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Sommario

Lo sviluppo di propulsori elettroidrodinamici, comunemente detti a vento ionico, potrebbe
rappresentare una svolta nella propulsione di una nuova generazione di dirigibili e aero-
mobili. Questi propulsori sono caratterizzati da unità prive di parti meccaniche mobili e
perciò presentano tempi operativi molto lunghi, richiedono poca manutenzione e sono es-
tremamente sostenibili dal punto di vista delle emissioni in atmosfera. Il design ottimale di
questi sistemi richiede un considerevole sforzo nella ricerca fondamentale e applicata. Uno
strumento di simulazione che sia efficiente e accurato rappresenterebbe un valido supporto
per i progettisti. Questa tesi, estendendo il lavoro svolto da [36], mira a proporre un mod-
ello fluido autoconsistente per simulare la corrente di plasma non termico che si genera tra
i due elettrodi, gettando le basi per sviluppi futuri in questo campo. L’implementazione
numerica del modello è stata prodotta attraverso GNU OCTAVE; il metodo agli elementi
finiti è stato usato per la discretiazzione spaziale, mentre uno schema di splitting con di-
mensione degli intervalli temporali adattivo è stato usato per l’integrazione nel tempo. La
scarica in regime di corrente continua a pressione atmosferica è ampiamente documentata
in letteratura, in particolare con Argon come gas di alimentazione. Per questo motivo le
simulazioni di questa tesi sono state svolte in Argon. Sono stati condotti alcuni esper-
imenti numerici e i risultati sono stati in seguito analizzati e alcune considerazioni esposte.

Parole Chiave: scarica a pressione atmosferica, modello fluido, propulsori ion-
ici, plasma non termico.





Abstract

Electrohydrodynamic (EHD) propulsive systems could represent a cross-cutting technol-
ogy in driving a new generation of airships and aircraft. This kind of thrusters is charac-
terised by propulsive units without moving mechanical parts, therefore having extremely
long operation times, low maintenance and very low pollution. The optimal design of such
systems requires a lot of effort both in fundamental and applied research. An efficient and
accurate simulation tool could help in the design and optimization process. This thesis,
extending the work done by [36], aims at proposing a self-consistent 1D fluid model to
properly simulate the non- thermal plasma flow arising between the electrodes, providing
an initial a first theoretical and mathematical framework for future developments in the
field. Its numerical implementation is performed through GNU OCTAVE; it is based on a
finite element method for the spatial discretization and a splitting scheme with adaptive
stepsize solver for time integration. The Direct-Current (DC) discharge at atmospheric
pressure is widely documented in literature, especially with Argon as feed gas, providing
results for preliminary verification of the model; for this reason Argon is the gas used in
all the simulations. Numerical experiments have been performed; then the results have
been analysed and some considerations drawn.

Keywords: atmospheric pressure discharges, fluid model, EHD thrusters, non-
thermal plasma.
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1| Introduction

1.1. Review of EHD propulsion

Non-thermal or low temperature plasmas (LTP) are essentially plasmas in which there is
no thermodynamic equilibrium among the components of the medium. The interest in
this kind of plasmas has been growing in the last years because of the considerable variety
of possible applications: from surface treatments of different materials to production of
integrated circuits, to electrohydrodynamic (EHD) thrusters for atmospheric propulsion
in the aeronautical field. A non-exhaustive brief description of the possible applications
is depicted in [36].
Study of non-thermal plasma for atmospheric propulsion is a subject of ongoing inves-
tigations. In recent years, a lot of experimental studies have been carried out showing
the potential of this technology. For example [25] studied the electrohydrodynamic thrust
generated by wire–cylinder electrodes under high Direct-Current (DC) voltage, providing
comparisons with theoretical predictions based on a simple 1D model, previous measure-
ments and investigating the effect of the geometry and materials of the emitter. [3] focused
on a parametric study of the performance of such EHD thruster as a function of the elec-
trode geometry, with particular attention toward the collector. Different collectors shaped
as NACA airfoils were tested through the experimental apparatus shown in Figure 1.1,
NACA 0010 turning out to be the most interesting one for further studies.

Figure 1.1: Experimental setup of [3]
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A proof of concept for EHD propulsion is offered, instead, by [39] in which a steady-level
flight for a short of time has been achieved with a fixed-wing airplane (Figure 1.2).

Figure 1.2: Proof of concept built at MIT, from [39]

From the numerical point of view a lot of work has been done for the simulation of micro-
scale corona discharges in the noble gas Helium, with different purposes like surface treat-
ments of materials or thermal cooling for semiconductor devices or even electrothermal
microthrusters [17]. The non-equilibrium nature of this kind of plasma was already ob-
served in [17], where the electron temperatures were found to be of tens of electronvolt
while the gas temperatures only hundreds of Kelvin. The methodologies adopted for the
investigation of the discharges in Helium have been repurposed for studying the noble gas
Argon in the most recent researches.
[2] investigated the transition from the α regime (low current density) to the γ regime
(high current density) in Argon. A self consistent fluid model was proposed to simulate
the atmospheric RF (radio frequency) discharge. The model consists of one continuity
equation for each component of the plasma, the electron energy equation and the Poisson
equation for the self-consistent electric field. The simulation is done in a one dimensional
grid representing a gap of 2 mm, therefore 2D and 3D effects are neglected. The authors
assume the neutral gas and the heavy ion temperature to be constant and equal, meaning
that the energy gain/loss of the gas/ions is negligible; the electrons equation instead is
simplified accounting for energy exchange by averaged loss and gain terms coming from
the collisions with other plasma population. Different treatments of the energy equations
is offered by ref. [10], that in turn is based on the ref. [17]. In these works the physical
model is based on a two-dimensional, self-consistent, multi-species, two-temperature, fluid
description of the plasma. The temperatures are those of the electrons and the gas/ions.
The high pressure (where "high" stand for tens or hundreds of Torr) increases the colli-
sionality that in turn lead to dissipate the input power in gas heating: therefore the gas
temperature is not constant. The implication is that also some reaction rates will change
because of the dependency on the gas temperature, leading to different production terms
in the continuity equation. Nevertheless, this last model presents another peculiarity:
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the neutral argon is treated as "background gas" and its density computed not from a
PDE but leveraging on the ideal gas law. In general, both air and argon at atmospheric
condition could be safely treated as ideal gas; however the computational savings are not
that much.
With the aim of providing a basis for future research effort, a complete fluid approach
as in ref. [2] will be pursued, with the difference that the Local Field Approximation
(LFA) will be restored as explained in chapter 2. The plasma chemistry in the above
cited works appears also to be different, with ref. [10] having a richer reactions system
than ref. [2].The choice for this thesis is in favour of the simpler chemical model [2], since
it has been taken as a starting point the results of [36]. Nevertheless, it will be shown
as the developed solver can quickly be set up with different chemical reactors. From the
numerical point of view the difficulties come from the stiffness of the equations, due to
the different time scales that the chemical reactions show. However, chemistry is not the
unique contribution to stiffness. Indeed, there is a huge difference also in the time scales
of the others involved physical phenomena, namely diffusion and drift, as discussed in
chapter 3; furthermore the system is highly non linear because of the couplings among
the continuity equations themselves, that come from the chemical source term, and among
the transport terms with the self-consistent potential. In particular the dominant trans-
port phenomena appears to be the drift one, increasing the non linearity. In other words,
the addressed problem is mathematically tough, even when the physics is simplified. The
numerical model of [[2],[10]] is based on finite volume discretization and in order to over-
come the mentioned difficulties the flux is discretized with a scheme equivalent to the
Scharfetter-Gummel exponential one; they proposed also a semi-implicit time integration
for stability reasons and to keep a relatively high simulation time step. However in this
work the Finite Element Method (FEM) will be pursued, still employing the Scharfetter-
Gummel exponential scheme for the flux discretization.
The model adopted in this thesis is not the unique possibility to simulate the ionic wind in
EHD thrusters. More advanced models are available in literature, even if not yet tested
for the specific field of interest here. In order to collocate properly this thesis in the
IPROP project it is useful to devote a brief description of them.
As already mentioned, the peculiar feature of LTPs is their non-equilibrium nature, that
will cause a more or less significant departure of the electron distribution function (EDF)
from being Maxwellian. [16] presents an overview of the last advances in electron ki-
netic of LTPs in different areas. It is pointed out how, in general, a fluid approach can
be adopted because of the high pressure, but it is in general wrong to assume the local
equilibrium of the electrons. Indeed, the high electric field and the reduced dimensions
encountered contribute to a departure from local kinetics.
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The work done in a close research field, namely plasma thruster based on the Hall ef-
fect [20], suggests the possibility to adopt an hybrid model, in which the electrons are
described by the Boltzmann equation and ions and neutrals are still governed by fluid
equations: this approach would be a novelty in the field of EHD thruster. Another ap-
proach is suggested by ref. [19]. The authors propose a new moment based method that
is potentially more accurate than the fluid approach, but still less than the hybrid one. It
seems valid from a theoretical point of view and the comparison with Direct Simulation
Monte Carlo (DSMC) shows its potential in capturing non Maxwellian EDF in LTPs.
These observations should clarify the existence of other possibilities on which future stud-
ies could be devoted.
The reason to choose the fluid model in this thesis is related to the choice of starting
from scratch to develop a solver in which more and more physical aspect are progressively
included, in order to have a complete awareness of their effects. This path will allow
in future to consider only those physical features that could be potentially relevant for
the design of EHD thrusters. From an engineering point of view, the complexity of the
model, that comes together with computational costs, should be justified by a quantita-
tive analysis on how much the accuracy could be improved with respect the most simple
one. In this perspective, starting from the simplest existing approach, namely the fluid
one, appears interesting. It is possible to reason about what are the limits and the missing
plasma flow features and, eventually go for progressive advancements. At each step of
this process one should compare the improvement in the accuracy versus the additional
computational effort.

1.2. Physics of EHD propulsion

The physical phenomena that lead to the generation of propulsive forces in EHD thrusters
are quite well understood and are going to be explained in the following.
Ions are generated in the ambient gas by a corona, which is a weakly luminous discharge
characterized by a spatial non-uniformity. Indeed it is possible to distinguish a corona
region or ionization layer, located near one electrode, in which the plasma generation,
the high electric field and the source of light are all located [12]. The confinement of the
plasma generation around one active electrode is obtained thanks to its geometry: for
example a thin wire can sustain a strong electric field in its proximity [6]. Beyond the
ionization layer, there is the so called drift region, in which the generated ions can travel
and where further ion generation is not possible because of the low electric field.
There are two kind of corona, namely negative corona and positive one, depending on
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Figure 1.3: Townsend avalanche [12]

the fact if the strong electric field is located in the region of the cathode or of the anode,
respectively. In both cases the discharge is characterized by a chain of ionization events,
located near the active electrode.
The negative corona follows a breakdown mechanism similar to the Townsend avalanche
[12]. This mechanism was firstly discovered by Townsend in 1897. He observed an ex-
ponential increase in the current, due to the energized electrons that leaving the cath-
ode caused ionization of the gas molecule by collisions[18]. Therefore, differently from a
corona, the discharge is quite uniform in the gap and there are no drift zones (Fig.1.3).
The mechanism of positive corona is a little bit different and in this thesis, the attention
will be focused on this kind of discharge, considering a configuration with one grounded
electrode, that serves as cathode and a high voltage electrode that serves as anode, around
which the active corona volume is.
A qualitative representation of such situation is depicted in Figure 1.4.
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Figure 1.4: Qualitative depiction of positive corona discharge in gas [6]

The corona discharge that generates the positive ions is indeed induced by the application
of a high electric potential between these two electrodes. Inside the corona region, near
the anode, the electric field accelerates electrons that create a cascade of ionization events
mainly by electron-neutral gas collision [39]. The corona discharge is in a self-sustained
and stable regime when the applied electric field is high enough to overcome the local
dielectric strength of air and low enough to avoid an electric arc between the electrodes.
The electrons are quickly captured by the positive electrode, leaving behind a wake of
positive ions [11], that are accelerated from the plasma region by the Coulomb force due
to the applied electric field, and drifts in the low electric field portion of the gap. These
accelerated ions transfer momentum to neutral gas molecules by collision; the resulting
ionic wind generates a thrust force in the direction opposite to ion flow.
In this brief description of the corona discharge is hidden a basic explanation about the
non-equilibrium nature of the generated plasma. The electrostatic energy is primarily
absorbed by electrons, which are accelerated and collide with the background neutral gas,
sustaining the above depicted mechanisms. Therefore the gas stream is weakly heated
and remains close to ambient pressure. Following this point, one can imagine to describe
the physics of the discharge considering a condition in which at least particles of the same
species are locally in thermal equilibrium. From a modeling point of view, this hypothesis
justifies the adoption of a two-temperature fluid-like model, in which the electrons have
their own temperature Te, while ions and neutral gas are at Ti. The energy transfer among
the ionized gas is described by two energy equations. This assumption is fundamental in
the present work, that is based on developing a fluid-like approach. However, it presents
severe limitations that should be pointed out from the beginning: the high-collisionality
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due to the high pressure is not enough to justify local kinetics [16]. In fact, it can
happen that the energy relaxation length becomes comparable to the ionization region
size making non local effects relevant [16], [35] and in this case, the electron energy
distribution function (EEDF) would depart from the Maxwellian condition. However, this
point will be discussed further in chapter 2. This condition would require more advanced
models that are discussed in the section devoted to possible future developments (chapter
6). However, with a fluid model some of the mentioned features of the discharge can be
captured: the ions generation in the anode emitter region, their drift towards the cathode
and the confinement of a ionization layer close to the emitter.

1.3. Structure and scope of the thesis

This thesis is born in the research framework of the Ionic PROPulsion (IPROP) project,
that aims at engineering a flying airships driven by an EHD thruster. In the field of EHD
propulsion a numerical model, able to match experimental results and to make predictions
driving the design choices, is still lacking. Indeed, a simulation tool would help engineers
in finding the optimal design parameters to improve performance for each different appli-
cation and condition. The scope of this work is to provide a suitable mathematical model
able to catch some physical features of ionic thrusters, and more precisely on the plasma
flow arising in the discharge. The adoption of a fluid model like the one of [2] in ionic
propulsion represent a novelty in the field, since the most of the research efforts up to now
have been of experimental nature. Nevertheless, it cannot be seen as the final output of
IPROP projects, that aims at building more advanced models, as the ones mentioned in
the literature review.
Despite its relative simplicity, the fluid model allows to deal with some difficulties (very
stiff equations, chemical non equilibrium, etc.) that help in gaining the required know-how
for future studies. The thesis is structured as follows: in chapter 2 a theoretical descrip-
tion of the physical and mathematical model is presented together with a discussion on
the limit of validity of the hypotheses adopted; in chapter 3 some mathematical feature of
the equations and the numerical strategies for solving them are depicted; in chapter 4 test
for the solver validation are shown; in chapter 5 the results of the simulations performed
are reported and commented. Finally chapter 6 presents the conclusions and hints for
further developments.
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2| Physical Model

This chapter presents the equations that are going to be solved, together with the as-
sumptions and simplifications adopted. It has been preferred to start from the general
Boltzmann equation to show step by step all the hypotheses required to end up with
a multiple fluid model. This way of proceeding has been thought to make as clear as
possible the limit of validity of the model, that is quite relevant in perspective of future
research.
In particular, the drift-diffusion approximation will be introduced to get rid of the mo-
mentum equation and the chemical reactions are accounted for by providing a source
term in the continuity equation of each species. Models for transport and reaction rates
coefficient are introduced and finally the self-consistent electric field is computed through
the Poisson equation.

2.1. Plasma Fluid model

A general way to derive fluid equations for a plasma is starting from the Boltzmann
equation, that describes the time evolution of the distribution function in phase space.
Given a partially ionized plasma composed of N species the Boltzmann equation for each
of them reads:

∂fk
∂t

+ v · ∇xfk +
Fk

mk

· ∇vfk =
∂fk
∂t

∣∣∣
c

(2.1)

where fk is the distribution function of the kth species, Fk = qk (E+ v ×B) the Lorentz
force and

∂fk
∂t

∣∣∣
c
= Ck

the collision term, expressing the time variation of fk by short range interactions among
species. For each species their charge is defined as

qk = ezk
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with
zk = ±|zk|

the valence number of the kth species multiplied by the sign of the charge itself. By the
definition of the distribution function it is possible to define a macroscopic field integrating
over the velocity coordinate:

nk(x, t) =

∫
fkd3v (2.2)

nk(x, t) is called particle number density of the kth species. The general moment of the
distribution function can be obtained averaging over the velocities:

⟨ψ⟩k :=
∫
ψ(v)fkd3v∫
fkd3v

=
1

nk

∫
ψ(v)fkd3v (2.3)

Multiplying eq. 2.1 by ψ and integrating over v one obtains∫
ψ
∂fk
∂t

d3v +

∫
ψv · ∇rfkd3v +

∫
ψ
Fk

mk

· ∇vfkd3v =

∫
ψCkd3v (2.4)

After some manipulations [28] 2.4 becomes

∂nk⟨ψ⟩k
∂t

+∇x · (nk⟨ψv⟩k)−
qk
mk

nk

〈
∇vψ ·

(
E+ v ×B

)〉
k

= nk⟨Ckψ⟩k (2.5)

that is an evolution equation for the moment ⟨ψ⟩k. Macroscopic fluid variables can be
defined by considering the first few moments of the distribution function.
Taking ψ(v) = 1 in def. 2.3 the number density nk is recovered as moment of f having
as weighting function equal to one. If ψ(v) = mkv, then:

⟨mkv⟩k :=
1

nk

∫
mkvfkd3v = mkuk (2.6)

where uk is the average fluid velocity of the particles belonging to species kth.
The conservation equations for number density and momentum are obtained from eq. 2.5
with some manipulations:

∂nk

∂t
+∇ · (nkuk) = Sk

mknk

[
∂uk

∂t
+ (uk · ∇)uk

]
= qknk(E+ uk ×B)−∇ : Pk +Rk

(2.7)

with k = 1 . . .M and with Rk = mknk⟨Ckv⟩k the momentum exchange among the kth fluid
component and the others species. Typically the most important transfer of momentum
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for charged particles is due to collisions with neutrals [21]. The tensor of normal and
tangential stresses coming from thermal motion is defined as:

Pk = pkI+Πk

More details on the averaging of the Boltzmann equation can be found in ref. [1]. System
2.7 is not closed. The closure that will be provided will specialize the equations for the
plasma of interest. Let us consisider each equation separately.

2.1.1. Continuity equation

In the system 2.7 the continuity equation is:

∂nk

∂t
+∇ · (nkuk) = Sk(n) k = 1 . . .M (2.8)

The notation Sk(n) emphasiseas the dependence of Sk on n in general, not only nk. The
term Sk comes from

Sk =

∫
1 ∗ Ckd3v

and expresses the net generation of particles of k type due to ionization and recombina-
tion processes, being the contribution coming from Coulomb elastic collision null. Indeed
chemical reactions are responsible for a variation in time of the number of particles be-
longing to a certain species. In the following an entire section is devoted to its definition
and from now on, it will be called chemical source term. Another term that appears in
this equation is the particle flux:

Γk(x, t) = nkuk =

∫
vfkd3v (2.9)

that will be closed leveraging on the hypotheses that are going to be used to simplify the
momentum equation.

2.1.2. Momentum equation

In the system 2.7 the momentum conservation is expressed by:

mknk

[
∂uk

∂t
+ (uk · ∇)uk

]
= qknk(E+ uk ×B)−∇ : Pk +Rk k = 1 . . .M
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There is no external magnetic field in EHD thrusters so

B = 0

Neglecting viscous stresses
Pk = pkI

the momentum transfer due to collisions Rk can be approximated by a Krook collision
operator [21]

Rk = mknkνm,kuk

At atmospheric pressure the collision frequency νm,k is such that the material derivative
duk

dt
can be considered small with respect to the collision term and neglected [8]. Therefore

duk

dt
=
∂uk

∂t
+ (uk · ∇)uk = 0

Finally the momentum equation reads:

e sign(qk)Enk −∇p−mknkνmkuk = 0 k = 1 . . .M (2.10)

From the kinetic theory, pressure and temperature are related by the Boltzmann constant
[15]:

pk = nkkBTk

and for an isothermal plasma [21],[8]

∇pk = kBTk∇nk

Considering all these hypotheses, the bulk velocity can be computed as follows:

uk =
qkE

mkνmk

− kBTk
mkνmk

∇nk

nk

(2.11)

The particle flux is

Γk = nkuk =
qknkE

mkνmk

− kBTk
mkνmk

∇nk (2.12)

Γk = sign(qk)µknkE−Dk∇nk (2.13)

where
µk =

e

mkνmk
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is the mobility coefficient and

Dk =
kBTk
mkνmk

is the diffusion coefficient. In this way the Einstein-Smoluchowski relation among the
mobility and the diffusion coefficient is recovered:

Dk =
kBTk
e

µk (2.14)

with
Vth,k =

kBTk
e

known as the thermal potential. The above computation allows to reduce the complexity
of the system 2.7 for the specific case of plasma discharges at atmospheric pressure.
Indeed the momentum equation is immediately solved and used to specify the flux in
the continuity equation. This way of proceeding is called Drift-Diffusion approximation
because of the form of the flux. It is composed of a "drift" term that describes the
particles motion due to the electric field and of a "diffusion" term which describe the
particles motion due to the density gradients. This term is known as Fick’s law, that can
be recovered considering the free diffusion case, in which E = 0. In this case the particle
flux is:

Γk = −Dk∇nk (2.15)

This derivation is not the most general because of the hypothesis of isothermal plasma.
[13] computes the drift-diffusion flux starting from the two-term approximation of the
distribution function, without any need of assumptions on the temperature of the plasma.
Therefore a more general expression for the flux is:

Γk = sign(qk)µknkE−∇(Dknk) (2.16)

with the diffusion coefficient inside the nabla operator. This formulation takes into ac-
count the fluxes coming from temperature gradients. However the Fick’s law is generally
employed in the diffusion part of the particles flux [[2], [10]].

2.1.3. Chemical source term

After having specified the flux term in the continuity equation, thanks to the drift- diffu-
sion approximation, the source term Sk is explained in the following. The net variation
in the number densities is caused by chemical reactions. This section will be devoted to
derive ordinary differential equations from a generic chemical reactor.
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Given the set of M reactions involving N species

N∑
k=1

ri,k nk =
N∑
k=1

pi,k nk i = 1 . . .M (2.17)

with forward reaction coefficient kfi and backward reaction coefficient kbi .
The rate Rf

i of the ith forward reaction is

Rf
i = kfi

∏
k

n
ri,k
k

The rate Rb
i of the ith backward reaction is

Rb
i = kbi

∏
k

n
pi,k
k

The net rate of the ith reaction is

Ri = Rf
i −Rb

i

Therefore the system of ODEs representing the reactions is

Sk =
M∑
i=1

(
−Rf

i ri,k +Rf
i pi,k −Rb

ipi,k +Rb
iri,k

)
= −

M∑
i=1

Ri (ri,k − pi,k) (2.18)

The Jacobian of Sk is given by

∂Sk

∂nj

= −(ri,k − pi,k)
∂Ri

∂nj

(2.19)

The reaction coefficients kfi and kbi have to be modeled. For example the Arrhenius model
prescribes the dependency of the reaction coefficients on the temperature

kfi = Af
i exp

(
− εa
kBTi

)
where εa is the Arrhenius activation energy. A better experimental fitting can be obtained
as suggested by [38]:

kfi = Af
i T

b exp

(
− εa
kBTi

)
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The backward coefficient can be obtained as:

kbi = kfi /Kc(T )

where Kc(T ) is obtained from the law of mass action:

Kc(T ) =

∏N
k=1 n

pi,k
k∏N

k=1 n
ri,k
k

This form of the coefficients is suitable in the problem addressed by this thesis for those
reactions that do not involve the electrons. As explained in the section 2.1.4, the local field
approximation adopted implies a strong correlation between the local electric field and
the electron mean energy. Therefore, the computation of coefficients of those reactions
involving electrons is performed thanks to the external software BOLSIG+ [13]. Just as
as example the forward coefficients are computed by the following integration :

kfi =
( 2e

me

) 1
2

∫ ∞

0

εσkF0dε

where ε is the energy in the energy space, σk is the cross section and F0(ε) is the energy
distribution, meaning the energy dependent part of the distribution function f .
There is the possibility of a simplified model for the chemical part of the equations,
that indeed is frequently used in discharges simulation, for example in [24]. The idea is
to condense the chemical species into ions and electrons, and account for the avalanche
ionization process thanks to a coefficient, known as Townsend ionization coefficient α [37].
In this case the rates coefficients would be as computed by [13]

Rk = αkxk |Γk|

The transport properties of the plasma components need to be specified too. In the drift-
diffusion approximation it is of general use the Einstein-Smoluchowski relation between
the diffusion coefficient and the mobility depicted in eq. 2.14. In the LFA (see paragraph
2.1.4) the dependence on these coefficients on the temperature is reduced to a dependence
on the local electric field.
For the electron population even the transport coefficients are computed though BOL-
SIG+.
Regarding the ions and the neutral species, let hypothesize that the inertial properties of
them are equal. In other words, let us consider negligible the mass of the electron lost by
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the neutral Argon. This comes to say that:

Dions = Dneutral = µionsVth,ions

The ions mobility can be taken from experimental data [26].

2.1.4. Energy equation

At this point, in the system 2.7 the energy equation is missing. Following the Balcon
approach, the gas and the ions temperature is approximated to be constant and equal
to the ambient one, therefore their energy equation is not needed under this hypothesis.
However in the developed model another hypothesis is added, namely the Local Field
Approximation (LFA). The basic assumption is that the only transport mechanism for
the electron energy is represented by the collisional processes. Consequently, the fluxes
in the electron energy equation can be neglected.
The implication is that the mean electron energy is directly linked to the electric field
both spatially and temporally and the energy loss during collisions balances the heating
[2]. Therefore all the transport properties, as well as the reaction rate coefficients are
dependent on the local electric field. In [2] the LFA assumption was discarded because
te electron mean free path of approximately 1µm is considered not so small with respect
to the characteristic distance of field variations in the RF discharges. The discharge sim-
ulated in this thesis is a DC one and therefore the only variations in time and space of
the field are due to the self consistent field developed by the charged carriers. Therefore
the behaviour of the electric field is not known a priori. As a first approximation LFA is
considered.

2.1.5. Electric field

The electric field can be expressed as

E = −∇φ

The electrostatic potential φ satisfies the Poisson equation taking into account the self-
consistent effect produced by the charges themselves in the domain:

−div (ε∇φ) = e

N∑
k=1

zknk
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It is useful to introduce the reduced electric field since it is an important parameter for
the transport and reactions rate coefficients computation:

Ereduced =
|E|
N

2.1.6. BOLSIG+

Since the external software BOLSIG+ has been used for computations, it is useful to look
at what it does and under which hypotheses. BOLSIG+ is an user-friendly software that
solves the Lorentz Two-Term Approximation (LTTA) for the electron distribution func-
tion. The LTTA consists in taking only two terms of the spherical harmonics expansion of
the Boltzmann equation written in spherical coordinates in velocity space as in[13], when
trying to solve it. Therefore f can be written as

f(v, cos θ, z, t) = f0(v, z, t) + f1(v, z, t) cos θ (2.20)

where f0 is the isotropic part of f and f1 is an anisotropic perturbation; v, θ, z and t are
four independent coordinates. Without entering in the details, it is important to know
that the LTTA typically fails at very high field values, because of the stronger contribution
of f1. However, when adopted for fluid coefficients calculations, the error is acceptable.
Moreover, if the conditions are such that the LTTA is completely inadequate, the entire
fluid approach becomes questionable [13].
BOLSIG+ takes as input the cross-sections of the collisions processes the user wants to
consider as a function of the energy and other parameters like gas temperature, ionization
degree and so on. Tabulated values of the cross-sections for a lot of possible reactions are
available at [[27], [40]].
The typical way BOLSIG+ is used in discharge simulations depends on the fluid model.
The Boltzamann solver outputs are tabulated as functions of the local reduced electric
field. Therefore if the model lacks an energy equation and LFA is adopted, it is possible
to enter in a table with an electric field and linearly interpolate the values. Instead, if the
energy equation is added to the model, the coefficients are taken as a function of the mean
energy and enter into the table with it. For this thesis a database has been produced in
order to have data available for computations in this and future work.
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2.2. Limit of validity of the model

At this point it is important to reason about the limit of validity of the proposed model.
First of of all, let us examine the choice of a fluid model. At atmospheric pressure, the high
collisionality justifies the assumption of local equilibrium for neutral and heavy ions. The
model can be more or less accurate depending on the choice of considering or neglecting
an energy equation for these species. At atmospheric pressure, it is relatively safe to
consider the neutral gas at ambient temperature. However, if strong electric fields arise
they can heat the ions, in addition to the electrons. However, since in this model even the
electron temperature is not computed by an energy equation, the level of approximation
introduced considering the temperature of the ions constant is much less than the error
introduced by the modeling of the electrons. Indeed, the local field approximation was
introduced, based on which all the transport properties and rate coefficients related to the
electrons are function of the local electric field. The assumption can fail if there are fast
spatial and time variations in the field compared to the relaxation time and the mean free
path of the electrons. In general, the electrons deserve particular care since they are much
lighter than the other components in the gas; the energy from the electric field is firstly
transferred to them, and then transmitted to the other components through different
processes: dissociation, ionization and excitation, affecting all the transport properties of
the plasma [35]. Therefore, it could be relevant to remove the LFA and to compute the
electron energy in order to have self consistent chemical kinetics and transport properties.
Because of these aspects, the model adopted here can be seen as a first approximation
of the discharge. In general the drift-diffusion approximation seems to be good at high
pressure[[16][8]]. Finally, the last hypothesis introduced is the adoption of the BOLSIG+
solver, in particular the LTTA. However, it is coherent with the fluid approach.
Note that the model does not include any radiative transport for the photons. Indeed,
it is likely that they are produced and immediately lost. Moreover an onset criterion is
not included too, meaning that "ignition" of the corona discharge cannot be seen. As a
consequence, it has been considered as that the initial condition is thought to be close to
that of a corona discharge that is going towards the self-sustained regime.
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2.2.1. Summary of the equations and boundary conditions

Summarizing, the atmospheric gas discharge in Argon will be modeled by the following
equations: 

∂nk

∂t
+ div (Fk) = Sk k = 1 . . . N

− div (ε∇φ) = e

N∑
k=1

zknk

(2.21)

with Fk:
Fk = −Dk∇nk + µk E sign(qk)nk

and Sk:

Sk = −
M∑
i=1

Ri (ri,k − pi,k)

Therefore the system is:
∂nk

∂t
+ div (−Dk∇nk + µk E sign(qk)nk) = −

M∑
i=1

Ri (ri,k − pi,k) k = 1 . . . N

− div (ε∇φ) = e
N∑
k=1

zknk

(2.22)

with M the number of reactions involved.
Having set Dk = µkVth and E = −∇φ and γik = (ri,k − pi,k) the system becomes:


∂nk

∂t
− div

(
µkVth

(
∇nk +∇φ sign(qk)nk

Vth

))
= −

M∑
i=1

Riγik k = 1 . . . N

− div (ε∇φ) = e

N∑
k=1

zknk

(2.23)
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The imposed boundary and initial conditions in a one dimensional domain are:

φ = 0 on x = 0;

φ = V0(t) on x = L

Γe · n̂ = 0 on x = 0;

Γe · n̂ = ne

√
kBTe
2πme

onx = L;

nAr+ = nAr2+ = 0 on x = 0;

ΓAr+ · n̂ = ΓAr2+ · n̂ = 0 on x = L;

ΓAr · n̂ = ΓAr∗ · n̂ = 0 on ∂Ω;

nk(x, 0) = n0(x) ∀x ∈ Ω

(2.24)

It is useful now to specify the chemistry of Argon considered in this thesis, taken from
[2]. 2.1 shows the complete list of the reactions in the model.

Reactions Coefficients Unit

1 e+ Ar 2e+ Ar+ BOLSIG+ m3/s

2 e+ Ar e+ Ar∗ BOLSIG+ m3/s

3 e+ Ar∗ 2e+ Ar+ BOLSIG+ m3/s

4 2Ar∗ e+ Ar+Ar 1.2× 10−15(300K/T )1/2 m3/s

5 Ar+ + 2Ar Ar+2 + Ar 2.5× 10−43(300K/T )3/2 m6/s

6 e+ Ar+2 Ar∗ + Ar 7× 10−13(300K/Te)
1/2 m3/s

7 Ar∗ Ar + hν 5× 105 m3/s

8 e+ Ar e+ Ar BOLSIG+ m3/s

Table 2.1: Reaction system from Balcon et al.[2]
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The model presented in the previous chapter highlights some peculiar features from the
mathematical point of view. Understanding the nature of the equations that one wants
to solve numerically is fundamental; therefore this chapter aims to present the employed
mathematical methods to solve the problem. The weak form of the system 2.23 is derived,
and the Continuous Galerkin method is adopted for discrete formulation of the PDEs.
The Schafetter-Gummel scheme will be introduced for the flux discretization; the splitting
scheme, together with backward differentiation formula and Rosenbrock methods will be
adopted for the integration in time.

3.1. Weak formulation

Let’s find the week formulation of 2.23.
By multiplying the equations in 2.23 respectively by the test functions v ∈ H1(Ω) and
ω ∈ H1

0 (Ω)

∫
Ω

∂nk

∂t
vdx−

∫
Ω

div

(
µkVth

(
∇nk + sign(qk)

∇φ
Vth

nk

))
vdx =

∫
Ω

Sk(n)vdx

−
∫
Ω

div (ε∇φ)ωdx =

∫
Ω

e
N∑
k=1

zknkωdx
(3.1)

with k = 1, 2 . . . N Recalling that:

Γk = µkVth

(
∇nk + sign(qk)

∇φ
Vth

nk

)
(3.2)

Integrating by parts:
∫
Ω

∂nk

∂t
vdx+

∫
Ω

Γk∇vdx−
∫
∂Ω

Γkvdx =

∫
Ω

Sk(n)vdx∫
Ω

ε∇φ · ∇ωdx =

∫
Ω

e
N∑
k=1

zknkωdx
(3.3)
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The only non-null contribution to the weak formulation will come from the Robin condi-
tions imposed on the emitter(x = L) for the electrons. Let’s define:

ak(nk, v) =

∫
Ω

(
µkVth

(
∇nk + sign(qk)

∇φ
Vth

nk

))
∇vdx−

∫
∂Ω

Γkvdx

Fk(n, v) =

∫
Ω

Sk(n)vdx

b(φ, ω) =

∫
Ω

ε∇φ · ∇ωdx

c(n, ω) = −
∫
Ω

e
N∑
k=1

zknkωdx

The weak formulation reads:
∀t ∈ (0, T ) Find (nk, ω) ∈ H1

0 (Ω)×H1(Ω) such that
φ(0) = 0

φ(L) = V0

nAr+(0, t) = nAr2+(0, t) = 0

(3.4)

and that
∫
Ω

∂nk

∂t
vdx+ ak(nk, v) = Fk(n, v) ∀k and ∀(nk, ω) ∈ H1

0 (Ω)×H1(Ω)

b(φ, ω) + c(n, ω) = 0

(3.5)

3.2. Semi-Discretization via Galerkin Method

Note that the k indicating the kth will be omitted from now on to make the notation
lighter. Therefore, the reader should keep in mind that there are as many continuity
equations as the number of plasma components considered.
Let us introduce a finite dimensional space Vh ∈ H1(Ω). The semi-discrete Galerkin
formulation can be obtained by writing:
∀t ∈ (0, T ) Find (nh, φh) ∈ Vh ×Wh such that

φh(0) = 0

φh(L) = V0

nAr+,h(0, t) = nAr2+,h(0, t) = 0

(3.6)
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and that

∫
Ω

∂nh

∂t
vhdv + a(nh, vh) = F (nh, vh) ∀k and ∀(vh, ωh) ∈ Vh ×Wh

b(φh, ωh) + c(nh, ωh) = 0

nh(x, 0) = n0h(x) in Ω

(3.7)

where n0,h is the projection of the initial condition into Vh. Next, let us introduce a basis
{ϕi}Nh

i=1 for the space Vh and {ψi}Nh
i=1 for the space Wh and expand nk,h and φh in term of

the basis functions.

nk,h(x, t) =

Nh∑
j=1

nk,j(t)ϕj(x)

φh(x, t) =

Nh∑
j=1

φj(t)ψj(x)

(3.8)

(3.9)

Substituting 3.8 and 3.9 into 3.7 the non linear system assumes a convenient matrix form
[29] 

Mkṅk +Aknk = Mk ∀k

Pφ = qzkMk

N∑
k=1

nk

(3.10)

{
Mṅ+An = f(n)

Pφ−Kn = 0
(3.11)

where n = {n11 . . . n1Nh
, n22 . . . n2Nh

, nNNh
. . . nNNh

}T and {φ11 . . . φ1Nh
}T . The imple-

mented solver assembles the matrices of 3.11 through the library bim[9]. The mass matrix
is built using a lumping technique. The right hand side f is the chemical source term and
it obtained by pre-multiplying the chemical rates by the same mass matrix M .
P is a standard stiffness matrix for a diffusion problem [29].
The library bim adopts linear finite elements.
In the next section a brief and heuristic description on how fluxes are discretized is pre-
sented.

3.3. Flux discretization

In order to discretize the fluxes in the continuity equation let us introduce a partition τh
of the 1D interval [0, L]. The partition is composed of N + 1 elements Kj = (xj−1, xj)

having width hj = h = xj − xj−1 with j = 1 . . . N .
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Considering 3.11, the production of the generic line i of A by the vector n will define the
discretized flux on the ith element:

Γi = Ain (3.12)

Going back in a continuous space, adopting the Scharfetter-Gummel approximation the
flux for the kth species is:

Γk = sign(qk)µk

(
n′
k − nk

φ′

Vthk

)
(3.13)

With some manipulation [4], the density profile for a negative charge is

n(x) = n0

(
1− x

L

) B(−φ̂′)

B(−φ̂′
(
1− x

L

)
)
+ nL

(x
L

) B(φ̂′)

B(φ̂′
(
x
L

)
)

(3.14)

with φ̂ = φ′

Vthk

and B(x) the Bernoulli function defined as

B(x) =
x

exp (x)− 1
(3.15)

The nk that have positive charge will have the opposite sign in the argument of the
Bernoulli function. The case of neutrals will be discussed in a few lines.
Substituting 3.14 into 3.13 it follows that for a generic kth species:

Γk = sign(qk)
µkVthk

L
[nk0B(sign(qk)φ̂

′)− nkLB(−sign(qk)φ̂′)] (3.16)

This flux for the kth species in the ith interval will be:

Γk, i = sign(qk)
µkVthk

h

[
nkxj−1

B(sign(qk)φ̂
′)− nkxj

B(−sign(qk)φ̂′)
]

(3.17)

The case of null gradient in the potential will correspond to pure diffusion. Indeed when

φ̂′ = 0

both the Bernoulli weights are equal to one and the flux will be entirely due to the gradient
of the density between the two extremes of the interval. This condition allows to describe
correctly the particles currents for neutral species. Therefore considering a pure diffusive
flux, the fluxes of the neutral plasma components are:

Γneutral =
µkVthk

h

[
nkxj−1

− nkxj

]
(3.18)
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3.4. Time Integration

3.4.1. Splitting

In the conditions studied in this thesis there are different times scales that can be iden-
tified. From one side there is the characteristic time of the transport phenomena, on
the other side there are the time scales of the chemical reactions.Among the transport
processes there is a further time scale separation. Let examine the transport firstly.
The particles, here treated as fluid elements, move because of density gradients in the
domain (diffusion) or because they have a non-zero valence number and therefore are
subjected to the Coulomb force (drift). Let us consider a situation in which the electric
field and the density gradients at a given time are given. Electrons and ions/neutrals show
transport time scales very different because of the huge difference in the inertia properties.
On average, the electrons are two order of magnitude faster than other components of the
plasma, introducing a clear separation of scales.
Even the chemical reactions among themselves show different time scales, with slow and
fast reactions, as mentioned when the concept of stiffness was introduced in the previous
section. Even comparing the slowest reaction with the fastest particle the separation of
scales is clear. Let us make an estimate based on the order of magnitude of the physical
property of the problem physical state in the conditions that will be discussed later.
Consider an electric field of

E ∼ 105
V

m

and the mobility coefficient for electrons

µe ∼ 10−2m
2

V s

The electron drift velocity is of order:

ve ∼ µeE ∼ 103
m

s

Regarding the ions consider the mobility

µi ∼ ×10−4m
2

V s

Therefore their drift velocity is of order

ve ∼ µiE ∼ 101
m

s
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With a length scale of
L ∼ 10−3m

It follows
tdrift,e ∼ 10−6

while for ions
tdrift,i ∼ 10−4s

where tdrift is intended as the time the particle needs to span a length of order L. Let us
consider the diffusion process. A simple estimate on the gradient could be

∇n ∼ ne

L
∼ 1021

1

m4

The electron temperature could be considered of order

Te ∼ 104K

There for the thermal potential is
Vthe ∼ 1V

and the diffusion velocity

vdiff,e ∼ µeVthe

∇ne

ne

∼ 101
m

s

Finally the diffusion time for electron is

tdiff,e ∼ 10−4s

These basic estimates shows how the drift is dominant with respect to diffusion considering
for the same plasma components, and that electrons transport is much faster than the
ions one, as expected. The drift dominance causes many problems, because it appears as
a non linear term in the equations.
Making an estimate of the chemical rates is not so simple because the actual production
is related to the density of the plasma components. However, the analysis of the results
obtained for the chemical reactions considered in the conditions of interest in chapter 5
show an evolution in time scales of tens of nanoseconds. Even the estimates for the electron
drift and diffusion are perfectly compatible with the time required for reaching a stationary
solution in the validations test of chapter 4. These aspects make the problem very tough
from a mathematical point of view, even in one dimension, making the convergence to a
stationary value very slow.
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All these considerations on the time scales allow us to introduce the concept of stiffness.
"Stiffness" in ordinary differential equations (ODEs) has not a precise definition. It
should be considered as a phenomenon that some systems exhibit, rather than a property.
However, some pragmatical definitions of stiffness can help in understanding why it is
important to be aware if the system one deals with is stiff or not, and how effectively solve
it. [14] states: "Stiff equations are problems for which explicit methods don ’t work." The
same author reports the first opinion on the topic by (Curtiss& Hirschfelder, 1952) that
clarifies what is done in the following :"Stiff equations are equations where certain implicit
methods, in particular BDF, perform better, usually tremendously better, than explicit
ones".[14]
The reason of this behaviour relies on the time scales involved in the problems, with
some variables subjected to rapid variations in time and others changing slowly. Another
example closely related to this thesis, is offered by the Robertson Problem [31].

A B cf1 = 0.04

2B B + C cf2 = 107

B + C A+ C cf3 = 104

(3.19)

(3.20)

(3.21)

The Robertson problem presents the characteristics of stiff equations, being the time scales
of each reaction very different one from the other. This problem is frequently solved to
test chemical solvers, therefore also in this work it served as benchmark for the portion
of the code devoted to build the chemical source term in chapter 5.
These considerations allow for the adoption of a splitting scheme for the time integration,
in which at least the chemical part of eq. 2.8 is solved separately. The discretized problem
3.11 can be written as

Mu̇+ L(u)u = R(u) (3.22)

where u = {u, φ}T in the vector of state variables; L(u) and R(u) are the transport and
the reaction operator respectively. In a simple splitting scheme the time advancement
from tn to tn+1 is realized in two subsequent steps[29].

• First, the reaction operator is applied

M
ũ− un

hn
= R(un) (3.23)
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• In the second step the transport operator is applied

M
un+1 − ũ

hn
+ L(ũ)ũ = 0 (3.24)

with hn the step size at time tn.
The splitting operator will introduce an error in the computation, namely the splitting
error. However it will make the problem more stable, allowing relatively bigger time steps.
Let us analyze each step separately.

3.4.2. Splitting operator: chemistry

In the solver, the integration of 3.23 is done exploiting a backward differentiation formula
(BDF) method, in GNU OCTAVE implemented in the function ode15i [34].
BDFs are a general class of implicit multi-step methods, among which the most famous is
the BDF1, namely Implicit Euler(IE). The accuracy of the solution in IE is closely related
to the choice of the step-size, therefore higher order methods are required for bigger hn.
Equation 3.23 can be written in general terms as follow:

My′ = f(t, y) (3.25)

or fully implicitly as

F (t, y, y′) = 0; (3.26)

The general form of a BDF method with constant step-size is [7]:

F

(
tn, yn,

1

β0h

k∑
j=0

αjyn−j

)
= 0 (3.27)

Let examine briefly the way ode15i solves these kinds of equations. For simplicity, consider
BDF1 that is quite representative of higher order BDF and the notation is lighter ,but
with lighter notation.
The 3.27 becomes for a BDF1 method:

F

(
tn, yn,

yn+1 − yn

h

)
= 0 (3.28)

At each time step tn.
The 3.28 is solved by Newton method. In particular the iterate yn+1

m is improved by a
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quantity δ
yn+1
m+1 = yn+1

m + δ

δ is found solving the following linear system:

F

(
tn, ynm,

yn+1
m − yn

h

)
+

(
1

h
Fy′+Fy

)
δ = 0 (3.29)

In a higher order BDF the iterative matrix has the form(α
h
Fy′+Fy

)
with α a constant of the method, that will be defined by the order [34]. ode15i spans
from BDF1 to BDF5.

3.4.3. Splitting operator: transport

The time advancement written in 3.24 is done through a linearly implicit Euler scheme,
belonging to the more general family of Rosenbrock methods [14] that were proposed by
Rosenbrock [32] in 1963. Again, problem 3.24 can be written in general terms as:

My′ = f(t, y) (3.30)

The implicit Euler is written as:

M
yn+1 − yn

h
= f(tn+1, yn+1) (3.31)

The basic idea consists in replacing the Newton iterations that would be required for
solving 3.31 with a single one exploiting the derivatives of f [5]. Therefore 3.31 can be
written

M
yn+1 − yn

hn
= f(tn, yn) + fy(t

n, yn)(yn+1 − yn) (3.32)

Rearranging 3.32, it follows

(M − hnfy(t
n, yn)) yn+1 =Myn + hn(f(tn, yn)− fy(t

n, yn)yn) (3.33)

being hn the step-size at time tn. The stability properties of this method are the same
of Implicit Euler if f(t, y) is a linear function of y, but this is not the case. Therefore
stability is a big constraint in the choice of the time step.
This is the reason why the adaptivity of the step-size hn has been included in the solver.
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The user will provide a tolerance tol and an estimate of the maximum magnitude of the
solution mag and then the solver will choose the step-size hn [30]. As a whole, the solver
works as shown in 3.1

Algorithm 3.1 Numerical solution of 3.22
The user provides all the inputs: BCs, initial guess for densitity, coefficients, etc.
for tn from T 0 to T do

set u0 = un

tm = tn

while tm < tn+1 do
tm+1 = tm + hn

Update rate and transport coefficients with u0
Solve the chemistry providing ũ with u0 as initial condition
Solve the drift-diffusion equation

compute v1 = um+ 1
2 using ũ as initial condition

compute v2 = um+1 using v1 as initial condition
compute u1 = um+1 using ũ as initial condition
compute the error as err = v2−u1

mag

if err < tol then
tm = tm+1

increase step-size hn

update u0 with u0 = u1

else
hn = hn/2

end if
end while
Update un = un+1

end for
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4| Validation of the numerical

solver

Since the solver has been written almost from scratch, the majority of the tests that have
been performed are for validation purposes, rather than for predictions. Indeed, in the
research framework of the IPROP project, different physical features that are not yet
modeled are going to be added, as discussed in chapter 6. The tests will validate each
part of the solver separately, considering simple cases for which analytical solutions or
numerical comparisons are available.

4.1. Test 1: the Robertson Problem

Considering the equation 2.8, the source term is given by the chemical reactions. There-
fore, let us consider a generic chemical reactor in the form 2.17. It is required to compute
the reaction rates 2.18 and the jacobian of the chemical equations 2.19. As above men-
tioned, the Robertson problem is frequently used as benchmark in tests. To assess this
problem in a general way, it has been implemented an algorithm has been implemented
in order to allow the user to provide a .json file containing information about reactants,
products (with their stoichiometric coefficients) together with the forward and backward
rates. For example the input file for the Robertson problem reads:

{
”reactants” : {”A” : 1}
”products” : {”B” : 1},
”rate_coeffs” : {[0.04, 0]}
}
{
”reactants” : {”B” : 2},
”products” : {”B” : 1, ”C” : 1},
”rate_coeffs” : {[3e+ 7, 0]}



32 4| Validation of the numerical solver

}
{ ”reactants” : {”B” : 1, ”C” : 1}
”products” : {”A” : 1, ”C” : 1},
”rate_coeffs” : {[1e+ 4, 0]}
}
This file is read and these informations are used to compute the rates and the Jacobian
thanks to two different GNU OCTAVE functions that have been written on purpose. This
format can be used whatever the chemical reactor considered. This aspect is quite relevant
to make the solver suitable for a broad usage: for example it is possible to simulate the
DC discharge in different gas like air or even the same gas but with a different chemistry.
The Robertson problem is made of only three species and three reactions, therefore it is
simple to compute both the rates and the Jacobian by hand:

Rf
1 = 0.04sA

Rf
2 = 3× 107s2B

Rf
3 = 104sBsC

The system of ODEs can be written as:
ṡA = −Rf

1 +Rf
3

˙sB = Rf
1 −Rf

2 −Rf
3

ṡC = Rf
2

(4.1)

The Jacobian of this system is:

[
J
]
=

−0.04 104sC 104sB

0.04 −(6× 107sB + 104sC) −104sB

0 −6× 107sB 0


For comparison, the Robertson problem has been solved computing rates with the above
explained self-coded functions and as suggested by [22]. In both cases, the system of stiff
ODEs has been integrated with ode15i. The initial conditions are set to be:

A = 1

B = 0

C = 0

(4.2)
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Results are shown in figure 4.1.

Figure 4.1: Solution of the Robertson problem; reference results from [22]

4.2. Test 2: the Balcon chemical reactor

In this sections some of the results of [36], obtained with ZDPlasKin will be correctly
reproduced.
Note that, coherently with the hypothesis done in chapter 2 the gas temperature is con-
sidered constant in all the computations done by the developed solver. As a consequence,
the reaction rate coefficients in which the gas temperature appears are fixed from the be-
ginning. ZDPlasKin instead considers, in general, variations in the gas temperature due
to collisions. However good agreement is found for relatively low reduced electric field.
The conditions as well as the rates and the results of [36] are given in cm rather than in
m. Only in this section units of measure based on centimeters will be used, just to make
the comparison simpler. The initial conditions are set to be:
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Parameter Value Unit

TAr 300 K

n0Ar 2.5× 1019 cm−3

n0e 1× 106 cm−3

n0Ar+ 1× 106 cm−3

n0Ar∗ 1× 103 cm−3

n0Ar+2
1× 1010 cm−3

Table 4.1: Gas temperature and initial conditions

As shown in 2.1 the coefficients for the reactions involving electrons are taken from BOL-
SIG+. It is possible to exploit the own-built database considering the reduced electric
field fixed and changing others parameters like the electron density and the molar fraction
of the excited Argon at each time step. Results for E/N = 1 Td are shown in figure 4.2
and for E/N = 10 Td in figure 4.3

Figure 4.2: Chemical kinetics at E/N = 1Td
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Figure 4.3: Chemical kinetics at E/N = 10Td

A more detailed discussion of the Argon kinetics represented can be read in the thesis
[36].
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4.3. Test 3: diffusion and Poisson equation

The transport routine of the solver is tested and validated in this section. Let us make
some assumptions on the equations 2.23 in order to simplify the system up to the point
an analytical solution can be found.
Let us consider only the diffusion contribution of the flux term in the continuity equation:

Fk = −Dk∇nk (4.3)

If
Sk = 0

the system becomes: 
∂nk

∂t
+ div (−Dk∇nk) = 0 k = 1 . . . N

− div (ε∇φ) = e
N∑
k=1

zknk

(4.4a)

(4.4b)

The equation 4.4a is now an heat-like equation and 4.4b is coupled with it in one di-
rection only. Considering the problem in a one dimensional space, it is possible to solve
analytically the equation 4.4a and then integrate the Poisson equation to obtain again an
analytical expression for the self consistent potential [33]. FOr the sake of simplicity, let
consider one species only, for example electrons. The problem to be solved is:

nt −Dnxx = 0 0 < x < L; 0 < t < T

n(x, 0) = n0 0 ≤ x ≤ L

n(0, t) = n0 0 ≤ t ≤ T

n(L, t) = n1 0 ≤ t ≤ T

(4.5)

with n0 and n1 arbitrary constant values, L the dimension of the 1D domain and T the
final time considered and D = µeVe,th.
The stationary solution is:

nst(x, t→ ∞) =
n1 − n0

L
+ n0 (4.6)
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and the transient is:

ntr(x, t) =
∞∑

m=1

−2(n1 − n0)

mπ
(−1)m exp

(
−m

2π2D

L2
t

)
sin
(mπ
L
x
)

(4.7)

Therefore the complete solution reads:

n(x, t) =
n1 − n0

L
+ n0 +

∞∑
m=1

2(n1 − n0)

mπ
(−1)m exp

(
−m

2π2D

L2
t

)
sin
(mπ
L
x
)

(4.8)

Regarding the potential the solutions is:

φ(x) =
q

ε

(
n1 − n0

L

x3

6
+ n0

x2

2
− 2Ln0

)
+
φ(L)

L
+

−q
ε

∞∑
m=1

2(n1 − n0)

mπ
(−1)m exp

(
m2π2D

L2
t

)
sin
(mπ
L
x
) (4.9)

A complete derivation of 4.8 can be found in Appendix A.
Table 4.2 resumes the boundary conditions and the transport coefficients that have been
adopted for the test. Note that here transport coefficients are given with a reasonable
order of magnitude, just for the purpose of the test.

Parameter Value Unit

L 2× 10−3 m

ne(0, t) 1× 1018 m−3

ne(L, t) 1× 1019 m−3

φ(0) 0 V

φ(L) 500 V

Vth 8.63× 10−1 V

µe 1× 10−2 m2/(V s)

T 2× 10−4 s

Table 4.2: Boundary conditions and transport coefficients for test in section 4.3

The results for the computed electron number density compared with the analytical solu-
tion 4.8 are shown in figure 4.5 considering three different time instant in order to show
both the transient and the stationary solution.
The same is shown for the electric potential in figure 4.6. The relative error for a generic
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variable y is:

errrel =
∥yex − ycomputed∥∞

∥yex∥∞
(4.10)

The time history of such defined error, both for φ and ne, is shown in figure 4.4.

Figure 4.4: Relative error computed as 4.10
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(a)

(b)

(c)

Figure 4.5: Comparison between analytical and computed solution for the electron density
at different times
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(a)

(b)

(c)

Figure 4.6: Comparison between analytical and computed solution for the electric poten-
tial at different times
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4.4. Test 4: drift-diffusion equation

Another that has been performed is related to the drift (and diffusion) part of the solver.
In order to be able to find an analytical solution, let us consider again a simpler situation,
even if not particularly meaningful from a physical point of view.
Considering only the electrons, the equations are as usual:

∂ne

∂t
+ div (−De∇ne − µkEne) = 0

− div (ε∇φ) = ezene

(4.11a)

(4.11b)

Neglecting the self-consistent effect that electrons have on φ, 4.11b becomes:

−div (ε∇φ) = 0 (4.12)

In a one-dimensional domain and with ε constant it is simply:

ε
d2φ

dx2
= 0 (4.13)

Considering the same boundary conditions

φ(0) = 0 V

φ(L) = 500 V

The Poisson equation is immediately solved:

φ(x) =
V

L
x (4.14)

Therefore the electric field is

E(x) =
V

L
êx (4.15)

If the electric field is imposed, the continuity equation can be solved analytically.
Let’s look for the stationary solution only, considering the boundary conditions and coef-
ficients reported in table 4.3.
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Parameter Value Unit

L 2× 10−3 m

ne(0, t) 0 m−3

ne(L, t) 4× 107 m−3

φ(0) 0 V

φ(L) 500 V

Vth 8.63× 10−1 V

µe 1× 10−2 m2/(V s)

T 1× 10−6 s

Table 4.3: Boundary conditions and transport coefficients for test in section 4.4

ne(0) = 0 m−3

ne(L) = 4× 107 m−3

The stationary solution of 4.11a is

ne(x) =
ne(L)

exp
(

−|E|L
Vth

)
− 1

[
exp

(
−|E|L
Vth

)
− 1

]
(4.16)

Detailed calculations can be found in Appendix A. The stationary computed solution is
then compared with the 4.16 The initial condition set into the solver is

ne(x, 0) = ne(L)x

Comparison between analytical and numerical solution is depicted in figure 4.7
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Figure 4.7: 4.16 vs the computed solution

Even if this situation is far from the real conditions of a discharge, some considerations
can be drawn. The initial condition is intentionally set such that the gradient in space
of the density distribution is opposite to the direction of the electric field. Basically the
diffusion would transport the electrons to the left, while the electric field would transport
them to the right. The stationary solution clearly shows how the drift component is much
stronger than the diffusion term by orders of magnitude. As mentioned, this aspect is
an additional complexity from a mathematical point of view because it makes the non
linearity of the system stronger.
Furthermore, looking at the time at which the stationary solution is reached in this test
and in the previous one in paragraph 4.3, the time scales are comparable with those
computed by hand in chapter 3.
For the sake of completeness, the transient solutions at different time instants is shown
in fig 4.8.
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(a)

(b)

Figure 4.8: Evolution in time of the electron density under the action of an applied electric
field
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4.5. Test 5: drift-diffusion coupled with a simplified

chemical source term

The last test is performed considering a problem inherited by the branch of semiconductors
for which the solution is known. The equations are basically the same, namely fluid
equations in the drift-diffusion approximation and the source term will be a simplified
reaction term. Among the validation tests shown in this chapter, this is the only one in
which both the chemical and transport part are operating. In the others, being now the
chemistry and then the transport turned off, the splitting scheme was not really employed
by the solver. The problem solved here is the model of a different physical system. Let’s
state, at least mathematically, the equations that are going to be solved.

∂n

∂t
+ div (−Dn∇n− µn E n) =

n2
i − pn

(p+ n)τ

∂p

∂t
+ div (−Dp∇p+ µp E p) =

n2
i − pn

(p+ n)τ

− div (εr∇φ) = e(p− n+D − A)

(4.17)

with n denoting the negative charged carriers and p the positive ones. The boundary
conditions for this problem are of Dirichlet type as follows:

n(0, t) = p(L, t) = ni

n(L, t) = n(L, 0)

p(0, t) = p(0, 0)

φ(0, t) = φ(L, t) = 0

(4.18)

with
ni = 1016 m−3

and the initial condition is

p(x, 0) =


−D(0)

2
+

[(
D(1)
2

)2
+ n2

i

] 1
2

exp
(
− 1

10Vthp

)
x ≤ 0.55L

A(L) +

[
−A(L)

2
+
(

A(L)
2

2
+ n2

i

) 1
2

]
x > 0.55L

n(x, 0) =


−D(0)

2
+

[(
D(1)
2

)2
+ n2

i

] 1
2

exp
(
− 1

10Vthn

)
x ≤ 0.45L[

−A(L)
2

+
(

A(L)
2

2
+ n2

i

) 1
2

]
x > 0.45L
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A and D are defined as

A(x) =

0 x ≤ 1
2
L

a x ≥ 1
2
L

D(x) =

a x ≤ 1
2
L

0 x ≥ 1
2
L

The known coefficients are reported in table 4.4

Parameter Value Unit

L 1.5× 10−6 m

Vthp 2.6× 10−2 V

Vthn 2.6× 10−2 V

µp 0.1 m2/(V s)

µn 0.1 m2/(V s)

τ 0.1 s

a 1× 1022 m−3

εr 3.54× 1013 C2/(Nm2)

Table 4.4: Coefficients for the semiconductor problem

The solution is shown in figure 4.9 and 4.10.
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Figure 4.9: p and n number density of 4.17

Figure 4.10: Electric potential at different times of 4.17

At this point it has been shown that the solver is capable to simulate all physical phe-
nomena that are included into the model up to now.
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5| Numerical results

In this section, problem 2.23 with boundary conditions 2.24 will be simulated.
As already mentioned in chapter 3 the non linearity of the problem is a source of nu-
merical stability issues. The time step is rigorously chosen by the solver, avoiding the
insurgence of numerical instabilities. In order to have a concrete feeling of these prob-
lems, some experiments in which the stepsize was arbitrarily chosen by the user from the
beginning rather than by the solver have been performed. Even with h = 1 × 10−9s, in
few microseconds numerical instabilities set up, preventing convergence.
Reaching a stationary solution employing the very small stepsize chosen by the solver
requires very long times making the process unfeasible given the limited time and compu-
tational resources available for this work of thesis. Nevertheless, the results that are going
to be presented in this chapter, show interesting trends that allow some observations.
As already observed in chapter 2, the model does not include an onset criterion. Therefore
the simulation starts from a reasonable initial condition in the form:

nk(x, 0) = Ak exp

(
−
(
x− L

L

)2

Ak

)
(5.1)

where Ak will provide the maximum initial density. The neutral Argon instead, is assumed
to be constant in the whole domain with an initial density

nAr(x,t) = 2.5× 1025 m−3

5.1. Case 1: Constant reaction coefficients

Let consider as a first stage, a condition in which all the reaction and transport coefficients
are kept constant, even if this situation is far from the real physics of a discharge. Their
initial values will be provided by BOLSIG+ in the condition of a reduced electric field of
10 Td. The Ak coefficients for each species are resumed in table 5.1.
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Parameter Value Unit

Ae 8× 1017 m−3

AAr+ 7× 1017 m−3

AAr∗ 1× 1017 m−3

AAr+2
1× 1019 m−3

Table 5.1: Coefficients for the initial density distribution of the plasma components. First
simulation.

The initial condition has been set such to have a globally neutral plasma and it looks like
shown in figure 5.1

Figure 5.1: Initial density profiles

The simulation has been performed up to t = 10−6s.
In figure 5.2 are shown the time history of the number densities of electrons, ions and
excited Argon. On these time scales the chemical term leads the evolution of the density
distributions. Indeed, the trend is perfectly coherent with what was observed in paragraph
4.2, even if in different conditions. The discharge appears self-sustained with a clear
electron avalanche initiated. The Ar+ ions show an initial decrease in favours of the
dimmers Ar+2 . This result is coherent with [2], that shows a dominance of ions of molecular
Argon at atmospheric pressure.
This aspect, combined with the Neumann condition imposed on the emitter for positive
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ions, leads to an increase of Ar+2 at the emitter itself. Another observation is related to
the confinement of the ion and electron production in the emitter region. 5.2a shows a
quite small region near the emitter in which the bulk of the production happens.

(a) Electron (b) Ar+

(c) Ar+2 (d) Ar∗

Figure 5.2: Time evolution of the number density of each species

Following the time history of the local densities in one point close to the emitter and
collector respectively, this trend is more evident. Figure 5.3a considers x = 0.1L while
figure 5.3b consider the point x = 0.9L. Ar+2 increase relatively slowly, while Ar+ drop
down almost immediately. Therefore the ion current on the collector will be mainly due
to the argon dimmers ions. Even electrons drop down quite fast as expected.
On the opposite side, the evolution is clearly towards an increase in time, with the be-
haviour already depicted for the Ar+ ions.
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(a) Densities in a point near the collector (b) Densities in a point near the emitter

Figure 5.3: Time evolution of the densities in specific points

Figure 5.4: Time evolution of the potential

Let us examine what happens in the close vicinity of the emitter. There are few microm-
eters in which the slope of the potential changes sign, meaning that even the local electric
field reverses its sign. As a consequence, some of the electrons locally produced in that
region are pushed towards the production region, while ions toward the emitter, adding
another reason to the huge number of Ar+2 found on the emitter. This phenomenon does
not seem to be related to the constancy of the reaction coefficients because it will be there
even in the numerical experiment performed in the subsequent paragraph. The question
is: where does this phenomenon come from? It can be something related to the LFA
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approximation, meaning it fails in that region and the energy equation should be solved.
Even the lack of others physical phenomena like ions recombination at the surfaces and
secondary emission could be a cause of an error in the densities near the walls. In any case
this aspect sets the basis for further investigations to understand if it is a real physical
feature or not. If this not a physical effect it is quite relevant the identification of which
missing aspect is determinant in the onset of this behaviour.
In the other portion of the domain the potential behaves as expected. The charge pro-
duction in the production region will create a plateau in the electric potential that shields
the emitter from the plasma components that are the far from it. Here the electric field
is such that the ions are pushed towards the collector.
Figure 5.5 shows ions and electron current densities of the collector and the emitter re-
spectively. Comparing the electron current density with [2], values are quite similar even
in the transient conditions analyzed here.

(a) Electron Current Density (b) Ions current density

Figure 5.5: Time evolution of the current densities



54 5| Numerical results

5.2. Case 2: Variable reaction coefficients

Let us consider the simulation in which the LFA is properly adopted. The qualitative
behaviour is not so different from the previous simplified case, but a quantitative analysis
shows crucial differences. First of all, given the same initial conditions as before the
discharge appears to be not self-sustained. This fact should not be surprising looking the
the potential in figure 5.4.
The local field approximation states a strong dependence of the mean electron energies by
the local electric field. The solver BOLSIG+ computes very low energies when the field
goes to zero. This is exactly what happens in the region in which the potential shows a
plateau. Therefore more charges are required to start the avalanche process because the
reaction coefficients in the production region are lower.
The new Ak coefficients for this simulation are reported in table 5.2

Parameter Value Unit

Ae 5× 1018 m−3

AAr+ 3× 1018 m−3

AAr∗ 2× 1018 m−3

AAr+2
1× 1020 m−3

Table 5.2: Coefficients for the initial density distribution of the plasma components.
Second simulation

Moreover it is crucial to have the lowest possible error on the electric field. Otherwise the
error in the temperature, that is computed by interpolation entering into the database
previously mentioned, is quite high. Oscillations in the field can have serious effect on
the electron temperature. This error will propagate on the densities and then again on
the field and the temperature. In other words, the same tolerance adopted in the case
of constant coefficient will cause a lot of numerical noise on the temperature destroying
the quality of the solution. For all these reasons the tolerance has been reduced, making
longer the simulation time.
Therefore, in this case a final time of 2× 10−7s has been reached.
A comparison between initial and final densities is shown in 5.6. As said, the qualitative
behaviour is similar: electron and ionized argon dimers show an increment while the Ar+
tends to drop down. It is possible to note the same huge increase of Ar+2 in the emitter
close vicinity, this time with higher values because electron are now hotter there.



5| Numerical results 55

(a) Electron (b) Ar+

(c) Ar+2 (d) Ar∗

Figure 5.6: Time evolution of the number density of each species with BOLSIG+ coeffi-
cients

The chemical rates are slower than before, because the behaviour of the potential, that is
depicted in figure 5.7.
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Figure 5.7: Time evolution of the potential

The potential should be observed closely with the temperature, for the reasons explained.
The temperature profile evaluated in the same time of 5.7 are shown in figure 5.8.

Figure 5.8: Time evolution of the temperature

The rapid increase in temperature experienced near the emitter is perfectly coherent with
the computation with BOLSIG+.
Further considerations on the extent of the ion production region would be possible letting
the simulation go for longer times.
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6| Conclusions

This thesis has been developed within the research plan of the IPROP project and has
taken [36] as starting point. This work has been done in parallel with another colleague
that focused his attention on the macroscopic flow arising in the discharge [23]. Here the
attention has been devoted at proposing a model for microscopic phenomena near the
emitter of the EHD thrusters. This model has been analysed, evidencing its main fea-
tures as well as its limit. Finally the numerical implementation in GNU OCTAVE leads
to a solver that, after some validations, allows to look at what happens in a geometry of
interest in conditions similar to those of [2].
Some features of the plasma flow are correctly reproduced: the ion generation in a con-
fined production region, the shielding effect that makes flat the potential and a good
correspondence between the temperature and the electric field is found as expected with-
out an energy equation. In the following some possible future developments are presented.
From a physical perspective the Local Field Approximation (LFA) should be discarded,
as pointed out different times, and one should consider an energy equation that allows
to be more consistent with the chemical kinetics. Other phenomena like photo ionization
and secondary emission will be added. An onset criterion for the discharge would allow
to leave behind the problem of the choice of a good initial condition.
Moreover, the Argon gas should be abandoned, in order to work with air since the airships
fly in atmosphere and an investigation of which is a good reduced chemical model for air
should be carried out. From a numerical point of view the effort should go, on the one
hand in the direction of providing numerical stabilization to allow the greatest possible
step size, and on the other hand towards the computational efficiency of the solver.
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A.1. Analytical solution of the heat-like equation for

the diffusion problem

Let consider the following partial differential equation:

nt −Dnxx = 0 0 < x < L; 0 < t < T

n(x, 0) = n0 0 ≤ x ≤ L

n(0, t) = n0 0 ≤ t ≤ T

n(L, t) = n1 0 ≤ t ≤ T

(A.1)

First of all the stationary solution can be found integrating two times

nxx = 0

obtaining
n(x) = Ax+B

with A and B to be determined by the boundary conditions. It is easy to compute

A =
n1 − n0

L

and
B = n0

The transient solution is defined as

ntr(x, t) = n(x, t→ ∞)− n(x, t) =
n1 − n0

L
x+ n0 − n(x, t)



64 A| Appendix A

The transient solution satisfies the original equation with different conditions:
ntr(x, 0) = 0 0 ≤ x ≤ L

ntr(0, t) = 0 0 ≤ t ≤ T

ntr(L, t) =
(n1 − n0)

L
x 0 ≤ t ≤ T

(A.2)

Employing the separation of variables:

ntr = ω(x)v(t) (A.3)

Substituting into the equation in A.1 follows

vtω −Dvωxx = 0

that can be written as
vt
v

= D
ωxx

ω
= λ

whereλ is a constant to be determined. Consider the equation for ωωxx −
λ

D
ω = 0 0 ≤ x ≤ L

ω(0) = ω(L) = 0
(A.4)

with λ
D
= −µ2 < 0. The solution is in the form

ω(x) = A sinµx+B cosµx

Leveraging on the boundary conditions, it follows that
ωm = a sinµx

µ =
mπ

L
m = 1, 2 . . .∞

λ = −µ2D

(A.5)

The equation for v is
v = λv

and therefore
v(t) = exp (λt) = exp

(
−m

2π2

L2
Dt

)
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Summing up all the ωm and substituting into A.3 the candidate solution reads

ntr(x, t) =
∞∑

m=1

Am exp

(
−m

2π2D

L2
t

)
sin
(mπ
L
x
)

(A.6)

Am can be found considering expanding the initial condition for ntr in Fourier series

n1 − n0

L
x ≃

∞∑
m=1

Am sin(
mπ

L
x)

Am =
2

L

∫ L

0

n1 − n0

L
x sin(

mπ

L
x)dx = −2(n1 − n0)

mπ
(−1)m

The solution A.6 to now is only a candidate one. [33] demonstrates that A.6 is the right
solution and that is unique. Finally n reads

n(x, t) =
n1 − n0

L
+ n0 +

∞∑
m=1

2(n1 − n0)

mπ
(−1)m exp

(
−m

2π2D

L2
t

)
sin
(mπ
L
x
)

(A.7)

The Poisson equation in 1D is
d2φ

dx2
=
e

ε
n

Therefore the first integration leads to

φ(x) =
e

ε

(
n1 − n0

L

x3

6
+ n0

x2

2
− 2Ln0

)
+
φ(L)

L
+

−e
ε

∞∑
m=1

2(n1 − n0)

mπ
(−1)m exp

(
m2π2D

L2
t

)
cos
(mπ
L
x
) (A.8)

and finally the potential is

φ(x) =
e

ε

(
n1 − n0

L

x3

6
+ n0

x2

2
− 2Ln0

)
+
φ(L)

L
+

−e
ε

∞∑
m=1

2(n1 − n0)

mπ
(−1)m exp

(
m2π2D

L2
t

)
sin
(mπ
L
x
) (A.9)

with the stationary values that read:

φ(x, t→ ∞) =
e

ε

(
n1 − n0

L

x3

6
+ n0

x2

2
− 2Ln0

)
+
φ(L)

L
(A.10)
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A.2. Analytical solution of the stationary continuity

equation when a constant field is applied

Let consider again the continuity equation for the electrons:

∂ne

∂t
+ div (−De∇ne + µe E sign(qe)ne) = 0 (A.11)

Consider the electric field constant:

E(x) =
V

L
êx (A.12)

Looking for stationary solution in 1D the eq. A.11 becomes:

d

dx

(
−De

dne

dx
− µe Ene

)
= 0 (A.13)

with E the magnitude of the field with its sign. Considering the transport coefficients
constant and since even the filed is independent from the x variable, it follows

−De
d2ne

dx2
− µe E

dne

dx
= 0 (A.14)

This is a second-order ordinary differential equations with constant coefficients Let’s
rewrite eq. A.14 as follows:

d2ne

dx2
+ a

dne

dx
= 0 (A.15)

with
a =

µeE

De

The characteristic polynomial is

P (λ) = λ2 + aλ

with two real and different zeros:
λ1 = 0

λ2 = −a

The solution is in the form:

ne(x) = C1 exp (λ1x) + C2 exp (λ2x)
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Therefore
ne(x) = C1 + C2 exp (λ2x)

Applying the boundary conditions

ne(0) = 0 m−3

ne(L) = 4× 107 m−3

It follows that the solution of A.14 is:

ne(x) =
ne(L)

exp
(

−|E|L
Vth

)
− 1

[
exp

(
−|E|L
Vth

)
− 1

]
(A.16)
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