POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

From business process to Corda R3: enforcing privity and security of

smart contracts

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: ALEsSANDRO D1 RENZO
Advisor: PROF. MATTIA SALNITRI
Co-advisor: PROF. GIOVANNI MERONI

Academic year: 2022-2023

1. Introduction

In recent years, several studies have highlighted
limitations related to contracts edited manu-
ally which are characterized by high costs, time-
consuming and contentious points subject to
personal interpretation. In order to address this
aspect, smart contracts have been introduced,
i.e., automated computer programs that verify
and execute contract terms based on defined
conditions. They are faster and more efficient
compared to traditional contracts.

Smart contracts define the conditions to be met
in an agreement by specifying the activities that
participants have to perform to fulfill the agree-
ment. Due to this aspect, contracts can be
seen as processes: for instance, a smart contract
that regulates the actions a patient must take to
book a medical appointment and subsequently
the ticket opened by the healthcare provider. In
this context, ensuring a certain level of security
in the formulation of smart contracts assumes a
primary role.

Security properties such as data confidentiality
and enforceability of decisions must be consid-
ered for reaching secure contracts.

For instance, a contract that regulates an anal-
ysis laboratory and a hospital structure where

the results of patients have to be protected from
unauthorized access. On the other hand, some
decisions taken by specific entities need to be
approved by other participants: for instance, a
public administration tender where competitors
that compete to provide the best offer should
have the opportunity to validate the final deci-
sion of the winning competitor.

Processes can be represented with several graph-
ical modeling languages as BPMN 2.0 standard.
Since contracts can be seen as processes, the
same modeling language can be used to model
smart contracts. BPMN 2.0 standard needs to
be enriched with security properties to represent
security concepts. We adopted the extension
proposed by Kopke et al. in [2| which defines
smart contracts as processes with security nota-
tions.

One of the technologies on which smart con-
tracts are implemented and executed is the
blockchain which ensures immutability and
transparency to the information stored on the
ledger. It can be used as a security mechanism
for the enforcement of security properties.

In this scenario, the blockchain replicates the
context of business processes by ensuring a cer-
tain level of security regarding information ex-

changed by design: for these reasons, the choice
has landed on the Corda blockchain, a dis-
tributed ledger developed by R3 that offers the
possibility of realizing a private network and
manages the process through a smart contract
that regulates single steps of the execution based
on the interactions among parties that charac-
terized the process.

This thesis exploits Corda for the enforcement
of two security properties related to smart con-
tracts for modeling business processes: privity
of data and enforceability of decisions. The
method proposed includes sequential phases:

1. contracts are initially represented with
SecBPMN2BC;

2. mapping from BPMN Collaboration to
BPMN Choreography and extension of
choreography diagram to represent security
properties;

3. mapping and transformation from choreog-
raphy diagram into Corda contracts follow-
ing the conceptual model and the rules of
translation conceived, while guaranteeing
the enforcement of security aspects;

4. testing phase, where the effectiveness of the
model proposed is evaluated through busi-
ness process realistic cases.

2. State of the art

We consider a research work that extends stan-
dards including security aspects. Vivas et
al. in [4] propose a UML-based business
process-driven framework for the development
of security-critical systems that shows possible
threats related to the trade-off between security
and functionality when defining security require-
ments for a system. A similar approach is sug-
gested by the work of Lodderstedt et al. in [3] is
aimed to define a modeling language for the de-
velopment of secure systems with UML through
role-based access control. It describes how to use
UML to specify security requirements in modern
systems that are well-suited only for static de-
sign models. This system language is based on
an extended model for role-based access control
(RBAC), but to overcome lack of methodology
they introduced the authorization constraints,
a precondition for granting access to an opera-
tion, they defined such limit using the Object
Constraint Language (OCL). SecureUML is a
combination of the main features of these two

systems. As visible in these works, security re-
quirements are defined also using UML as a stan-
dard, which is different from the standard that
we have used in our work, i.e., BPMN, but it
provides a methodology to enrich already exist-
ing standards with additional requirements. The
enforcement of decisions is discussed in the re-
search work conducted by Haarman et al. in
[1], where the approach detailed is aimed at the
enforcement of decisions in a collaborative pro-
cess executed by a smart contract on Ethereum
blockchain. The approach is composed of two
phases: the operation phase, where the decision
is executed locally with an agreement of par-
ticipants regarding input and data consumed to
take the decision; the conflict resolution phase,
where the agreement is not reached on the out-
put of the decision and the conflict is solved by
the smart contract itself at cost of revealing the
logic under that decision. The purpose was re-
lated to the overcoming of limitations of expos-
ing data of decisions in public blockchains with a
condition, i.e., the conflict on the output, upon
which the confidentiality of data is violated. Re-
ferring to our work, this kind of solution pro-
posed is not applied, since the enforcement of
properties related to decisions and data have to
be preserved in all cases.

3. Baseline
3.1. SecBPMN2BC

Our work focuses on enforcing security proper-
ties, particularly data confidentiality and deci-
sion enforceability, using the model-driven ap-
proach proposed by Kopke et al. in [2]. This
language extends BPMN 2.0 with security no-
tations for secure smart contracts in blockchain.
Smart contracts are depicted as business pro-
cesses with security requirements.

The modeling language defines privity spheres
for data objects and messages to model read ac-
cess restrictions: spheres are categorized from
strong-dynamic to global which define partici-
pants that can access data objects. Moreover, it
introduces annotations to specify enforceability
levels for decisions, attached to exclusive gate-
ways. Three sets of validators are defined: pub-
lic, private, and user-defined, determining the
required participants for decision verification.
The levels of both security properties are re-

ported in Figure 1 and Figure 2 .

Symbol Level of enforceability of decisions

Public

Private

User-defined

Figure 1: Security property of enforceability of
decisions from [2]

Symbol Level of privity
@ Public
Private
Static

Weak-dynamic

Strong-dynamic

@
&
&

Figure 2: Security property of privity from [2]

3.2. Running example

A contract example, expressed with
SECBPMN2BC, involves a Company Em-
ployee, a Health Care Fund, and a Medical
Office. It describes the Company Employee’s
steps to request an affiliated visit, the Health
Care Fund’s response and successive actions in
case of a positive or negative answer.

Initially, the contract specifies the Company

Employee’s actions in order to send the request
for an affiliated visit. The Health Care Fund’s
response leads to two scenarios: acceptance
or rejection. If accepted, the Medical Office
handles data exchange and booking dates. On
the other hand, the flow stops. Data objects
are related to the pathology documentation of
Company Employee, marked with a level of
privity of private type, and available dates of
Medical Office to book the visit associated with
a strong-dynamic level. Regarding the exclusive
gateway, it is related to the compliance of
request from Company Employee and the deci-
sion is demanded by Health Care Fund. This
scenario is the starting point of our method.

3.3. BPMN Choreography

BPMN Choreography is a modeling language
that illustrates interactions in business processes
among multiple participants through message
exchange, emphasizing collaboration to achieve
shared goals.

A Choreography diagram includes tasks, mes-
sages, and gateways to represent the process.
Choreography tasks refer to actions triggered by
incoming and outgoing messages from partici-
pants. Tasks are connected by sequence flows
that define the order of activities. Fach task
presents an initiator and at least one receiver.
Messages represent information exchanged asyn-
chronously between participants and can encom-
pass various data types, requests, or notifica-
tions. Gateways make decisions or create alter-
native or parallel paths in the process. Exclu-
sive gateways rely on data from prior messages,
with initiators responsible for decisions. Parallel
gateways allow parallel task execution. In this
thesis, the focus is on exclusive gateways.

3.4. Corda

Corda is a permissioned blockchain developed
by R3 for enterprises. It’s a decentralized, open-
source ledger tech emphasizing secure and pri-
vate transactions. Corda exploits smart con-
tracts, i.e., CorDapps, to manage data interac-
tions, prioritizes interoperability, and aims for
trust, efficiency, and transparency. The network
generated is private, with nodes interacting on a
"need-to-know" basis. Participants include indi-
viduals, organizations, and automated systems,
each with unique cryptographic identities. They

manage shared facts, propose transactions, and
validate the shared ledger.

States are shared facts among participants and
each node has its own vault of shared states.
Transactions modify the ledger by consuming in-
put states and producing output states. Con-
tracts define state behavior, ensuring validity
and compliance with predefined rules in transac-
tions. Commands express transactions’ intent,
specifying required signers and the rules that in-
put and output states have to follow to evolve
the state. Notaries validate transactions, ensur-
ing uniqueness and authenticity, marking input
states as historic to prevent double-spending.
Flows manage contract state evolution, coordi-
nating parties asynchronously.

CorDapps are distributed applications for Corda
developed in Java.

4. Method definition

Our work focuses on ensuring security properties
like decision enforceability and data privacy by
creating contracts in the Corda blockchain. This
approach is detailed in Section 5 and Section 6
and represents our primary contribution. The
method follows these stages:

1. Initially, we adapt collaboration to chore-
ography, emphasizing interactions between
participants. After that, we incorporate se-
curity properties and data objects into the
diagram. Lastly, we remove security nota-
tions and add choreography tasks represent-
ing security properties.

2. The second stage involves two phases.
First, we define a conceptual mapping be-
tween choreography and contracts, specify-
ing how each element in the diagram cor-
responds to a Corda contract element. In
the second phase, we define transformation
rules, i.e., algorithmic procedures that au-
tomate element creation, names, and at-
tributes.

3. In the final stage we implement in Java
what the algorithms produced and enrich
them with missing parts in order to reach a
deployable CorDapp.

This method doesn’t aim for fully automated
CorDapp generation and execution. Human in-
put is required to adapt the CorDapp skeleton
with information related to possible files or tex-
tual messages in the contract.

4.1. Extended BPMN Choreography

BPMNZ2.0 Choreography lacks representation of
data objects and security properties, so we inte-
grated security notations from collaboration us-
ing the SecBPMN2BC approach. Regarding the
enforceability of decisions, we retained the nota-
tion from the collaboration diagram, preserving
its original meaning. This was possible because
the participants in the choreography diagram re-
mained the same as in collaboration, ensuring
the set of validators for decisions. Exceptions
to this rule applied when enforcing decisions at
a public level, where we transformed them into
private decisions involving all contract partici-
pants, as Corda doesn’t permit external partic-
ipants.

For data objects, we represented them by us-
ing the same graphical notation. We selected
tasks to represent data objects while preserving
the initiating participant and the order in which
other participants access data in the following
tasks.

Our goal is to adapt and model the diagram to
ensure the representation of security properties,
even though not all situations may be replicable
due to the characteristics of the contract. An
example of the application of the method is re-
ported in Figure 3.

R
booking

= IR

Figure 3: Choreography diagram enriched with
security properties

Since the choreography diagram doesn’t allow
for this type of representation to be valid, we
need to include in the choreography tasks the
security properties added and the enforcement
of the security properties.

From choreography diagram rules, the decision
is taken by the initiator of the first task after
the gateway. Regarding the enforceability of de-
cisions, participants who act as validators of a
specific decision must own the data upon which

the decision is made in order to validate it. Val-
idators can be divided into two categories.

The first category comprises receivers of tasks
immediately following gateways since they al-
ready know the decision-making data. Valida-
tors in this category are visible from the chore-
ography diagram. The second category includes
validators that are not present in the tasks im-
mediately following the gateway, but they are
required to validate the decision from the set
of validators specified by the security property
associated. There are two subcategories within
this group: those who already have the data
and can proceed with the validation, i.e., second
category without priority, and those who lack
it, i.e., second category with priority. Valida-
tors of the second category with priority require
an additional task before the gateway to own
the necessary data: this task is named "Deci-
sion SharingData". Validation for validators of
second category are represented with additional
tasks before the one of validators of first cate-
gory, both started by the common initiator who
takes the decision.

Data objects can be managed as message con-
tent in BPMN Choreography. In order to en-
force the privity property, an additional task
containing the data object as part of the mes-
sage follows the task where the data object
first enters the diagram: in this case, the task
is named "Privity SharingData". The partici-
pants of this task are based on the data object’s
associated privity sphere, so that participants
who have access to the data will own it after the
execution of the task. To handle both data ob-
jects and decision enforcement properties, data
objects are enforced immediately. Subsequently,
exclusive gateways and decisions enforcement
are assessed. An example of enforcement of se-
curity properties is reported in Figure 4.

Figure 4: Choreography diagram generated from
extended choreography diagram in Figure 3

5. From Collaboration to

Choreography

The first mapping is from collaboration to chore-
ography diagram. The objects are mapped
based on the following guidelines.

e Participant identification: pools and
lanes from the collaboration diagram are
analyzed to identify all participants in the
choreography diagram, considering lanes as
distinct participants.

e Inclusion of start/end events: the
choreography diagram includes start and
end events, with intermediate ones added if
they are connected to messages in the col-
laboration diagram.

e Message events to choreography
tasks: messages exchanged in the collabo-
ration diagram become choreography tasks.
Additional tasks may be created to adhere
to choreography diagram rules.

e Initiator and receivers: connection lines
between sender and receiver of messages in
the collaboration diagram define task initia-
tors and receivers in the choreography dia-
gram.

e Tasks not mapped: some collaboration
tasks may not be reported due to the differ-
ent granularity levels between collaboration
and choreography diagram.

e Exclusive gateways: exclusive gateways,
i.e., gateways related to decisions are cer-
tainly mapped with added security property
of enforceability of decisions.

e Other gateways not mapped: other
types of gateways, like parallel gateways
and those linked to internal activities, are
not mapped unless they are essential for

representing contract constraints.

e Sequence flow preservation: flow se-
quence, indicating task order, is conserved
in the choreography diagram, with arrows
connecting tasks and giving the sequential
order to the entire diagram.

e Data objects: data objects present in the
collaboration diagram aren’t directly repre-
sented in the choreography diagram due to
limitations and uncertainties.

This transformation raises some implications:

1. There is no unique way to map a collabo-
ration diagram into a choreography one: it
depends on the emphasis you want to place
on interactions. Flexibility is the key aspect
to preserve the contract’s meaning.

2. Collaboration diagrams are characterized
by a lower level of granularity, detailing in-
dividual activities of participants. On the
other hand, choreography diagrams empha-
size interactions between participants. For
this reason, not all collaboration details can
be reproduced with the same granularity in
the choreography diagram.

3. Gateways not linked to decisions aren’t in-
cluded in the mapping. Since the focus is on
enforcing specific security property related
to decisions, the other types of gateways are
excluded if they aren’t of main importance
for contract constraints.

4. The choreography diagram resulting after
this phase emphasizes the flow and mean-
ing of the contract, rather than focusing on
the representation of internal organizational
tasks. The focus is on respecting the se-
quence and general sense of the contract.

An example of the mapping related to the run-
ning example is reported in Figure 5.

Company Employee.

Figure 5: Choreography diagram of affiliated
medical visit

Data objects and security properties are then
included in the diagram as described in Section
4.1.

6. From
Corda

The second mapping is from choreography
diagram to Corda: the matching between the
choreography elements and Corda objects is
reported below.

Choreography to

State and contract

States represent the evolution of facts shared
among parties in the Corda network, while
contracts regulate the behavior and validity of
transactions involving states. Choreography
diagrams represent the process evolution and
the name of the diagram is taken to map to
Corda’s state and contract pair.

Nodes

Choreography diagram participants may include
companies, public infrastructures, and individu-
als: each participant is represented by a node in
the Corda network.

Workflows

Choreography tasks depict interactions among
participants, which is strictly related to work-
flows that create transactions for generating new
states and sharing them among participants.
For this reason, the mapping is realized between
choreography tasks and workflows with related
commands that regulate the transaction.
Sequential flow execution

In a choreography diagram, tasks follow a se-
quential order described by arrows that link con-
secutive tasks. In order to define the sequential
evolution of the state, the input state in a trans-
action matches the output state of the previous
transaction, except for the first task, so that it is
possible to provide a sequentiality to the trans-
actions.

Messages representation

Choreography messages can be textual data or
files. Corda allows messages to be represented
either as attributes of the state, in the case of
textual messages, or as attachments to workflow
transactions.

Gateways representation

Exclusive gateways in the choreography diagram
represent choices related to decisions taken by
participants and different paths based on the fi-

nal choice. In order to map this scenario, spe-
cific attributes in the state indicate all available
paths after the gateway.

The transformation is performed following the
Algorithm 1. The lines with the signature
"(Exp)" require the action of an expert in or-
der to realize a deployable CorDapp. All the
other lines refer to algorithms that automatize
the generation of such elements in Corda.

Algorithm 1 Choreography to Corda

1: State and contract name definition

2: (Exp) Define basic attributes of state

3: Add nodes in Corda network

4: Workflows and state attributes

5: (Exp) Retrieve Notary information

6: if Not First Workflow then

7. (Exp) Retrieve input state from the vault

8: end if

9: (Exp) Complete transaction requirements

10: Commands name definition

11: Commands rules definition

12: (Exp) Specify complementary rules

13: Messages representation

14: if Attachment in transaction then

15: (Exp) Add specific methods for the upload
of files

16: end if

17: Exclusive gateways representation

7. Validation

In the validation phase, we evaluated each
step of the method proposed through two main
phases, which combined validate the method.
The first one validates the mapping and trans-
formation from collaboration to choreography
diagram and aims to validate the correctness in
terms of participants inclusion, interactions rep-
resentation and presence of security elements.
The second one validates the mapping and trans-
formation from choreography diagram to the
skeleton of CorDapp by defining nodes, state,
contract and workflow elements with associated
rules.

In order to carry out the required transforma-
tions, we have implemented a software that au-
tomates part of the process. Specifically, the
software takes as input an XML document con-
taining the interactions and the participants
of the collaboration diagram, thus it generates
an XML document containing the choreography

tasks and eventual gateways that are part of
the choreography diagram. After enriching the
XML of the choreography diagram with tags re-
lated to security properties, the software takes
this XML as input and generates the additional
tasks that enable the enforcement of security
properties. The XML document representing
the choreography diagram inclusive of security
properties marks the end of the first validation
phase. Regarding the second phase, the software
takes as input the XML generated in the pre-
vious phase and generates the Java classes that
represent the skeleton of the CorDapp. The gen-
erated classes include a state that evolves over
time with its attributes, a contract that governs
its evolution and workflows that create transac-
tions to consume and generate new states."
Examples chosen to test the method refer to re-
alistic cases that describe situations like the elec-
tronic emission of a new birth certificate, a hos-
pital televisit performed by an external group or
by an internal doctor.

After critically analyzing the results obtained in
the two phases, the contracts align with the re-
quirements and guarantee the enforcement of se-
curity properties. Despite this, there are some
considerations: the mapping from collaboration
to choreography diagrams is challenging and er-
rors in this phase may impact the final CorDapp;
the number of messages, exclusive gateways, and
data objects impact choreography tasks count
and CorDapp state attributes; attributes of the
output state generated in the transactions are
with defaults values of attributes and need to
be changed in order to be adapted to the evolu-
tion of the state. The scalability limitation may
necessitate complementary techniques for repre-
senting state evolution in complex contracts.

8. Conclusions

This thesis discusses a method for the enforce-
ment of security properties of smart contracts
for modeling processes such as confidentiality of
data, i.e., privity, and enforceability of decisions.
The method, after receiving the collaboration
diagram modeled with SecBPMN2BC, is com-
posed of the following phases: the first map-
ping that shows how to transform a collabora-
tion into a choreography diagram based on the
interactions among participants and the security
properties depicted in the starting diagram; the

second mapping and transformation from chore-
ography diagram to Corda that shows how to
realize the skeleton of a CorDapp, with the defi-
nition of the main objects such as state, contract
and workflows.

We implemented a software that automatizes
part of the process:from collaboration to chore-
ography diagram with a semi-automatic proce-
dure and then from choreography to the skeleton
of a CorDapp. The software represents the ap-
plication of the conceptual mappings detailed in
the previous sections.

We tested it through three realistic cases. Re-
sults showed that the method proposed can be
used in order to enforce the security properties
mentioned above, with particular attention to
the first mapping from collaboration to choreog-
raphy diagram: possible errors are propagated in
the next phase and compromise the effectiveness
of the contract. Regarding the second phase, the
attention is related to the values of attributes
in the output states generated by transactions
that may not respect the desired evolution of
the state.

Certainly, it needs to be tested further with a
greater pool of samples and with external re-
viewers. Furthermore, some of the activities of
mapping and transformation of diagrams, in or-
der to provide an accepted input to the method,
have been performed manually with the presence
of experts. For future works, the implementa-
tion of the method may include fully automated
software that, given a contract described with
SecBPMN2BC, produces a complete CorDapp
as output ready to be applied in real business
contexts.

References

[1] Stephan Haarmann, Kimon Batoulis, Adri-
atik Nikaj, and Mathias Weske. Execut-
ing collaborative decisions confidentially on
blockchains. In Business Process Manage-
ment: Blockchain and Central and Eastern
FEurope Forum: BPM 2019 Blockchain and
CEE Forum, Vienna, Austria, September
1-6, 2019, Proceedings 17, pages 119-135.
Springer, 2019.

[2] Julius Képke, Giovanni Meroni, and Mattia
Salnitri. Designing secure business processes
for blockchains with secbpmn2bc. Future

3]

4]

Generation Computer Systems, 141:382-398,
2023.

Torsten Lodderstedt, David Basin, and Jiir-
gen Doser. Secureuml: A uml-based mod-
eling language for model-driven security.
In UML 2002—The Unified Modeling Lan-
guage: Model Engineering, Concepts, and
Tools 5th International Conference Dresden,
Germany, September 30-October 4, 2002
Proceedings, pages 426-441. Springer, 2002.

José L Vivas, José A Montenegro, and Javier
Lopez. Towards a business process-driven
framework for security engineering with the
uml. In Information Security: 6th Interna-
tional Conference, ISC 2003, Bristol, UK,
October 1-3, 2003. Proceedings 6, pages 381—
395. Springer, 2003.

	Introduction
	State of the art
	Baseline
	SecBPMN2BC
	Running example
	BPMN Choreography
	Corda

	Method definition
	Extended BPMN Choreography

	From Collaboration to Choreography
	From Choreography to Corda
	Validation
	Conclusions

