POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Unsupervised Pre-Training for Reinforcement Learning via Recursive

History Encoders

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: PIETRO MALDINI
Advisor: PROF. MARCELLO RESTELLI
Co-advisor: DoTrT. MIRCO MUTTI

Academic year: 2020-2021

1. Introduction

Reinforcement Learning (RL) is a sub-field of
machine learning that aims at solving sequen-
tial decision problems formalized as Markov De-
cision Processes (MDPs). In an MDP a decision
maker, the agent, is placed inside an environ-
ment. The agent can perceive the current condi-
tions of this environment, the state. The agent
interacts with the environment by performing
actions. The behaviour of the agent, i.e. its ac-
tion choosing strategy, is called a policy. When
an action is performed the agent receives a scalar
signal, the reward, which indicates how the ac-
tion is compliant with a specified task to learn.
The learning process starts from an initial be-
haviour, often random, that is used to interact
with the environment. Using the reward signal
as feedback the behaviour is changed to improve
its performance. The design of a reward signal
is hard and the shape of the reward defines the
hardness of the subsequent learning process. A
sparse reward is chosen so that a reward is given
only when a specific task is performed or the de-
sired goal is reached. A sparse reward is difficult
to collect with a random policy, this choice of-
ten leads to inefficient learning. If the reward is
not found, the agent has no feedback to modify

its policy, so learning is not possible. To over-
come this limitation a new approach has been
proposed, which is similar to that of unsuper-
vised pre-training of supervised learning mod-
els. Unsupervised pre-training for RL aims to
learn policies with no supervised feedback from
the environment so that it is agnostic to the task.
The main goal is to learn to explore the environ-
ment, reach a wide range of states and master
various skills. A policy with those features could
then be fine-tuned to perform different tasks in
the environment. Using an exploratory policy as
initial behaviour for a subsequent RL task helps
collect sparse rewards which can’t be collected
by random initial policies. This leads to faster
learning of a subsequent task. In particular, we
consider the extension of the unsupervised pre-
training problem to multiple environments. An
agent can be in one environment within a class
of environments and the objective is to learn to
explore every environment in that class. In this
setting Markovian policies are known to be sub-
optimal [3]. The contribution of this thesis is
the proposal of an architecture to represent non-
Markovian policies and show empirical results
of the advantages of a non-Markovian policy in
the unsupervised pre-training in multiple envi-

ronments.

2. Notation

In this chapter, we introduce the notation used
in the remained of this document. The interac-
tion process between an agent an environment
happens in a sequence of discrete time-steps,
t=0,1,2,3,...,T. At each time-step t the agent
uses the current state of the environment s; to
choose an action to perform a;. After the ac-
tion is performed, the agent receives the next
state s;11 and a reward signal ry41. A finite
Markov Decision Process (MDP) is defined as a
tuple (S, A, P,R,do,T). In order, they repre-
sent, the set of possible states, the set of avail-
able actions, the dynamics of the environment,
the initial state distribution and the time hori-
zon. In particular, we consider the multiple envi-
ronments MDPs where the agent is placed in one
among a set of environments M = My, ..., My,
every environment has its dynamics whereas the
state and action space are in common. At the
beginning of an episodic interaction, the agent
is placed inside one of the environments follow-
ing a distribution pa defined over M. An agent
placed in an environment interacts with it at dis-
crete time-steps t, using its policy function 7 to
choose the action to perform. A Markovian pol-
icy uses the current state of the environment s;
as an input to m. A non-Markovian policy, in-
stead uses the history hy = (s¢, $¢-1,-.-,50). A
typical measurement used to assess the perfor-
mance of a policy is the cumulative reward:

T-1

J = Z Ty (T

" k=0

where r141(7) represents the reward received at
time step k + 1 in the trajectory 7. We de-
fine trajectory 7 = (s¢,as,7¢)1=0,..,7—1 as a se-
quence of states, actions and reward collected in
an episode. The interaction between an agent
following a policy m and an MDP induces a dis-
tribution over the states d™, d"(s) represents the
probability of being in state s following the pol-
icy m. Lastly an important measure we consider
is an estimated version of the differential entropy
used in [5], which can be computed by sampling
from a distribution. Given N samples obtained
from a distribution f(x), and a number k < N,
we can compute a k-nearest neighbor estimate

of the differential entropy:
Hy(f) = iZk) ELE (k),

where ¥ is the digamma function and V[is
the volume of the hyper-sphere of radius R; =
|z; — 2" | that represents the euclidean distance
between z; and its k" nearest neighbor xk”"

3. State of the Art

In this Section, we provide a quick overview of
the current state of the art of unsupervised pre-
training in RL.

3.1. Maximum State Entropy Meth-
ods

To solve the unsupervised pre-training problems
several approaches have been proposed. The ob-
jective of those algorithms can be formalized as
the maximization problem proposed by Hazan
et al. in [1] :

" € argmax H (d),
well

where H(d;) is the entropy of the state dis-
tribution induced by the policy w. Those al-
gorithms showed outstanding results compared
with state-of-the-art solutions in single environ-
ments. Mazimum Entropy POLicy optimization
(Mepol) [5] using the estimate Hj(dy). From
here we will refer to this estimate as H.

3.2. Unsupervised Pre-Training in
Multiple Environments

The families of algorithms described up to now
are mainly focused on learning a single policy
for a single environment. Some works proposed
different approaches to extend these results to
the multiple environments setting. Change-
Based Ezxploration Transfer (C-BET) [6] ex-
tended count-based methods to allow learning in
multiple environments by considering interest-
ing changes in the environment as an additional
bonus. aMepol [4] extended Mepol by chang-
ing its objective to a risk-averse variant of it.
Their risk measure is the Conditional Value-at-
Risk (CVaR) of the entropies of the collected tra-
jectories, that is the mean of the a percentile of
the distribution of collected entropies. This ob-
jective prioritizes the entropy in the worst case

\”

®

®
Kooy -

® Encod

. ncoder

[
S¢ .
()

h

Gaussian Policy

Gy

Figure 1: A representation of the policy architecture learned by HMepol.

allowing for a better exploration in rare or par-
ticularly difficult environments, with a trade-off
with easier and more frequently visited environ-
ments.

4. Motivations

Policies learned using unsupervised pre-training
algorithms showed promising results when used
as initial policies for subsequent reinforcement
learning tasks. With the increase in research in-
terest, some limitations started to arise. Mutti
et al. in [3| showed theoretical limits of Marko-
vian policies in finite samples regime compared
with non-Markovian policies. When exploring
an environment requires visiting a state mul-
tiple times, and to act differently every time,
a Markovian policy is forced to randomize its
action. While being more complex, a non-
Markovian policy can use information from his-
tory to overcome this limit and act determin-
istically. Further limitations are introduced in
the multiple environments setting. A markovian
agent cannot understand in which environment
it is placed, leading to a suboptimal behaviour.
A non-Markovian policy can instead identify the
environment and adapt the strategy to the cur-
rent environment, allowing it to reach an opti-
mal behaviour.

5. An Architecture to Repre-
sent Non-Markovian Policies

Our main contribution is the proposal of a new
architecture to represent non-Markovian poli-
cies. The proposed architecture is composed of
two parts. A recursive history encoder, that al-
lows to create and to update a compact repre-
sentation, as a limited size vector, of the history
at each time-step, which we call h}. At the be-
ginning of each trajectory, the history vector is

initialized with a zero vector, namely hj = O.
At each time step t, the previous history vector
h;_, and the current state s; are encoded into a
new history vector h; according to the following
recursive equation:

h=0
h/t = ge(sta hé,l),

where gg(-) is the function computed by the his-
tory encoder, which is implemented as a multi-
layer perceptron parametrized by 6. Using this
recursive definition, it is possible to highlight
the dependence of the history at each time-step
with the states visited in all the previous time-
steps. By employing a gradient ascent proce-
dure it is possible to learn a function gg that
retains only the information relevant for future
decisions. The second component is a diagonal
Gaussian policy represented with a neural net-
work. This component is often used to represent
stochastic Markovian policies. In the Markovian
case, it receives as input the current state s, in
our case, it receives the current history vector
hy. Tt uses this input to compute the mean and
the covariance matrix of a multivariate Gaus-
sian distribution. The action is then sampled
from the resulting distribution. The combina-
tion of these two components (see Figure 1) al-
lows to represent a non-Markovian policy. The
underlying learning algorithm is a modified ver-
sion of the model-free, policy-gradient algorithm
MEPOL introduced in [5], which we call History
Mepol (HMepol).

6. Experimental Results

In this section, we present some of the main re-
sults obtained in our experimental evaluation.
We compare entropies obtained by Mepol [5],
aMepol [4] and HMepol over different domains.

6.1. GridWorld with Slope

We consider a class M of two configurations of
a continuous GridWorld domain with 2D states
and actions, which was used in [4] with the name
GridWorld with Slope. The two configurations
are composed of four rooms connected by narrow
hallways. The action space is a (bounded) incre-
ment representing the movement of the agent
along with the two coordinates. The difference
between the two environments lies in the tran-
sition dynamics. As shown in Fig. 2a, the en-
vironments have slopes of opposed directions.
As a consequence, the movement of the agent
is altered in different ways. The yellow area
represents the initial position while the arrows
represent the slope direction. To make the set-
ting more interesting, we consider an unbalanced
distribution over the class of environments M,
with pp¢ = [0.8,0.2]. In Figure 2, we compare
the performance of optimal policies obtained by
Mepol [5], aMepol [4] (o = 0.2), and HMe-
pol within 500 epochs. We show the advantage
of HMepol in both the weighted average over
the class and the performance in single environ-
ments. We can notice that a policy learned with
HMepol outperforms the one learned by aMepol
in Gridworld with a northwards slope (red ar-
rows), which is rarely visited. The introduction
of non-Markovianity allows reaching better per-
formance in the worst case using the average en-
tropy objective and not a specific risk-averse ob-
jective like in aMepol.

6.2. GridWorld with Corridor

To highlight the benefits of the identification of
the environment within a class, we created an-
other set of GridWorlds. A graphical represen-
tation of the domain is presented in Figure 3,
and the action space is the same as in the pre-
viously seen environment. We consider two con-
figurations sampled with equal probability, both
with a wind that modifies the agent’s actions ev-
erywhere except in the bottom-left room. One
configuration has clockwise wind and the other
one has counterclockwise wind. The hardness of
this environment can be controlled by modify-
ing the strength of the wind. Up to a certain
value of wind, the agent can enter the corridor
also with a headwind, allowing it to explore the
corridor in one direction without a considerable
loss in performance. This is no longer true with

p el R

e R AT

PR Bt i |l R EEl B
[[

(a) GridWorld with Slope

Ii i |
ol -
—0.5 |- -

T T T
Mepol aMepol(a = 0.1) HMepol

oL S

(b) Entropy Results

Figure 2: Pre-training performance by aMepol
(v = 0.2), and HMepol in the GridWorld with
Slope domain (a). In (b), on the left bar the
average performance and on the right the per-
formance in the rare configuration (northwards
slope). For every plot, we provide 95% c.i. over
8 rums.

Figure 3: A visual representation of GridWorld
with Corridor environment. The shaded area
represents the initial position of the agent.

stronger winds, which stop the agent from enter-
ing the corridor in the wrong direction. In Fig-
ure 4a and Figure 4b, we visualize ten trajecto-
ries generated using the policy learned by Mepol
and by HMepol. We can see that a Markovian
policy, once the wrong entrance is picked, will
move around that same entrance. Instead, a
non-Markovian policy can identify the environ-
ment from what happens at that entrance. In
case of a mistake, it can correct itself and move
towards the other entrance. In particular, we re-
peated the training process with different wind
forces and in Figure 5a we can see how a Marko-
vian policy can perform quite well up to certain
wind strength, while a non-Markovian policy can
reach consistent entropy results. In Figure 5b
and Figure 5¢) we show also results obtained
by fine-tuning with the TRPO algorithm |[7]
the policies pre-trained with Mepol and HMe-

pol with stronger wind force (0.4). We can see
how the advantage in entropy results in a faster
fine-tuning process, in the counterclockwise con-
figuration this difference is more evident, with
HMepol reaching in less than 10 epochs the same
average return reached by Mepol in 50 epochs.

Clockwise Counterclockwise
6 6
‘ e s nna,
. o 28
|
) 24 o
M
?
o s v
.
L] .
o
% H
oo, . .
) o)
e il
oo © 3 .°
R N) o e
b
(a) Mepol
Clockwise Counterclockwise
¢ oA A et § *| wnsemman menes o
-
A i
o ! . :
> 0 > 0 .
t :]
L] =
L4]
A e, ,4 &_ ‘ g
open . PR -, -
Foreoase, e et w—ger g oo
R P N
(b) HMepol

Figure 4: Sample of 10 trajectories over both
configurations of GridWorld with Corridor us-
ing Mepol (a) and HMepol (b), on the left with
clockwise wind and on the right with counter-
clockwise wind.

6.3. Multi Grid

To provide evidence of the ability of HMepol to
scale to larger classes of environments we em-
ployed the setting used in [4], which is called
MultiGrid. We consider a class of ten different
GridWorld configurations sampled with equal
probability. We compare the performance ob-
tained by aMepol [4] (o = 0.1) and HMepol
within 500 epochs. In Figure 6, we have on the
left bar the average entropy, on the right bar
the entropy in the worst configuration. We can
see that also with an increased number of envi-
ronments HMepol can reach better average per-
formance, but also a higher entropy in the worst
case (first configuration). To further understand
the advantages of our architecture, we provide
in Figure 7a and 7b heatmaps of the state dis-
tribution obtained by running 100 trajectories
with policies learned by aMepol and HMepol.
We can notice how the non-Markovian policies
reach a better coverage of the state space.

0.05 0.15 0.25 0.4
Wind Force

(a) Different Wind forces

Mepol - - = HMepol Mepol - - = HMepol

,,,,,,,

0 0
0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch

(b) clockwise (¢) counterclockwise

Figure 5: Average entropy (a), on the clock-
wise configuration (left bars) and on the counter-
clockwise configuration (right bars), with 95%
c.i. over 8 runs. We also provide average returns
obtained by fine-tuning the trained policies us-
ing TRPO [7] with 5 random goal locations for
both clockwise (b) and counterclockwise (c) con-
figurations.

7. Conclusions

In this thesis, we proposed HMepol, a policy-
search algorithm for unsupervised pre-training
in multiple environments. We explained the mo-
tivations that led our attention towards non-
Markovian policies. Then, we showed the ad-
vantage of the proposed algorithm over state-of-
the-art algorithms. We have also suggested the
ability of the algorithm to scale to large classes
of environments. We now propose some direc-

aMepol HMepol

Figure 6: Average entropy obtained with policies
trained with aMepol and HMepol, considering
the uniform distribution over the configurations
(left bar) and on the first configuration (right
bar). We provide 95% c.i. over 8 runs.

el

L2,
H

Y Y

a) aMepol

HE AR
4 =G

(b) HMepol

Xﬂx
Y
XHX
Y

Figure 7: Heatmaps of log probability of state visitation for all configurations in MultiGrid induced
by a policy learned using aMepol (a) and HMepol (b).

tions for possible future research. HMepol, as
it is proposed in the thesis, is unable to han-
dle vision-based domains. In the field of unsu-
pervised pre-training for reinforcement learning,
some work [4] uses compact state representa-
tion resulting from randomly initialized convo-
lutional encoders. One possible approach would
be to introduce the recursive history encoder af-
ter these convolutional encoders, but alternative
architectures might be considered as well. An-
other direction consists in finding a more effi-
cient and effective architecture to represent a
non-Markovian policy. The current architecture
is composed of two neural networks, which are
quite small in comparison with other deep mod-
els. At the same time, scaling to high dimen-
sional environments may require increasing the
dimension of the history vector, which should
be big enough to keep all the required informa-
tion about the past. One possible architectural
change that can be done to the current policy
is to combine the two networks into one single
network with two outputs, the action and the
history vector. Other interesting architectures
may also use recurrent neural networks with
Long Short-Term Memory (LSTM) [2], which
can control what to remember, and can better
learn long-term dependencies. The use of more
complex architectures may also lead to overall
better results, at the cost of additional computa-
tional resources and computational complexity.
Finally, we believe that this work motivates the
study of non-Markovian architectures for unsu-
pervised reinforcement learning and that it rep-
resents a further step towards the development
of artificial general intelligence.

References

[1] Elad Hazan, Sham Kakade, Karan Singh,
and Abby Van Soest. Provably efficient
maximum entropy exploration. In Inter-

national Conference on Machine Learning,
pages 2681-2691. PMLR, 2019.

[2] Sepp Hochreiter and Jiirgen Schmidhuber.
Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

[3] Mirco Mutti, Riccardo De Santi, and Mar-
cello Restelli. The importance of non-
markovianity in maximum state entropy ex-
ploration. arXiv preprint arXiv:2202.03060,
2022.

[4] Mirco Mutti, Mattia Mancassola, and Mar-
cello Restelli. Unsupervised reinforcement
learning in multiple environments. In Pro-
ceedings of the AAAI Conference on Artifi-
cial Intelligence, 2022.

[5] Mirco Mutti, Lorenzo Pratissoli, and Mar-
cello Restelli. Task-agnostic exploration via
policy gradient of a non-parametric state en-
tropy estimate. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol-
ume 35, pages 9028-9036, 2021.

[6] Simone Parisi, Victoria Dean, Deepak
Pathak, and Abhinav Gupta. Interesting ob-
ject, curious agent: Learning task-agnostic
exploration. Advances in Neural Information
Processing Systems, 34, 2021.

[7] John Schulman, Sergey Levine, Pieter
Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In Interna-
tional conference on machine learning, pages
1889-1897. PMLR, 2015.

	Introduction
	Notation
	State of the Art
	Maximum State Entropy Methods
	 Unsupervised Pre-Training in Multiple Environments

	Motivations
	An Architecture to Represent Non-Markovian Policies
	Experimental Results
	GridWorld with Slope
	GridWorld with Corridor
	Multi Grid

	Conclusions

