
School of Industrial and Information Engineering

Telecommunications Engineering Course

Data-plane consensus: applying
Raft consensus at network level

Supervisor: Prof. Giacomo Verticale

Assistant Supervisor: Eng. Daniele Moro

Emanuele Gallone, Matr. Nr. 914114

Academic Year 2019 - 2020

Abstract

In distributed systems, the consensus problem is one of the

most researched topics. Often, applications that require high-

availability or fault-tolerance make use of consensus, replicat-

ing their state across several remote processes. To maintain

consistency however, one must take into consideration that ma-

chines will, eventually, fail. The advent of data-plane program-

ming opened new paths to executing custom applications di-

rectly at network level, by abstracting network hardware from

protocol implementations.

The work presented in this thesis aims at answering the ques-

tion: can we offload the Raft consensus directly on network

level devices, exploiting the programmable data-plane paradigm?

We argue for a positive answer while displaying a new protocol

and the relative implementation, proposing also a possible use

case scenario.

Offloading the Raft consensus algorithm on the network level,

can be a possible solution to reduce its cost in terms of overhead

and latency, combined with greater throughput. In order to

execute Raft on programmable network devices, we use P4-16

as programming language, defining a custom new protocol on

top of UDP. We demonstrate the correctness and effectiveness

of our protocol implementation, by evaluating an implemen-

tation for the BMV2 software switch. We expect that more

significant performance gains can be achieved using switches

with programmable hardware.

3

Sommario

Uno degli argomenti di più interesse, in ambito sistemi dis-

tribuiti, riguarda il consenso. Spesso, le applicazioni che hanno

tra i requisiti quelli di resilienza ai crash, utilizzano algoritmi

di consenso per replicare il loro stato su nodi distribuiti nella

rete. Per mantenere questi stati consistenti tra di loro, bisogna

altres̀ı considerare che i suddetti nodi, eventualmente, possano

fallire. L’adozione del data-plane programmabile ha aperto

svariati nuovi scenari per eseguire applicazioni direttamente al

livello network, astraendo hardware utilizzato in ambito reti

dalle varie implementazioni di protocolli. Il lavoro presen-

tato in questa tesi ha come obiettivo quello di rispondere alla

seguente domanda: si può implementare l’algoritmo di con-

senso Raft direttamente sui dispositivi di rete, sfruttando il

data-plane programmabile? Tramite questo lavoro siamo in

grado di fornire una risposta positiva, mostrando un nuovo

protocollo e la sua relativa implementazione, proponendo an-

che uno scenario d’uso. Applicando Raft direttamente sui dis-

positivi di rete potrebbe essere una soluzione per diminuire

il suo impatto sulle prestazioni in termini di latenza e over-

head. Per eseguire Raft su hardware programmabile, abbi-

amo optato per l’utilizzo di P4-16 come linguaggio di pro-

grammazione, definendo un nuovo protocollo sfruttando UDP.

Come architettura di riferimento è stato utilizzato BMV2, un

software switch sviluppato principalmente per testare nuove

applicazioni P4, fornendo allo sviluppatore grande flessibilità

a discapito di prestazioni elevate.

4

The cave you fear to enter holds the treasure you seek.

Joseph Campbell

5

Contents

1 Introduction 15

1.1 Network function disaggregation 17

1.1.1 Data-plane programmability 18

1.2 What does Consensus mean? 19

1.3 Problem description 21

1.4 Use case and results’ anticipation 23

1.4.1 Brief results’ anticipation 23

1.5 Thesis Overview 23

2 State of the art 25

2.1 Data-plane programming 25

2.1.1 P4-16 27

2.2 Consensus Algorithms 29

2.2.1 Paxos 31

2.2.2 Raft . 33

2.2.3 Practical Byzantine-fault-tolerant protocol 35

2.3 Related Work 36

2.3.1 P4xos 37

2.3.2 SC-BFT 37

3 Proposed solution and use case 39

3.1 Proposed solution 39

3.2 Solution implementation 40

3.2.1 Packet header 40

3.2.2 Message types 43

6

Dataplane Consensus: Applying Raft consensus at network level

3.2.3 API . 43

3.3 Use case example 45

3.3.1 Load balancing based on consistent hash-

ing . 45

3.3.1.1 Interaction with Raft P4 48

4 Architecture and protocol details 51

4.1 Pipeline . 51

4.1.1 Registers 52

4.2 Protocol . 53

4.2.1 Initialization 54

4.2.2 Leader election 56

4.2.3 Heartbeat sequence 57

4.2.4 Node recovery 58

4.2.5 New requests 58

4.2.6 Read log 59

4.3 Limitations . 60

4.4 Tables and actions 61

4.4.1 Actions 61

4.5 P4 Control section 62

4.5.1 IPV4 section 63

4.5.2 Raft preamble 63

4.5.3 Leader block 65

4.5.4 Candidate block 66

4.5.5 Follower block 67

5 Results 68

5.1 Setup . 68

5.2 Tests performed 70

5.2.1 BMV2 traversal time 70

5.2.2 Protocol overhead 71

5.3 Mininet setup 73

7

Dataplane Consensus: Applying Raft consensus at network level

5.3.1 Leader election 73

5.3.2 Throughput 75

5.3.3 Variations in presence of failures 75

5.3.4 Round-trip time cap 77

6 Conclusions 78

8

List of Figures

1.1 Differences between legacy and NFD network

equipment. 17

1.2 Basic example of consensus. 19

1.3 Libpaxos throughput and latency values. 21

1.4 Libpaxos latency plot. Exceeding 2500 values/s

leads to an exponential increase of latency [16]. . 22

2.1 Differences between P4 and OpenFlow approaches

to data-plane programming [21]. 26

2.2 P4 Scheme overview [26]. 27

2.3 Paxos phases 31

2.4 Raft states scheme [3] 33

2.5 PBFT successful consensus scenario [35] 35

3.1 Raft on P4 header definition. Every field is de-

fined as a TLV field, except the Version field. . 40

3.2 External client interacting with the Raft cluster. 43

3.3 New request redirection. 44

3.4 Hash table representation with 3 servers. 46

3.5 Range based mapping. All the requests’ hash

that resides within a colored area are assigned

to the respective server. 46

3.6 The watchdog service notifies the unavailability

of S1, triggering the update process within the

Raft cluster. 48

11

Dataplane Consensus: Applying Raft consensus at network level

3.7 The watchdog service notifies the unavailability

of S1, triggering the update process within the

Raft cluster. 50

4.1 Raft P4 Pipeline definition. 51

4.2 Timeout’s procedure difference between original

Raft (a) and Raft on P4 (b). 53

4.3 Differences between Raft original protocol’s mes-

sages and Raft on P4 messages. 54

4.4 Raft on P4 initialization phase. 55

4.5 Leader Election workflow. 56

4.6 Heartbeat workflow. 57

4.7 Recovery workflow. 58

4.8 New Request workflow. 59

4.9 Read log workflow. 60

4.10 P4 application control section 62

5.1 Laboratory setup topology listing and relatives

Ethernet interfaces. Redant * identifies the ma-

chines’ hostname. 68

5.2 Interfacing Raft controller with P4 node through

virtual ethernet. 70

5.3 The top Whisker box refers to the traversal tim-

ings of BMV2 execution with Raft processing,

while the bottom refers to BMV2 execution with-

out Raft processing. The reason behind such

difference is that before executing any control

logic, a sequential reading of all the registers is

performed, retrieving the current P4 node’s state. 71

5.4 Heartbeat mechanism overhead using Raft de-

fault timings: one heartbeat every 50 ms. 72

5.5 Raft new log entry replication overhead. 72

12

Dataplane Consensus: Applying Raft consensus at network level

5.6 Mininet’s topology. Each Raft node has a di-

rectly linked x86 host executing the Raft con-

troller. 73

5.7 Leader election timings. The choice of using

Mininet is related to circumvent errors in timing

measures, due to clock drift and inaccuracies, in

case of measures involving different machines. . 74

5.8 Overall Raft P4 throughput in normal operation

time. 75

5.9 Throughput variation in presence of follower fail-

ure. 76

5.10 Throughput variation in presence of leader fail-

ure. 76

5.11 Throughput’s two-period moving average plot

measured within Mininet, with link delay = 1ms.

RTT (Round-trip time) = 2ms. 77

13

List of Tables

2.1 Failure models summary. 30

3.1 List of message types and respective description. 42

4.1 Registers used in P4 application. 52

4.2 Raft P4 Leader Table. 61

14

Chapter 1

Introduction

When it comes to application availability, users’ expectations

often fall within the “perfect execution” spectrum, meaning

that they expect the services to be available 100% of the time,

despite it remains very difficult to provide such up-time. To

achieve as much availability as possible, however, services often

rely on replication mechanisms.

The CAP theorem states that “between consistency, high avail-

ability, and partition tolerance, at most two of them can be

fulfilled, in any distributed system” [1]. Usually, high avail-

ability and partition tolerance are provided by systems whose

primary goal is scalability. Furthermore, to be able to manage

different scenarios of partitioning, the systems designers often

rely on horizontal partitioning, being one of the most cost-

effective choice. Nevertheless, to manage the different replicas

in this scenario, the use of consensus protocols is often the best

solution.

Resolving consensus issues, however, involves additional over-

head for each request, having a great impact on performance;

this implies that, typically, consensus is not used within sys-

15

Dataplane Consensus: Applying Raft consensus at network level

tems that require high performances. A consensus algorithm

must have the following features in order to tolerate the afore-

mentioned failures:

� Termination: The overall consensus will, eventually,

terminate, agreeing on some value.

� Integrity: If every legit process propose the same value

k, the consensus terminates by choosing k as final value.

� Agreement: Every legit process must agree on a com-

mon value.

Distributed consensus has been long associated to the Paxos

algorithm, first described by Lamport [2]. It is widely used

within production systems, even though its reputation about

comprehensibility is really poor. In many occasions, it has been

proved to be heavyweight and unreliable in case of scaling-up.

Therefore, consensus has been the center of various studies in

the last three decades during which, many suggestions arose

for optimizations in terms of performances.

We decided to focus on implementing Raft [3] on software-

defined network hardware, a newer consensus algorithm pre-

sented in 2014, designed to improve the comprehensibility by

dividing each phase of the consensus as an independent con-

cept. In order to instruct network devices to handle the Raft

consensus, we used P4-16 as programming language. Recent

works and advances within the network programmability field,

opened new paths for speeding up consensus. Researchers have

already exploited this approach in order to achieve better re-

Chapter 1 16

Dataplane Consensus: Applying Raft consensus at network level

sults and, in general, greater optimization, for data processing

systems ([4] [5]).

1.1 Network function disaggregation

Figure 1.1: Differences between legacy and NFD network equipment.

From an historic point of view, network equipment has always

been vertically integrated with products delivered entirely by a

single vendor. The purchase of new network hardware has been

anticipated by a detailed analysis on its most important char-

acteristics, based on its specific application and architectural

location (core, or access layer). Consequently, the network en-

gineers selected the hardware based on the product’s provided

features and performances among many distinct offerings.

Network Function Disaggregation (NFD) delineates the pro-

gression of network equipment from proprietary, closed soft-

ware and hardware, towards open, modular components which

are combined together to build complete network devices, as

shown in Figure 1.1. NFD is the evolution from the way the

major network devices are designed and built. Disaggregated

Chapter 1 17

Dataplane Consensus: Applying Raft consensus at network level

devices are integrated horizontally by employing x86 general

purpose hardware, ASIC (Application Specific Integrated Cir-

cuit) or programmable hardware (such as white-box switches),

where the layer 2/3 protocols, network operating systems and

network management tools can be independently selected and

integrated. The final result will be a unique, well-adjusted

device, suited for each specific application [6].

1.1.1 Data-plane programmability

OpenFlow [7] and the advent of Software-Defined Networks

(SDN) brought an immense revolution in the way network de-

vices are configured, by defining open interfaces which mon-

itoring or routing application can be built. SDN/OpenFlow

helped somehow breaking the network “ossification” by re-

thinking the networking from a top-down perspective, as stated

by Cordeiro et al., in [8]. Nevertheless, OpenFlow does not de-

couple entirely from the actual protocol implementation, leav-

ing the inability to reshape the switch behavior. Data-plane

programmability aims to change dramatically this scenario,

by making the switch somehow future-proof against protocols’

changes. This approach, however, paves the way to a plethora

of possible scenarios, where the network does not only provide

connectivity but also services that are transparent to the ap-

plication level, like in-band telemetry or distributed consensus.

Chapter 1 18

Dataplane Consensus: Applying Raft consensus at network level

Figure 1.2: Basic example of consensus.

1.2 What does Consensus mean?

Before defining the consensus problem, it is important to dis-

tinguish between two types of distributed systems: synchronous

or asynchronous systems. In synchronous systems, every pro-

cess (or node) has access to a global clock, shared among the

entire system; this implies that message exchanges are deliv-

ered in bounded time intervals. In this scenario, verifying that

a node failed is fairly simple: a node is considered faulty if no

reply is received from it, in a bounded interval.

On the other hand, having an asynchronous architecture means

that no node has any information concerning all the other

nodes’ speed or state. Messages could be delayed for an ar-

bitrary period of time while clocks may be out of sync, have

different precision and so on. In this scenario, there is no way

to define bounded time intervals to determine if a node has

failed or not.

Consensus means reaching an agreement on a single or multiple

values, among remote processes. The higher the number of

Chapter 1 19

Dataplane Consensus: Applying Raft consensus at network level

nodes that are involved in consensus, the higher the chance

that some of them will fail, or worse, start behaving arbitrarily.

An example of consensus could be binary consensus, where

remote nodes agree on a single value between the set {0,1}. A

basic representation is displayed in figure 1.2.

Consensus is a well researched topic [9] and is one of the funda-

mental problems regarding distributed systems [10], more pre-

cisely for high-availability and/or fault-tolerant applications.

For example, some of the services at the core of data cen-

ters relies on consensus algorithms, like Microsoft Azure [11],

Google’s Chubby [12] and Zookeeper [13].

Solving a consensus problem requires one or more participants

to propose one or multiple values and, at some point in time,

a decision will be made, converging to a single value among

the entire cluster (progress guarantee). Furthermore, once a

decision is made, it is final (safety guarantee) [2].

An important result has been proved by Fischer, Patterson

and Lynch in 1985 [10] about asynchronous distributed con-

sensus; they showed that is not possible to converge towards

a single value without making some assumptions about syn-

chronization or reliability. Even a single unannounced process

death cannot be tolerated by a consensus protocol, despite the

presence of a reliable communication channel.

Solving the consensus problem, however, leads to an inevitable

performance degradation [14] due to an higher exchange of

messages to maintain consistency among the nodes, creating

Chapter 1 20

Dataplane Consensus: Applying Raft consensus at network level

many problems for systems that have high-performance re-

quirements.

1.3 Problem description

Implementing and executing a consensus algorithm in a dis-

tributed system will most likely lead to an higher latency, as

described in the previous section. This is especially true in

environments like data centers, where latency is a key metric.

The main objective of this work is to reduce the aforemen-

tioned latency, exploiting the new paradigm defined by the

software-defined networking. Like other several projects, we

believe that by bringing consensus logic at a lower level, we

can achieve better results while maintaining weak assumptions

on the network side [15].

Figure 1.3: Libpaxos throughput and latency values.

The latency about the libpaxos [17] software library, an actual

implementation of the Paxos protocol, is shown within Figure

1.4. Referring to Figure 1.3, to stay in range within data cen-

Chapter 1 21

Dataplane Consensus: Applying Raft consensus at network level

Figure 1.4: Libpaxos latency plot. Exceeding 2500 values/s leads to an exponential
increase of latency [16].

ter’s latency standards, using libpaxos we would be bounded

to one thousand values per seconds.

Despite the performance motivations, perform network offload-

ing regarding consensus, allows us to exploit the properties of

the network [18], since the consensus itself is strictly corre-

lated to network assumptions, like Lamport described in [19].

Bringing the consensus to the network level, thus, improves the

amount of services that the network itself is capable to offer,

rather than simple connectivity. Consensus at network level

does not require additional hardware (e.g. hardware accelera-

tors) but using, instead, the same devices that are needed to

perform forwarding operations to serve connectivity.

Chapter 1 22

Dataplane Consensus: Applying Raft consensus at network level

1.4 Use case and results’ anticipation

As an example, we propose a the load-balancing based on con-

sistent hashing use case. The proposal will be described in

details by providing an example on how to implement such

scenario using the Raft P4 implementation presented in this

work.

1.4.1 Brief results’ anticipation

Implementing Raft on network level can be a possible solution

to achieve an higher throughput. Being the implementation

built on BMV2 [20], an high-flexibility software switch used

mainly to debug and develop P4 applications, performance in

terms of throughput remains limited between 3-4 thousands of

requests/s. We expect that significant performance gains can

be reached by using production-grade switches.

1.5 Thesis Overview

This thesis is organized into five chapters. Some information

needed to explain some concepts in a later chapter is occa-

sionally referenced to an earlier chapter, to avoid excessive

redundancy.

� Chapter two describes the state of the art, regarding topics

concerning our work. We review some scientific articles by

justifying how they influenced our work.

� Chapter three provides a brief description regarding the

consensus problem, how it concerns distributed systems

Chapter 1 23

Dataplane Consensus: Applying Raft consensus at network level

in general and a possible use case within a data-center

environment.

� In chapter four we describe our solution in details, speci-

fying the protocol we developed, analyzing also the limi-

tations.

� Finally, in chapter five and six we discuss the results ob-

tained through our solution and we draw our conclusions,

respectively.

Chapter 1 24

Chapter 2

State of the art

2.1 Data-plane programming

Traditionally, the network has been considered as something

fixed, where only ’simple’ operations can be made, for example

forward an IP packet or perform some filtering. In this section,

we are going to illustrate some of the new concepts that were

and are being developed to enhance the networking. Today,

after the standardization of open protocols like OpenFlow[7]

and the development of programmable network equipment we

can now benefit from the abstraction between hardware and

software, the very same that characterize the CPU and GPU

worlds, bringing winds of change about the applications that

can be realized directly on network level.

OpenFlow has enabled the programmability about the control-

plane, by giving more flexibility to network operators. On the

other hand, this approach has left the data-plane somehow

’fixed’ to protocols defined within OpenFlow. Truly data-plane

programmability has no such limitations, meaning that the

operator can program the control-plane and the data-plane

independently, even by defining its own protocols and syntax

25

Dataplane Consensus: Applying Raft consensus at network level

Figure 2.1: Differences between P4 and OpenFlow approaches to data-plane pro-
gramming [21].

[21]. Therefore, the programmability introduces the capability

of a router-switch to display its processing logic to the control-

plane, to be, eventually, rapidly re-configured [22]. This results

inspired works like the one did by Bosshart, Pat and Gibb

about re-configurable match table (RTM) architecture, proving

that data-plane programming is possible even in ASICs [23].

Another advantage of data-plane programming is the ability

to provide rapid protocol prototyping. Large corporations that

manage various data centers, like Google or Amazon, can de-

sign their own network hardware and protocols to perform

many optimizations concerning their use cases.

There are, however, several problems that are currently being

researched, regarding data-plane programming, like the ones

discussed in [22]:

� Performance or flexibility, choose one. Usually,

regarding data-plane programmability, there is a trade-off

between performance and flexibility [22]. As an example,

Chapter 2 26

Dataplane Consensus: Applying Raft consensus at network level

pick the BMV2 [20] and OpenVSwitch [24] implementa-

tions: The development of BMV2 switch is focused on flex-

ibility, while OpenVSwitch is a production-grade switch,

meaning that it has been optimized for high performance.

BMV2 has many useful functions that we used for our

implementation (e.g. clone function, to clone a packet,

useful for propagating information to the control-plane),

while OpenVSwitch has not.

� Non-programmable components. There are still

some components that are not programmable, at all. For

example the physical layer is still bounded by hardware.

While it provides a full set of services useful for the up-

per layers, like bit synchronization, line encoding etc., it

still is an opaque component, meaning that a data-plane

developer will not be able to access it [25].

2.1.1 P4-16

Figure 2.2: P4 Scheme overview [26].

P4-16 (more in general, P4) [27] is a new domain-specific lan-

Chapter 2 27

Dataplane Consensus: Applying Raft consensus at network level

guage, optimized for network data forwarding, protocol and

target independent which provides an abstract model suit-

able for programming the network data-plane. Figure 2.2 is

an high-level representation about the workflow in P4-enabled

hardware. Devices that support P4 are protocol independent,

meaning that they have no inherent support for any protocol

at all. P4 programs enable the device to ’understand’ that par-

ticular protocol, by defining packet headers, specifying packet

parsing and the relative processing behaviors. in P4 programs

the developer can define:

� Headers: by specifying field name and relative bit width

of one or more packet headers.

� Metadata: it provides a packet-specific state, with per-

packet scope. When a packet ends the processing, the

relative metadata is then lost.

� Registers: useful when some information must be per-

sistently available.

� Counters & Meters: As registers, they are persistent.

They can be read by the control-plane, to perform some

statistics.

� Tables & Actions: tables are used to specify on what

packet header field or metadata perform matching (either

exact, ternary or longest-prefix). In case of hit (or miss),

some actions, defined by the developer, will be executed.

The tables can be populated at run-time using P4Runtime

[28].

Chapter 2 28

Dataplane Consensus: Applying Raft consensus at network level

� Apply Section: also known as Control section; it is

possible to specify what tables to apply, using, eventu-

ally, conditional statements. It is important to remark

that the control section is the only area where conditional

statement can be made, in the overall P4 program.

Before executing a P4 program on a target switch, a compiler

is needed to map the target-independent protocol description

on top of the target specific hardware, hence, allocating the

needed resources and generating a configuration for the target

device. The P4 compiler [29] supports now several back-end

targets, like BMV2 [20], developed by Barefoot Networks for

the software-based simple switch [30].

Generally speaking, P4 applications are not portable across

different architectures. For example, a P4 program that for-

wards packets by writing into a custom register will not work

properly on a target that does not provide any function to

read/write the register. To cope with this limitation, the PSA

(Portable Switch Architecture)[31] is being developed by Bare-

foot Networks. P4 applications developed using PSA as refer-

ence, will be fully portable among devices that implement the

aforementioned architecture.

2.2 Consensus Algorithms

Before proceeding with the illustration of our work, we are

going to present a quick review about the main algorithms

that were developed in the past to solve the consensus prob-

lem, among distributed systems. A preliminary step, before

Chapter 2 29

Dataplane Consensus: Applying Raft consensus at network level

describing a consensus problem, is to make some assumptions

about the behaviors of a faulty process, since it affects the com-

plexity of the algorithm by imposing more restrictions. Table

2.1 describes various models, that have been proposed by M.

Barborak et al. in 1993 [32].

Table 2.1: Failure models summary.

Type of failure Brief description

Fail-stop Process terminates; the cluster is aware of
the failure.

Omission A process, for example does not answer back
to some messages

.

Computation Process output mismatch (e.g. calculation of
a floating point value, due to different CPU
architectures).Timing Process does not perform a task
within a bounded time interval.

Authenticated Byzantine A process can behave maliciously or arbitrar-
ily, being controlled by the adversary.

Byzantine All the other kinds of failure.

Concerning our work, one of our main assumptions is that

we expect the P4 application to be executed within a data

center environment, meaning that the security and authenti-

cation parts will be delegated to other actors that won’t be

treated within this work. Therefore, we will consider only the

Fail-stop failure model, referring to table 2.1. For the sake of

completeness, however, we’ll also review a consensus algorithm

that works under the Byzantine failure model.

Chapter 2 30

Dataplane Consensus: Applying Raft consensus at network level

Figure 2.3: Paxos phases

2.2.1 Paxos

Paxos represents, nowadays, a family of algorithms, since many

variations have been developed during the years. The original

Paxos protocol [2] was first described by Leslie Lamport using

the legislators’ voting process analogy, on the Paxos island, be-

ing the latter not always present inside the Chamber, in ancient

Greece. Some years later, Lamport reviewed the protocol, in

the ”Paxos Made Simple” [33] article, introducing it as Basic

Paxos.

In Basic Paxos, every node can be either a proposer, accep-

tor or learner and communicate with other nodes through

messages.

� Proposer: In a single Paxos round, multiple proposers

can exist but the protocol will guarantee that a single value

will be chosen, at the round’s end. It tries to become leader

by choosing a random number that will be used in the first

phase of the Paxos’ round.

Chapter 2 31

Dataplane Consensus: Applying Raft consensus at network level

� Acceptor: once voted for a single value, it will remember

it, by storing it. Moreover, the acceptor must not accept

other values if it has already voted and accepted one.

� Learner: once a value has been accepted by the majority

of acceptors, they will, eventually, learn it by receiving the

accepted value through messages, by the acceptors. In case

of failure, it will retrieve the chosen value by querying the

acceptors’ quorum.

Figure 2.3 illustrates a successful, full round of the Paxos al-

gorithm. The first phase is further divided between Phase 1A

and Phase 1B. In Phase 1A all the proposers will choose a

random number, denoted as round number and send a Pro-

poser Request to a majority or all of the acceptors. In Phase

1B, instead, the acceptors will answer with a Promise mes-

sage, promising that it will reject any other request from other

proposers with a round number smaller than the one they re-

ceived. When a proposer receives Promise messages from the

majority of the acceptors, it will then conclude the first phase

by starting the second one.

In Phase 2, the proper value consensus takes place: the pro-

poser will propose a new value, if the majority of the acceptors

has accepted any value, by sending an Accept request with the

round number it used during Phase 1. Unless another value

has already been acknowledged, the acceptor, upon receiving

an Accept request, will answer with an Acknowledge message,

denoted as Accepted message to learners. Once the quorum of

the acceptors send an Acknowledge message, the round ends,

Chapter 2 32

Dataplane Consensus: Applying Raft consensus at network level

meaning that consensus has been reached.

Paxos tolerates up to k failures, being n = 2k + 1 the total

number of acceptors. To guarantee the Liveness property (i.e.

the guarantee that the system will make progress), the quorum

of the acceptors (k + 1) must be non-faulty [34].

2.2.2 Raft

Figure 2.4: Raft states scheme [3]

Raft [3] is a newer consensus algorithm, designed specifically

to be more understandable, with respect to Paxos, by separat-

ing key concepts of consensus such as leader election and log

replication.

� Leader Election: When a leader crashes, a new election

will occur, ending with the definition of a new leader node.

� Log Replication: Once elected, a leader is then respon-

sible to accept new log entries and replicate them across

the rest of the cluster.

Chapter 2 33

Dataplane Consensus: Applying Raft consensus at network level

� Safety: when a server has appended an entry to a given

index, no other server will apply a different entry for the

same index, guaranteeing consistency among distributed

nodes.

At any time, a node can either be a Leader, Candidate or

Follower, as described within figure 2.4. A normal execution

of Raft expects only one leader node while all the others are

passive followers. Time is divided between terms of arbitrary

lengths, numbered as an increasing sequence of integers. Re-

ferring to figure 2.4, when starting a new Raft cluster, all nodes

will begin as followers ; since every node has an internal timer,

at some point in time, one of the nodes will timeout, starting

the leader election, thus, changing its own state to candidate,

seeking votes from the rest of the cluster.

In order to maintain its status, a leader uses the heartbeat

mechanism, i.e. sending periodic messages to follower nodes,

triggering, hence, their timer to reset, excluding a new leader

election. Concerning the consensus part, the leader node sends

an Append Entries message, waiting for the other nodes to

write their own log index and answer back. If the majority of

the nodes answer positively, the leader consolidates the new

entry notifying the result [3]. Like Paxos, Raft tolerates up to

k failures, being n = 2k + 1 the total number of nodes within

the cluster.

Chapter 2 34

Dataplane Consensus: Applying Raft consensus at network level

Figure 2.5: PBFT successful consensus scenario [35]

2.2.3 Practical Byzantine-fault-tolerant protocol

The first protocol that considers byzantine failures as fault

model, in weakly synchronous environments, is the practical

byzantine fault tolerant protocol (PBFT), designed by Liskov

and Castro, published in 1999 [35]. Out of K nodes, PBFT

can support at most
⌊
K−1

3

⌋
failures [35], while it makes the

assumption that at most 1
3 of the nodes is malicious; in case

this assumption does not hold, the cluster becomes vulnerable

to attacks.

Referring to figure 2.5, the PBFT protocol consists of five steps:

� Request: The sequence starts with the client sending a

request to the cluster’s master.

� Pre-prepare: while saving the request message and as-

signing an order number, the master broadcasts to the rest

of the cluster a Pre-prepare message. The following nodes

will determine whether to refuse the request or not.

Chapter 2 35

Dataplane Consensus: Applying Raft consensus at network level

� Prepare: By receiving the Pre-prepare message from

the master, every node checks its validity adding the mes-

sage to its local log and multicasting a prepare message to

the rest of the cluster showing the it has received a new

proposal and accepts it.

� Commit: Upon collecting a number of prepare messages

of 2K + 1 that match the pre-premessage order number,

every node broadcasts the commit message entering the

commit phase. Furthermore, a node needs to receive a

quorum of commit messages to ensure that the proposal

made by the master node has been accepted and replicated

among the majority of the cluster.

� Reply: The final phase where the client that started this

process receives a number of replies from the majority of

the nodes. In case the client does not receives the replies,

for example in case of packet loss, the cluster only needs

to re-send those replies.

2.3 Related Work

This section provides a list of papers that are related to this

thesis topic. These reviews were the preliminary studies to

find ideas regarding this thesis. A short description with its

limitations is presented, for each paper.

Chapter 2 36

Dataplane Consensus: Applying Raft consensus at network level

2.3.1 P4xos

In recent times, several projects have been developed, trying to

investigate the possibility to leverage the network programma-

bility to enhance application performances.

P4xos [18] is one of the first attempt to bring consensus logic

at network level. Like us, the authors of P4xos thinks that

we can achieve better results in terms of latency and through-

put, by performing network offloading about consensus algo-

rithms. Moreover, the article describes an implementation of

the Paxos algorithm using P4, exploring a wide area of prob-

lems and design decisions that have not been addressed before.

For example, being a router-switch not capable of creating new

messages, the Paxos logic had to be mapped 1:1 with routing

decisions.

One limitation of this work, with respect to ours, is that the

roles onto the switches are hard-coded, meaning that little to

no flexibility is provided, about the consensus. Furthermore,

if the coordinator node fails, the entire structure fails, leading

to an impossibility to executing the consensus protocol.

2.3.2 SC-BFT

While P4xos and our work works for crash faults, or gener-

ally speaking, non-byzantine faults, SC-BFT (Switch-Centric

Byzantine Fault Tolerant) [36] does. It is a new approach to

handle byzantine faults within SDN environments. Similarly

to our work, they implemented the application through P4, ex-

Chapter 2 37

Dataplane Consensus: Applying Raft consensus at network level

ecuting it in BMV2 [20] software switches. SC-BFT influenced

our way to design the switch controller, i.e. to be ’universal’

and not bounded to some Raft’s roles. It simply will handle

some messages but more importantly, the timings, as it will be

explained in details, in the next chapters.

Chapter 2 38

Chapter 3

Proposed solution and use case

3.1 Proposed solution

In this thesis we propose an implementation of Raft Consensus

Algorithm [3] developed with P4-16 [27] that can be executed

by programmable network devices, paired by the correspond-

ing controller. With respect to the original Raft paper [3],

we will introduce some minor modifications to the protocol,

mainly because of the non-Turing complete nature of P4-16.

We chose P4-16 among the various languages because we con-

sider it more mature with respect to the alternatives. All the

code relative to our work is publicly available 1.

Before diving into the implementation we want to discuss about

some choices that we took to cope with some limitations. As

P4-16 does not handle timings we decided to keep time-based

events on the control plane (i.e. the Raft controller, defined

within the Controller.py script), shown in Figure 4.2b. The

interaction between the P4 node and the relative Raft con-

troller is made by Packet-in events. The controller implements
1https://github.com/EmanueleGallone/RaftP4

39

Dataplane Consensus: Applying Raft consensus at network level

a packet sniffer using the scapy library [37].

In order to have an application as router/switch-agnostic as

possible, instead of using IP, we decided to use a custom for-

warding mechanism based on Raft IDs that are assigned to

each device by a bootstrap and configuration server that is re-

sponsible of the initialization, by making use of the network

automation tool that we developed 2. This approach allowed

us to bypass problems linked to router interface failures, since

a node must be univocally identified within the Raft cluster.

By contrast to the implementation of P4xos [18], we built our

P4 application taking in consideration the dynamics that char-

acterize Raft; instead of having each node with hard-coded

roles, we made the application handling the leader election,

thus every node can be elected anytime, during the execution.

3.2 Solution implementation

3.2.1 Packet header

Figure 3.1: Raft on P4 header definition. Every field is defined as a TLV field,
except the Version field.

We defined a custom header on top of UDP, since we believe

that consensus does not justify the complexity that would be
2i.e. Switch Register Manager.py

Chapter 3 40

Dataplane Consensus: Applying Raft consensus at network level

introduced to manage TCP traffic. Moreover, being Raft de-

signed to recover from destructive events like crashes and link

failures, we can safely assume that the application can be ex-

ecuted even in presence of packet loss.

As described above, to cope with the limitations of P4-16 we

had to define a message type header field, since various message

types had to be defined. To make the protocol extensible,

each field of the header is defined as a TLV (Type-Length-

Value) field, as described in figure 3.1. Nevertheless, we had

to declare the value field with fixed length, because of P4’s

current limitations:

� varbit field limitation: P4 provides a varbit type to

handle variable length header fields (e.g. IPv4 options);

unfortunately this comes with a serious limitation: within

the P4 application it is not possible to change the actual

field value, as specified in Section 8.8 of [26].

� P4 register bit-width: To declare and use a register in

P4, the aforementioned must be of a well-known size. The

P4 compiler does not allow to declare registers of dynamic

sizes.

The use of TLV fields allows, however, the protocol to be more

flexible. The TLV could be exploited, for example, by trans-

mitting 4 values of 16-bit in a single Raft transaction, using

the 64-bit wide Data field and encoding the structure within

the relative Type field, .

Chapter 3 41

Dataplane Consensus: Applying Raft consensus at network level

Table 3.1: List of message types and respective description.

Message type Value Brief description

Heartbeat request 0x1 Used within the heartbeat sequence.

Append entries 0x2 Check if new request can be replicated within
the cluster.

Heartbeat response 0x3 Used within the heartbeat sequence as re-
sponse.

Request vote 0x4 Candidate node requests vote to become
leader.

Positive response vote 0x5 Node acknowledge the requester to become
leader.

Commit value 0x6 New value can be consolidated within the
cluster.

Append entries reply 0x7 Response to append entries. If enough replies
are collected, a commit value will succeed.

Recover entries 0x8 Used in recovery mechanism. Recover a sin-
gle value.

Commit value ACK 0x9 New value has been correctly replicated
within a node’s log.

Timeout 0xA Raft controller informs its relative P4 node
that a timeout has occurred, starting the
leader election.

Negative response vote 0xB Node replies negatively to vote.

Reject new request 0xC Node is in transaction mode.
New request has been rejected.

Retrieve log 0xD External client trying to read the Raft log.

Redirect 0xE New request has reached a non-leader node.
Used to redirect the message to leader.

Start heartbeat 0xFE Raft controller informs the relative P4 node
to start the heartbeat sequence.

New request 0xFF Append new value inside Raft’s log.

Chapter 3 42

Dataplane Consensus: Applying Raft consensus at network level

3.2.2 Message types

To cope with the limitations introduced by the match-action

abstraction, we had to introduce a variety of message types.

Table 3.1 lists all the message types we defined within our

solution.

The main reason behind the definition of many message types

is easily explained: our protocol is based on the idea of packet

ordering, meaning that some operations are a sequence of or-

dered packets (e.g. a switch would never receive a commit

log message before the append entries message). Since every

part of the processes is designed to be as independent from

each other as possible, the recovery from disruptive events like

packet loss, application is designed to recover from such events;

for example, if a node does not receive an append entries mes-

sage, it will in any case commit the new value upon receiving

a commit log message.

3.2.3 API

Figure 3.2: External client interacting with the Raft cluster.

Providing an API is fundamental, thus allowing external clients

Chapter 3 43

Dataplane Consensus: Applying Raft consensus at network level

to interact with the Raft cluster. To reach the service, a client

has to send a new request message, which carries the value to

be replicated within the cluster. We implemented a transac-

tion mechanism to prevent new request overwriting. Without

the transaction mechanism there would be an overwrite of the

procedure, in case of new request arrivals before the precedent

was completed. Therefore, the system could reject the new re-

quest by answering negatively with a reject request message.

Figure 3.3: New request redirection.

To start the replicating process, an external client sends a new

request (identified with messageType equal to 255, decimal,

as showed in table 3.1) Raft packet, with UDP destination port

39320, to any Raft controller. Depending on the node state, a

new transaction or a redirect will take place:

� New transaction: the external client manages to send

the new request to a Leader node. At this point, the leader

will apply all the actions that refer to a new transaction.

Once terminated, the controller will inform the external

client about the successful handling of the new value to

append within the log.

� Redirect: the external client sends a new request mes-

sage to a Raft controller whose state is not leader. The

Chapter 3 44

Dataplane Consensus: Applying Raft consensus at network level

relative P4 node will apply the redirect table to forward

the request to the leader node(if elected). The redirect

workflow is represented within figure 3.3.

3.3 Use case example

This section will provide a use case’s detailed proposal, involv-

ing the solution we provide within this work. We found in-

teresting evaluating the case of load balancing performed with

consistent hashing.

3.3.1 Load balancing based on consistent hashing

Consistent hashing is a distributed hashing scheme [38], that

operates independently of the number of servers. A basic rep-

resentation of a single hash table is showed within figure 3.4.

One property of the consistent hashing is the load balancing;

in fact, the hash table contains either the servers’ hash and

the objects’ hash. The outcome is a flexible data structure

that allows the balanced mapping between objects and servers,

even in presence of horizontal scale-up. The use of consistent

hashing implies that the overhead for creating and establish a

new TCP connection is paid only once, with respect to simple

hash-based load balancing.

A possible implementation of this scheme, using our P4 appli-

cation, can be made by creating specific actions that will read

and write the logValueRegister (they will serve as wrapper

functions, using an analogy to object-oriented programming),

instead of directly accessing it using the extern functions pro-

Chapter 3 45

Dataplane Consensus: Applying Raft consensus at network level

(a) Load balancing by mapping every object
to a server, in clockwise order.

(b) Server 1 failure implies its removal from
the data structure. Only O2 is reassigned,
keeping the rest of hash table untouched.

Figure 3.4: Hash table representation with 3 servers.

Figure 3.5: Range based mapping. All the requests’ hash that resides within a
colored area are assigned to the respective server.

Chapter 3 46

Dataplane Consensus: Applying Raft consensus at network level

vided by BMV2’s model. An example of such definitions is

provided within Listing 3.1. Using the modulo operator al-

lows to treat the log as circular memory. Furthermore, a new

entry within the Raft metadata must be defined, that is log-

Value, since P4 actions are not ordinary functions that provide

a return value.
1 action ReadLogRegister (bit<32> index){
2 logVa lueReg i s t e r . read (ra f t metadata . logValue ,

3 index % ra f t metadata . hashTableSize

4) ; // func t i on read (re turn value , index)

5 }
6

7 action WriteLogRegister (bit<32> index , bit<64> value){
8 logVa lueReg i s t e r . wr i t e (index % ra f t metadata . hashTableSize ,

9 ra f t metadata . logValue

10) ; // func t i on wr i t e (index , va lue to wr i t e)

11 }

Listing 3.1: ’wrapping’ actions to implement the hash table onto the Raft log. Using

this approach, the register is abstracted from direct read or write, allowing the use

of circular memory.

In case of server failure, the utilization of the watchdog mech-

anism is recommended. The latter will be in charge of inform-

ing the Raft cluster about eventual failures, updating, thus,

the hash table saved within the Raft log; an example of this

scenario is represented in figure 3.6.

Chapter 3 47

Dataplane Consensus: Applying Raft consensus at network level

Figure 3.6: The watchdog service notifies the unavailability of S1, triggering the
update process within the Raft cluster.

3.3.1.1 Interaction with Raft P4

The adoption of Raft P4 avoids the interaction with external

actors needed to perform load balancing. The node itself con-

tains all the information to select the correct output port and

forward the packet to its destination server. Figure 3.7 shows

the interaction between the watchdog mechanism and the Raft

P4, making use of the API. Using an encoding mechanism al-

lows to share the server id and its status within a single request.

The encoding uses the first 63-bit to identify the server, and

Chapter 3 48

Dataplane Consensus: Applying Raft consensus at network level

the last bit to communicate the server status.

Considering the scenario in which the data center is handling

web traffic, the procedure to correctly forward an incoming

new request is:

� Calculate the hash. Calculating h(r), being h() the hash

function and r the http request, to identify the position

within the hash table.

� Check the mapped server. This can be achieved by defin-

ing a function that accepts as input parameter the re-

quest’s hash and returning the assigned server, as shown

in Figure 3.5.

� Forward the packet. Once the server is correctly mapped,

the relative output port is selected and the http request

forwarded.

In this scenario, the utilization of Raft P4 can handle the load

balancing without relying on external actors, since all the infor-

mation to forward the packet is saved within the programmable

hardware. Assuming server’s MBTF (mean time between fail-

ures) reasonably high, in case of disruptive events like packet

loss while updating the hash table, the time to recover such

update is bounded to a single heartbeat.

Chapter 3 49

Dataplane Consensus: Applying Raft consensus at network level

F
ig

u
re

3.
7:

T
h
e

w
at

ch
d
og

se
rv

ic
e

n
ot

ifi
es

th
e

u
n
av

ai
la

b
il
it

y
of

S
1,

tr
ig

ge
ri

n
g

th
e

u
p

d
at

e
p
ro

ce
ss

w
it

h
in

th
e

R
af

t
cl

u
st

er
.

Chapter 3 50

Chapter 4

Architecture and protocol details

4.1 Pipeline

Figure 4.1: Raft P4 Pipeline definition.

This section provides a detailed description on how the pipeline

is defined. An high-level representation of how the P4 process-

ing pipeline is designed is shown in Figure 4.1. The parser is

responsible to output the correct packet header before starting

the entire pipeline. Once the parser has finished, the parsed

packet will traverse the processing pipeline that will be further

analyzed, on a later section. The last step is performed by the

deparser, that is responsible of ’putting things back together’

51

Dataplane Consensus: Applying Raft consensus at network level

while updating the packet checksum before forwarding it to

the specified output port.

4.1.1 Registers

Table 4.1: Registers used in P4 application.

Register
Value

max bit size
Brief description

logValueRegister 64
corresponds to Raft’s log.

Used to save values.

logIndexRegister 32
Used to save the
actual log size.

currentTermRegister 32
It contains the

actual Raft term.

stagedValueRegister 64
Serves as staging area,

to complete the transaction.

stagedValueFlagRegister 1
Flag to check if node

is in transaction mode.

countLogACKRegister 16
Used to count the actual replies to

an Append Entries message.

IDRegister 16
Set by controller plane,

it contains the P4 node ID.

majorityRegister 16
Set by controller plane, it contains

the cluster’s quorum value.

countVoteRegister 16
Used to count the vote replies,

in leader election phase.

leaderRegister 16
It contains the ID

of the current leader.

roleRegister 2
Used to store persistently

the current role of the P4 node.

Storing some information persistently in P4 requires the use

of registers, as explained in section 2.1.1. Since P4 does not

provide any other option to store any information in persistent

mode, we had to make use of registers, even though they in-

troduce a significant overhead in terms of performance, since

the access to a register is an atomic operation. Further perfor-

mance evaluations are left to be analyzed on a later chapter.

Chapter 4 52

Dataplane Consensus: Applying Raft consensus at network level

(a)

(b)

Figure 4.2: Timeout’s procedure difference between original Raft (a) and Raft on
P4 (b).

Table 4.1 provides a list on the registers that are actually used

by the P4 application, along with a brief description on their

roles.

4.2 Protocol

This section will further describe the workflow of messages and

more details in general about the P4’s implementation. Before

proceeding, it is important to remark that the original Raft im-

plementation makes use of four kinds of message types that are

heartbeat, append entries, vote request and vote response,

since one of Raft’s main goals is to ease human comprehensibil-

ity about consensus algorithms, by distinguish every consensus

phase as an independent concept. Unfortunately, due to the

match-action abstraction and the non-Turing complete na-

ture of the P4 language, we had to adopt more message types

along with some assumptions, that will be introduced later on,

in order to make the application work.

The main differences between protocol’s message types is shown

in Figure 4.3. Besides message types, to cope with P4’s inabil-

Chapter 4 53

Dataplane Consensus: Applying Raft consensus at network level

Figure 4.3: Differences between Raft original protocol’s messages and Raft on P4
messages.

ity to defines time-based events, we had to redefine the timeout

procedure. Referring to Figure 4.2a, the original Raft timeout

procedure is handled within the node itself, while in P4 the

timeout is reshaped in form of packet-in event, using the rela-

tive message type, as shown in Figure 4.2b.

4.2.1 Initialization

The initialization is one of the crucial part of Raft on P4. The

figure 4.4 is an illustration about a possible configuration on

how to setup the Initialization phase. The starter agent can

be a service hosted somewhere inside the network, or even a

dedicated machine, that is responsible to:

� Execute the Switch register manager tool to initialize the

P4’s registers (e.g. Node ID Register)

Chapter 4 54

Dataplane Consensus: Applying Raft consensus at network level

� Start the Raft controller application using Python.

� Start the http endpoint on port TCP/8080 to expose the

entire cluster and provide an access point in case of mem-

bership changes about the overall topology1.

Figure 4.4: Raft on P4 initialization phase.

1script http endpoint.py

Chapter 4 55

Dataplane Consensus: Applying Raft consensus at network level

4.2.2 Leader election

Figure 4.5: Leader Election workflow.

Figure 4.5 illustrates the overall workflow of how Raft P4 han-

dles the leader election. As already described in the previous

chapters, all the logic related to timings is delegated to the Raft

controller, an application we developed using Python. After

the P4 nodes initialization and the execution of the relative

controller, the latter will instantiate a thread for the sole pur-

pose of notifying the P4 Node that a timeout event occurred.

Once the timeout event occurs, the state changes to candi-

date first in the Raft controller and then on the relative P4

node by receiving the timeout packet. Once the status has

been changed, the P4 application will start the leader election

Chapter 4 56

Dataplane Consensus: Applying Raft consensus at network level

process by sending a vote request in multicast.

Upon receiving a vote request, a follower node checks whether

the requester has enough log entries, along with the term. This

logic could not be handled with a match-action abstraction,

since tables do not provide matching operators like ’greater-

than’ or ’less-than’, this kind of logic had to be specified with

conditional statements, within the control section.

4.2.3 Heartbeat sequence

Figure 4.6: Heartbeat workflow.

Once a node has been elected as leader, the associated Raft

controller will start a new thread responsible for the crafting

of start heartbeat Raft packets and sending them to its as-

sociated P4 node, hence, starting the heartbeat sequence at

P4 layer. The leader node will then spread heartbeat request

messages with destination ID a multicast value. On the other

hand, when a follower P4 node receives a heartbeat request

from a leader node, it will answer with a unicast Raft packet,

cloning it also for its Raft controller since the Heartbeat are

also responsible for the reset of the timeout. The overall work-

Chapter 4 57

Dataplane Consensus: Applying Raft consensus at network level

flow is described, making use of a sequence diagram, in figure

4.6.

4.2.4 Node recovery

Figure 4.7: Recovery workflow.

In case of node failure, new log entries will inevitably become

lost. To overcome this issue, the recovery phase is vital. Refer-

ring to figure 4.7, Whenever a follower P4 node will answer to

a heartbeat request, it will also include the information about

its log index. By knowing the follower’s log index, the Leader

is able to perform the recovery action, i.e. replying to the

follower node whose log is smaller than the Leader’s, with a

recovery message.

4.2.5 New requests

Upon the event of a client sending a new request message

through the API, depending on the P4 node’s state, a new

transaction will take place, as already explained in section

Chapter 4 58

Dataplane Consensus: Applying Raft consensus at network level

Figure 4.8: New Request workflow.

3.2.3. A representation of the exact workflow of replicating

a new value within the cluster is showed in figure 4.8, cover-

ing either the successful replication and new value rejection

scenarios.

4.2.6 Read log

The retrieval of values that have been replicated is fairly easy:

the sequence starts with a retrieve log request, with the spec-

ified log index to the value to retrieve. The node will return

the value, only if the log index specified within the packet does

not exceed the number of values stored inside the log.

Chapter 4 59

Dataplane Consensus: Applying Raft consensus at network level

Figure 4.9: Read log workflow.

4.3 Limitations

The protocol has various limitations. Regarding the flexibility,

we defined the packet header as TLV fields, as explained in

section 3.2.1. As P4, in the actual state of development, does

not provide full support about variable length fields, we opted

to use fixed length fields.

Concerning the recovery, we developed a ’linear’ recovery, mean-

ing that if a node loses several new entries, at most one entry

per heartbeat can be recovered. Here, the best approach would

be to send a snapshot of the entire log, hence speeding up the

recovery mechanism and avoiding the possibility of log incon-

sistencies. Unfortunately, P4 does not provide any construct

to send snapshots instead of packets, thus, preventing us to

use the snapshot approach.

Besides the protocol, the P4 application does not support net-

work loops. Since the problem is very well known and resolved

by Spanning-Tree protocols, we assume that no cycles are

present upon the execution of the P4 application. By not

Chapter 4 60

Dataplane Consensus: Applying Raft consensus at network level

satisfying this condition, broadcast storms are very likely to

happen.

4.4 Tables and actions

Tables and actions are the pillars of P4. Table 4.2 represents

the structure and content of the P4’s leader table, defined

within the application. The left side of the table describes the

matching values in order to invoke the corresponding action.

The asterisk operator (*) denotes the don’ t care operator.

Match Action

Raft MessageType Ingress Port

Heartbeat Request * leader step down
Append Entries * leader CountCommitACK
Start Heartbeat Controller Port leader spread heartbeats

New Request Controller Port spread new request
Heartbeat Response * send to controller

Table 4.2: Raft P4 Leader Table.

4.4.1 Actions

Using an analogy, actions in P4 are somehow similar to func-

tions, in every object-oriented programming language. Fur-

thermore, it is important to remark that P4’s actions do not

provide a return value and do not support conditional state-

ments. Actions can be concatenated, in order to achieve a

sort of modularity, such that each module contains everything

necessary to execute only one aspect of the desired function-

ality and avoid code repetitions. An example of such modu-

larity is provided in Listing 4.1: line 9 refers to a previous

Chapter 4 61

Dataplane Consensus: Applying Raft consensus at network level

defined action whose signature is multicast() 2, that provides

the functionality of replicating the packet on multiple ports.

For brevity, only some of the overall actions, defined within

the P4 application, will be listed and described.

1 action spread new reques t () {
2

3 stagedValueReg i s te r . wr i t e (0 , hdr . r a f t . data) ;

4 s tagedValueFlagReg i s te r . wr i t e (0 , TRUE) ;

5

6 hdr . r a f t . sourceID = meta . ra f t metadata . ID ;

7 hdr . r a f t . messageType = APPEND ENTRIES;

8

9 mu l t i ca s t () ;

10 }

Listing 4.1: spread new request action definition.

4.5 P4 Control section

Figure 4.10: P4 application control section

The control section is the P4 application’s core. All the algo-

rithm logic that did not suit the match-action abstraction is
2action defined within Raft.p4 available at https://github.com/EmanueleGallone/RaftP4

Chapter 4 62

Dataplane Consensus: Applying Raft consensus at network level

described here, in the form of If statements. This section will

describe in details the logic.

4.5.1 IPV4 section

After the parser has completed its job, the first block processes

IPv4. Within this section a IP table is applied to match the

packet’s IP destination address to identify the correct egress

port, in order to forward every packet that has the network

layer, supporting, hence, ICMP and other protocols that relies

on IP.In case of Raft packet, the egress port previously selected

by the IP table match, is later overwritten.

4.5.2 Raft preamble

The Raft preamble function is to provide some preliminary

operations. Whenever a new Raft packet enters the pipeline,

before applying any logic, the switch needs to retrieve its state

by reading all the registers regarding its current role, log in-

dex, etc. Moreover, the switch checks if the packets type is

write requests or read request from external clients. This way,

in case of non-valid packets, we can bypass the entire pipeline

and drop them, in order to save resources and increase perfor-

mance.

Chapter 4 63

Dataplane Consensus: Applying Raft consensus at network level

Block 1: Raft preamble block pseudo-code.

1 RetrieveNodeState() // read all registers to retrieve node state and start

processing

2

3 if packet.messageType == NewRequest then

4 packet.term ← node.currentTerm // The term is ignored by external clients.

Updating packet term so that it won’t be dropped.

5

6 if node.isInTransactionMode() then

7 packet.messageType ← RejectMessage

8 reply()

9 end

10 end

11 if packet.messageType == RetrieveLog then

12 if packet.logIndex ≤ node.logIndex then

13 packet.data ← node.logValue[packet.logIndex]

14 reply()

15 end

16 end

17 if packet.term <node.currentTerm then

18 drop() // dropping all outdated packets.

19

20 exit() // Exit the pipeline

21

22 end

23 raftForwarding.apply() // custom Raft forwarding, based on node IDs.

24

25 switch node.role do

// Selecting next Block in control section

26 case Leader do

27 → [Leader Block]

28 end

29 case Candidate do

30 → [Candidate Block]

31 end

32 case Follower do

33 → [Follower Block]

34 end

35 end

Chapter 4 64

Dataplane Consensus: Applying Raft consensus at network level

4.5.3 Leader block

Subsequently to the leader election, the leader node will set its

role register to the leader value. This way, whenever a new

packet is detected in ingress, the Raft preamble will select the

leader block. Block 2 represents the Leader block in pseudo-

code.

Block 2: Leader block pseudo-code.

// node state and metadata loaded in Raft Preamble.

1 leaderTable.apply() // applying leader table.

2

3 if packet.messageType == AppendEntriesReply then

4 read countLogACK register // Counting how many nodes accepted the new value

5

6 if Quorum is reached then

7 commit value() // consolidating the new entry in log in all cluster.

8

9 end

10 end

11 if packet.messageType == HeartbeatResponse then

12 if packet.logIndex ≤ node.logIndex then

// follower node’s log is not updated. starting recovery.

13 recoveryMessage()

14 end

15 end

16 if packet.messageType == VoteRequest then

17 spread packet() // Spread the vote request to other nodes, in case of

multi-hop cluster.

18

19 if packet.logIndex ≥ node.logIndex then

// Another node with greater term has started election. Positive

vote since it is updated and his term is greater than mine

20 step down()

21 positive vote reply()

22 end

23 end

Chapter 4 65

Dataplane Consensus: Applying Raft consensus at network level

4.5.4 Candidate block

The candidate block is responsible to handle the vote requests,

mainly. If the P4 node detects valid heartbeat or vote request

messages generated by another cluster member, the node will

react by changing its state to follower.

Block 3: Candidate block pseudo-code.

// node state and metadata loaded in Raft Preamble.

1 candidateTable.apply() // applying candidate table.

2

3 if packet.messageType == PositiveVote then

4 read countVote register // Counting how many nodes voted for electing node

as leader.

5

6 if Quorum is reached then

7 roleRegister ← 2 // 2 represents the leader role.

8

9 spread heartbeat() // The heartbeat informs either the rest of the
cluster about the correct election and the relative node’s Raft
controller.

10

11 end

12 end

13 → [Output]

Chapter 4 66

Dataplane Consensus: Applying Raft consensus at network level

4.5.5 Follower block

Whenever a leader is elected, the remaining nodes within the

cluster will act as follower. This block will handle all the Raft

follower’s logic. In normal executions, a Raft leader is operat-

ing while the rest of the cluster’s members behaves as followers.

Block 4 will provide a detailed description of the follower block.

Block 4: Follower block pseudo-code.

// node state and metadata loaded in Raft Preamble.

1 followerTable.apply() // applying follower table.

2

3 if packet.messageType == VoteRequest then

4 spread packet() // Spread the vote request to other nodes, in case of

multi-hop cluster.

5

6 if packet.logIndex ≥ node.logIndex then

7 positive vote() // voting positively since requester is updated

8

9 else

10 negative vote()

11 end

12 end

13 → [Output]

Chapter 4 67

Chapter 5

Results

5.1 Setup

We used 3 machines with Linux Ubuntu 20.04, installing P4-

dev tools using the install script publicly available1, editing

the C/C++ compiler flags of BMV2 for the best performance

setup2.

Figure 5.1: Laboratory setup topology listing and relatives Ethernet interfaces.
Redant * identifies the machines’ hostname.

1https://github.com/jafingerhut/p4-guide/blob/master/bin/install-p4dev-v3.sh
2https://github.com/p4lang/behavioral-model/blob/master/docs/performance.md

68

Dataplane Consensus: Applying Raft consensus at network level

The cluster’s hardware specifications are:

� Redant 1. CPU: Intel(R) Core(TM) i5 660 @ 3.33GHz,

RAM: 8GB

� Redant 2. CPU: Intel(R) Core(TM) i5 660 @ 3.33GHz,

RAM: 8GB.

� Redant 3. CPU: Intel(R) Core(TM) i5-6500 @ 3.20GHz,

RAM: 16GB.

Referring to figure 5.1, the machines are connected in a ring

topology using UTP Ethernet cables running at 1Gbit/s. Upon

executing the BMV2 software switches and the Raft P4 appli-

cation, one link has to be disabled in order to use only one side

of the ring, since the current implementation of the applica-

tion does not support network cycles, as already described in

section 4.3.

Since the Raft controller communicates with the collocated P4

software switch through packet-in events, we created a pair

of virtual interfaces called ve A and ve B, as represented in

Figure 5.2. By doing so, each machine performs both the P4

node and the relative Raft controller work.

Chapter 5 69

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.2: Interfacing Raft controller with P4 node through virtual ethernet.

5.2 Tests performed

In this section we are going to describe all the measures and

relative setup used to analyze the overall Raft P4 performance.

5.2.1 BMV2 traversal time

To measure the BMV2 traversal time, we used the TCPDump

tool. By doing so, we were able to compare the differences

introduced by the Raft P4 packet processing and simple IP

packet processing. The measures were taken by picking the

timestamps on the ingress and egress ports, for each packet.

Chapter 5 70

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.3: The top Whisker box refers to the traversal timings of BMV2 execution
with Raft processing, while the bottom refers to BMV2 execution without Raft
processing. The reason behind such difference is that before executing any control
logic, a sequential reading of all the registers is performed, retrieving the current P4
node’s state.

5.2.2 Protocol overhead

By using Raft on P4, some overhead must be taken into ac-

count. The overhead, introduced by the protocol, is measured

and showed in Figure 5.4 and 5.5. Referring to Figure 5.4,

the traffic is relative to the heartbeat mechanism, responsi-

ble to verify the node’s availability. Figure 5.5 represents the

total overhead to replicate a new entry within the Raft log.

Both plots do not take account of relay messages, responsible

to spread the information in case of multi-hop topology.

Chapter 5 71

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.4: Heartbeat mechanism overhead using Raft default timings: one heart-
beat every 50 ms.

Figure 5.5: Raft new log entry replication overhead.

Chapter 5 72

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.6: Mininet’s topology. Each Raft node has a directly linked x86 host
executing the Raft controller.

5.3 Mininet setup

To perform measures that required the introduction of link

delay, we used the Mininet [39] emulation environment. The

topology used is shown in Figure 5.6. The Mininet emulation

was executed using Redant 3.

5.3.1 Leader election

The leader election timings are strictly correlated to the num-

ber of links that a candidate node has to traverse, reaching

the quorum of votes and finally change its status to leader, as

shown in Figure 5.7. The measurements were taken emulating

the topology, shown in figure 5.6, considering 1ms delay on

each link between the P4 nodes. In this particular scenario,

Chapter 5 73

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.7: Leader election timings. The choice of using Mininet is related to
circumvent errors in timing measures, due to clock drift and inaccuracies, in case of
measures involving different machines.

the quorum size is equal to three. Taking into consideration

the current topology, node 1 has two Raft nodes directly con-

nected to it. Subsequently, the time to reach the quorum is

very short. In case of node 5 timeout, the time to reach the

quorum increases, since it has only one directly connected Raft

node.

Chapter 5 74

Dataplane Consensus: Applying Raft consensus at network level

5.3.2 Throughput

Figure 5.8: Overall Raft P4 throughput in normal operation time.

To measure the application’s throughput, we used a topol-

ogy formed by 3 nodes (deleting nodes 4 and 5, referring to

Figure 5.6). In order to both emulate external clients’ inter-

action with the system and measure the overall throughput,

we used a custom traffic generator 3 that produces UDP pack-

ets which encapsulate the Raft P4’s header fields. The mea-

sured throughput (represented as requests per second) is shown

within figure 5.8. The throughput measurement is evaluated

by sampling the P4 software switch at regular time intervals

of one second, plotting the three-periods moving average.

5.3.3 Variations in presence of failures

The throughput variation in presence of failures was evaluated

to manage such events. Throughput variations are shown in

Figures 5.9 and 5.10 in form of two-period moving average
3TrafficGeneratorCsharp tool

Chapter 5 75

Dataplane Consensus: Applying Raft consensus at network level

Figure 5.9: Throughput variation in presence of follower failure.

Figure 5.10: Throughput variation in presence of leader failure.

using sampling time = 0.5 s : while a follower’s failure does

not affect the overall system throughput, a leader node does.

Chapter 5 76

Dataplane Consensus: Applying Raft consensus at network level

5.3.4 Round-trip time cap

Figure 5.11: Throughput’s two-period moving average plot measured within
Mininet, with link delay = 1ms. RTT (Round-trip time) = 2ms.

Before committing a new value, the leader node has to check

whether the cluster’s majority accepts it. As a consequence,

the maximum throughput achievable is limited to 1
(2RTT), using

the protocol’s current version. Such limitation is shown within

Figure 5.11.

Chapter 5 77

Chapter 6

Conclusions

Consensus is essential to provide high availability and con-

sistency in distributed systems. Consensus algorithms’ per-

formance, however, is the main cause of distributed applica-

tions’ reluctance considering strong consistency. In fact, to

cope with the performance degradation, that would be intro-

duced by consensus algorithms, applications are designed to

rely on replication mechanisms which offer weak consistency.

Although, this approach could lead to data loss in case of par-

ticular failure scenarios. Hence, a high-speed consensus ser-

vice is required. Consequently, improving the overall consensus

performance would bring many benefits to distributed appli-

cations, especially within data center environments.

While researchers strive to reach higher throughput with low

latency on software-based consensus algorithms, a new path

has been drawn with the advent of network programmability.

We believe that the adoption of expressive data-plane program-

ming languages will have an important impact since it could

lead, for example, to new discoveries in terms of network proto-

cols’ design, or the possibility of bringing complex application

78

logic towards the network level.

This work practically showed the possibility to exploit the SDN

paradigm by transposing the Raft consensus algorithm from

application to network level, adapting it to the match-action

abstraction that rules the data-plane environment. By offload-

ing the consensus on network level, wire speed timings can be

exploited in order to achieve better results in terms of through-

put. In addiction, it also shows that network capabilities can be

extended, beyond simple connectivity, providing an increased

number of services.

Bibliography

[1] Eric Brewer. “A Certain Freedom: Thoughts on the CAP Theorem”. In: Pro-

ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing. PODC ’10. Zurich, Switzerland: Association for Comput-

ing Machinery, 2010, p. 335. isbn: 9781605588889. doi: 10.1145/1835698.

1835701. url: https://doi.org/10.1145/1835698.1835701.

[2] Lamport Leslie. “The part-time parliament”. In: ACM Transactions on Com-

puter Systems 16.2 (1998), pp. 133–169.

[3] Diego Ongaro and John Ousterhout. “In Search of an Understandable Consen-

sus Algorithm”. In: USENIX Annual Technical Conference, 2014. url: https:

//raft.github.io/raft.pdf.

[4] Dan RK Ports et al. “Designing distributed systems using approximate syn-

chrony in data center networks”. In: 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 15). 2015, pp. 43–57.

[5] Zsolt István et al. “Consensus in a Box: Inexpensive Coordination in Hard-

ware”. In: 13th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 16). Santa Clara, CA: USENIX Association, Mar. 2016,

pp. 425–438. isbn: 978-1-931971-29-4. url: https : / / www . usenix . org /

conference/nsdi16/technical-sessions/presentation/istvan.

[6] Murad Kablan. “StatelessNF: a Disaggregated Architecture for Network Func-

tions”. PhD thesis. University of Colorado at Boulder, 2017.

[7] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”.

In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74. issn:

0146-4833. doi: 10.1145/1355734.1355746.

[8] Weverton Luis da Costa Cordeiro, Jonatas Adilson Marques, and Luciano

Paschoal Gaspary. “Data plane programmability beyond openflow: Opportu-

nities and challenges for network and service operations and management”.

In: Journal of Network and Systems Management 25.4 (2017), pp. 784–818.

[9] Tushar Deepak Chandra and Sam Toueg. “Unreliable failure detectors for

reliable distributed systems”. In: Journal of the ACM (JACM) 43.2 (1996),

pp. 225–267.

81

https://doi.org/10.1145/1835698.1835701
https://doi.org/10.1145/1835698.1835701
https://doi.org/10.1145/1835698.1835701
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://doi.org/10.1145/1355734.1355746

Dataplane Consensus: Applying Raft consensus at network level

[10] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility

of Distributed Consensus with One Faulty Process”. In: J. ACM 32.2 (Apr.

1985), pp. 374–382. doi: 10.1145/3149.214121.

[11] Microsoft Azure. url: https://azure.microsoft.com/.

[12] Mike Burrows. “The Chubby lock service for loosely-coupled distributed sys-

tems”. In: 7th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI). 2006.

[13] Apache Zookeeper. url: https://zookeeper.apache.org.

[14] Huynh Tu Dang et al. “Paxos Made Switch-y”. In: SIGCOMM Comput. Com-

mun. Rev. 46.2 (2016), pp. 18–24. issn: 0146-4833. doi: 10.1145/2935634.

2935638.

[15] Huynh Tu Dang et al. “NetPaxos: Consensus at Network Speed”. In: Proceed-

ings of the 1st ACM SIGCOMM Symposium on Software Defined Networking

Research. SOSR ’15. Santa Clara, California: Association for Computing Ma-

chinery, 2015. doi: 10.1145/2774993.2774999.

[16] Marco Primi. LibPaxos Performance Analysis. url: http://libpaxos.sourceforge.

net/files/Primim-SPLab08.pdf.

[17] Libpaxos. url: http://libpaxos.sourceforge.net/.

[18] H. T. Dang et al. “P4xos: Consensus as a Network Service”. In: IEEE/ACM

Transactions on Networking 28.4 (2020), pp. 1726–1738.

[19] Leslie Lamport. “Fast paxos”. In: Distributed Computing 19.2 (2006), pp. 79–

103.

[20] Behavioral model (BMV2). url: https://github.com/p4lang/behavioral-

model.

[21] David Hancock and Jacobus Van der Merwe. “Hyper4: Using p4 to virtual-

ize the programmable data plane”. In: Proceedings of the 12th International

on Conference on emerging Networking EXperiments and Technologies. 2016,

pp. 35–49.

[22] Roberto Bifulco and Gábor Rétvári. “A survey on the programmable data

plane: Abstractions, architectures, and open problems”. In: 2018 IEEE 19th

International Conference on High Performance Switching and Routing (HPSR).

IEEE. 2018, pp. 1–7.

[23] Pat Bosshart et al. “Forwarding metamorphosis: Fast programmable match-

action processing in hardware for SDN”. In: ACM SIGCOMM Computer Com-

munication Review 43.4 (2013), pp. 99–110.

[24] OpenVSwtich (OVS). url: https://www.openvswitch.org/.

[25] Han Wang. “Towards a Programmable Dataplane”. In: PhD Dissertation, Cor-

nell University (2017).

Chapter 6 82

https://doi.org/10.1145/3149.214121
https://azure.microsoft.com/
https://zookeeper.apache.org
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/2774993.2774999
http://libpaxos.sourceforge.net/files/Primim-SPLab08.pdf
http://libpaxos.sourceforge.net/files/Primim-SPLab08.pdf
http://libpaxos.sourceforge.net/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.openvswitch.org/

Dataplane Consensus: Applying Raft consensus at network level

[26] P4 Documentation. url: https://p4.org/p4-spec/docs/P4-16-v1.2.1.

html.

[27] P4 Language Consortium. url: https://p4.org/.

[28] P4Runtime. url: https://github.com/p4lang/p4runtime.

[29] P4C. url: https://github.com/p4lang/p4c.

[30] BMV2 simple switch. url: https://github.com/p4lang/behavioral-

model/tree/master/targets/simple_switch.

[31] PSA Architecture. url: https://p4.org/p4-spec/docs/PSA.html.

[32] Michael Barborak, Anton Dahbura, and Miroslaw Malek. “The consensus

problem in fault-tolerant computing”. In: ACM Computing Surveys (CSur)

25.2 (1993), pp. 171–220.

[33] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001),

pp. 18–25.

[34] Leslie Lamport. “Lower bounds for asynchronous consensus”. In: Distributed

Computing 19.2 (2006), pp. 104–125.

[35] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”.

In: OSDI. Vol. 99. 1999. 1999, pp. 173–186.

[36] S. Han et al. “Switch-Centric Byzantine Fault Tolerance Mechanism in Dis-

tributed Software Defined Networks”. In: IEEE Communications Letters 24.10

(2020), pp. 2236–2239.

[37] Scapy Python library. url: https://scapy.net/.

[38] David Karger et al. “Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web”. In: Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing. 1997, pp. 654–

663.

[39] Mininet. url: http://mininet.org/.

Chapter 6 83

https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://p4.org/
https://github.com/p4lang/p4runtime
https://github.com/p4lang/p4c
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch
https://p4.org/p4-spec/docs/PSA.html
https://scapy.net/
http://mininet.org/

	Introduction
	Network function disaggregation
	Data-plane programmability

	What does Consensus mean?
	Problem description
	Use case and results' anticipation
	Brief results' anticipation

	Thesis Overview

	State of the art
	Data-plane programming
	P4-16

	Consensus Algorithms
	Paxos
	Raft
	Practical Byzantine-fault-tolerant protocol

	Related Work
	P4xos
	SC-BFT

	Proposed solution and use case
	Proposed solution
	Solution implementation
	Packet header
	Message types
	API

	Use case example
	Load balancing based on consistent hashing
	Interaction with Raft P4

	Architecture and protocol details
	Pipeline
	Registers

	Protocol
	Initialization
	Leader election
	Heartbeat sequence
	Node recovery
	New requests
	Read log

	Limitations
	Tables and actions
	Actions

	P4 Control section
	IPV4 section
	Raft preamble
	Leader block
	Candidate block
	Follower block

	Results
	Setup
	Tests performed
	BMV2 traversal time
	Protocol overhead

	Mininet setup
	Leader election
	Throughput
	Variations in presence of failures
	Round-trip time cap

	Conclusions

