lift coefficients 

 

Mach Number 𝑪𝑫
𝜶𝟐

 𝑪𝑫𝜶
 𝑪𝑫𝟎

 

0.0 9.2𝑒 − 5 0.0 0.0079 
0.2 9.2𝑒 − 5 0.0 0.0079 
0.3 1.025𝑒 − 4 0.0 0.0077 
0.4 1.554𝑒 − 4 0.0 0.0068 

Table 4.4: Interpolated aerodynamic drag coefficients 

 

 

 

 

                   Figure 4.5: 𝐶𝐿(0.0) comparison                                             Figure 4.6: 𝐶𝐿(0.2) comparison 

(° test data ,  -- interpolated data)                                       (° test data ,  -- interpolated data)                                                                    
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                         Figure 4.7: 𝐶𝐿(0.3) comparison                                   Figure 4.8: 𝐶𝐿(0.4) comparison                                              
                        (° test data ,  -- interpolated data)                             (° test data ,  -- interpolated data)                                        

 

 

 

 

                         Figure 4.9: 𝐶𝐷(0.0) comparison                                    Figure 4.10: 𝐶𝐷(0.2) comparison                                                     

 (° test data ,  -- interpolated data)                                (° test data ,  -- interpolated data)                                      

 

 

 

       Figure 4.11: 𝐶𝐷(0.3) comparison                                    Figure 4.12: 𝐶𝐷(0.4) comparison        

     (° test data ,  -- interpolated data)                                   (° test data ,  -- interpolated data)                                 
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4.3   Sensitivity Analysis 

 

As already stated in the validation chapter, uncertainty analysis is usually preceded by 

sensitivity analysis in order to reduce the problem size, extrapolate information and 

derive the most appropriate and influential variables under investigation. Objective 

functions and calibration data are chosen to be the mean values of Thrust 𝑇, roll moment 

𝑀𝑥, pitch moment 𝑀𝑦, and rotor power 𝑃 obtained by multiplying the torque moment 

𝑀𝑧 with the rotational speed Ω expressed in 𝑟𝑎𝑑/𝑠  (𝑃 = 𝑀𝑧Ω). This last has been chosen 

due to its primary demand in certification requirements. Mean RPM value at 4R height is 

used as rotational rotor speed. As first step, a sensitivity analysis considering command 

controls is run. This is used to assess their influence on objective functions, and to 

establish with more precision the pitch link stiffness value. No direct measurements on 

the component were available, so its order of magnitude has been selected by comparing 

the multibody model behavior at assigned control values with the experimental helicopter 

one. Sensitivity indices are obtained through Variance Based Decomposition (VBD), 

sampling with LHS technique from command density distributions listed in table 4.5. VBD 

will be used for all the sensitivity analysis later on. Table 4.6 shows the result obtained 

assuming pitch link stiffness of 10 N/m. These are in line with the observed helicopter 

behavior since roll and pitch moments are mainly produced respectively by lateral and 

longitudinal swashplate rotations. A dynamic coupling is also present as expected. After 

obtaining pitch link stiffness order of magnitude, a complete sensitivity analysis can be 

inferred considering both aerodynamic and structural parameters. The simulations are 

performed considering 200 samples, LHS uncertainty quantification technique and control 

inputs set with collective, lateral and longitudinal commands respectively of 

5° , −1° , −1°. Gaussian probability distributions are assumed for all the parameters, as 

shown in table 4.7, with means 𝜇 equal to the nominal values and standard deviations 

𝜎 such that the parameter space defined as 𝜇 ± 3𝜎 produces a 15% deviation from mean 

values. A first aerodynamic sensitivity analysis is performed to eliminate Lift and Drag 

coefficients with minor impact on objective functions (table 4.8), then a mixed analysis 

with both structural and aerodynamic related quantities pulls out the final set of 

sensitivity indices (table 4.9). The high pitch link flexibility heavily affects the rotor 

performances and its dynamic behavior, with a net contribution in all the loads especially 

in roll and pitch moments. As expected Zero Lift Drag coefficients 𝐶𝐷0
 exclusively show 

their influence in power, since, to keep the rotor in rotation, it is necessary to overcome 

the profile drag acting on the rotating blades and to supply energy to develop the 

necessary induced speed to generate thrust. To get a complete overview and comparison 

of the obtained results, figure 4.13 shows a tornado diagram with data categories listed 

vertically with the same order of table 4.9 starting from the bottom. These last 

parameters, along with control commands will be used to infer Bayes calibration. 
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Command Distribution Type Lower Bound Upper Bound 

𝐶𝑜𝑙𝑙 Uniform 4.0 8.0 

𝐿𝑎𝑡 Uniform −2.0 2.0 

𝐿𝑜𝑛𝑔 Uniform −2.0 2.0 

Table 4.5: Command probability distributions 

 

Command Thrust 𝑻 Roll 𝑴𝒙 Pitch 𝑴𝒚 Power 𝑷 

𝐶𝑜𝑙𝑙 9.06𝑒 − 1 6.38𝑒 − 4 2.41𝑒 − 3 9.10𝑒 − 1 
𝐿𝑎𝑡 2.16𝑒 − 3 7.72𝑒 − 1 1.86𝑒 − 1 2.75𝑒 − 3 

𝐿𝑜𝑛𝑔 3.95𝑒 − 4 1.16𝑒 − 1 7.93𝑒 − 1 1.12𝑒 − 3 

Table 4.6: Command sensitivity results 

 

 

Variable Distribution type Mean Std Deviation 

𝐶𝐿𝛼
(𝑀 = 0) Gaussian 0.1055 5.275𝑒 − 3 

𝐶𝐿𝛼
(𝑀 = 0.2) Gaussian 0.1055 5.275𝑒 − 3 

𝐶𝐿𝛼
(𝑀 = 0.3) Gaussian 0.1080 5.4𝑒 − 3 

𝐶𝐿𝛼
(𝑀 = 0.4) Gaussian 0.1112 5.56𝑒 − 3 

𝐶𝐷0
(𝑀 = 0) Gaussian 0.0079 3.95𝑒 − 4 

𝐶𝐷0
(𝑀 = 0.2) Gaussian 0.0079 3.95𝑒 − 4 

𝐶𝐷0
(𝑀 = 0.3) Gaussian 0.0077 3.85𝑒 − 4 

𝐶𝐷0
(𝑀 = 0.4) Gaussian 0.0068 3.4𝑒 − 3 

𝐾𝑝 Gaussian 15.0 0.75 

𝐸𝐼𝑦 Gaussian 10.0 0.5 

Table 4.7: Overall probability distributions 

 

 

Variable Thrust 𝑻 Roll 𝑴𝒙 Pitch 𝑴𝒚 Power 𝑷 

𝐶𝐿𝛼
(𝑀 = 0) 1.55𝑒 − 2 3.26𝑒 − 3 5.04𝑒 − 4 1.23𝑒 − 2 

𝐶𝐿𝛼
(𝑀 = 0.2) 2.33𝑒 − 1 6.22𝑒 − 1 1.84𝑒 − 1 1.05𝑒 − 1 

𝐶𝐿𝛼
(𝑀 = 0.3) 8.11𝑒 − 1 3.95𝑒 − 1 7.55𝑒 − 1 3.67𝑒 − 1 

𝐶𝐿𝛼
(𝑀 = 0.4) 8.44𝑒 − 5 3.77𝑒 − 5 1.75𝑒 − 4 1.14𝑒 − 5 

𝐶𝐷0
(𝑀 = 0) 1.50𝑒 − 6 4.56𝑒 − 6 3.05𝑒 − 7 7.46𝑒 − 4 

𝐶𝐷0
(𝑀 = 0.2) 4.29𝑒 − 5 8.01𝑒 − 5 3.17𝑒 − 4 3.4𝑒 − 1 

𝐶𝐷0
(𝑀 = 0.3) 3.31𝑒 − 5 2.10𝑒 − 5 1.88𝑒 − 4 2.83𝑒 − 1 

𝐶𝐷0
(𝑀 = 0.4) 2.37𝑒 − 7 3.04𝑒 − 7 5.68𝑒 − 7 5.24𝑒 − 5 

Table 4.8: Aerodynamic sensitivity results 
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Variable Thrust 𝑻 Roll 𝑴𝒙 Pitch 𝑴𝒚 Power 𝑷 

𝐶𝐿𝛼
(𝑀 = 0.2) 3.46𝑒 − 2 1.67𝑒 − 1 6.25𝑒 − 2 2.48𝑒 − 2 

𝐶𝐿𝛼
(𝑀 = 0.3) 7.82𝑒 − 1 4.21𝑒 − 1 1.03𝑒 − 1 4.78𝑒 − 1 

𝐶𝐷0
(𝑀 = 0.2) 6.22𝑒 − 3 2.69𝑒 − 3 3.81𝑒 − 3 1.06𝑒 − 1 

𝐶𝐷0
(𝑀 = 0.3) 1.62𝑒 − 2 7.62𝑒 − 3 8.00𝑒 − 4 2.58𝑒 − 1 

𝐾𝑝 1.40𝑒 − 1 4.61𝑒 − 1 7.86𝑒 − 1 1.09𝑒 − 1 

𝐸𝐼𝑦 5.43𝑒 − 2 6.84𝑒 − 3 9.03𝑒 − 2 4.28𝑒 − 2 

Table 4.9: Overall sensitivity results 

 

 

 

Figure 4.13: Sensitivity tornado diagram 

(1: 𝐶𝐿𝛼
(0.2); 2: 𝐶𝐿𝛼

(0.3); 3: 𝐶𝐷0
(0.2); 4: 𝐶𝐷0

(0.3); 5: 𝐾𝑃; 6: 𝐸𝐼𝑦) 

 

 

4.4   Bayes Calibration 
 

After delimiting and defining the variables of interest, a Bayes calibration analysis is 

performed to derive their statistical descriptions in terms of distribution function 

moments. Nine input parameters are selected to describe, as best as possible, the 

uncertainties characterizing helicopter performances and to include all the different fields 

in which these uncertainties can be collocated into. As a reminder, the variables are: 

• Aerodynamic Lift Slope and Zero Lift Drag coefficients at Mach number equal to 

0.2 and 0.3:  

 

[𝐶𝐿𝛼
(0.2), 𝐶𝐿𝛼

(0.3),  𝐶𝐷0
(0.2), 𝐶𝐷0

(0.3)] 
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• Pitch Link Stiffness 𝐾𝑝 and Blade Bending Stiffness 𝐸𝐼𝑦 

• Collective and cyclic control commands, namely 𝐶𝑜𝑙𝑙 𝐿𝑎𝑡 𝐿𝑜𝑛𝑔 

Experimental helicopter measurements of mean thrust, roll, pitch, and power in hover 

and at altitude 𝐻 = 4𝑅 (OGE condition) are used as calibration data by the method. As 

for the validation part of the study, Bayes Calibration is inferred making use of the DRAM 

algorithm with a total chain of 100.000 samples. Gaussian process emulator interpolates 

500 real model function evaluations to obtain response surfaces used to derive Likelihood 

Functions and proposal distribution covariance matrices. 5000 “burn in” samples are also 

selected to remove lower probability regions from the chain. Pre-existing parameter 

knowledge and assumptions are contained in the prior distributions listed in table 4.10 

and used by the calibration process. Uniform distributions are attributed to all the 

variables, with bounds defined by considering usually assumed uncertainties in 

measurements, and confidence obtained from previous simulations of the multibody 

model under specific input values. Lift Coefficients are delimited by a near 10% 

uncertainty from nominal values, which is selected as a trusted region in aerodynamic- 

related estimations. A larger bound is assigned to the zero lift drag coefficients in order 

to add the hub contribution in drag which has not been modeled. This is necessary to not 

end up in torque, and consequently power, underestimation. To match all the 

experimental measures and obtain feasible results, a first Bayes calibration analysis is run 

considering only Roll and Pitch as calibration data and Pitch Link Stiffness 𝐾𝑝, Blade 

Bending Stiffness 𝐸𝐼𝑦 and the cyclic commands 𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔 as input variables. The choice 

has been determined by the lower order of magnitudes of moment values with respect 

to Thrust and Power, which could lead to erroneous and too small estimations of cyclic 

mean values. The means and standard deviations obtained from this first analysis are then 

used to characterize gaussian distributions, selected as new prior distributions for the four 

previously cited variables, in the overall Bayes Calibration. Results of the final analysis are 

listed in table 4.11, reporting the first four statistical moments describing the posterior 

variable distributions. Figures from 4.14 to 4.22 compare the initial uniform distributions 

with the posterior normal type ones, constructed by taking the means and standard 

deviations from the calibration results. 
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Variable Distribution Type Lower Bound Upper Bound 

𝐶𝐿𝛼
(𝑀 = 0.2) Uniform 0.09 0.125 

𝐶𝐿𝛼
(𝑀 = 0.3) Uniform 0.09 0.125 

𝐶𝐷0
(𝑀 = 0.2) Uniform 0.007 0.015 

𝐶𝐷0
(𝑀 = 0.3) Uniform 0.007 0.015 

𝐾𝑝 Uniform 10.0 20.0 

𝐸𝐼𝑦 Uniform 6.0 10.0 

𝐶𝑜𝑙𝑙 Uniform 4.0 8.0 

𝐿𝑎𝑡 Uniform −2.0 2.0 

𝐿𝑜𝑛𝑔 Uniform −2.0 2.0 

Table 4.10: Variable probability distributions 

 

 

Variable Mean Std. Deviation Skewness Kurtosis 

𝐶𝐿𝛼
(𝑀 = 0.2) 0.1072 9.378𝑒 − 3 −2.778𝑒 − 2 −1.085 

𝐶𝐿𝛼
(𝑀 = 0.3) 0.1078 9.238𝑒 − 3 4.008𝑒 − 2 −1.028 

𝐶𝐷0
(𝑀 = 0.2) 0.0192 2.151𝑒 − 3 4.601𝑒 − 2 −1.083 

𝐶𝐷0
(𝑀 = 0.3) 0.0195 2.157𝑒 − 3 8.497𝑒 − 3 −1.123 

𝐾𝑝 15.024 2.658 6.830𝑒 − 3 −1.051 

𝐸𝐼𝑦 8.499 0.824 2.523𝑒 − 2 −1.209 

𝐶𝑜𝑙𝑙 5.411 0.331 −9.214𝑒 − 1 1.556 
𝐿𝑎𝑡 0.1698 0.727 −1.187𝑒 − 1 −3.830𝑒 − 1 

𝐿𝑜𝑛𝑔 −0.2955 0.756 3.345𝑒 − 1 −2.209𝑒 − 1 

Table 4.11: Bayes Calibration results 

 

 

 

              Figure 4.14: 𝐶𝐿𝛼
(0.2) distribution comparison         Figure 4.15: 𝐶𝐿𝛼

(0.3) distribution comparison          

                                 ( -- initial ;  -- calibrated )                                                  ( -- initial ;  -- calibrated )                    
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           Figure 4.16: 𝐶𝐷0
(0.2) distribution comparison           Figure 4.17: 𝐶𝐷0

(0.3) distribution comparison        

                             ( -- initial ;  -- calibrated )                                                  ( -- initial ;  -- calibrated )  

 

 

 

            Figure 4.18: 𝐾𝑃 distribution comparison                       Figure 4.19: 𝐸𝐼𝑦  distribution comparison   

                             ( -- initial ;  -- calibrated )                                                  ( -- initial ;  -- calibrated )    
 

 

 

                Figure 4.20: 𝐿𝑎𝑡 distribution comparison              Figure 4.21: 𝐿𝑜𝑛𝑔 distribution comparison    

                                 ( -- initial ;  -- calibrated )                                              ( -- initial ;  -- calibrated )                                                   
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Figure 4.22: 𝐶𝑜𝑙𝑙 distribution comparison 

 ( -- initial ;  -- calibrated ) 

 

As can be seen, calibrated drag coefficient mean values are far from the respective 

nominal values obtained through c81 data file interpolation due to hub contribution. 

Instead, aerodynamic lift coefficients have not been changed by the calibration process. 

High uncertainty, in form of standard deviation, characterizes cyclic commands due to the 

low-value moments acting on the rotor in the Hover condition. Of different nature is 

instead the collective command which is accurately evaluated thanks to its primary 

importance in thrust and power development. As well as deducing unknown model 

parameters, Bayes calibration analysis allows obtaining a complete statistical description 

of response functions. To do so, and also to confirm the obtained results, a forward 

uncertainty quantification analysis is run where calibrated variables, described by 

probability distributions, are used as input parameters to obtain the statistical assessment 

of the loads. Normal distributions with means and standard deviations obtained from 

Bayes calibration are assumed for all the variables, while the LHS technique with 500 total 

samples derives the uncertainties related to quantities of the outputs. Table 4.12 

compares the load distribution means and standard deviations along with the average 

calibration data obtained from the experiment. The last column indicates the number of 

standard deviations separating the two means for each load. Optimal agreement between 

experimental data and simulation results can be appreciated since the former is away less 

than one standard deviation from the mean value of the probability distributions for all 

the loads, making them probable realizations. Figures from 4.23 to 4.30 show a complete 

uncertainty loads description through Cumulative Distribution Functions (CDF) and 

Probability Distribution Functions (PDF) extrapolated from LHS results. 

 

Load Mean Std Deviation Exp Data N° Std 
Deviation 

Thrust 𝑇 [𝑁] 26.1148 3.5505 25.6849 0.12 

Roll 𝑅 [𝑁𝑚] −0.0069 0.5604 −0.0388 0.057 

Pitch 𝐿 [𝑁𝑚] −0.2501 0.5661 −0.2371 0.023 

Power 𝑃 [𝑊] 353.4290 47.0523 350.9062 0.05 

Table 4.12: Model and experimental loads comparison 
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Figure 4.23: Thrust CDF                                                    Figure 4.24: Roll CDF 

 

 

 

                             Figure 4.25: Pitch CDF                                                 Figure 4.26: Power CDF 

 

 

 

     Figure 4.27: Thrust PDF                                                   Figure 4.28: Roll PDF 
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        Figure 4.29: Pitch PDF                                                  Figure 4.30: Power PDF 

 

 

4.5   Calibration Under Uncertainty 
 

The performed calibration and uncertainty analysis does not take into account the actual 

load trends measured in the laboratory. Experimental data are extrapolated after an 

averaging process which cuts out all model dynamic fluctuations and numerical errors. 

These can be recovered by assigning standard deviations in load distributions, such that, 

sampling from the derived distributions has the same effect of taking an actual 

measurement at a generic time. The problem solution falls back into the Calibration Under 

Uncertainty (CUU) model already studied in the validation analysis, in which input 

variables statistical moments are derived from response function ones. Then, running a 

forward uncertainty analysis with the derived parameter statistical measures, ensures the 

observation of the desired response function uncertainties. As already stated the method 

suffers from a great limitation given by the optimization/least squares algorithm used by 

the outer loop. Especially working with derivative-based optimization algorithms, using 

variables with comparable sensitivity indices, is a necessary condition to ensure the 

correct method operation, without incurring misleading solutions, since only one 

parameter, or related quantities, combination leads to the desired output. The problem 

has been set in determining input control commands standard deviations from defined 

load ones, leaving all the other parameters constant at their previously calibrated mean 

values, for the 4R altitude dynamic case. Apart from the sensitivity condition, knowing 

manual controls range of application is a fundamental step to ensure specific aerodynamic 

loads acting on the rotor in operating conditions. Roll and Pitch standard deviations 

𝜎 have been chosen so that the maximum deviation, defined as 3𝜎, is about 0.5 𝑁𝑚, 

while Thrust and Power standard deviations are computed by considering a maximum 

difference of 10% around mean values, as observed in experiments. Dakota input file 

consists of a nested model, as for the validation case, with Mean Value Method (MPP) as 

uncertainty quantification internal algorithm and NL2SOL least-squares method as the 

outer one. Normal command distributions are assumed with means and initial standard 

deviations equal to the ones obtained in Bayes Calibration. Results of such analysis are 
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shown in table 4.13 which compares the initial first two command distribution moments 

with the ones obtained through the least-squares process. Table 4.14, instead, reports a 

complete overview of the different load’s standard deviation results. The first ones, 

denoted as “Initial Std Dev”, are obtained through LHS 500 samples uncertainty 

quantification, considering commands following normal distributions characterized by 

Bayes calibration results. The “Exp Std Dev” are the ones used as calibration data to infer 

the CUU analysis, and the “Calibrated Std Dev” reported the ones obtained after running 

the same LHS uncertainty quantification but with commands normal distributions 

constructed with the CUU results.  

 

 

 

Command Mean Initial Std Dev Calibrated Std Dev 

𝐶𝑜𝑙𝑙 [𝑑𝑒𝑔] 5.4114 0.3311 0.1292 
𝐿𝑎𝑡 [𝑑𝑒𝑔] 0.1698 0.7268 0.2273 

𝐿𝑜𝑛𝑔 [𝑑𝑒𝑔] −0.2955 0.7557 0.2282 

Table 4.13: Command standard deviations comparison 

 

Load Initial Std Dev Exp Std Dev Calibrated Std Dev 

𝑇ℎ𝑟𝑢𝑠𝑡 𝑇 [𝑁] 3.000 0.8600 1.1638 
𝑅𝑜𝑙𝑙 𝑅 [𝑁𝑚] 0.5368 0.1670 0.1665 
𝑃𝑖𝑡𝑐ℎ 𝐿 [𝑁𝑚] 0.5469 0.1670 0.1669 
𝑃𝑜𝑤𝑒𝑟 𝑃 [𝑊] 30.3619 11.6600 11.6875 

Table 4.14: Loads standard deviations comparison 

 

 

4.6   Helicopter Ground Interaction 
 

Crucial point is to assess if the calibrated variables, and their probability distributions, are 

optimal estimations even under different operating and environmental conditions. More 

precisely, assuming the same parameter distribution evaluated in Out of Ground Effect 

(OGE), is it possible to obtain a correct statistical description of the loads when the model 

is run in ground effect (IGE)? Operating helicopters close to the ground introduces special 

features in flight dynamic behavior [43]. The more significant is the effect in inflow 

velocity and hence in thrust and power required, especially in hover conditions. Close to 

the ground, the rotor downwash is highly influenced by the surface, and since it has to be 

zero at the ground, its value at the rotor disk will be lower than in the OGE case. 

Considering the same thrust required, the decrease of induced velocity will lead to a minor 

induced power needed to generate it when operating in Hover near the ground [44]. A 

complete description of the phenomenon would require a dynamic and nonlinear 
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aerodynamic description, which is far beyond the scope of this work which seeks a simple 

estimation and comparison between model responses and averaged experimental data. 

Forward uncertainty quantification is run, characterized by the same features explained 

above, but with the model operating at reduced altitudes. Particularly heights of two and 

one times the rotor radius are chosen as done in the laboratory. The 3R case is not 

reproduced since it is still in OGE condition and no particular variations from the previous 

results are expected. Rotational rotor speeds are updated for all the simulations, 

considering the corresponding averaged RPM value obtained from experiments. 500 

samples for each analysis are iteratively extrapolated through the LHS technique from the 

input distribution functions listed in table 4.15. These are just Gaussian distribution 

obtained considering, as always, input parameters means and standard deviations from 

Bayes calibration. Tables 4.16 and 4.17 compare loads distributions with experimental 

data, validating the analysis in terms of number of standard deviations separating means 

and averaged measures. 

 

 

Variable Distribution Mean Std Deviation 

𝐶𝐿𝛼
(0.2) Normal 0.1072 9.378𝑒 − 3 

𝐶𝐿𝛼
(0.3) Normal 0.1075 9.238𝑒 − 3 

𝐶𝐷0
(0.2) Normal 0.0109 2.151𝑒 − 3 

𝐶𝐷0
(0.3) Normal 0.0109 2.157𝑒 − 3 

𝐾𝑝 Normal 15.0239 2.658 

𝐸𝐼𝑦 Normal 8.4990 0.824 

𝐶𝑜𝑙𝑙 Normal 5.4114 0.331 

𝐿𝑎𝑡 Normal 0.1698 0.727 

𝐿𝑜𝑛𝑔 Normal −0.2955 0.756 

Table 4.15: Input variable normal distributions 

 

As expected no particular variations of Roll and Pitch moments are obtained with respect 

to the OGE case independently of the altitude considered. On the other hand, an increase 

in thrust and power is observed especially in the 1R case, since the ground effect acquires 

greater prominence at altitudes equal to or less than the rotor radius. While a growth with 

constant slope can be noted for power from 2R to 1R case (number of standard deviations 

separating mean and experiment is constant at 0.7), a more marked and net increase in 

thrust is observed (number of standard deviations from 0.3 to 1.01), with model 

prediction underestimating experimental data. This is in line with what has been 

explained before, with more thrust generated at constant rotor power. Nevertheless, the 

great number of variables and uncertainty considered allows keeping the differences 

below the one standard deviation threshold. The increase of thrust and power standard 

deviations, maintaining constant input variable distributions, suggests that the latter 

assume greater influence on loads as the altitude decreases. As a final result, figures from 

4.31 to 4.34 show a complete statistical description of the thrust and power in the 1R 
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altitude case considering as before Cumulative Distribution Functions (CDF) and 

Probability Distribution Functions (PDF). 

 

Load Mean Std Deviation Exp Data N° Std 
Deviation 

Thrust 27.8528 3.8174 29.0067 0.3022 

Roll −0.0071 0.5583 −0.2525 0.4395 

Pitch −0.2491 0.5649 −0.3082 0.1046 

Power 362.8009 49.1283 399.4418 0.7458 

Table 4.16: 2R altitude loads comparison 

 

Load Mean Std Deviation Exp Data N° Std 
Deviation 

Thrust 31.4166 4.3563 35.8256 1.0121 

Roll −0.0081 0.5528 −0.2401 0.4197 

Pitch −0.2472 0.5631 −0.2490 0.0032 

Power 375.9794 52.5775 413.0807 0.7056 

Table 4.17: 1R altitude loads comparison 

 

 

 

 

                   Figure 4.31: 1R altitude Thrust CDF                              Figure 4.32: 1R altitude Power CDF                                    
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                    Figure 4.33: 1R altitude Thrust PDF                                  Figure 4.34: 1R altitude Power PDF 

 

Assessing and modeling correctly aerodynamic interaction between helicopters and 

obstacles is of primary interest for safety reasons. Rotorcraft are, in fact, very versatile 

flying machines that are usually required to operate close to ground or structures [45]. 

According to the accident database collected by the Joint Helicopter Safety Analysis Team 

(JHSAT) [46], take-off and landing are the flight conditions causing the greatest number of 

accidents, making In Ground Effect (IGE) analysis, a mandatory step in experimental 

campaigns and numerical simulations. As can be noted, model predictions of thrust and 

power (and equivalently torque) in IGE conditions, underestimate the experimental data. 

This trend is especially visible at 1R altitude, in which, the proximity of the ground heavily 

affects the aerodynamic flow and consequently the rotor behavior. Despite this, the great 

number of parameters and related uncertainties considered in the present work, succeed 

in assessing the loads also in the IGE case in a statistical sense. Experimental data are, in 

fact, in the range of one standard deviation from the mean distribution values, and so 

possible realizations. This solution is, however, useful in early development stages or in 

all the conditions in which little model information are accessible, and the knowledge is 

covered in uncertainties. In all other cases, a specific cause identification for misleading 

solutions is necessary to develop a higher phenomenon understanding. The idea is to 

address the difference between model computed loads and data in the uncertainty 

related to the pitch link value, which can change in ground proximity due to swashplate 

flexibility and its non-linear behavior. To set up the problem, only pitch link stiffness is 

assumed as uncertainty variable, following Normal probability distribution constructed 

from Bayes Calibration results, with mean 𝜇(𝐾𝑝) = 15.02 𝑁/𝑚, and standard deviation 

𝜎(𝐾𝑝) = 2.66 𝑁/𝑚. All other input parameters are stuck at their mean values and 

considered deterministic. In order to consider also RPM change from OGE to IGE 

condition, thrust and torque coefficients are chosen as quantities of interest. These are 

respectively defined as:  

 

𝐶𝑇 =
𝑇

𝜌𝐴𝑣𝑡𝑖𝑝
2                                                               (4.3) 
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𝐶𝑄 =
𝑄

𝜌𝐴𝑅𝑣𝑡𝑖𝑝
2                                                                (4.4) 

 

in which 𝑇 is the thrust, 𝑄 the torque, 𝜌 the air density, 𝑅 the rotor radius, 𝐴 the rotor 

disk area used as reference section and 𝑣𝑡𝑖𝑝
2  is the reference speed chosen as the tip one, 

equal to Ω𝑅 with Ω indicating the rotor rotational speed, expressed in 𝑟𝑎𝑑/𝑠. The air 

density is kept constant at its standard condition value: 𝜌 = 1.225 𝐾𝑔/𝑚3, while Ω is 

changed according to the altitude using the mean experiment RPM values. Statistical load 

coefficients descriptions are obtained through forward uncertainty quantification analysis 

using LHS technique with 200 samples for each environment condition. Tables 4.18 and 

4.19 show the obtained results in terms of means and standard deviations for each 

altitude. Thrust and torque coefficients are normalized with respect to the same obtained 

using 4R test data (𝐶𝑇/𝐶𝑇𝑛
), in order to compare results with respect to a reference 

condition. As before, the last column is used to identify the number of standard deviations 

dividing the experimental data from the mean values.  

 

 

Height Mean Std Deviation Exp Data N° Std Dev 

4𝑅 1.0069 5.588𝑒 − 2 1.000 0.1235 
3𝑅 1.0068 5.579𝑒 − 2 1.0060 0.0143 
2𝑅 1.0760 6.267𝑒 − 2 1.1303 0.8664 
1𝑅 1.2305 8.018𝑒 − 2 1.4148 2.2985 

Table 4.18: Thrust Coefficient 

 

Height Mean Std Deviation Exp Data N° Std Dev 

4𝑅 0.9970 4.367𝑒 − 2 1.000 0.0687 
3𝑅 0.9970 4.359𝑒 − 2 1.0143 0.3968 
2𝑅 1.0251 4.844𝑒 − 2 1.1397 2.3658 
1𝑅 1.0837 6.076𝑒 − 2 1.2026 1.9568 

Table 4.19: Torque Coefficient 

 

Figures 4.35 and 4.36 show a comparison between model simulations and test data 

considering all the parameter space, defined as three times the standard deviations, 

inside the vertical bars. For the thrust coefficient case also the Fradenburgh [47] equation 

is shown, which is usually used as a reference result for rigid rotor test cases. Starting from 

the rigid case, adding flexibility to the model leads to an increase in both thrust and torque 

coefficients when crossing the OGE/IGE boundary. In this view, the pitch link stiffness 

decrease can be a possible cause of the difference between model predictions and test 

measurements. However, especially for the 1R case, experimental data fall into the 

considered range only when this is constructed assuming 2/3 times the standard 
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deviation. This large uncertainty bound, leaves the possibility that other non considered 

sources can be responsible as well. 

 

 

 

                                             Figure 4.35: Normalized thrust coefficient  

                                                (° Experiment; -- Model; -- Fradenburg) 

 

 

 

 

                       Figure 4.36: Normalized torque coefficient  

                                                            (° Experiment; -- Model) 
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Chapter 5 

 

Conclusions 
 
Dakota-MBDyn interaction has provided a comprehensive investigation tool to validate 

and assess different types of analyses on helicopter multi-body models. Uncertainty 

quantification (UQ) capability allows deriving statistics on the quantity of interest when 

different uncertainties affect the model in the form of both inherent randomness and lack 

of knowledge. When no precise variable information is available, Bayesian Calibration is 

capable of deriving input parameter main statistical moments from experimental data, 

allowing the possibility of reproducing the test conditions within an uncertainty 

perspective. This initial information can be augmented by a Calibration under Uncertainty 

nested model, which in return provides the limit uncertainty conditions that can be 

accepted in order to obtain a pre-set margin on response functions. The combined use of 

the two tools can, in principle, supply a complete statistical description starting from 

conditions as general as possible. The correct operational behavior is, however, only 

ensured when applied to variables with the same influence on responses. Critical 

judgment is necessary to establish if the obtained results make sense depending on the 

application scope. The cases taken into consideration in this work are of simple nature, 

where the rotorcraft, in hover, changes its altitude. More complete and difficult 

conditions, as for certification requirements, are left for future researches.  
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Appendix 

 

Bayes Calibration methods  
 
This appendix provides a detailed description of the methods and numerical algorithms 

involved in the Bayes Calibration analysis run in the thesis. Other techniques that do not 

rely on MCMC estimations are possible, even if they are not explained here.  

 

Markov Chain Montecarlo (MCMC) 

 

MCMC estimates integral quantities by sampling over the posterior distribution. 

Obviously, the posterior distribution is not known at priori and must be quantified in some 

manner before operating. The explanation of how this quantification is performed and all 

the operations involved require a basic background about sampling techniques to 

understand how they work and for which purpose they have been implemented [48].  

Starting from equation 2.21 in one dimension, a possible and standard numerical 

technique to approximate the integral is the Riemann sum over a discrete grid of points: 

 

𝐸𝑃[𝑓(𝜃)] = ∫ 𝑓(𝜃)𝑃(𝜃)𝑑𝜃  ≈  ∑ 𝑓(𝜃𝑖)𝑃(𝜃𝑖)∆𝜃𝑖

𝑛

𝑖=1

                  (𝐴. 1) 

 

where ∆𝜃𝑖 =  𝜃𝑗+1 − 𝜃𝑗  is the spacing between the set of 𝑗 = 1 … 𝑛 + 1 grid points and 

𝜃𝑖  is the mid point. 

This concept can be generalized to higher dimensions in which, instead of dividing the 

space into 𝑛 segments, it can be decomposed into 𝑛 𝑁-dimensional cuboids each one 

contributing to the integral by the product of the “height” 𝑓(𝜃𝑖)𝑃(𝜃𝑖) and the volume 

  

∆𝜃𝑖 = ∏ ∆𝜃𝑖,𝑗

𝑑

𝑗=1

                                                      (𝐴. 2) 

 

This simple approach however is not efficient since the number of grid points needed for 

evaluations increases exponentially with the problem dimensionality. In addition, since 

the posterior density is an unknown quantity, the grid can be partitioned in an uneven 

way leading to wrong estimations. The method so not only depends on the number of 

grid points but also on where they are allocated. Equation A.1, in fact, can be seen as a 

weighted mean, with each weight 𝑤𝑖 equal to 𝑃̂(𝜃𝑖)∆𝜃𝑖. Here 𝑃̂(𝜃𝑖) is the unnormalized 
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posterior 𝑃̂(𝜃𝑖) = 𝜋(𝜃)𝐿(𝜃) and, recalling that 𝑍 = ∫ 𝑃̂ (𝜃)𝑑𝜃 , the same equation can 

be written as  

 

𝐸𝑃[𝑓(𝜃)] ≈
∑ 𝑓(𝜃𝑖)𝑃̂(𝜃𝑖)∆𝜃𝑖

𝑛
𝑖=1

∑ 𝑃̂(𝜃𝑖)𝑛
𝑖=1 ∆𝜃𝑖

=
∑ 𝑓𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

                            (𝐴. 3) 

 

From equation A.3, it is evident the connection between the estimation of 𝐸𝑃[𝑓(𝜃)] using 

a grid of 𝑛 points and using a series of 𝑛 samples 𝑓𝑖  with associated weights 𝑤𝑖. Moreover, 

there is a strict connection between the weights and the posterior distribution. Although 

not proven here, it is convenient to have uniform weights, i.e., smaller grid resolution 

where the posterior distribution is higher in order to increase the accuracy of the 

estimation. In the limit case of 𝑛 → ∞ this ends up in defining a continuous grid function 

𝑄(𝜃) inversely proportional to ∆𝜃𝑖. With some substitutions the expected value can be 

computed as  

𝐸𝑃[𝑓(𝜃)] =
∫ 𝑓(𝜃)𝑃̂(𝜃)𝑑𝜃

∫ 𝑃̂(𝜃)𝑑𝜃
=

𝐸𝑄[
𝑓(𝜃)𝑃̂(𝜃)

𝑄(𝜃)
]

𝐸𝑄[
𝑃̂(𝜃)
𝑄(𝜃)

]

                              (𝐴. 4) 

 

The expected value of 𝑓(𝜃), according to the posterior distribution 𝑃(𝜃), is now divided 

into two new expected values computed with respect to a new distribution 𝑄(𝜃), called 

the proposal distribution. This simple mathematical trick allows its estimation since, as 

reminded, nothing is known at the beginning about the posterior distribution, while the 

proposal distribution is already defined and in practice it is possible to derive the 

expression explicitly by sampling over 𝑄(𝜃). Obviously the ideal would be having the 

proposal distribution equal to the posterior one 𝑄(𝜃) = 𝑃(𝜃) since in this way the 

weights would be constant and equal to the evidence 𝑍. 

This solution is what Markov Chain Montecarlo (MCMC) method seeks to do, creating a 

chain of parameter values {𝜃1 → ⋯ → 𝜃𝑛} over 𝑛 iterations such that the number of 

iterations 𝑟(𝜃𝑖) spent in a particular region ∆𝜃𝑖 centered on 𝜃𝑖  is proportional to the 

posterior distribution. The density of generated samples is equal to 

  

𝜌(𝜃𝑖) =
𝑟(𝜃𝑖)

𝑛
                                                          (𝐴. 5) 

 

and the posterior integral in the parameter region can be approximated by  

 

∫ 𝑃(𝜃)𝑑𝜃 ≈ ∫ 𝜌(𝜃)𝑑𝜃 ≈ 𝑛−1 ∑ I [

𝑛

𝑗=1

𝜃𝑗 ∈ ∆𝜃𝑗]                         (𝐴. 6) 
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where I is the indicator function giving 1 if the parameter is inside the region and 0 

otherwise.  

Increasing the number of iterations 𝜌(𝜃𝑖) will be closer to the posterior distribution, 

allowing the expected value evaluations by simply averaging over the samples  

 

𝐸𝑃[𝑓(𝜃)] ≈ 𝐸𝜌[𝑓(𝜃)] = 𝑛−1 ∑ 𝑓𝑖

𝑛

𝑖=1

                                       (𝐴. 7) 

 

The only question left is how to generate the chain sample to reconstruct the posterior 

distribution and its related quantities. Various algorithms of different complexity 

succeed in this goal. 

 

Metropolis Hastings Algorithm     
 

The basic idea is to generate new chain samples 𝜃𝑖 →  𝜃𝑖+1 such that the inferred 

distribution is stationary (converges) and is equal to the posterior distribution 𝑃(𝜃).  

The stationary condition can be satisfied using detailed balance, enabling the 

conservation of the probability when moving from one sample to another, i.e., the 

probability must be reversible. This concept can be written down as  

 

𝑃(𝜃𝑖+1|𝜃𝑖)𝑃(𝜃𝑖) = 𝑃(𝜃𝑖+1, 𝜃𝑖) = 𝑃(𝜃𝑖|𝜃𝑖+1)𝑃(𝜃𝑖+1)                 (𝐴. 8) 

 

𝑃(𝜃𝑖+1|𝜃𝑖) is the probability of moving from position 𝑖 + 1 to position 𝑖, while 𝑃(𝜃𝑖|𝜃𝑖+1) 

is the reverse probability of moving from position 𝑖 to position 𝑖 + 1. 

The procedure to generate new chain samples is divided into two steps. A first position 

proposal is made 𝜃𝑖 →  𝜃′𝑖+1 according to the proposal distribution 𝑄(𝜃′
𝑖+1|𝜃𝑖), which is 

accepted or not by some transition probability 𝑇(𝜃′
𝑖+1|𝜃𝑖). If the iteration is successful 

then 𝜃𝑖+1 = 𝜃′𝑖+1 and the algorithm proceeds, otherwise, if it is rejected, 𝜃𝑖+1 = 𝜃𝑖  with 

a consequent new proposal.  

The Metropolis criterion satisfies the balance constraint, staring the Transition probability 

as  

 

𝑇(𝜃𝑖+1|𝜃𝑖) = min [1 ,
𝑃(𝜃𝑖+1)

𝑃(𝜃𝑖)

𝑄(𝜃𝑖|𝜃𝑖+1)

𝑄(𝜃𝑖+1|𝜃𝑖)
]                          (𝐴. 9) 

 

The Metropolis Hastings algorithm [49,50] can be then described as following 

1. Propose a new chain sample 𝜃′𝑖+1 from the proposal distribution 𝑄(𝜃′
𝑖+1|𝜃𝑖) 

2. Compute the transition probability 𝑇(𝜃′𝑖+1|𝜃𝑖) 

3. Generate a random number 𝑢 ∈ [0,1] 

4. If 𝑢 ≤ 𝑇(𝜃′𝑖+1|𝜃𝑖) accept the sample and 𝜃𝑖+1 = 𝜃′𝑖+1 , otherwise 𝜃𝑖+1 = 𝜃𝑖 
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5. Increase 𝑖 and repeat  

Since no information is available at the beginning about the posterior, the initial chain 

values can be in a low probability region. For this reason, generally, a burn in samples 

process is executed, in which a specified number of initial samples are eliminated from 

the chain in order to not compromise the final result. 

 

DRAM algorithm  
 

DRAM (Delayed Rejaction Adaptive Metropolis) combines two different algorithms 

ideated to improve the efficiency of a classic Metropolis Hastings [51]. 

 Delayed Rejection is a local adaptive strategy in which, after a proposal chain value 

rejection, instead of retaining the same position, a second proposal stage is performed. 

The transition probability for this second stage will be dependent not only on the current 

position, but also on what has been accepted and rejected previously. Since all acceptance 

probabilities are computed so that the reversibility property of the posterior distribution 

is maintained, the delayed rejection strategy can be interrupted at any stage or can be 

iterated for a fixed or random number of stages.  

Adaptive Metropolis is a global adaptive strategy in which a Gaussian proposal distribution 

is created with a covariance matrix, calibrated using the previous samples of the chain. 

After an initial non-adaptation period, the Gaussian proposal is centered on the current 

chain position 𝜃𝑖  , with its covariance matrix defined as  

 

𝐶𝑖 = 𝑠𝑑𝐶𝑜𝑣(𝜃0, … , 𝜃𝑖−1) + 𝑠𝑑𝜀𝐼𝑑                               (𝐴. 10) 

 

where 𝑠𝑑 is a parameter depending on the problem dimensionality, 𝜀 > 0 is a constant, 

𝐼𝑑 is the identity matrix and  

 

𝐶𝑜𝑣(𝜃0, … , 𝜃𝑘) =
1

𝑘
(∑ 𝜃𝑗

𝑘

𝑗=0

𝜃𝑗
𝑇 − (𝑘 − 1)𝜃̅𝑘𝜃̅𝑘

𝑇)                 (𝐴. 11) 

 

with 𝜃̅𝑘 =
1

𝑘+1
∑ 𝜃𝑖

𝑘
𝑖=0  

The choice of the length of the initial non-adaptation period is free to be chosen by the 

user with more increasing time adaptation cost as the period gets bigger. It has been 

found that the adaptation process should not be done at each time step but at given time 

intervals. 

MCMC methods mainly depend on the proposal distribution, since it is the element that 

governs the acceptance rate during the chain movement. In its basic form DR employs a 

given number of proposals used at different stages and therefore its operation relies on 
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the probability that at least one of these is successfully calibrated. On the other hand, AM 

tunes the covariance matrix, and so the proposal distribution, considering the previous 

chain steps. DRAM algorithm works combining AM adaptation process with a 𝑚-stages of 

DR: 

• The proposal at the first stage is adapted. The covariance 𝐶𝑛
1 is constructed from 

𝑛 points of the sample chain  

• The proposal covariance 𝐶𝑛
𝑖  at stage 𝑖 = 2, … , 𝑚 is a scaled version of the first one 

𝐶𝑛
𝑖 = 𝛾𝑖𝐶𝑛

1 

The scaled parameter 𝛾𝑖  can be freely chosen, allowing smaller or higher covariance 

matrices at the following stages.  

The combination of DR and AM has drastically increased the acceptance rate and MCMC 

functionality, making DRAM one of the most used algorithms to assess Bayes Calibration. 
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