
Executive Summary of the Thesis

A study of possible improvements in Knowledge Tracing with Natural
Language Processing and self-attention

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Simone Sartoni

Advisor: Prof. Paolo Cremonesi

Co-advisor: Luca Benedetto, PhD

Academic year: 2021-2022

1. Introduction
In the educational domain, Knowledge Tracing
(KT) is the task of modelling the knowledge
of a student over time, aiming at understand-
ing its ability levels in different subjects. In-
ferring unobservable traits from their observed
performances on assessments enables us to keep
track of student level, customizing the learn-
ing process and enriching the experience of on-
line education. For example, KT can be use-
ful in online assessments to recommend particu-
lar questions, directly targeting students’ weak-
nesses. In our work we focus and compare
the models on a specific sub-task of KT: an-
swer correctness prediction. Given a student
S, we denote the act of submitting answer rt
to exercise question et at time t as an interac-
tion It = (et; rt). Answer correctness predic-
tion can be mathematically described as the the
task of predicting value rT from past interac-
tions (e0, r0), (e1, r1), ... (eT−1, rT−1) and tar-
get exercise eT . To make better predictions,
some KT models assume having at least an abil-
ity (or “skill”) st associated with each question
qt, providing context information (such as the
main topic of the question or the required knowl-
edge). Knowing the skill enables an easier rep-

resentation of knowledge, but at the same time,
the performance of the models based on this as-
sumption can be limited by its availability.

2. Related works
Different architectures have been proposed
to model KT and predict answer correct-
ness. Initially, probabilistic approaches (such
as Bayesian Knowledge Tracing) tried modelling
directly the human behaviour of knowing a
skill, acquiring the knowledge about it after an
interaction, guessing or slipping it (answering
wrongly despite knowing the skill).

2.1. Deep Knowledge Tracing
In 2015, Deep Knowledge Tracing (DKT) [3]
showed the capabilities of Recurrent Neural Net-
works (RNN) in modelling this task, outper-
forming BKT on most of the datasets. DKT can
mimic a function considering latent concepts,
the difficulty of each exercise, the prior distribu-
tions of student knowledge and its evolution over
time. Since DKT needs a large amount of data,
it is well suited only for online education. In our
work, we consider as the first baseline a powerful
variant of DKT, implemented using Long Short
Term Memory units instead of recurrent ones.

1

Executive summary Simone Sartoni

2.2. Attention-based models
Recently, some works have developed attention-
based models for KT because attention has out-
performed deep neural networks in many other
tasks. In particular, Self Attentive Knowledge
Tracing (SAKT) is the first model to apply self-
attention to KT. It improves the Area Under
the Curve metric and enables the parallelization
of the computation, making the model orders
of magnitude faster than DKT. Instead, Sep-
arated Self-AttentIve Neural Knowledge Trac-
ing (SAINT) [1] has introduced the Transformer
model to KT, which is a more complex encoder-
decoder architecture with self-attention layers as
basic blocks. Furthermore, SAINT has been ex-
tended to use temporal features in the so-called
SAINT+ [4] architecture. SAINT+ is the sec-
ond baseline we compare our models with.

2.3. Natural Language Processing for
KT

A recent direction to improve KT is to generate
additional information about the questions from
their texts. For example, transforming raw text
into useful fixed-length vectors and developing
KT models working on generic vectors as input,
can enable to use together information from het-
erogeneous sources, such as text, skill and tem-
poral features. Several works have investigated
the use of a single Natural Language Process-
ing technique to improve an LSTM or a self-
attention architecture. Exercise-Enhanced Re-
current Neural Network (EERNN) [5] produces
an embedding for each word with word2vec and
uses a bidirectional LSTM network to learn
relations between words and the last hidden
state as the textual embedding for the exer-
cise. Then EERNN adopts an LSTM network
or an attention mechanism to produce predic-
tions. Lastly, Relation-Aware Self-Attention for
Knowledge Tracing (RKT) [2] is an extension
of SAKT made by the same authors, prepro-
cessing similarity coefficients between exercises,
based on: i) text similarity, i) time between the
interactions and iii) the performance of users.
Those additional coefficients are summed to the
outputs of the SAKT self-attention layer. Other
works (such as EKT and EHFKT) have provided
other solutions, but they are not relevant to our
work.

3. Proposed models
Our work starts from the consideration that
self-attention and Natural Language Process-
ing are still underexplored topics to improve
KT, so we decide to focus on them. In our
work, we follow two directions to improve KT
models. First, we propose Prediction Ori-
ented Self-attentive knowledge Tracing (POST),
a self-attention based model composed of three
components: an encoder and two decoders.
Then we examine six Natural Language Process-
ing methods (i.e. CountVectorizer, word2vec,
doc2vec, DistilBERT, Sentence Transformer and
BERTopic) to produce embeddings from the ex-
ercises’ texts and develop “NLP-enhanced” ver-
sions of DKT and POST, able to use as input
the textual embeddings. Furthermore, we pro-
pose two approaches to create an “hybrid” NLP-
enhanced DKT model able to use at the same
time different NLP methods.

3.1. Generate textual exercise em-
beddings

In our work, we identify six NLP methods
to create exercise embeddings from exercise
text: CountVectorizer, word2vec, doc2vec, Dis-
tilBERT, Sentence Transformer and BERTopic.

3.1.1 CountVectorizer

CountVectorizer collects all the nw words, asso-
ciating each of them with a unique index. Then,
it represents a text as a vector with dimension
nw, where the value at position i is the count of
times the word associated with index i appears
in the text. This method can lead to a high
number of words. We can reduce it with three
techniques: i) using a sparse implementation of
the matrix used to represent all the texts, ii)
lemmatizing words and removing stopwords and
iii) removing words appearing less than min_df
times, more than max_df times, or maintaining
only the most frequent max_features words.

3.1.2 Word2vec and DistilBERT with
average operator

Word2vec and DistilBERT are NLP models to
create a unique vector with a fixed length for
each word appearing in a collection of texts. We
can use them to produce a set of word embed-
dings for each text and then apply the average

2

Executive summary Simone Sartoni

function over the words dimension, generating a
single exercise embedding with the same length.
Exercise embeddings need to be normalized to
be useful for KT. Word2vec model consists of
a neural network with one layer. Instead, Dis-
tilBERT is obtained “distilling” BERT model,
a multi-layered Bidirectional Transformer pre-
trained on Masked Language Modeling and Next
Sentence Prediction tasks. Word2vec requires
removing HTML tags, lemmatising words and
removing stopwords from texts, while BERT can
work directly with text without HTML tags.

3.1.3 Doc2vec, Sentence Transformer
and BERTopic

Doc2vec is a good alternative to averaging
word2vec embeddings, enabling to learn at the
same document and word embeddings. We
can directly use document embeddings as exer-
cise embedding for KT. We denote as “Sentence
Transformer”, the Siamese network built on top
of all-mpnet-base-v2 Transformer. It creates ex-
ercise embeddings as outputs of the Pooling and
Normalization layers applied to word embed-
dings generated with all-mpnet-base-v2 Trans-
former architecture. We use the implementa-
tion of this model from SentenceTransformers1

library, a python framework to create state-of-
the-art sentence, text and image embeddings.
Differently from previous methods, BERTopic
does not embed text. It can automatically learn
the topics of a collection of texts and compute
the most probable one or a probability vector,
associating with each one a probability.

3.2. NLP-enhanced DKT
To check the utility of the six NLP methods, we
develop NLP-enhanced DKT, an LSTM network
taking as inputs the exercise embeddings. The
idea is to reproduce DKT with float vectors as
inputs. We embed interaction (et, rt) at time
step t as in EERNN:

X̃t =

{
[Xt ⊕ 0] if rit = 1

[0 ⊕Xt] if rit = 0
(1)

where ⊕ is the concatenation operator and Xt

is exercise embedding associated to et, gener-
ated by a NLP method. The sequence of em-
bedded interactions (X̃1, X̃2, ..., X̃t) is now used

1https://www.sbert.net/docs/pretrained_models.html

as input to the LSTM network. LSTM out-
puts ht ∈ Rdh are passed to a Dense layer with
sigmoid activation function, producing outputs
X̃o ∈ R2·dembeddings . First dembeddings elements
of X̃o can be seen as positive knowledge repre-
sentation, while the second half is negative one.
Now our model takes the “target” exercise em-
beddings Xt+1 and compute element-wise mul-
tiplication to both the positive and negative half
of X̃o. In the end, a Dense layer is applied to
predict r̃t+1 correctness probability.

3.3. Prediction Oriented Self-
attentive knowledge Tracing

We propose two new models based on self-
attention: Prediction Oriented Self-attentive
knowledge Tracing with Multiplication (POST-
M) and Prediction Oriented Self-attentive
knowledge Tracing (POST), both composed of
a past exercise content encoder, a past perfor-
mance decoder and a prediction oriented mod-
ule. We underline that all the encoders and
decoders use Masked Multi-Head Attention to
avoid invalid attending, as in SAINT+. We use
three matrices to create embeddings with same
dimension for each exercise id et, skill id st and
answer correctness rt. Past exercise content en-
coder receives as query, keys and values the sum
of the embeddings related to exercise, skill and
a positional encoding: Ee

i = eei + sei + pi, but
only for past time steps from T = 0 to T = t,
padded with an initial start token. The past per-
formance decoder use as queries the sum of em-
beddings related to answer correctness, elapsed
time and positional encoding: Re

i = rei +etei +pi,
from time step T = 0 to T = t, with an ini-
tial start token. Instead, keys and values are
the outputs from the past exercise content en-
coder. In the end, prediction oriented module is
responsible of combining two vectors: the per-
formance decoder outputs ydec and the target
exercise embedding Ee

t+1 = eet+1+ set+1 (without
positional encoding) to predict the correctness
rt+1. POST-M computes Hadarmard product
(also called element-wise product) of the inputs,
while POST uses a decoder, taking as query the
target embedding Ee

t+1 and, as key-value pairs,
the outputs of past performance decoder. In
the end, both POST-M and POST have a linear
layer to produce predictions.

3

https://www.sbert.net/docs/pretrained_models.html

Executive summary Simone Sartoni

Figure 1: The architecture of NLP-enhanced
POST model.

3.4. NLP-enhanced POST
Then we develop NLP-enhanced POST: an ex-
tension of POST able to use as inputs the tex-
tual exercise embeddings (§ 3.1). NLP-POST
applies to each textual embedding a trainable
Linear layer, computing X̃:

X̃(X) = f(W TX + b) (2)

where X̃ ∈ Rndim and ndim is the embedding
size of the POST model. Then it sums X̃ to
the input embedding of POST. In Figure 1 we
report the architecture of NLP-POST.

3.5. Hybrid approaches
In the end, we implement two approaches to cre-
ate a hybrid NLP-DKT, able to use at the same
time textual embeddings generated by multi-
ple NLP methods. The hybrid approaches we
present consist of using two or more NLP-DKT
architectures with different NLP methods and
combining their outputs into a single one. For
example, we can:
• compute the final prediction as a weighted

sum of the predictions of parallel models;
• compute the final prediction by applying a

Dense layer with one output to the concate-

nation of the outputs of the multiply blocks
of the parallel models.

4. Experimental setups
In our work we use four datasets: ASSIST-
ments2 2009 (AM09) and 2012 (AM12), Cloud
Academy3 (CA) and Peking Online Judge4

(POJ). Each dataset consists of two documents,
containing respectively interactions and textual
information. The following operations are ap-
plied to the datasets:
• clean the texts, removing HTML tags, links,

digits, punctuation and special characters.
The produced output, denoted as plain text ,
is used as input to DistilBERT, Sentence
Transformer and BERTopic. Furthermore,
remove stopwords, lemmatize words and to-
kenize them, creating clean sentence, used
as input to CountVectorizer, word2vec and
doc2vec.

• Remove interactions without an available
text or whose clean sentence has only one
word.

• Remove duplicated interactions.
• Group interactions regarding the same user

into sequences. Chunk them into subse-
quences of maximum length N = 500 (or
N = 100 for self-attention based models).
Remove sequences with a single interaction
and pad to length N . Number of users and
sequences are shown in Table 1

N=500 AM09 AM12 CA POJ

users 3,836 45,975 17,021 10,557

sequences 3,346 45,375 17,378 2,102

Table 1: Number of users and subsequences for
each dataset.

After processing, we perform a train-
ing/validation/test split on sequences of
60%/20%/20%. Batch size varies according
to the dataset and the model, due to memory
limitations. Models are trained minimizing the
Binary Cross Entropy loss and evaluated with

2https://sites.google.com/site/
assistmentsdata/

3https://cloudacademy.com/
4http://poj.org/

4

https://sites.google.com/site/assistmentsdata/
https://sites.google.com/site/assistmentsdata/
http://poj.org/

Executive summary Simone Sartoni

Binary Accuracy (ACC) and Area Under the
ROC Curve (AUC) metrics. Dropout rates
are fixed to 0.3 for LSTM models and 0.2 for
self-attention ones. Each model is trained and
evaluated using three learning rates (lr = 1e−3,
lr = 1e−4 and lr = 1e−5), but only the best
result is reported.

5. Results
In our work, for each dataset, we consider four
baselines: the majority prediction model, DKT
using exercise ids, DKT using skill ids (whenever
available) and SAINT+, and we compare their
ACC and AUC with POST-M and POST. Then,
we evaluate NLP-DKT and NLP-POST with the
six NLP methods. In the end, for each dataset,
we consider the best two (or three) NLP meth-
ods and evaluate the two approaches to create
hybrid models for NLP-DKT using those NLP
methods. We evaluated more than seventeen
models per dataset, so we present only a sum-
mary view of them. This view contains the re-
sults of the best performing:
• baseline;
• model not using textual embeddings;
• NLP-enhanced model and respective NLP

method;
• hybrid approach for NLP-DKT.

In particular, in Tables 2, 3, 4 and 5 we show
the results of these models respectively in AM09,
AM12, CA and POJ datasets.
As in literature, we evaluate KT models by com-
paring their AUC and binary accuracy.

Best model metrics

ACC AUC

baseline DKT skills 0.711 0.721

without NLP POST 0.707 0.736

NLP-
enhanced

NLP-DKT
CountVectorizer

0.735 0.778

hybrid ap-
proach

sum of predic-
tions

0.742 0.784

Table 2: Results of the best performing mod-
els on ASSISTments 2009 dataset. Hybrid ap-
proach uses CountVectorizer, DistilBERT and
word2vec.

Best model metrics

ACC AUC

baseline SAINT+ 0.707 0.736

without NLP POST 0.754 0.790

NLP-
enhanced

NLP-POST
Sentence Trans-
former

0.757 0.793

hybrid ap-
proach

multiply blocks 0.745 0.775

Table 3: Best performing models results on
ASSISTments 2012 dataset. Hybrid approach
uses DistilBERT, Sentence Transformer and
word2vec.

best model metrics

ACC AUC

baseline SAINT+ 0.692 0.759

without NLP POST 0.699 0.769

NLP-
enhanced

NLP-POST
CountVectorizer

0.703 0.771

hybrid ap-
proach

sum of predic-
tions

0.666 0.699

Table 4: Results of the best performing models
on Cloud Academy dataset. Hybrid approach
uses CountVectorizer, DistilBERT and doc2vec.

best model metrics

ACC AUC

baseline SAINT+ 0.618 0.661

without NLP POST 0.634 0.688

NLP-
enhanced

NLP-POST
word2vec

0.644 0.703

hybrid ap-
proach

multiply blocks 0.653 0.696

Table 5: Results of the best performing models
on POJ dataset. Hybrid approach uses Distil-
BERT, BERTopic and word2vec.

5

Executive summary Simone Sartoni

6. Conclusions
In our work, we studied multiple directions to
improve the answer correctness prediction task.
First of all, our results showed that SAINT+
works better than DKT on large datasets (such
as AM12 and CA), while it is the opposite on
small datasets with available skills (AM19).

6.1. POST
Initially, we proposed Prediction Oriented Self-
Attentive knowledge Tracing (POST), a novel
self-attention model for KT. In SAINT+, the
encoder has two objectives: learning what is rel-
evant in the embeddings and comparing past
ones with the target one. Instead, in POST,
the two objectives are given respectively to the
past exercise content encoder and the prediction
oriented decoder.
The summarized results show that POST has
higher AUC than all the baselines on each
dataset, proving that POST models the an-
swer correctness prediction task better than
SAINT+. In addition, POST has the advantage
to work optimally even with a small number of
training samples (such as in AM09).

6.2. NLP-enhancing and hybrid ap-
proaches

Then, we examined six NLP methods to pro-
duce textual embeddings and developed “NLP-
enhanced" versions of DKT and POST. The sig-
nificant improvements in their results confirm
the utility of using texts to improve KT. How-
ever, the results depend too much on the dataset
to provide a general ranking of the NLP meth-
ods.
In particular, NLP-enhancing shows the best
utility on small datasets, furnishing additional
relevant content information. Instead, on large
datasets (AM12 and CA), NLP-POST still im-
proves the results, but it has identical perfor-
mance with all the NLP methods, meaning that
the textual exercise embeddings are mainly ig-
nored. Some possible reasons are:

• POST can learn the textual relations from
the large number of interactions.

• the linear layer limits the use of textual em-
beddings.

• summing textual embeddings to skill and
item ones reduces results.

We suggest studying new approaches to add tex-

tual embeddings to self-attention models, such
as creating a new encoder responsible only for
textual content or replacing the linear layer with
new components.
Lastly, we presented the possibility of creating
“hybrid” models, using, at the same time, ex-
ercise embeddings produced by multiple NLP
methods. Hybrid NLP-DKT has improved the
results of NLP-DKT on each dataset, proving
their utility. In particular, it provided the high-
est AUC on AM09 dataset, improving by 8.73%
the AUC of DKT.
To summarize the results, our proposed models
increased the AUC metric of previous models
by 8.7%, 7.7%, 1.6% and 6.4% respectively on
AM09, AM12, CA and POJ datasets; while the
binary accuracy increased by 4.2%, 7.1%, 1.6%,
and 5.7% respectively.

References
[1] Youngduck Choi, Youngnam Lee, Junghyun

Cho, Jineon Baek, Byungsoo Kim, Yeong-
min Cha, Dongmin Shin, Chan Bae, and
Jaewe Heo. Towards an appropriate query,
key, and value computation for knowledge
tracing. CoRR, abs/2002.07033, 2020.

[2] Shalini Pandey and Jaideep Srivastava. RKT
: Relation-aware self-attention for knowledge
tracing. CoRR, abs/2008.12736, 2020.

[3] Chris Piech, Jonathan Spencer, Jonathan
Huang, Surya Ganguli, Mehran Sahami,
Leonidas J. Guibas, and Jascha Sohl-
Dickstein. Deep knowledge tracing. CoRR,
abs/1506.05908, 2015.

[4] Dongmin Shin, Yugeun Shim, Hangyeol Yu,
Seewoo Lee, Byungsoo Kim, and Youngduck
Choi. Saint+: Integrating temporal fea-
tures for ednet correctness prediction. In
LAK21: 11th International Learning Analyt-
ics and Knowledge Conference, LAK21, page
490–496, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

[5] Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang,
Yu Yin, Enhong Chen, Chris Ding, Si Wei,
and Guoping Hu. Exercise-enhanced sequen-
tial modeling for student performance pre-
diction. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32,
2018.

6

	Introduction
	Related works
	Deep Knowledge Tracing
	Attention-based models
	Natural Language Processing for KT

	Proposed models
	Generate textual exercise embeddings
	CountVectorizer
	Word2vec and DistilBERT with average operator
	Doc2vec, Sentence Transformer and BERTopic

	NLP-enhanced DKT
	Prediction Oriented Self-attentive knowledge Tracing
	NLP-enhanced POST
	Hybrid approaches

	Experimental setups
	Results
	Conclusions
	POST
	NLP-enhancing and hybrid approaches

