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Abstract

The present work has the objective of performing some preliminary assessments useful
for designing the future control system of ESA’s MVMS (Micro Vibrations Measurement
System) when operating either in the actuator mode or in the sensor mode.
Firstly, the structural characteristics of the MVMS, the position of the sensors and of
the actuators, the normal modes of the facility and the balancing masses arrangement
are investigated. Afterwards, it is considered that, since the full FEM model has several
Degrees of Freedom (DoFs), it is possible to reduce them thanks to the Craig-Bampton
(CB) method. In order to obtain a simpler model of the facility, this latest system is fur-
ther condensed to fewer physical and modal DoFs. Then, an equivalent model is designed,
which accurately describes the behaviour of the MVMS in the longitudinal direction. In
order to impose an excitation from the ground, the Large Mass (LM) method is applied
both to the equivalent model and to the condensed CB one. Hence, the equivalent system
gains one DoF. Eventually, all the models are validated to prove that they are compliant
with the full FEM model.
At this point, the control systems are designed on the equivalent model: first the one of the
vibration isolation platform (VIBISIO), and then the one of the vibration measurement
platform (MPLAT). Regarding the VIBISIO control, it is designed the control system by
previously analysing different approaches already employed in literature for controlling
Stewart platforms. The most suitable control technique consists of the combination of a
feedback (FB) and a feedforward (FF) control, where a skyhook damper with tunable gain
is employed in the FB. For the MPLAT control, instead, the H-infinity control strategy
is adopted. Subsequently, the controls of the 2DoF model are extended to the condensed
CB model. The results confirm that, since all the models had been validated, a control
system which is applicable to the 2DoF model is suitable also for the CB system and,
eventually, for the full FEM model.

Keywords: micro vibrations measurement platform, Craig-Bampton method, sky-hook
damper, H-infinity control





Abstract in lingua italiana

Il presente elaborato ha l’obiettivo di eseguire delle valutazioni preliminari utili per pro-
gettare il futuro sistema di controllo dell’MVMS (Sistema di Misura delle Micro Vi-
brazioni) di ESA quando opera in modalità attuatore oppure in modalità sensore.
In primo luogo, sono investigate le caratteristiche strutturali della piattaforma, la po-
sizione dei sensori e degli attuatori, i modi propri di vibrare della facility e la disposizione
delle masse di bilanciamento. Successivamente viene considerato che, siccome il sistema
FEM completo possiede parecchi gradi di libertà (gdl), è possibile ridurli grazie al metodo
di Craig-Bampton (CB). Per ottenere un modello più semplice della facility, quest’ultimo
sistema viene ulteriormente condensato a un numero minore di gdl modali e fisici. In
seguito, viene progettato un modello equivalente, il quale descrive accuratamente il com-
portamento dell’MVMS in direzione longitudinale. Per imporre un’eccitazione dal terreno,
viene applicato il metodo della Large Mass (LM) sia al modello equivalente sia al modello
Craig-Bampton condensato. Quindi, il sistema equivalente guadagna un gdl. Infine, tutti
i modelli vengono validati per dimostrare che sono conformi al modello FEM completo.
A questo punto, vengono progettati i sistemi di controllo sul modello equivalente: prima
quello della piattaforma di isolamento delle vibrazioni (VIBISIO), poi quello della pi-
attaforma di misura delle vibrazioni (MPLAT). Riguardo al controllo della VIBISIO, viene
progettato il sistema di controllo analizzando prima diversi approcci già impiegati in let-
teratura per controllare le Stewart platform. La tecnica di controllo più adatta consiste
nella combinazione di un controllo in feedback (FB) e di uno in feedforward (FF), dove
nel FB viene impiegato uno skyhook damper con guadagno regolabile. Per il controllo
della MPLAT, invece, viene adottata la strategia di controllo H-infinito. Successivamente,
i controlli del modello a 2 gdl vengono estesi al modello CB condensato. I risultati con-
fermano che, siccome tutti i modelli erano stati validati, un sistema di controllo che è
applicabile al modello a 2 gdl risulta idoneo anche per il sistema CB ed, infine, per il
modello FEM completo.

Parole chiave: piattaforma di misura delle micro vibrazioni, metodo di Craig-Bampton,
sky-hook damper, controllore H-infinito
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Introduction

0.1. Motivation of the Work

This thesis has the aim of performing some preliminary assessments useful for designing
the active control system of the MVMS. The focus is made on the actuator mode of the
facility, which consists of isolating the Item Under Test (IUT) from vibrations imposed
from the ground, and on the sensor mode, which consists of measuring the vibrations
imposed by the IUT.
On the MVMS, the isolation from vibrations is both passive and active. The passive
isolation is performed by two Minus-K, which are made of 6 very soft springs with the
task of damping vibrations in the 6 DoFs. Such an isolation acts at high frequencies,
guaranteeing a different roll-off rate depending on the damping. The drawback of em-
ploying only the passive isolation would be the fact that the resonance peaks would not
be attenuated. To obtain this result, it is required to add an active isolation, performed
by the actuators. Different control strategies have been investigated.
For the VIBISIO control, firstly it has been implemented the FB control under the form
of a sky-hook damper, from which it results that the peaks are attenuated. Then, the FB
control has been enriched with the FF in order to improve the results: a better attenu-
ation of the peaks is obtained and the high-frequency roll-off gets steeper. On the other
hand, for the MPLAT control, the H-infinity control has been adopted to minimize the
MPLAT displacement.

0.2. Literature Review

Some articles have been analysed to study whether in the past some research on an active
control system of a multi-DoF platform was carried out. It results that the most similar
facility to the one of interest is the Stewart platform, which is a facility consisting of two
rigid bodies (the base and the platform) connected through six extensible legs. [11] The
MVMS presents two Minus-K, providing a passive control, and 12 voice-coil actuators,
responsible for the active control.
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Concerning the control of the VIBISIO, the concepts and the effects of passive and
active isolation are explained in the article by Preumont et al. [28]:

• Passive isolation generally consists of one or several stages of mass–spring–damper
systems introduced in the propagation path, whose parameters are adjusted to
achieve the desired corner frequency and a reasonable compromise between the
amplification at resonance and the high-frequency attenuation. Passive damping is
necessary to limit the amplification at resonance, but it tends to reduce the high-
frequency attenuation of the isolation system.

• Active isolation has been introduced to resolve this conflict, allowing to achieve
simultaneously a low amplification at resonance and a large attenuation at high
frequency.

In the present application, the active control provides isolation, not damping. The con-
cepts of active isolation and damping are described in the PhD thesis by Ahmed Abu
Hanieh [17]. It provides an insight into several single-axis isolation techniques: a compar-
ison between the sky-hook damper, integral force FB, inertial velocity FB and Lag-Lead
control techniques is conducted using some practical examples.
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It is made a distinction between active isolation and active damping:

Table 1: Active isolation vs. active damping [17]

Control
type

Purpose Structure Control tech-
niques

Active
isolation

Active vibration
isolation of sen-
sitive payloads in
space applications.

Soft six-axis hexapod de-
signed according to the
cubic configuration. It
consists of two triangular
parallel plates connected
to each other by six ac-
tive legs orthogonal to
each other.

Two techniques
based on force
FB are applied
in a decentralized
manner:

• Integral force
FB;

• Lag-Lead
compensator.

Active
damping

Addressed to space
applications, where
it aims at control-
ling the vibrations
of space structures
while connecting
them rigidly.

Rigid hexapod consist-
ing of two parallel plates
connected to each other
by six active legs config-
ured according to the cu-
bic architecture.

Decentralized inte-
gral force FB.

For the MVMS, active isolation can be considered since it is desired to isolate from
vibrations a sensitive payload, especially in the case in which the facility is operated in
actuator mode. From table 3.2 it can be highlighted that active isolation is provided by
soft Stewart platforms, which have the following characteristics:

• They can be used efficiently for vibration isolation purposes.

• The corner frequency of the soft hexapod should be as low as possible and the modal
spread should be minimized.

• The design of the flexible joints has a great effect on the control authority and the
isolation performance.

• The lateral dynamics of the legs deteriorate the high frequency isolation performance
of the isolator.
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An equivalent model of the soft isolator with acceleration FB is the sky-hook damper.
It is based on using a simple integration of the measured force signals and feeding the
signal back to the voice coil actuator. A high pass filter can be added at low frequency
to avoid the low frequency signals from propagating into the system and to prevent the
integration of the static component coming from the offset of the electronics. By recalling
the article by Preumont et al. [28], the sky-hook damper is a single-axis interface which,
if inserted between two rigid bodies, provides a −40 dB/decade attenuation rate at high
frequency and a controllable overshoot at resonance. When inserted between rigid bodies,
the sky-hook damper may be implemented with acceleration (or velocity) FB, or equiva-
lently with force FB. However, when inserted between two flexible structures it turns out
that the force FB implementation enjoys guaranteed stability properties that acceleration
FB lacks.
To fully isolate two rigid bodies with respect to each other, six judiciously placed single-
axis isolators are needed. They can be controlled in a centralized or decentralized manner.
Here the decentralized FB control approach is considered since it has attractive robust-
ness properties and is shown to produce impressive performance. By referring to the
PhD thesis by Ahmed Abu Hanieh [17], the decentralized integral force FB succeeds in
removing the overshoots at low frequency while having guaranteed stability. Indeed, it
is vital to guarantee stability since, when the payload is flexible, the behaviour of the
acceleration and force FB are no longer the same. The integral force FB proved to be
more efficient than the Lag-Lead controller especially at high frequency where it could
even contribute at damping the local modes. The integral force FB technique proved
better than the Lag-Lead compensator in terms of damping of the low frequency modes,
and even the high frequency lateral modes are influenced and reduced, even though this
does not change the fact that the high frequency lateral modes are still problematic.
In the article by Jie Tang et al. [32], the decentralized control theory is employed to
design the controller for the linearized system. The results indicate that the platform
with the proposed controller is efficient between 5 and 100 Hz, with a great attenuation
at the resonance peaks in both longitudinal and lateral direction.
If the disturbance can be measured somewhere along its propagation path, the addition
of a feedforward control can be considered. In the article by Z. Zhou et al. [35], it
is stated that the skyhook FB control can only attenuate vibration near the resonant
frequency. To enhance control performance of an isolation system, a FF compensation
control strategy is required. In the article by M. Yasuda et al. [34], it is reported that the
FF control works very well to improve the response to the direct disturbances, also from
the floor, and hence to decrease the transient response. The online page Feed forwards
augment PID control [1] states that in closed-loop motion control applications, it is com-
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mon to multiply the target speed and target acceleration by the velocity and acceleration
feed forwards to generate the feed forward’s contribution to the control output. In this
way, the FF control assumes the form of a PID algorithm. One particular consideration is
described both in the article by C. Qingsong et al. [29] and in the article by M. A. Beijen
[7]. Both these documents state that FF, differently from FB, works for any frequency
and attempts to cancel the disturbance completely by generating a secondary signal of
opposite phase. The disturbance FF control applies a control force that mimics the dis-
turbance transmitted by the isolator but with an opposite sign. This type of control has
two main advantages:

1. it does not affect the stability properties of the system because no control loop is
closed. This enables disturbance suppression also at high frequencies.

2. it uses a direct measurement of the disturbance, which generally improves the signal-
to-noise ratio.

As far as the active control of the MPLAT is concerned, the H-infinity control strategy
is chosen. The document by A. Megretski [25] explains how the algorithm embedded in
the MATLAB® hinfsyn command works. Since the MVMS has similar characteristics to a
Stewart platform, the article by R. Breganon [9] has been analysed. It reports a theoretical
description of the H-infinity control strategy and it shows a control scheme with weighting
functions placed between the output from the plant and the performance signal. It is also
reported that such weights represent the design specifications. The article by S. Jung
[19] deals with a 2DoF spring-mass-damper system and shows how to minimise vibrations
with H-infinity control (non-robust controller) and µ-synthesis (robust controller). The
previous documents also deal with the selection of the weighting functions to obtain the
desired performances, however the article by R. Beaven et al. [6] is entirely dedicated to
this. However, although simple rules exist for the selection of weighting functions, the
process is still subjective in nature. Also some MATLAB® documents are useful for the
MPLAT control: Robust Control of an Active Suspension [23] and H-Infinity Performance
[24]. The first one computes an H-infinity controller for the nominal system (two masses
and a disturbance imposed from the ground) using the hinfsyn command. On the other
hand, the second one is a tracking problem, with disturbance rejection, and control input
signal limitations, which is strictly close to the problem of the MPLAT control.

0.3. Organization of the Thesis

In chapter 1, a general description of the facility is carried out, where its main features are
highlighted, such as its measurement and excitation ranges, and the sensor and actuator
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modes. In the same chapter, the architecture of the MVMS is described: it is composed
of the VIBISIO and the MPLAT. Eventually, it is shown a geometrical model to describe
the location of sensors and actuators.

In chapter 2, the dynamic models describing the MVMS physical system are studied.
Furthermore, it is checked whether any lateral dynamics coupled to the longitudinal ex-
citation are present. Eventually, the modal analysis is performed and the normal modes
are displayed.

In chapter 3, the control designs for the VIBISIO (FB and FF) and for the MPLAT (H-
infinity) are carried out. For both of them, the control strategies are described. Then,
the results of their application to the 2DoF model first, and eventually to the condensed
CB model are displayed.

In chapter 4, the conclusions of the work and the future possible developments are de-
scribed.
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1| General Description of the

MVMS

1.1. Main Features of the MVMS

The 6DoF MVMS testing facility, displayed in fig. 1.1, represents a very challenging
project since it aims at operating on 6 DoFs: 3 translational and 3 rotational.

Figure 1.1: 6DoF MVMS facility
(Image courtesy of ESA)

The MVMS is 1.1 m high and the total weight is 650 kg. It has an industrial application
and, in particular, is well suited for space industry to test the rotating components of
satellites. It can work both in air and in vacuum, because its sealings are approved also
for working in vacuum (vacuum compatibility), but it will be probably employed in air.
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The facility can work according to two different modes; as a sensor or as an actuator.

• Sensor/measurement mode: the Item Under Test (IUT) fixed on the top plate
starts to move, typically with a harmonic motion, generating some micro vibrations.
The force generated by the actuators aims to compensate the force introduced by
the IUT in such a way that the final MPLAT displacement is close to zero.

• Actuator/excitation mode: the objective is to isolate the IUT placed on the
top plate from the micro vibrations generated by an excitation imposed from the
ground.

The isolation from vibrations is performed both with an active system and a passive
one. The active part consists of voice coil actuators, while the passive one involves two
Minus-K. To allow an optimal attenuation, the 6 elastic constants of the springs of the
Minus-K shall be tuned. This procedure would work as a passive mechanical low-pass
filter, where the resonance would be so low that no vibration would arrive at the facility.
The actuators present on the facility are reactive voice-coil, hence they are characterized
by both a mechanical and an electrical dynamics. The mechanical dynamics concerns
the lower frequencies, while the electrical dynamics regards the higher ones. An active
control can therefore improve the damping of the resonance peaks and can help the pas-
sive control provided by the two Minus-K in increasing the roll-off at higher frequencies.
Moreover, the active control can go beyond the mere increase in the damping, by causing
the response to have transmissibility smaller than 1, which means 0 dB.

The MVMS is designed to perform the measurements and excitations of the test specimens
with the following specifications:

• total weight: between 0.2 and 25 kg;

• static Centre of Gravity (CoG): from 10 cm to 30 cm;

• dynamic CoG shift: 10 cm;

• total dimensions: 50× 50× 50 cm.

The facility is designed to measure and execute micro vibration forces, moments and ac-
celerations in the frequency range from 0.03 Hz to 100 Hz. [14] As a matter of fact, the
MVMS is also able to measure very low-frequency vibrations.
The minimum frequency of vibration that can be detected is obtained through the fol-
lowing formulas, where a is either the measured or the imposed acceleration and x is the
actuator’s displacement.
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Being:

a = ẍ (1.1)

In the Laplace domain, it results that:

a = s2x (1.2)

Since s = jω,

a = −ω2x (1.3)

By inverting eq. (1.3):

ω =

√
−a

x
(1.4)

Being the maximum actuator’s displacement xmax the constraint, the minimum circular
frequency is:

ωmin =

√
− a

xmax

(1.5)

Hence, the minimum frequency results to be:

fmin =
ωmin

2π
=

1

2π

√
− a

xmax

(1.6)

Since a negative sign is present under the square root, it is rigorous to specify that
the computations are made considering the amplitudes of the acceleration and of the
actuator’s displacement, with their signs. Being X the maximum actuator’s half-stroke,
the relations are:

x = Xejωt → xmax = X (1.7)

and

a = ẍ = −Xω2ejωt = Aejωt (1.8)

where A = −Xω2 is the amplitude of the acceleration. It is evident that when the maxi-
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mum actuator’s stroke X is positive, A is negative and viceversa, therefore the radicand
in eq. (1.6) is always positive. Thus, eq. (1.6) becomes:

fmin =
ωmin

2π
=

1

2π

√
−A

X
(1.9)

The following tables (table 1.1 and table 1.2) summarize the measurement and excitation
ranges which characterize the facility, considering that the maximum actuator’s half-
stroke is approximately ±2.5 mm. In particular, they respectively relate the accelerations
induced by the specimen and the translational accelerations to be generated with the
frequencies of vibration of the facility.

Table 1.1: 6DoF MVMS measurement ranges

Frequency
Range

Force induced by
the specimen in
all directions

Moments induced
by specimen
around its 3 main
axes

Accelerations in-
duced by speci-
men in all direc-
tions

0.01 Hz

to 0.32 Hz

10−5 N

to 0.1 N

10−5 Nm

to 0.1 Nm

10−5 m/s2

to 10−2 m/s2;
10−5 rad/s2

to 10−2 rad/s2

Table 1.2: 6DoF MVMS excitation ranges

Frequency
Range

Translational accelera-
tions to be generated

Rotational accelera-
tions to be generated

0.01 Hz

to 0.32 Hz

10−5 m/s2

to 10−2 m/s2
10−5 rad/s2

to 10−2 rad/s2
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1.2. Architecture of the MVMS

The 6DoF MVMS consists of two main subsystems:

• VIBISIO: vibration isolation platform, which is the lower subsystem.

• MPLAT: vibration measurement platform, which is the upper subsystem.

Figure 1.2: MPLAT and VIBISO of 6DoF MVMS
(Image courtesy of ESA)

1.2.1. The Vibration Isolation Platform (VIBISIO): Description

The function of the VIBISIO is to isolate the MPLAT from ground vibrations. It is an
active isolation system, in which the background vibrations are measured by seismometers
and the attenuation is performed actively via voice coil actuators. [14] The VIBISIO is a
reticular structure which is already passively isolated by the first Minus-K, which lies on
the interface with the ground and holds all the upper structure (VIBISIO and MPLAT),
allowing its isolation from ground vibrations.
The actuators are necessary in the VIBISIO since the passive isolation alone cannot isolate
from low-frequency oscillations, that are the ones of the Minus-K. Thus, 6 actuators push
the VIBISIO such that they cancel the residual vibrations downstream of the Minus-K.
Since the Minus-K is suspended from ground, also the actuators are suspended.

The vibration isolation platform (fig. 1.3) consists of the following elements:

1. ground base assembly with central seismometer;
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2. passive Minus-K;

3. tetrahedral frame;

4. 3 upper seismometers;

5. balancing masses;

6. force actuator assemblies.

Figure 1.3: 6DoF MVMS VIBISIO
(Image courtesy of ESA [14])

The ground base (fig. 1.4) provides the facility interface to external environment via
three adjustable feet. The ground seismometer, which is mounted in the central loca-
tion of the ground base, measures the background vibrations in 6 DoFs. Moreover, the
hand crank is used to lock and unlock the isolation platform and the ball joints are used
to stabilise the platform while in the lock position.

Figure 1.4: VIBISIO ground base
(Image courtesy of ESA [14])
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The passive Minus-K model BM-1 (fig. 1.5) sits on top of the ground base and holds
up the weight of both the isolation and measurement platforms. It enables the platform
to move freely in 6 degrees of freedom.

Figure 1.5: VIBISIO ground base
(Image courtesy of ESA [14])

The tetrahedral frame (fig. 1.6), which floats on the Minus-K, interconnects the 3 up-
per seismometers, balancing masses and 6 force actuators assemblies (fig. 1.7).
The seismometers are used to measure the quality of VIBISIO damping by measuring the
residual ground vibrations. The measured variables are the 3 upper seismometer’s veloc-
ities in each DoF and the objective of the controller is to reduce them. The seismometers
are placed inside sealed enclosures (fig. 1.8) in order to achieve the vacuum compatibility.
The 6 force actuators assemblies actively damp the ground vibrations in 6 DoFs. [14]
These actuators are reactive voice-coil: they are composed of a cylindrical body and a
coil connected to the structure at their ends.

Figure 1.6: Tetrahedral Frame
(Image courtesy of ESA [14])



14 1| General Description of the MVMS

Figure 1.7: Voice coil force actuator assembly
(Image courtesy of ESA [14])

Figure 1.8: Seismometer enclosure
(Image courtesy of ESA [14])

The VIBISIO has the same objective as a shaker placed on a seismic mass isolated from
ground, which vibrates at an extremely low (negligible) frequency because the inertia is
very large. Anyway, since the facility needs to be transportable, it has been preferred to
use the VIBISIO rather than the seismic mass.

1.2.2. The Vibration Measurement Platform (MPLAT): Descrip-
tion

The function of the MPLAT is to perform the excitation of the test specimen and to
measure its micro vibrations. The measurements are performed based on the zero-
displacement principle. The idea is to keep the top interface plate in a zero-displacement
position by active compensation of the forces induced by the test specimen via voice coil
actuators. The zero displacement of the measurement platform is measured via Michelson
type interferometers, while the total force generated by the test specimen is derived from
the total force executed by the compensating voice coil actuators.

The vibration measurement platform (fig. 1.9) consists of the following elements:

1. specimen mounting plate;

2. interferometer assembly;

3. voice coil force actuator assembly;

4. balancing masses;

5. motion stops;

6. Minus-K model CM.
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Figure 1.9: MPLAT
(Image courtesy of ESA [14])

The specimen mounting plate has a M6 threaded pattern (fig. 1.9), the spacing of
which is 20 mm by 20 mm, in order to mount the test specimen on top of it. The reaction
wheel, enclosed in its box, has flanges and screws (M6) which need to be screwed to the
drilled top plate. The problem is that it is very rare that the drilling of the top plate
corresponds to the position of the screws in the reaction wheel box. In this case, it is
necessary to place one further intermediate plate which has drills compatible with the
MPLAT in the lower part, while the upper part is drilled so as to be compatible with the
reaction wheel box.

The interferometer assembly (fig. 1.10) measures the displacement between specimen
mounting plate and frame holding the MPLAT Minus-K. There are six interferometer
assemblies, each of which is measuring in one DoF. Hence, in total all 6 DoFs are measured.
[14]

Figure 1.10: Interferometer assembly (Image courtesy of ESA [14])
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The interferometer is designed based on the Michelson type, which is a common con-
figuration for optical interferometry. Using a beam splitter, a light source is split into
two arms. Each of those light beams is reflected back toward the beamsplitter which
then combines their amplitudes using the superposition principle. [5] For the facility, a
homodyne interferometer was chosen to ease measurement traceability, because of the
fact that it uses a single-frequency HeNe laser source. A Michelson interferometer can
be designed to give two output signals in-quadrature, allowing an absolute displacement
measurement. The typical quadrature interferometer design introduces the 90o phase dif-
ference between the outputs with a waveplate by utilising the polarisation properties of
the input beam. As the polarisation state of the light in the fibre was found to vary
significantly with any fibre strain, it was decided that a polarisation insensitive design
was necessary to reduce measurement drift. This is achieved using an absorbing beam
splitter, with a metallic coating tuned to ensure a quadrature output signals without the
need for additional optics. [31]

The Minus-K model CM (fig. 1.11) is placed on top of the VIBISIO and allows the
MPLAT to float in 6 DoFs, allowing to passively isolate the MPLAT from the VIBISIO.

Figure 1.11: Minus-K of the MPLAT
(Image courtesy of ESA [14])

The Minus-K is made of 6 springs, above which the top plate of the MPLAT is mounted.
On this top plate, six voice coil force actuator assemblies (fig. 1.12) are mounted, 3
of which are horizontal and the other 3 are longitudinal, which are identical in each DoF.
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Figure 1.12: Voice coil force actuator assembly
(Image courtesy of ESA [14])

The function of the voice coil force actuators is to move the measurement platform during
measurement and excitation modes.

• During actuator mode, these actuators are needed to impose vibrations: they
move the MPLAT, so the facility behaves like a mechanical shaker. The Minus-K
is mounted to isolate the MPLAT from the VIBISIO, allowing a double passive
isolation, while the 6 actuators on the MPLAT are used to impose vibrations to the
IUT.

• During sensor mode, the force generated by the actuators aims at compensating
the force introduced by the IUT in such a way that the final MPLAT displacement
is close to zero. The test specimen’s force is derived based on the force produced
by the actuators, which have the task of cancelling the displacement by keeping the
MPLAT fixed. Knowing how much energy is necessary for the actuators to keep the
MPLAT fixed, the energy generated by the IUT is also known. According to the
action and reaction principle, the force is equal and opposite to the one that the
test specimen is imposing from the top plate. Knowing the reaction of the actuator,
it is possible to reconstruct forces and moments produced by the IUT placed above,
basing on which it is then possible to define whether the test specimen is too noisy or
not. This depends on whether the force or moment is under the threshold given by
the mission requirement: if it is lower than the threshold, then the attitude sensor
is acceptable and can be commercialized, while if it is higher, a surface superfinish
is needed.

Three balancing masses (fig. 1.9) are attached to the edge of the specimen mounting
table and are used to balance the CoG of the test equipment. In fact, depending on the
shape and on the density distribution of the test specimen, the center of mass of the
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MVMS is altered. To avoid this, 6 inertia masses can be moved to assume a configuration
that aims at keeping the overall CoG always in the same position. 3 of these 6 masses
are placed on the reticular structure of the VIBISIO, while the other 3 are disposed on
a circumference on the MPLAT. More than one configuration is possible and is found by
computing the static moment.

The motion stops (fig. 1.9) prevent the MPLAT form excessive movement, and are also
used to lock the platform during transportation and initialisation procedure. [14]
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1.3. Location of Sensors and Actuators

Figure 1.13: Geometric model

The geometric model of the facility is represented in fig. 1.13, where each colour in the
drawing represents a different element:

• Red: trusses;

• Grey: generic structural elements.

Actuators:

• Green: voice-coil actuators (3×horizontal and 3×vertical in VIBISIO, 3×horizontal
and 3×vertical in MPLAT);

Sensors:

• Blue: seismometers (×4);

• Violet: interferometers (×6);
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• Yellow : tilt sensor (×1);

• Black: coarse position sensor (×3);

• Orange: VIBISIO Minus-K and MPLAT Minus-K.
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2| Dynamic Models and Modal

Analysis

This chapter describes the dynamic models which represent the MVMS. They are designed
in order to represent the full FEM model with simpler dynamical models. It is a step-by-
step procedure of progressive reduction of the DoFs. These models are:

• full FEM model (section 2.1): 106,900 DoFs;

• CB model (section 2.2): 141 DoFs;

• Condensed CB model (section 2.3): 14 DoFs;

• 3DoF model (section 2.4): 3 DoFs;

• 2DoF model (section 2.4): 2 DoFs.

The CB models and the equivalent systems are validated. On the other hand, the full
model still has to be validated with experiments. For describing the 141DoF CB model, it
will also be checked whether any lateral dynamics coupled to the longitudinal excitation
are present. Eventually, the modal analysis is performed and the normal modes are
displayed.
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2.1. 6DoF MVMS FEM

A finite element model of the MVMS facility was available before the beginning of the
thesis. It had been developed using the technique of super elements, leading to a small
size model which can be integrated in a global model.

2.1.1. Description of the 6DoF MVMS FEM

The 6DoF MVMS FEM is based on the CAD model and it is shown in fig. 2.1.

Figure 2.1: 6DoF MVMS FEM
(Image courtesy of ESA [14])

This model has been created based on several constraints:

• Mesh for 1D solid elements (rods, solid beams):

– Type: Solid disc elements;

– Density: At least 10 nodes per beam, roughly of 1 cm length.

• Fixed boundary conditions:

– Location/surface: Bottom surface of three mounting feet,
Constraint type: Fixed in 6DoFs;
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– Location/surface: Bottom surface of baseplate,
Constraint type: Fixed in z-direction.

• Mass/material properties:

– Material: AISI 316 stainless steel (blue colour in tetrahedral model);

– Density: 8000 kg/m3;

– Young’s modulus: 193 GPa;

– Yield strength: 205 MPa.

• Loading/force conditions:

– Self-weight on all components evenly distributed;

– Point masses used at centre of geometry for seismometer of 15 kg;

– Distributed mass of 50 kg used for top plate for specimen.

• Analysis:

– Frequency range: 0 Hz to 2000 Hz;

– Analysis program: NX NastranTM;

– Analysis type: Normal Modes/Eigenvalue;

– Real solution method: Lanczos.

The summary of the modes revealed by modal analysis is shown in fig. 2.2:

Figure 2.2: Summary of the FEM modes
(Image courtesy of ESA [14])
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In the following, the first 32 modes are described ascending order and are collected ac-
cording to the part of the MVMS which they concern.

• Minus-K modes: The twelve lowest modes of the system are the resonant fre-
quencies of the two Minus-K platforms. Each platform has one mode in each of the
6 DoFs, and these modes are necessary for the operation of the vibration isolation
and measurement system. These frequencies are all in the order of 1 Hz.

Figure 2.3: Minus-K modes
(Image courtesy of ESA [14])

• Base bearing modes: The lowest frequency structural resonant modes of the
system occur on the bearing plate, which sits on top of the base of the isolation
platform below the isolation Minus-K. These three "bearing plate" modes have an
eigenfrequency at approximately 120 Hz.
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Figure 2.4: Base bearing modes
(Image courtesy of ESA [14])

• Isolation platform top plate modes: A set of modes occur at 130 Hz to 160 Hz
on the top plate of the isolation platform. The FE model assumes that all balancing
masses are present at their central point on the tetrahedral frame. This assumption
is a worst-case scenario in this mode; removing or moving these masses is expected
to raise the frequency of the isolation platform top plate modes.
Furthermore, the measurement platform Minus-K is assumed to have no physical
size. The actual Minus-K, when mounted on the top plate, will act to stiffen these
modes.

Figure 2.5: Isolation platform top plate modes
(Image courtesy of ESA [14])
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• Base plate modes: A set of drum head type modes can be seen between 160 Hz
and 190 Hz on the base plate of the system base.

Figure 2.6: Base plate modes
(Image courtesy of ESA [14])

• Isolation platform tetrahedral frame modes: The tetrahedral frame on the
isolation platform has resonances between 170 Hz and 200 Hz.

Figure 2.7: Isolation platform tetrahedral frame modes
(Image courtesy of ESA [14])
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2.1.2. Overview of the Computational Methodology

Figure 2.8 provides a high-level all-inclusive overview of the computational methodology
put in place to complete the Virtual Testing of MVMS system.

Figure 2.8: Overview of the computational methodology of MVMS Virtual Testing

Here is a step-by-step description of various blocks, in a consistent sequence.

• Starting from MVMS CAD model, the FE model is obtained and correlated after a
test-campaign.

• The CB condensation is obtained after having selected the relevant interface (I/F)
DoFs:

– DoFs where electrical loading can act: for each actuator, a coil and a body
DoF, appropriately oriented along the direction of actuation.

– DoFs where constraints are applied (MVMS feet translational DoFs).

– DoFs of I/F with other structures: 6 DoFs of the central node of the top MVMS
plate and other eventual I/F nodes of interest, when merging possible models
of IUTs.

– Additional DoFs may be useful to observe for different reasons (e.g. for checks).

• The electrical and electromechanical submatrices are added to the CB mass and
stiffness matrices.

• The damping matrix D can be obtained by assuming modal damping.
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• The continuous State-Space (SS) matrices can be thus obtained from the so-obtained
electromechanical M and K matrices.

• The discrete SS matrices can be now calculated from the continuous ones.

• Finally, the control parameter of the virtual run can be chosen (virtual run setup)
and the virtual testing simulation can be run in MATLAB® Simulink® environment
or LabVIEW™.
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2.2. Craig-Bampton Model

The high number of DoFs of the full FEM model can be reduced by means of the CB
condensation. In the following, it is first described how a CB condensation works, and then
it is applied to the particular case of the MVMS facility. Subsequently, the CB matrices
are extended to include the electromechanical coupled interactions and hence the state-
space system is derived from FEM matrices. Eventually, it is checked the presence of any
coupled dynamics following a longitudinal excitation.

2.2.1. Craig-Bampton Condensation: Definition

The CB method is a substructuring technique that reduces the number of internal DoFs
of substructures by approximations, using a set of truncated normal modes. Thus, it is
useful for structural analysis involving a high number of DoFs. [16]
This method is based on a re-formulation of the equations of motion for a structure from
the set of physical coordinates to a set of coordinates consisting of physical coordinates
at some subset of boundary points and modal or generalized coordinates at the non-
boundary points. Once transformed to modal coordinates, mode shapes representing
higher frequency responses may be truncated without loss of information.
The transformation is successful because the modes become uncoupled from each other,
greatly reducing the manipulation required to solve the equations. Typically, modal
displacements and accelerations are computed by numerical integration for a given
set of initial conditions and forcing function time histories. Physical accelerations and
displacements follow from the CB transformation matrix. [12]
In order to take a system of equations from the physical domain into a CB form, a few
steps are involved. Firstly, the DoFs are partitioned into two sets: the boundary set
(the b-set), where this substructure will eventually be interfaced with another piece, and
the interior set (the i-set) which are the remaining DoFs. [30]

The equation of motion ignoring the damping is:

Mü + Ku = F (2.1)

where:

u =

{
ub

ui

}
(2.2)
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M =

[
Mbb Mbi

Mib Mii

]
(2.3)

K =

[
Kbb Kbi

Kib Kii

]
(2.4)

The physical coordinates can then be transformed into CB coordinates using the trans-
formation:

u =

{
ub

ui

}
=

[
Ibb 0bk

ψib ϕik

]{
ub

qk

}
= TCB

{
ub

qk

}
(2.5)

where:

• ub: boundary DoFs;

• ui: internal (leftover) DOFs;

• ψib: rigid body vector;

• ϕik: fixed base mode shapes;

• qk: modal DoFs.

The TCB matrix in eq. (2.5) is the CB transformation matrix. [15] In the transformation
matrix, the first column partition are the fixed-interface modes. These can be described
as the interior DoF motion when the interface is fixed (or constrained in all I/F DoFs).
[30] The number of kept fixed I/F modes can be reduced to k in order to decrease the
total number of DoFs.
The second column partition represents the constraint modes. These describe the
motion of the system when each boundary DoF is given a unit displacement while holding
the other boundary DoFs fixed. [30]
qk is a set of displacements corresponding to the fixed-interface motion and ub is
preserved from the original equation of motion as the boundary physical DoFs. [30]
Combining eq. (2.1) and eq. (2.5) and pre-multiplying by TT

CB:

TT
CBMTCB

{
üb

q̈k

}
+ TT

CBKTCB

{
ub

qk

}
= TT

CB

{
Fb

Fk

}
(2.6)

By means of the transformation matrix, the subcomponent mass and stiffness matrices
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are transformed into their CB formulations:

MCB = TT
CBMTCB =

[
Mbb Mbk

Mkb Mkk

]
(2.7)

KCB = TT
CBKTCB =

[
Kbb 0
0 Kkk

]
(2.8)

By writing eq. (2.6) using eq. (2.7) and eq. (2.8):

[
Mbb Mbk

Mkb Mkk

]{
üb

q̈k

}
+

[
Kbb 0
0 Kkk

]{
ub

qk

}
=

{
Fb

0

}
(2.9)

where input forces are applied at the boundary only (Fk = 0).
Important properties of the CB mass and stiffness matrices are:

• Mbb: the boundary mass matrix represents the total mass properties translated to
the boundary points.

• Kbb: the I/F stiffness matrix represents the stiffness associated with displacing one
boundary DoF while the others are held fixed. If the boundary point is a single
grid, then Kbb = 0.

• If the mode shapes have been mass normalized (typically they are), then:

Mkk =

\ 0

1

0 \

 = I (2.10)

Kkk =

\ 0

λi

0 \

 = ω2 (2.11)

where λi = ki/mi = ω2
i .
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Finally, the dynamic equation of motion (including damping) can be written using the
CB transformation as:

[
Mbb Mbk

Mkb I

]
︸ ︷︷ ︸

MCB

{
üb

q̈k

}
︸ ︷︷ ︸

üCB

+

[
0 0
0 2ξω

]
︸ ︷︷ ︸

DampCB

{
u̇b

q̇k

}
︸ ︷︷ ︸

u̇CB

+

[
Kbb 0
0 ω2

]
︸ ︷︷ ︸

KCB

{
ub

qk

}
︸ ︷︷ ︸

uCB

=

{
Fb

0

}
︸ ︷︷ ︸

FCB

(2.12)

where 2ξω is the modal damping. ξ is the damping ratio and it is defined as c
ccritical

, where
ccritical = 2

√
km. [15]

2.2.2. MVMS Craig-Bampton Condensation: Computation

The list of CB I/F DoFs of MVMS FE model can start from the actuator DoFs. Actuators
are labelled and numbered as it follows:

Where:

• ACT = Actuator;

• VB = VIBISO;

• MP = MPLAT;

• L = Longitudinal;

• H = Horizontal;
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• X and Y are the MVMS global axis with signs, identifying the location of the
actuator.

For the sake of simplicity, dedicated local coordinates are considered for the actuators, as
a convention:

• DoF1 = longitudinal actuation;

• DoF2 = horizontal actuation.

Figure 2.9 provides a view of the dedicated local analysis coordinates purposely defined
for the FE nodes of the various actuators.

Figure 2.9: Image of the dedicated local analysis coordinates purposely defined for the
FE nodes of the actuators
(Image courtesy of ESA)

Figure 2.10 provides, for each actuator, some details like the Upper and Lower nodes,
respectively indicating the actuator Coil and Body nodes. Moreover, the CB matrices
index associated to each one of those nodes is reported. Such index is driven by the fact
that MSC NastranTM orders the DoFs from lower to higher node numbers and, for each
node, the DoFs existing (and retained as I/Fs in the CB condensation) are listed from 1
to 6.
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Figure 2.10: Image of dedicated local analysis coordinates purposely defined for FE nodes
of the actuators
(Image courtesy of ESA)

Additional CB I/F nodes of interest are given in the fig. 2.11. Matrices indices are here
provided for the relevant node involved in the possible rigid merge with an IUT.

Figure 2.11: Additional CB I/F nodes of interest
(Image courtesy of ESA)

Figure 2.12 provides the spy view of MVMS FE CB condensed mass and stiffness matrices
in empty configuration, together with the corresponding modal damping matrix. Their
structure complies with the one of MCB, DampCB and KCB in eq. (2.12).
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CB matrices details:

• Number of I/F DoFs: 70;

• Selected modal base: [0, 500] Hz, leading to 56 modes;

• Subsequent dimension of CB matrices: 141× 141;

• The damping matrix DampCB is the diagonal matrix having the modal damping
2ξωn at the (n, n) position for the nth mode (modal damping assumption). In this
sense the DampCB matrix is not a direct result of the CB condensation.

Figure 2.12: Some details about MVMS CB stiffness and mass matrices and the Damping
matrix

2.2.3. Electromechanical Model of the 6DoF MVMS

In the following, a simplified model of the facility is retrieved. This is the basis on which
the control system is designed. Firstly, the electromechanical model of the classical single-
axis shaker is shown, and then the the electromechanical modeling will be extended to
MVMS multishaker.

Electromechanical Model of the Classical Single-Axis Shaker

The fundamental electromechanical interactions of a classical lumped single-axis shaker
system are recalled hereafter, on the basis of document [22] (see fig. 2.13 and fig. 2.14).
This represents the starting point of the multifield description of a generic multiaxial
shaker, that is the case of MVMS facility.
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Figure 2.13: Single-axis electromechanical shaker lumped model [22]

By indicating in blue the purely mechanical interactions and in green the electrical and
electromechanical coupling interactions, the following algebraic relations can be written
(fig. 2.14).

Figure 2.14: Electromechanical algebraic relations of a classical single-axis shaker.
(For additional details, see [22])
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Extension of the Electromechanical Modeling to MVMS Multi-

shaker

The model description given above for a single-axis electromechanical shaker is now ex-
tended to consider electromechanical multishakers, like the MVMS. The most significant
differences of MVMS with respect to the classical single-axis case of 3 mechanical DoFs
illustrated before are the following:

• The MVMS mechanical model is a FE model and thus it involves a significantly
high number of DoFs (fig. 2.15). Therefore, a dynamic reduction by means of the
CB method is included into the computational loop.

• The number of actuators in MVMS is equal to 12, and not just one, as for the
classical single-axis shaker case (fig. 2.16). This implies to grow of 11 indices the
matrices (or the vectors) expressing the electrical and electromechanical relations in
fig. 2.14.

Figure 2.15: MVMS FE model
(Image courtesy of ESA)

Figure 2.16: MVMS 12 actuators
(Image courtesy of ESA)

Extension of Mechanical CB Matrices to include the Electrome-
chanical Coupled Interactions

The mechanical CB matrices have been extended to include the electromechanical coupled
interactions by following the same technique illustrated in fig. 2.14 for the case of a classical
single-axis shaker. With MVMS, the difference is that 12 actuators are now present instead
of just one. The convenient submatrixing naming convention shown in fig. 2.17 is used in
the following.
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Figure 2.17: Submatrixing naming convention

It is necessary to populate the electrical and electromechanical submatrices AB, BA and
BB, which have to be merged to the mechanical submatrix AA in order to obtain the
electromechanical complete matrices. Figure 2.18 provides the information about elec-
tromechanical coefficients of AB, BA and BB submatrices, together with the respective
matrix position of the electrical and electromechanical coefficients.
The parameters values which are relevant for the following passages are reported hereafter:

L (H) = 0.006 H
R = 6
µ = 2.5 N/A

The “1s” (ones) along the diagonal of BB mass submatrix are placed just in order to
allow the matrix inversion and they have no impact on the system unknowns, as it is
algebraically evident from the classical system in fig. 2.14. The matrices resulting from the
inclusion of electrical and electromechanical coupling coefficients besides the mechanical
ones is illustrated in fig. 2.19.
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Figure 2.18: Actuator relevant electromechanical parameters

Figure 2.19 represents the spy view of MVMS FE CB condensed mass and stiffness ma-
trices, together with the corresponding modal damping matrix, when they include the
electromechanical coupled interactions.

Figure 2.19: Matlab Multiphysics Model MVMS matrices: same matrices in fig. 2.12, now
augmented with electrical and electromechanical coupling coefficients

2.2.4. Obtaining State-Space System from CB Matrices

The algebraic passages to obtain the electromechanical SS system are illustrated hereafter.
The electromechanical coupled equations are the following:

MCB üCB + DampCB u̇CB + KCB uCB = FCB (2.13)

where uCB is the unknown vector and FCB is the vector of multifield external loading,
which can be mechanical or electrical, depending on the index considered.
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By defining the extended vector of unknowns as:

x =

{
uCB

u̇CB

}
(2.14)

the system can be rewritten as:

[
−I 0
0 MCB

]{
u̇CB

üCB

}
+

[
0 I

KCB DampCB

]{
uCB

u̇CB

}
=

{
0

FCB

}
(2.15)

It follows that:

{
u̇CB

üCB

}
︸ ︷︷ ︸

ẋ(t)

=

[
0 I

−M−1
CBKCB −M−1

CBDampCB

]
︸ ︷︷ ︸

A

{
uCB

u̇CB

}
︸ ︷︷ ︸

x(t)

+

[
−I 0
0 M−1

CB

]
︸ ︷︷ ︸

B̃

{
0

FCB

}
︸ ︷︷ ︸

u(t)

(2.16)

These equations can be rewritten in a more compact way by deleting the first column of
the B̃ matrix:

{
u̇CB

üCB

}
︸ ︷︷ ︸

ẋ(t)

=

[
0 I

−M−1
CBKCB −M−1

CBDampCB

]
︸ ︷︷ ︸

A

{
uCB

u̇CB

}
︸ ︷︷ ︸

x(t)

+

[
0

M−1
CB

]
︸ ︷︷ ︸

B

{
0

FCB

}
︸ ︷︷ ︸

u(t)

(2.17)

The SS continuous formalism is thus obtained:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(y)
(2.18)

We consider to receive velocities and accelerations as outputs, hence y(t) = ẋ(t). Thus,
it results that:

A = C =

[
0 I

−M−1
CBKCB −M−1

CBDampCB

]
(2.19)
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B = D =

[
0

M−1
CB

]
(2.20)

The above SS continuous system is a set of differential equations and it can be converted
into a finite difference equation, leading to the discrete SS model:

xk+1 = Axk + Buk

yk = Cxk + Duk

(2.21)

where the k index indicates the kth time sample (to be set to 0.0001 according to fig. 2.18).

2.2.5. Solution with Inversion of the Dynamics Matrix

The procedure to obtain the response by means of the inversion of the dynamics matrix
is explained in the following.

MCB üCB + DampCB u̇CB + KCB uCB = FCB (2.22)

We can now identify with aCB and vCB the CB accelerations and velocities in the Laplace
domain, respectively. Since aCB = s2 uCB and vCB = s uCB, where s = jω, it results
that aCB = −ω2uCB and vCB = jω uCB. Hence:

uCB = (−ω2 MCB + jω DampCB + KCB)
−1FCB (2.23)

The formula to obtain the magnitude of the acceleration values is:

üCBi
= ω2 | uCBi

| (2.24)
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2.3. Condensed Craig-Bampton Model

The reasons for the introduction of this model regard both the control of the VIBISIO
and the control of the MPLAT:

1. For the VIBISIO control, in order to impose the excitation of a random load to the
system, it is necessary to run simulations in the time domain. The FRFs retrieved
from the Simulink® simulation with the full CB model are too noisy. These results
have not improved even by increasing the simulation time (a singularity stops the
simulation before 100 s of simulation time), by decreasing the fixed-time step nor
by modifying the relative tolerance.

2. For the MPLAT control, simulations are run in the frequency domain, which best
suits the application of the command hinfsyn. Since the A matrix of the 141DoF
model is not full rank, the command hinfsyn returns an empty variable for the
controller. For this reason, it has been necessary to employ a simpler model with a
full-rank A matrix.

For these reasons, it has been necessary to introduce a condensed model of the CB one,
with 14 DoFs: 3 physical and 11 modal DoFs. The condensation has been realised by
considering only 3 nodes, as if they were the mass of the MPLAT, the mass of the VIBISIO
and the large mass of the equivalent model. The DoFs of the physical part are 3 since we
have:

• 1 DoF of vertical translation for the base mass to be constrained by means of a very
large penalty parameter PE (1014);

• 2 DoFs of vertical translation for the remaining 2 nodes, corresponding to the VIBI-
SIO and the MPLAT.

In table 2.1 is reported the correspondence between the DoFs of the nodes and the IDs of
the cells of the mass and stiffness matrices.

Table 2.1: Correspondence between the DoFs and the IDs of the cells of Mcond and Kcond

Node ID Node description CB condensation nodal DoFs Node ID on the CB matrices

8581 MPLAT vertical translation 1
11516 VIBISIO vertical translation 2
21786 BASE vertical translation 3
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2.4. Equivalent Models: 2DoFs and 3DoFs

The 2DoF equivalent model consists of 2 masses, one above the other, connected to the
ground and the one to the other through a spring and a damper, like in fig. 2.20. This
system has 2 DoFs in the longitudinal direction, since the acceleration ü0 is imposed.

Figure 2.20: 2DoF model

The values of m1, m2, k1 and k2 have been retrieved in the following way. The FEM
model is divided in Femap into these groups: MPLAT, VIBISIO, MVMS support, Minus-
K of the MPLAT, Minus-K of the VIBISIO. The mass and stiffness properties are then
extracted by selecting the elements of the interested group.
In order to calculate the structural dynamic response to base excitation, it is possible to
employ the Large Mass (LM) method (see appendix A for a more detailed description).
It consists of modelling the vibrating ground with a large mass m0 and to connect it to a
fixed ground with a low-stiffness spring k0, as in fig. 2.21. This spring is necessary to help
the numeric response by avoiding that the system becomes singular. In fact, if the system
was not constrained, the determinant of the stiffness matrix would be zero. Instead, by
adding k0, the stiffness matrix is not singular and hence a solution can be computed.
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Figure 2.21: 3DoF model, with large mass

Considering that fact1 = µi1 and fact2 = µi2, and employing for the moment a viscous
damping, the equations of motion of this model become:

m1 0 0

0 m2 0

0 0 m0



ü1

ü2

ü0

+

c1 + c2 −c2 −c1

−c2 c2 0

−c1 0 c1



u̇1

u̇2

u̇0

+

k1 + k2 −k2 −k1

−k2 k2 0

−k1 0 k1 + k0



u1

u2

u0

 =


µi1 − µi2

µi2 + fIUT

−µi1 + am0


(2.25)

The addition of the LM causes the system to increase its number of DoFs from 2 to 3. The
advantage of the LM method is that it allows to impose an arbitrary acceleration from
ground by means of a force, while its drawback is that the results get numerically unstable.

The damping matrix can be modelled in three different ways:

• Viscous damping, with coefficients c1 and c2, computed as ci = 2ξi
√
kimi. The

initial requirement was to tune the damping ratio according to an extinguishment of
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the oscillations after 3 cycles. Anyway, other options have been explored in order to
reproduce a similar behaviour to the one given by the other two types of damping.

• Rayleigh damping, where C = αM + βK, with α and β which are the Rayleigh
coefficients. Here follows the theoretical procedure to derive such coefficients. Pre
and post multiplying by the normal modes eigenvectors Un gives:

UT
n CUn = αUT

n MUn + βUT
n KUn (2.26)

The eigenvectors are used to diagonalize the mass and stiffness matrices such that
for any mode using mass normalized eigenvectors:

UT
n MUn = 1 (2.27)

UT
n KUn = ω2

n (2.28)

Although normal modes are not generally orthogonal to the damping matrix, a
damping matrix which satisfies the condition UT

mCUn = 0 (m ̸= n) is generated for
a modal damping specification, i.e.:

UT
n CUn = 2ξnωn (2.29)

So, from eq. (2.26) it results that:

2ξnωn = α + βω2
n (2.30)

From which the damping terms are retrieved:

ξn =
α

2ωn

+
βωn

2
(2.31)

That is to say the damping ratio is inversely proportional to the frequency for the
mass contribution and directly proportional to the frequency for the stiffness contri-
bution. This means Rayleigh damping is inappropriate outside the two frequencies
which are typically used to calculate the factors α and β. The scale factors α and
β can be calculated by a pair of simultaneous equations if ξm and ξn are known
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for a pair of normal mode frequencies ωm and ωn. Typically ωm will be chosen as
one of the first fundamental frequencies of the system while ωn is chosen somewhere
among the higher frequencies of the modes that have significant contribution to the
response. The damping ratio for these two modes is correct with somewhat lower
damping between these two modes and considerably higher damping ratios outside
the band covered by these two frequencies. Rayleigh damping therefore artificially
damps the frequencies of the higher modes effectively eliminating their contribution
to the response.

ξm = α
2ωm

+ βωm

2

ξn = α
2ωn

+ βωn

2

(2.32)

By simultaneously solving eq. (2.32), the factors α and β are obtained:

α =
2ωmωn

(ω2
n − ω2

m)
(ωnξm − ωmξn) (2.33)

β =
2ωmωn

(ω2
n − ω2

m)

(
ξn
ωm

− ξm
ωn

)
(2.34)

The variation of damping ratio with frequency is not often available, so typically
a constant value of ξ is assumed. This sets ξm = ξn = ξ reducing the factors to
eq. (2.35) and eq. (2.36). [3]

α =
2ξωmωn

ωm + ωn

(2.35)

β =
2ξ

ωm + ωn

(2.36)

The input values are the eigenfrequencies ωm and ωn, and the damping ratio ξ.
They are chosen with the aim of minimising the under-damp typical of the Rayleigh
damping in the interval between the two selected frequencies fm and fn. In fact,
due to its nature, the Rayleigh damping will naturally over-damp modes outside the
frequency range used to calculate the damping values and under-damp the modes
inside this frequency range; the correct damping is calculated at the two values of
frequency chosen to calculate the values of α and β. [3] The chosen frequencies for
this analysis are fm = 0.4 Hz, fn = 0.9 Hz, from which it results that ωm = 2πfm

and ωn = 2πfn. The adimensional damping ξ has been assumed equal to 0.05.
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The resulting values of the Rayleigh coefficients are α = 1.7400 · 10−1 and β =

1.2243 · 10−2. It is useful to illustrate the typical variation of the viscous damping
coefficient ξ with the frequency f . It results that:

Figure 2.22: Rayleigh damping

From fig. 2.22 it can be noted that the damping ratio is sufficiently high in the
frequency range of interest of the facility, which goes from 0.01 Hz to 0.2 Hz, since
the two main resonance peaks of the frequency response functions are comprised
within this interval. Moreover, from the same graph it results that the damping ra-
tio in correspondence of fm and fn is equal to the chosen ξ, which in this case is 0.05.

Figure 2.23 and fig. 2.24 compare the frequency responses of the open-loop trans-
missibilities in the case of viscous and modal damping.
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Figure 2.23: Open-loop transmissibility from a0 to a1: comparison between viscous and
Rayleigh damping

Figure 2.24: Open-loop transmissibility from a0 to a2: comparison between viscous and
Rayleigh damping

From fig. 2.23 and fig. 2.24 it can be noted that the two frequency responses thor-
oughly overlap at lower frequencies, except for the anti-resonance in the transmis-
sibility from a0 to a1, while they show a diverging behaviour at higher frequencies.
Such a divergence is not relevant for the present study, since the significant frequen-
cies are the lower ones, where the two resonance peaks are present. For this reason,
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both a modal damping or a Rayleigh one can be employed.

• Structural damping with coefficient η=0.04, where an equivalent stiffness matrix
is defined as: K′ = K + jηK.
Structural damping assumes that the damping forces are proportional to the forces
caused by stressing of the structure and are opposed to the velocity. Therefore,
this form of damping can be used only when the displacement and velocity are
exactly 90° out of phase. [26] When the equations of motion are transformed into
the frequency domain by the Fourier transform, the damping force is seen to have
a near 90° phase difference with respect to both the spring and inertial forces. [20]
In the case of structural damping, the elastic force is given by the displacement
multiplied by a real matrix, while the damping force is given by the displacement
multiplied by a complex matrix. Performing the product jK means rotating the
stiffness matrix by 90°. Hence, it is obtained a force in phase quadrature, which is
the damping force.
In a case different from structural damping, the damping force is obtained as the
product of the damping matrix by the velocity. It still represents a damping, even
though no multiplication by the imaginary unit is present. The reason stands in the
definition of the velocity in the Laplace domain:

v = su = jωu (2.37)

where v is the velocity vector, u is the displacement vector and s = jω is the Laplace
variable, in which ω is the circular frequency. The product by the imaginary unit j
gives a result in phase quadrature, which is a similarity with the structural damping.
However, a difference between the two types of damping is given by the fact that,
while in the case of damping force defined as Cv, ω is variable with the frequency,
the structural damping is instead constant with respect to the frequency.

For the present analysis, the chosen type of damping is the Rayleigh (proportional) one,
in order to avoid the use of complex numbers and simplify computations. Only for the
FF in the VIBISIO control it has been necessary to consider the viscous damping.
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2.5. Frequency Response Functions

2.5.1. Validation of the Models

The considered values of the Rayleigh coefficients for the validation are α = 3.1338 · 10−1

and β = 7.9379 · 10−5. They have been obtained with ξ = 0.05, fm = 0.5 Hz and
fn = 200 Hz. It emerges that the Rayleigh coefficients used in the validation are different
with respect to the ones characterising the model to which the control will be applied (see
section 2.4). In fact, in the latter case, those coefficients were tuned in a way to obtain
the largest possible damping of the modes inside the frequency range of interest. This
difference in the Rayleigh coefficients is not relevant since the validation of the models
must be independent of the damping value.

The two main peaks of the frequency response function of the equivalent model correspond
to the following resonance frequencies:

• f1 = 0.454 Hz

• f2 = 0.928 Hz

They match with the resonance frequencies of the CB model and of the condensed one.
Moreover, for all these models it has been verified that the longitudinal modes have their
correspondence also in the eigenvalue solution.

The validation of the CB model, the condensed CB model and the equivalent model has
been made both by considering and not considering the LM method. The curves of all the
frequency response functions (FRFs) overlap, as it can be noted from the following graphs.
The results are displayed both dividing and not dividing by ü0, which means dividing or
not by the average of the accelerations of the three feet of the facility. This distinction
is done except for the case without LM, which is meaningful only if the acceleration is
divided by ü0.
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• With LM method, dividing by ü0:

Figure 2.25: ü1z , with LM, divided by ü0

Figure 2.26: ü2z , with LM, divided by ü0
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Figure 2.27: ü0z , with LM, divided by ü0

• With LM method, not dividing by ü0:

Figure 2.28: ü1z , with LM, not divided by ü0
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Figure 2.29: ü2z , with LM, not divided by ü0

Figure 2.30: ü0z , with LM, not divided by ü0
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• Without LM method, dividing by ü0:

Figure 2.31: ü1z , without LM, divided by ü0

Figure 2.32: ü2z , without LM, divided by ü0
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Figure 2.33: ü0z , without LM, divided by ü0

Eventually, some graphs which collect all the FRF curves with the LM method regarding
the acceleration of the VIBISIO, of the MPLAT and of the base have been realized.

Figure 2.34: ü1z , with LM
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Figure 2.35: ü2z , with LM

Figure 2.36: ü0z , with LM

From all the graphs above, it can be appreciated that the curves overlap precisely in the
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entire frequency range, except for the lowest frequencies until roughly 0.2 Hz, when the
division by ü0 is not present. This phenomenon occurs not only in the curves computed
with bode, which is particularly sensitive to numerical problems, but also in the ones
computed with the dynamics matrix inversion. Such a lack of overlap is due to numerical
issues in the computation, but it does not affect the goodness of the work, since the
resonance frequencies are present from 0.454 Hz on. However, this particular behaviour
at lower frequencies is a topic which should be deepened in the future.

2.5.2. Check Coupled Dynamics

In order to check whether any coupled dynamics are present in the model, it is necessary to
impose a longitudinal base excitation and study the frequency responses in the transverse
direction. This study can be carried out only on the CB model and not on the 2DoF
one, since on the 2DoF the transverse responses do not appear. The following responses
compare the cases with and without the LM method (described in section 2.4), and
the cases of the response obtained with the dynamics matrix inversion and with the
MATLAB® bode command. The frequency responses of the three accelerations, ü1, ü2

and ü0, in the three directions, are shown both divided and not divided by ü0, except for
the case without LM, for which the frequency responses must always be divided by ü0.

• First transverse response, divided by ü0:

Figure 2.37: ü1x , 141 DoFs, divided by ü0
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Figure 2.38: ü2x , 141 DoFs, divided by ü0

Figure 2.39: ü0x , 141 DoFs, divided by ü0
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• First transverse response, not divided by ü0:

Figure 2.40: ü1x , 141 DoFs, not divided by ü0

Figure 2.41: ü2x , 141 DoFs, not divided by ü0
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Figure 2.42: ü0x , 141 DoFs, not divided by ü0

• Second transverse response, divided by ü0:

Figure 2.43: ü1y , 141 DoFs, divided by ü0
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Figure 2.44: ü2y , 141 DoFs, divided by ü0

Figure 2.45: ü0y , 141 DoFs, divided by ü0
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• Second transverse response, not divided by ü0:

Figure 2.46: ü1y , 141 DoFs, not divided by ü0

Figure 2.47: ü2y , 141 DoFs, not divided by ü0
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Figure 2.48: ü0y , 141 DoFs, not divided by ü0

The presence of some peaks in the above FRFs could be attributed to:

• the CoG offset, due to the shape and density of the IUT;

• the fact that the facility is not perfectly symmetric, for example due to the presence
of the tilt sensor.

Moreover, from the graphs it emerges that the solution with the bode command detaches
itself from the other curves at low frequencies. This is due to the fact that bode is par-
ticularly sensitive to numerical problems. However, the lack of overlap at low frequencies
does not affect the quality of the work, since the lower frequencies are not of interest.
On the contrary, what is of interest are the resonant frequencies, which are present from
0.454 Hz on.
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2.6. Modal Analysis

The modal analysis is performed by considering the effective modal masses.

2.6.1. Modal Effective Mass: Definition

The modal effective mass is a modal dynamic property of a structure associated with
the modal characteristics: natural frequencies, mode shapes, generalised masses, and
participation factors. It is a measure to classify the importance of a mode shape when a
structure is excited by base acceleration (enforced acceleration). A high effective mass will
lead to a high reaction force at the base, while mode shapes with low associated modal
effective mass are barely excited by base acceleration and will give low reaction forces at
the base. The effect of local modes is not well described with modal effective masses. [33]

Consider a modal transient or frequency response function analysis via the finite element
method. Also consider that the system is a multi-degree-of-freedom system. For brevity,
only a limited number of modes should be included in the analysis. The number should
be enough so that the total effective modal mass of the model is at least 90% of the actual
mass.

Consider a discrete dynamic system governed by the following equation:

Mü + Ku = F (2.38)

A solution to the homogeneous form of equation (2.38) can be found in terms of eigenvalues
and eigenvectors. The eigenvectors represent normal modes.

Let ϕ be the eigenvector matrix. The system’s generalized mass matrix M̂ is given by:

M̂ = ϕTMϕ (2.39)

Let r be the influence vector which represents the displacements of the masses resulting
from static application of a unit ground displacement. The influence vector induces a
rigid body motion in all modes.

Define a coefficient vector L as:

L = ϕTMr (2.40)
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The modal participation factor for mode i, Γi, is:

Γi =
Li

M̂ii

(2.41)

The effective modal mass for mode i, meff,i, is:

meff,i =
Li

2

M̂ii

(2.42)

Note that M̂ii= 1 for each index if the eigenvectors have been normalized with respect to
the mass matrix. Furthermore, the off-diagonal modal mass terms (M̂ij, i ̸= j) are zero
regardless of the normalization and even if the physical mass matrix M has distributed
mass. This is due to the orthogonality of the eigenvectors. However, the off-diagonal
modal mass terms do not appear in equation (2.42). [18]

2.6.2. Modal Effective Masses: Computation

The effective modal masses have been computed by means of MSC NastranTM both for the
full FEM model and for the CB one. Table 2.2 and table 2.3 show the modes, the modal
frequencies and the modal masses for the three translations and for the three rotations.
The largest values of the modal masses are highlighted in red.
The effective modal masses of the full FEM model are:

Table 2.2: Effective modal masses of the full FEM model

Mode Frequency [Hz] T1 [kg] T2 [kg] T3 [kg] R1 [kg ·m] R2 [kg ·m] R3 [kg ·m]

1 0.396 4.49E-01 1.10E-02 8.12E-06 2.01E-02 8.17E-01 2.10E-04
2 0.397 1.11E-02 4.53E-01 1.29E-04 8.18E-01 2.01E-02 2.56E-05
3 0.454 2.32E-06 1.91E-04 6.25E-01 1.66E-04 2.94E-06 6.66E-11
4 0.601 1.13E-03 2.36E-04 3.15E-08 2.45E-05 2.64E-04 7.53E-01
5 0.637 1.86E-01 5.64E-03 8.56E-06 3.14E-04 1.01E-02 1.91E-03
6 0.640 5.38E-03 1.82E-01 6.14E-05 9.54E-03 2.70E-04 1.10E-03
7 0.928 1.91E-06 1.44E-05 2.93E-02 2.93E-06 1.23E-06 1.82E-10
8 1.139 2.42E-03 2.23E-04 3.04E-07 2.68E-03 2.81E-02 4.72E-05
9 1.141 2.29E-04 2.35E-03 2.54E-06 2.82E-02 2.65E-03 1.97E-07
10 1.347 8.33E-07 9.52E-09 5.28E-11 8.67E-07 1.19E-05 1.08E-02
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The effective modal masses of the CB model are:

Table 2.3: Effective modal masses of the CB model

Mode Frequency [Hz] T1 [kg] T2 [kg] T3 [kg] R1 [kg ·m] R2 [kg ·m] R3 [kg ·m]

1 0.396 4.52E-01 7.46E-03 7.30E-06 1.36E-02 8.24E-01 2.10E-04
2 0.397 7.54E-03 4.56E-01 1.30E-04 8.24E-01 1.36E-02 2.15E-05
3 0.454 2.87E-06 1.90E-04 6.25E-01 1.65E-04 3.46E-06 6.92E-11
4 0.601 1.12E-03 2.36E-04 2.85E-08 2.60E-05 2.58E-04 7.52E-01
5 0.637 1.86E-01 5.40E-03 8.63E-06 3.04E-04 1.02E-02 1.89E-03
6 0.640 5.14E-03 1.83E-01 6.09E-05 9.59E-03 2.57E-04 1.06E-03
7 0.928 1.92E-06 1.44E-05 2.93E-02 2.96E-06 1.17E-06 1.49E-10
8 1.139 2.43E-03 2.19E-04 3.15E-07 2.64E-03 2.82E-02 4.64E-05
9 1.141 2.26E-04 2.35E-03 2.56E-06 2.82E-02 2.61E-03 1.82E-07
10 1.347 8.82E-07 1.13E-08 5.61E-11 8.85E-07 1.20E-05 1.08E-02

The effective modal masses from the 11th mode on, both for the full FEM model and for
the CB one, are represented in Appendix B.
Both in the full FEM model and in the CB model, the largest effective modal masses
belong to the first 6 modes. It is interesting to represent them in a histogram to highlight
the entity of the modal participation factor both in the three translations and in the three
rotations. Figure 2.49 shows the effective modal masses of the full FEM model and of the
CB one. The largest values of the modal effective masses are displayed.

Figure 2.49: Modal effective masses of the full FEM model and of the CB model
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From fig. 2.49 it can be noted that the values of the corresponding modal effective masses
in the full FEM model and in the CB one are close to each other. In fig. 2.50 are displayed
the mode numbers against the modal frequencies.

Figure 2.50: Modal Frequencies

It can be highlighted that, starting from mode 16, mode number and modal frequency
start not to perfectly coincide anymore.
The next figures show the effective modal mass corresponding to every frequency until
250 Hz, both for the full FEM model and for the CB model, for the three translations
and for the three rotations.

• The effective modal masses associated to the translational modes in the three direc-
tions are represented in fig. 2.51, fig. 2.52 and fig. 2.53.
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Figure 2.51: T1

Figure 2.52: T2
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Figure 2.53: T3

• The effective modal masses associated to the rotational modes around the three axes
are represented in fig. 2.54, fig. 2.55 and fig. 2.56.

Figure 2.54: R1
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Figure 2.55: R2

Figure 2.56: R3

From the above figures it can be noted that at low frequencies the correspondence between
effective modal masses of the full FEM model and of the CB model is utterly precise.
However, as for the correspondence between mode numbers and modal frequencies, the
more the frequency increases, the merrier the effective modal masses start to be different
between the full FEM model and the CB one.
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2.6.3. Normal Modes

As it can be appreciated from the frequency response functions present in section 2.5.1,
the two main vertical normal modes are at frequencies 0.453484 Hz and 0.927579 Hz. They
respectively represent the 4th and the 8th normal modes, which are graphically displayed
in the following.

• Mode 4: f4 = 0.453 Hz

Figure 2.57: Undeformed structure
(Image courtesy of ESA)

Figure 2.58: Mode 4
(Image courtesy of ESA)
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• Mode 8: f8 = 0.928 Hz

Figure 2.59: Undeformed structure
(Image courtesy of ESA)

Figure 2.60: Mode 8
(Image courtesy of ESA)

On the other hand, the main transverse normal modes correspond to the following fre-
quencies and can thus be represented.

• Mode 2: f2 = 0.450 Hz

Figure 2.61: Undeformed structure
(Image courtesy of ESA)

Figure 2.62: Mode 2
(Image courtesy of ESA)
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• Mode 3: f3 = 0.450 Hz

Figure 2.63: Undeformed structure
(Image courtesy of ESA)

Figure 2.64: Mode 3
(Image courtesy of ESA)

• Mode 5: f5 = 0.639 Hz

Figure 2.65: Undeformed structure
(Image courtesy of ESA)

Figure 2.66: Mode 5
(Image courtesy of ESA)
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• Mode 6: f6 = 0.645 Hz

Figure 2.67: Undeformed structure
(Image courtesy of ESA)

Figure 2.68: Mode 6
(Image courtesy of ESA)

• Mode 7: f7 = 0.682 Hz

Figure 2.69: Undeformed structure
(Image courtesy of ESA)

Figure 2.70: Mode 7
(Image courtesy of ESA)
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• Mode 9: f9 = 0.055 Hz

Figure 2.71: Undeformed structure
(Image courtesy of ESA)

Figure 2.72: Mode 9
(Image courtesy of ESA)

• Mode 10: f10 = 0.058 Hz

Figure 2.73: Undeformed structure
(Image courtesy of ESA)

Figure 2.74: Mode 10
(Image courtesy of ESA)
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Two controllers have to be modelled: one on the VIBISIO and one on the MPLAT. Since
the equivalent 2DoF model has been validated, it is possible to design the control system
on this model, and afterwards extend it to the condensed CB model.

3.1. Isolation Platform Control

The only performance requirement which has been provided is the request of attenuating
the resonance peaks of −20 dB. The controller of the VIBISO is intended to isolating the
IUT from ground vibrations in 6 DoFs by combining a passive vibration isolation system
with active control.
A typical negative-stiffness passive isolator gives good isolation at high-frequencies (>
10 Hz), but amplifies vibration at its resonant frequency (usually between 0.1 Hz and 1
Hz) and offers no attenuation below this point.
Inertial sensors placed on the passive isolation platform can be used to measure platform
vibration and drive FB control, which can be delivered by voice coil force actuators onto
the platform. FB control will act to lock the platform to an inertial reference frame, and
so attenuate the resonance of the passive isolation platform and improve its low-frequency
performance. The purpose of the FB control is to lock the isolation platform to an iner-
tial reference frame defined by the inertial mass of the platform seismometers. The FB
control is a velocity control, which acts to smooth the passive platform resonance. The
three tri-axial seismometers on the platform are sufficient to measure 6DoF motion and
so 6DoF FB control is possible.
Adding an inertial sensor to the ground can be used to drive FF control. By measur-
ing ground vibration and predicting the force this vibration will exert on the platform,
actuators can be driven to counteract this force. FF control will act to attenuate all
platform vibration caused by ground vibration. The FF control minimises isolation plat-
form vibration by measuring ground vibration and then applying a force on the platform
which opposes the force exerted on the platform by the ground vibration. In order for
this control to be effective, the force caused by ground vibration must be estimated. If
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the platform can be approximated as a simple damped mass-spring system, the equivalent
force, Fg, exerted on the platform by ground vibration, qg, is:

Fg = Kiqg + Ciq̇g (3.1)

Where Ki and Ci are the effective spring stiffness and dampening of the platform respec-
tively. These parameters are estimated in an automated procedure by actively stimulating
the platform, measuring the response and using standard system identification techniques.
The attenuation resulting from FF control is only limited by inaccuracies in estimating
the force on the platform and exerting an opposing force.

Isolation Platform Sensors

The VIBISO uses four tri-axial Guralp CMG-3T seismometers as inertial sensors to drive
the control algorithm. Each seismometer operates in velocity mode and has its own
controller interface which outputs sensor data and allows mass centring. The parameters
of the seismometer are summarised in table 3.1.

Table 3.1: Seismometer specification summary

Parameter Value

Sensitivity 2000 Vs/m
Bandwidth 0.0027 Hz to 50 Hz

Mass 13.5 kg
Height 34.4 cm

Diameter 16.8 cm
Mass centring range ±2.5◦ from horizontal

Lowest spurious resonance > 140 Hz

The three platform seismometers were chosen to be hung below the top-plate rather than
placed on top, or level with the top-plate. This allowed the diameter of the system to be
constrained within the 1 m requirement without limiting the size of the load that could
be placed on the top-plate. This seismometer arrangement also had the advantage that
the CoG of the system would be lowered, increasing platform stability.
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3.1.1. Control of the 2DoF Model: VIBISIO

Since this analysis focuses on the actuator mode of the facility, the force fIUT is not
present. Moreover, for the moment only the first actuator is considered since the objective
is to design a control system to isolate the VIBISIO from ground vibrations. Thus, the
model becomes:

Figure 3.1: 2DoF model for the control

Since for the present analysis a Rayleigh damping matrix is considered, the equations of
motion can be written with the Lagrangian approach without considering the damping
in the beginning. The equations of motion of the 2DoF model in fig. 3.1 can be retrieved
by computing the kinetic, potential and damping energies, and then the virtual work as
follows:

T =
1

2
m1u̇

2
1 +

1

2
m2u̇

2
2 (3.2)

V =
1

2
k1(u1 − u0)

2 +
1

2
k2(u2 − u1)

2 (3.3)

D = 0 (3.4)

δW = δu1fc − δu0fc = δ(u1 − u0)fc (3.5)
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The Lagrange equations of motion are calculated as:


d
dt

(
∂T
∂u̇1

)
− ∂T

∂u1
+ ∂V

∂u1
+ ∂D

∂u̇1
= Q1

d
dt

(
∂T
∂u̇2

)
− ∂T

∂u2
+ ∂V

∂u2
+ ∂D

∂u̇2
= Q2

(3.6)

Hence, the equations of motion in absolute coordinates are:m1ü1 + k1(u1 − u0)− k2(u2 − u1) = fc

m2ü2 + k2(u2 − u1) = 0
(3.7)

The relative displacements are:

y1 = u1 − u0 (3.8)

y2 = u2 − u0 (3.9)

By defining ktot = k1 + k2 and a0 = ü0, the equations of motion in relative coordinates
are retrieved:

m1ÿ1 + ktoty1 − k2y2 = −m1a0 + fc

m2ÿ2 − k2y1 + k2y2 = −m2a0
(3.10)

In matrix form:

[
m1 0

0 m2

]{
ÿ1

ÿ2

}
+

[
ktot −k2

−k2 k2

]{
y1

y2

}
=

{
−m1a0 + fc

−m2a0

}
(3.11)

By adding the Rayleigh damping, where the damping matrix is defined as C = αM+βK,
it results that:

[
m1 0

0 m2

]{
ÿ1

ÿ2

}
+

[
C11 C12

C21 C22

]{
ẏ1

ẏ2

}
+

[
ktot −k2

−k2 k2

]{
y1

y2

}
=

{
−m1a0 + fc

−m2a0

}
(3.12)
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which means:

Mÿ(t) + Cẏ(t) + Ky(t) = F(t) (3.13)

For completeness, the system of equations is:

m1ÿ1 + C11ẏ1 + C12ẏ2 + ktoty1 − k2y2 = −m1a0 + fc

m2ÿ2 + C21ẏ1 + C22ẏ2 − k2y1 + k2y2 = −m2a0
(3.14)

By writing the equations of motion (eq. (3.14)) in the Laplace domain:

(s2m1 + sC11 + ktot)y1(s) + (sC12 − k2)y2(s) = −m1a0(s) + fc(s)

(s2m2 + sC22 + k2)y2(s) + (sC21 − k2)y1(s) = −m2a0(s)
(3.15)

From eq. (3.8), it is possible to retrieve the absolute acceleration of mass m1 as ü1 = ÿ1+a0

and the absolute acceleration of mass m2 as ü2 = ÿ2 + a0. These can be defined in the
Laplace domain as: a1(s) = ü1(s) = s2y1(s) + a0(s) and a2(s) = ü2(s) = s2y2(s) + a0(s).
By rearranging eq. (3.15), it is possible to retrieve two transfer functions. The subscript
i can be equal to 1 or 2 depending on whether it is related to the degree of freedom u1 or
u2, respectively.

• Pi(s) =
ai(s)
a0(s)

: represents the Primary path, from the base acceleration to the accel-
eration of the VIBISIO or of the MPLAT, depending on the value of the subscript
i.

• Si(s) = ai(s)
fc(s)

: represents the Secondary path, from the actuator control force to
the acceleration of the VIBISIO or of the MPLAT, depending on the value of the
subscript i.

It results that:

a1(s) = P1(s)a0(s) + S1(s)fc(s) (3.16)

a2(s) = P2(s)a0(s) + S2(s)fc(s) (3.17)

The transfer functions of the Primary path, Pi(s), and of the Secondary path, Si(s), can
be retrieved in the following way.
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First, it is necessary to define the m vector of masses and the Lc load vector:

m =

{
−m1

−m2

}
(3.18)

Lc =

{
1

0

}
(3.19)

Pall(s) and Sall(s) can be computed respectively as:

Pall(s) = s2((s2M + sC + K)−1m) +

{
1

1

}
(3.20)

Sall(s) = s2((s2M + sC + K)−1Lc) (3.21)

It is possible to extract P1(s) and P2(s) from Pall(s), while S1(s) and S2(s) from Sall(s).
P1(s) and S1(s) are obtained by taking the transfer function from input 1 (a0(s)) to
output 1 (a1(s)) of Pall(s) and Sall(s), respectively. On the other hand, P2(s) and S2(s)

are retrieved by considering the transfer function from input 1 (a0(s)) to output 2 (a2(s))
of Pall(s) and Sall(s), respectively. The TFs of the Primary and Secondary paths can now
be written extensively, either considering the Rayleigh damping or the modal one.

• If the Rayleigh damping is considered, the equations of the transfer functions in
which a1 is involved are:

P1(s) =

(m2C12 +m2C11)s
3 + (C11C22 +m2k1 − C12C21)s

2+
+ (C11k2 + C22k1 + C22k2 + C12k2 + C21k2)s+ k1k2

D1(s)
(3.22)

S1(s) =
s2(m2s

2 + C22s+ k2)

D1(s)
(3.23)

where:

D1(s) = m1m2s
4 + (m1C22 +m2C11)s

3 + (m1k2 + C11C22 +m2ktot − C12C21)s
2+

+ (C11k2 + C22ktot + C12k2 + C21k2)s+ k1k2

(3.24)
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On the other hand, the equations in which a2 is involved are:

P2(s) =

(m1C22 +m1C21)s
3 + (C11C22 − C12C21s

2)+
+ (C22ktot + C11k2 + C21k2 + C12k2)s+ k1k2

D2(s)
(3.25)

S2(s) =
−s2(C21s− k2)

D2(s)
(3.26)

where:

D2(s) = m1m2s
4 + (m2C11 +m1C22)s

3 + (m2ktot + C11C22 +m1k2 − C12C21)s
2+

+ (C22ktot + C11k2 + C21k2 + C12k2)s+ k1k2

(3.27)

• If instead the modal damping is considered, the equations of the transfer functions
in which a1 is involved are:

P1(s) = (sc1 + k1)Q1(s) (3.28)

S1(s) = s2Q1(s) (3.29)

where:

Q1(s) =
s2m2 + sc2 + k2

(s2m1 + sctot + ktot)(s2m2 + sc2 + k2)− (sc2 + k2)2
(3.30)

On the other hand, the equations of the transfer functions in which a2 is involved
are:

P2(s) = (sc1 + k1)Q2(s) (3.31)

S2(s) = s2Q2(s) (3.32)
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where:

Q2(s) =
sc2 + k2

s4m1m2 + s3(m2ctot +m1c2) + s2(m2ktot + c2ctot +m1k2 − c22)+
+ s(c2ktot + ctotk2 − 2c2k2) + k2ktot − k2

2

(3.33)

Hence, the block diagram of the open-loop control system is:

Figure 3.2: Open-loop control system of the 3DoF model

The open-loop transmissibility functions, from a0 to a1 and from a0 to a2, result:

a1(s)

a0(s)
= T1open(s) = P1(s) (3.34)

a2(s)

a0(s)
= T2open(s) = P2(s) (3.35)

Three cases of control strategies can be investigated:

1. FB controller;

2. FF controller;

3. Combined FB and FF controller.
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The block diagram of the closed-loop control system is the following:

Figure 3.3: Closed-loop control system of the 2DoF model

The three control cases consist of:

1. FF(s)=0, design FB(s);

2. FB(s)=0, design FF(s);

3. Design FB(s) and FF(s) by combining the previous designs.

The closed-loop transmissibility functions, from a0 to a1 and from a0 to a2, result:

a1(s)

a0(s)
= T1closed(s) =

P1(s) + S1(s)FF (s)

1 + S1(s)FB(s)
(3.36)

a2(s)

a0(s)
= T2closed(s) = P2(s) + S2(s)FF (s)− S2(s)FB(s)T1closed(s) (3.37)

However, the real actuators and seismometers are characterised by a saturation level and
an internal dynamics respectively, which can be modelled in order to obtain results closer
to reality. The specifications of the real sensors and actuators present on the facility are
reported in an internal document provided by NPL.

• Each one of the mounted actuators can provide up to ±1 N force. Three are the
longitudinal actuators in the VIBISIO, and the z component of the control force they
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produce is always one. Thus, it follows that the equivalent force to be considered
as the saturation can be set to ±3 N . The saturation of the actuators is modelled
in Simulink® by means of a specific block called Saturation.

• The model of the seismometers is Güralp CMG-3T. The amplitude and phase
which characterise this seismometer model are:

Figure 3.4: Güralp CMG-3T [2]

The magnitude graph in fig. 3.4 shows that the passband of the seismometer is from
0.01 Hz to 100 Hz approximately. The internal dynamics of the seismometer is
modelled by means of a passband filter with the following transfer function:

H(s) =
s

s+ a

b

s+ b
(3.38)

where the first fraction represents a high-pass filter and the second one a low-pass
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filter. The parameters a and b are tuned according to the passband of the sensor,
from which it results that a = 2π0.01 rad/s and b = 2π100 rad/s. Since the peaks
of the FRFs are in the low-frequency range, the bandwidth of the seismometer will
probably not cause any problem at frequencies higher than 100 Hz, while it can
provide an imprecise measurement at frequencies lower than 0.01 Hz. A solution
to this issue can be to increase the control gain. Anyway, a phase lag, which adds
negative phase to the system over the specified frequency range [27], could take to
instability or a decrease in performances.

By adding the saturation block and the internal dynamics of the seismometer H(s), the
block diagram becomes:

Figure 3.5: Closed-loop control system of the 2DoF model, including the actuator’s sat-
uration and the internal dynamics of the seismometer

By taking into account also the internal dynamics of the seismometer, the closed-loop
transmissibility function from a0 to a1 becomes:

a1(s)

a0(s)
= T1closed(s) =

P1(s) + S1(s)FF (s)

1 + S1(s)FB(s)H(s)
(3.39)
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The closed-loop transmissibility from a0 to a2 is instead:

a2(s)

a0(s)
= T2closed(s) = P2(s) + S2(s)FF (s)− S2(s)FB(s)H(s)T1closed(s) (3.40)

The excitation signal is the base acceleration a0, which derives from the ground vibrations
present in the building in which the tests are carried out. The acceleration a0 has a
constant power spectral density of 1 G2/Hz in the frequency range between 0.01 Hz and
20 Hz. It can be modelled as a white noise, which is a a random signal having equal
intensity at different frequencies, giving it a constant power spectral density. [10] The
employed Simulink® block is called Band − Limited White Noise, which receives as
inputs a noise power of 1 W/Hz and a sample time equal to 1/fs, with fs = 100 Hz. To
tune the value of the excitation, the output signal of the Band − Limited White Noise

block is multiplied by a multiplicative constant k. In order to test the effectiveness of the
control system, it is necessary to check that this excitation level is equal or larger than the
maximum value of the total accelerations typical for the environment in which the testing
facility is placed. Figure 3.6 shows what are the limit levels of the total accelerations on
the z axis for different destinations of usage:

Figure 3.6: Limit levels of the total accelerations on the z axis [4]

The limit level of the total acceleration considered for this specific case is the one related
to offices, which is 0.02 m/s2. Hence, the attenuation of the peaks must be obtained for
a value of acceleration a0 at least equal to 0.02 m/s2.
Moreover, to implement the control it is vital to underline the fact that the integrator
must not be ideal, but a pseudo-integrator must be used. Since there exist some low-
frequency components, they would be integrated if an ideal integrator was used and hence
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the response would keep growing. The transfer function of the pseudo-integrator is:

H̃(s) =
s

s2 + 2ξωs+ ω2
(3.41)

Figure 3.7: Pseudo-integrator [13]

The design of the integrator consists of selecting the frequency approximately one decade
below the frequency at which it is desired to start to integrate (see fig. 3.7) and the
damping is selected approximately equal to 0.7 to avoid amplification. [13] In fact, the
parameters ξ and ω have been chosen as:

• ξ = 0.707 in order to keep the transition smooth;

• ω = 2π0.01 rad/s, where the frequency 0.01 Hz has been selected as one decade
lower than the first resonance peak of the frequency response function, which is
around 0.45 Hz. It has not been taken the value 0.04 Hz, but 0.01 Hz to be
conservative in the transition region.

Feedback Control: Description

The sky-hook damping has been selected as a FB control design approach. Consider
a single-axis soft isolator connecting two rigid bodies, which consists of a soft spring k

acting in parallel with a force actuator fc, to isolate the sensitive payload M from the
disturbance source m. There is a seismometer to measure the velocity of the payload
and the signal is fed back to the force actuator. The sky-hook damper is represented in
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fig. 3.8, imagining that the payload is suspended by a damper to a point in the sky. [17]

Figure 3.8: Equivalent sky-hook damper

In the sky-hook damper technique, the FB is based on the absolute acceleration of the
sensitive payload, a1(s), with integral controller gH̃(s) leading to the FB equation:

fc(s) = −gH̃(s)a1(s) (3.42)

It can be clearly seen that the active control force is proportional to the absolute velocity
of the payload. By defining FB(s) = gH̃(s), where the integrator is necessary to obtain
the velocity from the acceleration, eq. (3.42) becomes:

fc(s) = −FB(s)a1(s) (3.43)

Now, the transmissibility function in case of FB control with sky-hook damping can be
retrieved. Considering FF (s) = 0, eq. (3.39) becomes:

Tsky(s) =
P (s)

1 + S(s)FB(s)H(s)
(3.44)

Feedback Control: Results

In the beginning of the following analysis, the internal dynamics of the seismometer and
the saturation of the actuator are not taken into account. The multiplicative constant of
the excitation, k, has been set to 0.00045, since in this way the disturbance a0 assumes a
maximum value in the order of 0.02 m/s2, as required by fig. 3.6.
In fig. 3.9 and fig. 3.11 are represented the frequency responses of the closed-loop trans-
missibilities, obtained with the MATLAB® command bodeplot, varying the value of the
gain from 0 to 1000.
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Figure 3.9: Closed loop transmissibility (bode of transfer function) from a0 to a1

Figure 3.10: Closed loop transmissibility (bode of transfer function) from a0 to a2

Figure 3.11 and fig. 3.12 display the FRFs of the closed-loop transmissibilities retrieved
with the MATLAB® command tfestimate from the time responses obtained with lsim.



92 3| Control Design

Figure 3.11: Closed loop transmissibility (tfestimate from response with lsim) from a0

to a1

Figure 3.12: Closed loop transmissibility (tfestimate from response with lsim) from a0

to a2

From the four figures above, it can be noted that, by changing the values of the gain, it
results that the two resonance peaks are attenuated: the higher is the gain, the larger
is the attenuation. It is shown that the complete flattening of the first peak and the
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best attenuation of the second one occur when choosing g = 1000. However, it has to be
checked that for this value of the gain the actuator does not reach saturation.
Figure 3.13 and fig. 3.14 show the FRFs of the transmissibility from a0 to a1 and from a0

to a2, respectively. They are obtained by means of the command tfestimate, taking as
inputs the temporal history of the accelerations retrieved from Simulink®. The simulation
is stopped when the actuators reach saturation, hence the last gain value in the legend is
the largest gain among the ones taken as samples for which the actuator does not saturate.

Figure 3.13: Closed loop transmissibility (tfestimate from Simulink® time responses)
from a0 to a1
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Figure 3.14: Closed loop transmissibility (tfestimate from Simulink® time responses)
from a0 to a2

From fig. 3.13 and fig. 3.14 it can be appreciated that the largest gain, among the consid-
ered ones, for which saturation is not reached is 777.78. In fact, for the next value of the
gain, 888.89, the actuator saturates, as it can be seen in fig. 3.15, where for that value of
the gain fc reaches ±3N .

Figure 3.15: Actuator control force for different values of the gain until saturation
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To define the largest gain for which saturation is not reached, the bisection method is
used, which consists of iteratively reducing the interval between the largest gain for which
saturation is not reached and the first gain for which saturation is reached. The largest
gain value for which saturation is not reached is found to be equal to 824.83.
Figure 3.16 and fig. 3.17 show the comparison between the open-loop and the closed-loop
responses with g = 824.84.

Figure 3.16: Comparison between open-loop and closed-loop response, transmissibility
from a0 to a1, g = 824.84
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Figure 3.17: Comparison between open-loop and closed-loop response, transmissibility
from a0 to a2, g = 824.84

Since the required attenuation is of −20 dB, table 3.2 and table 3.3 report the magnitude
difference in dB between the peaks of the closed loop responses and the target value which
would be obtained with an attenuation of −20 dB of the original peaks (in correspondence
of the resonance frequencies).

Table 3.2: Attenuation of the peaks: transmissibility from a0 to a1

Gain First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 20 20
111.11 14.0848 17.0033
222.22 10.5105 14.7624
333.33 7.9645 12.9764
444.44 5.9910 11.4929
555.56 4.3810 10.2249
666.67 3.0218 9.1178
777.78 1.8460 8.1355
824.83 1.3923 7.7507
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Table 3.3: Attenuation of the peaks: transmissibility from a0 to a2

Gain First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 20 20
111.11 14.0614 16.9022
222.22 10.4646 14.5591
333.33 7.8955 12.6695
444.44 5.8985 11.0810
555.56 4.2648 9.7066
666.67 2.8817 8.4917
777.78 1.6819 7.4003
824.83 1.2179 6.9689

From table 3.2 and table 3.3, it can be appreciated that the distance between the peaks in
closed loop and the target magnitude if an attenuation of −20 dB was present decreases
the more the gain increases, which means that an increase in the gain leads to a flattening
of the peaks. Moreover, it can be noted that the same gain generates a similar level of
attenuation of the same peak, both in the case of transmissibility from a0 to a1 and of
transmissibility from a0 to a2. Furthermore, from the same tables it is evident that the
first resonance peak is much better attenuated than the second one.
The most relevant conclusion is that the largest gain for which no saturation occurs, equal
to 824.83, is not able to generate an attenuation of the peaks of −20 dB, given the con-
sidered excitation level (multiplicative constant of the excitation, k, equal to 0.00045).
To have a stronger attenuation, the addition of a FF control is necessary or, otherwise, a
different control strategy must be followed, for example the H − infinity method [17].

The objective of the control is to obtain the desired attenuation of the resonance peaks
also in the case of the highest expected excitation. Even if the requirement on the
maximum excitation level in laboratories is a0 = 0.02 m/s2 (fig. 3.6), it is possible to
study how much the excitation level can be increased while maintaining an acceptable
attenuation of the peaks. Since the actuators are already mounted on the facility, their
characteristics are fixed, in particular their saturation. Under the saturation constraint,
it is possible to obtain the desired performances only by tuning the gain and by granting
that the excitation level remains below a threshold. As a matter of fact, a compromise
must be reached, since both a too high gain or a too high excitation level prevent from
respecting the saturation constraint.
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In the following, it is looked for the largest gain which avoids saturation when the excita-
tion level is increased. Hence, the multiplicative constant of the excitation, k, is gradually
increased starting from the initial value of 0.00045.

• If k is set to 0.0008, saturation is reached when the gain becomes 555.56, as it can
be noted from the time history of the actuator control force in fig. 3.18.

Figure 3.18: Actuator control force until saturation, excitation with k = 0.0008

Figure 3.19 and fig. 3.20 display the closed-loop frequency responses for the different
values of the gain for which saturation is not reached.
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Figure 3.19: Damping for different values of the gain before saturation, excitation with
k = 0.0008, transmissibility from a0 to a1

Figure 3.20: Damping for different values of the gain before saturation, excitation with
k = 0.0008, transmissibility from a0 to a2

• If k is set to 0.0015, saturation is reached when the gain becomes 333.33, as it can
be noted from the time history of the actuator control force in fig. 3.21.
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Figure 3.21: Actuator control force until saturation, excitation with k = 0.0015

Figure 3.22 and fig. 3.23 display the closed-loop frequency responses for the values
of the gain for which saturation is not reached.

Figure 3.22: Damping for different values of the gain, excitation with k = 0.0015, trans-
missibility from a0 to a1



3| Control Design 101

Figure 3.23: Damping for different values of the gain, excitation with k = 0.0015, trans-
missibility from a0 to a2

• k = 0.005: Saturation is reached when the gain becomes 111.11, as it can be noted
from the time history of the actuator control force in fig. 3.24.

Figure 3.24: Actuator control force until saturation, excitation with k = 0.005

Figure 3.25 and fig. 3.26 display the closed-loop frequency responses for the unique
value of the gain for which saturation is not reached. This value is g = 0, hence the
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open loop response is obtained.

Figure 3.25: Damping for the unique value of the gain which does not reach saturation,
excitation with k = 0.005, transmissibility from a0 to a1

Figure 3.26: Damping for the unique value of the gain which does not reach saturation,
excitation with k = 0.005, transmissibility from a0 to a2

As it can be seen from fig. 3.25 and fig. 3.26, in case of k = 0.005 no value of the
gain allows to control the system without reaching saturation of the actuator.
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From these simulations, it results that an increase in the excitation level causes a decrease
in the maximum possible attenuation of the peaks before reaching saturation. In case of
k = 0.0008, the maximum attenuation before saturation is not satisfactory, as it can be
seen in fig. 3.19 and fig. 3.20. After some iterations, it has been found that the largest
excitation for which the peaks remain fairly damped before saturation is k = 0.00055,
with a resulting maximum value of the acceleration a0 of 0.0247 m/s2. For such an
excitation value, the maximum allowable gain before saturation is 668.99. The resulting
transmissibility FRFs are shown in fig. 3.27 and fig. 3.28.

Figure 3.27: Magnitude plot, comparison between open-loop and closed-loop transmissi-
bilities (g = 668.99, k = 0.00055): transmissibility from a0 to a1
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Figure 3.28: Magnitude plot, comparison between open-loop and closed-loop transmissi-
bilities (g = 668.99, k = 0.00055): transmissibility from a0 to a2

In this case, the difference between the damped peak and the desired attenuation of
−20 dB is 2.8817 dB for the first peak and 8.4917 dB for the second one. As expected,
for such an excitation value, the maximum obtainable attenuation and its correspondent
gain are lower than in the case with k = 0.00045. Hence, also in this case it is necessary
to add a FF control or to adopt a different control strategy if the target attenuation of
−20 dB needs to be obtained.
However, since it is not necessary to consider an excitation level higher than 0.02 m/s2

(fig. 3.6), in the following it is considered k = 0.00045, with the corresponding maximum
acceptable gain of 824.83.

In fig. 3.29 and fig. 3.30, it is desired to highlight the difference between the closed-
loop frequency response with and without the addition of the internal dynamics of the
seismometer.
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Figure 3.29: Magnitude plot, comparison between open-loop and closed-loop transmissi-
bilities (g = 824.83, k = 0.00045): transmissibility from a0 to a1

Figure 3.30: Magnitude plot, comparison between open-loop and closed-loop transmissi-
bilities (g = 824.83, k = 0.00045): transmissibility from a0 to a2

From fig. 3.29 and fig. 3.30, it results that with a gain of 824.83 the addition of the internal
dynamics of the seismometer does not significantly affect the magnitude of the closed-loop
FRF.
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As far as the phase is concerned, the closed-loop response detaches from the open-loop
one. However, the behaviour of the closed-loop curve, either with or without the addition
of the internal dynamics of the seismometer, is considerably similar, as it can be noted
from fig. 3.31 and fig. 3.32:

Figure 3.31: Phase plot, comparison between open-loop and closed-loop transmissibilities
(g = 824.83, k = 0.00045): transmissibility from a0 to a1

Figure 3.32: Phase plot, comparison between open-loop and closed-loop transmissibilities
(g = 824.83, k = 0.00045): transmissibility from a0 to a2
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If instead larger values of the gain or larger excitation levels were considered, for which
saturation would be reached, the magnitude and phase curves would become more noisy.
This happens because if the actuator reaches saturation, a nonlinear term is added. The
fact that actuators reach saturation or not depends on the gain and on the velocity,
according to the definition of the control force with sky-hook damping (eq. (3.42)). In turn,
the velocity depends on the excitation level since the output of P1(s) is the acceleration
and its input is indeed the base excitation.

Feedforward Control: Description

The FF control has the aim of furtherly flattening the resonance peaks until an attenuation
of −20 dB. The transfer function of the FF block is found by imposing the ratio a1(s)

a0(s)

equal to zero and hence by setting to zero the numerator of the transmissibility function
from a1 to a0 (eq. (3.39)). It is important to underline the fact that it is necessary to
consider the modal damping and not the Rayleigh one when the FF control is added, since
in its TF the coefficient c1 is present. In fact, if the equations with the modal damping
are considered, it results that:

P1(s) + S1(s)FF (s) = 0 (3.45)

S1(s)FF (s) = −P1(s) (3.46)

FF (s) = −S−1
1 (s)P1(s) (3.47)

Since P1(s) = (sc1 + k1)Q1(s) and S1(s) = s2Q1(s), it results that:

FF (s) = −s−2Q−1
1 (s)(sc1 + k1)Q1(s) = −s−2(sc1 + k1) (3.48)

From here, the ideal FF control with perfect cancellation results to be:

FF (s) = −sc1 + k1
s2

= −1

s

(
c1 +

k1
s

)
(3.49)

From eq. (3.49) it comes the consideration that the parameters c1 and k1 assume the role
of a proportional and a derivative gain, respectively, and hence the FF is written under
the form of a Proportional-Integral (PI) controller. Anyway, to avoid any possible drift
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and actuator saturation, the pure integrators in the previous expression are replaced as
follows:

1

s
→ 1

s+ α
(3.50)

where α needs to be tuned with a value one decade below the first resonance frequency,
as for the frequency ω in the pseudo-integrator seen before (eq. (3.41)).
As a result, eq. (3.49) becomes:

FF (s) = − 1

s+ α

(
c1 +

k1
s+ α

)
(3.51)

Note that k1 and c1 are not known exactly, but only a non-perfect estimate of the pa-
rameters is available since they have been estimated by comparing dynamic responses.
Hence:

k1 → k̂1 (3.52)

c1 → ĉ1 (3.53)

Therefore, the FF control is given by:

FF (s) = − 1

s+ α

(
ĉ1 +

k̂1
s+ α

)
(3.54)

The effects of the uncertainties on the estimates of k1 and c1 can be simulated as:

0.9 k1 ≤ k̂1 ≤ 1.1 k1 (3.55)

0.9 c1 ≤ ĉ1 ≤ 1.1 c1 (3.56)

Combined FB and FF Control: Results

At first, no saturation is considered in the simulations and the FB gain is set to 824.83,
which was the largest acceptable gain when the FB control alone was implemented and
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saturation was considered. Moreover, the parameters ĉ1 and k̂1 are for the moment taken
as fixed and assume the value of their perfect estimates when considering the modal
damping, hence: ĉ1=c1 and k̂1=k1. Figure 3.33 and fig. 3.34 display the effects of the
addition of the FF control when different values of the α parameter are considered, before
imposing the saturation constraint.

Figure 3.33: Closed-loop transmissibility from a0 to a1: effect of the FF control

Figure 3.34: Closed-loop transmissibility from a0 to a2: effect of the FF control
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From fig. 3.33 and fig. 3.34 it is evident that the introduction of the FF control allows to
improve the roll-off rate at high frequencies with respect to the case in which only the FB
is considered. Moreover, it results that the FF control can cause a visible improvement in
the damping of the resonance peaks. The attenuation gets better the more α decreases,
but this requires a larger control force to the actuator, as it can be seen in fig. 3.35.

Figure 3.35: Actuator control force: FB and FF

Introduce now the presence of the saturation of the actuator at ±3 N . Since in the
FB the maximum acceptable gain before saturation has been considered, it results that
no contribution to the control force is left to the FF control. To respect the saturation
constraint, it is necessary to lower the gain of the FB loop and find a compromise between
the performances granted by the FB and the ones of the FF control. Some simulation
trials have been made considering to respect the following constraints:

• Granting an attenuation of the resonance peaks of at least −20 dB;

• Requiring a control force lower than the saturation limit of ±3 N .

Unfortunately, there is no combination of the values of the gain and of the α parameter
that can grant the required attenuation of the peaks by providing, at the same time, a
control force lower than saturation. For this reason, it is necessary to relax one of the
two constraints: either some performances are given up or it is required a larger control
force to the actuators by exceeding the saturation limit. The two cases are distinguished
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in the following.

Respecting the Saturation Constraint

Since it is not provided any information on the exploitation possibility of the actuator,
its saturation should be considered at ±3 N , which is the value present on the datasheet.
However, this saturation level leads to the fact that, even at the top of the control, an
attenuation of −20 dB cannot be reached.
The FF addition leads to an increase in the roll-off rate at higher frequencies due to the
choice of the α parameter. For the saturation limit to be respected, it is necessary to find
a compromise between the increase in the FB gain and the decrease in the α parameter
of the FF. The best results obtained respecting the saturation limit are shown in fig. 3.36
and fig. 3.37, with g = 600 and α = 2π0.27.

Figure 3.36: Closed-loop transmissibility from a0 to a1: FB control with g = 600 and FF
control with α = 2π0.27
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Figure 3.37: Closed-loop transmissibility from a0 to a2: FB control with g = 600 and FF
control with α = 2π0.27

As it results from the figures above, the attenuation of the second peak is improved
for both the transmissibilities, while the attenuation of the first peak has worsened with
respect to the case of FB control alone. This is due to the chosen value of the α parameter,
which is the cutoff frequency of the FF. This problem could be solved by decreasing the
value of α, but the issue is that in this way the saturation limit would not be respected
anymore. If at the same time the gain was decreased, it would not be possible anyway to
have an improvement in the attenuation both of the first and of the second peak.
The attenuation levels provided in the case of g = 600 and α = 2π0.27 are displayed
in table 3.4 and table 3.5, where the attenuations are defined as the difference between
the magnitude of the resonance peak and the magnitude which would be obtained if the
desired attenuation of −20 dB was obtained.

Table 3.4: Attenuation of the peaks: transmissibility from a0 to a1

Gain α First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 \ 20 20
824.83 \ 1.3923 7.7507

600 2π0.27 3.6625 5.3265
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Table 3.5: Attenuation of the peaks: transmissibility from a0 to a2

Gain α First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 \ 20 20
824.83 \ 1.3923 7.7507

600 2π0.27 3.6623 5.3279

As it results from table 3.4 and table 3.5, the first peak is less attenuated with respect
to the case of FB control alone (table 3.2 and table 3.3). For this reason, in the case
in which it is desired to respect the saturation limit of ±3 N , the best performance is
obtained with FB control alone without the addition of a FF control.

Exceeding the Saturation Constraint

In order to obtain a saturation of −20 dB, it is considered to increase the maximum
control force required to the actuator. In fact, if the actuator could be exploited more
than its actual saturation limit, it would be possible to prioritize the performances over the
saturation constraint. Simulations have shown that the first saturation value which allows
to obtain an attenuation of −20 dB is ±4.3 N . In this way, the actuators are stressed
143.33% of their nominal saturation value, which is anyway acceptable in practical terms.
Under this new saturation constraint, the gain and the α parameter which grant a larger
attenuation than −20 dB are 824.83 (equal to the gain with FB alone) and 2π0.209,
respectively. The resulting transmissibility functions are represented in fig. 3.38 and
fig. 3.39.
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Figure 3.38: Closed-loop transmissibility from a0 to a2: FB and FF control with g=824.83
and α = 2π0.209

Figure 3.39: Closed-loop transmissibility from a0 to a2: FB and FF control with g=824.83
and α = 2π0.209

The required control force is represented in fig. 3.40, which shows the overcome of the
saturation limit since ±4.3 N are reached.
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Figure 3.40: Actuator control force: FB and FF control with g=824.83 and α = 2π0.209

From fig. 3.38 and fig. 3.39 it results that the attenuation of the peaks is considerably
larger than the one obtained with the FB control alone. Table 3.6 and table 3.7 show the
difference between the peak and the desired attenuation of −20 dB. It results that the
attenuation of −20 dB is achieved, since the values related to the control with FB and
FF are negative.

Table 3.6: Attenuation of the peaks: transmissibility from a0 to a1

Gain α First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 \ 20 20
824.83 \ 1.3923 7.7507
824.83 2π0.209 -0.8518 -0.0131

Table 3.7: Attenuation of the peaks: transmissibility from a0 to a2

Gain α First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

0 \ 20 20
824.83 \ 1.2179 6.9689
824.83 2π0.209 -0.8564 -0.0755

Figure 3.38 and fig. 3.39 show that at lower frequencies the FRF with FF control rises up.
This issue is not due to the wind-up phenomenon, since saturation is not reached, and it
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is even not due to the waterbed effect, since no unstable poles nor zeros are present. This
overshoot phenomenon is inevitable in the inertial FB systems because the amplification
near the unity gain points happens for phase margin less than 60o. To reduce the effect of
the overshoots at the unity gain points on the stability of the system, the phase margin
should be increased. This could be achieved thanks to a phase lag and a phase lead
compensators.

• The phase lag is addressed to the low frequency unity gain point. Added to the FB
compensator, the phase lag serves to increase the compensation gain which results
in decreasing the closed loop magnitude (overshoots) near the low frequency unity
gain point.

• The phase lead is addressed to the high frequency unity gain point. Added at high
frequency unity gain point, the phase lead shifts the phase of the closed-loop away
from the line of −180o which increases the phase margin and assures higher stability
conditions. [17]

In the following, it is necessary to verify that the uncertainties on the values of k̂1 and
ĉ1 still allow to respect the required performances and the saturation constraint. Hence,
a sensitivity analysis to the possible variations of k̂1 and ĉ1 is conducted, by keeping fixed
the values of the gain and of the parameter α at 824.83 and 2π0.209, respectively. The
effects of uncertainties on the estimates of k1 and c1 are simulated as in eq. (3.57) and
eq. (3.58).

0.9 k1 ≤ k̂1 ≤ 1.1 k1 (3.57)

0.9 c1 ≤ ĉ1 ≤ 1.1 c1 (3.58)

First, it is considered to vary only the k̂1 parameter and the results are represented in
fig. 3.41 and fig. 3.42.
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Figure 3.41: FB and FF closed-loop transmissibility from a0 to a1: 0.9 k1 ≤ k̂1 ≤ 1.1 k1

Figure 3.42: FB and FF closed-loop transmissibility from a0 to a2: 0.9 k1 ≤ k̂1 ≤ 1.1 k1

From fig. 3.41 and fig. 3.42, it can be noted that at high frequencies some noise appears for
values of k̂1 larger than the nominal one. This is due to the fact that saturation is reached
in those cases, and the oscillations are the nonlinear terms introduced. As an observation,
the fact that saturation is reached does not generate a relevant increase in the rise-up of
the magnitude of the FRF at lower frequencies, hence the wind-up phenomenon does not
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have a consistent effect. Saturation is reached for values of k̂1 larger than the nominal
one because the employed α parameter was the limit value that could at the same time
guarantee the required performances and respect the saturation limit, while maximising
the value of the gain. The issue of the oscillations at higher frequencies can be solved in
one of the following ways:

• by reducing the ranges of possible k̂1;

• by giving up on some attenuation, allowing a worsening of the performance;

• by requiring more control force to the actuators.

The attenuation granted by the range of values of k̂1 is reported in table 3.8 and in
table 3.9. It is highlighted in red the case obtained with the nominal value of k̂1.

Table 3.8: Attenuation of the peaks (uncertain k̂1): transmissibility from a0 to a1

k̂1 [N
m
] First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

2250 -0.9581 0.1945
2375 -0.9162 0.0425
2500 -0.8518 -0.0131
2625 -0.7655 0.0134
2750 -0.6600 0.0816

Table 3.9: Attenuation of the peaks (uncertain k̂1): transmissibility from a0 to a2

k̂1 [N
m
] First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

2250 -0.9627 0.1321
2375 -0.9209 -0.0198
2500 -0.8564 -0.0755
2625 -0.7702 -0.0492
2750 -0.6649 0.0169

From table 3.8 and table 3.9 it results that the required performances are obtained only
when the nominal value of k̂1 is involved. Otherwise, both for smaller and larger values
of k̂1, the second peak is not attenuated of at least −20 dB in the transmissibility from
a0 to a1. Hence, even if for values of k̂1 lower than the nominal one saturation is not
reached, there is however the issue that the requirement on the attenuation of −20 dB is
not fulfilled. Anyway, since the main goal is to attenuate the micro vibrations transmit-
ted to the MPLAT, it is enough to guarantee an attenuation of at least −20 dB in the
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transmissibility from a0 to a2. Thus, acceptable values of k̂1 become the ones lower or
equal to the nominal k1 showing a negative value for both the peaks in table 3.9.

Now, the nominal value of k̂1 is considered as fixed, while the parameter ĉ1 is varied in
the interval between 0.9 c1 and 1.1 c1. The results of the effect of the sensitivity analysis
to the uncertainties of the parameter ĉ1 are shown in fig. 3.43 and fig. 3.44.

Figure 3.43: FB and FF closed-loop transmissibility from a0 to a1: 0.9 c1 ≤ ĉ1 ≤ 1.1 c1
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Figure 3.44: FB and FF closed-loop transmissibility from a0 to a2: 0.9 c1 ≤ ĉ1 ≤ 1.1 c1

As it can be appreciated from fig. 3.43 and fig. 3.44, saturation is not reached when k̂1 is
kept fixed and ĉ1 is varied. In fact, no oscillations at higher frequencies are present. The
provided attenuation is displayed in table 3.10 and table 3.11.

Table 3.10: Attenuation of the peaks: transmissibility from a0 to a1

ĉ1 [Ns
m

] First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

83.1441 -0.9518 -0.4254
87.7632 -0.9016 -0.2170
92.3824 -0.8518 -0.0131
97.0015 -0.8019 0.1869
101.6206 -0.7525 0.3823

Table 3.11: Attenuation of the peaks: transmissibility from a0 to a2

ĉ1 [Ns
m

] First peak (0.45Hz) [dB] Second peak (0.93Hz) [dB]

83.1441 -0.9565 -0.4874
87.7632 -0.9063 -0.2791
92.3824 -0.8564 -0.0755
97.0015 -0.8066 0.1246
101.6206 -0.7571 0.3199
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From table 3.10 and table 3.11, it results that the required attenuation is obtained for
values of ĉ1 smaller or equal to the nominal one given by the modal damping. For larger
values of ĉ1, an attenuation of at least −20 dB is not achieved anymore.

To sum up, it is possible to define the acceptable ranges of k̂1 and ĉ1 in order to grant the
fulfillment of the performance and to respect the new saturation constraint of ±4.3 N .
The range of k̂1 is defined as follows:

• to avoid saturation: 0.9 k1 ≤ k̂1 ≤ k1;

• to grant an attenuation of at least −20 dB: 0.95 k1 ≤ k̂1 ≤ 1.05 k1.

Hence, the acceptable range of k̂1 is 0.95 k1 ≤ k̂1 ≤ k1.
On the other hand, the range of ĉ1 is defined as follows:

• to avoid saturation: any value of ĉ1 is acceptable;

• to grant an attenuation of at least −20 dB: 0.9 c1 ≤ ĉ1 ≤ c1.

Thus, all values in the range 0.9 c1 ≤ ĉ1 ≤ c1 are acceptable.
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3.1.2. Control of the Condensed Craig-Bampton Model: VIBI-

SIO

The control of the VIBISIO designed for the 2DoF model has been then extended to the
condensed CB model. It has been decided to apply the designed control which exceeds
the saturation limit of ±3 N , but is able to achieve an attenuation of −20 dB. Such a
control consists of FB and FF, where the FB is a skyhook damper with g = 824.83, and
in the FF the α parameter is equal to 2π0.209.

Description

The control system designed for the 2DoF model can now be extended to the condensed
CB one. For this control design, the condensed CB model with LM is considered. Despite
the 2DoF model was described by transfer functions, the CB one is represented in SS
form, since the number of DoFs is much larger. The condensed CB model expressed in
SS form becomes:

{
u̇cond

ücond

}
︸ ︷︷ ︸

ẋ(t)

=

[
0 I

−M−1
condKcond −M−1

condDampcond

]
︸ ︷︷ ︸

A

{
ucond

u̇cond

}
︸ ︷︷ ︸

x(t)

+

[
0

M−1
condPd

]
︸ ︷︷ ︸

Bd

a0︸︷︷︸
d(t)

+

[
0

M−1
condPu

]
︸ ︷︷ ︸

Bu

fc︸︷︷︸
u(t)

(3.59)

The vectors Pd and Pu are associated to the disturbance and to the control input respec-
tively.

Pd = zeros(14, 1) → Pd(3) = m0 (3.60)

Pu = zeros(14, 1) → Pu(2) = 1;Pu(3) = −1; (3.61)

The measured output is the velocity u̇1(t), which needs to be employed in the FB. The
performance vector z(t) represents the variables that it is desired to monitor. For com-
pleteness, it has been decided to retrieve the velocities and accelerations of all the DoFs.
Hence, the performance vector z(t) coincides with the derivative of the state ẋ(t).
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The block diagram of the open-loop control system is the following:

Figure 3.45: Open-loop control system of the CB model

The block diagram of the closed-loop control system of the CB model is the following:

Figure 3.46: Closed-loop control system of the CB model

The FB and FF transfer functions are the ones obtained for the equivalent 2DoF model.
The objective is to prove that the VIBISIO control designed on the equivalent model is
suitable also for the CB one. To this aim, the 14DoF model is employed, which is more
detailed with respect to the 2DoF one, since it contains also 11 modal DoFs. The VIBISIO
control has been applied to the 14DoF system, defined both in state space form and with
the inversion of the dynamics matrix.
The frequency response is retrieved thanks to the command tfestimate from the time his-
tories of the accelerations obtained from the Simulink® simulations. This command esti-
mates the transfer function of the system using Welch’s averaged, modified periodogram
method and receives as inputs:

• the time histories of the acceleration of the base and of the VIBISIO or of the
MPLAT, depending on the transfer function which is desired to retrieve;

• Hanning window;

• number of DFT points equal to 8192;

• sampling frequency of 100 Hz.
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The output is the quotient of the Cross Power Spectral Density of the acceleration time
history of the base and the acceleration time history of the VIBISIO or of the MPLAT,
and the Power Spectral Density of the time history of the acceleration of the base.

After having obtained the transfer functions H(jω) by means of tfestimate, the Bode
magnitude diagrams related to the VIBISIO and the MPLAT are retrieved with eq. (3.62).

HdB = 20 log10 | H(jω) | (3.62)

In fig. 3.47 and fig. 3.48 are reported the Bode diagrams of the open-loop responses of the
VIBISIO and of the MPLAT, respectively. The red curve represents the FRF computed in
MATLAB®, while the other two correspond to the frequency responses computed starting
from the temporal histories of the accelerations obtained in Simulink®. The blue curve
is obtained with the system defined in state space form, while the green one is retrieved
with the inversion of the dynamics matrix.

Figure 3.47: VIBISIO open loop response
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Figure 3.48: MPLAT open loop response

Figure 3.47 and fig. 3.48 show that the Bode diagrams retrieved from the Simulink® time
histories with a random load well overlap with the FRFs obtained in MATLAB®.
The frequency responses obtained starting from the Simulink® simulation are in the case
of the condensed CB model less noisy with respect to the full CB one, also thanks to
the fact that the simulation can last longer (1000 s) without meeting any singularity.
However, due to signal processing, the responses still show some noise, in particular at
higher frequencies, but it is irrelevant and definitely acceptable. Moreover, the discrepancy
at lower frequencies is due to the reconstruction of the FRF from the time domain.

Results

The control of the VIBISIO performed on the 14DoF model is able to attenuate the
resonance peaks, as in the equivalent 2DoF model. The Bode diagram and the FRF
related to the acceleration of the VIBISIO, divided by the base acceleration, are displayed
in fig. 3.49 and fig. 3.50.
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Figure 3.49: Control of the VIBISIO (FB and FF) in the 14DoF system: Bode diagram
related to the VIBISIO

Figure 3.50: Control of the VIBISIO (FB and FF) in the 14DoF system: FRF related to
the VIBISIO

The Bode diagram and the FRF related to the acceleration of the MPLAT, divided by
the base acceleration, are displayed in fig. 3.51 and fig. 3.52.
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Figure 3.51: Control of the VIBISIO (FB and FF) in the 14DoF system: Bode diagram
related to the MPLAT

Figure 3.52: Control of the VIBISIO (FB and FF) in the 14DoF system: FRF related to
the MPLAT
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3.2. Measurement Platform Control

After having designed the control for the VIBISIO, the focus is displaced to the control
of the MPLAT.
In sensor mode, using position sensors measuring the distance between the isolation plat-
form and measurement platform, the measurement platform is held in null-displacement
to the isolation platform. The measurement platform control computes the feedback force
required to counteract any displacement of the platform caused by a specimen exerted
force. The drive signal from the controller to the force actuator gives the measure of the
force. Additionally, an extra damping term can be added to the platform control force to
help the high-frequency control of the measurement platform.
The control for the MPLAT has been designed with the H-infinity technique. The cor-
responding MATLAB® command is hinfsyn, which calculates the H-infinity optimal
controller K for the LTI plant P.
The H-infinity synthesis is used to synthesize a controller to achieve stabilization with
guaranteed performance. The H-infinity controller is designed by simultaneously shap-
ing the frequency responses for tracking and disturbance rejection, noise reduction and
robustness, and controller effort. The control problem is expressed as a mathematical
optimization problem and then the controller that solves this optimization is found.
The process has to be represented according to the following standard configuration:

Figure 3.53: Standard configuration of H-infinity control

The plant P has:

• two inputs: the exogenous input w, that includes reference signal and disturbances,
and the manipulated variables u;
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• two outputs: the error signals z that we want to minimize, and the measured vari-
ables v, that are used to control the system.

v is used in K to calculate the manipulated variables u. In formulae, the system is:

{
z

v

}
= P(s)

{
w

u

}
=

[
P11(s) P12(s)

P21(s) P22(s)

]{
w

u

}
(3.63)

u = K(s)v (3.64)

It is therefore possible to express the dependency of z on w as:

z = Fℓ(P,K)w (3.65)

Fℓ is the lower linear fractional transformation and is defined as:

Fℓ(P,K) = P11 + P12K(I − P22K)−1P21 (3.66)

The objective of the H-infinity control design is to find a controller K such that Fℓ(P,K)

is minimised according to the H-infinity norm. The infinity norm of the transfer function
matrix Fℓ(P,K) is defined as:

||Fℓ(P,K)||∞ = sup
ω

σ̄(Fℓ(P,K)(jω)) (3.67)

where σ̄ is the maximum singular value of the matrix Fℓ(P,K)(jω). The aim of the
control design is to minimize ||Fℓ(P,K)||∞, hence to minimize the maximum singular
value.
The traditional two-sensitivity-function H-infinity controller synthesis algorithm is used,
since it allows a complex control problem to be split into two discrete sections, one dealing
with stability, the other dealing with performance. The sensitivity function, S(s), and
the complementary sensitivity function, T (s), are used in the controller synthesis and are
given by:

S(s) =
1

1 + P (s)K(s)
(3.68)



130 3| Control Design

T (s) =
P (s)K(s)

1 + P (s)K(s)
(3.69)

The sensitivity function has an associated frequency-dependent weighting function, W1,
which is used to limit the magnitude of the sensitivity function within a particular fre-
quency range, i.e. ||W1(s)S(s)||∞ < 1. W1 is the performance weighting function (mea-
sure) in the controller synthesis. In a similar fashion the complementary sensitivity func-
tion is combined with a frequency-dependent weighting function, W2, which is used to
limit the magnitude of T within a particular frequency range, i.e. ||W2(s)T (s)||∞ < 1.
W2 is the robustness weighting function (stability constraint) in the controller synthesis.
The two sensitivity functions are combined, with their respective weighting functions, into
a single augmented state-space representation of the design problem. The problem then
becomes one of finding a stabilising controller, if it exists, that satisfies both the perfor-
mance and robustness criteria. It has been shown that a stabilising controller exists if
positive semi-definite solutions can be determined to two Riccati equations, derived from
the augmented state-space representation, and the spectral radius of the two solutions is
strictly less than γ, which is the controller performance level. [6]

Measurement Platform Sensors

The zero displacement of the measurement platform is measured via six 1DoF Michelson
type interferometers. The interferometer performance requirements are as follows:

• Bandwidth of ≤ 1 mHz to ≥ 1 MHz;

• Non-linearity of < 0.1%;

• Noise floor of < 1 nm.

The requirements of the laser source for the interferometer are as follows:

• 633 nm HeNe laser;

• Power: > 0.6 mW ;

• Frequency stability (30 s): < 50 MHz;

• Intensity stability (30 s): < 3%.

The requirements for the electronic interface which takes optical fibre signals from each
interferometer and convert them to a distance measurement are the following:

• Cope with interferometer speed of 1 mm/s (plus margin of at least 10) without
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losing fringe lock;

• Resolution at least 1 nm;

• Noise < 1 nm;

• Interface with optical fibre ring.

3.2.1. Control of the 2DoF Model: MPLAT

In the equivalent 2DoF model the objective is to minimize the vertical displacement of the
MPLAT, which can be measured by the interferometer in the longitudinal direction. In
fact, the rotations and the two horizontal displacements cannot be detected in the 2DoF
model, since it only represents longitudinal translations.

Description

The general scheme of the H-infinity control for the 2DoF system is represented in fig. 3.54.

Figure 3.54: Control of the MPLAT (H-infinity) in the 2DoF system - general control
scheme

The system SYS is the 2DoF equivalent model, which is defined in eq. (3.70) (from
fig. 2.20). The damping is modelled in the Rayleigh form.
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[
m1 0

0 m2

]
︸ ︷︷ ︸

M

{
ü1

ü2

}
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ü
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C11 C12

C21 C22

]
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u̇1

u̇2

}
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u̇

+
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]
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K
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u2

}
︸ ︷︷ ︸

u

=

{
−fc2

fc2 + fIUT

}
︸ ︷︷ ︸

F

(3.70)

In state space form it results:

{
u̇
ü

}
︸ ︷︷ ︸
ẋ(t)

=

[
0 I

−M−1K −M−1Damp

]
︸ ︷︷ ︸

A

{
u
u̇

}
︸ ︷︷ ︸
x(t)

+

[
0

M−1Pd

]
︸ ︷︷ ︸

Bd

fIUT︸︷︷︸
d(t)

+

[
0

M−1Pu

]
︸ ︷︷ ︸

Bu

fc2︸︷︷︸
u(t)

(3.71)

where Pd and Pu are respectively the vectors corresponding to the disturbance force
generated by IUT and to the actuator’s control force.
Recalling fig. 3.54, the inputs of the system SYS are the disturbance force fIUT and
the actuator’s control force fc, while its output is the displacement u2 of the MPLAT,
measured by the interferometer.
The weighting functions in the H-infinity control are selected to account for the relative
magnitude of signals, their frequency dependence, and their relative importance. In this
case, it is fundamental to add the weight Wu2, which allows to obtain the desired FRF.
Wu2 is defined as the inverse of the Target closed-loop TF from fIUT to u2, whose zeros
are placed in correspondence of the resonance frequencies of the open-loop TF. Hence,
the Target TF is defined as in fig. 3.55.

Target(s) = 0.001
(s+ c)(s+ d)

s+ e
(3.72)

where the parameters c and d correspond to the resonance frequencies: c = 2π0.45 rad/s,
d = 2π0.93 rad/s. On the other hand, the parameter e has been selected as e =

2π0.05 rad/s in order to design a bowl function. The gain 0.001 has been tuned to
minimize the displacement of the MPLAT. From here, the TF of the weight Wu2 is de-
fined as in eq. (3.73).

Wu2(s) =
1

Target(s)
(3.73)

Figure 3.55 displays the Bode diagrams of the open loop TF, Target and Wu2.
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Figure 3.55: Bode diagrams of open loop, Target and Wu2 TFs

The internal dynamics of the interferometer is modelled as a high-pass filter, given the
large value of its bandwidth at high frequencies. This TF is displayed in eq. (3.74):

Hint(s) =
s

s+ h
(3.74)

where h = 2π10−3 rad/s, according to the lower limit of the interferometer’s bandwidth.
No saturation block for the actuator can be added since saturation is inherently non-
linear, while the TF formalism only applies to LTI systems. The check of the control
force not exceeding the saturation limit can only be done after having excited the system
with the disturbance force, hence when working in the time domain.
The red dashed box in fig. 3.54 represents the augmented plant Paug, which is the anal-
ogous of the P plant in fig. 3.53.
In order to retrieve the K controller with the command hinfsyn, it is necessary to de-
fine first the open loop system with the command connect. Its scheme is represented in
fig. 3.56.
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Figure 3.56: Control of the MPLAT (H-infinity) in the 2DoF system - open loop

After having retrieved the K controller, it can be connected to the open loop. Hence, the
closed loop is built again with the command connect, where the input is fIUT and the
outputs are u2 and fc. The closed loop scheme is represented in fig. 3.57.

Figure 3.57: Control of the MPLAT (H-infinity) in the 2DoF system - closed loop

Afterwards, the time response to the excitation of the IUT can be studied. Such an
excitation is bounded between 10−5 N and 0.1 N , as reported in table 1.1. It is modelled
as a series of random numbers comprised within this interval, according to eq. (3.75).

fIUT = k + (l − k) rand(length(t), 1) (3.75)
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where k and l are 10−5 N and 0.1 N , respectively, and t is the time vector. Thanks to
the command lsim, it is possible to obtain the time responses to the disturbance of the
IUT by selecting as output either the displacement of the MPLAT or the control force.
As indicated in section 3.2, the noise floor of the interferometer is < 1 nm. Hence, it can
be modelled as in eq. (3.76).

noise = m+ (n−m) rand(length(t), 1) (3.76)

where m and n are −10−9 nm and 10−9 nm, respectively. The sensor noise can now be
added to the retrieved time history of the displacement of the MPLAT. Thus, the sensed
variable u2 embeds both the model of the internal dynamics of the interferometer and the
sensor noise.

Results

Before adding the interferometer’s internal dynamics, the displacement of the MPLAT in
open and closed loop results as in fig. 3.58.

Figure 3.58: Effect of the H-infinity control on the Bode magnitude plot of the TF from
fIUT to u2 - without interferometer’s internal dynamics

As it can be appreciated, the magnitude is well damped over the entire frequency range.
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The TF of the resulting K controller is:

K(s) =

−5.946 · 109s5 − 5.707 · 1011s4 − 4.932 · 1012s3+
− 2.17 · 1013s2 − 9.425 · 1013s− 1.691 · 1014

s6 + 1670s5 + 1.29 · 106s4+
+ 4.935 · 108s3 + 3.263 · 108s2 + 6.146 · 109s+ 1.9 · 109

(3.77)

The time history of the displacement of the MPLAT is represented in fig. 3.59.

Figure 3.59: Effect of the H-infinity control on the displacement of the MPLAT - without
interferometer’s internal dynamics

From fig. 3.59, it can be noted that the H-infinity control generates a considerable decrease
in the entity of the displacement of the MPLAT.
The time history of the control force generated by the actuator is displayed in fig. 3.60.
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Figure 3.60: Actuator’s control force in the H-infinity control - without interferometer’s
internal dynamics

It is noticeable that the maximum force generated by the actuator does not exceed the
saturation limit of ±3 N . Moreover, it can be appreciated that, while the disturbance
force is positive, the counteracting control force is characterised by negative values. The
reason of that can be found in the fact that the actuator’s force is the force needed to
counteract the disturbance generated by the IUT to minimize the MPLAT displacement.
Figure 3.61 shows that the absolute value of the control force is close to the one of the
disturbance force.
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Figure 3.61: Comparison between absolute values of the disturbance force and of the
control force

After having added to the loop the internal dynamics of the interferometer, the results
are the following.
The effect of the control on the Bode magnitude plot is represented in fig. 3.62.

Figure 3.62: Effect of the H-infinity control on the Bode magnitude plot of the TF from
fIUT to u2 - with interferometer’s internal dynamics
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The effect of the control on the displacement of the MPLAT is represented in fig. 3.63. In
this figure the displacement of the MPLAT with and without the interferometer’s noise
is represented.

Figure 3.63: Effect of the H-infinity control on the displacement of the MPLAT - with
interferometer’s internal dynamics

It can be appreciated from fig. 3.63 that the interferometer’s noise is sufficiently small to
not significantly affect the entity of the displacement of the controlled MPLAT. Moreover,
it can be noted that the displacement of the MPLAT passes from the order of 10−5 in
open loop to the order of 10−7 in closed loop, losing two orders of magnitude.
The time history of the actuator’s control force is displayed in fig. 3.64.
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Figure 3.64: Actuator’s control force in the H-infinity control - with interferometer’s
internal dynamics

From fig. 3.64 it is evident that also with the addition of the interferometer’s internal
dynamics the saturation constraint is again respected.
From the above figures, it results that the graphs with and without the interferometer’s
internal dynamics are very close to each other. Hence, the interferometer does not strongly
affect the closed-loop dynamics.
Eventually, the check on the singular values can be done. The optimal performance level
achieved by this controller is returned by the command hinfsyn as γ, which is the H-
infinity norm of the closed-loop system. We can examine the singular value plot of the
closed-loop system (fig. 3.65) to confirm that its largest singular value does not exceed γ.
In this case, γ = 9.53 · 10−7 = −120.42 dB.
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Figure 3.65: Singular values of the controlled 2DoF model

Finally, as a check, it is possible to reconstruct the open and closed loop FRFs from fIUT

to u2 through the MATLAB® command tfestimate, starting from the time histories of
the disturbance force and of the control force. It can be proven that those curves overlap
with the Bode diagrams obtained with the bode command, as we can see in fig. 3.66.

Figure 3.66: Recovery of the Bode diagram of the FRF from fIUT to u2 from time responses
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3.2.2. Control of the Condensed Craig-Bampton Model: MPLAT

The condensed CB model has 3 physical and 11 modal DoFs. The 3 physical DoFs
represent the 3 vertical translations of the MPLAT, the VIBISIO and the base, in this
order. Like in the 2DoF model, also in the condensed CB one the rotations and the two
horizontal displacements cannot be detected. The objective of the control is to minimize
the vertical displacement of the MPLAT, whose node occupies the first position in the
CB matrices, as illustrated in table 2.1. For this control design, the condensed CB model
without LM is employed.

Description

The control system designed for the 2DoF model can now be extended to the condensed
CB one, which is represented in SS form as in eq. (3.78):

{
u̇cond

ücond

}
︸ ︷︷ ︸

ẋ(t)

=

[
0 I

−M−1
condKcond −M−1

condDampcond

]
︸ ︷︷ ︸

A

{
ucond

u̇cond

}
︸ ︷︷ ︸

x(t)

+

[
0

M−1
condPd

]
︸ ︷︷ ︸

Bd

fIUT︸︷︷︸
d(t)

+

[
0

M−1
condPu

]
︸ ︷︷ ︸

Bu

fc︸︷︷︸
u(t)

(3.78)

The vectors Pd and Pu are associated to the disturbance and to the control input, re-
spectively.

Pd = zeros(14, 1) → Pd(1) = 1 (3.79)

Pu = zeros(14, 1) → Pu(1) = 1;Pu(2) = −1; (3.80)

The output is the displacement of the MPLAT, hence C is a vector of zeros and one 1 in
the first position, and D is a vector of two zeros.

Results

Before adding the internal dynamics of the interferometer to the loop, the results are the
following.
The effect of the control on the Bode magnitude plot is represented in fig. 3.67.
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Figure 3.67: Effect of the H-infinity control on the Bode magnitude plot of the TF from
fIUT to u2 - without interferometer’s internal dynamics

The effect of the control on the displacement of the MPLAT is represented in fig. 3.68.

Figure 3.68: Effect of the H-infinity control on the displacement of the MPLAT - without
interferometer’s internal dynamics

The time history of the actuator’s control force is displayed in fig. 3.69.
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Figure 3.69: Actuator’s control force in the H-infinity control - without interferometer’s
internal dynamics

The above graphs (fig. 3.67, fig. 3.68 and fig. 3.69) result very close to the ones obtained
with the control of the 2DoF model (fig. 3.58, fig. 3.59 and fig. 3.60). This means that
the extension from the 2DoF system to the condensed CB model has been effective.
From fig. 3.69 it is noticeable that the maximum force generated by the actuator does not
exceed the saturation limit of ±3 N . As in the 2DoF model, it can be appreciated that,
while the disturbance force is positive, the counteracting control force is characterised by
negative values. Figure 3.70 shows that the absolute value of the control force is close to
the one of the disturbance force.
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Figure 3.70: Comparison between absolute values of the disturbance force and of the
control force

Adding the internal dynamics of the interferometer to the loop, the results are the follow-
ing.
The effect of the H-infinity control on the Bode diagram still provides a good attenuation
of the magnitude over the entire frequency range.

Figure 3.71: Effect of the H-infinity control on the magnitude plot of the TF from fIUT

to u2 - with interferometer’s internal dynamics
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The effect of the control on the displacement of the MPLAT is represented in fig. 3.72. In
this figure the displacement of the MPLAT with and without the interferometer’s noise
is represented.

Figure 3.72: Effect of the H-infinity control on the displacement of the MPLAT - with
interferometer’s internal dynamics

It can be appreciated from fig. 3.72 that the interferometer’s noise is sufficiently small to
not significantly affect the entity of the displacement of the MPLAT. Moreover, it can be
noted that the displacement of the MPLAT passes from the order of 10−5 in open loop to
the order of 10−7 in closed loop, losing two orders of magnitude.
The time history of the actuator’s control force is displayed in fig. 3.73.
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Figure 3.73: Actuator’s control force in the H-infinity control - with interferometer’s
internal dynamics

In general, it results that all the graphs with and without the interferometer’s internal
dynamics are very close to each other. Hence, the interferometer does not strongly affect
the closed-loop dynamics.
Eventually, the check on the singular values can be done. We can examine the singular
value plot of the closed-loop system (fig. 3.74) to confirm that its largest singular value
does not exceed γ. In this case, γ = 5.75 · 10−7 = −124.80 dB.
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Figure 3.74: Singular values of the controlled condensed CB model

Finally, as a check, it is possible to reconstruct the open and closed loop FRFs from fIUT

to u2 through the MATLAB® command tfestimate, starting from the time histories of
the disturbance force and the control force. It can be proven that those curves overlap
with the Bode diagrams obtained with the bode command, as we can see in fig. 3.75.

Figure 3.75: Recovery of the Bode diagram of the FRF from fIUT to u2 from time responses
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4| Conclusions and future

developments

4.1. Conclusions

The work had the aim of designing effective control strategies to achieve the following two
objectives:

• attenuate the micro vibrations transmitted from the ground to the IUT by the
facility when working in actuator mode;

• measure the micro vibrations generated by the disturbance of the IUT by counter-
acting the motion with control forces, when the facility works in sensor mode.

To achieve both objectives, it has been necessary to work on some dynamic models which
could accurately describe the behaviour of the full FEM model. The equivalent 2DoF
model can accurately describe the longitudinal behaviour of the CB model, which is in
turn a condensed representation of the full FEM system. Both in the 2DoF model and
in the condensed CB one, only the longitudinal displacement has been considered, since
the rotational DoFs and the translational displacements are not included in these mod-
els. Moreover, in order to impose an excitation from the ground (actuator mode), it has
been necessary to apply the Large Mass method, both to the 2DoF model and to the CB
one. All the mentioned models have been validated by showing that their FRFs precisely
overlap.
The design of the control strategy of the VIBISIO had the objective of granting an
attenuation of −20 dB of the resonance peaks. Firstly, a technique to control the equiva-
lent 2DoF model has been investigated, and then this control strategy has been extended
to the condensed CB model. Focusing on the 2DoF model, the FB control with sky-
hook damping has been first studied. Then, to improve the attenuation of the resonance
peaks and hopefully reach the desired attenuation of −20 dB, a FF control has been
added. It results that the combined control guarantees the desired attenuation, but the
required control force is larger than the saturation of the actuators. If the actuators can
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be exploited at least 143.33% of their saturation limit, this control strategy is effective.
Otherwise, if the saturation limit must necessarily be respected, the best performance is
guaranteed by the FB control alone. Eventually, the FB and FF control has successfully
been extended to the condensed CB model, leading to similar results and conclusions.
The design of the control strategy of the MPLAT has the aim of minimizing the displace-
ment of the MPLAT itself: the control force counteracts the disturbance force generated
by the IUT. This result has been obtained thanks to the H-infinity control, first designed
on the 2DoF model and eventually extended to the condensed CB one. Such a control
has been able to well attenuate the resonance peaks over the entire frequency range. In
fact, the displacement of the MPLAT passes from the order of 10−5 to 10−7, losing two
orders of magnitude. Moreover, it is important to underline the fact that the control force
remains far below the saturation limit.
In conclusion, the goals of the thesis have been achieved.

4.2. Future Developments

Some possible developments can be made in the study and, in addition, some modifications
can be applied to the MVMS itself.

The largest developments which can be made in the research are:

1. Extending the control designs from the CB model with 14 DoFs to the one with 141
DoFs.

2. Design the FF TF in the VIBISIO control considering the Rayleigh damping and not
the viscous one. In this way, the results would be more rigorous since the Rayleigh
damping is the type of damping which compares all the models, while the viscous
one cannot be implemented in the Nastran solution.

3. Understand the reasons why some FRFs do not well overlap at lower frequencies in
the validation of the models.

4. Designing more refined control systems which could, for example, avoid the increase
in the magnitude at lower frequencies when the FF control is implemented.

5. Analyzing different control strategies with respect to the sky-hook damper for the
FB and the PI designed for the FF in the VIBISIO control, with the aim of respecting
the saturation constraint and, at the same time, achieving the desired attenuation.

6. Enriching the H-infinity control scheme with more weighting functions (on the dis-
turbance force and/or on the actuator control force) and adding sensor noise with
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its weighting function.

7. Develop a robust controller with µ-synthesis to introduce model uncertainties in the
control of the MPLAT.

8. Adjusting the sampling frequency of the control systems to the one of the devices
present on the facility.

Some modifications that can be applied to the MVMS itself in order to obtain better
results are:

1. Reducing the amplitude of the lateral dynamics coupled with the longitudinal one.

2. Allowing the actuators to work above their saturation given by the datasheet, which
is of ±3 N . To grant an attenuation of −20 dB it is necessary either to increase the
saturation to ±4.3 N or to substitute the actuators with more performing ones.

3. Mounting a different type of actuators: piezoelectric actuators allow to implement a
simple robust and very effective control strategy, and the closed-loop performances
are easily predictable.

4. Providing a digital implementation of the control.

5. Redesigning the flexible joints between the truss and the support plates, in order to
reduce their parasitic stiffness and keep the open-loop zeros close to the origin while
keeping the axial stiffness and the overall strength needed during the excitation.
The use of superelastic material in the joint seems to be an attractive option. [17]

6. Improving the lateral dynamics of the truss: the resonance peaks of the lateral
modes can be moved to higher frequency by reducing and redistributing the inertia
along the truss. Also, the membranes play a key role and their shape and distance
should be optimized to combine low axial stiffness with high frequency lateral modes.
On the other hand, the damping of the lateral modes should be improved without
adding damping to the axial motion of the truss. Fitting a tuned-mass damper on
the lateral modes of the trusses should be examined. [17]
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A| Appendix A:

Large Mass Method

In structural analysis, enforced motion is a common excitation. The equations of motion
in terms of absolute displacements can be expressed by:

Mü + Cu̇ + Ku = F (A.1)

Partition the DoFs into two sets:

u =

{
u1

u2

}
(A.2)

where u1 are the displacements remaining free and u2 are the displacements with enforced
motion.

Assuming that the only excitation source is the enforced motion, the load vector applied
on DoF u1 is zero. Equation (A.1) can be expanded to:

[
M11 M12

M21 M22

]{
ü1

ü2

}
+

[
C11 C12

C21 C22

]{
u̇1

u̇2

}
+

[
K11 K12

K21 K22

]{
u1

u2

}
=

{
0
F2

}
(A.3)

where F2 is the reaction force between the structure and its supports.

The Large Mass method is an approximate technique that treats the response to accel-
eration excitation as a response to external forces. Assuming that the masses associated
with the M22 subsystem are augmented so that it becomes M22 + MLM

22 , it is obtained:

[
M11 M12

M21 M22 + MLM
22

]{
ü1

ü2

}
+

[
C11 C12

C21 C22

]{
u̇1

u̇2

}
+

[
K11 K12

K21 K22

]{
u1

u2

}
=

{
0
F2

}
(A.4)
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Large Mass Method

Solve the equations of ü2:

ü2 = (M22 + MLM
22 )−1(F2 − K22u2 − K21u1 − C22u̇2 − C21u̇1 − M21ü1) (A.5)

Define M = (MLM
22 )−1 and substitute eq. (A.5) into the upper part of eq. (A.4) to get:

(M11 − M12MM21)ü1 + (C11 − M12MC21)u̇1 + (K11 − M12MK21)u1 = F (A.6)

where:

F = −K12u2 − C12u̇2 − M12M(F2 − K22u2 − C22u̇2) (A.7)

If MLM
22 is large enough, M tends to zero, and the following approximation is verified:

F2 = (M22 + MLM
22 )ü2 ∼ MLM

22 ü2 (A.8)

A ratio of the Large Mass to the mass of the entire structure in the range of 104 to
108 keeps the modeling error small (see [21]). The solution of eq. (A.6) is the absolute
displacement vector u1. [8]
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Effective Modal Masses

The effective modal masses of the physical system from mode 11 on are represented in
table B.1. The largest values of the effective modal masses are highlighted in red.
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Effective Modal Masses

Table B.1: Effective modal masses of the physical system

Mode Frequency [Hz] T1 [kg] T2 [kg] T3 [kg] R1 [kg ·m] R2 [kg ·m] R3 [kg ·m]

11 1.845 7.85E-05 2.44E-06 3.34E-09 3.73E-06 1.14E-04 2.62E-11
12 1.946 1.75E-06 5.60E-05 3.58E-08 7.73E-05 2.29E-06 1.12E-08
13 42.376 1.79E-01 3.60E-05 1.82E-03 8.14E-06 1.16E-01 5.10E-07
14 42.439 3.57E-05 1.81E-01 2.43E-07 1.17E-01 8.02E-06 1.67E-04
15 46.544 1.04E-03 1.63E-09 3.30E-01 1.49E-08 4.37E-04 8.94E-05
16 129.599 1.18E-01 1.60E-04 5.02E-07 2.91E-08 5.98E-06 2.50E-08
17 129.761 1.62E-04 1.18E-01 3.51E-09 5.35E-06 3.71E-08 3.37E-05
18 142.553 6.24E-05 1.71E-06 4.94E-04 2.31E-09 1.22E-07 3.83E-04
19 142.835 1.38E-11 6.11E-14 1.90E-11 2.49E-14 2.61E-12 9.86E-12
20 143.249 1.88E-13 1.98E-13 1.12E-13 2.08E-12 1.89E-14 6.50E-12
21 158.080 8.35E-09 1.94E-10 8.01E-13 7.55E-13 3.29E-11 5.54E-11
22 158.761 3.97E-09 2.49E-08 1.31E-12 7.04E-11 3.91E-11 1.30E-09
23 159.219 4.50E-02 6.64E-05 2.13E-06 1.09E-05 1.34E-04 9.66E-05
24 159.631 7.18E-05 4.38E-02 1.17E-06 1.29E-04 1.12E-05 4.13E-03
25 161.745 5.27E-10 4.08E-09 4.58E-14 1.18E-11 4.25E-14 4.69E-12
26 163.810 1.12E-05 6.36E-04 3.98E-05 5.20E-06 2.18E-07 1.99E-01
27 168.335 2.84E-11 2.90E-09 5.53E-15 4.13E-12 1.27E-12 1.17E-10
28 170.448 3.49E-10 2.32E-11 1.79E-14 2.15E-13 4.20E-13 4.83E-11
29 172.588 9.81E-10 1.07E-11 1.04E-13 4.65E-13 8.96E-13 1.39E-13
30 186.665 1.53E-10 1.94E-11 5.97E-13 1.29E-12 1.04E-12 2.30E-12
31 188.231 6.09E-11 5.68E-12 7.33E-13 4.83E-12 6.05E-13 3.49E-12
32 188.732 5.20E-06 2.32E-04 2.73E-05 5.39E-05 4.18E-04 1.57E-04
33 188.919 2.43E-04 6.05E-06 2.84E-06 4.31E-04 5.32E-05 2.44E-05
34 190.266 3.82E-10 1.96E-06 1.50E-03 4.09E-10 1.02E-05 1.40E-02
35 192.641 1.24E-12 6.26E-14 1.46E-11 1.81E-14 6.67E-14 3.24E-10
36 197.853 2.34E-18 6.84E-16 2.44E-18 2.91E-18 2.16E-20 1.12E-16
37 198.071 1.74E-13 6.75E-11 2.58E-13 3.51E-13 8.36E-16 1.07E-11
38 205.886 5.78E-17 5.03E-11 1.40E-13 1.31E-13 5.65E-15 7.14E-12
39 207.420 3.05E-11 2.40E-13 8.10E-14 4.33E-15 8.26E-14 4.59E-12
40 217.098 2.04E-22 2.97E-18 1.13E-19 2.93E-19 7.00E-21 1.69E-19
41 230.510 1.37E-11 8.84E-12 1.13E-14 3.01E-15 9.30E-15 1.63E-13
42 231.000 3.70E-12 1.39E-11 1.61E-14 6.91E-15 2.88E-15 2.97E-13
43 240.035 1.39E-12 7.32E-13 7.80E-14 7.71E-15 1.16E-15 6.29E-13
44 241.247 2.96E-12 8.57E-13 3.98E-14 1.20E-14 1.06E-14 2.98E-13
45 244.130 6.72E-13 1.43E-12 3.54E-16 1.06E-14 1.52E-14 1.02E-15
46 247.108 1.26E-19 1.12E-23 5.18E-19 8.54E-21 5.60E-20 1.38E-19
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The effective modal masses of the Craig-Bampton model from mode 11 on are represented
in table B.2. The largest values of the effective modal masses are highlighted in red.

Table B.2: Effective modal masses of the Craig-Bampton model

Mode Frequency [Hz] T1 [kg] T2 [kg] T3 [kg] R1 [kg ·m] R2 [kg ·m] R3 [kg ·m]

11 1.845 7.85E-05 2.43E-06 1.86E-09 3.73E-06 1.14E-04 1.88E-12
12 1.946 1.74E-06 5.59E-05 3.70E-08 7.74E-05 2.29E-06 1.12E-08
13 42.367 1.80E-01 5.18E-09 1.82E-03 3.52E-06 1.16E-01 4.69E-08
14 42.425 3.03E-08 1.81E-01 1.90E-08 1.17E-01 3.56E-06 1.71E-04
15 46.537 1.03E-03 4.38E-09 3.30E-01 9.34E-09 4.35E-04 9.06E-05
16 128.404 3.90E-03 1.21E-01 1.58E-07 1.35E-06 5.16E-07 1.77E-04
17 129.208 1.17E-01 3.91E-03 1.24E-06 4.14E-07 3.50E-06 3.31E-04
18 143.213 4.26E-05 2.40E-06 4.98E-04 5.57E-09 1.75E-07 6.01E-04
19 145.334 3.37E-09 4.91E-10 6.17E-11 6.33E-11 6.32E-11 2.57E-08
20 145.860 2.70E-08 1.39E-09 2.43E-10 1.05E-10 4.06E-10 4.47E-09
21 158.692 2.49E-02 2.84E-03 3.47E-05 1.40E-08 1.07E-04 5.96E-02
22 159.145 3.79E-03 3.43E-02 2.13E-07 1.51E-04 4.31E-07 7.72E-05
23 161.162 1.34E-02 8.16E-04 3.16E-05 1.66E-06 3.97E-05 1.48E-01
24 164.540 5.01E-05 2.22E-05 3.12E-11 1.88E-08 1.32E-07 1.44E-05
25 166.890 1.30E-05 1.82E-05 1.45E-10 4.10E-08 5.64E-09 9.82E-07
26 171.261 3.56E-06 1.35E-08 5.75E-11 2.91E-10 1.99E-09 2.23E-06
27 173.519 2.81E-09 7.72E-07 2.17E-11 4.07E-10 9.71E-11 9.92E-07
28 176.454 7.93E-07 2.67E-08 5.34E-15 4.31E-11 5.04E-11 7.67E-08
29 178.248 2.03E-07 2.25E-07 1.23E-10 1.58E-11 8.58E-12 1.38E-07
30 188.690 1.04E-05 1.56E-04 4.21E-05 5.47E-05 4.11E-04 1.98E-04
31 188.912 2.09E-04 4.35E-06 7.11E-08 4.27E-04 5.76E-05 2.75E-06
32 189.230 5.28E-07 7.23E-08 4.34E-07 1.12E-09 5.09E-08 1.90E-06
33 189.950 2.73E-05 6.71E-06 1.46E-03 2.03E-06 1.19E-05 1.05E-02
34 191.924 4.45E-08 6.85E-09 7.08E-08 1.61E-11 1.39E-09 1.25E-06
35 196.655 3.98E-08 3.31E-08 1.05E-07 5.96E-11 1.91E-10 4.74E-06
36 198.340 1.99E-08 5.48E-08 4.87E-09 2.91E-13 6.68E-11 4.62E-08
37 202.403 3.87E-08 8.27E-08 5.05E-10 1.02E-11 2.10E-11 4.60E-08
38 207.768 1.31E-07 1.06E-07 1.39E-08 1.69E-12 1.62E-10 1.03E-06
39 209.346 1.40E-07 1.95E-07 3.45E-09 1.80E-10 1.47E-12 2.37E-07
40 225.399 4.11E-07 1.62E-06 1.99E-08 2.48E-08 1.12E-08 6.34E-08
41 234.908 5.42E-10 1.12E-07 4.72E-09 2.42E-09 2.03E-10 8.89E-08
42 235.733 1.45E-07 1.88E-10 2.21E-09 2.39E-10 3.39E-09 4.67E-08
43 242.040 3.85E-10 8.70E-09 8.23E-08 5.50E-10 9.41E-13 6.95E-07
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2.33 ü0z , without LM, divided by ü0 . . . . . . . . . . . . . . . . . . . . . . . . 55
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