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ABSTRACT ix

In this thesis, we consider the numerical approximation of inverse problems
for linear and nonlinear elliptic PDEs by augmenting them with a neural
network to predict unknown or uncertain model coefficients. The neural net-
work acts as a prior for the coefficient and attempts to reconstruct its value
from observations of some output quantities of interest related to the PDE
solution or from the solution itself. While neural network augmentation for
inverse problems has recently been proposed in the literature, we extend
the idea to several test cases dealing with diffusion problems and nonlinear
elasticity problems. We demonstrate that, under certain conditions, neural
networks are highly effective at recognizing many different types of coeffi-
cients for these problems. However, we also show that the computational
cost of performing these simulations is potentially prohibitive for large-scale
applications. To resolve this problem, we attempt to combine neural network
augmentation with the reduced basis method with the aim of enhancing com-
putational efficiency. We then discuss the limitations of such an approach
and provide some ideas for future applications and further research.





Chapter 1

Introduction

The problem of determining an unknown coefficient from the solution of a
partial differential equation (PDE) - known as the inverse problem - has long
been both a practically significant and theoretically challenging mathemati-
cal problem. From a practical perspective, inverse problems arise whenever
one tries to determine the cause of some observable effect. For instance, it is
often easy to observe the physical process an object undergoes, such as how
much an object bends when a force is applied to it. However, some of the
physical properties of the object - like the material it is made from - could be
unknown. This is typical in cases that deal with problems like seismic imag-
ing or the identification of material properties of biological tissues. Solving
the inverse problem provides information about these unknown properties.
From a theoretical perspective, the inverse problem is often challenging to
solve. Inverse problems are usually ill-posed, meaning that the solution to
them may not be unique or may fluctuate greatly depending on the per-
turbations of the data. Even more challenging is the attempt to create a
comprehensive theory that encompass the various types of inverse problems
that exist.

The history of inverse problems starts in the early 1900’s with Hermann
Weyl, whose theorem - now known as Weyl’s law - includes a solution to an
inverse problem [20]. Then, in 1929, Viktor Ambartsumian published a sem-
inal paper on finding equations for a given a family of eigenvalues, a paper
which became the starting point for the study of a whole family of inverse
problems [21]. These problems were then studied in the 1940’s by [25] and
in the 1960’s by [22] and [28] until it became popularized by Tikhonov and
Arsenin in the 1970’s [40]. Today, there are many published works that pro-
vide a comprehensive overview on inverse problems and their challenges (for
example, see [4, 30]).

1



2 CHAPTER 1. INTRODUCTION

Recently, some authors have combined techniques from mathematics and
computer science in an attempt to better understand inverse problems. One
such technique, introduced by Berg and Nyström in [9], uses artificial neu-
ral networks to guess the solution to the inverse problem. Neural networks
are modeled off of neurons in the brain and first began to be studied by
McCulloch and Pitts in the early 1940’s [29]. Such networks were studied
throughout the 1950’s by [12], [37], and [38], until Minsky and Papert dis-
covered limitations with the computational machines that processed them in
1969 [31]. Interest in neural networks was rekindled in 1975 when Werbos
published his backpropogation algorithm which enabled multi-layer networks
to be trained [43]. Since then, neural networks have become an increasingly
popular tool in computer science and are behind many current advances in
technology, such as self-driving cars [6] and facial recognition [26]. These
problems are significantly challenging, and yet neural networks have proven
to be an excellent tool to help solve them. Since neural networks have been
widely successful at conquering a large variety of complex problems, they
could be a promising tool to utilize for solving the inverse problem (for an
introduction to artificial neural networks, see [3], [16], and [23]).

In this thesis, we expand on the ideas presented by Berg and Nyström in [9]
by using neural networks to recognize the complex functions used to calculate
the solutions to different PDEs. We do this by choosing a coefficient within
a PDE and representing that coefficient as the output of an artificial neural
network. The input to the network is always a vector of vertex points from
the mesh that discretizes the domain in which the PDE problem is posed and
the output of the network is a vector of points where each point corresponds
to the nodal value of the coefficient. This representation means that the co-
efficient is characterized by the weights of the network. The objective then is
for the network to find the correct weights that produce the actual coefficient
function when the network is given the vector of vertex points as an input.
The advantage of this approach over using a tool like the FEM to estimate
the coefficient is many-fold. Firstly, the number of parameters needed by the
network to construct the coefficient is much smaller than the number of val-
ues required to represent the coefficient at each node of the mesh using finite
element functions. As a result, the time it takes to optimize the parameters
is faster. Also, the continuity of the approximation produced by the network
serves to smooth out any noisy observational data.

The organization of the thesis is as follows: in chapter 2, we introduce the
mathematical background needed to understand the inverse problem, the fi-
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nite element method, and the neural network representation of the coefficient,
as well as describe how these concepts have been implemented. In chapter 3,
we use neural networks to recognize the (spatially distributed) diffusion co-
efficient function in the Poisson equation under multiple different scenarios,
showing that neural networks are indeed an effective estimator so long as the
properties of the network meet certain criteria. In chapter 4, we move to the
problem of estimating material properties acting as model inputs in a non-
linear elasticity equation - such as Young’s modulus for a hyperelastic solid -
which allows us to explore a wider variety of increasingly complex scenarios.
We show that, once again, neural networks are effective estimators for the
coefficient. However, we also show that the computational power needed to
run some of the simulations is infeasible for practical applications. Finally, in
chapter 5, we attempt to solve this problem by reducing the computational
effort needed to solve the inverse problem via the reduced basis method. We
show that the reduced basis method can, in fact, be used to reduce the com-
putational complexity of the code. However, we also note some limitations
with this approach and provide ideas and insight into future research that
could be done to more fully utilize this method.





Chapter 2

Mathematical Background

In this chapter, we introduce the mathematical concepts needed to under-
stand the inverse problem, the finite element method, and neural networks.
We begin by introducing the idea of an inverse problem and how to reformu-
late inverse problems in terms of minimization problems that can be solved
using numerical optimization algorithms. We then describe how to approxi-
mate the solution to a PDE using the finite element method before moving on
to discuss how to represent a PDE coefficient with a neural network. Finally,
we describe how these concepts are implemented for the thesis, including the
coding framework, packages utilized, and the specifications of the machine
running the code.

2.1 The Inverse Problem
Given a function u(x) where x ∈ Ω and Ω ⊂ RN , N ∈ {1, 2, 3} is a bounded
domain, the inverse problem is to find a q(x) such that the following partial
differential equation is satisfied:

F (u, q) = 0, in Ω

u = g, on ∂Ω
. (2.1)

In equation (2.1), F is a generic differential operator depending on u and q,
∂Ω is the boundary of Ω, and g is a function which describes the data on
the boundary of Ω (for a more rigorous introduction to partial differential
equations, see [39]). Almost all inverse problems are ill-posed, meaning that
either the solution to the problem is not unique or that a small perturbation
in the given data can lead to a large perturbation in the solution (i.e. the
problem is not stable). For a more comprehensive overview on inverse and
ill-posed problems, see [21].

5
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2.2 The Minimization Problem
The inverse problem can be more effectively formulated in terms of a mini-
mization problem. This is done as follows: pick a q̃(x) and solve the partial
differential equation given by (2.1). This yields a ũ(x) (which is unique
assuming that the PDE problem is well-posed). The difference between
ũ(x) and the actual u(x) can then be defined using the energy functional
J(ũ) = 1

2
||u − ũ||2 where || · || is a suitable norm (in this thesis, we use the

L2(Ω) norm). Since ũ depends on the choice of q̃, this functional can be
rewritten as J(ũ(q̃)) = 1

2
||u− ũ(q̃)||2. The minimization problem is to find a

q∗ that minimizes the functional J subject to the partial differential equation
(2.1). In other words, we want to find a q∗ such that

q∗ = min
q̃
J(ũ(q̃)) (2.2)

where ũ satisfies (2.1).

In practice, the actual value of u(x) is measured using experiments. These
measurements are subject to noise, and so the exact value of u(x) is never
directly obtained. Instead, measurements always yield a noisy approximation
umeas of u. So the functional to minimize is actually

J(ũ(q̃)) =
1

2
||umeas − ũ(q̃)||2 =

1

2

∫
Ω

|umeas − ũ(q̃)|2dx. (2.3)

From now on, we will use u instead of ũ and q instead of q̃ to simplify the
notation.

2.3 The Finite Element Method
In general, the PDE (2.1) has to be solved numerically. In this thesis, this
will be done through the finite element method (FEM). The general idea
behind the FEM is to discretize the domain using a computational mesh
and then to approximate the solution u to the PDE on each element of the
mesh, typically with some sort of polynomial (e.g. a linear polynomial). The
general steps behind the FEM are as follows:

1. Select a space of test functions, usually denoted V , to whom the solu-
tion u of the PDE belongs. This is often a space of piecewise polynomi-
als that satisfy the boundary conditions of the original PDE problem.
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2. Multiply the differential equation by a test function v ∈ V and integrate
over the domain Ω. Integrate any second order derivatives by parts.
This improves the regularity of the PDE by removing one order of the
derivative from the overall equation. This new equation is known as
the weak formulation of the problem.

3. Interpret the weak formulation as an abstract variational problem by
defining the appropriate bilinear forms and functional spaces.

4. Discretize the abstract variational problem using the Galerkin method
by defining a finite-dimensional subspace Vh of V .

5. Using a basis of Vh, transform the Galerkin problem into an algebraic
system that can be solved efficiently using one of many numerical meth-
ods.

This process will be applied to the problems in the following chapters. For a
more comprehensive introduction to the FEM, see [36].

2.4 Neural Network Representation of q
In equation (2.1), we can take the function q and represent it as the output
of a neural network (this is possible since a neural network can approximate
any continuous function within an arbitrary accuracy bound [18]). More
specifically, let q be parameterized by W and b where W is a collection of
RM×N , M,N ∈ N matrices of weights and b is a collection of bias vectors
in RN . The coefficient q(x;W, b) is then computed by feeding the domain
forward through the neural network. In other words,

q = σL(zL)

zL = WLσL−1(zL−1) + bL

...
z2 = W 2σ1(z1) + b2

z1 = W 1x+ b1

(2.4)

where L ∈ N is the number of layers in the neural network,W l, l ∈ {1, 2, ..., L}
is the weight matrix that connects layers l and l−1, bl is the vector of biases
for layer l, and σl is the activation function for layer l.
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With this new representation, the minimization problem (2.2) is to find a
collection of weight matrices W ∗ and a collection of biases b∗ such that

W ∗, b∗ = min
W,b

J(u(q)) (2.5)

where u satisfies equation (2.1).

Note that an iterative method (like the BFGS algorithm) is used to solve
equation (2.5). This iterative algorithm starts with an initial guess for W
and b, and then at each iteration it uses the gradient of (2.3) with respect
to the parameters to derive a new, better guess for W and b. This process
is equivalent to training the neural network where the loss function is given
by (2.3). Note that algorithms like BFGS can be used in these scenarios
because the number of parameters of the network (i.e. the number of weights
and biases) is relatively small when compared to the dimension of a finite
element space. This is one of the main reasons why we represent q with a
neural network instead of searching for q in some finite element space.

2.5 Implementation of the Minimization Prob-
lem

We solve the minimization problem (2.5) using Python3 (and PyCharm as
the IDE) [41] with the FEniCS package [2] to solve the forward PDE problem
via the FEM and the dolfin-adjoint package [32] to calculate the gradient of
the functional J . The BFGS optimizer from the SciPy package [42] is used to
solve the optimization problem (2.5) and the norm of the gradient is always
used as the convergence criterion. The NumPy [34] package is used to gen-
erate any random values and perform the various mathematical calculations
needed in the code. Finally, the PyTorch package [35] is used to construct
any neural networks needed and to compute the gradients of the networks. In
this project, the sigmoid activation function is used for every layer in all the
neural networks except the output layer where a linear activation function is
used. All visualizations shown are made either with FEniCS’s plotting en-
gine or with ParaView [5]. The code is run on a 4 core machine with a 6MB
cache and 8GB of RAM. The operating system used is the 64-bit version of
Windows 10.

Combining all of the concepts mentioned in this chapter, we now provide a
general overview of how these tools work together in order to recognize the
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desired coefficient. The workflow for any problem follows the same overarch-
ing pattern:

1. Use PyTorch to create a neural network with the desired number of
layers and nodes. Randomly initialize the parameters of the network.

2. Create a mesh and define the abstract variational problem and appro-
priate functional spaces using FEniCS.

3. Decide on the value of the coefficient to be predicted by the neural
network and perform a forward solve of the PDE system (2.1) with
FEniCS using this coefficient. Store the resulting u value.

4. If desired, add noise to u. After this step, u is now the umeas mentioned
in equation (2.3).

5. Define a function that takes the parameters of the neural network as
an input and outputs the value of the energy functional (2.3). This
function should update the parameters of the neural network using Py-
Torch, feed the vector of vertices forward through the updated network
to obtain q, and then perform a forward solve of the PDE system (2.1)
using this new q to obtain a new value of u. The value of J is then
calculated from this new value of u. This can be done in a few lines of
code using FEniCS.

6. Define a function that takes the parameters of the neural network as
an input and outputs the Jacobian of the energy functional (2.3) with
respect to the network parameters. This is the most involved step
because it requires the computation of

dJ

dp
=
∂J

∂u

∂u

∂q

∂q

∂p
+
∂J

∂q

∂q

∂p
=

(
∂J

∂u

∂u

∂q
+
∂J

∂q

)
∂q

∂p

where p is any of the weight or bias parameters of the network. The
factor ∂J

∂u
∂u
∂q

+ ∂J
∂q

is computed by using FEniCS together with dolfin-
adjoint, while the factor ∂q

∂p
is computed using PyTorch.

7. Pass the 2 functions defined in the steps above, along with the initial
parameters of the network, to an iterative numerical solver, such as the
BFGS algorithm. The algorithm uses these two user-defined functions
to solve the minimization problem (2.5).





Chapter 3

Numerical Approximation of the
Inverse Problem for the Poisson
Equation

In this chapter, we consider the numerical approximation of the inverse prob-
lem that involves identifying the diffusion coefficient of the Poisson equation
from partial measurements of its solution. The Poisson equation is widely
used in physics to describe phenomena such as the potential field given by
an electrical charge or the heat distribution over a surface. Not only is the
equation widely applicable, but it is also relatively simple with respect to
other partial differential equations, making it a logical problem from which
to begin the explorations of the effects of neural network augmentation. Berg
and Nyström have explored this case in [9] when q is relatively simplistic,
the results of which we successfully reproduce. We then extend their ideas
to new cases and draw some new conclusions. We show below that neural
networks are good predictors of the coefficient in both the 1D and 2D cases,
provided that the network has a sufficient number of parameters to correctly
capture the complexity of the coefficient function. We also demonstrate that
these results can hold when the observations of the solution of the PDE are
noisy or limited. Finally, we reveal some patterns that connect the neural
network architecture to the efficacy of the network prediction.

11
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3.1 Weak and Algebraic Formulations of the
Poisson Problem

Given a domain Ω ⊂ RN where N ∈ {1, 2, 3}, the Poisson problem is to find
a u = u(x) such that

−∇ · (q(x)∇u(x)) = f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω
(3.1)

where ∂Ω is the boundary of Ω and q, f , and g are known functions. The
inverse problem is to find a q(x) that satisfies (3.1) given (partial) measure-
ments of u where both f and g are known.

To derive the weak formulation of the problem, we first decide to look for
the solution u to (3.1) in the functional space V = H1

0 (Ω). We then multiply
(3.1) by a test function v ∈ V and integrate over the domain Ω. This yields

−
∫

Ω

[∇ · (q∇u)]v dx =

∫
Ω

fv dx. (3.2)

Integrating the first term by parts, we obtain∫
Ω

q · ∇u · ∇v dx =

∫
Ω

fv dx (3.3)

(note that none of the scenarios in this chapter use Neumann boundary
conditions). Since we want to search for u in the space H1

0 (Ω), we want
u = 0 on the Dirichlet boundary. However, since u = g on the Dirichlet
boundary, we introduce the transformation u = u0 +Rg where

u0 = u in Ω

u0 = 0 on ∂Ω

and Rg ∈ H1(Ω) is a suitable continuous function such that Rg|ΓD
= g (Rg

is called a lifting function). By substituting this u into (3.3), we obtain∫
Ω

q · ∇u0 · ∇v dx+

∫
Ω

q · ∇Rg · ∇v dx =

∫
Ω

fv dx. (3.4)

The weak formulation of the problem is then: Find a u0 ∈ V such that∫
Ω

q · ∇u0 · ∇v dx =

∫
Ω

fv dx−
∫

Ω

q · ∇Rg · ∇v dx ∀ v ∈ V. (3.5)
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We now introduce the bilinear form

a(u, v) =

∫
Ω

q · ∇u · ∇v dx

and the linear functional

F (v) =

∫
Ω

fv dx− a(Rg, v).

The abstract variational formulation of the problem is then: Find a u0 ∈ V
such that

a(u0, v) = F (v) ∀ v ∈ V. (3.6)

We now want to discretize (3.6) in order to approximate u0 using the Galkerin-
Finite Element method. To do this, we select a subspace Vh ⊂ V where
dim(Vh) = Nh <∞. The Galerkin problem then reads: Find a uh ∈ Vh such
that

a(uh, vh) = F (vh) ∀ vh ∈ Vh. (3.7)

Since Nh <∞, we can find a basis for the space Vh. Let {φi}i=1,...,Nh
denote

such a basis. Since all functions in Vh are linear combinations of the basis
functions, it is sufficient to show that

a(uh, φi) = F (φi), i = 1, 2, ..., Nh. (3.8)

Also, since uh ∈ Vh, uh can be written as a linear combination of the basis
functions. More specifically,

uh(x) =

Nh∑
j=1

ujφj(x)

where the coefficients uj ∈ R are unknown. Substituting this expansion of
uh into (3.8) yields

a
( Nh∑
j=1

ujφj(x), φi

)
= F (φi), i = 1, 2, ..., Nh (3.9)

which is equivalent to

Nh∑
j=1

uja(φj, φi) = F (φi), i = 1, 2, ..., Nh. (3.10)
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Let A be the matrix with the elements Aij = a(φj, φi), f be the vector with
components fi = F (φi), and u be the vector with components uj. Then
equation (3.10) can be written as the algebraic system

Au = f . (3.11)

This is the system that will be solved in order to obtain the approximation
of u0. Once u0 is obtained, the original u can be reconstructed using the fact
that u = u0 +Rg.

Let Th denote the set of elements in the mesh. For all the problems we
consider in this chapter, we will let Vh = {vh ∈ C0(Ω̄) | vh|k ∈ P1 ∀ k ∈
Th and vh = 0 on dΩ} (i.e. Vh is the set of linear continuous piecewise poly-
nomials on each element of the mesh that vanish on the boundary).

3.2 Estimating the Diffusion Coefficient of the
Poisson Equation for the Dimension N = 1

We first consider the 1D Poisson equation given by

−(qux)x = f(x), x ∈ (0, 1)

u(0) = g0, u(1) = g1

(3.12)

where u, f , g0, and g1 are known and q(x) : R→ (0,∞) is the coefficient to
be estimated. To be able to reproduce the results shown in [9], we consider
the same discretization of the domain (0, 1) into 101 uniform elements and
the resulting 100 vertices.

We solve the forward problem (3.12) by solving the algebraic system (3.11).
When solving the minimization problem, the BFGS algorithm stops iterating
when the gradient of the error functional is less than 10−6. For some tests,
a noise value δr is added to each of the interior data points where δ ∈ [0, 1]
and r ∈ N (0, 1) (the data on the boundary is always exact). The noise is
generated using numpy’s random generator which is seeded with the value of
2 to ensure the results are reproducible. The neural network used has 1 input
layer, 1 hidden layer with 3 nodes, and 1 output layer. With this network
structure, 10 parameters characterize q(x) and need to be optimized. Unless
otherwise specified, all measurements of u in this section are noise-free and
taken on the entire domain.



CHAPTER 3. NUMERICAL APPROXIMATION OF THE INVERSE
PROBLEM FOR THE POISSON EQUATION 15

3.2.1 Predicting Continuous q(x) Functions

To test the validity of our implementation, we first examine the simple case
from [9] where u(x) = sin2(2πx), f(x) = −8π2 cos(4πx), and g0 = g1 = 0.
In this scenario, the solution to the inverse problem is q(x) = 1. This is the
value the neural network will attempt to reconstruct.

As shown by figures 3.1 and 3.2, the network is highly accurate in its predic-
tion of q.

Figure 3.1: Neural network value of
u(x) when q(x) = 1.

Figure 3.2: Neural network recon-
struction of q(x).

To more rigorously quantify the difference between the two lines in the
graphs, we compute the errors of u and q in the L2(Ω) norm. The low
error values in table 3.1 confirm that the prediction of q is indeed accurate.

We now reproduce the results from [9] for the most complicated continuous
coefficient to further confirm the accuracy of our implementation. For this
scenario, the value of u(x) is the same, but now f(x) = −2π2[2(sin(2πx) +
2) cos(4πx) + sin(4πx) cos(2πx)]. In this case, the solution to the inverse
problem is q(x) = 1 + 1

2
sin(2πx).

Figures 3.3 and 3.4 once again show that the neural network is able to predict
q with a high amount of accuracy. This is also confirmed by table 3.1 which
shows low error values for both u and q. These are the same results reported
in [9].
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Figure 3.3: Neural network value of
u(x) when q(x) = 1 + 1

2
sin(2πx).

Figure 3.4: Neural network recon-
struction of q(x) = 1 + 1

2
sin(2πx).

q(x) = 1 q(x) = 1 + 1
2

sin(2πx)
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
17 1sec 1.25e-04 2.77e-04 379 21sec 3.10e-04 2.89e-03

Table 3.1: Performance of the neural network for the 1D Poisson equation
with continuous coefficients.

Note that in table 3.1 above, "#it" is the number of iterations it takes for the
BFGS algorithm to converge and "Time" is the time it takes for the BFGS
algorithm to converge on a PC with the specifications given in section 2.5.

We now want to confirm the results obtained by our code match those in
[9] when looking at noisy observations of u. To perform this test, we take
the most complicated continuous coefficient q(x) = 1 + 1

2
sin(2πx) and try to

estimate it when δ = 0.05. Figures 3.5-3.6 below demonstrate the ability of
the neural network to recognize q in this case. Table 3.2 further confirms the
ability of the network to estimate q when given noisy observations of u. All
of these results verify those found in [9], which also indicates that our code
is performing as expected.
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Figure 3.5: Neural network value of
u(x) when q(x) = 1 + 1

2
sin(2πx) and

δ = 0.05.

Figure 3.6: Neural network recon-
struction of q(x) = 1 + 1

2
sin(2πx)

when δ = 0.05.

q(x) = 1 + 1
2

sin(2πx), δ = 0.05
#it Time ||u− û|| ||q − q̂||
814 52sec 1.08e-02 6.26e-02

Table 3.2: Performance of the neural network for the 1D Poisson equation
with a continuous coefficient and a noise value of δ = 0.05.

3.2.2 Predicting Discontinuous q(x) Functions

Berg and Nyström have demonstrated the ability of a neural network to
successfully predict q(x) when f = 10, g1 = g2 = 0, and

q =

{
0.5, 0 ≤ x < 0.5

1.5, 0.5 ≤ x ≤ 1
(3.13)

[9] (note that, in this case, u is calculated a priori via the FEM using this
q. The value of q is then "forgotten" and the neural network attempts to
reconstruct it). When exploring more complicated discontinuities, we found
that the network used by Berg and Nyström is not sufficient to capture the
complexity of the q(x) function. For example, the case when f = 10, g1 =
g2 = 0, and

q =

{
x+ 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1
(3.14)

is shown below. Figure 3.7 shows the inability of the network to accurately
capture q(x) with only 3 nodes in the hidden layer. However, when the
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number of nodes in the hidden layer is increased to 9, the network is able
to accurately capture the behavior of q(x), as shown in figure 3.8. This is
confirmed by table 3.3 below, which shows that errors are smaller when using
9 nodes in the network as opposed to 3 nodes.

Figure 3.7: Neural network value of
q(x) with 3 hidden layer nodes.

Figure 3.8: Neural network value of
q(x) with 9 hidden layer nodes.

q =

{
x+ 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1

3 hidden layer nodes 9 hidden layer nodes
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
1531 142sec 5.89e-02 2.09e-01 1505 130sec 2.85e-03 6.20e-02

Table 3.3: Performance comparison between a 3 and 9 hidden layer node net-
work for the 1D Poisson equation with a discontinuous coefficient - example
1.

Note that, at each iteration of the numerical optimization procedure, a finite
element problem of size Nh needs to be solved where Nh is the dimension
of the finite element space, and so the time taken to run the algorithm is
directly related to the size of Nh. This example provides, as far as we are
aware, the first numerical evidence to support the claim in [9] that the struc-
ture of the neural network impacts the performance of the network when
solving the inverse problem.
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The same situation arises for the case when f = 10, g1 = g2 = 0, and

q =

{
sin(4πx) + 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1
. (3.15)

For this case, the oscillating nature of q(x), the discontinuity, and the change
in the slope of the function at the discontinuity point all make the coefficient
highly irregular and so difficult for a neural network to predict. While a
network with 3 nodes in the hidden layer traces the general shape of the
coefficient, a network with 9 nodes in the hidden layer drops the error by an
entire order of magnitude as shown in figure 3.10 below. This is confirmed
by the error chart in table 3.4, which shows that the errors for u and q are
indeed lower for a 9 hidden layer node network.

Figure 3.9: Neural network value of
q(x) with 3 hidden layer nodes.

Figure 3.10: Neural network value of
q(x) with 9 hidden layer nodes.

q =

{
sin(4πx) + 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1

3 hidden layer nodes 9 hidden layer nodes
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
1970 206sec 5.44e-02 2.18e-01 1215 106sec 5.53e-03 6.31e-02

Table 3.4: Performance comparison between a 3 and 9 hidden layer node
network for the 1D Poisson equation with discontinuous coefficient - example
2.

Once again, this example provides numerical evidence to show that the struc-
ture of the neural network can have a significant impact on the network’s
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predictive ability. However, as the number of parameters in the network
increases, it becomes possible that the network begins to over-fit the data.
More research needs to be done to determine the ideal structure of a network
for a given problem a priori.

We now take the coefficient q =

{
sin(4πx) + 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1
from (3.15)

and examine what happens when noise is added to the original measurements
of u (we use the 9 hidden layer node network since this network gives the
best prediction of q). We let δ increase in increments of .10 until δ = 0.50.
The results are summarized in table 3.5 below. As shown in figures 3.11-
3.12, the neural network approximates noisy functions with continuous ones,
which serves to smooth out the noise. This is a desirable result - it is likely
that any measurements of u will be noisy, and so neural networks provide a
method to smooth out this noise in a consistent way.

Figure 3.11: Neural network value of
u(x) when δ = .50.

Figure 3.12: Neural network value of
q(x) when δ = .50.
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q =

{
sin(4πx) + 1, 0 ≤ x < 0.5

−x+ 1, 0.5 ≤ x ≤ 1

δ = 0 δ = 0.10
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
1215 106sec 5.53e-03 6.31e-02 1256 107sec 2.87e-02 1.56e-01

δ = 0.20 δ = 0.30
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
1980 205sec 5.23e-02 1.48e-01 4309 712sec 8.19e-02 2.19e-01

δ = .40 δ = 0.50
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
2829 348sec 1.10e-01 3.20e-01 3427 457sec 1.46e-01 3.69e-01

Table 3.5: Performance comparison between different noise values for the 1D
Poisson equation with a discontinuous coefficient.

As table 3.5 indicates, as soon as you add noise to the measurements of q, the
order of magnitude of the error for the network prediction increases. How-
ever, this new order of magnitude is consistent across all noise levels tested,
which shows that the network still performs relatively well in all of the noisy
cases. This example suggests that the idea of neural network augmentation
can be reliably extended to more practical scenarios where the measurements
of u are likely to be noisy.

All of the simulations in this section demonstrate that neural networks are an
effective way of guessing irregular q(x) coefficients for the inverse 1D Poisson
problem. The most effective networks are those that estimate q using a noise-
free u with enough parameters to accurately capture q. However, a noisy u
and limited number of parameters do not significantly impact the ability of
the network to perform well and could be considered acceptable in many
practical applications.

3.2.3 Predicting q(x) with Limited Observations

We now perform simulations where we assume that we only have access to
measurements of u(x) at a distance d from the boundary. In this situation,
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the error functional (2.3) that we want to minimize simplifies to

J(u(q)) =
1

2

∫ d

0

|umeas − u|2dx+
1

2

∫ 1

1−d
|umeas − u|2dx. (3.16)

In [9], Berg and Nyström found that, even with values as small as d = .1,
a neural network was able to reconstruct q(x) in the entire domain. We
reproduce this result here with q(x) = 1, δ = 0.05, and d = 0.1. While
figures 3.13 and 3.14 are not identical to those found in [9], the general
pattern and error values are the same. The difference is likely due to the
random initialization of the weights and noise values in the code as opposed
to an implementation flaw, and so these results still validate the method we
use in this thesis.

Figure 3.13: Neural network value of
u(x) when q(x) = 1, δ = 0.05, and
d = 0.1.

Figure 3.14: Neural network recon-
struction of q(x) = 1 when δ = 0.05
and d = 0.1.

q(x) = 1, δ = 0.05, d = 0.1
#it Time ||u− û|| ||q − q̂||
8 2sec 2.20e-02 4.01e-02

Table 3.6: Performance of the neural network for the 1D Poisson equation
with a continuous coefficient and a noise value of δ = 0.05 where d = 0.1.

The only q(x) function presented in [9] is q(x) = 1. We now explore more
complicated coefficients to see if the same results hold.
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When q(x) = 1 + x2, a network with a 9 nodes in the hidden layer is not
able to correctly capture the behavior of q(x) when d = .47. However, as
soon as d = .48, the network is suddenly able to capture q(x) correctly. This
phenomenon is shown in figures 3.15-3.16 below.

Figure 3.15: Predicted q(x) when d =
.47 and q(x) = 1 + x2.

Figure 3.16: Predicted q(x) when d =
.48 and q(x) = 1 + x2.

q(x) = 1 + x2

d = .47 d = .48
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
43 4sec 3.65e-02 1.18e-01 194 13sec 3.46e-04 3.55e-03

Table 3.7: Performance comparison between d = .47 and d = .48 when
q(x) = 1 + x2.

When testing other coefficients, the same pattern emerges - a critical value of
d is needed by the network in order to correctly reconstruct q(x) (see figures
3.17-3.18 and table 3.8 for another test case when q(x) = 1 + 0.5 sin(2πx)).
Practically, this means that the network needs a certain number of measure-
ments of u in order to be able to reconstruct q. This critical value changes
depending on the coefficient q. For example, when q(x) = 1, the critical value
is d = .07, which explains why Berg and Nyström found that the network
could successfully reconstruct this coefficient with a value of d = .1.
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Figure 3.17: Predicted q(x) when d =
.49 and q(x) = 1 + 0.5 sin(2πx).

Figure 3.18: Predicted q(x) when d =
.50 and q(x) = 1 + 0.5 sin(2πx).

q(x) = 1 + 0.5 sin(2πx)
d = .49 d = .50

#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
142 9sec 1.66e-02 1.26e-01 838 58sec 1.76e-04 2.50e-03

Table 3.8: Performance comparison between d = .49 and d = .50 when
q(x) = 1 + 0.5 sin(2πx).

It is then plausible to ask whether the network architecture has a bearing
on this critical value. As shown in tables 3.9-3.10 below, it seems that the
network architecture - both in terms of the number of nodes and the number
of layers - has little to no impact on this critical value.
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q(x) = 1 + x2

1 Hidden Layer
Num of Nodes 1 2 3 4 5 6 7 8 9 10

d .46 .48 .48 .46 .48 .47 .48 .49 .48 .48
Num of Nodes 11 12 13 14 15 16 17 18 19 20

d .48 .48 .49 .47 .48 .49 .48 .46 .48 .47
2 Hidden Layers

Num of Nodes 1 2 3 4 5 6 7 8 9 10
d .47 .46 .47 .48 .46 .47 .47 .49 .48 .44

Num of Nodes 11 12 13 14 15 16 17 18 19 20
d .49 .48 .47 .48 .20 .48 .49 .45 .48 .46

Table 3.9: Comparison of the data needed for different network architectures
to accurately predict q when q(x) = 1 + x2.

q(x) = 1 + 0.5 sin(2πx)
1 Hidden Layer

Num of Nodes 1 2 3 4 5 6 7 8 9 10
d N/A .50 .50 .48 .50 .50 .50 .50 .50 .48

Num of Nodes 11 12 13 14 15 16 17 18 19 20
d .50 .50 .50 .50 .50 .50 .50 .50 .50 .50

2 Hidden Layers
Num of Nodes 1 2 3 4 5 6 7 8 9 10

d N/A .49 .49 .46 .49 .50 .47 .42 .47 .50
Num of Nodes 11 12 13 14 15 16 17 18 19 20

d .50 .46 .41 .49 .50 .50 .50 .50 .47 .49

Table 3.10: Comparison of the data needed for different network architectures
to accurately predict q when q(x) = 1 + 0.5 sin(2πx).

In the tables above, the number of nodes corresponds to the number of nodes
in the hidden layer, and for the network with 2 hidden layers, the number of
nodes corresponds to the number of nodes in each of the hidden layers. As
the tables show, the critical value of d changes little when compared to the
network architecture, which suggests that neural networks cannot increase
their probability of correctly guessing a q by scaling up their number of pa-
rameters if a sufficient amount of data about u is not first provided. As far
as we are aware, this is the first time this particular phenomenon is being
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reported in the literature and so more research needs to be done to better
understand this behavior.

The scenarios in this section demonstrate that some values of q need many
observations of u in order to correctly reconstruct the coefficient, which shows
that the amount of measurement data available to the user has a large im-
part of the performance of this method. All of these experiments also show
that the relationship between the structure of the neural network and the
network’s ability to predict an unknown coefficient is not straightforward.
However, constructing the best network for a given problem a priori is still
a topic of much research.

3.3 Estimating the Diffusion Coefficient of the
Poisson Equation for the Dimension N = 2

We now attempt to extend the ideas from section 3.2 to the 2D Poisson prob-
lem given by equation (3.1) above. For this problem, the functions u, f , and g
are known and we would like to estimate the coefficient q(x, y) : R2 → (0,∞).
We let Ω = [0, 1]× [0, 1] be the unit square which we discretize using a uni-
form mesh with 101 × 101 (i.e 10.201) elements and 20.000 vertices. The
neural network we use for the 2D problem has 2 input layers, 2 hidden layers
with 10 nodes, and 1 output layer (the 2 input nodes are for the x and y
coordinates of the domain, respectively). With this network structure, 151
parameters characterize q and need to be optimized. The BFGS algorithm
now stops iterating when the norm of the gradient is less than 10−7 and all
of the parameters of the neural network are initialized with numpy’s random
number generator to a value in [0, 1). For some tests, a noise value δr is
added to each of the interior data points where δ ∈ [0, 1] and r ∈ N (0, 1)
(the data on the boundary is always exact). Numpy’s random seed generator
is seeded with the value of 2 for reproducibility. Unless otherwise specified,
all measurements of u in this section are noise-free and taken on the entire
domain.

Berg and Nyström have demonstrated the ability of a neural network to
correctly guess some simple q functions in this case [9]. In the sections
below, we build on their idea by adding noise to the observations of u and
by experimenting with more complex q functions, such as discontinuous q’s.
We also explore what happens when observations in the domain are limited.
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3.3.1 Predicting an Oscillating q Function with Noise

In [9], Berg and Nyström demonstrated the ability of a neural network to rec-
ognize q in the scenario when u = sin(πx) sin(πy) and q = 1+0.5 sin(2πx) sin(2πy).
However, they did not analyze the scenario when the observations of u are
noisy, and so we now provide these results below.

As in the 1D Poisson case, we add noise to the observations of u by letting δ
increase in increments of .10 until δ = 0.50. The results are summarized in
table 3.11 below. Figure 3.20 shows the value of u in the most extreme case
when δ = .50. As you can see from figures 3.21-3.22, the neural network is still
able to approximate the shape of the function q, even if the approximation
is somewhat poor. This is still a nice result - it shows that even with a
lot of noise, neural networks have a promising ability to smooth out the
observations and reconstruct a continuous q that resembles the actual value
of q.

Figure 3.19: u = sin(πx) sin(πy)
when δ = 0.

Figure 3.20: u = sin(πx) sin(πy)
when δ = 0.50.
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Figure 3.21: The q to be estimated by
the network.

Figure 3.22: Predicted q estimated by
the network when δ = .50.

q = 1 + 0.5 sin(2πx) sin(2πy)
δ = 0 δ = 0.10

#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
3089 58min 9.48e-04 2.29e-01 10627 3hrs 40min 9.76e-03 3.99e-01

δ = 0.20 δ = 0.30
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
3626 1hr 9min 1.31e-02 2.61e-01 3704 1hr 20min 2.79e-02 2.78e+00

δ = .40 δ = 0.50
#it Time ||u− û|| ||q − q̂|| #it Time ||u− û|| ||q − q̂||
1384 29min 2.62e-02 3.63e-01 530 11min 2.52e-02 2.69e-01

Table 3.11: Performance comparison between different noise values for the
2D Poisson equation for an oscillating coefficient.

Notice that the time it takes for the algorithm to converge is significantly
longer for the 2D Poisson problem than it is for the 1D Poisson problem. This
is because the number of mesh elements jumps from 101 to 10.201, thereby
greatly increasing the degrees of freedom present in the discretization of the
PDE. This time is prohibitive for any sort of practical application. However,
we adapt some ideas from [27] in chapter 5 to introduce an innovative method
that reduces the computational complexity of this problem.
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3.3.2 Predicting Discontinuous q Functions

We now extend the idea of neural network augmentation to discontinuous co-
efficients for 2D problems. This extension allows us to explore more unusual
and interesting discontinuities that provide more insight into the effective-
ness of the neural network predictions.

The first case we examine is a simple scenario where f = 10, g = 0, and q is
given by the function

q =

{
.5, [0, .5)× [0, 1]

1.5, [.5, 1]× [0, 1]
(3.17)

(see figure 3.23). The fact that ||u− û|| = 2.13 ·10−4 and ||q− q̂|| = 3.44 ·10−2

points to the ability of the neural network to successfully recognize jump dis-
continuities in the 2D Poisson case. This is further confirmed by figure 3.24.

Figure 3.23: Actual discontinuous q
to be estimated by the neural network
- example 1.

Figure 3.24: Predicted discontinuous
q estimated by the neural network -
example 1.

We now explore a more complicated scenario where f = 10, g = 0, and q is
given by the function

q =

{
.5, [0, .5)× [.5, 1] ∪ [.5, 1]× [0, .5)

1.5, [0, .5)× [0, .5) ∪ [.5, 1]× [.5, 1]
(3.18)
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(see figure 3.25). In this scenario, ||u − û|| = 8.68 · 10−4 and ||q − q̂|| =
4.29 · 10−2, which points to good performance of the network. This is fur-
ther confirmed by figure 3.26 below. This result is promising as it shows
that neural networks are able to recognize more complicated discontinuous q
functions in 2D provided the network has a sufficient number of parameters.

Figure 3.25: Actual discontinuous q
to be estimated by the neural network
- example 2.

Figure 3.26: Predicted discontinuous
q estimated by the neural network -
example 2.

However, whenever q becomes too complicated, the network can no longer
correctly identify it with a large amount of accuracy. For example, when

q =


.5, [0, .33)× [.33, .66) ∪ [.33, .66)× [0, .33)∪

[.33, .66)× [.66, 1] ∪ [.66, 1]× [.33, .66)

1.5, otherwise
, (3.19)

the predictions of the network grow significantly larger, as evidenced by the
error ||q − q̂|| = 1.17 (see figures 3.27-3.28). However, the network is still
able to capture the general shape of the coefficient, which perhaps implies
that the architecture of the network could be enriched in order to capture
the discontinuities with the desired accuracy. However, the best method of
designing a network for a given problem is still mostly heuristic because the
set of functions a network can represent given a fixed architecture is still
unknown.
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Figure 3.27: Actual discontinuous q
to be estimated by the neural network
- example 3.

Figure 3.28: Predicted discontinuous
q estimated by the neural network -
example 3.

The results from this section are summarized in table 3.12 below.

q =

{
.5, [0, .5)× [0, 1]

1.5, [.5, 1]× [0, 1]

#it Time ||u− û|| ||q − q̂||
2036 36min 2.13e-04 3.44e-02

q =

{
.5, [0, .5)× [.5, 1] ∪ [.5, 1]× [0, .5)

1.5, [0, .5)× [0, .5) ∪ [.5, 1]× [.5, 1]

#it Time ||u− û|| ||q − q̂||
1476 28min 8.68e-04 4.29e-02

q =


.5, [0, .33)× [.33, .66) ∪ [.33, .66)× [0, .33)∪

[.33, .66)× [.66, 1] ∪ [.66, 1]× [.33, .66)

1.5, otherwise
#it Time ||u− û|| ||q − q̂||
6260 1hr 57min 2.36e-02 1.17e+00

Table 3.12: Performance comparison of the discontinuous coefficients for the
2D Poisson equation.





Chapter 4

Identification of Material
Properties for Nonlinear
Elasticity Problems

Given the promising results in the previous chapter, we now consider a new
problem by augmenting a more complicated PDE with a neural network. In
this chapter, we consider the solution of inverse problems related to solid
mechanics with the aim of identifying Young’s modulus in the case of steady
nonlinear elasticity equations characterized by a nearly-incompressible neo-
Hookean constitutive law. This is a problem commonly found in structural
mechanics when one wants to predict the nonlinear behavior of materials that
undergo large deformations. We examine both the 2D and the 3D problem
by testing a variety of coefficients, sometimes with noisy and limited obser-
vations of the solution. The results demonstrate that neural networks are
successful at predicting Young’s modulus for nonlinear mechanics problems,
although the computational cost increases significantly as compared to the
Poisson equation from chapter 3. This is a novel extension of the technique
in [9] that has both practical and theoretical implications for the study of
inverse problems.

4.1 Variational Formulation of the Nonlinear
Elasticity Equation with a Hyperelastic Ma-
terial

For the nonlinear elasticity equation with a hyperelastic material, we take
a different approach than we did for the Poisson equation to arrive at the

33
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variational formulation of the problem. For this problem, we express the
solution as the minimum of a suitable energy functional.

Given a domain Ω ⊂ RN whereN ∈ {1, 2, 3}, the nonlinear elasticity problem
is to find a displacement field u : Ω→ RN that minimizes the total potential
energy Π given by

Π =

∫
Ω

ψ(u) dx−
∫

Ω

B · u dx−
∫
∂Ω

T · u ds (4.1)

where ψ is the elastic stored energy, B is the body force per unit volume,
and T is the traction force per unit area. The minimization problem is then
expressed as: Find a u∗ ∈ V such that

u∗ = min
u∈V

Π (4.2)

where V = {v ∈ [H1(Ω)]N | v|ΓD
= 0} and ΓD is the Dirichlet part of the

boundary.

To fully define the elastic stored energy ψ, we use the same model from [13]
and consider the deformation gradient F = I + ∇u where I is the identity
tensor. We can then define the right Cauchy-Green tensor as C = F TF and
the scalars J = det(F ) and Ic = Tr(C). The neo-Hookean stored energy
model for ψ is then

ψ =
µ

2
(Ic − 3)− µ ln(J) +

λ

2
ln(J)2

where µ and λ are the Lame parameters. In order to make a stronger parallel
between the nonlinear and linear elasticity cases, the Lame parameters can
be expressed in terms of two other coefficients E and ν where

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

As a slight abuse of language, we will refer to E as Young’s modulus and ν
as Poisson’s ratio. For a more thorough introduction to nonlinear elasticity,
see [11].

To arrive at the variational formulation of (4.2), let

L(u; v) = DvΠ =
dΠ(u+ εv)

dε

∣∣∣∣
ε=0
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be the directional derivative of Π with respect to u. Note that, at the min-
imum points of Π, L(u; v) = 0 ∀ v ∈ V . The variational formulation of the
problem is then: Find a u ∈ V such that

L(u; v) = 0 ∀ v ∈ V. (4.3)

As in section 3.1, this variational formulation is discretized using linear con-
tinuous piecewise polynomials and transformed into an algebraic system.
However, this time the variational form L(u; v) is nonlinear in u, and so we
use Newton’s method with the Jacobian of L in order to solve the resulting
system.

For the inverse problem, we will consider the situation where u is given and
Young’s modulus E needs to be estimated. To get the value of u needed for
the inverse problem, we first solve the minimization problem with the value
of E we want to predict. After u is obtained, we "forget" this value and the
minimization problem (2.5) is solved in an attempt to "re-obtain" the correct
value of E.

4.2 Estimating Young’s Modulus in the Non-
linear Elasticity Equation for the Dimen-
sion N = 2

For the 2D problem, we consider a unit square domain Ω = [0, 1]× [0, 1] with
mixed boundary conditions

ΓD = {0} × [0, 1]

ΓN = ∂Ω \ ΓD

where ΓD is the Dirichlet boundary and ΓN is the Neumann boundary. On
both boundaries, u(x) = (0, 0). Also, we let B = (0,−1) and ν = 0.3. This
represents an object fixed to a wall that does not have any traction force
applied to its boundary but does have a downward force acting upon it.

The neural network we use has 2 input layers, 1 hidden layer with 10 nodes,
and 1 output layer. This network has one less layer than the network used
for the 2D Poisson equation in section 3.3 since it was discovered that a net-
work with a smaller number of parameters performed better for this problem.
With this network structure, 41 parameters characterize E and need to be
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optimized. The BFGS algorithm stops iterating when the norm of the gra-
dient is less than 10−7. All of the parameters of the neural network are
initialized with numpy’s random number generator to a value between [0, 1).
For reproducible results, the seed of the random number generator is set to
2. Unless otherwise specified, all measurements of u in this section are noise-
free and taken on the entire domain..

A uniform triangular mesh with 25×25 (i.e. 625) elements and 1152 vertices
is used to discretize the domain (see figure 4.1).

Figure 4.1: 2D mesh for the nonlinear elasticity problem.

4.2.1 Predicting Constant E Functions

The first problem we consider is trying to predict an E that is constant across
the domain. We choose the value E = 10, which leads to the deformation
shown in figure 4.3. As shown by figure 4.4, the neural network is able to
predict this E with an accuracy that is on the order of 10−2, which demon-
strates the good predictive ability of the network in this scenario.
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Figure 4.2: Actual value of E(x). Figure 4.3: u(x) when E(x) = 10.

Figure 4.4: Neural network value of
E(x).

Figure 4.5: Neural network value of
E(x) with limited observations.

Following the methodology for the Poisson problem, we now limit the obser-
vations of u to the boundary of the domain, which is equivalent to minimiz-
ing the functional J over the boundary instead of over the whole domain.
More specifically, we now take measurements of the displacement that are
acquired on ΓN . The results are shown in figure 4.5. Remarkably, these
results show an improved performance of the neural network as compared
to the case when all the data of u is available. While it is unclear exactly
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why this happens, part of the reason could be because the boundary gives
the most information about the deformation of the object, and so aligning
the boundary of the object to be within the threshold value for the termina-
tion of the BFGS algorithm actually aligns the whole object more accurately.

The results of these tests are summarized in table 4.1 below.

E(x) = 10
All observations of u Boundary observations of u

#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
55 29sec 3.07e-05 1.09e-02 56 27sec 8.49e-06 4.24e-03

Table 4.1: Performance comparison between having all the observations of
u and just the boundary observations of u for the 2D nonlinear elasticity
equation with a constant E.

Since the performance of the network is good when there is no noise, it makes
sense to ask if the same results hold after noise is introduced. To test this
scenario, we let δ increase in increments of .05 until δ = 0.25 (this is different
than the 1D Poisson case in section 3.2.2 as we discovered that the BFGS
algorithm is unable to converge if u becomes too noisy). However, we only
take observations of u on the boundary since this result performed better in
the test case above. The results of adding noise to the observations of u are
summarized in table 4.2 below.

E(x) = 10, Observations taken on the boundary of u
δ = 0 δ = 0.05

#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
56 27sec 8.49e-06 4.24e-03 60 28sec 6.13e-03 2.27e-01

δ = 0.10 δ = 0.15

#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
60 27sec 1.23e-02 4.50e-01 56 27sec 1.84e-02 6.66e-01

δ = .20 δ = 0.25

#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
58 31sec 2.45e-02 8.83e-01 49 26sec 3.06e-02 1.09e+00

Table 4.2: Performance comparison between different noise values for the 2D
nonlinear elasticity equation with a constant coefficient.
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As the table shows, the ability of the network to correctly identify E weakens
significantly as the noise value δ increases. As soon as any noise is added
to u, the order of magnitude of the error of u increases by 3 and the order
of magnitude of the error of E increases by 2. Figure 4.7 below shows the
extreme case when δ = 0.25. As shown from the figure, the prediction of E
begins to look more linear as opposed to constant when noisy observations
are taken from the boundary. This data shows that the 2D nonlinear elas-
ticity equation presents more challenges to the neural network prediction of
parameters than the 2D Poisson equation does.

Figure 4.6: Value of u(x) on the
boundary with 25% noise.

Figure 4.7: Neural network value
of E(x) when observing a u on the
boundary with 25% noise.

4.2.2 Predicting Discontinuous E Functions

The next E we consider is one that has a sharp discontinuity in the middle
of the domain. This simulates a simple situation in which an object is made
from two distinct materials. More specifically, we let

E(x) =

{
10, x ∈ [0, 0.5)× [0, 1]

100, x ∈ [0.5, 1]× [0, 1]

This produces the u(x) shown in figure 4.9. Since neural networks predict
globally continuous functions, the discontinuity in E is harder for the net-
work to capture. However, as shown in figure 4.10, the network is, in fact,
relatively successful at capturing the discontinuity. However, the order of
magnitude of the error for the value of E is 10, which is much greater than
in the constant case. The error grows more when only the boundary of the
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domain is observed, as seen in figure 4.11 and table 4.3. This is also the
opposite of what happens with a constant E, which shows that a discontinu-
ous E presents more problems for the neural network than a constant E does.

Figure 4.8: Actual value for a discon-
tinuous E(x) - example 1.

Figure 4.9: u(x) with a discontinuous
E(x) - example 1.

Figure 4.10: Neural network value for
a discontinuous E(x) - example 1.

Figure 4.11: Neural network value for
a discontinuous E(x) with limited ob-
servations - example 1.
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E(x) =

{
10, x ∈ [0, 0.5)× [0, 1]

100, x ∈ [0.5, 1]× [0, 1]

All observations of u Boundary observations of u
#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
172 51sec 6.58e-04 3.44e+01 218 109sec 6.08e-04 3.64e+01

Table 4.3: Performance comparison between having all the observations of
u and just the boundary observations of u for the 2D nonlinear elasticity
equation with a simple discontinuous coefficient.

The final discontinuous E we consider is one, like in section 3.3, that is broken
into 4 uniform squares over the domain. More specifically,

E(x) =

{
10, [0, .5)× [.5, 1] ∪ [.5, 1]× [0, .5)

100, [0, .5)× [0, .5) ∪ [.5, 1]× [.5, 1]

as shown in figure 4.12. Figure 4.13 demonstrates that the neural network
cannot recognize this particular E function. Instead, the network predicts
an E that looks linear. The Netwon method used to solve the forward PDE
problem is also unable to converge when observations are only taken on the
boundary of the domain, as indicated by the "N/A" values in table 4.4.

It is unclear why the network fails in this case. It is possible that, because
the inverse problem is not well-posed, more than one solution exists, and so
the solution found by the network is plausible. It is also possible that the
structure of the network does not permit it to guess this type of solution (al-
though many other network structures were tested, none of which were able
to recognize the correct E value). Another potential problem could be that
the Newton method is initialized in such a way that the initial guess might
be too far away from the solution, and so the method might not converge.
In this scenario, reducing the number of optimization steps could potentially
improve the results.

This scenario demonstrates that the nonlinear elasticity problem presents
more difficulties for the neural network than the Poisson problem does, as
the 2D Poisson problem is able to recognize a highly discontinuous coefficient
pattern that resembles the pattern for E seen here. More experimentation
needs to be done to determine why the network is unable to perform in this
case.
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Figure 4.12: Actual value of E(x) for
a more complicated discontinuous co-
efficient.

Figure 4.13: Neural network value of
E(x) for a more complicated discon-
tinuous coefficient.

E(x) =

{
10, [0, .5)× [.5, 1] ∪ [.5, 1]× [0, .5)

100, [0, .5)× [0, .5) ∪ [.5, 1]× [.5, 1]

All observations of u Boundary observations of u
#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
140 28sec 3.62e-03 5.21e+01 N/A N/A N/A N/A

Table 4.4: Performance comparison between having all the observations of
u and just the boundary observations of u for the 2D nonlinear elasticity
equation for a more complicated discontinuous coefficient.

Overall, the performance of the network in the discontinuous cases is less than
ideal, and so no tests are performed where noise is added to the observations
of u.

4.3 Estimating Young’s Modulus in the Non-
linear Elasticity Equation for the Dimen-
sion N = 3

Many applications of nonlinear elasticity problems involve 3D objects, and
so we now attempt to extend the results from the previous section to the 3D
case. This time we consider a unit cube domain Ω = [0, 1] × [0, 1] × [0, 1]
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with mixed boundary conditions

ΓD = {0} × [0, 1]× [0, 1]

ΓN = ∂Ω \ ΓD

where ΓD is the Dirichlet boundary and ΓN is the Neumann boundary. On
both boundaries u(x) = (0, 0, 0). Also, we let B = (0, 0,−1) and ν = 0.3.
This represents an object fixed to a wall that does not have any traction
force applied to its boundary but does have a downward force acting upon
it, as in the 2D scenario.

The neural network used to augment the problem has 3 inputs nodes, 1 hid-
den layer with 30 nodes, and 1 output node. The 3 input nodes are for
the x, y, and z coordinates of the domain, respectively. With this network
structure, 151 parameters characterize E and need to be optimized. The
parameters of the network are initialized as described in the 2D problem
above. Unless otherwise specified, all measurements of u in this section are
noise-free and taken on the entire domain.

A uniform triangular mesh with 25×17×17 (i.e. 7.225) elements and 36.864
vertices is used to discretize the domain (see figure 4.14).

Figure 4.14: 3D mesh for the nonlinear elasticity problem.

4.3.1 Predicting Constant E Functions

We first consider an E that is constant across the domain. As in the 2D
case, we start with the value E = 10. Figures 4.15 - 4.16 below show that
the neural network can properly reconstruct this E value (see table 4.5 for
the error and efficiency analysis).
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Figure 4.15: Actual value of E(x)
when E(x) = 10.

Figure 4.16: Neural network predic-
tion of E(x) = 10.

As in the 2D case, we now limit the observations of u to the boundary. As
shown in figure 4.17 below, this limitation does not affect the ability of the
neural network to correctly identify the value of E. In fact, it actually im-
proves the results as it did in the 2D case. For a more comprehensive analysis
of these two cases, see table 4.5.

Figure 4.17: Neural network prediction of E(x) = 10 with data limited to
the boundary.
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E(x) = 10
All observations of u Boundary observations of u

#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
59 2hrs 17min 5.29e-04 2.64e-01 76 2hrs 41min 1.21e-05 6.26e-03

Table 4.5: Performance comparison between having all the observations of
u and just the boundary observations of u for the 3D nonlinear elasticity
equation for a constant coefficient.

Since we are now working in 3D, we can limit the observations on the bound-
ary of the cube in more interesting ways to see if these limitations have any
effect on the performance of the neural network. The first boundary we
test is a checkerboard pattern on the boundary that incorporates 50% of the
boundary data into the observations. More specifically, we let Ω = Ω0 ∪ Ω1

where

Ω0 = {(x, y, z) ∈ Ω : sin(8 ∗ π ∗ x) sin(8 ∗ π ∗ x) ≥ 0 ∪
sin(8 ∗ π ∗ x) sin(8 ∗ π ∗ z) ≥ 0 ∪
sin(8 ∗ π ∗ y) sin(8 ∗ π ∗ z) ≥ 0}

and Ω1 = Ω \Ω0. Observations are only taken on Ω0 (see figure 4.18 below -
the blue part of the cube is where we gather the observations).

Figure 4.18: Checkerboard domain
for the 3D nonlinear elasticity prob-
lem.

Figure 4.19: Neural network predic-
tion of E(x) = 10.

As shown in figure 4.19, the checkerboard boundary has almost no effect on
the ability of the neural network to accurately recognize the correct value of
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E. This suggests that the network does not need a lot of data on the surface
of the cube in order to correctly identify a simple E function.

Since the checkerboard case performed well, we decided to test further bound-
ary restrictions to see if the same results hold. As in the 1D Poisson problem,
we decide to take all observations within a certain distance d from the bound-
ary. Figures 4.20-4.28 below show the various different boundaries tested
(once again the blue part of the boundary is where observations are taken).
The error and efficiency analysis for all of these cases is presented in table
4.6.

Figure 4.20: The unit cube with 50%
of the observations taken from the
boundary.

Figure 4.21: Neural network predic-
tion of E = 10 with 50% of the obser-
vations taken from the boundary.
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Figure 4.22: The unit cube with 30%
of the observations taken from the
boundary.

Figure 4.23: Neural network predic-
tion of E = 10 with 30% of the obser-
vations taken from the boundary.

Figure 4.24: The unit cube with 20%
of the observations taken from the
boundary.

Figure 4.25: Neural network predic-
tion of E = 10 with 20% of the obser-
vations taken from the boundary.
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Figure 4.26: The unit cube with 10%
of the observations taken from the
boundary.

Figure 4.27: Neural network predic-
tion of E = 10 with 10% of the obser-
vations taken from the boundary.

Figure 4.28: The unit cube with 5%
of the observations taken from the
boundary.

Figure 4.29: Neural network predic-
tion of E = 10 with 5% of the obser-
vations taken from the boundary.
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E = 10
Checkerboard boundary with 50% data 50% of observations on the boundary
#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
82 4hrs 3min 1.59e-05 6.30e-03 82 3hrs 05min 1.25e-05 6.73e-03

30% of observations on the boundary 20% of observations the on boundary
#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
77 3hrs 18min 1.36e-05 6.93e-03 81 4hrs 08min 1.20e-05 6.15e-03

10% of observations on the boundary 5% of observations the on boundary
#it Time ||u− û|| ||E − Ê|| #it Time ||u− û|| ||E − Ê||
59 2hrs 10min 7.20e-04 2.99e-01 59 2hrs 09min 6.85e-04 2.90e-01

Table 4.6: Performance comparison between different restrictions on the ob-
servations of u for the 3D nonlinear elasticity equation with a constant E.

As table 4.6 shows, the neural network is highly accurate at predicting the
correct value of E until δ = .10, at which point the error in E increases by
2 orders of magnitude. This seems to indicate that there is a sort of critical
value - just like in the 1D Poisson case - where the network loses a large
amount of its accuracy in estimating q. More research needs to be performed
to determine if such a critical value exists and, if so, the primary factors that
affect it.

4.3.2 Predicting Discontinuous E Functions

Following the pattern for the 2D nonlinear elasticity problem, we now ex-
plore what happens when trying to identify a discontinuous coefficient. More
specifically, we let

E =

{
10, [0, .5)× [0, 1]× [0, 1]

100, [.5, 1]× [0, 1]× [0, 1]

as shown in figure 4.30. As figure 4.31 and table 4.7 demonstrate, the 3D
case does seem to be able to recognize discontinuous E coefficients, although
the order of magnitude of the error is fairly large. Also, due to the number of
degrees of freedom of the mesh, these cases take a lot of computational power,
and so they are more difficult to test efficiently (see chapter 5 below for a way
to potentially speedup these computations). This initial test suggests that
neural networks might be able to perform well for irregular coefficients in
the 3D case, but more experimentation needs to be done with networks that
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have a higher number of parameters, more refined mesh structures, etc. in
order to definitively determine the abilities and limitations of neural network
augmentation in recognizing irregular coefficients for 3D domains.

Figure 4.30: Actual discontinuous E
to be predicted by the neural network.

Figure 4.31: Discontinuous E pre-
dicted by the neural network.

E =

{
10, [0, .5)× [0, 1]× [0, 1]

100, [.5, 1]× [0, 1]× [0, 1]

#it Time ||u− û|| ||E − Ê||
344 13hrs 54min 46s 9.67e-04 2.09e+01

Table 4.7: Performance of the neural network for the 3D nonlinear elasticity
equation with a discontinuous coefficient.



Chapter 5

Enhancing Computational
Efficiency via the Reduced Basis
Method

So far we have shown that neural networks can be effectively employed for
the numerical solution of inverse problems for a wide variety of coefficients
and differential equations. However, the results above also show that the
method of solving the minimization problem (2.5) can be costly, particularly
when the degrees of freedom of the mesh are high and the differential equa-
tion is more complex. This is due to the fact that the differential equation
needs to be solved during every iteration of the BFGS algorithm. Since we
are using the FEM on a fine mesh (i.e. we are using a high-fidelity model),
this solve can be computationally expensive. To find a way to reduce the
computational cost of solving the minimization problem (2.5), we want to
focus on reducing the computational cost of this forward solve of the PDE.

One such method to reduce this cost is known as the reduced basis (RB)
method. The initial design of RB methods began in the 1970’s with the
need for both the repetitive evaluation of a parameterized PDE problem and
efficient parameter continuation methods for nonlinear problems [1, 14, 33].
These approaches were then extended to many different classes of differen-
tial equations, such as the Navier-Stokes equations in fluid dynamics [8, 19].
During the last decade, RB methods that utilize both greedy algorithms
and proper orthogonal decomposition (POD) have been successfully used to
speedup the computation of the solution to the forward parameterized PDE
[10, 15, 24]. More recently, authors like [27] have been successful at com-
bining RB methods with other techniques - such as a Bayesian approach to
solve large inverse problems - to reduce the computational complexity of the
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original method.

The idea behind the reduced basis method is the assumption that the solu-
tion manifold for a PDE can be represented by a relatively small number of
basis functions. A solve of the PDE then becomes equivalent to a Galerkin
projection onto the space spanned by the reduced basis. While the cost of
constructing the reduced basis space can be large, it only needs to be per-
formed once per problem. Once the space has been constructed, the cost of
the Galerkin projection onto the space is small. This means that reduced
basis methods are a great tool to employ when a forward solve of a PDE
problem needs to be evaluated multiple times, as is the case for our mini-
mization problem.

In this chapter, we introduce a novel approach that combines the reduced
basis method with the neural network augmentation of PDE problems to
improve computational efficiency. We show that this approach has the po-
tential to be effective in reducing computational cost while maintaining the
accuracy of the prediction of the PDE coefficient. However, there are some
theoretical and practical concerns that arise from the use of this method that
are also outlined below. All of the simulations in this chapter are performed
with the RBniCS package [17].

5.1 Introduction to the Reduced Basis Method
Since we are using a neural network to characterize the coefficient of a PDE,
we can interpret the PDE system (2.1) from section 2.1 as a parametric
problem. More specifically, we want to find a u(µ) ∈ V such that

F (u(µ), q(µ)) = 0, in Ω

u(µ) = g, on ∂Ω
(5.1)

where µ is a vector of parameters. We then define the solution manifold as
the set that contains all of the solutions of the parametric equation (5.1) as
µ varies between all possible values, i.e.

M = {u(µ) : µ ∈ P} ⊂ V

where P is the parameter domain and each u(µ) ∈ V is a solution to (5.1). We
assume that this solution manifold has a low dimension, which is equivalent to
saying that the span of a relatively low number of well-chosen basis functions
can represent the manifold with a small error (note that this assumption may
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not be valid for the scenario presented in this thesis, see section 5.3). There
are 2 parts to the RB method: constructing the RB space that approximates
the solution manifold (known as the offline phase) and performing a Galerkin
projection of a specific value of the parameter vector µ onto the RB space to
approximate the forward solve of the PDE (known as the online phase).

During the offline phase, we seek to construct an N -dimensional subspace
VN of V by approximating the solution manifoldM with an N -dimensional
manifold MN . Many methods exist to construct this reduced basis space,
such as proper orthogonal decomposition (POD) or a greedy algorithmic ap-
proach, the latter of which we utilize here. To use the greedy algorithmic
approach, we first introduce a finite-dimensional set of points in the parame-
ter domain Ph ⊂ P where dim(Ph) <∞. We can then generate the manifold
Mh(Ph) = {u(µ) : µ ∈ Ph} ⊂ M. As long as Ph is fine enough,Mh is a good
representation of M. The greedy algorithm is an iterative procedure that
adds a basis function to VN at each iteration. The greedy algorithm picks
this function by maximizing the estimated model order reduction error of the
previous space spanned by the existing basis functions. It requires one solu-
tion of the PDE to be computed at each iteration for a total of N solutions
that need to be calculated in order to construct the space. This means that
the offline procedure could, in theory, be computationally expensive. This
is offset by the fact that it only needs to be performed once per problem.
The advantage of using the greedy algorithm instead of POD is that is allows
for Ph to be more dense, which is highly desirable for our problem since the
range of the parameters is large. For more information on how the greedy
algorithm works, see [17].

After the RB space has been constructed, we move to the online part of the
method where we compute a solution uN(µ) in the RB space VN through a
Galerkin projection. Formally, this procedure is similar to the one described
in section 2.3 for the Galerkin Finite Element method; the only difference
is that we are now projecting onto the reduced basis space VN instead of
the discrete subspace Vh. In order to speed up the computation, we assume
that all the bilinear forms associated to the weak form of the problem have
an affine decomposition (i.e. they are able to be written in terms of a sum
of coefficients that only depend on µ multiplied with a form that does not
depend on µ). This is called the affine assumption and it does not always
hold. When it does not hold - which is the case encountered in this thesis
- an approximate bilinear form can be found that does have an affine de-
composition using a technique known as the empirical interpolation method
(EIM) [7]. Ideally, the computational cost of the online portion of the algo-
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rithm is only dependent upon N , which makes the online evaluation of the
PDE computationally efficient. For a more comprehensive overview of the
RB method, the greedy algorithm, and the EIM method, see the excellent
introduction provided by [17].

In our scenario, the PDEs we consider are parameterized by the weights and
biases of the neural network. This means that the solution manifold M is
generated by all the possible neural network functions that could represent
the desired coefficient given a fixed network architecture.

5.2 The Reduced Basis Method Applied to the
Poisson Problem

To study the effectiveness of the reduced basis method when combined with
the neural network augmentation of a PDE problem, we examine the case of
the Poisson equation from section 3.3:

−∇ · (q(x)∇u(x)) = f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

where f = 10 and g = 0. As mentioned in the section above, the solution
manifoldM is formed by all the possible representations of q attainable with
a fixed neural network architecture. This means that M can become large
quickly, particularly as the number of network parameters increases. The im-
plication is that it is unlikely thatM has a low dimension when the number
of parameters of the network is large. To try and mitigate this problem, we
use a neural network with 1 hidden layer of 10 nodes instead of 2 hidden lay-
ers with 10 nodes each (as was done in section 3.3) to reduce the number of
parameters from 151 to 41. To select the subspace Ph, we limit each parame-
ter to the range [−100, 100]. This range is heuristically selected in such a way
that it still allows the neural network to capture a wide variety of functions
while attempting to limit the size of Ph for computational efficiency. As a
result, the parameter space Ph is the cross product of the interval [−100, 100]
for all 41 parameters. We let the RB method train over a training set of 50
parameter points during the offline phase. The maximum number of basis
functions N is set to 50 while the tolerance for the error over the training
set is set at 1 · 10−6. The EIM algorithm trains over a set of 60 parameter
points and allows, at most, 100 terms. The tolerance for the EIM algorithm
is also set at 1 · 10−6.
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For this particular problem, the offline training of the RB method takes al-
most 6 hours to complete. There are several reasons as to why the offline
phase could be so computationally expensive: the parameter space Ph is quite
large and needs to be explored by both the EIM method and when the con-
struction of the RB space is taking place, at least 50 complete solves of the
PDE need to be performed, and the physical memory of the machine running
the code is too small to store all of the checkpoints needed for the calculations
(the last factor is the major contributor to the poor offline performance as
many calculations need to be read and written to the hard drive). However,
this offline procedure only needs to be performed once for all of the test cases
outlined below.

Running an error analysis for both the EIM method and the approximation
V50 of V on a test set of 50 observations produces the results shown in table
5.1. These results show that the average of the errors over the 50 element
test set is small, and so we can expect the approximations provided by the
EIM method and VN to be relatively good.

EIM Error RB Error
Avg Error Avg Relative Error Avg Error Avg Relative Error
2.51e-13 1.62e-15 2.98e-13 1.25e-12

Table 5.1: Error analysis for the EIM method and RB approximation of V .

To demonstrate the feasibility of using the RB method for neural network
augmented PDEs, we start by setting q = 10. Figures 5.1-5.2 show the
comparison of the predictions when using the high-fidelity FEM forward solve
and the RB low-fidelity forward solve. As table 5.2 confirms, the reduced
basis method is able to predict q with a reasonable amount of accuracy and
in slightly less time. While the order of magnitude of the error is greater with
the reduced basis method, this is to be expected - the solution manifoldM
is only approximated byMh. If needed, it is possible to enrich the reduced
basis space during the offline phase in order to try and close the gap between
these errors.
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Figure 5.1: FEM prediction of q for a
constant coefficient.

Figure 5.2: Reduced basis prediction
of q for a constant coefficient.

q = 10
FEM Reduced Basis

#it Time ||u− û|| ||q − q̂|| #it Online Time ||u− û|| ||q − q̂||
53 44sec 1.23e-05 5.26e-03 39 39sec 6.13e-05 1.80e-02

Table 5.2: Performance comparison between the FEM and RB methods of
solving the Poisson problem for a constant coefficient.

Figures 5.3-5.4 and table 5.3 show that similar results hold for the scenario
when q is linear in both x and y, e.g. q = 1+x+y. The improved performance
provided by the RB method becomes significantly more evident in this case
- over half of the computational cost is cut. This example demonstrates the
potential speedup power of the RB method and highlights the clear benefits
of this approach.
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Figure 5.3: FEM prediction of q for a
linear coefficient.

Figure 5.4: Reduced basis prediction
of q for a linear coefficient.

q = 1 + x+ y
FEM RB

#it Time ||u− û|| ||q − q̂|| #it Online Time ||u− û|| ||q − q̂||
172 157sec 2.93e-04 4.11e-03 22 66sec 2.32e-03 4.39e-02

Table 5.3: Performance comparison between the FEM and RB methods of
solving the Poisson problem for a linear coefficient.

However, the limitations of the RB method begin to become clear when
examining a coefficient q = 1 + x2 + y2 that is quadratic in both x and y.
As shown by figures 5.5-5.6, the RB method cannot calculate this q within
a reasonable error bound. This is confirmed by table 5.4, which shows that,
even though the speedup of the method is excellent, the order of magnitude
of the error of q is 10−1.
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Figure 5.5: FEM prediction of q for a
quadratic coefficient.

Figure 5.6: Reduced basis prediction
of q for a quadratic coefficient.

q = 1 + x2 + y2

FEM RB
#it Time ||u− û|| ||q − q̂|| #it Online Time ||u− û|| ||q − q̂||
848 800sec 2.71e-04 5.90e-03 22 84sec 7.28e-03 1.34e-01

Table 5.4: Performance comparison between the FEM and RB methods of
solving the Poisson problem for a quadratic coefficient.

This phenomenon is further highlighted when we examine the coefficient

q =

{
.5, [0, .5)× [0, 1]

1.5, [.5, 1]× [0, 1]

from section 3.3.2. Figures 5.7-5.8 show that, while the high-fidelity model is
able to capture the discontinuity in the coefficient, the RB method smooths
out the discontinuity across the domain, resulting in an increased error value
for q. This increased error is seen in table 5.5. However, the shape of the
discontinuity is, remarkably, still captured by the RB method. This obser-
vation is promising - while it means that a RB approach may not be able
to fully capture q with the accuracy desired by the user, it can point the
user towards the correct q value. This means that the RB approach could
potentially be used to "precondition" the minimization problem by finding
an appropriate initial guess for the parameters. This idea is explored more
in section 5.3 below.
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Figure 5.7: FEM prediction of q for a
discontinuous coefficient.

Figure 5.8: Reduced basis prediction
of q for a discontinuous coefficient.

q =

{
.5, [0, .5)× [0, 1]

1.5, [.5, 1]× [0, 1]

FEM RB
#it Time ||u− û|| ||q − q̂|| #it Online Time ||u− û|| ||q − q̂||
2360 2121sec 4.74e-04 3.57e-02 37 113sec 2.60e-02 2.40e-01

Table 5.5: Performance comparison between the FEM and RB methods of
solving the Poisson problem for a discontinuous coefficient.

5.3 Open Issues and Challenges of the Reduced
Basis Approach

As alluded to in the previous sections, the reduced basis method encoun-
ters some serious limitations when used to solve the forward problem for the
PDE. The largest of these limitations is that one of the key assumptions of
the method - namely that the solution manifold has a low dimension - is
likely violated. This is due to the fact neural networks are characterized by a
large number of parameters which increases the size of the parameter space
P. Further complicating the issue is the fact that the parameters of the net-
work can, theoretically, be any real number. This also complicates the choice
of Ph. It is difficult to know a priori the range of acceptable parameters for
the neural network in order to reconstruct the appropriate PDE coefficient,
and so selecting Ph is nontrivial. These issues quickly make the RB method
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infeasible for any sort of neural network architecture that has a large num-
ber of parameters or for a network that estimates an overly-complicated q
function.

However, the results in the preceding sections also indicate that the RB
method could, perhaps, still be useful to speedup the computational cost of
solving the minimization problem. We have shown that the RB method is
capable of capturing the general structure of the coefficient. This means that
the method could be used to produce an initial guess of the parameters for
the minimization problem. Used in this way, the RB method acts as a sort of
surrogate model for the minimization problem as it provides a starting point
for the iterative algorithm that is already significantly closer to the end result
as compared to a random starting point. This means that the algorithm
would converge in less iterations, and therefore in less time. However, more
research needs to be done to determine if such a method is feasible and to
explore the potential benefits that may be gained by such an approach.
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Conclusion

In this thesis, we have extended the ideas of Berg and Nyström in [9] by
showing how to augment two different PDEs with a neural network to predict
various coefficients. While the test problems we have explored are relatively
simple, the results demonstrate that neural networks are able to capture a
large variety of coefficients under various conditions. The networks are also
able to reconstruct these coefficients when the observations of the solution u
are less than ideal (e.g. u contains noise or the number of observations of u
is limited). We have also shown that the architecture of the network plays a
role in determining how accurate these approximations are, although other
factors - such as the number of observations of u - are more critical to the
success of the method.

We have also introduced the novel idea of combining the reduced basis
method with the neural network augmentation of the PDE in order to reduce
the computational cost of solving the minimization problem. Specifically, we
have shown that the reduced basis method is successful at reducing the com-
putational time needed to perform different simulations while maintaining
the accuracy of the prediction of q for relatively simple q’s. This speedup
is essential from a practical perspective. It shows that more complicated -
and therefore computationally expensive - problems can be solved cheaply,
which means that the inverse problem can be solved efficiently for a large
range of PDE problems. While certain limitations need to be addressed and
more complex applications need to be studied to determine the efficacy of
this method, this thesis establishes a foundation from which to begin these
explorations and demonstrates that such explorations are likely to be both
feasible and practical in many different scenarios.

More research is needed to determine what coefficients a neural network can
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represent with a fixed architecture and what effect changing the architecture
of the network has on the ability of the network to successfully recognize
different coefficients. Also, the idea of using the reduced basis method as a
low-fidelity solver in order to produce an educated guess for the numerical
optimization procedure involving the high-fidelity finite element solver should
be explored.
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