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Abstract

High-fidelity representations of the gravity field could be necessary in order to precisely
predict the orbit of a spacecraft in proximity of a body. Different methods have been
introduced during the past years in order to construct analytically the gravity field of a
body, like the spherical harmonics, mascon and polyhedral model. However, despite being
convenient in theory, each method comes with its unique disadvantages when it comes
to real applications. They could start to diverge near the surface of a body or require
some assumptions on the mass distribution inside the object. Furthermore, they could be
computationally very expensive and so, preventing their use for on-board purposes.
In order to deal with these problems, this work aims to model the gravity field with a
machine learning representation instead of using a purely analytic formulation. In the case
of single bodies, the use of physics-informed neural networks seem to solve the problem
of divergence near the body while being computationally efficient and compact. Physics-
informed neural networks combine the flexibility of deep learning models with centuries
of analytic insight to learn new basis functions that are uniquely suited to represent these
complex environments.
This work investigates the usage of physics-informed neural networks to model the gravity
field of a binary system, more specifically of the Didymos asteroid system. The physics-
informed neural networks in this work are trained with data generated from existing
models or with simulated real data and the best configuration of physics-informed neural
networks to obtain the best accuracy is investigated. The results show that the gravity
field generated by the physics-informed neural networks gravity model can offer advantages
over its analytic counterparts in computational time while having a better accuracy with
respect to other models. The physics-informed neural networks are also able to model the
gravity field from acceleration measurements taken in-situ even when considering errors
on the measurements.

Keywords: Binary asteroids, Gravity field modeling, Artificial intelligence, Physics-
informed neural network





Abstract in lingua italiana

Al fine di prevedere con precisione l’orbita di un veicolo spaziale in prossimità di un
corpo celeste, possono essere necessarie rappresentazioni ad alta fedeltà del campo gravi-
tazionale. Nel corso degli anni sono stati introdotti diversi metodi per costruire in modo
analitico il campo gravitazionale di un corpo, come le armoniche sferiche, il modello mas-
con e il modello poliedrico. Tuttavia, nonostante siano convenienti in teoria, ciascun
metodo presenta svantaggi unici quando si tratta di applicazioni reali. Possono iniziare a
divergere vicino alla superficie di un corpo o richiedere alcune ipotesi sulla distribuzione
della massa all’interno dell’oggetto. Inoltre, possono essere computazionalmente molto
costosi, impedendo quindi il loro utilizzo a bordo.
Al fine di affrontare questi problemi, questo lavoro mira a modellare il campo gravi-
tazionale utilizzando una rappresentazione basata sul machine learning anziché una for-
mulazione puramente analitica. Nel caso di corpi singoli, l’utilizzo di physics-informed
neural network sembra risolvere il problema della divergenza vicino al corpo, garantendo
al contempo efficienza computazionale e compattezza. Le physics-informed neural network
combinano la flessibilità dei modelli di deep learning con secoli di intuizione analitica per
apprendere nuove funzioni di base che sono particolarmente adatte a rappresentare questi
ambienti complessi.
Questo lavoro investiga l’uso delle physics-informed neural network per modellare il campo
gravitazionale di un sistema binario, più specificamente del sistema asteroidale Didymos.
Le physics-informed neural network in questo lavoro vengono addestrate con dati generati
da modelli esistenti o con misurazioni reali simulate, e viene studiata la migliore config-
urazione delle physics-informed neural network per ottenere la miglior precisione possi-
bile. I risultati mostrano che il campo gravitazionale generato dal modello gravitazionale
physics-informed neural network può offrire vantaggi in termini di tempo computazionale
rispetto ai suoi omologhi analitici, mantenendo una maggiore precisione rispetto ad altri
modelli. Le physics-informed neural network sono anche in grado di modellare il campo
gravitazionale a partire da misurazioni di accelerazioni effettuate in situ, anche andando
a considerare errori sulle misurazioni.





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and research questions . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical background 5
2.1 Traditional gravitational models . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Point mass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Spherical harmonics model . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Polyhedral gravity model . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Mascon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Data-driven gravitational models . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Basis of artificial neural networks . . . . . . . . . . . . . . . . . . . 12
2.2.2 Physics-informed neural networks . . . . . . . . . . . . . . . . . . . 16

2.3 Selection of the optimal model . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology 25
3.1 Dynamical environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Reference models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 PINN implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Input definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Potential and acceleration computation . . . . . . . . . . . . . . . . 32



vi | Contents

3.2.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Output rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.7 Hyperparameters definition . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Data generated from a known model . . . . . . . . . . . . . . . . . 38
3.3.2 Data generated from simulated acceleration measurements . . . . . 39

3.4 Summary of how to train . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Analysis of the results 43
4.1 Training with a known model . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Comparison between the different loss fuctions . . . . . . . . . . . . 43
4.1.2 Adaptive weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Hyperparameter analysis . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Neural networks compared to traditional methods . . . . . . . . . . 52
4.1.5 Time comparison between neural networks and traditional methods 58
4.1.6 Proximity error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Training with acceleration measurements . . . . . . . . . . . . . . . . . . . 61
4.2.1 Model training with and without a point mass reference . . . . . . . 62
4.2.2 Mass estimation errors . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Model performance with different training set sizes . . . . . . . . . 68
4.2.4 Sampling time domain . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.5 No proximity data . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.6 Networks mapping in singular field points . . . . . . . . . . . . . . 72
4.2.7 Error on the measurements . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusions and future developments 77

Bibliography 79

A Appendix 83

B Appendix 85

List of Figures 89

List of Tables 93



List of acronyms 95





1

1| Introduction

1.1. Context

The study of small solar system objects, such as asteroids and comets, are a key instrument
to understand the formation of our solar system and the origin of life. They are residual
debris from the creation of the solar system. As their chemical structure has remained
unchanged since their formation, such objects are thought to have a composition that is
very similar to that of the Earth during its early stages of formation [10].
The binary asteroid environment is also the ideal place to study gravitational dynamics,
to better understand how celestial bodies in the Solar System were formed and how
they evolved. In addition, it could represent an ideal place for technology demonstration
missions. For these reasons, the study of the dynamical environment near an asteroid pair
has become a relevant topic for future missions [14].

Current estimates indicate that 16 % of the Near Earth Asteroid (asteroids whose orbit is
very close to intersecting Earth’s orbit) population is made of binary systems [21]. Thus,
it is not surprising that a couple of missions in the near future have been planned to
explore asteroid pairs in our Solar System.
For example, in 2027, Hera will rendezvous with the binary asteroid 65803 Didymos
as the European contribution to AIDA (Asteroid Impact and Deflection Assessment).
The objective of Hera is to investigate the effect of the Double Asteroid Redirection
Test (DART) occurred in October 2022 and to investigate the Didymos binary asteroid,
including the very first assessment of its internal properties [11].
Lucy will explore the Jupiter Trojan asteroids with a series of targeted close flybys of
seven Trojans and one main-belt asteroid. The asteroids studied have diameters ranging
from roughly 1 km to 100 km. A near equal-mass binary asteroid system will also be
investigated. The objective of the mission will be to determine the surface composition,
assess the geology and to determine the bulk properties [10]. A flyby at the start of
November 2023 also discovered that the first asteroid under study Dinkinesh is actually
a binary pair.
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Some asteroid missions could require planning a set of robust close proximity operations
around small bodies. Such operations could be challenging and can be complicated by
numerous factors such as the irregular shape and mass distribution of a body and its
weak and uncertain gravitational field. Due to such factors, the orbital dynamics around
small bodies could deviate from the ideal Keplerian motion [12]. The knowledge of the
dynamics driving the motion of a body in the vicinity of a binary system is then a key
point for the success of the mission.

1.2. Objectives and research questions

In this work we will focus on modeling the gravitational field around a binary system.
Different strategies can be adopted to model the gravity field of the asteroids, for example
spherical harmonics, the polyhedral and mascon model could be used. These models can
then be used to represent the dynamics of the restricted three body problem (where a
body of negligible mass moves under the influence of two massive bodies) as described in
[3, 15].
In [22–24] a new method to investigate the gravity field of an asteroid using a physics-
informed neural network (PINN) is presented. The model seems to have a fast compu-
tation time once the PINN is trained, it can describe the potential of an asteroid with
the same accuracy of other models while using a smaller number of parameters to do so
and can be also modeled using only the acceleration measurements (without knowing the
exact gravitational potential of the asteroid). The PINN model could be also theoretically
used in-situ to model the gravitational acceleration.

This thesis main goal then will be to extend the work done by Martin to a binary asteroid
system. In particular, the Didymos-Dimorphos system gravitational field is studied. This
work aims to answer the following research question:

1. To what extend can the physics-informed neural networks provide a characterization
of the gravitational field of the Didymos binary system?

The research question is also divided in the following sub-questions in order to address
the main question:

1.1 How accurately does the physics-informed neural network represent the gravity field
compared to state of the art approaches? And what is the gain in terms of compu-
tational time of PINN with respect to them?

1.2 What is the best physic-informed architecture and methodology?
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1.3 How many acceleration data are required to estimate the acceleration of the binary
system using physics-informed neural network without any information about the
potential? How does the error vary as function of the size of the training dataset?
How sensitive it is to noise in the training data?

1.3. Structure of the thesis

The thesis is organized as follows:

• Chapter 2 offers an overview of the literature on the investigated topics, providing
a background for a complete understanding of the rest of the work;

• Chapter 3 focuses on the methodology used;

• In Chapter 4 an analysis of the results obtained is made;

• Chapter 5 draws conclusions and presents insight on how the work could be ex-
panded.
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2| Theoretical background

In order to model the acceleration induced by a binary asteroid system, several factors
must be taken in account. In this chapter is reported all the theoretical framework
used to build up the models adopted. The traditional formulations for modeling the
gravitational potential of small bodies are reported in section 2.1, an overview on the
artificial neural networks (ANN), on the PINN and the state of the art for modeling the
gravity field of small bodies with the usage of PINN is reported in section 2.2, and finally
some considerations of which model is optimal is described in section 2.3.

2.1. Traditional gravitational models

The gravitational potential can be generalized for any kind of body as illustrated in
Equation (2.1): [17]

U = −G

∫
M

1

r
dm (2.1)

Where G is the gravitational constant, M is the total mass of the body and r is the
distance of the field point from the infinitesimal mass dm. It can be noticed that U is
always negative and it tends to 0 when the field point is far from the body (r tends to
∞).
The acceleration a generated by the body can be found once the potential is known as
reported in Equation (2.2):

a = −∇U (2.2)

The Laplacian of the potential depends on the position of the field point and, more
specifically, if the field point is outside the body, the Laplace’s equation is valid:

∇2U = 0 (2.3)

While if the field point is inside the body, the Poisson’s equation applies:

∇2U = −4πρG (2.4)
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Where ρ is the density of the body. Finally the curl of the gravitational acceleration is
null because the force of gravity is a conservative force:

∇×∇U = 0 (2.5)

The acceleration provided by a multi-body system can be simply calculated as a summa-
tion of the acceleration imposed by each body (after rotating them in the same reference
frame). We can then represent the potential for each asteroid individually to later com-
pute the total acceleration provided [3, 15]. The gravity field around small bodies can
be represented with many dynamical models. The most used are: point mass, spherical
harmonics expansion, polyhedral gravity field and mass concentration (mascon) model.
In the following subsections an overview on each of the mentioned models is reported with
its main pros and cons.

2.1.1. Point mass model

The point mass model assumes that an object can be treated as if all its mass was
concentrated at a single point, at its center of mass. It simplifies complex gravitational
interactions but makes calculations more manageable. The gravitational potential U of a
point mass can be defined as [17]:

U = −GM

r
(2.6)

Where G is the gravitational constant, M is the total mass of the body and r is the
distance of the field point from the body.
It’s important to note that the point mass model is an approximation and may not
accurately represent the actual mass distribution of a real object as for example in case
the body has an irregular shape. Due to this factor, the model could deviate from the
true gravity field of a body, especially in proximity of the surface [12].

2.1.2. Spherical harmonics model

The spherical harmonics model is the most popular choice to represent the gravity model.
It is an analytic solution to Laplace’s equation as demonstrated in [19] and it is defined
as:

U(r, ϕ, λ) =
GM

r

[
1 +

∞∑
n=1

(
R∗

r

)n n∑
m=0

Pnm(sinϕ)[Cnmcos(mλ) + Snmsin(mλ)]

]
(2.7)
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Where R∗ is the reference radius that nominally is the radius of the Brillouin sphere (a
sphere that circumscribe the entire body), Pnm is the associated Legendre function of
degree n and order m defined as [20]:

Pn0 =
1

2nn!

dn

dun
(u2 − 1)n (2.8)

Pnm = (1− u2)m/2 dm

dum
Pn0 (2.9)

It could also be computed using recurrent relationships as described in [36]. r, ϕ and λ

are the radius, latitude, and longitude of the field point relative to the coordinate origin
and Cnm and Snm are the spherical harmonic coefficients.

Usually, the model accuracy tends to gets better as the order of n increases and the po-
tential can be easily computed with a low computational cost once the spherical harmonic
coefficients are known. The spherical harmonic coefficients can be derived for example
from real measurement [6] or from the shape model of the asteroid [36]. The acceleration
can be computed for example using the Pines’ method as described in [13].

This model however is valid only outside the Brillouin sphere while inside of it the model
diverges. Therefore, the spherical harmonics model cannot model the dynamical envi-
ronment within the Brillouin sphere, which can create some problems when we want to
operate inside of it.

Another analytical solution to Laplace’s equation is derived in [33] and it is the interior
gravity field expressed in (2.10):

U i(r, ϕ, λ) =
GM

R∗
i

∞∑
n=0

n∑
m=0

(
r

R∗
i

)n

Pnm(sinϕ)[C
i
nmcos(mλ) + Si

nmsin(mλ)] (2.10)

Where R∗
i is the radius of the interior Brillouin sphere (it is the biggest sphere centered

in a point outside the body that does not contain any mass inside of it as depicted in
Figure 2.1) and Ci

nm and Si
nm are the interior spherical harmonic coefficients. The region

of convergence of the two different methods is depicted in Figure 2.1 with the solid lines.
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(a) (b)

Figure 2.1: Exterior (a) and interior (b) convergence regions [33]

A major drawback of the interior gravity field model is that only a small region of space
corresponds to a converging region so, multiple internal models will be necessary in order
to map out the entire space of the gravity field around the body. Also for each different
internal model a different set of spherical harmonics coefficients must be computed. How-
ever, the interior gravity field could be efficiently used when we are interested only in a
small region near the body, for example in a Touch-And-Go maneuver (TAG).

In order to map the entire region inside the exterior gravity field Brillouin sphere, in
[31, 32], is reported a method called interior Bessel gravity field to compute the gravity
field starting from the Poisson’s equation. It consist in a redistribution of the mass of the
body inside the Brillouin sphere in order to cover it all. A representation of the method
is shown in Figure 2.2.

Figure 2.2: Redistribution of mass within the exterior Brillouin sphere [31]

The original density distribution on the left is redistributed throughout the exterior Bril-
louin sphere to model the sensed gravity field. For sake of brevity, the procedure to
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implement it is not reported here. The method converges all inside the Brillouin sphere
and could be combined with the exterior gravity field model expressed in Equation (2.7)
in order to represent the potential of the body in his totality. In this case, at the bound-
ary of each method (at the Brillouin sphere), the potential must match in order to have
a smooth representation of the gravity field in the entire domain. This will also mean
that the interior Bessel gravity field performance will be correlated to the performance of
the exterior spherical harmonics at the boundary. This method seems less accurate with
respect to the interior gravity field method. However, unlike the interior gravity field
model, it can map the entire domain inside the Brillouin sphere. [31, 32]

2.1.3. Polyhedral gravity model

The polyhedral gravity model consists in computing the gravitational potential of a body
by modeling the asteroid as a constant-density polyhedron. The polyhedron is a three
dimensional solid body whose surface consists of planar faces meeting along straight edges
(exactly two faces meet at each edge) or at isolated points called vertices. An example of
this can be seen in Figure 2.3.

Figure 2.3: Asteroid Didymos polyhedral model. [25]

In [35], it is described the procedure to compute the gravitational potential in a field point
given the polyhedral model of a body. In Equation (2.11) is reported the final result. If
the reader is interested in the full demonstration of the formula, he is invited to read [35].

U =
1

2
Gρ

∑
e∈edges

re ·Ee · re · Le −
1

2
Gρ

∑
f∈faces

rf · Ff · rf · ωf (2.11)
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re is the position vector between the center of the edge and the field point, rf is the
distance between the face normal and the field point, the face dyad is expressed as Ff =

n̂f n̂f where n̂f is the outward-pointing face normal vector, the edge dyad is E12 =

n̂An̂
A
12 + n̂Bn̂

B
21 where the normal vectors are depicted in Figure 2.4 and Le and ωf are:

Le = ln
ri + rj + eij
ri + rj − eij

ωf = 2 arctan

(
ri · rj × rk

rirjrk + ri(rj · rk) + rj(rk · ri) + rk(ri · rj)

) (2.12)

(2.13)

Where ri = ||ri||, ri is the vector from the variable field-point location to polyhedron
vertex Pi and where eij is the length between two edge connecting vertices.

Figure 2.4: Schematic of two faces with a common edge and their respective normal [35]

The main disadvantages of the polyhedral model are its high computational cost and
the fact that the density is assumed constant for the entire body. However, unlike the
spherical harmonics model, the gravitational potential can be computed up to the body’s
surface without encountering divergence [35]. The gradient and Laplacian of the potential
can also be computed easily as [35]:

∇U = −Gρ
∑

e∈edges

Ee · re · Le +Gρ
∑

f∈faces

Ff · rf · ωf

∇2U = −Gρ
∑

f∈faces

ωf

(2.14)

(2.15)

Where all the terms inside the summation were already computed in Equation (2.11).
The polyhedral model is also the only model between the ones reported here that is able
to tell if a field point is inside or outside the body thanks to the laplacian and to the
Laplace’s and Poisson’s equations.
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2.1.4. Mascon model

The mascon model consists in a simple discretization of the total mass of the body in
multiple point masses. The resulting potential and acceleration given by the body then
is the summation of the contribution given by each single mass [27]:

U = −
Ni∑
i

Gmi

ri

a =

Ni∑
i

Gmi

r3i
ri

(2.16)

(2.17)

Where mi is the mass of the single point mass and where ri is the vector from the field
point to the single mass.
The total mass of the body shall be the same of the sum of all the point masses. However,
the distribution inside the body can differ from model to model. One common approach
employs an evenly spaced grid where the mass of the single point mass is the volume of
the single grid cell multiplied for its density as depicted in Figure 2.5. Another approach
consists in dividing the body represented with a polyhedron in a collection of tetrahedra
and assigning the point mass in the center of each tetrahedra [5].

Figure 2.5: Bennu mascon model with an uniform grid [27]

The mascon model can also be used in order to estimate the distribution of density inside
the body as reported in [18]. A drawback of the mascon model however, is that the
precision of the model depends on the number of point masses considered. The model
tends to give a good approximation only when the number of point masses considered



12 2| Theoretical background

is high enough (especially near the surface) and the number of masses considered must
be chosen depending on the requirements of the mission [35]. In order to increase the
accuracy of the model, instead of increasing the number of point masses in the whole
body, one could simply increase the number only near the surface as reported for example
in [29]. In this way the accuracy of the model remains the same while the computational
cost becomes overall smaller.

2.2. Data-driven gravitational models

In this section, a new model to compute the gravity field of a body based on PINN is
discussed. In the subsection 2.2.1 an introduction to ANN is made, while in subsection
2.2.2 PINN are discussed.

2.2.1. Basis of artificial neural networks

An ANN is a computational learning system, based on the mechanisms underlying the
way neurons and synapses in the human brain recognize patterns. It consists in a network
of functions able to understand and translate a data input into a numeric output. [16]

In Figure 2.6, a representation of a typical ANN is shown. As we can see, the building
blocks of the networks structure are simple nodes, grouped in layers. In this thesis we
will only consider feedforward neural networks, where the flux of data goes from input to
output.

Figure 2.6: Example of a deep neural network
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The left-most layer in Figure 2.6 represents the input layer where the known input data
are inserted, while the right-most layer is the output layer where the ANN returns the
estimation result. The remaining layers are the hidden layers. We will see later how these
layers work and how to train them. In case more than one hidden layer is present, the
network is called deep neural network.
Each node, or artificial neuron, belonging to one layer is connected with all the neurons
that are part of the previous layer, as well as with all the neurons forming the following
layer. The neurons belonging to the same layer are not interconnected. At each neuron
is associated a bias bi where i indicates the i-th neuron in the layer and a weight wij is
associated to the neuron-to-neuron connection between the node i of the current layer and
the node j of the previous layer. The value of the current node h

(k)
i can then be expressed

as:
h
(k)
i = wijh

(k−1)
j + bi (2.18)

Where h
(k−1)
j is the value of the node at the previous layer k-1.

If we build our network in this way however, the ANN would be only capable of approxi-
mating linear functions due to the fact that our ANN would only be composed of linear
functions. In order to avoid that, an activation function (a nonlinear transformation) σ

is associated to each neuron. The current node value will then be:

h
(k)
i = σ(wijh

(k−1)
j + bi) (2.19)

Different activation functions exist in literature, some examples of them are reported in
Table 2.1.

Activation function σ

Hyperbolic Tangent tanh(x)

Sigmoid 1/(1 + e−x)

ReLu max(0, x)

Signum sgn(x)

Heaviside step (sgn(x) + 1)/2

GELU 0.5x(1 + erf(x/
√
2))

Table 2.1: Examples of activation functions used. [30]

The universal approximation theorem states that a feedforward network with a linear
output layer and at least one hidden layer with any activation function can approximate
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any Borel measurable function1 from one finite-dimensional space to another with any
desired non-zero amount of error, provided that the network is given enough hidden units
[16]. In other words the ANN should be able to represent any Borel measurable function
in order to have an error below ϵ with ϵ > 0 if enough hidden nodes are considered. [30]

We have seen how a neural network works. We now see how to choose the parame-
ters in order to make it work.
First of all, we need something in order to tell how the neural networks performs. To do
that, an objective function can be used. In literature exists multiple objective functions
for an ANN, one of the most used is the mean squared error (MSE):

J(x,W , b) =
1

Nf

Nf∑
i=1

(ytruei − youti (xi,W , b))2 (2.20)

Where ytruei represents the output we desire, youti (xi,W , b) is the output we obtain from
the ANN and Nf is the total number of points used to train the network. In order to
perform well then, the weights W and biases b of the ANN must be chosen in order to
minimize the objective function J.
To choose them, we start by selecting randomly all the weights and biases (they are
generally chosen as small numbers). We can then compute the variation of all the weights
and biases using the gradient descent as reported in Equation (2.21):

wnew
ij = wold

ij − η
∂J

∂wij

(2.21)

Where η is the learning rate. There exist also different types of gradient descent [30], for
example the stochastic gradient descent where only one random training example from a
batch of data is used to calculate the gradient and update the parameters at each iteration
or the batch gradient descent where the error for each example in the training dataset is
calculated, but only updates the model after all training examples have been evaluated.
In order to compute the partial derivative a chain rule can be used:

∂J

∂wij

=
∂J

∂yi

∂yi
∂zi

∂zi
∂wij

(2.22)

Where zi is simply the term at which the activation function is imposed and yi is the
output of the node. We can use a back-propagation in order to compute all the partial

1Any continuous function on a closed and bounded subset of Rn is Borel measurable function and can
be approximated by a neural network. [16]
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derivatives of the system by computing first the right-most terms and then by proceeding
going to the left. In this way only the last term of the partial derivative obtained with
the chain rule must be computed while all the other terms are already known [16].

The selection of the learning rate will represent how the ANN will respond to a new set
of data, a smaller learning rate will mean that the variation of the weights will be smaller
and the system is less prone to changes while a higher value will mean that the system
will adapt more to the latest data. We can also make the learning rate change depending
on how far we are from the minima. As the training goes on, the learning rate can be
reduced in order to avoid jumping over the minima.
We can notice however that with the gradient descent the convergence to the global
minimum is not guaranteed as it only guarantees convergence to a local minima.

Every ANN is characterized by a set of hyperparameters. Unlike the parameters W and
b, they usually do not change during the training. They can be defined as settings that
define the ANN architecture and that we can use to control the behavior of the learning
algorithm. Some examples could be the number of hidden layers, the numbers of neurons
in an hidden layer, the number of data used to train the ANN or the algorithm used
to train the ANN. The selection of the hyperparameters is not unique and changes from
network to network. In order to choose them, a trial and error approach is usually used
and, depending on the choice of the hyperparameters, the ANN will perform better or
worse.

Another important aspect is that we need to validate the ANN. In order to do that, two
different sets of data must be used. One will be used for the training of the ANN while
a different set of data is used to check the performance of the ANN when it is training.
It is important that the set of data used for the validation is different from the one used
for the training. Overfitting is a common problem in neural networks and other machine
learning models. It occurs when a model learns to perform very well on the training data
but does not generalize well to unseen or new data. An example of it can be seen in
Figure 2.7. The validation set will be used as a metric to understand if a training event
has produced an overfit or not by comparing the training error with the validation error.
The weights that generated the lowest validation error will then be chosen as a reference
model.



16 2| Theoretical background

Figure 2.7: Overfitting of the training set [16]

2.2.2. Physics-informed neural networks

One of the disadvantages of using ANN to represent a function found in physics is that
the learned representation may not satisfy the fundamental properties of said function. In
[28] this problem is addressed and a method to train the ANN to ensure that the learned
representations obey the differential equations that govern the system is proposed. To
this end, the PINN are introduced. PINNs add the differential equations into the cost
function of a traditional neural network and use automatic differentiation to ensure that
these equations are respected by the function learned by the network. For example,
consider the following differential equation:

f
′′
(x) + f

′
(x) + f(x) = 0 (2.23)

Assume there exist measurements of x and the corresponding values of f(x). A traditional
neural network can use these observations as training data to learn a mapping from x

to f(x) by minimizing the cost function J = (f real(x) − f output(x,W , b))2. The risk
of training the network with this particular cost function is that the network does not
know that the mapping must also satisfy Equation (2.23). PINNs solve this problem by
inserting the original differential equation into the cost function:

J(x,W , b) =
1

Nf

(

Nf∑
i=1

(
f real
i (x)− f output

i (x,W , b)
)2

+

+
(
f

′′output
i (x,W , b) + f

′output
i (x,W , b) + f output

i (x,W , b)
)2

)

(2.24)
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This cost function, not only penalizes erroneous values of f output(x), but also penalizes
when the learned function violates the differential form of the problem. This extra term
serves as a form of regularization in the training process which can lead to improved
solutions that conveniently also satisfy important physics properties. The PINN model
could also be useful to obtain a better approximation of the function in the presence
of noisy training data. However, despite this additional robustness, these constraints
could increase the amount of training time necessary for the PINN to converge given
the computational complexity of calculating the derivatives of the function (especially
when second order derivatives or beyond are considered). Also, in case multiple physics
objectives are considered in the loss function, they could have competing gradient flow
dynamics (i.e. the different objectives have different learning behaviors which may prevent
some objectives from being leveraged during training). In order to avoid this, a weight
could be associated at each physic objective and also a learning rate annealing algorithm
can be implemented in order to adapt the weights during the training [34].

The derivatives of the network f output(x) are taken with automatic differentiation. There
exist two different modes in order to compute the gradient with automatic differentiation,
forward and reverse mode. The reverse mode is similar to the back-propagation but
instead of computing the gradient of the loss function with respect to the weights, the
partial derivative of the output (the potential U) with respect to all the inputs is computed
using the chain rule. In the case of forward mode, instead of going from right to left we
go from left to right, we compute the derivative of all the outputs with respect to one of
the inputs. Notice that in case of the reverse mode we can compute only the derivative of
a single output with respect to all the inputs in a single iteration, while for the forward
mode is valid the opposite. The computation of the laplacian and of the curl can be
obtained with a combination of the two modes. An example of the two models is reported
in Tables 2.2 and 2.3, where the function studied is y = f(x1, x2) = x1 + ex2 + sin(x1x2)

and its derivatives are studied in the point (4,1).
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v1 = x1 = 4

v2 = x2 = 1

v3 = ev2 = 2.718

v4 = v1v2 = 4

v5 = sin v4 = −0.757

v6 = v1 + v3 + v5 = 5.961

y = v6 = 5.961

v̇1 = ẋ1 = 1

v̇2 = ẋ2 = 0

v̇3 = v̇2 ev2 = 0

v̇4 = v̇1v2 + v1v̇2 = 1

v̇5 = v̇4 cos v4 = −0.654

v̇6 = v̇1 + v̇3 + v̇5 = 0.346

ẏ = v̇6 = 0.346

Table 2.2: Forward mode example. On the left are reported the intermediate variables,
on the right the partial derivatives with respect to the input x1

v1 = x1 = 4

v2 = x2 = 1

v3 = ev2 = 2.718

v4 = v1v2 = 4

v5 = sin v4 = −0.757

v6 = v1 + v3 + v5 = 5.961

y = v6 = 5.961

v̄1 = ∂y/∂x1 = 0.346

v̄2 = ∂y/∂x2 = 0.104

v̄1 = v̄4 ∂v4/∂v1 + v̄6 ∂v6/∂v1 = 0.346

v̄2 = v̄3 ∂v3/∂v2 + v̄4 ∂v4/∂v2 = 0.104

v̄3 = v̄6 ∂v6/∂v3 = 1

v̄4 = v̄5 ∂v5/∂v4 = −0.654

v̄5 = v̄6 ∂v6/∂v5 = 1

v̄6 = ȳ = 1

Table 2.3: Reverse mode example. On the left are reported the intermediate variables,
on the right the partial derivatives with respect to the output

While no PINN method has been applied for modeling the gravity field of a binary asteroid
yet, John Martin in [22–24] tries to model the gravity field of single celestial bodies like
Earth and Eros. The first model that the author implemented was a simple ANN with the
relative position with respect to the body as input and the acceleration in each direction
as output. This model however required a lot of data and was slow to train. As a solution,
in [22] is proposed a model where, instead of trying to model the acceleration directly, the
gravitational potential is found with the neural network and the acceleration is simply
found using Equation (2.2). In this way the neural network will need to learn only one
output instead of three. As a bonus, by computing the potential, Equation (2.3) and
(2.5) can be put as constraint increasing in this way the robustness of the method. The
architecture of the PINN used in [23] is shown in Figure 2.8.
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Figure 2.8: PINN for gravity field modeling of single celestial bodies [24]

The loss function used for the model is:

J(x,W , b) =
1

Nf

Nf∑
i=1

∥areal
i (xi) +∇f out(xi,W , b)∥2+

+
(
∇2f out(xi,W , b)

)2
+ ∥∇ ×∇f out(xi,W , b)∥2

(2.25)

Where ∥...∥ is the Euclidean norm. In case the exact potential of the body is known, it
can be added at the loss function as:

Jtotal(x,W , b) = J(x,W , b) +
1

Nf

Nf∑
i=1

(
U real

i (xi)− f out(xi,W , b)
)2 (2.26)

The gradient of the potential (and the laplacian and curl) can be found using automatic
differentiation [1].

In [24], some modifications to the model of [23] are proposed. For example all the inputs
and outputs are properly re-scaled in order to have a value between -1 and 1. In this way
the PINN shows a faster converging time.
It can be noticed that, far from a body, the potential can be reduced to the one of a point
mass without introducing a relevant error. Martin uses this information and impose that
far from the body the potential transitions to the potential of the point mass with the
following equation:

U output = (1−H(r))UNN(r) +H(r)UBC (2.27)

Where r is the distance between the field point and the center of the body, UBC is the
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potential of the point mass, UNN is the potential given by the PINN and H(r) is:

H(r) =
1 + tanh(k(r − rref ))

2
(2.28)

Where rref is a learned (via gradient descent) or user-prescribed radius, and k is a learned
or user-prescribed smoothing parameter to control for a more continuous or discrete tran-
sition.
In this way the potential not only converges in the set of data given, but can also con-
verge outside of them. One of the main advantages of the model implemented in [22]
is certainly the computational time. We can see in Figure 2.9 that the time needed to
evaluate 10,000 random data using the PINN is order of magnitudes lower with respect
to the other methods.

Figure 2.9: Total evaluation time using the various gravity models [22]

In [22], it can be also seen that, with the same number of parameters for the PINN and
the spherical harmonics, the potential of the Earth at low altitudes is better represented
by the PINN. In [23] it is shown that the PINN can obtain small errors with respect to
the true values even in presence of noisy data and that the PINN could be theoretically
trained even in-situ from real acceleration measurements. One drawback of this model
is that, in order to converge to a good solution, some data in the proximity of the body
must be taken (the distance from the body needs to be similar to twice the radius of the
asteroid). However it is also shown that the number of measurement needed in order to
converge is minimal and, after that, the accuracy of the model improves greatly.
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2.3. Selection of the optimal model

All the models reported above have some pros and cons. The selection of the best gravity
field model is not simple and depends also on the situation. When the field points to be
computed are far away from the body, the spherical harmonics or the mascon model can be
used, the choice between the two models will depend on the number of spherical harmonics
known. At these distances the polyhedral model can be computationally inefficient despite
its precision. The point model could also be used in order to reduce the computational
cost if it approximate well enough the body. Near the body, the polyhedral model seems
the best choice as shown in [35]. However, it is shown in [26] that, if the number of point
masses is increased until the computational time is similar to the polyhedral model, the
accuracy of the two models can be the same or the mascon model could be even superior.
Obviously the number of masses considered depends also on the resolution of the surface
of the body. Finally, the PINN model could be used in substitution of all the other models
due to its fast computational time. Obviously, this will depend on the performances of the
PINN to correctly evaluate the gravity field as it could theoretically reach the precision of
the polyhedral model in proximity of the surface or could match the best model available
for a celestial body in general. It could also be used in combination with other models as
discussed before in order to reach the best accuracy. So, in summary, the model chosen
is not defined a priori but needs some careful consideration before choosing it.
A quick recap of all the models is made in the next two pages.
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Name of the
method

Point mass
model

Spherical harmonics Polyhedral

Citations [17] [19, 32, 33] [35]

Methodology

All the mass of
a body is con-
centrated at a
single point, at
its center of
mass.

The gravitational potential is
approximated using spherical
harmonics, at each order of
the spherical harmonics is as-
sociated a spherical coeffi-
cient. Usually, the higher the
order used to describe the po-
tential, the higher the accu-
racy. The coefficient can be
determined from the shape of
the object or from accelera-
tion measurements.

The exact potential of an
object is analytically com-
puted given its shape.

Advantages

Fastest com-
putational
time between
all models.

Represent very well near-
spherical celestial bodies.
More specifically its oblate-
ness. The order of the
spherical harmonics can be
chosen depending on how
accurate we want the model.

If the exact shape of a body
is known, the exact poten-
tial can be computed. The
potential is exactly com-
puted down to the surface
and also inside the body.
Once the potential is com-
puted, the acceleration and
the laplacian computation
are trivial.

Disadvantages

Do not ac-
curately rep-
resent the
actual mass
distribution of
a real object as
for example in
case the body
has an irregu-
lar shape.

Diverges inside the Brillouin
sphere, this can be solved
with other spherical harmon-
ics model but in turns cre-
ate other sort of problems.
It is always an approximation
of the true potential as it is
a truncated series. Irregular
components of the body are
not so easily represented.

This is the model with the
highest computational cost.
If the exact shape of an
object is not known, the
potential can not be com-
puted, the evaluation of the
shape of an object can be
problematic.
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Name of the
method

Mascon PINN

Citations [5, 27, 29, 35] [22–24, 28]

Methodology

The total mass is discretized in
multiple point masses. The total
mass of the body must be equal
to the sum of all the individual
masses. The potential and accel-
eration is given by the summation
of each individual mass contribu-
tion.

The potential is computed with
a PINN and it is trained with
acceleration data. The output
of the PINN is the potential of
the body and acceleration is ob-
tained with automatic differenti-
ation. Physics properties of the
gravity field are taken in account
in the loss function.

Advantages

The accuracy of the model can
be changed by incrementing the
number of masses considered.
The body can be modeled with a
varying density.

Once it is trained, it is the fastest
method to compute the accelera-
tion aside the point mass model.
With the same number of pa-
rameters for PINN and spherical
harmonics, the potential is bet-
ter represented by the PINN. It
obtains small errors with respect
to true values even in presence
of noisy data, can be trained in-
situ from real acceleration mea-
surements. Despite being a NN,
can still follow physics properties
of the potential.

Disadvantages
An high number of masses must
be considered in order to have a
good approximation.

It requires a lot of time and data
in order to train it. The train-
ing with multiple losses could be
problematic. In order to converge
to a good solution, some data in
the proximity of the body must
be taken.
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In this work, the dynamical environment near Didymos is studied. In particular, the
gravity field is computed using a PINN approach. In the following sections, the dynamical
environment is described in Section 3.1, the model used to train the PINN is described in
section 3.2, the generation of the dataset is discussed in Section 3.3 and a recap on how
to train the model is made in Section 3.4.

3.1. Dynamical environment

The dynamical environment of the binary asteroid system is defined in order to generate
the data necessary to train the PINN. In Table 3.1, a list of the physical parameters used
to model the binary system post DART impact is reported.

Value Unit
Didymos shape Polyhedron

Dimorphos shape Triaxial ellipsoid
Asteroids density 2170± 350 kg/m3

Didymos maximum radius 422.7 m

Dimorphos maximum radius 104.0 m

Dimorphos axes (104.0, 80.0, 66.5) m

Didymos mass 5.393 1011 ± 8.698 1010 kg

Dimorphos mass 5.008 109 ± 8.077 108 kg

Semi-major axis of binary orbit 1170 m

Didymos spinning period 2.26 h

Dimorphos spinning period 11.37 (assumed tidally locked) h

Secondary orbital period 11.37 h

Secondary Orbital Inclination 0 rad

Eccentricity 0.03-0.07

Table 3.1: Physical parameters of the Didymos–Dimorphos system, [8, 9]
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The shape of Didymos is modelled using a polyhedron1, while for Dimorphos a triaxial
ellipsoid is used as a reference with the dimension of the axes as reported in Table 3.1. The
density of each asteroid is considered constant and the mass is obtained from multiplying
the assumed density by the volume of the shape of the asteroid. In terms of relative
orientation, it is assumed that the spin vector of Didymos and Dimorphos is aligned
to the angular momentum vector of Dimorphos orbit around the primary. Dimorphos
is assumed tidally locked. This model is simplified with respect to the possible real
orientation of Dimorphos after the DART impact. In fact, Dimorphos oscillations on roll-
pitch-yaw should be expected and will vary depending on the impact [9]. A schematic
representation of the orbits of the asteroids around the center of mass of the binary system
is reported in Figure 3.1.

Figure 3.1: Didymos binary system model [15]

Three reference frames are considered in this work, the two body reference frame of each
asteroid and a quasi-inertial reference frame centered in the barycenter of the binary
system. The prefix quasi is to highlight that the system can be considered inertial for
characteristic times shorter than those related to Didymos heliocentric motion, which is
typically the case of spacecraft orbit design [15]. From now on it will be referred as an
inertial frame.

1The polyhedron model for both asteroids can be found at https://dart.jhuapl.edu/DART-Proposal-
Reference/.

https://dart.jhuapl.edu/DART-Proposal-Reference/
https://dart.jhuapl.edu/DART-Proposal-Reference/
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3.1.1. Reference models

In order to train the PINN to map the acceleration and potential in a field point, a
reference model shall be imposed first. In this work, two different cases are considered to
train the PINN to represent the gravitational acceleration provided by the asteroid binary
system. In the first case, the PINN is trained from some known model while in the second
case it is trained from simulated total gravitational acceleration measurements.

In case the network is trained from some known model, the potential and the acceleration
of the asteroid can be computed individually in a field point with coordinates in the
body frame of the same body. The reference models used to compute the acceleration
and the potential are a polyhedral model for Didymos and a triaxial ellipsoid model for
Dimorphos. Didymos acceleration and potential in a field point can be computed as
discussed in Section 2.1.3 [35]:

âdidymos = Gρ
∑

e∈edges

Ee · re · Le +Gρ
∑

f∈faces

Ff · rf · ωf

Udidymos =
1

2
Gρ

∑
e∈edges

re ·Ee · re · Le −
1

2
Gρ

∑
f∈faces

rf · Ff · rf · ωf

(3.1)

(3.2)

The Dimorphos acceleration can be computed using the triaxial ellipsoid approximation
as described in [7]:



âx,dimorphos = −2πGρabcx

∫ ∞

k

ds

(a2 + s)∆(s)

ây,dimorphos = −2πGρabcy

∫ ∞

k

ds

(b2 + s)∆(s)

âz,dimorphos = −2πGρabcz

∫ ∞

k

ds

(c2 + s)∆(s)

(3.3)

(3.4)

(3.5)

Where:

∆(s) =
√
(a2 + s)(b2 + s)(c2 + s) (3.6)

The parameter k is the algebraically largest root of the equation:

x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
= 1 (3.7)

ρ is the homogeneous density of the ellipsoid, while a, b and c are the axes of the ellipsoid
(a > b > c). x, y and z are the coordinates in a Cartesian reference frame of the field
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point with respect to the center of mass of the ellipsoid.
The potential of the triaxial ellipsoid can be computed as:

Udimorphos = πGρabc

∫ ∞

k

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds

∆(s)
(3.8)

In case the potential and the acceleration of an interior field point are required, the
procedure is the same as the one discussed above with the exception of k that is put equal
to 0. In order for the integral to converge, the parameter s can be substituted with

s

an
where n is a tuned parameter.

In case the PINNs are trained from these known models, the acceleration and potential in
a field point are simply computed in this way. However, if the network is trained with sim-
ulated total gravitational acceleration measurements, the total gravitational acceleration
in a field point must be computed as it is assumed that only this component is known.
The total gravitational acceleration r̈ provided by the binary system can be computed as
the summation of the acceleration provided by each asteroid as [15]:

r̈ = adidymos + adimorphos (3.9)

Where adidymos and adimorphos represent the gravitational acceleration provided by each
asteroid in the inertial frame. As the accelerations computed before are obtained in the
body frame, they must be rotated in the inertial frame [15]:

adidymos = Rdidymosâdidymos

adimorphos = Rdimorphosâdimorphos

(3.10)

(3.11)

Where Rdidymos represents the rotation between Didymos body-fixed frame and the in-
ertial frame and where Rdimorphos represents the rotation between Dimorphos body-fixed
frame and the inertial frame. The acceleration obtained with Equation 3.9 will be used as
a reference model to train the network when only measurements of the total gravitational
acceleration in a field point are assumed known.

The contributions of the solar radiation pressure (SRP) and of the third-body effects of
the Sun were not considered unlike in [15] because for the training of the PINN only the
gravitational acceleration provided by the asteroids are required. In case the PINN is
trained using measurements of the total acceleration as in Section 4.2, it is assumed that
the instrument used is able to measure directly the gravity field as it is in line with real
space instruments used [4]. The contribution of these components omitted with respect
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to Didymos and Dimorphos gravitational acceleration can be seen in Figure 3.2. The
acceleration due to SRP is computed for the Milani CubeSat case, while all other effects
are independent from the spacecraft mass [15].

Figure 3.2: Main accelerations in the proximity of Didymos binary system. Gravity of
Didymos (primary) and Dimorphos, Sun (third body) and SRP as function of the distance
from the barycenter of Didymos system [15]

3.2. PINN implementation

In order to train the PINN to represent the gravitational acceleration provided by the
asteroid binary system, the two different cases discussed in Section 3.1.1 are considered.
The architecture of the model in both cases is discussed in this section.

3.2.1. Model architecture

The model used in this work takes inspiration from [22–24] where a PINN was used to
represent the gravity field of a single celestial body and adapts it to a binary system. The
model consists of two PINNs. Each PINN will be used to map the potential of a singular
asteroid. In case the PINNs are trained from some known model, two different networks
can be trained independently as shown in Figure 3.3. In case only total gravitational
acceleration measurements are known, the PINNs must be trained using a common loss
function as shown in Figure 3.4. The only difference between the two methods is the final
loss function and how the dataset is generated. The model were implemented in Python
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with the usage of TensorFlow 2.102.

Figure 3.3: PINNs architecture to approximate the gravity field of a binary system from
a known model

2https://www.tensorflow.org/

https://www.tensorflow.org/
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Figure 3.4: PINNs architecture to approximate the gravity field of a binary system from
total gravitational acceleration measurements

The architecture of the singular network is pretty similar to the one implemented in [24]. It
takes as an input the relative position of the field point with respect to the corresponding
asteroid with coordinates in the body frame of the same celestial body and returns as an
output the potential of the asteroid in the field point.

Another approach was considered to model the gravity field of the asteroid binary system.
Instead of modeling two different PINNs (one for each asteroid), a single PINN was trained
with the total potential of the field point as a single output. However, this model did not
performed well and it is not presented in this work. A quick recap of its performances is
reported in Appendix A.
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3.2.2. Input definition

The input position is initially given in Cartesian coordinates in the body frame of each
asteroid. A transformation of the input positions is made to increment the performances
of the network. The position is expressed using the same coordinates used in Pines’
acceleration computation (r, s, t, u):

r =
√

x2 + y2 + z2

s =
x

r

t =
y

r

u =
z

r

The coordinates s, t and u will be bounded between the values of [−1, 1]. The same
can not be said for the radius that can scale between [0,∞]. To avoid that, the radial
coordinate is inverted. In this way, the value is bounded between [0, 1] outside of the
body thank to a dimensionalization discussed later. The coordinates 1/r, s, t, u are then
used as inputs of the Neural Network.

3.2.3. Potential and acceleration computation

The output of the network is the potential of a single body in a field point. In order to
increment the performances of the PINN, the potential obtained from the point model of
an asteroid can be added at the output of the network. In this way, the PINN does not
need to learn this prominent and easily observable contribution and can focus on mapping
the potential’s perturbations.

Once the potential is computed and the potential of the point mass model is added to
it, the acceleration is obtained through automatic differentiation as explained in Section
2.2.2. The gradient of the potential is computed with respect to the x, y and z coordinates
in order to obtain the acceleration of the field point in the body frame of the corresponding
asteroid. It is then mandatory to keep the Cartesian coordinates within the TensorFlow
graph as shown in Figure 3.3 and 3.4.

By using again automatic differentiation and by computing the gradient of each compo-
nent of the acceleration with respect to the Cartesian coordinates, it is also possible to
compute the Laplacian of the potential and the curl of the acceleration. These components
will also be used in the loss function as discussed in the next subsection.
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3.2.4. Loss function

In order to train the PINNs, the two different cases are taken in account. In the first
case, where the model is simplified and the PINNs can be trained independently as the
acceleration of the single asteroid in a certain field point can be computed, each neural
network will have its own loss function and it will be:

J(Θ) =
1

N

N∑
i=0

∥atrue,i − (−∇UNN,i)∥
∥atrue,i∥

(3.12)

Where N represents the number of samples in a batch and the term in the summation
is the percentage acceleration error where atrue,i is the acceleration obtained from the
reference model, where UNN,i is the potential obtained from the PINN model and where
∥...∥ is the Euclidean norm. The percentage error is used as a loss function over the
MSE as it increases the performances of the network far away from the asteroid [24].
The gradient of the potential is computed with respect to the Cartesian coordinates to
obtain the acceleration and the double minus sign is due to Equation 2.2. The subscript
i indicates the i-th data of the batch used for training at a given epoch.

Some other additional physics properties can be learned and can be implemented in the
loss function. The curl of the acceleration and the laplacian of the potential are imposed
equal to zero. It can also be imposed that the potential obtained from the PINN is equal
to the potential obtained from the model. By taking all this in account, the original cost
function becomes:

J(Θ) =
1

N

N∑
i=0

∥atrue,i − (−∇UNN,i)∥
∥atrue,i∥

+
|Utrue − (UNN,i)|

|Utrue|
+

+
(
∇2UNN,i

)2
+ ∥∇×∇UNN,i∥2

(3.13)

Where |...| is the absolute value.
In the second case, only the total acceleration provided by the binary system is known.
It is then not possible to model each PINN independently as the potential or acceleration
for a singular asteroid in a certain field point is not known. In order to solve this problem,
a singular loss function will be used to train both PINNs. The total acceleration obtained
in a certain field point from a measurement will be imposed equal to the summation of
the contribution of both PINNs using the following loss function:
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J(Θ) =
1

N

N∑
i=0

∥atot,i − (−R1,i∇UNN,1,i −R2,i∇UNN,2,i)∥
∥atot,i∥

(3.14)

In a similar way as before, the percentage acceleration error is computed. However, in this
case, the accelerations obtained from each PINN shall be rotated from the body frame to
the inertial frame with the rotational matrix as discussed in Section 3.1.1. Once they are
rotated, they can be summed together and can be imposed equal to the total gravitational
acceleration. The subscripts 1 and 2 indicates respectively the potential of Didymos and
Dimorphos. This is valid also for the rotational matrix.
As before, the laplacian of the potential and the curl of the acceleration of both Didymos
and Dimorphos can be imposed equal to zero. The following terms can then be added to
the loss function reported in Equation 3.14:

1

N

N∑
i=0

(
∇2UNN,1,i

)2
+
(
∇2UNN,2,i

)2
+ ∥∇×∇UNN,1,i∥2 + ∥∇×∇UNN,2,i∥2 (3.15)

In this work, all the different terms of the loss function are tested in both cases to see
which ones produce the better performances. Different loss functions are then created
and from this point on they are referred as:

1. NN_A: only the acceleration term of the loss function is considered

2. NN_P: only the potential term of the loss function is considered

3. NN_AP: both the acceleration and potential terms of the loss function are consid-
ered

4. NN_ALC: the acceleration term is considered with the laplacian and the curl

5. NN_ALCP: all the terms of the loss function are considered

In addition to these loss functions, an ANN called NN_0 is also considered. In this case,
the output of each Neural Network is not the potential of the body but instead are the
three components of the acceleration. Also in this case the point mass model is added to
the output.

The loss function for this term in case the ANN is trained from some known model will
look as follow:

J(Θ) =
1

N

N∑
i=0

∥atrue,i − (aNN,i)∥
∥atrue,i∥

(3.16)

Where aNN,i is the acceleration obtained from the ANN. In case the ANN are trained
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from acceleration measurements, the total acceleration measured is imposed equal to the
sum of the contribution of each ANN once they are rotated in the inertial reference frame
as before.

3.2.5. Non-dimensionalization

All inputs and outputs of the neural network are normalized in order to be between the
values of [−1, 1] in order to achieve better performances [16]. To do that, the following
dimensionalization are made:

x̂ = R∗

Û = max(|U − Upoint|)

â =
Û

x̂

Where R∗ is the Brillouin sphere radius, max(|U − Upoint|) is the maximum difference
between the potential of the reference model and of the point model and where the pa-
rameters with the hat symbol represent the quantity for which the position, the potential
and the acceleration must be normalized. The normalization takes in account the common
units of measurements of each component [24]. Each model will have its own dimension-
alization.

In case the model is trained from real measurements, the potential of the model is not
known. Then, another dimensionalization is made as reported below:

x̂1 = R∗
1

x̂2 = R∗
2

â = max(∥atot − apoint,1 − apoint,2∥)

Û1 = âx̂1

Û2 = âx̂2

The subscripts 1 and 2 indicate the dimensionalization for Didymos and Dimorphos PINNs
respectively and all the accelerations are expressed in the inertial reference frame.

3.2.6. Output rescaling

By applying the dimensionalization discussed in the previous subsection and when sum-
ming the point mass potential at the output of the PINN, it can be observed that the
output tends only to zero as the distance from the asteroid increases. In order to avoid
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that, the output of the Neural Network is rescaled as:

UNN =
U∗
NN

r3
(3.17)

Where U∗
NN indicate the output of the PINN before rescaling.

In a similar way, the output of NN_0 is rescaled as:

aNN =
a∗NN

r4
(3.18)

The rescaling effect on the output can be seen in Figure 3.5. The field points considered
in the figure are part of the test set described in Section 3.3.1. By implementing this
rescaling, the performance of the PINNs increment at field points far away from the
surface.

(a) Without rescaling

(b) With rescaling

Figure 3.5: Rescaling of the output of the neural network
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3.2.7. Hyperparameters definition

A list of the hyperparameters used to train the PINNs is reported in Table 3.2.

Hyperparameters Value
Optimizer Adam
Initializer Glorot normal

Activation function GELU
Number of layers 8
Number of nodes 80
Number of epochs 10000

Learning rate Didymos 0.003
Learning rate Dimorphos 0.001

Batch size 5000

Table 3.2: Hyperparameters used to model and train the PINN

The GELU activation function is used due to its smooth high-order derivatives. If this
condition is not true, the gradients of the network that are taken using automatic dif-
ferentiation to enforce the physics constraints will no longer be well-behaved for gradient
descent. It is then suggested to not use activation functions such as ReLu or Signum
and instead the usage of activation functions such as GELU or Hyperbolic Tangent is
recommended [22].
The learning rate is reduced with the increasing number of epochs in order to avoid jump-
ing over the minima as suggested in [16, 22].
All the hyperparameters will be the same in the following simulations unless directly
stated in singular cases. The hyperparameters are also common between the PINN mod-
els of Didymos and Dimorphos unless specified.
The number on nodes for each hidden layer of the network is the same. The number of
data used for the training, validation and test is discussed in Section 3.3.

3.3. Data generation

In this section the data used to train the PINN are described. In particular, the two
different cases described in Section 3.1.1 are taken into account.
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3.3.1. Data generated from a known model

In case data are generated from a known model, the potential and the acceleration in a
certain field point can be computed for each asteroid. In this case, two separate different
dataset can be generated to train the PINNs. One dataset will be used to train the
Didymos PINN while the other one will be used to train Dimorphos PINN.

Both dataset are built in a similar way. Some field points are generated randomly in
proximity of the asteroid and the potential and acceleration is computed in those specific
field points. In order to generate the field points, some random spherical coordinates are
generated. Then, once these coordinates are computed, they are transformed in Cartesian
coordinates expressed in the body frame. The radius is generated using a random uniform
distribution from a minimum radius to a maximum one. More specifically, the radius of
the field points used for the training in Chapter 4 are all generated between the minimum
radius of the asteroid and 5 Brillouin radii of distance from the asteroid. The azimuthal
angle is also generated randomly using a random uniform distribution between [0, 2π]. A
random value between -1 and 1 is generated using a random uniform distribution and
the arccosine of this value is computed. The polar angle will then be equal to this value.
A representation of the field points generated in proximity of the asteroids is shown in
Figure 3.6. Both figures are represented in the body frame of each asteroid.

(a) Didymos (b) Dimorphos

Figure 3.6: 1000 different field points used for the dataset in proximity of the asteroids

Once all the field points of the dataset are generated, the acceleration and potential are
computed in all the field points for each asteroid individually using the reference models
discussed in Section 3.1.1. An acceleration and a potential value will then be associated
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to each field point generated and will be used for the training.

The training set, the validation set and the test set are all built using this method. The
only difference is the number of field points considered. For the training set 10000 different
field points were considered unless directly specified. In order to validate the model while
training it, 5000 different data are generated. A total of 10000 points are generated in
order to test the model. In this case, the radius is randomly generated using a random
uniform distribution between the minimum radius of the asteroid and 10 Brillouin radii
of distance from the asteroid in order to check if the PINNs are able to map the gravity
field even when outside of the domain of the training. Two different training, validation
and test set are generated with these number of data, one for each asteroid. All the field
points are generated only in the exterior of the asteroids. A representation of the number
of field points of the dataset as a function of the distance from the asteroid is made in
Appendix B.

3.3.2. Data generated from simulated acceleration measurements

In case the PINNs are trained from simulated acceleration measurements, it is assumed
that only the total gravitational acceleration is known in a field point. The PINNs would
need to be trained using the same field points in order to impose that the sum of each
acceleration provided by each asteroid is equal to the total acceleration in a certain field
point. For this reason, the dataset used to train and validate both PINNs will be the
same.
The field points are generated in a similar way as before. Two different sets of field points
are considered. A set is composed of some field points generated randomly in proximity
of Didymos while the other set is composed of field points generated in proximity of
Dimorphos. In both cases, a random uniform distribution is used for the radius, for the
azimuthal angle and for the arccosine of the polar angle. The ranges are the same used in
the known model case. Once the field points are generated in proximity of both asteroids,
a new single set is formed containing all the generated field points. This new single set of
data will be the training set (or validation set). Each single data will contain the relative
position of a field point with respect to both Didymos and Dimorphos with coordinates in
the body frame of the same asteroid. The total acceleration and the angles of orientation
of both asteroids are also added to the single data.

The PINNs trained with this method considers as a training set of data 10000 field points
generated in proximity of Didymos plus 10000 field points generated in proximity of
Dimorphos for a total of 20000 field points. The validation set is composed of 5000 data
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taken in proximity of Didymos and 5000 data in proximity of Dimorphos. Finally, two
different test set are considered. The first one is composed of 10000 field points taken only
in proximity of Didymos while the second is composed of 10000 field points in proximity
of Dimorphos.

The orientation and position of the asteroids is integrated in time using the parameters
described in Section 3.1. Dimorphos is assumed at the pericenter of the orbit at the initial
time and the angles of orientation are equal to zero degrees at the initial time instant.
The total acceleration in a certain field point is computed as described in Section 3.1.1.

Each measurement is taken at a different time instant (the position of the asteroids and
their orientation is different for every measurement). All the training data and the vali-
dation set are generated in a time domain between 0 and 250 hours to simulate the time
needed to sample all the measurements. The time needed is chosen by assuming that a
30 seconds measurement time is required in order to measure each single acceleration.
This value is in line with real instruments used in space applications [4]. The two test
sets are generated in a time domain between 250 and 1000 hours. The time domain for
the test set is chosen in this way in order to understand if the PINN is able to map the
gravity field even for positions and orientations of the asteroids never seen before as they
will vary with time.

A representation of the field points used to train the network is shown in Figure 3.7. Two
different cases are represented. In the figure of the left, all the field points are taken at the
initial time instant while on the right is indicated the case where the samples are taken in
the time domain studied. In green are indicated the field points in proximity of Didymos
while in red the field points in proximity of Dimorphos. The field points are represented
in the inertial frame. As we can see, due to the motion of Dimorphos around Didymos,
a torus of samples around Didymos is formed when considering field points in different
time instances. The two test sets can be seen as the field points of a singular colour. A
representation of the number of field points of the dataset as a function of the position in
the inertial reference frame and as a distance from each asteroid is reported in Appendix
B.
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(a) same time instant (b) 250 hours domain

Figure 3.7: 1000 samples in proximity of Didymos and 1000 samples in proximity of
Dimorphos

3.4. Summary of how to train

A quick recap on how to train the PINNs is reported below:

Algorithm 3.1 How to train the Network
1: Collect training data from a known model or from acceleration measurements
2: Non-dimensionalize the training data
3: for epoch in nepochs do
4: Convert the input position (r=norm([x, y, z]), x/r=s, y/r=t, z/r=u)
5: Compute the output of both networks
6: Add the point mass model to both networks output
7: Re-scale the output of both networks
8: Auto differentiate the potential with respect to the cartesian coordinates expressed

in the body frame to compute the accelerations
9: Compute the loss function

10: Update the parameters of the network
11: end for
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4| Analysis of the results

In the following sections, all the results of the training will be reported. All the models
presented in this work are trained in TensorFlow on a NVIDIA Quadro P1000 graphic
card.

4.1. Training with a known model

In this section it will reported the case where the models are trained from a known model.
Different analysis are made in order to understand the performance of the PINNs in this
case.

4.1.1. Comparison between the different loss fuctions

First of all, the different loss functions introduced in Section 3.2.4 are used to train the
model in order to see which loss function makes the model perform best. This is done by
training the same model with the same training and validation set described in Section
3.3.1 while changing only the loss function used for the training. All the models trained
are then tested on the same test set in order to see which one performs best. This is
shown in Figure 4.1 and 4.2. The gray region in the figures indicate the training data
domain region. In the figures is represented the percentage acceleration error between the
acceleration obtained by the network and the acceleration obtained from the reference
model of the singular asteroid as a function of the distance from the same asteroid.
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Figure 4.1: Comparison of different loss functions to map the gravity field of Didymos

Figure 4.2: Comparison of different loss functions to map the gravity field of Dimorphos

As we can see, in all cases the model can approximate the reference model well even when
considering field points outside the domain used for the training. However, in case the
point mass model is included in the model, both NN_ALCP and NN_ALC converge at
the same result and perform much worse with respect to other models. In particular they
both converge at the point mass model. Between all the model used, NN_AP seems to
perform slightly better with respect to the other models while the ANN seems to perform
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worse with respect to all the loss functions considered (with the exception of NN_ALCP
and NN_ALC).

It seems like that the NN_ALCP and NN_ALC models converge to the point mass model
independently on the number of data and epochs used for the training. This behaviour
can be understood once the variation of the laplacian and of the acceleration is studied
as a function of time.

Figure 4.3: Variation of acceleration error with the number of epochs for NN_AP

Figure 4.4: Variation of acceleration error with the number of epochs for NN_ALCP
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Figure 4.5: Variation of laplacian error with the number of epochs for NN_AP

Figure 4.6: Variation of laplacian error with the number of epochs for NN_ALCP

It seems that the laplacian term in the loss function makes the point model a local minima
as it satisfies all the physical properties of a gravity field. This will make the NN_ALC
and the NN_ALCP models converge to the point mass model.

4.1.2. Adaptive weight

In order to avoid that the NN_ALC and NN_ALCP models converge to the point mass
model, a system of self adapting weights applied to each term of the loss function can be
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implemented. Different approaches to this problem are introduced in [2, 34]. However, by
applying them at the loss function, worse results with respect to the other models were
obtained. Some considerations on the variation of the weights can be made in order to
understand how to vary them at each epoch. To start, the laplacian and curl weights are
imposed equal to zero at the initial epoch in order to leave the point model local minima.
The weights of the potential and of the acceleration loss term are imposed equal to 1 at
the start. Using a trial and error approach, it seems like that using a small variation of
the weight of the laplacian at each epoch increases the performances (a variation between
0 to 0.001 to the weight is considered). Using these considerations, the following adaptive
loss weight is introduced:

λ̂i(t) =

∣∣∣∇θLa(t)
∣∣∣∣∣∣∇θLi(t)
∣∣∣ , i ∈ {1, ..., k}

λi(t) = αλi(t− 1) + (1− α)λ̂i(t)

(4.1)

(4.2)

∣∣∣∇θLa(t)
∣∣∣ is the mean of the gradient of the acceleration loss function term with respect

to the weights and biases of the network and where |...| denotes the elementwise absolute
value. The subscript i indicates all the other terms of the loss function. t indicates the
current epoch, λi(t) is the weight for the corresponding loss term and α is an hyperpa-
rameter chosen based on how fast the variation of the weights shall be. This method
derives from a modification of the adaptive loss weight introduced in [34]. A value be-
tween [0.995− 0.999995] is recommended in order to train the PINN.
A new model of PINN will be trained using the adaptive loss weight and it will referred
from now on as PINN_custom. The variation of the laplacian with this method is repre-
sented in Figure 4.7 and a zoom of it is shown in Figure 4.8. The laplacian error in this
case tends to zero although with worse performances with respect to NN_ALCP as in
that case the error is zero due to the point model.
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Figure 4.7: Variation of laplacian error with the number of epochs for NN_custom

Figure 4.8: Zoom of the variation of laplacian error with the number of epochs for
NN_custom

The performances of the model with PINN_custom included is shown in Figure 4.9 and
4.10.
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Figure 4.9: Didymos model trained with PINN_custom

Figure 4.10: Dimorphos model trained with PINN_custom

As we can see, the new model performs in a similar way as the other methods. However,
this loss function comes with a cost as the time needed for training the PINN is approxi-
mately 5 times higher with respect to the other models when using the same number of
data for training. The memory needed to allocate all the data is also higher due to the
computation of second order derivatives of the potential. It is then not recommended to
use this loss function to train the PINN when training with a known model.
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4.1.3. Hyperparameter analysis

An analysis on how many data and how many epochs are necessary to reach convergence
can be made. This is done by training the same model (the network at the start has
the same initial weights and biases) 25 different times by varying the number of training
data used and the number of total epochs for each time. The number of nodes for each
hidden layer is also varied in order to see how the performance varies with different model
capacities. All the models were trained using NN_AP as a loss function. To evaluate
the performance, a mean percent error is computed using 10000 different test samples
generated in the training domain. The results are reported in Figure 4.11 and 4.12.

For both Didymos and Dimorphos, a small set of data is sufficient to guarantee the
convergence of the model. Incrementing the number of nodes up to 40 for layer for
Didymos seem to increment the performance. Between 40 and 80 nodes the performance
are pretty similar. For Dimorphos this behaviour is also true considering 20 nodes for
layer. Thus, the number of nodes can be reduced in order to save on memory while
maintaining similar performances. It seems that 2000 training data and 2000 epochs are
sufficient in both cases to reach convergence when considering enough nodes for layer.
Increasing the number of training data and epoch above these values seem to slightly
reduce the mean error.
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(a) 10 nodes (b) 20 nodes

(c) 40 nodes (d) 80 nodes

Figure 4.11: Study of hyperparameters Didymos
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(a) 10 nodes (b) 20 nodes

(c) 40 nodes (d) 80 nodes

Figure 4.12: Study of hyperparameters Dimorphos

4.1.4. Neural networks compared to traditional methods

A comparison of the PINN methods implemented in this work with the traditional meth-
ods exposed in Section 2.1 can be made in order to understand which method can ap-
proximate better the gravity field of the asteroids. In this case, the PINNs and the ANNs
are trained for 30000 epochs using 100000 different training data generated in the same
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way as described in Section 3.3.2. The validation and the test set are composed by the
same number of field points as before. The loss function used for the training is NN_AP
in the case of PINN. The number of samples in the dataset and the number of epochs
was highly increased with respect to the previous cases in order to understand how much
the network increases in performances with respect to the previous case. The polyhedral
and the ellipsoid models are used as a reference, the mascon model is created by dividing
the polyhedron in a collection of tetrahedra and assigning the point mass in the center
of each tetrahedra as described in [5]. In particular, a single mass was considered per
tetrahedra for mascon model, while 3 masses where considered for mascon model 3. For
the spherical harmonics, the spherical harmonics coefficients were computed using the
method described in [36]. A spherical harmonics of order 2 and order 8 were considered.

Figure 4.13: PINN Didymos model compared with traditional models
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Figure 4.14: PINN Dimorphos model compared with traditional models

As we can see, the PINN methods performs better with respect to the other models
in proximity of the surface. As the distance from the asteroid increases, it seems that
the spherical model gets closer with the performances and at distances near 10 radii the
spherical model has errors in the same order with respect to the PINN model. However, it
should also pointed out that at these distances the point model could be already sufficient
to plan operations [15]. The error of PINN and of ANN is the same in the training domain.
However PINN performs better with respect to ANN when outside of the domain.
The same conclusions can be made when comparing the potential percentage error of the
different models as shown in Figure 4.15 and 4.16.
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Figure 4.15: PINN Didymos model potential compared with traditional models

Figure 4.16: PINN Dimorphos model potential compared with traditional models

The performance of the different models can be compared also in singular field points
to see if the PINN model do not map well in certain regions of space with respect to
the traditional models. To do that, the percentage error of the PINN model and of
the traditional methods with respect to the reference model are computed. Then, the
difference between the PINN error and the traditional method error is computed in each
point. If the value obtained is negative (in the graph is represented in blue), the PINN
model performs better with respect to the traditional method and vice versa (red in this
case in the graph). In case the same performances are obtained, it is indicated in gray.
The field points are expressed in the body frame of each asteroid.
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(a) xy plane Didymos (b) xz plane Didymos

(c) yz plane Didymos (d) xy plane Dimorphos

(e) xz plane Dimorphos (f) yz plane Dimorphos

Figure 4.17: PINN-mascon model errors
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(a) xy plane Didymos (b) xz plane Didymos

(c) yz plane Didymos (d) xy plane Dimorphos

(e) xz plane Dimorphos (f) yz plane Dimorphos

Figure 4.18: PINN-spherical harmonics model errors
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Also in this case NN_AP is used to train the PINN. The PINN model performs better or
at most equal with respect to the other models in most of the field points considered. In
some small regions in proximity of the asteroids it seems that the mascon model performs
slightly better. To improve the performance of the PINNs some additional samples can
be taken in proximity of the surface in order to decrease the error as discussed in Section
4.1.6.

4.1.5. Time comparison between neural networks and traditional
methods

The computational time can be assessed in order to understand which method compute
faster. In Section 2.2.2, it was said that, given 10000 different samples all at once, PINNs
seem to compute much faster with respect to other SOTA methods. However, in real
space mission applications, usually the acceleration of a field point is computed individu-
ally instead of giving a batch of field points. To simulate this, 1000 different field points
are generated and the acceleration is computed for each point individually. The time to
compute each single acceleration is measured and the mean time to compute the accel-
eration is retrieved. The comparison of the computational speed for all the methods is
reported for both Didymos and Dimorphos in the tables below. The computer used for
the time comparison has an NVIDIA Quadro P1000 as a graphic card and an Intel core
i7-8850h CPU. These computer components are not representative of a space-qualified
processors. Obviously the computational times reported here could vary depending on
the specifics of the computer used and different conclusions could emerge.

Model Time needed [s]
Point 3.52 e-6

Polyhedral 2.49 e-1
Mascon 1.07 e-2

Mascon 3 3.19 e-2
Spherical 2 1.01 e-4
Spherical 8 6.09 e-4

NN_0 3.21 e-3
PINN 5.50 e-3

Table 4.1: Didymos time computation

Method Time needed [s]
Point 3.84 e-6

Ellipsoid 5.63 e-3
Mascon 1.66 e-2

Mascon 3 4.97 e-2
Spherical 2 1.00 e-4
Spherical 8 6.12 e-4

NN_0 3.19 e-3
PINN 5.51 e-3

Table 4.2: Dimorphos time computation

The tables take only in consideration the time needed to compute the acceleration once
the field point is given. The time of training for the network, the time needed to compute
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the spherical harmonics coefficients and to compute the masses of the mascon model
is not taken in account. In the tables, PINN refers to all the models that compute
the acceleration through automatic differentiation of the potential. Due to automatic
differentiation needed, they perform slightly slower with respect to the ANN. Changing
the number of parameters of the network do not seem to modify the computational time
too much (the time order remains the same). The mascon models in the case of Dimorphos
takes more time with respect to Didymos as the number of point masses considered is
greater with respect to Didymos as the polyhedral model used for Dimorphos has more
faces. It seems that, by computing accelerations of the field points one at a time, the
neural networks are no more the fastest model. Besides the point model, the spherical
harmonics perform the fastest. It should also be noted that the computational time of
the PINN and of the ellipsoid model is pretty similar. It would then be unnecessary to
train the PINN in the case of Dimorphos as the PINN model would take the same amount
of time to compute the accelerations with respect to the reference model and would only
perform worse with respect to it. A combination of PINN and spherical harmonics or
point model could be used in order to compute the acceleration of a field point. PINN
could be used to compute the acceleration of field points in proximity of the surface while
faster models could be used when they are located far away from the asteroid. In this
way, the accuracy would still be high while the overall computational speed is increased.

4.1.6. Proximity error

One problem that remains is that in proximity of the asteroid the performance of the
network becomes worse, especially in the case of Didymos. The difference in the perfor-
mances for Didymos and Dimorphos in proximity of the surface could be explained by
the model used as a reference. In fact, Dimorphos is modeled as a symmetrical object
(unlike Didymos that is modeled as a non-symmetric polyhedron). This could cause an
easier mapping for the network.
It could be that the network gets worse just because is in proximity of a boundary. Increas-
ing the size of the boundary might result in improved mapping of the network. Instead
of generating data up to the surface, some field points taken from inside the body were
added to the domain of the training data with the domain of the radius between 0.5 and
5 Brillouin radii. The laplacian loss function term tries to approximate the Poisson’s
equation instead of the Laplace’s equation when inside of the asteroid.
However, it seems like that the expansion of the domain does not increase the performances
of the network in proximity of the surface. In particular, in the case of NN_custom, the
performances gets worse as it needs to approximate a discontinuous function due to the
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variation of the laplacian term when inside and outside of the asteroid.

Another way to approach the problem could be to increase the number of data in proximity
of the surface. For example this can be done using an exponential distribution of the field
points in proximity of the surface. The maximum of the distribution is at the surface of
the asteroids. The data generated from the exponential distribution are added to the ones
generated normally. An exponential distribution is used in order to avoid a jump in the
number of samples. Two different networks can be trained using NN_AP, one network
will be trained using 100000 data generated uniformly as described in Section 3.3.2 and it
is called PINN constant, while the other network is trained with a training set containing
20000 data generated uniformly and 80000 data that are generated in proximity of the
surface (PINN proximity). The performance of the network is shown in Figure 4.19 and
4.20. Both networks were tested on the same test set generated as usual.

Figure 4.19: Didymos model trained with the addition of proximity data
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Figure 4.20: Dimorphos model trained with the addition of proximity data

In this example, an exponential distribution of the radius was defined as:

f(r) = 0.015e−0.015(r−rmin)

Where rmin is the minimum radius of the asteroid. The distribution of the samples as
a function of the distance of the asteroid is shown in Appendix B. As we can see, using
data in proximity of the surface does increase the performance in that region. However,
an obvious drawback is that the performance in the rest of the domain gets worse when
using the same number of data. By increasing the coefficient 0.015, the performance in
proximity of the surface increases while it decrease the performance when far away from
the asteroid. The generation of data in proximity of the surface would then depend on the
requirements of the mission. If operations in close proximity of the surface are required,
it is suggested to generate them, otherwise not. Similar results could be obtained by
changing the loss function in order to give more weight to field points in proximity of the
surface. This happens for example when using a MSE instead of the percentage error as
a loss function.

4.2. Training with acceleration measurements

In this section the PINNs are trained from total acceleration measurements. The data
used for the training and for the testing are discussed in Section 3.3.2.
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4.2.1. Model training with and without a point mass reference

First of all, the model is trained without any information on the mass and is compared
to the model with mass assigned. This is done in order to understand if it would be
feasible to map the gravity field of a binary system from real measurements without any
information about the mass of the asteroids and to see if there are any benefits to study
the asteroids properties before the mission. This could be useful for future missions where
no prior estimation of the properties of the binary system is made. All the different loss
functions are tested in order to understand which model is the best one (only the loss
function that do not contain the potential are tested as it is assumed unknown). In the
figures below, the total percentage acceleration error is computed on the two test set
discussed in Section 3.3.2. The model is trained and validated with the dataset presented
in Section 3.3.2. The gray area in the graph indicates also in this case the region of the
training data domain.

Figure 4.21: Model trained without the point mass model in proximity of Didymos
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Figure 4.22: Model trained with the point mass model in proximity of Didymos

Figure 4.23: Model trained without the point mass model in proximity of Dimorphos
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Figure 4.24: Model trained with the point mass model in proximity of Dimorphos

As we can see, when the mass is assigned, the model performs much better. Estimation
of the mass of the binary system would then be advised in order to obtain better perfor-
mances. Also in this case, NN_ALC converges at the point mass model when the point
model is prescribed due to the same reasons explained in Section 4.1 and it is omitted.
NN_A and NN_custom seem to have the same kind of performance and both models
result in a better approximation with respect to NN_0 in the case of the mass assigned.
NN_A would then be recommended in order to train the PINNs as NN_custom has
higher training time and more memory is needed for the training as discussed in Section
4.1. The small peak in error near 3 radius from Didymos is due to Dimorphos. The plot
in proximity of Dimorphos can be seen as a zoom of that region.

The results obtained are pretty similar to the ones obtained from the case where each
network was trained with its own model as shown in Figure 4.25 and 4.26. Both models
are trained with the same number of data and are tested with the same test set. In this
case the models are tested only on the percentage acceleration error due to a singular
asteroid in the same way done in Section 4.1 in order to see if, when PINNs are trained
from total gravitational acceleration measurements, they are still capable of mapping the
gravity field of the singular asteroid.
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Figure 4.25: Comparison between PINN trained with and without a known model in
proximity of Didymos

Figure 4.26: Comparison between PINN trained with and without a known model in
proximity of Dimorphos

4.2.2. Mass estimation errors

By training the PINNs using the point model as a reference, one problem arises. It could
be that the mass that we have used is not the same of the real asteroid. By assuming an
error on the density of 350 kg/m3 for each asteroid [9], and by computing the mass from
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the shape of the reference model with this new density, the model can be trained with
this new wrong mass. The effect of this error on the performances of the PINNs will be
as follows:

Figure 4.27: Model trained with a wrong point mass model in proximity of Didymos

Figure 4.28: Model trained with a wrong point mass model in proximity of Dimorphos

As we can see, the performance of the PINNs gets worse, especially when outside of the
training data domain. This is due to the output of the network that it is no more between
[−1, 1] as described in Section 3.2. This can be seen in Figure 4.29.
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Figure 4.29: Output of the network with a wrong mass assigned

Before training the model, an estimation of the mass of each asteroid shall be made in
order to reduce this error. For example, the error between the acceleration computed with
only the contribution of the point mass models with a guessed mass and the acceleration
obtained from real data measurements can be imposed as small as possible by varying the
masses. In Figure 4.30 and 4.31, the performance of the network with a prior estimation
of the mass (PINN mass corrected) is compared with the model trained with the exact
mass estimation (PINN exact mass). The PINN considered in this training is NN_A.

Figure 4.30: Model trained with the estimated mass model in proximity of Didymos
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Figure 4.31: Model trained with the estimated mass model in proximity of Dimorphos

As we can see, the performance of the model gets better and similar results with respect
with the model trained with the correct mass are obtained in the domain of the dataset.
However, once outside the domain studied, the model in this case performs worse and it
tends to the approximated mass model. This is due to the error on the estimation on the
mass. If the mass model would be approximated better, the error would decrease outside
of the training data domain.

4.2.3. Model performance with different training set sizes

In order to understand if the sampling of data in proximity of Didymos influences nega-
tively with the performances of the model in proximity of Dimorphos and vice-versa (this
could be due to the fact that the same field point is used to train both networks with
the same loss function), the number of data used for the training set in proximity of both
asteroids is varied as we can see in Figure 4.32. The same network (with same weight and
biases) is trained using NN_A and varying only the number of data in the training set.
In particular the number of samples in proximity of Didymos and Dimorphos is changed.
The validation and the test set is the same for all the different models trained. The test
set has a domain between the surface of the asteroid and 5 radii. The percentage error
represented in the figures is the mean percent error of all the test set.
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(a) Error in proximity of Didymos

(b) Error in proximity of Dimorphos

Figure 4.32: Mean error of the model with the variation of the number of data in the
training set

As we can see, only when a low number of samples are considered in proximity of an
asteroid the mapping in proximity of the same asteroid gets worse. It seems that sampling
in proximity of an asteroid does not degrade the performance in the vicinity of the other
one. In both cases, it seems that when considering 3000 or more samples the model starts
to converge in both regions. A total sampling time of 50 hours would be sufficient to
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compute all the accelerations required for the training (the sampling for each measurement
is assumed of 30 seconds).

4.2.4. Sampling time domain

In this simulation, the same model is trained using NN_A using different time domain
for the training and validation set (between 0 and 1, 100 and 1000 hours). This is done in
order to understand if the time domain of the training data influences on the performance
of the model. The test set has a domain between 1000 to 3000 hours from the initial time
instant. By changing the sampling time domain, the performance of the network do not
change much. This is because the model is built in such a way that all the measurements
could be theoretically taken in the same time instance. In fact, the acceleration of the
asteroids is modelled individually and, given the same position of the field point in the
body frame, the acceleration would be the same independently on the position and on the
orientation of the asteroids. This can be seen in the figures below:

Figure 4.33: Error in proximity of Didymos with different time domains
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Figure 4.34: Error in proximity of Dimorphos with different time domains

For the same reason as before, by changing the eccentricity of the orbit (it could be that
the current eccentricity of the orbit is between 0.03 and 0.07 [8, 9]), the results do not
change. For this reason, by perturbing the orbits and the orientation of the asteroids, the
performance of the networks should not change much.

4.2.5. No proximity data

It could be that the measurements near the surface of an asteroid are not permitted.
To simulate this case, a domain from 2 to 5 radii of distance from both asteroids is
considered for the training and validation set. This case is compared with the model
trained with the radii domain described in Section 3.3.2. As we can see in Figure 4.35
and 4.36, only the performance of the model in proximity of the surface seems to be
affected. Measurements in proximity of the surface would then be advised in order to
map better the total acceleration in that region. In the region with a corresponding
domain for both cases the performance seems pretty similar. In particular, the PINN
trained with a training data domain between 2 and 5 radii performs slightly better at
increasing distances when the same number of data and epochs are considered. This
could be due to the fact that this PINN does not need to model data in proximity of
the surface and will concentrate on mapping only field points far away from the surface.
The blue area in the figures indicate the region where both training data domain are
considered. In grey is indicated the region where only the training data generated in the
whole domain are used.
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Figure 4.35: Model trained with domain starting from 2 radii in proximity of Didymos

Figure 4.36: Model trained with domain starting from 2 radii in proximity of Dimorphos

4.2.6. Networks mapping in singular field points

In order to check the performance of the PINNs in case they are trained from real ac-
celeration measurements, the total percentage acceleration error can be studied in each
field point individually. In this way, it can be investigated if any region is poorly mapped
by the PINNs. In Figure 4.37 the total percentage acceleration error is reported for each
field point. The reference frame considered is the inertial one. The graphs represent the



4| Analysis of the results 73

error at the initial time instant for sake of clarity. Similar results are obtained at different
time instants. As we can see, the errors are in line with what we have seen so far and no
particular region seems poorly mapped. The two asteroids are represented in gray. The
loss function used for the training was NN_A.

(a) xy plane (b) xz plane

(c) yz plane centered in Didymos (d) yz plane centered in Dimorphos

Figure 4.37: Total percentage acceleration error for each field point at the initial time
instant

4.2.7. Error on the measurements

In order to understand better the possible performances of the model in real life appli-
cations, some errors are added to the measurements. A root mean square error (RMSE)
in the range of [10−6, 10−8] is assumed. The error is added to all the total acceleration
measurements of the training and of the validation set. The error is not added to the
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test set in order to verify the performances of the model. The error used is in line with
errors of some gravimeters used in space applications [4]. As we can see in Figure 4.38
and 4.39, the model is still capable of mapping the gravity field even in the presence of
errors although with worse performances as the error gets bigger. All the models in the
figure where trained with NN_A.

Figure 4.38: Error comparison in proximity of Didymos

Figure 4.39: Error comparison in proximity of Dimorphos

As the error in the measurements is increased, the performance of NN_custom gets better
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with respect to NN_A when trained with the same data. With an error of 10−8, the
performance of the model are practically the same. However, as we can see in Figure
4.40 and 4.41, in case the error considered is 10−6, NN_custom performs visibly better
resulting in the best model.

Figure 4.40: Performance with 10−6 RMSE in proximity of Didymos

Figure 4.41: Performance with 10−6 RMSE in proximity of Dimorphos

In case an error of 10−5 or higher is considered, the model starts to diverge and it performs
worse with respect to the point model as we get farther from the surface. This is due
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to an high percentage error that is even over 100% on measurements far away from the
body.
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5| Conclusions and future

developments

In this work, a novel approach has been adopted to model the gravity field of a binary
asteroid system through the usage of PINN. The PINN combines traditional deep learning
techniques with physics properties to ensure that the solution learned obeys those laws.
In particular, this work demonstrates that the PINN is able to produce high-accuracy
models for the gravity field of the Didymos(65803) binary system.

In this work the following sub-questions were investigated:

1.1 How accurately does the physics-informed neural network represent the gravity field
compared to state of the art approaches? And what is the gain in terms of compu-
tational time of PINN with respect to them?

The PINN model can reach performances close to the best known gravity field models
of both asteroids (polyhedral for Didymos and ellipsoid model for Dimorphos) while in-
creasing the computational speed in the case of Didymos. In the case of Dimorphos, the
computational speed is close to the reference model used, making its usage for modeling
the gravity field redundant.
Compared to spherical and mascon models, PINN performs better, especially in prox-
imity of the surface. However, spherical models, when considering low order spherical
harmonics coefficients, compute much faster with respect to the PINN model. In order
to map the whole gravity field, a combination of PINN and spherical harmonics could
be implemented. PINN will be used to map the acceleration in proximity of the surface
while spherical harmonics will be operated when considering field points far away from
the asteroids. In this way the overall computational speed is increased while maintaining
the same precision.

1.2 What is the best physic-informed architecture and methodology?

Modeling the gravity field of the binary system using two different networks, where each
network models the potential of a single asteroid and their contribution is summed up
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together, results in performances much greater with respect to the case where the gravity
field is directly modeled using a singular network. Better performances are obtained when
the point model is already prescribed to the PINN. In case the PINNs are trained from
real acceleration measurement, an assessment on the mass of the binary system shall be
made before the training. PINNs performs slightly better with respect to ANN. The PINN
should be trained imposing the potential (if known) and acceleration error equal to zero
with the loss function in order to achieve the best performances. Imposing the laplacian
and the curl error equal to zero increase the training time and the memory needed and
shall be avoided unless errors on the measurements are present.

1.3 How many acceleration data are required to estimate the acceleration of the binary
system using physics-informed neural network without any information about the
potential? How does the error vary as function of the size of the training dataset?
How sensitive it is to noise in the training data?

A fairly low number of data (around 3000 data taken in proximity of Didymos and 3000
data in proximity of Dimorphos) generated from simulated total acceleration measure-
ments are sufficient to map the gravity field of the binary system with the usage of PINNs.
The PINNs could then be used to model the gravity field in-situ from real acceleration
measurements. Increasing the number of data in proximity of the asteroids above this
number do not seem to give significant improvements on the networks.
When considering errors in the measurements, the PINNs are still able to map the gravity
field fairly well. In this case, it is recommended to impose the laplacian of the potential
and the curl of the acceleration equal to zero with the loss function while using an adapt-
ing loss weight. This will decrease the error while mapping the gravity field. However,
this will increase the training time and the memory needed for the training.

Future developments of this work are linked to the approximations made. Investigation
on the method performances in case the reference models have an heterogeneous density
distribution shall be made.
The motion of the asteroids can be modeled considering the excited spin state of Dimor-
phos due to DART impact as discussed in [9] to see if it affects in any way the performances
of the network when trained from total acceleration measurements.
A spacecraft trajectory can be simulated around the binary system in order to see if ac-
celeration measurements taken during the simulated trajectory can still map the whole
gravity field of the binary system. In this way, the samples will not be randomly dis-
tributed around the asteroid, but only confined in certain regions of space.
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A| Appendix

In this appendix is briefly discussed the case where a new neural network system is trained.
Instead of modeling two different PINNs in parallel, a single PINN was trained with the
total potential of the field point as a single output. The inputs are: the positions in
the inertial reference frame of the two asteroids, the position of the field point in the
inertial reference frame and the angles to rotate from the body reference frame of the
asteroids to the inertial reference frame. The acceleration would then be the gradient of
the potential with respect to the position of the field point. The loss function would be
similar to Equation 3.12 where, instead of the acceleration of the single asteroid, the total
acceleration is considered. This method was studied in order to understand if it would be
more beneficial to map the potential of the single asteroids with two different networks
and then summing together their contribution or it would be better to map directly the
contribution from both bodies with a single network. The model is trained with the same
parameters used in Section 4.2. The point mass model is added also in this case to the
total contribution of the Network.

Figure A.1: Model tested in proximity of Didymos
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Figure A.2: Model tested in proximity of Dimorphos

The peak in error near 3 radii from Didymos is due to Dimorphos. In Figure A.2, this
region is analyzed better. The grey area indicates the region where the training data are
considered. As it can be seen in the figures above, the performance of the network do not
come even close to the ones discussed in this work. This is probably due to the fact that
some inputs in this case are time dependant as they will vary only as a function of time
and not on the position of the measurements made. The position of the asteroids and
their angles of rotation will in fact vary only based on the time at which the measurement
was made. Because the model is tested on a new set of data that are not part of the time
domain studied, the network needs to approximate the acceleration with inputs that are
in a time domain never seen before and thus resulting in worse performances.
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In Figure B.1 is represented the field points distribution when they are generated as
described in Section 3.3.1. In particular, they are represented as a function of the radial
distance from the asteroid and as a distance from the asteroid in Cartesian coordinates
in the body frame. When varying the number of the samples, for example from 10000 to
5000, the distribution will be similar.

(a) Radius variation (b) X coordinate

(c) Y coordinate (d) Z coordinate

Figure B.1: Number of field points considered as a function of the distance from Didymos
for 10000 different field points
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In Figure B.2 is represented the field points distribution when they are generated as
described in Section 4.1.6.

(a) Radius variation (b) X coordinate

(c) Y coordinate (d) Z coordinate

Figure B.2: Number of field points considered as a function of the distance from Didymos
for 20000 field points generated uniformly plus 80000 field points generated in proximity
of Didymos

In Figure B.3 is represented the field points distribution when they are generated as
described in Section 3.3.2. In particular, they are represented as a function of the radial
distance from the asteroids and as a position in the inertial reference frame with Cartesian
coordinates.
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(a) Radius variation from Didymos (b) Radius variation from Dimorphos

(c) X coordinate (d) Y coordinate

(e) Z coordinate

Figure B.3: Number of field points considered as a function of the distance of the aster-
oids and of the position in the inertial reference frame for 10000 different field points in
proximity of Didymos and 10000 field points in proximity of Dimorphos
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