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1. Introduction

The failure or non-optimized maintenance plan-
ning of structural systems might yield extremely
high safety, economic and social costs. To
this aim, the digital twin (DT) concept repre-
sents the most appealing opportunity to move
forward condition-based and predictive mainte-
nance practices. The digital twin perspective
aims to build a virtual representation of a phys-
ical object or process capable of collecting in-
formation from the real environment to repre-
sent, validate and simulate the physical twin’s
present and future behavior, [6]. For the pur-
pose of closely characterizing the operations of
the original physical asset, the digital twin must
be kept synchronized through the assimilation of
observational data and updating of the parame-
ters comprising the digital state, which charac-
terize the variability in the physical asset. The
updated digital state thus enables to predict the
expected evolution of the digital state and the
associated uncertainty, as well as to inform an
optimal planning of control inputs feeding back
to the physical system. Despite their recent
methodological formalization, Digital twins have
a wide range of applications; among the oth-
ers, they have been proposed as a feasible solu-

tion to monitor the health state of a structure,
[7]. This encompasses the framework of struc-
tural health monitoring (SHM), which refers to
strategies aimed at detecting changes and dam-
ages in structures from sensed data, thus allow-
ing to promptly implement maintenance actions
before the occurrence of major failures. In this
thesis, I consider the application of a probabilis-
tic graphical model, proposed in [3] and relying
on a dynamic Bayesian network (DBN), to en-
able digital twins for SHM purposes. Several nu-
merical analysis have been carried out starting
from the code available at [1, 2.

2. Methodology

DBNs are probabilistic graphical models de-
scribing a set of variables and their conditional
dependencies using a directed acyclic graph.
Each node of the graph represents a random
variable, while the edges of the graph represent
the dependence relationship between them. The
main feature of a DBN is that the involved vari-
ables are also characterized by dependence rela-
tionships over adjacent time steps. Such a gen-
eral and flexible framework allows us to conve-
niently describe the evolution of the asset-twin
system and of their interactions over a time in-



terval (0,7"). In particular, the involved random
variables are the following:

e S; represents the physical state at time ¢,
which is only indirectly and partially ob-
servable via observational data O;

e D, represent the digital state at time ¢;

e U, represents the actions and decisions
which influence the physical state at time
t;

e (); represents the quantities of interest
(QoI) computed from the updated digital
state at time ¢;

e R, represents the reward quantifying the
performance of the asset-twin system at
time t.

At each time ¢, new data o; are acquired and
new nodes representing the variables referring
to time t are added to the graph. Once the
graph topology has been established, the belief
about unobserved variables is updated and prop-
agated using the Bayesian update sum-product
algorithm, [4]. A snapshot of the adopted DBN
is reported in Figure 1.
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Figure 1: Adopted DBN (figure taken from [3]):
nodes with bold outline represent the observed
quantities (sensed data and enacted actions),
while nodes with thin outline represent esti-
mated quantities. Edges represent the condi-
tional dependences between random variables.

The digital twin simulation is carried out in two
different phases. In a first calibration phase
the parameters describing the digital state are
calibrated, to closely reflect the physical asset.
Then in a second operational phase, the digi-
tal state is continuously updated through the
assimilation of observational data, and adopted
to compute quantities of interest and to derive

the most appropriate control input. While per-
forming these two phases in our current frame-
work, the observational data collected from a
sensing system deployed on the structure are as-
sumed to be simulated using a high-fidelity full-
order model (FOM) of the monitored structure
describing a ground truth representation of the
physical asset. On the other hand, the dataset
provided to the DBN to perform the digital state
updating is instead generated by exploiting a
faster reduced-order model (ROM), relying on
the reduced basis method [5], to employ an effi-
cient low-fidelity model for the sake of efficiency.
Whenever aiming at informing a real-time data
assimilation in a physical based model involv-
ing a set of partial differential equations to solve
relying on a ROM is indeed essential to over-
come the computational cost usually entailed by
a FOM.

Figure 2 reports a graphical abstraction out-
lining the main computational procedures in-
volved in the considered digital twin framework.
Observational data from the physical asset are
computed with the FOM, which is also adopted
to construct the ROM. This latter is instead
adopted to form the dataset provided to the
DBN, after the preliminary calibration phase.
Finally, during the operational phase, the DBN
enables the online SHM of the considered struc-
ture.
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Figure 2: A schematic representation of the
main methodologies involved in the considered
DT framework.



3. SHM of a concrete beam

Starting from the test case described in [3],the
considered DBN framework is adapted and
tested on different problems. A first test case
deals with the SHM of a bridge-like structure
depicted in Figure 3. The beam has height h =
1m, length [ = 6m and width w = 1m. The
beam is assumed to be made of concrete, with
mechanical properties given as follows: Young
modulus F = 47.25 Gpa, Poisson ratio equal to
0.1, density equal to 2400 kg/m?>.

Figure 3: Beam displacement obtained for a
200 kg load applied on its mid span.

At each simulation timestep, the beam can be
loaded by two different force loads located at
its mid span, representing a very simplified de-
scription of a traffic situation occurring over the
bridge. High or low force loads (equal to 300 kg,
200 kg respectively) are introduced to model the
case of high or low traffic on the bridge. Asin [3],
time is discretized in such a way that the tran-
sient period between the two admissible load-
ing conditions is neglected, and only the related
static configuration is accounted for. The digi-
tal state is described by the following vector of
parameters:

d=1[1, h, w, e, z]". (1)

Where [, h,w are geometrical parameters de-
scribing the sizes of the beam, e is a material pa-
rameter adopted to rescale the concrete Young’s
modulus, and z is a vector of structural health
parameters describing the health state of the
structure as explained below.

The calibration phase is carried out assuming
that the geometrical parameters are certain and
accurate, so that only the Young’s modulus scal-
ing factor needs to be calibrated. This is done
by simulating a series of load-displacement tests,
whose outcome is exploited to update the prior
belief about e through a particle filter algorithm.

Figure 4 reports the obtained posterior proba-
bility distribution, which is centered at 0.9919
(corresponding to a 0.81% reduction) and fea-
tures a reduced standard deviation compared to
the prior distribution initially selected of e.
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Figure 4:  Prior and posterior distributions of
the Young’s modulus scaling factor e for the

beam test case.

Once the calibration phase is completed, the in-
put dataset for the DBN is assembled by sim-
ulating a set of potential damage scenarios af-
fecting the structure. This is done for each pos-
sible damage state z with reference to the up-
dated distribution of parameter e, by taking 30
samples from the posterior distribution of e and
computing the relevant quantities of interest for
each sample, for instance in terms of displace-
ments or strains.

3.1. Three cracks test case to describe
the damage state z

In this first test case, we consider three struc-
tural health parameters, each one describing the
crack length in a predefined region of the beam.
The location of the cracks is assumed to be
known, and their width is kept fixed at 0.02 m.
Observational data, in terms of Von Mises stress,
are simulated assuming that the severe load is
always applied at the mid span, except from the
case when any of the z components is greater
than 10% of the height of the beam; in this case,
the digital twin is supposed to suggest a control
action, for which only the low traffic condition
is allowed over the bridge. Figure 5 reports the
result about the estimation and the future fore-
cast of the three structural health parameters
and the relative 95% confidence intervals at time
t = 40. Note how the digital twin is capable of



accurately tracking the evolution of the struc-
tural health with relatively low uncertainty. The
value of Von Mieses stress at sensor locations
computed from the updated digital state is in-
stead displayed in Figure 6. Also in this case,
we can observe a clear correspondence between
computed and measured values.
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Figure 5: Health state prediction results for the
three crack beam test case at t. = 40.
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Figure 6: Prediction of the stress for the three
crack beam case at t. = 40.

This test case has shown that the DBN frame-
work proposed in [4] can be suitably general-
ized to problems characterized by more than two
structural health parameters, which is the only
case previously considered in [3]. Another as-
pect of novelty consists in the modeling of dam-
age patterns as variable size cracks, instead of a
localized stiffness reduction as done in [3].

3.2. Data augmentation using a ROM

In this second test case, the possible dam-
age scenarios affecting the beam are modeled
as localized reductions of the material stiff-
ness. In particular, we consider ten pos-
sible zones in which the stiffness reduction
can take place, and we assume that the vec-
tor z is made by two components, ruling the

stiffness reduction in two of the ten subdo-
mains. We first provide the DBN with an input
dataset generated with a FOM, and account-
ing for stress measurements in damage scenar-
ios characterized by z = {0%, 20%, 40%, 60%} x
{0%, 20%, 40%,60%}. The control policy is kept
as in the previous case. Figure 7 reports the
outcome of the estimation and future evolution
prediction of the structural health parameters.
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Figure 7: Health state prediction results for the
beam test case with localized stiffness reductions
and input dataset build built using a FOM at
t. = 40.

As it can be seen from Figure 7, when a lin-
ear model is introduced to describe the evolu-
tion of the structural health, the DT accuracy
worsens when the health state z takes values
far from those contained in the input dataset.
To improve the estimation and prediction ca-
pabilities of the DT, we chose to perform a
data augmentation of the dataset provided to
the DBN. This is done by refining the possi-
ble states that can be assumed by the com-
ponents of the structural health vector z as
{0%, 10%, 20%, 30%, 40%, 50%,60%}. In this
case, the value of Von Mises stress is computed
with a computationally convenient ROM rely-
ing on the reduced basis method. After pro-
viding the augmented dataset to the DBN, the
obtained results in terms of estimation and pre-
diction of the digital state evolution are reported
in Figure 8. Comparing the latter results with
those shown in Figure 7, it is possible conclude
that using a ROM to perform data augmenta-
tion on the input dataset allows us to obtain
more accurate health state estimation and pre-
diction results. The obtained improvements also
comes with a low computational cost thanks to
the adoption of a ROM.
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Figure 8: Health state prediction results for the
beam test case with localized stiffness reductions
and augmented input dataset at t. = 40.

4. Vibration-based SHM of a
four-story frame

In this second experiment we consider the SHM
of the four-story frame structure depicted in Fig-
ure 9.
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Figure 9:  Four-stories frame displacement at
t=>5s.

This structure has a total height h = 6 m, length
[ = 0.3m and width w = 0.4m. The frame is
assumed to be made of concrete, with mechan-
ical proprieties: Young modulus £ = 30 Gpa,
Poisson ratio equal to 0.2, density equal to
2500kg/m3. The frame is excited with a ran-
dom lateral force, applied to mimic low-intensity
seismic loads such as ambient vibrations. Dam-
age is modeled by means of a vector z of struc-
tural health parameters, with two components,
describing the amount of stiffness reduction ap-
plied within two subdomains located at the two
basis of the frame. In this case, the observed
quantities of interest are not direct measure-
ments, as displacements or stress recordings; in-
stead, by means of the frequency domain de-
composition method, we compute the first four

eigenfrequencies of the structure from horizontal
and vertical displacement recordings acquired at
eight sensor locations over a time interval of 5s.
Accordingly, each time step in the digital twin
data assimilation is assumed to cover a time in-
terval of 5s. Moreover, we consider a control
policy for which a perfect maintenance action
should be performed on the structure if any of
the components of z is greater than 30%. Sim-
ilarly to the previous experiment, the digital
state is given by:

(@)

where [, h, w are the dimensions of the frame, n
is the number of stories, e is the Young’s mod-
ulus scaling factor and z is the health state vec-
tor previously described. The only parameter
which need to be calibrated is the Young’s mod-
ulus scaling factor e; this is done following the
same strategy adopted in the previous experi-
ment. Figure 10 reports the obtained poste-
rior probability distribution, which is centered
at 0.9927 (corresponding to a 0.73% reduction)
and features a reduced standard deviation com-
pared to the prior distribution initially selected
of e.

d:[l, h, w, n, e, Z]T
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Figure 10: Prior and posterior distributions of
the Young’s modulus scaling factor for the frame
test case.

Figure 11 reports the results of the post-
calibration operational phase, in terms of esti-
mation and prediction of the evolution of the
structural health parameters at time ¢ = 40.
From the latter observed results, we can see that
the DBN is able to promptly suggest when a re-
pairing action is needed.
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Figure 11: Health state prediction results for
the frame test case at t. = 40.

Figure 12 reports the corresponding prediction
of the first three eigenfrequencies of the struc-
ture, computed from the updated digital state,
with respect to their ground truth value. The
uncertainty bands are much wider than in previ-
ous cases, and this is due to the fact that in this
new test case indirect measurements are consid-
ered as quantities of interest.
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Figure 12: Prediction of the first three natural
frequencies for the frame test case at t. = 40.

These results prove that a DBN-based digital
twin framework can be also used in very com-
plex situations where we do not neglect the tran-
sient period between the application of two ac-
tions and the force acting on the structure is not
known. This test also shows that the perfor-
mance of the DBN framework does not depend
on the observed quantity of interest; indeed, in
this case we considered an indirect quantities
such as the natural frequencies.

5. Conclusions

This thesis shows how the digital twin paradigm
proposed in [3], combined with the use of projec-
tion based reduced order models for the creation
of the required input dataset, can be successfully

employed for the sake of structural health mon-
itoring. The primary goal was to extend the
range of applications of the method to more re-
alistic cases than the UAV case described in [3].
In particular, it has been shown that the DBN
performance is not influenced by the definition
of the health state z and by the quantity of in-
terest considered. The framework proposed in
[3] has been also extended to the more difficult
case in which the forces applied on the structure
are not known, and in which the transient period
between the application of two actions is not ne-
glected. According to the test cases performed,
the joint use of dynamic Bayesian networks and
reduced order models for parameterised systems
represents an extremely promising framework to
enable digital twins for structural health moni-
toring purposes.
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