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Abstract

The population of Resident Space Objects is increasing exponentially, especially in the
lower Earth orbits. These host various kinds of debris, which continuously pose a major
problem for the orbiting satellites, on the one hand risking to disable a mission and on
the other potentially causing chains of events able to generate further objects. In this
regard, fragmentation events (eg. collisions, explosive break-ups, wearing of materials. . . )
represent a criticality, currently being the dominant source of space debris. The aim of
the following research is to improve an existing tool able to characterize a fragmentation
event. Its epoch is the expected result of the implemented routine. This would allow
to plan further observations and soon predict the debris proliferation. To achieve this,
the analysed event is treated as a collision between the primary object (parent) and the
resulting fragment. This analogy allows to compute the Probability of Collision (PoC)
between the two objects. The result is analysed as a series of values in time, and when the
maximum value is identified, the corresponding Time of Closest Approach is stored as a
possible fragmentation epoch. Another typical Conjunction Analysis (CA) criterion, the
Mahalanobis distance, is then applied to determine a single estimated epoch as the output.
In this routine, the use of Gaussian Mixture Models (GMM) is exploited as a method of
uncertainty propagation. The result of this addition with respect to existent methods
of CA is expected to be a more robust computation of the PoC. GMM allow in fact to
better capture the non-linearities of the propagation model, which usually appear after
many orbital periods and are hardly well represented if the initial uncertainty is assumed
Gaussian. To test the application of the method as well as to validate the use of GMM,
a test case is conducted for an anti-satellite test involving the breakup of Cosmos 1408,
happened in November 2021. The result of the work is a new metric of characterization of
these critical events, with a big advantage: it requires solely a single orbital state among
all produced fragments and one ephemeris of the primary object.
Keywords: Space Debris, Conjunction Analysis, Fragmentations, Collision Probability,
Gaussian Mixture
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Abstract in lingua italiana

La popolazione degli oggetti residenti nello spazio sta aumentando in modo esponenziale,
specialmente nelle orbite terrestri più basse. Queste ospitano vari tipi di detriti, che cos-
tituiscono costantemente un problema significativo per i satelliti in orbita. Da un lato
c’è il rischio di compromettere una missione, mentre dall’altro l’eventualità di causare
catene di eventi capaci di generare ulteriori oggetti. A questo proposito, gli eventi di
frammentazione (che includono collisioni, rotture esplosive, usura dei materiali...) rap-
presentano una criticità, essendo attualmente la fonte dominante di detriti spaziali. Lo
scopo della seguente ricerca è migliorare un tool esistente in grado di caratterizzare un
evento di frammentazione. La stima dell’epoca di tale evento è il risultato atteso della
routine implementata. Ciò consentirebbe di pianificare ulteriori osservazioni e prevedere
presto la proliferazione dei detriti. A tale scopo, l’evento analizzato è trattato come una
collisione tra l’oggetto originario (genitore) e il frammento risultante. Questa analogia
consente di calcolare la PoC tra i due oggetti. Il risultato è analizzato come una serie
di valori nel tempo, e quando viene identificato il massimo, l’istante di minimo avvic-
inamento corrispondente viene registrato come possibile epoca di frammentazione. Un
altro criterio tipico della CA, la distanza di Mahalanobis, è poi applicato per determinare
una singola stima dell’epoca in output. In questa routine le GMM sono impiegate come
metodo di propagazione dell’incertezza. Il risultato di questa aggiunta, rispetto a metodi
già esistenti nella CA, sarebbe un calcolo più robusto della PoC. Le GMM consentono
infatti di catturare meglio le non-linearità del modello di propagazione, che generalmente
si manifestano dopo molti periodi orbitali e sono difficili da rappresentare in maniera
adeguata se l’incertezza iniziale viene assunta come Gaussiana. Per eseguire la simu-
lazione del metodo e per validare l’applicazione delle GMM, viene condotto un test case
su un test anti-satellite che ha coinvolto la frammentazione di Cosmos 1408, avvenuta
nel novembre 2021. Il risultato del lavoro è una nuova metrica per caratterizzare questi
eventi critici, con un grande vantaggio: richiede esclusivamente un singolo stato orbitale
tra tutti i frammenti prodotti e una effemeride dell’oggetto originario.
Parole chiave: Detriti Spaziali, Analisi di Congiunzione, Frammentazioni, Probabilità
di Collisione, Gaussian Mixture





v

Ringraziamenti

Sono fortemente grata al mio relatore, il Professore Marco Felice Montaruli, per avermi
pazientemente aiutato con i suoi consigli e supportata durante lo svolgimento della tesi,
con umanità e professionalità. Ringrazio calorosamente anche il mio correlatore, il Pro-
fessor Pierluigi Di Lizia, per avermi dato l’opportunità di svolgere questa tesi, per essere
sempre stato disponibile e per avermi saputo entusiasmare alla ricerca.
Desidero ringraziare chi più di tutti mi è stato accanto: la mia famiglia qui a Milano,
mamma Teresa, papà Michele e il fratell(in)o Nic. Mi avete spronato nei momenti di dif-
ficoltà, avete provveduto al mio stare bene quando io ero troppo impegnata nello studio
matto di questi anni, ma soprattutto avete sopportato il mio carattere bello ma tremendo
volendomi sempre bene. Grazie a tutto il lato pugliese della famiglia: grazie ai Nonni,
agli Zii, a mia cugina che è come una sorella per me, e anche a chi purtroppo non c’è più.
Ho portato nel cuore ognuno di voi durante questi anni.
Ringrazio poi il gruppo di amici che mi hanno accompagnato e motivato in questo viaggio,
e davvero lo hanno reso incredibile: il gruppone Biblioteam. Ricorderò le giornate passate
insieme a studiare accampati in Bovisa, le lezioni online, tra Covid e mascherine, ma
sempre in compagnia. Siete troppi per essere ringraziati singolarmente, ma non sarebbe
stato lo stesso senza di voi, e desidero davvero che questi rapporti rimangano negli anni
avvenire. Grazie ad Annaky, Fabrizio, Lerp e Richi, siete voi con cui ho stretto subito
amicizia. Grazie ai meccanici, sicuramente più sani di noi aerospaziali, Fabri, Umberto e
Elisabetta, Luca. Grazie anche a tutti gli altri per le gite tra gli scorpioni, le camminate
in montagna, gli episodi di Attack on Titan in compagnia. Grazie agli Enceladiani, siete
stato il team perfetto. Vorrei poi salutare tutte le persone che ho conosciuto grazie a
PoliSpace. Entrare a far parte dell’associazione mi ha aperto opportunità di crescita e di
viaggi incredibili, di sfide pratiche con cui confrontarmi. Vi auguro il meglio per il futuro,
e per il lancio tanto atteso del Cubesat. Alatis Grave Nihil !
Ringrazio tutti gli amici storici di Milano, per l’affetto dimostrato durante questi anni.
Ringrazio le mie sorelle non letterali, Alice, Beatrice e Francesca. Vi voglio bene. Ringrazio
Silvia, sei stata sempre di supporto, anche a distanza. Ringrazio gli altri bimbi di Albina
e per le vacanze passate insieme: Fra e Jack con le sue pazze giornate in campagna.



Ringrazio il gruppo ritrovato dei compagni delle elementari, e ringrazio tutti gli amici di
famiglia, tra cui Giulia, Federica, Lilli e Francesca.
Ringrazio, infine, Luca. Sono grata di averti conosciuto proprio durante questo percorso.
Grazie a te per l’amore, per avermi sempre supportato, per le esperienze fatte insieme e
che ci hanno fatto crescere. Anche a te congratulazioni, ti auguro sempre le cose più belle.

Paola (o Pleng, splEng., Sbronz e tanti altri)



vii

Contents

Abstract i

Abstract in lingua italiana iii

Ringraziamenti v

Contents vii

Acronyms 1

List of Figures 3

List of Tables 5

List of Symbols 7

1 Introduction 11
1.1 Near-Earth Debris Environment . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 SST and Catalog Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Fragmentation events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Scope and structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 15

2 Fundamentals 17
2.1 Propagation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Unscented Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 NASA Standard Breakup Model . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Conjunction Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 PoC computation methods . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 PoC dilution problem . . . . . . . . . . . . . . . . . . . . . . . . . . 25



2.5 FRED algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Algorithm implementation 29
3.1 Parent covariance association . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 GMMs generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Fragmentation epoch estimation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Candidate TCAs computation . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Final TCA selection . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Reliability criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Fragment-parent association . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Test case and Results 43
4.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Data set generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Fragmentation event simulation . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Fragments detection . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Other input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 GMM test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Unperturbed scenario, no IOD error . . . . . . . . . . . . . . . . . . 53
4.4.2 Perturbed scenario, no IOD error . . . . . . . . . . . . . . . . . . . 55
4.4.3 Unperturbed scenario, nominal OD error . . . . . . . . . . . . . . . 57
4.4.4 Perturbed scenario, nominal OD error . . . . . . . . . . . . . . . . 61
4.4.5 Comparison with FRED results . . . . . . . . . . . . . . . . . . . . 66

4.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.1 OD epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 Measurements noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Parent mean state perturbation . . . . . . . . . . . . . . . . . . . . 73
4.5.4 Mismatching on B∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusions and future developments 81

Bibliography 85

A Appendix A 91



1

Acronyms
ASAT Anti-Satellite.

CA Conjunction Analysis.
CAM Collision Avoidance Maneuvers.

ECI Earth-Centered Inertial.
ET Ephemeris Time.

FRED FRagmentation Epoch Detector.

GME Gaussian Mixture Element.
GMM Gaussian Mixture Models.

HBR Hard-Body Radius.

IOD Initial Orbit Determination.

LEO Low Earth Orbit.

MOID Minimum Orbital Intersection Distance.

OD Orbit Determination.

PDF Probability Density Function.
PoC Probability of Collision.

RAAN Right Ascension of the Ascending Node.
ROD Refined Orbit Determination.
RSO Resident Space Object.

SBM Standard Breakup Model.
SGP4 Simplified General Perturbations model 4.
SST Space Surveillance and Tracking.

T2O Track-to-Orbit.
T2T Track-to-Track.



2 | Contents

TCA Time of Closest Approach.
TEME True Equator Mean Equinox.
TLE Two-Line Element.
TOF Time of Flight.

UP Uncertainty Propagation.
UT Unscented Transform.
UTC Coordinate Universal Time.



3

List of Figures

1.1 Evolution of Space debris over time in all orbits. . . . . . . . . . . . . . . . 12
1.2 Catalogue maintenance: correlation and OD flow. . . . . . . . . . . . . . . 13

2.1 Primary and secondary objects in the encounter frame. . . . . . . . . . . . 21
2.2 Integration domains during short-term encounter. . . . . . . . . . . . . . . 22
2.3 Dilution curve and dilution region. . . . . . . . . . . . . . . . . . . . . . . 25
2.4 FRED flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Routine flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 First block of the routine flow chart. . . . . . . . . . . . . . . . . . . . . . 32
3.3 Second block of the routine flow chart. . . . . . . . . . . . . . . . . . . . . 36
3.4 GMM positional ellipsoids for parent and fragment during an encounter. . 39

4.1 Gabbard diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Parent and fragments orbits representation. . . . . . . . . . . . . . . . . . 46
4.3 Comparison of covariance matrices of the parent object. . . . . . . . . . . . 49
4.4 Comparison of covariance matrices of the parent object after propagation. . 50
4.5 GMEs covariance matrices for one of the fragments. . . . . . . . . . . . . . 51
4.6 Cumulative time error in the unperturbed scenario with no OD error. . . . 54
4.7 Fragment-parent association (unperturbed scenario with no OD error). . . 55
4.8 Cumulative time error in the perturbed scenario with no OD error. . . . . 56
4.9 Fragment-parent association (perturbed scenario with no OD error). . . . . 57
4.10 Cumulative time error in the unperturbed scenario with OD error. . . . . . 59
4.11 Keplerian elements difference (unperturbed scenario with OD error). . . . . 60
4.12 Fragment-parent association (unperturbed scenario with OD error). . . . . 62
4.13 Cumulative time error in the perturbed scenario with OD error. . . . . . . 63
4.14 Keplerian elements difference (perturbed scenario with OD error). . . . . . 64
4.15 Fragment-parent association (perturbed scenario with OD error). . . . . . 66
4.16 Sensitivity analysis on OD epoch: cumulative time error. . . . . . . . . . . 68
4.17 Sensitivity analysis on OD epoch: fragment-parent association. . . . . . . . 69
4.18 Sensitivity analysis on measurement noise: cumulative time error. . . . . . 71



4 | List of Figures

4.19 Sensitivity analysis on measurement noise: fragment-parent association. . . 72
4.20 Keplerian elements difference (perturbed parent state). . . . . . . . . . . . 76
4.21 Fragment-parent association for non null B∗. . . . . . . . . . . . . . . . . . 78
4.22 Fragment-parent association for B∗ mismatching. . . . . . . . . . . . . . . 79



5

List of Tables

4.1 Cosmos 1408 Keplerian elements at ttle. . . . . . . . . . . . . . . . . . . . . 44
4.2 Cosmos 1408 Keplerian elements at 02:47 UTC on November 15th. . . . . 44
4.3 Cosmos 1408 TLE epoch and corresponding state vector. . . . . . . . . . . 44
4.4 Results for the unperturbed scenario with no OD error. . . . . . . . . . . . 53
4.5 Results of the reliability alert for the unperturbed scenario with no OD error. 53
4.6 Time error percentiles in the unperturbed scenario with no OD error. . . . 54
4.7 Results for the perturbed scenario with no OD error. . . . . . . . . . . . . 56
4.8 Results of the reliability alert for the perturbed scenario with no OD error. 56
4.9 Time error percentiles in the perturbed scenario with no OD error. . . . . 57
4.10 Results for the unperturbed scenario with OD error. . . . . . . . . . . . . . 58
4.11 Time error percentiles in the unperturbed scenario with OD error. . . . . . 58
4.12 Results of the reliability alert for the unperturbed scenario with OD error. 61
4.13 Results for the perturbed scenario with OD error. . . . . . . . . . . . . . . 62
4.14 Time error percentiles in the perturbed scenario with OD error. . . . . . . 63
4.15 Results of the reliability alert for the perturbed scenario with OD error. . . 65
4.16 Comparison with FRED: unperturbed scenario with no IOD error. . . . . . 66
4.17 Comparison with FRED: perturbed scenario with no IOD error. . . . . . . 66
4.18 Comparison with FRED: perturbed scenario with IOD error. . . . . . . . . 67
4.19 Sensitivity analysis on the OD epoch (perturbed scenario with OD error) . 68
4.20 Sensitivity analysis on the IOD epoch with FRED. . . . . . . . . . . . . . 70
4.21 Sensitivity analysis on measurements noise (perturbed scenario). . . . . . . 70
4.22 Sensitivity analysis on the IOD noise with FRED. . . . . . . . . . . . . . . 72
4.23 Results of parent perturbation (unperturbed scenario with no OD error). . 74
4.24 Results of parent perturbation (perturbed scenario with OD error). . . . . 75
4.25 Results for the perturbed scenario with OD error and non null B∗. . . . . . 77
4.26 Reliability alert results (perturbed scenario with OD error and non null B∗). 77
4.27 Results for the perturbed scenario with OD error and B∗ mismatching. . . 78
4.28 Reliability alert results (B∗ mismatching). . . . . . . . . . . . . . . . . . . 79





7

List of Symbols

Variable Description Unit measure

B∗ Drag coefficient km−1

Nf Number of elements in the fragment GMM /

Ni Generic number of elements in the GMM /

Norb Number of periodicities in the analysis window

Np Number of elements in the parent GMM /

P Covariance matrix km2, (km/s)2

P Subscript related to primary object in a collision /

PC Combined covariance matrix km2, (km/s)2

P c Collision probability /

P c
prod Collision probabilities product in time /

P c
ratio Collision probabilities logarithmic ratio /

P c
tot Cumulative collision probability in time /

P c
1 Highest collision probability /

P c
2 Second highest collision probability /

Pi i-th covariance matrix of the GMM km2, (km/s)2

P p
old Parent covariance matrix (according to [1]) km2, (km/s)2

P p Parent covariance matrix (according to [2]) km2, (km/s)2

S Subscript related to secondary object in a colli-
sion

/

T Orbital period s

V Integration volume km3

W Unscented Transform weights /

Y Propagated sigma point km, km/s

a Semi-major axis km

ap Perturbing acceleration km/s2



8 | List of Symbols

Variable Description Unit measure

dM Mahalanobis distance /

e Eccentricity /
f Superscript related to fragment object /

g Subscript related to Gaussian /

i Index referring to the periodicity in the analysis
window

/

i Inclination deg

if Index referring to the fragment GMM elements /
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1| Introduction

1.1. Near-Earth Debris Environment

The ongoing rise in the number of Resident Space Objects (RSOs) in orbit is a significant
concern in the advancement of space services, particularly within the Low Earth envi-
ronment. The Kessler effect [3] is inevitably already in action, causing a chain reaction
and increase in frequency of future collisions, as the number of debris has reached a sort
of "tipping point". In particular, these debris may be defined as manmade objects and
their fragments launched into space, inactive nowadays and not serving any useful pur-
pose [4]. According to ESA 2023 most recent report on the Space Environment [5], the
objects which can be traced back to a launch event and identifiable in nature can thus be
classified:

• Payloads (PL)

• Payload mission related objects (PM)

• Payload fragmentation debris (PF)

• Payload debris (PD)

• Rocket bodies (RB)

• Rocket mission related objects (RM)

• Rocket fragmentation debris (RF)

• Rocket debris (RD)

.
The rest of the objects, which are unidentifiable in origin and nature, is identified as
UI (UnIdentified). Hence, the exponential growth of the population is clearly visible in
Figure 1.1:
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Figure 1.1: Evolution of Space debris over time in all orbits. The two jumps in the
population correspond to the two major fragmentation events that have occurred [6].

Image source: [5].

The latest data regarding the amount of orbiting non functioning objects are provided by
ESA Space Debris Office. About 15,880 satellites have been placed into Earth orbit in
more than 60 years of activities, causing now the presence of 36,500 debris with dimensions
over 10 cm, 1,000,000 debris with dimensions between 1 cm and 10 cm and 130 million
debris with smaller dimensions [7].
It is clear that this population poses a threat to both future and current missions. The
impact with a functioning satellite may end its operational life or parts of it, causing
scientific and economic damage to any mission, and on the other hand can generate
additional fragments (triggering the chain effect). The latter consequence is particularly
critical: fragmentation events are in fact currently the dominant source of space debris
[5].

1.2. SST and Catalog Maintenance

To address the challenges described in Section 1.1, different activities are carried out
with the aim of cataloguing and characterizing part of the orbiting RSOs, monitoring
the fragmentation events, and applying countermeasures to the problem. At European
level, one of the greatest contribution in terms of technology is provided by ESA Space
Surveillance and Tracking (SST) segment, comprising a network of systems aimed to
detect, catalogue and predict the orbits of these objects. The core activity of an SST
system is the build up and maintenance of a data catalog which contains information on all
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detected objects [8]. This inventory is updated through the observation data acquired by
the sensors and processed by the "processing pipeline" of SST itself [9]. Once the catalog is
produced and can be maintained, the segment is able to provide further applications: from
the automatic assessment of potential collisions between tracked objects and consequent
warning to the operators, to risk assessment of uncontrolled re-entry of man-made space
objects and detection and characterisation of in-orbit fragmentations.
The Space-Track database, provided by the United States Space Force Space Domain
Awareness unit, is publicly available. It contains around 25,000 objects currently around
the Earth [10], whose orbits are available in Two-Line Element (TLE) format. These are
particularly accessible and in fact constitute one of the main inputs for the routine tested
in the aforementioned research work.
As previously stated, fragmentation events constitute the greatest contribution to space
pollution and are therefore expected to increase the complexity of catalogs build-up and
maintenance activities. Normally the steps involved in the construction of the catalog
and its maintenance can be summarized by the chain of blocks represented in Figure 1.2.

Figure 1.2: Catalogue maintenance: correlation and OD flow. Image source: [11].

Initially the sensor network provides the measurements of the observed objects. These
are then processed in different ways, according to whether or not the orbit shall be deter-
mined and included for the first time in the catalog.
In the presence of a fragmentation event, the problem of early cataloging of generated
objects shall be solved in order to limit cascade events potentially originated from a
first break-up. Indeed, with accurate and quickly available estimated trajectories, Colli-
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sion Avoidance Maneuvers (CAM) can be promptly planned. In [10] a cataloguing chain
involving Track-to-Orbit (T2O) and Track-to-Track (T2T) approaches is proposed. In
particular, the first is able to correlate a track (that is an ensemble of observations of a
fragment) to an already catalogued orbit, subsequently updating its orbit through an Or-
bit Determination (OD) process. T2T allows instead to add to the catalog the tracks that
have not been correlated to any existing fragment, by grouping those assumed originated
by a common object [10]. Other approaches aimed at optimizing the catalogue mainte-
nance process exploit alternative metrics: [12] demonstrates the use of a control-effort
based distance metric to both correlate observed objects with catalogued ones and to de-
tect and characterize planned maneuver, in presence of boundary conditions uncertainty.
More established approaches, such as the one exploited in the Italian SST Operation Cen-
tre (ISOC) and reported in [11], leverage a statistical index based on the Mahalanobis
Distance for the correlation process, and either batch or sequential filters for the orbit
refinement.

1.3. Fragmentation events

As documented so far, it is clear that the timely monitoring of a on-orbit break-up as
well as fast and accurate procedures to forecast the trajectories of resultant objects are of
paramount importance. However, accomplishing this entails prior characterization of the
event, to identify where and when the generated fragments propagate from the primary
object.
Fragmentation events include generally explosions and collisions. In the first case, the
object from which the fragments originate is defined as the parent, whereas in the second
case the most massive body involved in the collision is called “target”, while the smallest
"projectile” [13]. The most common wording labels the objects involved in a collision as
primary and a secondary.
The detection of both epoch and location of a fragmentation event has been previously
investigated in the context of this research topic, as it allows operationally to predict the
evolution of fragments clouds. In [14] the event epoch is identified through a backward
propagation of each fragment of the analysed cloud. At each time step the distance be-
tween the propagated state and the centre of mass of the cloud is computed, and the event
is detected where this distance reaches a minimum. In [15] the breakup time is identi-
fied within an approach to correlate known fragments with possible parent objects. To
achieve this, five distance metrics are applied (D-Criterias, Minimum Orbital Intersection
Distance (MOID) and nodal distance) and investigated in terms of accuracy of the pro-
duced results. Despite the ease and effectiveness of this method, numerous ephemerides
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of various fragments are assumed to be known and associable with an already catalogued
parent object. This facilitates the epoch estimation, but it represents a less frequently
applicable assumption in a realistic operational scenario. The assumption of availability
of many TLEs is leveraged in [16] as well, where the tool PUZZLE is described. The latter
estimates the epoch of a fragmentation event, both in the short and long-term scenarios,
through a first pruning and filtering of non-relevant TLEs, and a subsequent analysis of
the orbital elements of the remaining ones. Indeed, close to the breakup event, the gen-
erated fragments present similarities in some of the Keplerian elements. As stated above,
the availability of accurate and numerous orbital states of fragments originated from the
event is a “quite optimistic assumption” [17]. Instead, in the context of this work, it is
assumed that the estimation of fragmentation epoch is required shortly after the event
is alerted, when a small number of debris ephemerides (or a single one) is known. This
fundamental premise comes from the FRagmentation Epoch Detector (FRED) algorithm,
representing the starting point for the implementation of a new routine. FRED also aims
to detect the epoch of a fragmentation event, starting from one ephemeris of the parent
object and a single orbital state of a generated fragment. In particular, the approach
is stochastic: different distance metrics are investigated to compare the statistical dis-
tributions of MOID and relative distances between parent and fragment. Fragmentation
epoch candidates are first identified and then ranked according to the statistical distance
between the two distributions. The best fragmentation epoch is finally returned in terms
of mean value and standard deviation [17].

1.4. Scope and structure of the thesis

As mentioned, a prompt cataloging of the observed fragments is necessary to prevent fu-
ture consecutive break-ups or minimize them. However, the detection of a fragment and
the determination of its orbital state may be improved through additional information
regarding its origin, specifically its location and epoch. This data is crucial for predicting
its dispersion and ensuring precise orbit maintenance in the catalog. It allows for the
planning of appropriate further observations aimed at preventing potential future colli-
sions. A comprehensive characterization of the event also entails the ability to associate
the observed fragments with a parent object.
Therefore this work aims to address the following research questions:

• Can Conjunction Analysis (CA) techniques be leveraged for the accurate detection
of a fragmentation event epoch?

• Can CA techniques provide criteria to associate a detected object with the primary
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one?

• Can the approach implemented in FRED be enhanced with alternative metrics, such
as Probability of Collision (PoC), for the characterization of fragmentation events?

The last question arises seeing that the following research is conducted starting from the
work carried out in [17].
The work conducted to address the previous questions is described in the following chap-
ters. In particular, Chapter 2 provides an overview of fundamental concepts and tech-
niques of astrodynamics, such as orbital state propagation and uncertainties. Moreover,
a comprehensive review of fragmentation analysis, encompassing mathematical models of
the break-up scenarios and PoC computation methods, is included. Finally, a section is
devoted to the research conducted in [17], briefly describing the approach developed in
FRED and mentioning potential modifications proposed in this thesis. Chapter 3 provides
a step-by-step and detailed description of the routine implementation. It includes the def-
inition of the required inputs and it outlines codes used for estimating the fragmentation
epoch and associating the fragment with the parent object. In Chapter 4, the results of
numerical simulations conducted on the test case are discussed. The routine performance
are critically analysed and compared to FRED case. Conclusions and potential future
developments of this work are finally depicted in Chapter 5.
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Some of the most significant mathematical tools exploited in this work are summarized in
this chapter. In Section 2.1 the models for orbital state propagation applied in the con-
ducted simulations are briefly described. In Section 2.2, the employed statistical represen-
tation and Uncertainty Propagation (UP), based on Gaussian Mixture Models (GMM),
is presented. Section 2.3 is dedicated to a brief mention of the model used for simulating
the break-up and deriving of the fragments cloud data. In Section 2.4, an overview of
the current theory and methods for collision risk assessment in the short-term scenario
are described, together with the problems related to the PoC evaluation. Finally, 2.5 de-
scribes briefly FRED routine and mentions the modified aspects in the newly developed
algorithm.
The standard reference frame used in this work is the Earth-Centered Inertial (ECI) frame.
Except for the computation of the PoC, where state and covariance are converted to the
encounter frame, or if specified otherwise, position and velocities are always reported in
ECI. The leveraged time reference systems are the J2000 Ephemeris Time (ET) ([18]) and
the Coordinate Universal Time (UTC).

2.1. Propagation models

There exist several models for propagating the orbital state, and below are briefly sum-
marized those applied in the developed routine.
The first and simplest approach involves solving the two-body problem (Equation 2.1),
resulting in what is referred to as Keplerian model.

r̈ = −µ
r

|r|3
(2.1)

In absence of perturbations, the orbital elements between different time instants on the
orbit remain constant, except for the true anomaly. Knowing the conversion between
anomalies and mean motion solved with Kepler’s equation, the individual anomalies can
be simply updated and then position and velocity vectors as well. This approach does
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not involve a numerical propagation, hence it results to be the most efficient one among
the different models. However it is also the less complete and realistic, due to strong
perturbations present in the Near-Earth environment which are neglected.
When additional accelerations besides that of the primary body are involved, the problem
is modified as follows:

r̈ = −µ
r

|r|3
+ ap (2.2)

with ap including any perturbations to be considered.
One of the most common analytical models, that is also applied in this thesis, is the
Simplified General Perturbations model 4 (SGP4). It accounts for different perturbations
(secular and periodic variations due to Earth oblateness, luni-solar gravitational effects,
gravitational resonance effects, orbital decay due to drag [17]), still retaining the compu-
tational speed of an analytic method. However, SGP4-based propagators include the use
of True Equator Mean Equinox (TEME) reference frame, and the conversion from ECI
to TEME, implemented in this work through a fixed-point iteration process, limits its
accuracy.

2.2. Uncertainty Propagation

The prevailing approach to depict orbital uncertainty involves approximating the initial
distribution through a Gaussian representation. Subsequently, linearized model based
on the use of the State Transition Matrix can be employed to advance the mean and
covariance of the initial state over time. However, this method can introduce substantial
inaccuracies when predicting uncertain orbits over extended durations and high levels
of dynamical non-linearity. In response to these issues, the most basic methods rely on
Monte Carlo propagations. These however demand large computational effort, becoming
prohibitive in the case of high-dimensional problems.

2.2.1. Unscented Transform

The Unscented Transform (UT) method ([19]) solves the issues described above, combin-
ing nonlinear functions for propagation with acceptable computational costs. It exploits
a set of samples, called sigma points χ, generated as:

χ0 = x

χi = x+∆xi for i = 1, ..., N
with


∆xi = (

√
cPx)i for i = 1, ..., N

∆xi+N = −(
√
cPx)i for i = 1, ..., N
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The vector x corresponds to the mean state of the initial Gaussian distribution to prop-
agate in time, while Px represents its covariance matrix (in position and velocity). The
sigma points are then propagated through a nonlinear dynamics function (obtaining Y i),
and the sample mean and covariance are computed. Generally, a weighted approach can
be applied:

ŷ =
2N∑
i=0

W
(m)
i Y i Py =

2N∑
i=0

W
(c)
i (Y i − ŷ)(Y i − ŷ)T

where N = 6 and the weights are generated through a set of parameters with standard
values α = 1e− 3, β = 2, k = 0 and c = α2(N + k):

W
(m)
0 = 1− N

α2(N + k)

W
(m)
i =

1

2α2(N + k)
for i = 1, ..., 2N


W

(c)
0 = (2− α2 + β)− N

α2(N + k)

W
(c)
i =

1

2α2(N + k)
for i = 1, ..., 2N

2.2.2. Gaussian Mixture Models

The UP approach applied in this thesis is comprised of the GMM, which represent a
valuable compromise between the Gaussian approximation and the computational demand
of Monte Carlo techniques. Its underlying concept is to approximate any Probability
Density Function (PDF) through a weighted sum of N Gaussian PDFs with smaller
covariances:

p(x) ≈
N∑
i=1

αipg(x;µi,Pi)
N∑
i=1

αi = 1

Therefore, an initial Gaussian distribution can be discretized as well with a number of
smaller Gaussians [20].
The weight, means and covariance matrices of the i-th element are derived through avail-
able univariate splitting libraries, applied to the multivariate distribution related to the
orbital state. Specifically, the splitting is performed along a single direction, which is usu-
ally chosen as the direction of largest nonlinearity or highest uncertainty. Once generated,
each element of the GMM can be propagated through one of the existing UP methods.
For instance, in this work the splitting is applied on the initial Gaussian distribution and
the UT is then employed on each Gaussian sub-component to propagate mean states and
covariance matrices to a desired set of epochs.
As previously mentioned, splitting the initial distribution into a GMM results in a de-
creased covariance size for each newly created element. This reduction of the approxima-
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tion domain enables to capture the shape of the final non-Gaussian distribution far more
precisely than with the propagation of the initial Gaussian ([21]). Given these benefits,
this approach is explored and employed in the implementation.

2.3. NASA Standard Breakup Model

The novel routine implemented in this work requires in input a data set of simulated
fragments, including specifically their mean state and covariance. For this reason, the
first step involves modelling the fragmentation event and generating a certain number of
objects from which fictitious measurements are derived. The NASA Standard Breakup
Model (SBM) [22] has been developed over the years based on data acquired from orbital
explosion and collision events, with the aim of predicting essential information about the
distribution of generated debris. Specifically, it enables the determination of their quan-
tity, size, area-to-mass ratio, and ejection velocity.
For the purpose of this work, the SBM allows to compute the orbital states of the frag-
ments derived from the parent object involved in the tested scenario. The position vector
of each debris is exactly the same as the parent one at the epoch of the event. Instead,
the fragment velocity vector is obtained by adding a set of impulses to the parent ve-
locities, depending on the type of event (collision or explosion) and the ejection velocity
distribution.

rf = rp

vf = vp +∆vSBM

at tevent (2.3)

Additionally, the SBM is applied in the thesis to derive the number of fragments produced
by the simulated event, as well as the size or characteristic length of each fragment.

2.4. Conjunction Analysis

As mentioned in Chapter 1, CA refers to the assessment of possible in-orbit collisions
between any object. When two objects are dangerously close to each other, quantities
such as miss-distance and collision probability shall be computed. If the distance value
falls below a certain threshold, or the PoC is sufficiently high, the collision risk cannot
be neglected. If this is the case then a series of operations (such as CAMs) can be
performed in a timely manner. The computation of the PoC is usually performed at the
Time of Closest Approach (TCA), corresponding to the epoch of closest approach distance
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between primary and secondary object in the encounter reference frame. The latter can
be centered in the primary object. It has the positive z axis along the relative velocity
vector, the positive x axis pointing to the secondary object and belonging to the B-plane,
and the y axis completing the right-handed system. The combined Hard-Body Radius
(HBR) is obtained by summing the respective hard-body radii of the two space objects,
assumed in this context as spherical. This radius also corresponds to the radius of the
combined sphere, which can be centered on the secondary object (Figure 2.1).

P

S

B-plane

HBR

Figure 2.1: Primary and secondary objects in the encounter frame.

Conjunctions events are commonly classified in two categories: long-term and short-term
encounters. The short-term encounters involve high relative velocities in the order of
several kilometers per second, with elapsed time in the encounter region being "a fraction
of a second or at most a few seconds" [23]. From this premise, a series of assumptions
arise and simplify the calculation:

• The relative motion between two objects is uniform and rectilinear;

• The velocity uncertainty of the two objects can be neglected because assumed too
small compared to the relative velocity;
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• The uncertainties on the position are assumed Gaussian, non-correlated for the two
objects and constant during the encounter.

Finally, assumptions of perfectly spherical shapes of the RSOs and single collision during
the encounter are also included, to further simplify the computation.
When the relative velocity between the involved objects is not sufficiently high, and the
previous assumptions are not valid, methods designed for the long-term encounters shall
be applied. These are typically more complex and less used in the context of LEO regime,
where satellites orbit at high speed. Therefore in this thesis as well the former assumptions
are considered valid and only short-encounter PoC methods are summarized and leveraged
in the implementation.

2.4.1. PoC computation methods

Various methods exist in the current literature for the short-term computation of the PoC.
Those investigated in this thesis and implemented in the routine are briefly described
below. All are based on the assumptions described in Section 2.4, which allow to simplify
the computation. The basic concept is common to all methods: if the primary RSO with
its uncertainty ellipsoid passes within the combined sphere, then there is a collision whose
PoC is defined as the probability of this to occur ([23]). To compute this probability
over the encounter period, the integral of the combined PDF shall be performed over the
integration volume, which in the case of short-term assumptions is a tube produced by
the motion of the sphere encountering the joint covariance ellipsoid ([23]) centered on the
primary RSO (Figure 2.2a).

S

P

(a) 3D integration domain

P

(b) 2D integration domain

Figure 2.2: Integration domains during short-term encounters.
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This results in the following triple integral:

P c =

∫∫∫
V

pg(xTCA;µrel,PC) dV

with the PDF assumed constant in time. The PDF is here taken at TCA, µrel = µS −µP

denotes the mean relative position between the two objects and PC = PP + PS is the
combined covariance matrix of the relative position, retrieved as a simple sum of the two
covariance matrices owing to the assumptions of non-correlated position uncertainties.
A further simplification is made in the all described approaches: the integration tube is
assumed infinite. As shown in Figure 2.2b, this allows to reduce the integration domain
to the disk projection of the combined sphere onto the encounter plane and having radius
equal to the HBR. The collision probability can be thus written as a 2D integral along
the relative velocity direction (following the notation in [24]):

P c =
1

2π
√

det(P e
xy)

∫
A

exp
(
−1

2
(r− µe

xy)
T (P e

xy)
−1(r− µe

xy)

)
dr

where the covariance matrix P e
xy can be written as:

P e
xy =

[
(σe

x)
2 ρexyσ

e
xσ

e
y

ρexyσ
e
xσ

e
y (σe

y)
2

]

with σe
x > 0 and σe

y > 0 standard deviations of the relative positions along îe and ĵe and
ρexy ∈ (−1, 1) the correlation coefficient ([25]). The integration subscript A refers to the
area of the circle projected on the encounter plane, µe

xy = (xe
s, 0) corresponds to the first

coordinate of the relative position vector and r is the integration variable representing
the rectilinear relative motion. Furthermore, the cross term of the Gaussian function
can be discarded with a rotation from the encounter frame to the principal axes of the
covariance matrix, achieving (xe, ye) → (xu, yu). This transformation is such that the new
coordinates (xu, yu) are along the major and minor axis and their standard deviations
(σu

x , σu
y ), if squared, correspond to the maximum and minimum eigenvalues of P e

xy. This
transformation (better detailed in [26]) reduces the PoC computation to this final integral:

P c =
1

2πσu
xσ

u
y

∫
A

exp
(
−1

2

(
(xu − xe

s)
2

(σu
x)

2
+

(yu − yes)
2

(σu
y )

2

))
dx dy

At this point, the evaluation of the 2D integral branches out into several approaches.
Chan’s approach in [27] is based on an analytical formula. To compute the PoC, the
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integral of an isotropic bivariate Gaussian PDF (σx = σy) in the encounter plane is con-
sidered ([23]). The integration domain is still a circle centered in the encounter plane
origin. To reduce the integral to a single variable, the Rician formulation is used to-
gether with a Bessel function included in the integrand. Hence, an expression of infinite
series is found for the analytical formulation of the PoC. It is highlighted in literature
that Chan’s method is highly computationally efficient, however the isotropic approxima-
tion may introduce numerical truncation errors in some cases. In [28] Serra reports an
analytic formulation similar to Chan’s, though derived with no simplifying assumption.
The formula has the shape of a "convergent power series whose coefficients verify a lin-
ear recurrence" ([28]). It is retrieved leveraging Laplace transform and the properties of
D-finite functions. The numerical simulations performed by the authors demonstrate the
high accuracy and speed of this approach. Garcìa Pelayo’s approach ([29]) is based on
an analytical expansion involving Hermite polynomials, through which the PDF integral,
resulting in the PoC value, can be computed. Lastly, Bai’s analytical method ([30]) can
be mentioned; it employs the integral of the PDF, converted from anisotropic to isotropic,
within an ellipsoid approximated then to a circular region. Once simplified, the integral
is expressed through an infinite series. For this reason Bai’s method appears quite similar
to Chan’s one; however, from test simulations conducted in [23], Bai’s formulation results
to be more efficient and accurate.
Regarding numerical methods, Alfano’s one has been specifically implemented following
the formulation in [31] for this thesis, and validated through the test cases in [32]. This
method should be more computationally efficient than other existent numerical methods,
however less fast of course than the analytical formulations. To compute the 2D integral,
Alfano derived a series including error functions and exponential. This then breaks down
into m-even and m-odd components and finally the PoC is computed through them using
the Simpson’s one third rule. An expression to determine the order m of the series allow-
ing to obtain the best accuracy on P c is also reported in [32]. Foster and Estes derived a
collision probability model (in [33]) exploiting polar coordinates in the encounter plane.
It "exhibits good performance" (according to [23]), however the efficiency of this method
depends on the step size adopted for the polar variables. In [34], Patera proposes a method
which is still numerical, however able to reduce the computational time. It exploits a loop
integral of the symmetric PDF along an ellipse (derived through a conversion from the
combined circle). Patera’s method, besides being significantly faster than other numerical
approaches, is also applicable to RSOs which are not assumed spherical.
In Appendix A, are reported exclusively the algorithms of those approaches which can be
applied in the routine, namely Chan’s, Alfano’s and Serra’s (also called LAAS method).
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2.4.2. PoC dilution problem

It is deemed important to briefly address an aspect that should not be overlooked in
the context of collision probability calculation following the orbital propagation of uncer-
tainties. This problem, referred to as PoC dilution and investigated by Alfano in [35],
may arise when the positional uncertainty is very high. In this case the use of Gaussian
probability-based computations yields a very low PoC value, which might lead to a missed
alert of possible conjunction. The effects of dilution are clearly illustrated in Figure 2.3.

Figure 2.3: Dilution curve and dilution region. Image source: [36]
.

Figure 2.3 reports the impact of position covariance variations on the PoC value, proving
a typical relationship between collision probability and covariance size for fixed miss dis-
tance and constant combined HBR. The boundary of the dilution region is defined by the
scaled, combined covariance that yields the maximum probability. On the left side of this
boundary reduced positional uncertainty leads to a decreased collision probability. On
the right side of the boundary, increased positional uncertainty also results in a decreased
collision probability. Indeed, a substantial uncertainty implies limited confidence in the
predicted miss distance, resulting in a low probability. This can be misleading, suggesting
that satellite safety improves as data quality deteriorates.
Despite prior research efforts, including uncertainty scaling factors and Maximum Prob-
ability formulations [35], this thesis still employs the conventional computation methods
above reported. However, an attempt has been made to mitigate the dilution problem
by using low initial covariances, leveraging refined determination algorithms to prevent
uncertainty explosion due to propagation over time.
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2.5. FRED algorithm

This research is partly motivated by the need to assess if the performance of FRED
algorithm ([17]) can be anyway improved, by applying new evaluation metrics originating
from CA techniques, to determine the epoch of a fragmentation event. FRED algorithm
deals with the problem of epoch identification dropping the assumptions that an ensemble
of orbital states is available for the fragments cloud. Instead, only one is available in input,
together with the parent state in the form of a single TLE. This approach was chosen
to simulate an operational scenario where the observation is requested shortly after the
event alert, implying that a low number of fragments ephemerides is accessible. Indeed,
prompt identification of the event epoch allows to schedule new measurements to better
predict the fragments cloud evolution, monitor the debris proliferation they may cause,
and possibly refine the fragmentation characterization.
An important aspect of FRED method is the application of a stochastic approach. In a
very concise manner, the tool obtains possible fragmentation epochs, from the numerous
samples generated, and then it ranks them according to their statistical similarity between
the relative distance distribution and the MOID distribution. To keep the writing concise,
the approach is not explained in details here, but the algorithm flowchart is provided in
Figure 2.4. For sake of clarity, T p is the parent orbital period, used to sample the analysis
window and obtain the ti starting epochs of each periodicity. The j-th samples are
generated from the single fragment state through a multivariate normal distribution.
As explained in the next chapter, the initial part of the routine implemented for this work
draws inspiration from the MOID transit computation performed in FRED. In a very
similar way, a set of candidates epochs is thus retrieved. However, the Monte Carlo with
samples generation is replaced by a statistical representation based on GMM for both the
parent object and the fragment. Furthermore, the metric applied to rank the candidate
epochs in FRED is replaced with the use of collision probability. The latter is exploited
to serve as a criterion for converging to an estimated epoch.
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Figure 2.4: FRED flowchart. Source: [17]
.
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In the following sections, the components of the flow that makes up the implemented
routine are described in detail. For an overview, refer to Figure 3.1. Briefly, the described
approach consists of the following series of steps. A set of candidate fragmentation epochs
is obtained by computing the epochs of the parent passage through the MOID, for all com-
binations of the mean states elements of parent and fragment distributions retrieved by the
application of GMM. These epochs are considered candidate TCAs and are then refined.
Hence, the collision probability criterion is introduced to identify the periodicity at which
the fragmentation is most likely to have occurred. Finally, an additional metric (Maha-
lanobis Distance) is used to identify the combination of parent and fragment elements
that are statistically closest. This is done to ultimately determine a single estimated frag-
mentation epoch corresponding to the periodicity and parent-fragment elements selected
by the statistical criteria.

Candidate TCAs
computation Final TCA selection

Refined MOID
computation

Conjunction
Analysis 

1 estimated
epoch

Fragment-parent
association

Possible
alert

1 parent TLE and
associated covariance

1 fragment OD mean
state and covariance

Figure 3.1: Routine flow chart.

Section 3.1 describes a preliminary step to the routine aimed at generating a covariance
matrix for the parent object. Section 3.2 illustrates the splitting approach applied for
the GMM generation. Section 3.3.1 and Section 3.3.2 describe in detail the algorithm,
respectively its first and second portion. In Section 3.4 the reliability criteria aimed to
produce an alert on the correctness of the solution is reported. Finally in Section 3.5 the
analysis intended to verify the association of the fragment object to the event is presented.

3.1. Parent covariance association

Crucial inputs of the algorithm are the mean states of the parent and the fragment ob-
jects, with their associated Gaussian covariance matrices. For the fragment, the data set
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generation (Section 4.2) is leveraged, through simulated observations and subsequent OD
processes. However, for the parent object, it is necessary to associate somehow a covari-
ance matrix, that represents the uncertainty of the state obtained from the available TLE
(which is a deterministic information). To do so, the method of covariance association
proposed in [1] was first investigated, however discarded due to its inadequacy, which
showed up in the result of the UP through GMM. In [1], the TLE accuracy is assessed
through the generation of pseudo-observations, a subsequent OD algorithm and the final
statistical computation of residuals between the states derived from the TLE data and
the pseudo-states. The standard deviations of these residuals are the estimated TLE un-
certainties, then inserted into look-up tables. The problem for which this approach was
discarded is that the estimation of uncertainties is proposed and validated solely for the
three position components (in different reference frames). Regarding the velocity compo-
nents, a different approach could imply the use of a fictitious and diagonal sub-covariance,
however this was discovered to be not realistic and accurate. This is evident from the
misleading representation of the GMM after propagation over time, obtained by the test
case on the TLE of object Cosmos 1408 and reported in Section 4.3.
To solve the issue, a different approach for the whole covariance association was sought
and subsequently found in [2]. A covariance matrix and an auto-correlation function are
both obtained by the author exploiting solely a set of publicly available TLEs in a time
span of two weeks maximum. The approach to estimate the covariance matrix Ptle at the
epoch ttle is here summarized:

1. The epoch of interest ttle is referred to as primary epoch.

2. Ntle secondary TLEs are downloaded from Space-Track website [37], up to an arbi-
trary number of days before ttle epoch (within two weeks before).

3. Each of the secondary TLEs states is propagated forward in time (with SGP4) up
to ttle.

4. For each secondary TLE, the residual at ttle is computed (x denotes the state vector
of position and velocity):

δx = x′′ − x′

between secondary (x′′) and primary (x′) states.

5. The mean of the obtained Ntle residuals is computed, and here called µδx.

6. The covariance is generated through the sample covariance definition:

Ptle =

∑Ntle

i=1 (δxi − µδx)(δxi − µδx)
T

Ntle
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In the case of this work a number of Ntle = 5 was downloaded and used.
The approach just described was applied to the parent state extrapolated from the input
TLE of the specific test case. The numeric result of the covariance generation is reported
in Section 4.3, and the corresponding GMM distribution is represented after propagation
in time (Figure 4.4b), showing the benefits of the new shape of the parent covariance
matrix.

3.2. GMMs generation

The uncertainty representation and propagation through GMM is used in this work due
to the benefits described in Section 2.2.2.
Specifically, the splitting direction along which the univariate library is applied is derived
in the following way:

1. The covariance matrix belonging to the distribution to split is made dimensionless,
first in position and then in velocity, by dividing its elements by the trace of the
positional and velocity diagonals, respectively.

2. The eigenvalues of the dimensionless covariance matrix are computed.

3. The highest of the eigenvalues is identified, and with it the corresponding eigenvector
of the initial covariance matrix.

4. The derived eigenvector represents the selected splitting direction, therefore it be-
comes the input to the splitting library.

In practice, this translates to exploiting the direction of maximum uncertainty. In addi-
tion, the adimensionalization enables equal consideration of the uncertainties related to
the position and to the velocity components, when selecting the splitting direction.
The steps reported above for the splitting process are applied on both parent and fragment
Gaussian distributions at initial epoch. Thus, the obtained mean states and covariance
matrices are propagated over time exploiting the UT, due to its accuracy in capturing
non-linearities, besides the computational simplicity and speed.

3.3. Fragmentation epoch estimation

3.3.1. Candidate TCAs computation

The first block in the algorithm (Figure 3.2) computes a set of candidate epochs of possible
encounters for each element ip of the parent mixture ({xp

ip
,P p

ip
}) and for each element if
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of the fragment mixture ({xf
if
,P f

if
}).

Candidate TCAs
computation Final TCA selection

Refined MOID
computation

Conjunction
Analysis 

1 estimated
epoch

1 parent TLE and
associated covariance

1 fragment OD mean
state and covariance

Figure 3.2: Routine flow chart. First block highlighted.

The applied approach is very similar to what is done in FRED, with the difference being
that Monte Carlo samples are replaced by the Np elements from the parent mixture and Nf

elements from the fragment mixture, resulting in Np×Nf candidate fragmentation epochs
as output. Specifically, these are obtained as the epoch of passage through the MOID
location for the parent, whose ephemeris is deemed to be more reliable than the fragment
state, output of an OD process. This epoch is obtained through an analytical computation
of the MOID and is subsequently refined through the iterative process presented in [17].
The ephemeris of the original RSO involved in the fragmentation is referred to as xp and
is dated to ttle, epoch of the last TLE available before the event. The covariance matrix
of the parent P p is also dated to ttle and associated to xp according to the procedure
described in Section 3.1. The event is considered to have occurred at t0 > ttle and the
related alert has been notified at ta > t0. Some hours later, a fragment is detected by a
surveillance radar at tod > t0 and its mean orbital state xf and covariance matrix P f are
computed from an OD process [17].
The first portion of the routine is reported in Algorithm 3.1 and is structured as follows:

1. The time window [ttle, ta] is sampled with frequency 1/Tp, where Tp is the parent
orbital period computed from the input TLE. This results in Norb number of epochs
ti, each related to the i-th periodicity.

2. In order to include the state uncertainty in the event epoch identification, Np Gaus-
sian Mixture Elements (GMEs) and Nf GMEs are generated through the split-
ting approach described in Section 3.2. In particular, the state vectors xp

ip
with

ip = 1, ..., Np and xf
if

with if = 1, ..., Nf are produced.

3. A nested loop is started for each parent GME and fragment GME.

4. The states of parent and fragment elements are propagated to each ti.



3| Algorithm implementation 33

5. For each ti, the MOID distance and the epochs of transit through the MOID of
both parent element ip and fragment element if are computed analytically, accord-
ing to [38] and leveraging the Kepler’s equation. The results are indicated as tpip,if
and tfip,if . The parent ip and the fragment if state vectors are propagated up to
tpip,if and tfip,if respectively, resulting in the orbital states xp

ip
(tpip,if ) and xf

if
(tfip,if ),

and the analytical computations of tpip,if and tfip,if are updated. Both epochs are
iteratively modified in this manner until, between two consecutive steps, they do
not change anymore (according to a tolerance set equal to 1e − 03 s) ([17]). It is
important to specify that this iterative cycle is performed to include the perturba-
tions that are instead not considered in Gronchi’s formulation ([38]), which relies
on a purely analytical model. By propagating at each iteration the GMEs mean
states up to the passage epochs through the MOID, and updating then again its
value through Gronchi’s approach, the perturbations of the model (if any) are in-
cluded. The iterative process results in Norb ×Np ×Nf couples of

(
tpip,if , t

f
ip,if

)
and(

xp
ip
(tpip,if ),x

f
if
(tfip,if )

)
.

6. The fragment if state vector xf
if

(tfip,if ) is propagated up to the epoch of transit of
the parent element ip through the MOID, resulting in xf

if
(tpip,if ). This is selected

instead of the time of the fragment element if transiting through the MOID due to
the higher reliability associated to the parent ephemeris.

7. To exclude unfeasible solutions, the Norb ×Np ×Nf couples enter a filtering phase,
applied on the epoch of parent element ip transiting through the MOID (tpip,if ). The
first filter requires that the couples with combinations (ip, if ) for which tpip,if is not
included in the boundaries of the time window [ttle, ta] are eliminated. With the
second filter, for each ti, the couples with combinations (ip, if ) for which tpip,if <

(ti − Tp/2) or tpip,if > (ti + Tp/2) are filtered out. In this way, the passage epochs
that, despite being calculated at the i-th periodicity, fall beyond ti plus or minus
a semi-period, are eliminated. The last filter is based on a Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) ([39]), applied to eliminate couples
with combinations (ip, if ) which are considered outliers (setting the maximum time
deviation to 5 minutes).

8. If tpip,if related to all combinations (ip, if ) is not compliant for all Norb periodicities,
the fragment under analysis must be discarded. Therefore, it is accepted that in
some scenarios not all fragments obtained from the data set and analysed return a
result, as they are deleted after the application of the filters.

For the analysed fragment, if not discarded, the epochs of parent element ip transiting



34 3| Algorithm implementation

through the MOID (tpip,if ) are then refined, exploiting the orthogonality between the
relative position and the relative velocity. Specifically, the candidate TCAs are computed
as the epochs where the scalar product between position and velocity is null, through
an optimization function and applying the Keplerian model. The sequence of steps to
compute the TCA between the state vectors of two generic primary and secondary objects
(x1 and x2) given a first guess TCA0 is the following:

1. The orbital elements of the primary object are computed from x1.

2. The orbital elements of the secondary object are computed from x2.

3. An iterative loop is started.

4. The orbital elements of both primary and secondary objects are analytically prop-
agated, from TCA0 to TCA0 + 10s.

5. The Cartesian position and velocity vectors are determined at TCA0 +10s for both
objects (obtaining (r1,v1), (r2,v2)).

6. The relative position (rrel = r2 − r1) and velocity (vrel = v2 − v1) are computed.

7. Equation 3.1 is solved in time through an optimization algorithm.

rrel(t) · vrel(t) = 0 (3.1)

8. The loop is continued until a maximum number of 1000 iterations is not reached.

9. The last epoch determined by the loop is considered close enough to the real TCA
between the two objects.

In the particular case of the developed algorithm, the inputs to this refinement process
are the TCA first guess (tpip,if ) and the orbital states of each parent and fragment GME at
that epoch (xp

ip
(tpip,if ) and xf

if
(tpip,if )). This allows to obtain in output accurate candidate

TCA epochs, in number Norb×Np×Nf (one for each periodicity and for each combination
parent-fragment GME). At this point each parent and fragment GME ({xp

ip
,P p

ip
} and

{xf
if
,P f

if
}) is propagated through an UT function to the refined TCAs, which represent

the fragmentation candidate epochs.

3.3.2. Final TCA selection

The second block of the routine (Figure 3.3) aims to finally detect the fragmentation event
epoch, given the parent-fragment couple under analysis. The inputs are obtained from
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the first portion of the algorithm and are thus processed using typical metrics of CA and
collision risk assessment.

Algorithm 3.1 Candidate TCAs computation

Inputs: xp, xf , P p, P f , [ttle, ta], tod Np, Nf

1: twindow = [ttle, ta] with step Tp → count Norb

2: Generate Np GMEs for the parent and Nf GME for the parent → obtain xp
ip

and xf
if

3: for ip = 1 : Np do
4: Propagate xp

ip
to each ti

5: for if = 1 : Nf do
6: Propagate backward xf

if
to each ti

7: for i = 1 : Norb do
8: Compute MOID between xp

ip
and xf

if

9: Compute Time of Flight (TOF) to the MOID location through Kepler’s equation
10: Compute first guess for tpip,if and tfip,if
11: Set first guess for the states at xp

ip
(ti) and xf

if
(ti)

12: while tpip,if (k) - tpip,if (k − 1) > 1e− 3 or tfip,if (k) - tfip,if (k − 1) > 1e− 3 and k < 10 do
13: k = k + 1

14: Propagate current xp
ip
(ti) to parent current TOF to MOID

15: Propagate current xf
if
(ti) to fragment current TOF to MOID

16: Compute MOID between propagated states
17: Update TOF to the MOID location through Kepler’s equation
18: Update tpip,if and tfip,if
19: end while
20: Obtain final tpip,if and tfip,if
21: Compute final xp

ip
(tpip,if ) and xf

if
(tpip,if )

22: end for
23: end for
24: end for
25: Apply filters on tpip,if
26: if ∀ i = 1 : Norb && (∀ ip = 1 : Np && ∀ if = 1 : Nf ) → tpip,if = NaN then
27: Discard current fragment for the simulation
28: else
29: for ip = 1 : Np do
30: for if = 1 : Nf do
31: for i = 1 : Norb do
32: With tpip,if , xp

ip
(tpip,if ), x

f
if

(tpip,if ) → refine epochs
33: end for
34: Obtain Norb TCAip,if

35: Propagate {xp
ip
,P p

ip
} to each TCAip,if with UT

36: Propagate backward {xf
if
,P f

if
} to each TCAip,if with UT

37: end for
38: end for
39: end if
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Candidate TCAs
computation Final TCA selection

Refined MOID
computation

Conjunction
Analysis 

1 estimated
epoch

1 parent TLE and
associated covariance

1 fragment OD mean
state and covariance

Figure 3.3: Routine flow chart. Second block highlighted.

Specifically, the event under analysis is treated as a conjunction between a primary object
(the parent) and a secondary object (the fragment). This allows to assess the collision
probability values at the periodicities in the analysis window, and determine where it is
highest, providing an initial insight into the time interval where the encounter is most
likely to have occurred. It is important to note that the MOID is a purely geometric
parameter and depends on the orbits of the two objects. Being time independent, it does
not provide information on the actual relative positions of the objects. Therefore, the CA
allows to verify at which of the MOID passage epochs the encounter may truly occur.
The inputs required for this portion of the algorithm are the refined candidate TCA epochs
at all periodicities and for all combination of GMM elements (Norb ×Np ×Nf TCAip,if ).
The mean states and covariance matrices of parent and fragment GMEs at these epochs
are also required ({xp

ip
(TCAip,if ),P

p
ip
(TCAip,if )}, {xf

if
(TCAip,if ),P

f
if
(TCAip,if )}). This

second portion of the routine is reported in Algorithm 3.2 and is structured as follows:

1. A nested loop is started for each parent GME and fragment GME.

2. For each ti, the PoC between the current parent and fragment GMEs is computed,
through one of the approaches reported in Section 2.4.1, selected by the user. If
not, Chan’s method is applied by default. The inputs entering the PoC computation
algorithm are the distributions {xp

ip
(TCAip,if ),P

p
ip
(TCAip,if )}, {x

f
if
(TCAip,if ),

P f
if
(TCAip,if )} at the corresponding candidate TCA epochs. The covariance ma-

trices are actually required solely in their positional components, as short-term
approaches, which consider the velocity as a deterministic quantity, are employed.
The HBR of the combined sphere is also required. The sphere radius can be selected
for the parent object as its radar cross section, for instance, if this information is
available. While, for the fragment, the sphere radius can be either derived from the
characteristic length provided by the assumed break-up model, or assumed. Never-
theless, it is important to notice that, in the case of a fragmentation event analysis,
any value employed for the HBR lacks of a physical meaning. Indeed, the combined
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radius includes the contribute of the parent object dimensions, which however at
fragmentation epoch does not exist physically. On the other hand this "paradox"
does not occur in a classic collision risk assessment, in which both primary and
secondary objects are still intact and the sum of their spherical dimensions truly
provides the physical HBR. A possible follow-up of the work could be the redefinition
of the short-term PoC to circumvent this issue.

3. For a certain combination (ip, if ), Norb collision probabilities are obtained (P c
ip,if

(
TCAip,if

)
).

An intuitive approach to locate a potential encounter in time is used: the period-
icity and, consequently, the corresponding TCA at which the computed probability
is maximum are selected.

4. Overall, Np × Nf TCAip,if are hence obtained, retaining only those "selected"
through the maximum PoC criteria.

5. Only the couples mean-covariance corresponding to the selected TCAip,if are from
now on considered.

6. To ultimately determine a single epoch at which the event is estimated to have oc-
curred, a second statistical distance metric is applied. For each combination (ip, if )
the Mahalanobis distance is computed between the current parent and fragment
GMEs as in Equation 3.2, where the matrices P refer only here to the positional
sub-covariance.

dM
(
TCAip,if

)
=

[(
rf
if
(TCAip,if )− rp

ip
(TCAip,if )

)]T
[P p

ip
(TCAip,if ) + ...

P f
if
(TCAip,if )]

−1
[(

rf
if
(TCAip,if )− rp

ip
(TCAip,if )

)]
(3.2)

7. Of all Np × Nf combinations of dM
(
TCAip,if

)
, the minimum value is identified.

The corresponding ĩp and ĩf indexes are selected, and the related epoch TCAĩp ,̃if
is

considered the final estimate t̃0. Essentially, this is equivalent to obtain a solution
of the event epoch which corresponds to the closest distributions from the two
mixtures, in terms of position (Figure 3.4).

8. The time error of the estimated solution compared to the "ground-truth", that is,
the actual fragmentation epoch (if known), is finally computed as:

ε = |t0 − t̃0| (3.3)
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where the epochs are usually expressed in ET and in seconds.

Algorithm 3.2 Final TCA selection

Inputs: TCAip,if , x
p
ip
(TCAip,if ), x

f
if
(TCAip,if ), P

p
ip
(TCAip,if ), P

f
if
(TCAip,if ), HBR

1: for ip = 1 : Np do
2: for if = 1 : Nf do
3: for i = 1 : Norb do
4: Compute P c at i-th TCAip,if (Chan, Serra or Alfano)
5: end for
6: Along the Norb P

c
ip,if

(
TCAip,if

)
→ find maximum and corresponding index imax

7: Save TCAip,if (imax)

8: Save xp
ip
(TCAip,if (imax)), xf

if
(TCAip,if (imax))

9: Save P p
ip
(TCAip,if (imax)), P f

if
(TCAip,if (imax))

10: Compute Mahalanobis Distance dM
(
TCAip,if (imax)

)
11: end for
12: end for
13: Along the Np×Nf values of dM

(
TCAip,if

)
→ find minimum and select corresponding

combination
(̃
ip, ĩf

)
14: Obtain final t̃0 = TCA(ĩp ,̃if)
15: Compute error ε

3.4. Reliability criterion

As this routine is intended to assist the potential operations following a fragmentation
event, a reliability criterion on the estimation has been sought. This allows the routine to
provide "alerts" whenever these criteria are not met during any fragment analysis. Thus,
the operator could assess whether to request additional observations of the fragment to
determine its state more accurately or to focus on searching another object generated by
the event for the analysis.
Drawing inspiration from the approach in [12], the criterion of "peak contrast" is applied.
In the reference paper this measure serves to determine whether the maneuver detected
by the presence of a maximum PoC value has indeed occurred. Similarly, the criterion of
maximum PoC applied in this thesis is considered reliable if the "peak" of the collision
probability selected as the highest is also distinct from the probabilities computed at other
periodicities. In [12], the peak contrast is defined as the logarithmic ratio of the highest
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Figure 3.4: Illustration of the GMM sub-Gaussians positional ellipsoids for parent and
fragment during an encounter. The Mahalanobis distance metric enables the selection of

the epoch associated to the closest elements.

values of encounter probability:

P c
ratio = log10

(
P c
1

P c
2

)
(3.4)

In the algorithm developed in the thesis, when the maximum PoC value (P c
1 ) is deter-

mined, the second highest (P c
2 ) is also saved. The two values are inserted into Equation

3.4, and if the resulting logarithm is less than a threshold, an alert is generated.
This criterion serves to assess whether, with parent element ip and fragment element if

fixed, there is a comparable collision probability at the refined TCAs in two different
periodicities. In this case, two situations can arise: the largest PoC is still found at the
periodicity where the event occurred, or, due to inaccuracies, the PoC value at a subse-
quent or preceding periodicity slightly prevails. In the first case, the alert is redundant
and serves as a precaution, because the solution converges to the correct periodicity for
that fragment. In the second case, the estimated epoch is wrong, however the operator is
aware that this may happen.
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3.5. Fragment-parent association

The second objective of the routine is to assess whether the observed fragment can be
associated to the parent object involved in the event. This addition has been included
to enable fragments that "fail" (ε > 60 s) to still be somehow linked to the event that
occurred, even though its epoch cannot be accurately determined.
To establish whether an uncatalogued RSO can be correlated with the satellite which
broke-up, a measure of cumulative collision probability is employed within the analyzed
time window. Specifically, if the probability of at least one encounter occurring within
the time span exceeds a certain threshold, then the association is considered positive,
regardless of the accuracy of the estimated fragmentation epoch. This measure of the
cumulative probability in time is referred to as P c

tot. To evaluate it, the following procedure
was developed:

1. The PoC of an encounter at a certain epoch (P c) is computed.

2. The probability that the encounter considered in step 1 does not occur is computed
as (1− P c).

3. By repeating point 2 for the all TCAs in the considered time span, and by evaluating
their product Π(1 − P c), the probability of no encounters happening within the
considered interval is retrieved. This will be referred to as Γ.

4. The probability that at least one encounter between the two objects occurs in the
entire span can be now evaluated as P c

tot = 1− Γ.

The first step in this sequence of computations involves acquiring a collision probability
value for each potential encounter, that is for each candidate refined TCA. To accomplish
this and to derive a single probability value for each encounter, Vittaldev’s formulation
is exploited ([20]):

P c =

Np∑
ip=1

Nf∑
if=1

αp
ip
αf
if

(
flin

(
xp
ip
(TCAip,if ),P

p
ip
(TCAip,if ),x

f
if
(TCAip,if ),P

f
if
(TCAip,if ),HBR

))

In order to evaluate an overall PoC when dealing with various elements of the GMM,
Vittaldev suggests a double summation over the probabilities computed using any of the
linear methods for short-term encounters (flin). Therefore, Vittaldev’s equation is applied
to derive the PoC required in point 1, since the possible combinations of probabilities at
the relevant TCAs are available. This results in Equation 3.5.
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P c =

Np∑
ip=1

Nf∑
if=1

αp
ip
αf
if

(
P c
ip,if

(
TCAip,if

))
(3.5)

The coefficient αp
ip

and αf
if

are the weights of the mixtures, derived from the univariate
splitting library (Section 3.2). The probability values at TCAs are those computed in
Algorithm 3.2. Once the measure of total probability of encounter occurrence (P c

tot) is
computed as previously explained, it is compared to a threshold. If P c

tot value falls below
the threshold, then the association of the fragment body to the primary object is not
positive. Otherwise it may be said that the observed object is a product of the parent
break-up. This additional analysis could operationally serve to identify the cloud of debris
originating from a specific fragmentation event, subsequently monitor them, predict their
future trajectories, and potentially catalog them.
The association procedure is thus included in the routine and its step are summarized in
Algorithm 3.3.

Algorithm 3.3 Fragment-parent association

Inputs: Norb ×Np ×Nf P c
ip,if

(
TCAip,if

)
1: Initialize Σp as 1×Norb empty array
2: for ip = 1 : Np do
3: Initialize Σf as 1×Norb empty array
4: for if = 1 : Nf do
5: Σf = Σf + αp

ip
αf
if
P c
ip,if

(
TCAip,if

)
6: end for
7: Σp = Σp + Σf

8: end for
9: Define P c = Σp (array containing Norb PoC values)

10: Compute (1− P c)i, ∀i = 1 : Norb

11: Compute Γ =
∏Norb

i=1 (1− P c)i

12: Compute P c
tot = 1− Γ

13: if P c
tot > 1e− 09 then

14: The fragment under analysis derives from the parent object
15: end if
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4| Test case and Results

This chapter is intended to showcase the outcomes obtained by applying the routine to
a test case. The objective is to evaluate its performance and robustness across different
propagation models and operational scenarios. All numerical simulations were run in
Matlab, together with functions from NASA SPICE Toolkit [40].
Section 4.1 describes the tested fragmentation event, concerning the Russian satellite
Cosmos 1408 break-up. Section 4.2 shows how the data set is generated, with focus on
the break-up simulation and the detection process. In Section 4.3, the application of the
GMM statistical representation is graphically investigated. Additionally, the association
of a covariance matrix for the parent object is justified. Section 4.4 evaluates the results
for the nominal scenarios. The results of non-nominal conditions are instead investigated
in Section 4.5, showing the level of robustness of the routine.
The conditions of the nominal tested scenarios and the sensitivity analyses, as well as the
structure in which the results are presented, are intentionally kept similar to what is done
in [17], to facilitate the comparison with FRED approach.

4.1. Test case description

A series of simulations have been conducted to test the tools described in Chapter 3, and
their results are here presented. The analyzed fragmentation scenario is a past event which
involved a kinetic Anti-Satellite (ASAT) test occurred around 02:47 UTC on November
15th, 2021 [41]. This event led to the destruction of a Russian satellite, named Cosmos
1408. Pardini and Anselmo assert in ([42]) that "as of June 20, 2022, the U.S. Space
Surveillance Network had catalogued 1764 objects, of which 806 [catalogued] still in orbit".
These numbers make this ASAT test the second worst recorded to date.
The orbital elements of Cosmos 1408, that is the parent object, are reported in Table 4.1.
The position and velocity state extrapolated from its TLE, input to the simulation, and
its corresponding epoch ttle, are reported in Table 4.3. The orbital elements of Cosmos
1408 are reported as well at the epoch of the event (Table 4.2). The analysis time window
ranges from ttle up an epoch close to the time when the alert of the event was provided,
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that is 06:00 UTC on November 15th.

a [km] e i [deg] Ω [deg] ω [deg]

6862.2 0.003 82.7 123.4 91.9

Table 4.1: Cosmos 1408 Keplerian elements at ttle.

a [km] e i [deg] Ω [deg] ω [deg]

6844.7 0.002 82.7 123.3 134.5

Table 4.2: Cosmos 1408 Keplerian elements at 02:47 UTC on November 15th
(propagation from ttle through SGP4).

ttle 2021-11-14 23:20:00.00 UTC

rp [km] -3812.229 5692.616 379.691

vp [km/s] -0.5645 -0.9086 7.5467

Table 4.3: Cosmos 1408 TLE epoch and corresponding state vector.

4.2. Data set generation

4.2.1. Fragmentation event simulation

Regarding the fragments data, these are first generated by applying the NASA SBM
(Section 2.3) to simulate the velocity impulses imparted to the debris. Then an approach
follows, which determines the state and covariance of each individual fragment (Section
4.2.2). The former step is summarized here:

1. The parent state vector xp = {rp,vp}T , dated at ttle, is propagated up to t0:
02:47:00.000 UTC on November 15th.

2. The fragmentation event is modelled as a set of impulses applied to the satellite
orbital state at t0, according to Equation 2.3 and to the velocity impulses retrieved
from the SBM.
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3. A set of 237 fragments is generated in such way. Their Gabbard diagram is reported
in Figure 4.1. A representation of their orbits with respect to the parent one is
reported in Figure 4.2.

4. At t0, the pericentre radius of each fragment is evaluated. Those having a pericentre
altitude lower than 120 km are discarded because expected to re-enter, and will not
be used in the routine testing.

Figure 4.1: Gabbard diagram of the simulated break-up event involving Cosmos 1408.

4.2.2. Fragments detection

The obtained ephemerides of the fragments are propagated until the epoch tod (obtaining
xf (tod)), when a surveillance radar detection is simulated, and the orbital states and co-
variance matrices ({xf ,P f}) are determined. Nominally, tod is set to 13 hours after the
fragmentation event, since this method aims at exploiting a single fragment observation
result, available few hours after the event. The approach to simulate the determination
process is different depending on the scenario analyzed, and it is described below.

Scenario with no OD error
In this case, a fixed covariance matrix (with standard deviations on position and velocity
of respectively 9.32e− 05 km and 1.38e− 06 km/s) is simply associated to all fragments.
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Figure 4.2: Representation of the orbits of parent object and generated fragments,
propagated through SGP4 for one period from epoch t0. Coordinates in ECI frame.

The matrix is derived through the same Initial Orbit Determination (IOD) and Refined
Orbit Determination (ROD) approaches detailed below, in paragraph Scenario with OD
error, setting in this case low values for the measurements noise. This approach results
in a small value of the covariance trace, and as a consequence, in positional and velocity
uncertainties which are compatible with an IOD process close to being ideal. The final
output is a different mean state xf for each fragment, and a constant covariance matrix
P f for all of them.

Scenario with OD error
In this case, the mentioned radar IOD process is simulated to determine a first guess on
state and covariance matrix of each fragment. These results are then refined through a
process of ROD. These functions process a set of measurements, perturbed to simulate
the presence of a realistic noise introduced by the sensor. A default noise on the range
measurement is fixed to 30 m, while the angular noise (equal for both azimuth and ele-
vation) is set to 0.01◦ in the nominal simulation. The covariance matrix related to the
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fictitious ground-station is hence defined:σ
2
az 0 0

0 σ2
el 0

0 0 σ2
ran

 =

0.01
2 0 0

0 0.012 0

0 0 302

 Standard deviations in [deg], [m]

The fragment mean state xf (tod) is propagated in the measurement time window [tod, tod+

30s]. The resulting propagated states are projected in the measurements space to derive
a set of simulated angular and range measurements. At this point, the measurements are
perturbed, generating random values according to the sensor accuracy covariance. First,
the IOD process is applied on them according to [43], and its result is refined through
the ROD function presented in [11]. The latter exploits an Unscented Kalman Filter or
a-priori least squares depending on the uncertainty covariance resulting from the IOD.
The final output is hence a unique couple mean state and uncertainty covariance for each
single fragment, both in position and velocity ({xf ,P f}).

4.2.3. Other input data

All remaining inputs to run the routine can be therefore defined: the analysis time window
ranges from ttle (2021-11-14 23:20:00.000 UTC) to ta (2021-11-15 06:00:00.000 UTC), the
number of GMEs for the parent and fragment objects is set to Np = 9 and Nf = 9

respectively, and tod epoch is set to t0 + 13h. The time window is about 6.7 hours long;
since the parent orbital period computed at ttle is equal to about 1.6 hours, Norb results
equal to 5. Furthermore, the combined HBR is computed as the sum of the parent HBR,
which results to be 2.5 m from its radar cross section [44], and of the fragment HBR, set
equal to the characteristic length derived from the SBM.
The values set in this work for the thresholds defined in the algorithm are reported as
follows. For a single fragment analysis, the result is considered successful if the error
in Equation 3.3 is below 60 s. The lower bound of P c

ratio, for the reliability criterion
described in Section 3.4, is set equal to 0.6 in the simulations. This value is chosen
arbitrarily, considering that "P c

ratio equal to zero leads to two peaks of the same height,
while a value P c

ratio = 1 represents an encounter probability which is ten times higher
than the second highest peak" [12]. Finally, the minimum threshold of P c

tot for a positive
fragment-parent association, described in Section 3.5, is set equal to 10−9.
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4.3. GMM test case

Before proceeding with the simulations of the various scenarios, the graphical results of
the GMM generation for both the parent object and one fragment are reported.
Firstly, as mentioned in Section 3.1, a potential shape for the covariance matrix associ-
ated to the parent object at epoch ttle has been investigated. The results of the tested
approaches are here reported: in Equation 4.1, the covariance obtained from the very
first investigated approach (later discarded) is labelled as P p

old, and in Equation 4.2, the
covariance obtained from the process inspired by [2], which was subsequently considered
more adequate, is named as P p. Indeed, in Section 3.1 it was mentioned that associating
a covariance matrix to the parent TLE according to a Flohrer based approach ([1]) for
the position and to an isotropic constant value for the velocity was found to be not com-
pletely correct, due to the shape of the initial covariance matrix (Equation 4.1) and the
corresponding graphical results.

P p
old =



0.0183 0.0070 −0.0217 0 0 0

0.0070 0.0170 −0.0344 0 0 0

−0.0217 −0.0344 0.3079 0 0 0

0 0 0 4e− 08 0 0

0 0 0 0 4e− 08 0

0 0 0 0 0 4e− 08


(4.1)

P p =



0.0170 0.0066 −0.1434 −8.75e− 05 1.33e− 04 −1.37e− 05

0.0066 0.0029 −0.0570 −3.47e− 05 5.30e− 05 −5.80e− 06

−0.1434 −0.0570 1.2134 7.40e− 04 −0.0011 1.17e− 04

−8.75e− 05 −3.47e− 05 7.40e− 04 4.52e− 07 −6.88e− 07 7.13e− 08

1.33e− 04 5.30e− 05 −0.0011 −6.88e− 07 1.05e− 06 −1.09e− 07

−1.37e− 05 −5.80e− 06 1.17e− 04 7.13e− 08 −1.09e− 07 1.16e− 08

 (4.2)

As can be noticed from the shape of P p
old (Equation 4.1), not only the velocity sub-matrix

is diagonal, but the positional and velocity uncertainties appear not correlated, due to
the extra-diagonal sub-matrices being null.
In Figure 4.3a 10, 000 position samples are illustrated. These are derived from the Np

GMEs distributions of the parent object at epoch ttle, generated via Monte Carlo from the
Gaussian covariance P p

old obtained through Flohrer approach. In Figure 4.4a, the samples
generated from the same GMEs and propagated through UT (with Keplerian model) are
reported (at ta).
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(a) Parent object GMEs at ttle, generated from P p
old.

(b) Parent object GMEs at ttle, generated from P p.

Figure 4.3: Comparison of different covariance matrices associated to the parent object
in terms of splitting approach. Positions in ECI frame.

The same graphs are reported for the GMEs obtained by splitting the covariance matrix
P p (see Equation 4.2, Figure 4.3b and Figure 4.4b) associated through the approach
described in Section 3.1. It is evident how the splitting direction (as derived in this thesis),
works better when applied to the covariance matrix obtained through this method. The
samples generated from the splitting applied to P p

old (Equation 4.1) do not closely follow
the Monte Carlo samples as well as when they derive from P p (Equation 4.2). The shape of
the covariance matrix has therefore significant implication on the statistical representation



50 4| Test case and Results

through GMM. Due to the better behaviour of the uncertainties represented in Figure 4.3b
and Figure 4.4b, P p is then used in the routine as the Gaussian covariance matrix of the
parent at ttle.

(a) Parent object GMEs at ta, generated from P p
old

(b) Parent object GMEs at ta, generated from P p

Figure 4.4: Comparison of different covariance matrices associated to the parent object
in terms of splitting approach, after propagation. Positions in ECI frame.

Regarding the GMM generation for the fragments, in Figure 4.5a, 10,000 samples obtained
from the positional covariances of the mixture elements of one of the 237 fragments are
depicted at OD epoch. The same data are illustrated in Figure 4.5b at epoch ttle, af-
ter a backward propagation in time through UT (with Keplerian model). The splitting
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approach applied to the distribution generated through the process reported in Scenario
with OD error (Section 4.2.2) works well for the fragment objects. At the end of the
propagation, the elements of the mixture indeed closely follow the slight "banana" shape
generated by the dynamics.

(a) One of the fragments GMEs at tod.

(b) One of the fragments GMEs at ttle.

Figure 4.5: GMEs covariance matrices after splitting of fragment Gaussian covariance.
Positions in ECI frame.
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4.4. Simulations results

The simulations were run for the whole population of fragments, to allow for straight-
forward analysis of the results. After each run, a post-process phase is conducted, to
analyse the results and generate the plots. Each estimation is considered correct if the
error between the estimated epoch and the actual instant of the event is lower than a
minute.
For all fragments that do not yield a correct estimation, two categories can be identified:

• Selection failures: this is the case where at least one combination (ip, if ) leads to
find the highest PoC value outside of the periodicity which includes the event epoch
t0, that is the third one in the simulation. This may result in an error ε larger
than half of the parent orbital period, if the combination (ip, if ) associated to the
minimum Mahalanobis distance is related to an erroneous periodicity. Instead, if
this combination (ip, if ) is related to the correct periodicity, the error is lower than
half of the parent orbital period; however, even this situation is considered a failure
related to the selection of the period since, in at least one instance out of all Np×Nf ,
the criterion of the highest PoC does not converge to the periodicity of the event.

• TCA failures: this is the case where, even though the convergence to the correct
periodicity is always achieved, the error is anyway higher than a minute. This can
be attributed exclusively to an estimation of the candidate TCA epochs which is less
accurate, and may occur in the MOID computation or in the afterward refinement
of the TCAs.

Furthermore, the fragments percentage referred to as "Alerts" is related to those cases
where the reliability criterion described in Section 3.4 is not met. Hence in this cases an
alert is displayed during the simulations.
Regarding the collision probability computation, Chan’s method has always been used
for the results reported. Nevertheless, simulations (which are here omitted) were also
conducted using the methods of Serra and Alfano. In terms of results, they did not yield
any differences.
Finally, it is worth noting that, for the perturbed case, the parameter B∗ set to zero
is used inside SGP4 both in the generation and detection of the fragments and in the
routine.
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4.4.1. Unperturbed scenario, no IOD error

As in [17], the unperturbed scenario with no OD orbital state error is tested to assess
the theoretical performance of the routine. By "unperturbed," it is meant that the prop-
agation of the objects in time, both in the generation of the data set and within the
algorithms of the routine, occurs through an analytical Keplerian model, without the ad-
dition of perturbations. For the association of the covariance matrix to the fragments,
the approach in Scenario with no OD error (Section 4.2.2) is followed before running the
simulation.
In this case 229 fragments "survived" the filters on pericenter altitude and on MOID
passage epoch. The results in terms of percentages are reported in Table 4.4.

Correct solutions Selection failures TCA failures Alerts

100 % 0 % 0 % 0 %

Table 4.4: Results for the unperturbed scenario with no OD error.

Not alerted simulations

True negatives False negatives

100 % 0 %

Table 4.5: Results of the reliability alert determined by the P c
ratio criterion, for the

unperturbed scenario with no OD error.

All fragments estimate the event epoch with an error of less than a minute. None of the
them is alerted, as expected since the whole population gives reliable results, and there
are no unwanted "false" alerts produced (indeed in Table 4.5 the "positive" cases are not
reported, because non existing). To be specific, a "positive" case occurs when the alert is
sent, while "negative" refers to the opposite situation. Additionally, a "true negative" is
met when the time error is lower than a minute, and correctly the alert is not triggered.
On the contrary, a "false negative" is an erroneous estimation which is however missed
by the alert.
The cumulative error ε is reported in absolute value and in seconds (Figure 4.6). The
same error values are also showed in terms of percentiles in Table 4.6. These are sig-
nificantly lower than a minute, with orders of magnitude of the milliseconds in the worst
case (100th percentile in Table 4.6). Therefore, under theoretical conditions the method
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Figure 4.6: Cumulative time error ε in the unperturbed scenario with no OD error.

Percentiles [s]

5th 25th 50th 75th 100th

0 0 0 3.576e-07 0.002

Table 4.6: Time error percentiles in the unperturbed scenario with no OD error.

is highly accurate.
The association process described in Section 3.5 is verified, and is successful for all the
simulated fragments. Indeed, in the ideal case the whole population is expected to be
correlated to the parent object. Figure 4.7 shows that the association criterion is always
met, as P c

tot > 10−9 for all fragments.
The results of this simulation are in line with an ideal scenario like this. For all 229

fragments, this simulation required a computational time of about 17.5 minutes. This re-
sults in approximately 4.6 seconds per fragment, on a single core with Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz 1.99 GHz processor. For the same analysis, FRED algorithm
takes 30 seconds per fragment using 1000 samples, demonstrating the advantage of lever-
aging a statistical representation based on GMM. However, the following analysis was
carried out with a deliberately limited number of GMEs compared to the maximum al-
lowed by the univariate splitting library (that is 39). If the number of mixture elements
were increased, longer computational times would need to be taken into account.
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Figure 4.7: Result of the fragment-parent association process in the unperturbed
scenario with no OD error.

4.4.2. Perturbed scenario, no IOD error

The analysis is here conducted on a perturbed scenario in which SGP4 is used both in
the data set generation, and in the routine itself. This propagation process involves a
conversion from Cartesian coordinates to TEME frame at the initial propagation epoch,
followed by a subsequent conversion from the obtained SGP4 elements back to Carte-
sian coordinates at the final epoch. Inside the function which applies this model, these
conversions are accomplished using a fixed-point iteration loop, introducing an error that
accumulates along the propagation and could potentially impact the outcomes. The ef-
fects of these non negligible errors may appear both in the first block, on the results of
the MOID passage epochs, as well as in the UP of the covariance matrices, inputs to the
PoC evaluation. However, the results of this routine significantly depend on the initial
state uncertainty of the fragments. This amplifies through propagation in time, causing
the dilution problem (Section 2.4.2), which may negatively impact on the convergence to
the correct periodicity through the criterion of maximum PoC.
In the scenario here presented, no error is introduced in the OD, and solutions are correct
for all the 226 fragments that passed through the filters (see Table 4.7). The alerts are
correctly never triggered, hence no undesired false positive are produced in the output.
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Correct solutions Selection failures TCA failures Alerts

100 % 0 % 0 % 0 %

Table 4.7: Results for the perturbed scenario with no OD error.

The reliability criterion results are indeed reported only for the negative cases, in Table
4.8.

Not alerted simulations

True negatives False negatives

100 % 0 %

Table 4.8: Results of the reliability alert determined by the P c
ratio criterion, for the

perturbed scenario with no OD error.

The cumulative error ε is reported in absolute value and in seconds (Figure 4.8). The
same error values are also showed in terms of percentiles in Table 4.9. A difference in the
orders of magnitude of time errors is observed with respect to Table 4.6, being slightly
larger compared to the Keplerian case. This, on the other hand, might be attributed to
the numerical errors introduced by the conversion SGP4 -TEME.

Figure 4.8: Cumulative time error ε in the perturbed scenario with no OD error.
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Percentiles [s]

5th 25th 50th 75th 100th

5.961e-07 4.977e-06 2.587e-05 1.374e-04 0.002

Table 4.9: Time error percentiles in the perturbed scenario with no OD error.

The association process presented in Section 3.5 is again successful for all fragments, and
the compliance to the P c

tot criterion is shown in Figure 4.9.

Figure 4.9: Result of the fragment-parent association process in the perturbed scenario
with no OD error.

Overall, this simulation required about 3.4 hours, since SGP4 demands more computa-
tional time than the Keplerian propagation. This results in approximately 54 seconds
required for a single analysis, much faster with respect to the same simulation conducted
with FRED, which took about 5 minutes per fragment.

4.4.3. Unperturbed scenario, nominal OD error

The simulations described in Section 4.4.1 and Section 4.4.2 have been performed without
introducing any error in the OD process to retain the fragments orbital states. The data
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indeed are generated with a simple propagation of the mean states up to a certain epoch,
and a subsequent association of a fixed and small covariance matrix. Nonetheless, since
the routine shall be tested under conditions that are as representative as possible of an
operational scenario, it is necessary to introduce an error. This results in a perturbation of
the mean orbital state with respect to the state referred to as ground-truth. Therefore, in
the following simulation, the detection of the fragments is performed through the approach
described in Scenario with OD error (Section 4.2.2), that is introducing an error in the OD
process through the measurements noise covariance and the OD process itself. This also
results in positional and velocity uncertainties of the covariance matrices in the orders of
respectively 10−3 km and 10−4 km/s, using the Keplerian propagation in the ROD filters.
The OD results are then propagated through the unperturbed Keplerian propagator as
well.
The results of the simulation are reported in Table 4.10 for the 229 fragments passed to
the filters.

Correct solutions Selection failures TCA failures Alerts

82.5 % 17.0 % 0.5 % 5.7 %

Table 4.10: Results for the unperturbed scenario with OD error.

As reported, in the majority of cases, the algorithm successfully converges to the correct
solution. Yet, upon comparing results in Table 4.10 with those in Table 4.4, it is evident
that the discrepancy introduced in the OD significantly impacts the algorithm perfor-
mance, particularly in terms of the maximum PoC metric.
The cumulative error ε is reported in absolute value and in minutes (Figure 4.10). The
same error values are also showed in terms of percentiles in Table 4.11.

Percentiles [min]

5th 25th 50th 75th 100th

0.006 0.057 0.172 0.532 189.782

Table 4.11: Time error percentiles in the unperturbed scenario with OD error.

The noticeable horizontal jumps in Figure 4.10 correspond to convergence to one or two
periodicities prior to or following the third (where the actual event epoch is positioned).
For example, the error of 189 minutes reported in the 100th percentile (Table 4.11) is
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Figure 4.10: Cumulative time error ε in the unperturbed scenario with OD error.

caused by the convergence to a candidate TCA more than 3 hours far from the true
epoch, hence in the first or fifth periodicity. Instead, the first visible jump in Figure 4.10,
approximately at 100 minutes (one hour and a half), suggests that the solution was found
one periodicity prior or after the third one.
As done in [17], an analysis on the Keplerian parameters is conducted to determine if
the reciprocal geometry of parent and fragment orbits can be correlated to the estimation
error. In particular, it is known that the MOID computation is less stable when the
orientations (hence inclination and RAAN) of the fragment and parent orbits are very
close each other. This is due to the geometry behind the MOID computation. For this
reason, since the fragment orbit is varied from one mean state element of the mixture to
another, significant fluctuations in the MOID values may occur. Consequently, even when
the final solution converges to the right periodicity, the TCA candidate epochs at that
periodicity do not centre around the actual fragmentation epoch, but can be distributed
around epochs that are several minutes away. This is due to oscillation in the evaluation
of the epochs of passage through the MOID.
The semi-major axis should also affect the results: when it is similar from one orbit to
the other, the orbital periods are close as well. This implies that, considering a single
combination of parent and fragment mean states of the mixtures, their relative distance
from one periodicity to the other does not change significantly. Since the relative distance
enters the computation of the collision probability, the PoC values may not vary largely
along ti, triggering the alert effect. In this case, if for any error or due to high positional
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uncertainty the computed PoC is slightly higher at the "wrong" periodicity, the solution
does not converge close to t0.
The differences between parent and fragment orbital elements computed at the estimated
epoch (for all analysis) are reported in Figure 4.11, versus the time error.

(a) Semi-major axis difference versus estimation
error

(b) Eccentricity difference versus estimation error

(c) Inclination difference versus estimation error (d) RAAN difference versus estimation error

Figure 4.11: Difference between Keplerian elements of the parent and fragment objects
versus time error. Results for the unperturbed scenario with OD error.

It can be noticed that significant errors associated with convergence to periodicities other
than the third one tend to arise when the parent and fragment orbits have very similar di-
mensions. On the other hand, errors related to a TCA found within a maximum range of
5 minutes (and in general below half of the parent period) with respect to the actual epoch
of the event are more strongly associated with similar values of inclination and RAAN.
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These two observations confirm what was mentioned above regarding the geometry of the
two orbits and their relationship with the estimation accuracy. It is also worth noting
that in the majority of cases labelled as selection failures, the final estimated epoch is
associated with an error greater than half of the parent object period. This is because the
minimum value of Mahalanobis distance, in this scenario, is found in correspondence of a
combination (ip, if ) for which the highest PoC criterion failed to converge to the correct
periodicity.
Few analyses trigger the reliability alert (Table 4.10), due to a low value of the peak
contrast (P c

ratio), related to higher probabilities far from the actual event epoch and con-
sequently, the failure in estimation. Out of all the alerted simulations, the 69.2 % are truly
less reliable, leading to a wrong solution and hence defined as "true positives". The rest
are instead false alerts, or "false positives". In addition, some of the failed fragments are
not flagged, becoming thus false negatives. The specific results of the reliability criterion
are reported in Table 4.12.

Alerted simulations Not alerted simulations

True positives False positives True negatives False negatives

69.2 % 30.8 % 85.6 % 14.4 %

Table 4.12: Results of the reliability alert determined by the P c
ratio criterion, for the

unperturbed scenario with OD error.

Despite the introduced OD errors, the association fragment-parent consistently succeeds,
even for fragments that converge to an incorrect solution. Their value of P c

tot always
exceeds threshold, as shown in Figure 4.12, with a zoom on the minimum probability
computed, related to the analysis n◦ 96.
For all fragments, this simulation required about 19.4 minutes, similarly to the one in
Section 4.4.1.

4.4.4. Perturbed scenario, nominal OD error

To assess the performance of the routine in a realistic scenario, both orbital perturbations
and OD errors are introduced in the simulation. Hence, the detection of the fragments
is here performed through the approach described in Scenario with OD error (Section
4.2.2), however applying SGP4 in the fragments generation, in their detection and in the
ROD process.
The corresponding results are reported in Table 4.13 for the 226 fragments passed through
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(a) Not zoomed (b) Zoomed

Figure 4.12: Result of the fragment-parent association process in the unperturbed
scenario with OD error.

both the pericentre altitude filters and the MOID passage epoch filters.

Correct solutions Selection failures TCA failures Alerts

83.1 % 16.9 % 0 % 5.8 %

Table 4.13: Results for the perturbed scenario with OD error.

Comparing results in Table 4.13 with those in Table 4.7, it appears that, in this case as
well, the OD errors affect the algorithm performance, particularly the application of the
maximum PoC metric. Indeed, a lower number of analysis converges to a correct solution.
Additionally, what explained in Section 4.4.2 is reflected in the results here produced: the
numerical errors introduced with SGP4 have a lower impact in the number of correct
solutions than the fragments state uncertainties have.
As showed in Table 4.13, the percentage of correct solutions does not worsen with respect
to the unperturbed case (Table 4.10). Indeed, it is true that in the perturbed case, errors
due to the conversion from SGP4 elements to Keplerian elements are included. However,
it could happen that these errors counteract those caused by OD noise. In such case, if
the fragment orbital state error resulting from OD leads to the selection of the wrong
periodicity through the maximum PoC criterion, SGP4 conversion errors instead could
simultaneously correctly guide the algorithm to the correct periodicity.
It is interesting to notice from results in Table 4.13 that there are no failures solely due
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to an unstable estimation of the candidate TCA (i.e., TCA failures). All incorrect sim-
ulations are, therefore, attributed to a failure of the PoC metric in selecting the correct
periodicity, for at least one combination (ip, if ) (i.e., selection failures). Among these,
as later detailed in the Keplerian parameters analysis (Figure 4.14), most result in an
estimated epoch outside of the correct periodicity, due to the contribute of the Maha-
lanobis distance metric. A lower but still significant number of selection failures tend to
produce an inaccurate estimate, however with a lower error (attributed to an unstable
computation of the candidate fragmentation epochs) and within the correct periodicity.
The cumulative error ε of the estimated epochs is reported in absolute value and in min-
utes (Figure 4.13). The same error values are also showed in terms of percentiles in Table
4.14.

Figure 4.13: Cumulative time error ε in the perturbed scenario with OD error.

Percentiles [min]

5th 25th 50th 75th 100th

0.010 0.050 0.132 0.552 188.559

Table 4.14: Time error percentiles in the perturbed scenario with OD error.

The differences between parent and fragment orbital elements are again reported versus
time error in absolute value in Figure 4.14.
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(a) Semi-major axis difference versus estimation
error

(b) Eccentricity difference versus estimation error

(c) Inclination difference versus estimation error (d) RAAN difference versus estimation error

Figure 4.14: Difference between Keplerian elements of the parent and fragment objects
versus time error. Results for the perturbed scenario with OD error.

It can be noticed again that errors produced by an evident convergence to an erroneous
periodicity occur at small differences between the dimensions of parent and fragment orbits
(Figure 4.14a). On the other hand, when the two orbits have notably similar orientations
(Figures 4.14c and 4.14d), this becomes a significant factor contributing to inaccuracies in
computing the candidate TCA. As a result, the estimation may deviate by a few minutes
from the actual epoch, owing to the MOID calculation instability, despite being correctly
located in the third periodicity thanks to the Mahalanobis distance metric. This analysis
confirms again that the failure cases are closely related to the mutual geometry of the
orbits. Additionally, as mentioned few lines above, in this simulation the failure cases
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related exclusively to an inaccurate computation of candidate TCAs do not appear in the
results, as well as in Figure 4.14, as can be clearly observed.
Similarly to what happens in Section 4.4.3, few analyses trigger the reliability alert (Table
4.13). Among those, 69.2 % actually provides a non reliable epoch estimation, while the
rest are false alerts. The specific results of the reliability criterion are reported in Table
4.15.

Alerted simulations Not alerted simulations

True positives False positives True negatives False negatives

69.2 % 30.8 % 86.4 % 13.6 %

Table 4.15: Results of the reliability alert determined by the P c
ratio criterion, for the

perturbed scenario with OD error.

It can be observed that the situation of the simulations producing alerts does not change
compared to the unperturbed case (Table 4.12). The same percentage is found in both
scenarios, both for the simulations that trigger an alert when the estimation is indeed un-
reliable, and those for which the alert is redundant. Meanwhile, in the case of simulations
that do not produce any alert, the 13.6 %, should have actually been reported. Therefore,
the reliability criterion for these cases fails, however these are fewer with respect to the
scenario presented in Table 4.12.
The results of the fragment-parent association are again reported exclusively for the failed
analysis (Figure 4.15), for sake of clarity. The mismatching of the mean orbital state im-
pacts this process as well, since the computation of the parameter P c

tot is in some cases
underestimated due to non negligible positional uncertainties inputs to the PoC computa-
tion methods. Indeed, not all fragments are in this case correctly associated to the parent
object, as shown in Figure 4.15. In particular, the 13.2 % of the incorrect analysis lead
also to a cumulative PoC lower than the established threshold. This means that on the
overall number of analyzed fragments, the 97.8% correctly achieves the association. Thus,
positively, most allow to fully characterize the fragmentation event. However the use of
SGP4 impacts negatively on the association algorithm, clearly from the comparison with
the unperturbed scenario results (Figure 4.12a).
For all fragments, this simulation required about 3.5 hours, similarly to the case in Section
4.4.2.



66 4| Test case and Results

Figure 4.15: Result of the fragment-parent association process in the perturbed scenario
with OD error.

4.4.5. Comparison with FRED results

In order to assess the potential of CA techniques as a viable alternative to FRED method,
this study compares the performance of different nominal scenarios in terms of estimation
accuracy and simulation time.

FRED New routine

Correct solutions 92.8 % 100 %

Computational time per fragment 30 s 5 s

Table 4.16: Comparison with FRED: unperturbed scenario with no IOD error.

FRED New routine

Correct solutions 90 % 100 %

Computational time per fragment 5 min 54 s

Table 4.17: Comparison with FRED: perturbed scenario with no IOD error.
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FRED New routine

Correct solutions 68.9 % 83.1 %

Computational time per fragment 5 min 56 s

Table 4.18: Comparison with FRED: perturbed scenario with IOD error.

Comparing Table 4.16, Table 4.17 and Table 4.18 to Table 4.4, Table 4.7 and Table 4.13
respectively, the number of correct solutions is generally higher in the case of the routine
developed in this work with respect to those derived through FRED ([17]). Regarding the
results of the scenario with OD error, their improvement may be due to the generation
of the fragments mean state and covariance, which are obtained through a well-refined
ROD, instead of a Keplerian-based method. In the simulations conducted with FRED,
the fragment detection is performed using an IOD based on the Siminski approach in [43],
which is Keplerian.

4.5. Sensitivity Analysis

Sensitivity analysis are conducted on the perturbed scenario with OD error, to test the
robustness of the routine to different conditions. Those that may worsen the results are:

• As in [17], the time elapsed between t0 and tod: extending the propagation window,
the discrepancy at fragmentation epoch for the fragments mean state amplifies.

• As in [17], a larger measurements noise: this causes a higher error in the OD as well
as a larger state uncertainties at tod.

• The perturbation of the parent ephemeris, which introduces a further mismatching
on the mean state in input.

• The discrepancy of the B∗ parameter (e.g. due to a different evaluation in the data
set generation and in the routine itself).

4.5.1. OD epoch

In all simulations described in Section 4.4, the detection of the fragments is set to happen
13 hours after t0. Since in an operational context the first detection and OD process might
happen later, tod is shifted to two different values: 24 hours and 48 hours after the event.
The effect of a larger time elapsed between the event and the OD on the performance is
hence investigated.
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The results are reported in Table 4.19. It is evident that the more tod is shifted from t0,
the lower becomes the number of fragments leading to a successful solution. As previously
mentioned indeed, a longer propagation time implies a higher error on the state vector
at t0. The number of alerts produced in the simulation conducted with +24 h does not
vary with respect to the case reported in Table 4.13. On the other hand, in the +48 h
case, an increase in the percentage of estimates considered potentially inaccurate appears,
possibly following the significant rise of failed solutions.
The OD epoch shifting affects the computational time as well, which increases due to a
longer propagation window for the fragments. In this case anyway, the time effort required
for the simulation to run on all fragments stays around 3.6 hours, higher but comparable
to the case in Section 4.4.4.
To illustrate the convergence to different periodicities, the cumulative errors in absolute
value are reported in Figure 4.16a and 4.16b.

Time from t0 Correct solutions Selection failures TCA failures Alerts

+24 h 73.7 % 26.3 % 0 % 5.8 %
+48 h 56.6 % 42.9 % 0.5 % 8.0 %

Table 4.19: Sensitivity analysis on the OD epoch. Results for the perturbed scenario
with nominal OD error.

(a) Time from t0 to tod = 24 h. (b) Time from t0 to tod = 48 h.

Figure 4.16: Cumulative time error ε in the perturbed scenario with nominal OD error
and variable OD epoch.

The fragment-parent association process is also affected by the increase of elapsed time, as
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clearly visible in Figure 4.17a and 4.17b. These illustrate the results of the P c
tot evaluation,

exclusively for those analysis which lead to a wrong solution, in the +24 h and +48 h
cases, respectively. Indeed, displacing more and more the OD epoch, the percentage of
simulations achieving correctly the association to the parent object decreases. Specifically,
in the +24 h case, the 93.8% of all simulations correctly correlates the corresponding
fragment to the event. This percentage is reduced to the 88.0 %, in the +48 h scenario.
However, the peak contrast criterion performs well in most cases, allowing still to partially
characterize the fragmentation event, although in some cases the epoch detection is not
accurate.

(a) Time from t0 to tod = 24 h.

(b) Time from t0 to tod = 48 h.

Figure 4.17: Results of the fragment-parent association in the perturbed scenario with
nominal OD error and variable OD epoch.
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Regarding the sensitivity analysis performed using FRED on the same scenario (refer
to Table 4.20), it is noteworthy that the new approach presents an increased count of
accurate solutions (with respect to Table 4.19). However, it is important to recall the
observations detailed in Section 4.4.5: the new improved performance can be attributed
to the use of a well-refined ROD, responsible for the higher convergence rates to the
correct solution, differently from the Keplerian approach exploited in [17].

Time from t0 Correct solutions

+24 h 60.8 %

+48 h 43.1 %

Table 4.20: Sensitivity analysis on the IOD epoch conducted with FRED. Results for
the perturbed scenario with nominal IOD error. Source: [17].

4.5.2. Measurements noise

As proved by the simulation results presented in Section 4.4, the performance of the
routine primarily depends on the accuracy of the OD process. This, in turn, is influenced
by factors such as the method used for determination, the length of the observation
window, the measurements acquisition frequency, and the quality of these measurements
[17]. In particular, a higher noise introduced by the sensor leads to larger uncertainties
and discrepancy of the mean state with respect to the real one. Therefore, in this section
the robustness of the routine to a larger set of noise input to the fictitious detector is
investigated. As surveillance radars tend to have low accuracy in angular track, the noise
level for the range is set constant to the nominal value of 30 m. Simultaneously, variations
in the angular noise are introduced: from the nominal value of 0.01◦ to 0.02◦ and 0.05◦.
These values are intentionally kept similar to what was done in [17], aiming to facilitate
a comparison of the results.
Results are reported in Table 4.21.

Noise Correct solutions Selection failures TCA failures Alerts

0.02◦ 77.8 % 21.8 % 0.4 % 9.3 %

0.05◦ 80.1 % 19.0 % 0.9 % 14.2 %

Table 4.21: Sensitivity analysis on the OD angular measurements noise. Results for the
perturbed scenario with OD error.
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One can observe that, as the noise associated with the angular track increases with respect
to the nominal case (Table 4.13), convergence to the correct solution gets more difficult
to achieve, and the percentage of selection failures rises. The number of simulations
providing an alert also increases with respect to the nominal case (Table 4.13).
It is interesting to note that in the case of a 0.05◦ noise, despite it being higher, the routine
performs slightly better compared to the case of 0.02◦ noise. Looking at the higher number
of simulations that trigger the alert in the 0.05◦ noise case (Table 4.21), one could conclude
that, in the case of a higher OD error, the PoC computation understandably experiences
a greater dilution problem, due to larger uncertainties, which possibly lead to give correct
results of cases in which the 0.02◦ noise scenario failed. The errors related to all estimated
epochs are depicted in Figure 4.18a and 4.18b.

(a) Angular noise: 0.02◦. (b) Angular noise: 0.05◦.

Figure 4.18: Cumulative time error ε in the perturbed scenario with variable OD error
and nominal OD epoch.

The association process is also affected: with respect to the success rate of case in Section
4.4.4 (97.8 %), here it converges in the 97.3 % of cases for 0.02◦ noise and again 97.3 %
for 0.05◦ noise. The number of successful associations is still very high, despite many sim-
ulations do not lead to a correct estimate. The results of this process are also graphically
represented, in Figure 4.19a and 4.19b.
With respect to the same results obtained through FRED, which are reported in Table
4.22, the results presented in Table 4.21 are improved, but once again, the reasons pre-
sented so far justify this situation. Indeed, a more accurate ROD process able to include
perturbations in the propagation model is used for the new algorithm, with respect to the
Keplerian-based IOD applied in [17].
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(a) Angular noise: 0.02◦.

(b) Angular noise: 0.05◦.

Figure 4.19: Results of the fragment-parent association in the perturbed scenario with
variable OD error and nominal OD epoch.

Noise Correct solutions

0.02◦ 66.5 %

0.05◦ 53.1 %

Table 4.22: Sensitivity analysis on the IOD angular measurement noise conducted with
FRED. Results for the perturbed scenario with IOD error. Source: [17].
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4.5.3. Parent mean state perturbation

All previous results were obtained exploiting a statistical representation of both objects.
However, the mean state of the parent object was never altered with respect to the
state acquired from the initial TLE, except during the splitting process required for the
GMM generation. However, in real case scenarios, the TLEs are not fully accurate,
and differences from the ground-truth shall be considered. Therefore, it is relevant to
investigate the implications of a perturbed orbital state of the parent in input to the
algorithm.
The mismatch is introduced in the following way:

1. 10, 000 random multivariate samples (xp
s) are generated from the TLE parent state,

distributed according to the covariance matrix P p.

2. The perturbed samples are selected according to their statistical distance with re-
spect to the distribution ({xp,P p}), by computing the Mahalanobis distance for
each sample:

dM(xp
s) =

√
(xp

s − xp)T (P p)−1 (xp
s − xp)

and by selecting 10 values, going from the lowest to the maximum. The 10 corre-
sponding samples are the only considered from now.

3. 10 simulations of the whole routine are repeated, providing in input as the parent
ephemeris each perturbed sample just derived.

The results of the different runs are reported in Tables 4.23 and 4.24. The results on the
theoretical scenario (unperturbed case with no error on the IOD) are provided in order to
assess the actual implications introduced solely by a perturbed orbital state of the parent
object. Each simulation is associated to a different error between the considered parent
ephemeris and the ground-truth. The norm of this error is expressed in terms of position
and velocity in the results, respectively as εr and εv. Additionally, columns expressing the
percentage of alerts and of successful association between the fragment and the parent,
with respect to the ensemble of failed analysis, are reported.
As can be observed from the results presented in Table 4.23, in the theoretical scenario,
the mismatching of the input state of the parent object generally leads to a decrease in
the number of correct solutions, resulting in a degradation of performance. The reliability
criterion is also negatively influenced by the parent state perturbation: in all simulations,
only one analysis or even none provide the alert, despite the fact that a non negligible
percentage of them returns an inaccurate estimate. Therefore, this criterion appears to
be less conservative than it should be. Furthermore, for the least performing simulations,
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n◦ Correct
solutions

Selection
failures

TCA
failures

Alerts Successful
associations

εr
[km]

εv
[km/s]

1 99.1 % 0.9 % 0.0 % 0.0 % 100 % 0.1488 1.58e-04

2 98.3 % 1.7 % 0.0 % 0.0 % 50 % 0.1931 2.12e-04

3 99.6 % 0.4 % 0.0 % 0.0 % 100 % 0.4757 5.30e-04

4 99.6 % 0.4 % 0.0 % 0.0 % 100 % 0.4845 5.38e-04
5 99.6 % 0.4 % 0.0 % 0.0 % 100 % 0.5101 5.71e-04

6 99.6 % 0.4 % 0.0 % 0.0 % 100 % 0.6335 6.93e-04

7 98.3 % 1.7 % 0.0 % 1/229 75 % 0.8047 8.85e-04

8 99.6 % 0.4 % 0.0 % 0.0 % 100 % 1.2844 0.0014

9 90.0 % 10.0 % 0.0 % 1/229 82.6 % 1.6257 0.0018

10 98.7 % 1.3 % 0.0 % 0.0 % 66.7 % 2.8786 0.0032

Table 4.23: Sensitivity analysis on the parent state perturbation. Results for the
unperturbed scenario with no OD error.

it occasionally happens that the association fragment-parent fails for some of the failed
fragments. Therefore, even this latter process is slightly compromised by having modified
the input TLE state. In any case, in this scenario, the results remain good, and the
majority of simulations achieve the goal of an accurate estimation of the epoch.
Looking at the results presented in Table 4.24, general trends cannot be identified. In fact,
when compared to Table 4.13, it can be observed that for some samples of the original
TLE, the routine performs better, while for others, the percentage of correct solutions
degrades. This is likely due to the combination of errors introduced by the perturbation
of the initial parent ephemeris and those caused by the OD error on the fragments, and by
the conversion from SGP4 elements to Cartesian coordinates and back. These factors may
indeed influence and compensate each other in a way that is not entirely quantitatively
interpretable. It is evident, on the other hand, that in most failed cases the computation
of the highest PoC converges to an incorrect periodicity for at least a pair (ip, if ), while
it occurs less frequently that failures are due exclusively to inaccurate TCAs.
The number of produced alerts (see again Table 4.24) fluctuates but remains in line with
the nominal case in Table 4.13. However, it is not possible to define a general trend to
relate the increase in the number of successful simulations to the number of produced
alerts.
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n◦ Correct
solutions

Selection
failures

TCA
failures

Alerts Successful
associations

εr
[km]

εv
[km/s]

1 83.6 % 16.4 % 0.0 % 5.3 % 86.5 % 0.1488 1.58e-04

2 84.0 % 15.6 % 0.4 % 6.6 % 84.2 % 0.1931 2.12e-04

3 84.4 % 15.1 % 0.5 % 5.8 % 82.9 % 0.4757 5.30e-04

4 83.6 % 16.0 % 0.4 % 5.8 % 83.8 % 0.4845 5.38e-04
5 83.1 % 16.9 % 0.0 % 5.3 % 81.6 % 0.5101 5.71e-04

6 84.0 % 16.0 % 0.0 % 6.2 % 83.3 % 0.6335 6.93e-04

7 81.3 % 18.7 % 0.0 % 6.2 % 81 % 0.8047 8.85e-04

8 82.1 % 17.4 % 0.5 % 6.6 % 95 % 1.2844 0.0014

9 83.0 % 16.6 % 0.4 % 5.3 % 97.4 % 1.6257 0.0018

10 75.1 % 24.0 % 0.9 % 6.2 % 68.4 % 2.8786 0.0032

Table 4.24: Sensitivity analysis on the parent state perturbation. Results for the
perturbed scenario with nominal OD error and nominal OD epoch.

Finally, one of the analysis conducted on the orbital parameters similarities is illustrated
in Figure 4.20. In particular, the results of the 7th simulation of the sensitivity analysis in
Table 4.23 are reported, as it is evident here how the situations described in the previous
sections unfold. Some fragments, in fact, yield to estimates with errors in the range
of tens of minutes, although leading to convergence to the correct periodicity. These
are characterized by orbit sizes that are not extremely similar compared to the parent
(Figure 4.20a). Meanwhile, their close orientation to the parent orbit causes a slight but
not negligible oscillation in the computation of the final epoch (Figure 4.20c and 4.20d).
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(a) Semi-major axis difference versus estimation
error

(b) Eccentricity difference versus estimation error

(c) Inclination difference versus estimation error (d) RAAN difference versus estimation error

Figure 4.20: Difference between Keplerian elements of the parent and fragment objects
versus time error. Results for the unperturbed scenario with with no OD error and

perturbed parent state (7th case in Table 4.23).

4.5.4. Mismatching on B∗

In the previous simulations, the same value of the ballistic coefficient B∗ is used inside
SGP4 propagation, both to generate the ground-truth and in the routine itself. Addi-
tionally, this value is set equal to zero, both for the parent and fragment, implying that
their orbit do not decay. However, given that atmospheric drag plays a crucial role in
circularizing and reducing the semi-major axis of LEO orbits, a follow-up simulation of
the perturbed scenario is conducted using a more realistic B∗. Specifically, a value of
0.00026658 is assigned to the parent object, based on the last available TLE for Cosmos
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1408 from Space-Track ([37]), while B∗ = 1e − 04 is assumed for the fragment. These
values are set equal both in the data-set generation and in the algorithm. The analysis
can be further refined in the future, using the physical parameter estimation procedure
presented in [45].
The results are reported in Table 4.25.

Correct solutions Selection failures TCA failures Alerts

82.7 % 16.9 % 0.4 % 6.2 %

Table 4.25: Results for the perturbed scenario with nominal OD error and non null B∗.

Out of the alerted cases (representing the 6.2 % of the data-set), a percentage equal to
78.6 % leads actually to an incorrect solutions. The rest instead are labelled as a false
positives. The reliability criterion results are better specified in Table 4.26.

Alerted simulations Not alerted simulations

True positives False positives True negatives False negatives

78.6 % 21.4 % 93.9 % 6.1 %

Table 4.26: Results of the reliability alert determined by the P c
ratio criterion, for the

perturbed scenario with OD error and non null B∗.

With respect to the nominal case (Table 4.15), the percentage of correctly detected
("true") alerts and non-alerts is interestingly higher. The criterion here detects better
unreliable solutions when it should, while a lower number of erroneous estimates are
missed.
The results of the fragment-parent association process are illustrated in Figure 4.21 (again
for the failed estimations only). A percentage equal to 97.8 % (among the whole popula-
tion of observed fragments) achieves a successful association, with a value of the cumula-
tive collision probability higher than the required threshold.
Comparing the results in Table 4.25 with those obtained in the case of null B∗ (Table
4.13), it can be noticed that the number of simulations converging to the correct solutions
decreases. This might be due to addition of the drag perturbation modelling. Instead,
it is interesting to note that the percentage of correct fragment-parent associations does
not change, remaining consistently high.
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Figure 4.21: Result of the fragment-parent association process in the perturbed scenario
with OD error and non null B∗.

Additionally, drawing inspiration from [17], an analysis on the mismatching of B∗ be-
tween the ground-truth generation and the routine itself is conducted. This is done since
realistically, with the observation of a single fragment, it is not possible to accurately
estimate the physical parameters of the object, or it may be necessary to make assump-
tions about such parameters. Therefore, in the data set generation B∗ is set as previously
to 0.00026658 for the parent and 1e − 04 for the fragment, while in the algorithm both
value are modified, by multiplying them times 1e − 02. To assess the robustness of the
algorithm to this discrepancy, results reported in Table 4.27 are analysed.

Correct solutions Selection failures TCA failures Alerts

82.2 % 17.3 % 0.5 % 5.8 %

Table 4.27: Results for the perturbed scenario with OD error and mismatching on B∗.

Among the alerted simulations (representing the 5.8 % of the data-set) a percentage equal
to 84.6 % leads actually to an incorrect solutions. The rest instead is labelled as a false
positives. The reliability criterion results are better specified in Table 4.28.
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Alerted simulations Not alerted simulations

True positives False positives True negatives False negatives

84.6 % 15.4 % 85.9 % 14.1 %

Table 4.28: Results of the reliability alert determined by the P c
ratio criterion in the

perturbed scenario with OD error and mismatching on B∗.

Looking at Table 4.28, and comparing to the scenario with no mismatching on B∗ (Table
4.26), the number of wrong solutions which are correctly detected increases. Instead, a
higher percentage of non reliable estimates for which the alert is missed can be observed.
The results of the fragment-parent association process are illustrated in Figure 4.22, ex-
clusively for the failed simulations.

Figure 4.22: Result of the fragment-parent association process in the perturbed scenario
with OD error and mismatching on B∗.

A percentage equal to 97.3 % (among all simulations) achieves a successful association,
with a value of the cumulative collision probability higher than the required threshold.
Comparing the results just obtained with those in Table 4.25, it appears that the mis-
matching on the B∗ values degrades the number of correct solutions. The percentage of
fragments reaching convergence decreases, albeit slightly, but the performance remains
robust. However this cannot be considered as a general result, and further simulations
should be carried out in the future by varying the B∗ values differently.
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developments

The thesis presented in this manuscript is intended to contribute to the development of
a new routine aimed at characterizing any fragmentation event, under the external con-
ditions typical of a Near-Earth scenario.
The research objectives stated initially have been fulfilled. First of all, the implemented
tool is able to detect the epoch of a fragmentation event, given as input a single fragment
orbital state and one ephemeris of the fragmented object. Secondly, a criterion for as-
sociating the fragment object to the original spacecraft has been implemented to enable
a comprehensive characterization of the event. The employed and tested methodologies
are based on techniques typical of CA theory. Indeed, the underlying motivation of the
conducted work is to search for alternative metrics to rank the candidate fragmentation
epochs, with respect to those developed with FRED routine ([17]). The common objective
is to estimate the epoch of a fragmentation event through a stochastic approach, ideally
applicable within the first few hours following the event alert, in order to mitigate the
damage caused by the production and dispersion of debris.
In summary, the work was conducted through the following steps. A comprehensive lit-
erature study allowed for the identification of the context in which the new tool could be
utilized, the current theories underlying the instruments used to build the algorithm, and
finally, the analysis of FRED routine and its performance. The results of these research
reviews are reported respectively in Chapter 1, 2, and Section 2.5. Thus, starting from
pre-existing knowledge and new insights gained from the literature review, the routine was
implemented in its two fundamental blocks: the derivation of candidate TCAs (described
in Section 3.3.1) and the ranking of these epochs using collision probability computations
(outlined in Section 3.3.2). The second objective of associating the fragment object to
the event was then pursued through the implementation described in Section 3.5. The
tools built in this manner were then tested through a series of simulations representing
both nominal and non-nominal scenarios. To assess the quality of the results, the focus
was set on the percentage of analyses that led to a correct solution (within a one-minute
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error margin of the actual epoch) as well as the success in the fragment-parent association
process. In addition to reporting the results of the new routine, a constant and critical
comparison with FRED approaches and performance was conducted. This may serve as
foundation for a future tool able to potentially exploit the metrics of both methods to-
gether, allowing for an accurate event characterization.

Some significant conclusions can be drawn from the results of simulations and robustness
tests:

• The routine operates with a one hundred percent success rate if the scenario con-
ditions are close to being ideal. This implies Keplerian propagation and sufficiently
low uncertainty covariance matrix related to the fragments orbital states.

• The results do not experience any degradation when no error is introduced in the
OD, despite using a model that includes perturbations. This is a positive outcome;
although, as one might expect, numerical errors resulting from the conversion to
SGP4 elements are reflected in the epoch estimates. These lead to errors in the
order of milliseconds far from the actual epoch, however deviate slightly more than
in the Keplerian case.

• In non-theoretical scenarios, the algorithm converges in most cases to the correct
solution, but its robustness diminishes when the fragment and parent orbits exhibit
similar orientations or have comparable shapes. In particular, when ∆a is sufficiently
small, convergence to the correct periodicity may more easily fail. Conversely, when
orbits have similar inclinations or RAAN, the estimation of candidate epochs may
oscillate due to the nature of the MOID computation.

• The result of the MOID computation and the refinement of the passage epochs lead
to a very accurate assessment of candidate TCAs, even in cases where the data set
is generated with OD errors. Indeed, it results that the majority of failures are
attributed to convergence to the wrong periodicity, rather than to an inaccurate
evaluation of TCA epochs.

• Convergence to the correct periodicity through the maximum PoC criterion, which
in most cases determines a final error of less than a minute, is adversely affected
by high uncertainties and errors in the fragment states. This is well observed in
the sensitivity analysis conducted on the measurement noise, which degrades the
results. However, this is also the result of an increased propagation time window
from the event epoch to the detection epoch, which leads to the expansion of errors
in the fragment states as well.
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• A statistical representation based on GMM is beneficial in terms of computational
time. Compared to, for instance, a Monte Carlo approach, the work here conducted
allows for a significant speeding up of the analysis on individual fragments.

Future Works
Several developments can be conceived as future extensions of this work.
Certainly, testing different propagation models to introduce additional disturbances or
customize their modeling represents a viable direction. Leveraging high-fidelity propa-
gators, for instance the one reported in [46], albeit computationally intensive, promises
increased realism of the dynamical environment.
Evaluating the impact of a varying number of GMEs within the mixtures in the routine
outcomes holds theoretical interest. A finer discretization of the initial Gaussian distribu-
tion into sub-Gaussians theoretically enhances the mixture fitting with the distribution
resulting from nonlinear propagation.
The current routine lacks the ability to output statistical information (mean value and
standard deviation), due to the use of Mahalanobis distance as a metric for selecting a
single final candidate epoch. This limits the error analysis during post-processing, es-
pecially for failed simulations. Therefore, a crucial next step involves investigating the
determination of meaningful quantities for non-normal distributions, particularly for a set
of mixture components, to quantify the uncertainty in the ensemble of TCA combinations.
This investigation may necessitate the study of higher-order moments beyond the mean
and variance, whose relevance is limited to Gaussian distributions.
Simulation results highlight the critical issue of underestimating collision probability in
the presence of high positional uncertainties, negatively affecting the maximum PoC con-
vergence criterion. Consequently, future research may focus on introducing alternative
methods of CA that inherently address the dilution problem. Inspiration can be drawn
from existing approaches in the literature, including the maximum probability formulation
in [31], the Alfriend scale factor in [47], the COPOC approach ([48]) developed by CNES,
which employs covariance scaling to manage dilution, and the Kolmogorov-Smirnov test.
As mentioned in Section 4.5.4, a refinement of the B∗ sensitivity analysis shall be con-
ducted. The objective would be both to enhance the estimation of the fragments param-
eter, and to increase the tested cases introducing different levels on the mismatching.
Finally, a significant step entails conducting the fragmentation epoch detection when a
fragment is detected by a surveillance sensor, but no OD result can be derived. Indeed, it
would be challenging but valuable to define an approach that leads to the epoch estimation
directly within the measurement space.
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Algorithm A.1 Chan’s PoC computation

Inputs: ru
rel, σu

x , σu
y , HBR

1: By default ρ = 0, nterms = 10

2: xm = ru
rel(1)

3: ym = ru
rel(2)

4: v =
(xm/σu

x )
2+(ym/σu

y )
2
−2ρ(xmym/(σu

xσ
u
y ))

1−ρ2

5: u = HBR2(
σu
xσ

u
y

√
1−ρ2

)
6: mvect = [0 : (nterms − 1) : nterms]

7: Pm = 0

8: for j = 1 : length(mvect) do
9: m = mvect(j)

10: kvect = 0 : 1 : mvect(j)

11: Pk = 0

12: for w = 1 : length(kvect) do
13: k = kvect(w)

14: Pk = Pk +
uk

2kk!

15: end for
16: Pm = Pm +

(
vm

2mm!

)
(1− exp(−u/2)Pk)

17: end for
18: P c = exp(−v/2)Pm
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Algorithm A.2 LAAS PoC computation

Inputs: xm, ym, σu
x , σu

y , HBR

1: By default nterms = 12

2: p = exp
(

(σu
x )

2+(σu
y )

2

4(σu
x )

2(σu
y )

2 (−HBR2)
)

3: if σu
y > σu

x then
4: a− = 1/(σu

x)
2 − 1/(σu

y )
2

5: b− = x2
m/(σ

u
x)

2 − y2m/(σ
u
y )

2

6: else
7: a− = −1/(σu

x)
2 + 1/(σu

y )
2

8: b− = −x2
m/(σ

u
x)

2 + y2m/(σ
u
y )

2

9: end if
10: a+ = 1/(σu

x)
2 + 1/(σu

y )
2

11: b+ = x2
m/(σ

u
x)

2 + y2m/(σ
u
y )

2

12: c0 = 0

13: c1 = 1/(2σu
xσ

u
y ) exp(−b+/2)

14: c2 = c1(a+b+ + a−b− + 2 ∗ a+)/16
15: c3 = c1

(
(a+b+ + a−b−)

2 + 4(b+(a
2
+ − a2−) + 2a2+ + a2−)/768

)
16: c4 = c1(a+b+ + a−b−)

3 + 6a+(a
2
+b

2
+ − a2−b

2
−))/73728 + c1(

(
−12a2−b+(a+b+ + a−b−

)
+

12
(
2a3+b+ + 3a3−b− + 4a3+ + a2−a+b+ + 2a+a

2
−
)
)/73728

17: s = c0 + c1HBR2 + c2HBR4 + c3HBR6 + c4HBR8

18: ck = c0

19: ck1 = c1

20: ck2 = c2

21: ck3 = c3

22: ck4 = c4

23: for k = 0 : nterms − 6 do
24: ck5 = (a+a

4
−ck − 2a2−(2a

2
−(k + 1) + a+(a+b+ + a−b−))ck1 − 8a−(k + 2)(2a+a−(2k +

5) − (2a2+b− + 3a−a+b+ + a2−b−))ck2 + 32(k + 3)(k + 2)(2a2−(2k + 5) − (2a2−b+ +

3a−a+b− + a2+b+))ck3 + 128(k + 4)(k + 3)(k + 2)(2a+(k + 4) + a+b+ +

a−b−)ck4)/ (1024(k + 5)(k + 3)(k + 2)(k + 4)2)

25: s = s+ ck5HBR(2(k+5))

26: ck = ck1

27: ck1 = ck2

28: ck2 = ck3

29: ck3 = ck4

30: ck4 = ck5

31: end for
32: P c = ps
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Algorithm A.3 Alfano’s PoC computation

Inputs: xm, ym, σu
x , σu

y , HBR

1: m = ceil
(

5HBR
min(σu

x ,σ
u
y ,
√

x2
m+y2m

)

)
2: if m > 100 then
3: m = 100

4: end if
5: dx = HBR

2m

6: sodd = 0, seven = 0

7: for i = 1 : m do
8: x = (2i− 1)dx− HBR

9: y =
√

HBR2 − x2

10: sodd = sodd +
(
erf(ym+y

σu
y

√
2
)− erf(ym−y

σu
y

√
2
)
)(

exp −(xm+x)2

2(σu
x )

2 + exp −(xm−x)2

2(σu
x )

2

)
11: if i ̸= m then

12: x = (2i)dx− HBR

13: y =
√

HBR2 − x2

14: seven = seven +
(
erf(ym+y

σu
y

√
2
)− erf(ym−y

σu
y

√
2
)
)(

exp −(xm+x)2

2(σu
x )

2 + exp −(xm−x)2

2(σu
x )

2

)
15: end if
16: end for

17: modd = 4sodd

18: meven = 2seven + 2
(
erf(ym+HBR

σu
y

√
2

)− erf(ym−HBR
σu
y

√
2

)
)(

exp− (xm)2

2(σu
x )

2

)
19: x = 0.015dx− HBR

20: y =
√

HBR2 − x2

21: m0 = 2
(
erf(ym+y

σu
y

√
2
)− erf(ym−y

σu
y

√
2
)
)(

exp −(xm+x)2

2(σu
x )

2 + exp −(xm−x)2

2(σu
x )

2

)
22: P c =

(
dx

3
√
8πσu

x

)
(m0 +meven +modd)
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