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Abstract

Systems of tethered multicopters, called STEM, are multi-copter drones connected one
to the other creating a chain by an electric tether providing energy and communication.
Researchers and industry are more and more interested in these systems due to their
versatility and prolonged flight time which otherwise is limited. They are power supplied
from ground by the ground station. On the other hand, the tether, which couples the
vehicles, introduces range limitations and for this reason, challenging control and navi-
gation problems arise. This thesis describes a high level controller for the autonomous
navigation of such system. The proposed approach to solve these challenges is based on a
combination of off-line and real-time optimization. First, optimal configurations are found
through an off-line mission planning method for these peculiar systems in the nominal
environment, guaranteeing safety with regards to the presence of the obstacles and tether.
Subsequently, an on-line, path following algorithm, based on Model Predictive Control
(MPC), is presented to bring the system to the aforementioned optimal configuration.
This procedure ensures collision avoidance for the vehicles and for the tether connecting
them through the usage of LiDAR readings, which provide partial information of sur-
rounding environment. The mentioned contributions are validated through simulation
with a realistic model of the system.
Keywords: UAV, System of Tethered Multicopters, Numerical Optimization, Simulation





Abstract in lingua italiana

I sistemi multicottero interconnessi tramite cavo, chiamati STEM, sono dei droni con
più rotori connessi uno all’altro in modo tale da creare una catena attraverso un cavo
elettrico che fornisce energia e permette la comunicazione. I ricercatori e le industrie sono
sempre più interessate in questi sistemi grazie alla loro versatilità e al loro tempo di volo
prolungato, che altrimenti risulta essere limitato. Questi sistemi sono alimentati da terra
attraverso una stazione di terra. D’altro canto, il filo, che accoppia i veicoli introduce
delle limitazioni di portata e per questo motivo, devono essere introdotti dei problemi di
controllo e di navigazione molto impegnativi. La tesi descrive un controllore di alto livello
per la navigazione autonoma di questi sistemi. L’approccio proposto per risolvere queste
sfide, si basa sulla combinazione di un’ottimizzazione off-line e in tempo reale. In primo
luogo, le configurazioni ottime si trovano attraverso una metodo di pianificazione della
traiettoria offline che agisce nell’ambiente nominale, garantendo sicurezza con riguardo
alla presenza di ostacoli e quella del filo. Successivamente, viene presentato un algoritmo di
inseguimento della traiettoria che opera in tempo reale che si basa sul modello di controllo
predittivo, per portare il sistema alla suddetta configurazione ottimale. Questa procedura
garantisce la prevenzione delle collisioni per i veicoli e per il cavo che li collega attraverso
l’uso di letture LiDAR, che forniscono informazioni parziali sull’ambiente circostante. I
contributi citati sono validati mediante simulazione con un modello realistico del sistema.
Parole chiave: UAV, Sistema di Multicotteri Interconnessi tramite cavo, Ottimizzazione
Numerica, Simulazione
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1| Introduction

In the last decade, the cost of Unmanned Aerial Vehicles (UAVs) has decreased, for this
reason they are more and more used in many applications such as mapping [4], monitor-
ing of the built environment [13] and so on. The interest in UAVs has increased as well,
in particular in the field of industry and academia. On the other hand, systems of tethered
drones

Figure 1.1: Drone used in moni-
toring of building zone

are used in activities where the prerequisite is a pro-
longed flight time, which for battery-powered systems
is limited. The topic of this thesis consists in a high
level planner used by a system, which is called STEM
(System of TEthered Multicopters) [7]. STEM is com-
posed of a chain of multicopter drones, tethered to each
other and to a ground station. The tethers permits
communication and power supply to the drones [2].

1.1. State of the art

The problem of navigation with constraints and collision avoidance emerges in many dif-
ferent fields. In fact, the available literature offers numerous solutions and approaches
to solve the aforementioned problem. There are approaches, based on A∗ [10], a path
search algorithm, where the environment is represented by a graph and the feasible path
is searched on it. Some techniques related to Artificial Potential Field (APF) generation
have been studied [5], where the field is artificially computed and the aim is to elaborate
a trajectory which minimizes the potential energy related to it. Another example is rep-
resented by the family of algorithms related to Rapidly exploring Random Tree (RRT)
[14], where tree of points are formed in the space from the starting position. Then,
the best tree among the collection of them is chosen, according to some criterion (i.e.
distance from the goal). For what concerns the trajectory tracking for a single drone
in an on-line framework, the approach with MPC has been developed [11]. Here, each
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obstacle is approximated as a set of linear inequalities. This approach, due to its na-
ture, permits to have multiple inputs and can deal with linear constraints, guaranteeing
safety. In addiction, in this research, a multi-trajectory MPC is described, proposing a
comparison with the canonical MPC framework. On the other hand, few publications are
available for what concerns design and control of STEM. In [7], the general model of STEM

Figure 1.2: An example of teth-
ered drone

is presented, then a hierarchical control approach is de-
scribed. It is composed by local controllers which have
the aim to control the dynamic of the drones and of the
winches and a Supervisory high level planner, which in
this case is an MPC. Another research involves the con-
trol of a formation of drones acting on the tether tension
force [12], through a feedback linearization technique,
considering fixed the length of the tether. Another re-
search takes into account the similarity between a sys-

tem of tethered drones and a redundant manipulator [3], where the drones are modelled
as three-dimensional spherical joints, while the tether connecting them are assumed to
be mono-axial prismatic joints. Then, considering a known static environment a path
planning strategy has been developed. The approach proposed in this research uses in-
formation of the environment provided by a map. Then, based on this, a offline path
planner is used to retrieve a feasible path. The main novel aspects of the proposed ap-
proach with respect to the literature is to approximate the free-space where the drones
can move with a convex polytope able to guarantee that the vehicles and tethers remain
in an obstacle-free area.

1.2. Main Contributions

This thesis can be seen as an extension of [1], where the environment is partially known
through the usage of a map. The knowledge of the environment is used here by a offline
planner, while the online path following algorithm is accomplished by MPC which take
as inputs the map and the readings of LiDAR sensors. Then, the high level controller
generates at each sampling time the reference points for the drones. Once the assigned
targets are reached, a second configuration is found by offline planner. Finally, the second
set of targets are reached, maybe including some backtrack process. To summarize, the
main contributions of this research are:

• the formulation of an optimal offline planner in a well known environment whose
aim is to compute an optimal configuration which the drones have to track;
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• the development of a path following algorithm, based on MPC and LiDAR readings,
which aims to bring the system to the desired configuration respecting constraints
related to obstacle avoidance and to the distance between drones during simulation;

• the formulation of a second optimal offline planner which takes as inputs the final
position reached by the drones and a new target and finds a new optimal configu-
ration;

• the development of an online strategy which chooses if it is better to have a kind of
backtracking of the drones or it is better to have the drones directly moved to the
new targets;

• the development of path planner which can backtrack the drones according to the
chosen strategy;

• test of the approach in simulation using a simplified model of the drones called
"oriented control model".

1.3. Outline

The thesis is organized as follows:

• Chapter 2 - Model of the system describes the model of the system composed by
drones, tether and winch involving simplifying assumption. Then, control oriented
model is described. In the final part, environment and LiDAR sensors are described.

• Chapter 3 - Proposed approach describes the proposed solution. First, an
overview of the offline path planning is given with the subsequently online path
following approach. Furthermore, a new optimal configuration is obtained by the
second offline path planning algorithm. Moreover, the strategy which chooses if
backtrack the drones or not is described. In conclusion, the drones are brought to
their previously found configuration with the execution of the online path following.

• Chapter 4 - Results shows the results obtained in simulation with the navigation
algorithm, not only with known obstacles, but also with unknown ones. Different
targets and different initial conditions are given to the algorithm to test its perfor-
mance and robustness.

• Chapter 5 - Conclusions finally summarizes the main conclusions and contribu-
tions performed. Here, open problems and future developments are also considered.
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2| Description and model of the

system

This research is based on a system of tethered drones, where several drones are connected
one to the other with cables in a series structure. The drone at the end of the series
is connected through another cable to the ground station. The electrical power for the
drones is generated by the ground station and transmitted via the cables. In addition also
data can be transmitted. It is possible to treat the problem of coordinating the motion of
each aerial vehicle in a centralized or distributed way since they realize a communication
network which can be represented with an all-to-all connection graph. Moreover the length
of the cables can be modified with a winch, as the ground station and all drones except
the last one are equipped with a winch that controls such length. Here, quadcopters are
considered, even if their specifics are relevant for their control and simulation only and do
not influence the autonomous navigation problem directly. Each drone is provided with
a Inertial Measurement Unit (IMU) which can measure attitude and three-dimensional
position and velocity with respect to a global inertial reference frame. Furthermore,
winch position and speed are also measured. Moreover, each drone is also equipped with
LiDAR sensor, which allows the scanning of environment in all directions. A right handed
reference system fixed to the drone is taken, with height represented by z axis and pointing
upwards. Scans are executed on the plane xy and on a plane perpendicular to that, in such
a way that is possible to measure distances from obstacles above and below the drone.
The ground station, which acts as a centralized controller and elaborates position and yaw
angle references for each drone, takes as input this information. References of the drones
are tracked by lower level local controllers which on one hand manipulate the four rotors
and on the other hand control the length of the cable through the winch torque. The
subject of this research is the high level control algorithm which autonomously elaborates
position references for the drones. The global reference, which is used to discuss about
the model, is a right-handed reference frame with z axis pointing upwards and fixed with
respect to the environment. For simplicity and without loss of generality this represents
the position of the ground station. Nd ∈ N drones are considered, and identified by the
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index i = 1, ..., Nd.

Figure 2.1: A representation of the scheme and convention of the system: Drone1 called also
"leader drone" is considered to be the farthest from the ground station [7].

Euler angles: roll, pitch and yaw, respectively ϕi(t), ϑi(t) and ψi(t), describe the attitude
of the drones with respect to the global frame. Position and velocity of the i-th drone are
denoted as pg

i (t), ṗ
g
i (t) where the subscript g indicates that the variables are referred to

the global framework. Bold symbols denote vectors.

2.1. Drones model

The considered model of the quadcopters is the rather standard one and summarized here
for completeness (see [8] for more details), with the contribution of forces and moments
given by the tethers attached to the drone. All drones are assumed to be identical. The
equation of a single drone is the following:

md,i(t) = md,i +mw,i(t) +
1

2
mt,i(t), (2.1)

where the mass of the i-th drone at each time instant is the sum of three contributions:
the mass of the vehicle alone md,i, the weight of the winch and the stored cable mw,i(t)

and half of the weight of the extended cable mt,i(t) which connects drone i to drone i+1,
with shared weight.
The four rotors produce a lift force and a drag torque, both proportional to the square of
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the rotational speed of the rotor Ω, through the lift and drag coefficients of the drone, b
and d:

Lfi,j(t) = bΩ2
i,j, j = 1, ..., 4

Ti,j(t) = dΩ2
i,j, j = 1, ..., 4

(2.2)

For control purpose, initial inputs such as the four lift forces and four drag torques are
recombined in a linear combination in four new inputs. They represent, respectively, the
total lift force along zi axis, which is the vertical axis of the local reference frame fixed
to the drone, and the yaw moments along the three axes of the same reference frame:
xi, yi, zi. For each drone, it can be written:

ui,1(t) =
4∑

j=1

Lfi,j(t)

ui,2(t) = a(Lfi,4 − Lfi,2)

ui,3(t) = a(Lfi,3 − Lfi,1)

ui,4(t) = (Ti,2 + Ti,4)− (Ti,1 + Ti,3).

(2.3)

In (2.3), a is the distance between the rotor and the center mass of the drone.
To derive the model of the system, it is applied Newton’s law, taking into account pulling
forces of tethers, the torque applied by onboard winch and the variable mass of the drone:

p̈g
i =

1

md,i

RT
i

 0

0

ui,1

+ (F g
i − F g

i−1)

−

00
g


ṗi =

Ii,y − Ii,z
Ii,x

qiri +
ui,2 − Jp
Ii,x

qiΩr,i + di,wF
y
i

q̇i =
Ii,z − Ii,x
Ii,y

piri +
ui,3 + Jp
Ii,y

piΩr,i − di,wF
x
i +

ui,w
Ii,y

pi

ṙi =
Ii,x − Ii,y

Ii,z
piqi +

ui,4
Ii,z

,

(2.4)

where pi(t), qi(t), ri(t) are the angular velocities of drone i around its axes xi, yi, zi, RT
i

is the rotation matrix which transforms the local coordinates in global ones and depends
on Euler angles, Fi describes the force acting along the directions of the global reference
frame, g is the gravity acceleration, Ii,∗ is the angular mass of the drone around specific
axis, Jp is the moment of inertia of the propeller and di,w represents the distance between
the drone center of gravity and the point where the cables leaves the winch, applying its
torque. Now, some assumptions which simplify the problem have been considered:
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• drag forces of the cable are neglected;

• variation of moments of inertia of the drones due to the unwinding of the cable are
neglected.

2.2. Tether and Winch models

Winches are identified by the progressive index i, where i = 0 corresponds to the ground
station, and the subsequent i = 1, ..., Nd − 1 correspond with the index used for the
drones. Even the cable is identified with the index of the corresponding winch, (i.e. the
cable which connects the first drone to the ground station is denoted with i = 0). The
angular position and velocity of the i-th winch, θi(t), θ̇i(t), are its state. It is assumed
that when the measured position θi(t) = 0 the cable is completely wound around the
winch. Then, assuming that the whole cable can be coiled on a single layer, i.e. the
external radius of the winch is independent with respect the length of unreeled tether, it
is possible to compute the mass of the winch as:

mw,i(t) = mw,i +
(
lti − re,iθi(t)

)
ρt,i, (2.5)

where re,i is the external radius (i.e. the mass of unwound tether is represented by the
product re,iθi(t)), ρt,i is the unitary mass of the tether per length, lti is the overall length
of the tether i and mw,i is the mass of the winch with no tether wounded. The moment of
inertia of the winch can be approximated as a hollow drum, with internal radius ri,i and
it is calculated as:

Jw,i(t) =
1

2
mw,i(t)

(
r2e,i + r2i,i

)
. (2.6)

The winch is physically defined by a viscous friction coefficient, which is assumed to
constant and is denoted with Bw,i. The winch torque, which is a control input, is denoted
as uw,i and is bounded in the interval [uw,i, uw,i]. The elongation of the tether et,i(t) is
compute as:

et,i(t) = max
(
0,
∥∥pg

i+1(t)− pg
i (t)

∥∥
2
− re,iθi(t)

)
. (2.7)

Finally, the vector of forces which the tether exerts on the drone, expressed in global
coordinates, is calculated from the elongation et,i of the tether itself and its stiffness Kt,
which is assumed to be constant:

F g
t,i(t) = Kt,iet,i(t)

pg
i+1(t)− pg

i (t)∥∥pg
i+1(t)− pg

i (t)
∥∥
2

, (2.8)
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where p0 = (0, 0, 0) is the ground station position. Therefore, using again Newton’s law,
it is possible to derive the state equation of the winch, recalling to the equilibrium of
moments around the axis of rotation. In fact, for each winch, the equation of motion is:

θ̈i(t) =
1

Jw,i(t)

(
re,i

∥∥F g
t,i

∥∥
2
− βw,iθ̇i(t) + uw,i(t)

)
, (2.9)

Aerodynamic drag, as assumption, is neglected, considering negligible the speed of wind
relative to the tether. In addition, in equation (2.8), it is assumed that drones i and
i + 1 exchange forces along the direction which connects their centre of mass, not along
the direction of the two points where the cable is connected to the vehicles. Since the
distance between the drones is higher than the distance between the center of mass and
the cable attachment, this assumption can be considered valid.

2.3. Control-oriented model

The overall system of quadcopter, from now on, is assumed to be controlled with a low-
level controller which has the same structure of the one described in [7]. This controller
is assumed to be static and with a high enough working frequency (i.e. a typical value
can be 50-100 Hz), to have good performance. The high-level planner (see Figure (2.2)),

instead, computes the reference Pref =
[
P x
ref P y

ref P z
ref

]T
for the previous mentioned

controller.

Figure 2.2: A representation of the hierarchy of control scheme: as said the low-level position
controller works at high frequency, while the high-level one has an higher sampling time
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The so called "control-oriented" model is the model used by the high-level controller, and
it is a linear time invariant (LTI) model of the quadcopter in closed loop with the low-
level controller. In this research, the considered model is a 2D one, involving only (x, y)

coordinates of the drones. Now, a precise control-oriented model of the drone dynamics
can be obtained considering the single i-th drone:ẋi(t) = Aixi(t) +Biui(t)

yi(t) = Cixi(t) +Diui(t),
(2.10)

where the state vector is xi(t) =
[
P x
i (t) P y

i (t) V x
i (t) V y

i (t)
]T

, xi(t) ∈ R4,the input

vector is ui(t) =
[
P x
ref,i(t) P y

ref,i(t)
]T

, ui(t) ∈ R2. P x
i (t), P

y
i (t) and V x

i (t), V
y
i (t) are re-

spectively the (x, y) coordinates and x, y velocities of i-th drone, while P x
ref,i, P

y
ref,i are

its reference position. To simplify the notation a more compact form is introduced,
Pi(t) =

[
P x
i (t) P y

i (t)
]
, Vi(t) =

[
V x
i (t) V y

i (t)
]

and Pref,i(t) =
[
P x
ref,i P y

ref,i

]
. The

state matrices in explicit form are:

Ai =


0 0 1 0

0 0 0 1

−kvelkpos 0 −kvel 0

0 −kvelkpos 0 −kvel

 , Bi =


0 0

0 0

kvelkpos 0

0 kvelkpos

 ,

Ci =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Di =

[
0 0 0 0

0 0 0 0

]
,

(2.11)

where Ai is the state matrix, Bi is the input matrix, Ci is the output matrix (i.e. it is
assumed that all the states are measured), finally kvel and kpos are gains which are tuned
after a procedure of closed loop identification. Moreover, the system is discretized with
zero-order hold (ZOH) method using Ts = 0.5s. This sampling time is suitable considering
that the navigation control system is a high-level controller, while the dynamic control
system of the drone works at higher frequencies (Fig 2.2).
Considering k as the discrete-time variable, the discrete-time system is:xi ((k + 1)Ts) = Fixi (kTS) +Giui (kTs)

yi (kTs) = Hixi (kTs) ,
(2.12)
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where:

Fi = eAiTs , Gi =

∫ Ts

0

eAiσBidσ, Hi = Ci, (2.13)

and, as above, Fi is the state matrix, Gi is the input matrix and Hi is the output matrix.
Now, it is possible to obtain the full state-space model in discrete-time writing:x ((k + 1)Ts) = Adtx (kTs) +Bdtu (kTs)

y(kTs) = Cdtx(kTs),
(2.14)

where the matrices Adt, Bdt and Cdt are obtained composing the matrices of the single
drone in this way considering Nd = 3 drones:

Adt =

 F1 04×4 04×4

04×4 F2 04×4

04×4 04×4 F3

 , Bdt =

 G1 04×2 04×2

04×2 G2 04×2

04×2 04×2 G3

 ,

Cdt =

 H1 04×4 04×4

04×4 H2 04×4

04×4 04×4 H3

 , (2.15)

State and input vectors (omitting the time dependancy) are respectively

x =
[
P1 V1 P2 V2 P3 V3

]T
and u =

[
P ref

1 P ref
2 P ref

3

]T
, where x ∈ R12 and

u ∈ R6.

This LTI system corresponds to the control-oriented model and it is used in section (3.4).

Finally, it is introduced a selection matrix Pxy ∈ R4Nd×2Nd which is defined such that
x(k)Pxy = [x1(k)

T , . . . , xNd
(k)T ]T . As a result, this matrix selects (x,y) coordinate for

each drones.

2.4. Sensors

The drones are equipped with an IMU (Inertial Measurement Unit), provided with filtering
algorithms to have a correct estimate of the full state, and a GPS (Global Positioning
System) which permits the absolute localization with respect to a global reference frame.
LiDAR sensors (Light Detection And Ranging) are also installed on each drone.
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Figure 2.3: Example of LiDAR sensor

This sensor is used to perceive the environment and let the drones to localize obstacles
during the flight. The readings of this sensor are then elaborated and commuted con-
straints used in the optimisation problem in section (3.4). Each sensor produces a vector
γ(k) of Nr = 2π

αs
measurements, where φs corresponds to the angular resolution. The

aforementioned measurements can be also expressed as a distance through the vector
di(k) = γi

[
cos(φi) sin(φi)

]
, i = 1, . . . , Nr − 1, d(k) ∈ R2×Nr−1 where di represents the

distance from the sensor to the closest obstacle in the direction expressed by φi. If in a
certain direction φi no obstacle is detected, the value assigned to γi is equal to RL the
maximum range which the sensor can measure. Since the measurements from LiDAR
sensors are provided with a frequency of at least 10Hz, it is possible to directly implement
them in the algorithm presented in section (3.3).

2.5. Environment

As said previously, a 2D environment is considered. Here, is considered the system of
three drones, the tethers, the ground station and the obstacles as it can be seen in Figure
(2.4).
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Figure 2.4: A representation of the environment. The three colored triangles represent the
drones, while the black one correspond to the ground station. The tether is depicted as the
black segments which connects the drones. In blue the obstacles.

To simplify the mathematical formulation of constraints in optimisation problem (see
section (3.2)), obstacles are considered as ellipses. In fact, a compact set can describe
them, involving the shape matrix Hj in this way:

Oj :=
{
χ ∈ R2 : (χ− χcj)

THj(χ− χcj) ≤ 1
}
, (2.16)

where Hj, χcj represents respectively the geometric shape and the coordinate of the center

of the j-th ellipse. Moreover, it is possible to define the set of all obstacles as O :=
N0⋃
j=1

Oj,

with N0 the total number of obstacles. Furthermore, ellipses are used here not only to ease

Figure 2.5: A non convex obstacle set
approximated as a several convex ones
using ellipses.

the treatment, but also because is always possible
to approximate a set of non-convex obstacles as a
set of ellipses as it is shown in Figure (2.5). The in-
formation about the nominal environment are col-
lected in a map, where each cell cell has a value
representing the occupancy status of that cell. An
occupied location is represented as true (1) and
a free location is false (0). Using the occupancy
map, it is possible to simulate the vector of ranges
γ (see section (2.4)) considering the pose of the
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drone, which is a vector containing the position and the orientation of the drone, and the
map itself. Moreover, the sensor has to be initialized with the horizontal angle φM , the
minimum and maximum angle range, horizontal angular resolution φs, and the maximum
range RL, which have been previously defined. An example of map and simulation of
LiDAR readings are shown in Figure (2.6).

Figure 2.6: A representation of the map of the environment on the left. On the right, the
simulation of LiDAR readings. The triangle represents the drone position, the dots are the
readings, while in blue are depicted obstacles.
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In this chapter an overview of the entire approach is discussed. First, a brief overview
of the problem formulation is given. Then, the off-line mission planner is described:
it consists of a non-linear non convex problem which has the aim to find a obstacle-
free optimal configuration for the drones starting from the target assigned to the leader
one, satisfying constraints related to obstacle avoidance and minimizing a proper cost
function. Furthermore, a Linear Program (LP) used to find the optimal maximum ellipse
inside merged readings is described, which is then used to obtain polytopic constraints
representing obstacle-free regions containing any two pair of connected drones. After that,
an online path following algorithm, based on MPC, is presented, this brings the drones
to the previously found optimal configuration. At this point, the same offline planner
as before with some modifications is used, in order to find a new optimal configuration
assigning a new target to the leader drone as well. The approach is repeated at every
sampling time and chooses the right strategy to impose to the algorithm, choosing between
a backtracking strategy or a new path planning one. In conclusion, after the strategy is
chosen, the drones are again brought towards their final configuration.

3.1. Problem formulation

It is useful for the next sections to introduce the concept of configuration of the system.

This is a vector gathering the position of all drones C(t) =
Nd⋃
i=1

Pi(t). Such configuration

is said to be admissible in the environment if the positions of all drones and the tethers
connecting them belong to the free space Sfree := R2 \ O and the tether lengths are
bounded between a maximum value l and a minimum one l:

Pi + α (Pi+1 − Pi) ∈ Sfree, i = 0, . . . , Nd, ∀α ∈ [0, 1]

l ≤ ∥Pi+1 − Pi∥2 ≤ l, i = 0, . . . , Nd − 1.

(3.1)

(3.2)

The position of the ground station is here defined as P0 and it coincides with the origin
(0, 0). The complete problem can be defined in some steps:
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• An offline optimisation problem, receiving as input the set of obstacles O and a
target Ptarget assigned to the leader drone, has the aim to find, if it exists, an
admissible optimal configuration C∗, where this condition is verified: P ∗

Nd
= Ptarget.

• An online path following algorithm, based on MPC, has to track the optimal con-
figuration C∗, respecting some constraints related to the avoidance of known and
possibly unknown obstacles.

• An offline optimisation problem, similar to the one previously mentioned, receiving
as inputs a new target Ptarget, has the aim to find a new optimal configuration C∗.
This offline planner is different from the previous one because it tends to the solution
trying to move initially only the leader drone, then the number of moved drone is
increased if no solution is found, until it moves all the drones.

• A strategy to choose whether to carry out a backtracking process, where the drones
are rewound with a particular policy, or a path following algorithm, similar to the
previous one.

3.2. Offline path planner

In this section an overview of the offline optimisation problem is given. It presents the algo-
rithm in the basic mathematical formulation, then there is a focus on cost and constraints
functions. Subsequently the "perpendicular line method" approach is explained, used to
formulate non-linear constraints to keep a certain distance between tethers and obstacles.

This offline path planner produces the vector of optimal configuration C∗ =


C∗

1
...

C∗
Nd

 ,
where the vector C∗

i represents the coordinates of the target related to drone i.

3.2.1. Mathematical formulation

The initial position of the drones represents the initial condition of the algorithm. For this
reason, six optimisation variables (in the case of three drones, assumed here for the sake

of clarity and without loss of generality) are needed: x =
[
x1 y1 x2 y2 x3 y3

]T
, they

represent the (x, y) coordinate of the drones. In this optimisation problem the target of
the first drone is given, then, as output are obtained the targets of the other two drones. It
is possible to write this problem as a general non-linear constrained Optimization Program
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(OP):

min
x∈R6

f(x)

s.t

g(x) = 0

h(x) ≥ 0

(3.3a)

(3.3b)

(3.3c)

with f : R6 → R, g : R6 → Rp and h : R6 → Rq.

For simplicity in the discussion these vectors are introduced: xi =

[
xi

yi

]
, with i = 0, . . . , 3,

where x0 represents the position of the ground station and xT =

[
xT

yT

]
which represents

the coordinate of the target. In the cost function (3.3a) two terms are considered. The
first is the minimization of the distance between the leader drone and the given target.
It reads as follows:

f1(x) = ∥x1 − xT∥22 (3.4)

The second term is related to the minimization of the distance between consecutive drones
and it can be written as:

f2(x) = ∥x3 − xGS∥22 + ∥xGS − x2∥22 + ∥x2 − x1∥22 (3.5)

The total cost function is the following:

f(x) =
[
α β

] [f1(x)
f2(x)

]
, (3.6)

where two weights have been introduced to emphasize the minimization of the first term
respect the second one (i.e. a possible choice can be α = 100 and β = 0.1).
In this optimisation problem no linear equality or inequality constraints are present.
On the other way around, non-linear inequality constraints (3.3c) have to be mentioned.
First, the length of the tethers which connects two consecutive drones must be higher
than a fixed minimum distance l, and it must be less than a fixed maximum distance l as
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mentioned in section (3.1). In fact, we can write these constraints as:

h1(x) =



−∥x3 − xGS∥22 + l
2

−∥xGS − x2∥22 + l
2

−∥x2 − x1∥22 + l
2

∥x3 − xGS∥22 − l2

∥xGS − x2∥22 − l2

∥x2 − x1∥22 − l2


(3.7)

Second, the optimisation variables x can not be inside the obstacles, they must be outside
them. Now, it is necessary to do a change of coordinate since the obstacles are rotated
ellipses. Generally the formula is:

X = (x− x0) cos(α) + (y − y0) sin(α)

Y = (y − y0) cos(α)− (x− x0) sin(α),

(3.8)

where x0, y0 are the coordinate of ellipse center, and α is the angle of rotation with respect
x axis, as reported in table 4.1. For example, if six obstacles are present, we have:

Xi,j = (xi − x0,j) cos(αj) + (yi − y0,j) sin(αj)

Yi,j = (yi − y0,j) cos(αj)− (xi − x0,j) sin(αj),

(3.9)

where j = 1, . . . , 6 represent the j-th obstacle. At this point it is possible to write the
second part of non-linear constraint function as:

h2(x) =


(

X1,1

ae1

)2

+
(

Y1,1

be1

)2

− (1 + δ)2

...(
X3,6

ae6

)2

+
(

Y3,6

be6

)2

− (1 + δ)2

 , (3.10)

where δ is a user defined parameter, it represents the minimum tolerated value of distance
between the optimisation variables and ellipses.
The last constraint that is considered here is that the tethers must not lie inside the
obstacles and the distance between obstacle and tether has to be at least σ. The general
simplified case can be done with circles, see Figure (3.1):
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Figure 3.1: An example of perpendicular line method approach with circles.

The distance between the circle and the tethers, which is dmin, has to be greater than σ, a
user defined minimum tolerated distance. The constraint is active on that segment only if
the perpendicular line has an intersection with the tethers. This general method has been
revised because here, ellipse are involved. The line parallel to the tether passing through
the center of ellipse is traced, consequently discretized points on this line are found. We
call dmin the distance between the ellipse and the tether and it is calculated as:

dmin = dc − de, (3.11)

where dc is the distance between the center of j-th ellipse and the i-th tether, while de is
the distance between the p-th discretized point and the j-th ellipse along the perpendicular
line of i-th tether passing to that discretized point. This distance, has to be calculated for
each discretized point p = 1, . . . , Npe, for each obstacle j = 1, . . . , NO, and for each tether
i = 0, . . . , Nd − 1, then, it is imposed to be higher than σ. An example of this approach
is described in Figure (3.2).
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Figure 3.2: An example of perpendicular line method approach with ellipse

Similarly to the circle approach, the constraint is considered active only if the perpen-
dicular line has an intersection with the tether. The third part of non-linear inequality
constraint function can be constructed as:

h3(x) =


dmin,1 − σ

...
dmin,Ne − σ

 , (3.12)

where Ne = Npe × NO × (M − 1) is calculated as the product between the discretized
points, the number of ellipses and the number of segments. Finally, the overall vector can
be combined as:

h(x) =

h1(x)

h2(x)

h3(x)

 (3.13)

3.3. Convex Approximation of Free Space

This approach is based on a constant sampling rate, where k is the discrete-time variable.
An obstacle-free area is needed by the path following online algorithm. In particular, a set
containing two drones is obtained. First, the set containing all the LiDAR measurements
of the i-th drone at time k is defined as Li(k) := {d0(k), . . . , dNr−1(k) ∈ R2}. Another
example of independent LiDAR readings is given in Figure 3.3.
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Figure 3.3: A representation of independent LiDAR readings. The triangles represent drone i
and drone i+1, the colored dots represent the readings Li and Li+1, while in blue are reported
obstacles.

At this point, to calculate the non-convex area defined by the LiDAR readings of two
consecutive drones i and i+ 1, the set of overlapping measurements is computed:

Ld(k) = {dm(k) ∈ Li(k), dn(k) ∈ Li+1(k) :

∥dm(k)− Pi+1(k)∥2 < RL ∧ ∥dm(k)− Pi(k)∥2 = RL,

∥dn(k)− Pi(k)∥2 < RL ∧ ∥dn(k)− Pi+1(k)∥2 = RL,

∀m,n = 0, . . . , Nr − 1.}

(3.14)

To summarize, given two consecutive drones only the interior points of the readings are
selected here. Starting from this, it is possible to have the merged readings as:

Li,i+1(k) = Li(k) ∪ Li+1(k)− Ld(k) (3.15)

After that, the cardinality of the aforementioned merged LiDAR readings |Li,i+1(k)| is
denoted as Li,i+1. A representation of merged LiDAR readings is shown in Fig 3.4:
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Figure 3.4: A representation of merged LiDAR readings. The triangles represent the drone i
and i+1, while the colored dots are the merged LiDAR readings Li,i+1. In blue are represented
the obstacles.

Starting from the set Li,i+1(k), the goal is to obtain the largest convex set containing
the two vehicles. To obain this, the following steps are executed: first, the largest ellipse
in the readings is found, through a linear optimisation problem; second, from ellipse,
an under approximation of polytopic constraints are retrieved, then, the vertices of the
polytope are iteratively expanded to have the maximum area. To simplify the problem,
it is assumed that the ellipse is rotated with the same angle α which the cable forms with
x axis. This problem can be structured as a linear program of the following form:

min
k1,k2

c′k

s.t.

Ak ≤ b

(3.16a)

(3.16b)

To find the cost function (3.16a), is necessary to recall the canonical form of a rotated
ellipse: (x1

a

)2

+
(y1
b

)2

= 1, (3.17)
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where x1 and y1 have the same expression of (3.8):

x1 = (x− x0) cos(α) + (y − y0) sin(α)

y1 = (y − y0) cos(α)− (x− x0) sin(α)

(3.18)

At this point, substituting k1 = 1
a2

and k2 = 1
b2

a linear expression is obtained, with only
two unknown linear variables:

k1x
2
1 + k2y

2
1 = 1 (3.19)

The aim of this optimisation problem is to find the maximum ellipse, in other words a
minimization of k1 and k2 is needed. In fact it corresponds to a maximization of a and b,
which are ellipse parameters. Since these parameters have been maximized together, the

cost function can be written easily considering vector c =

[
1

1

]
and vector k =

[
k1

k2

]
, which

represents the vector of optimisation variables. The first set of constraints considered
in this OP is that the previously found merged readings must be outside the ellipse.
Mathematically this is expressed as:

k1x
2
1,i + k2y

2
1,i ≥ 1 (3.20)

where x1,i, y1,i, i = 1, . . . , Nr − 1 have again the same expression written in (3.18) and
x, y are coordinate of LiDAR readings dxi , d

y
i , as mentioned in section (2.4), where given

reading γi, it is possible to obtain dxi (k) = γicosφi and dyi = γisinφi. The canonical form
of matrix of constraints is Ax ≤ b, in this case it is possible to write A1k ≤ b1 where

A1 =


−x21,1 −y21,1

...
...

−x21,Nr
−y21,Nr

 , b1 =

−1
...
−1

 (3.21)

with Nr total number of readings. The second set of constraints which is considered is
related to the position of the two drones. The drones i and i + 1 referred to LiDAR
readings set Li,i+1(k), need to be inside the ellipse. Mathematically, this means

k1x
2
1,i + k2y

2
1,i ≤ 1

k1x
2
1,i+1 + k2y

2
1,i+1 ≤ 1

where in this case
x1,i = (P x

i − x0) cos(α) + (P y
i − y0) sin(α)

y1,i = (P y
i − y0) cos(α)− (P x

i − x0) sin(α)
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for i-th drone, and

x1,i+1 = (P x
i+1 − x0) cos(α) + (P y

i+1 − y0) sin(α)

y1,i+1 = (P y
i+1 − y0) cos(α)− (P x

i+1 − x0) sin(α)

(3.22)

for the second drone. In matrix form, these expressions can be resumed as

A2 =

[
x21,i y21,i

x21,i+1 y21,i+1

]
, b2 =

[
1

1

]
(3.23)

Third, the last set of constraints is used to enforce a specific behaviour. In fact, a real
ellipse must have positive semi-major and semi-minor axes, which basically means ae > 0

and be > 0. In addition, the semi-major axis is preferred to be higher than the semi-minor
one: ae

be
> q where q is a proper user-defined value. These constraints, as a function of

optimisation variables, can be written as:

k1 > 0

k2 > 0

k1q
2 < k2

(3.24)

Now, in matrix form

A3 =

−1 0

0 −1

q2 −1

 , b3 =
00
0

 (3.25)

At this point, linear constraints can be written gathering the previous part as:

A =

A1

A2

A3

 , b =

b1b2
b3

 (3.26)

The result of this process is shown in Figure (3.5).
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Figure 3.5: A representation of maximum ellipse inside LiDAR readings Li,i+1. The maximum
ellipse is represented as the dashed line, the triangles represent drone i and i + 1, while the
obstacles are depicted in blue.

It can be seen that this ellipse, not only is aligned with the tether which connects drone
i and drone i + 1, but also does not contain any LiDAR readings. Now, optimal ellipses
previously found are discretized in Np user-defined points selecting them with a constant
angular distance one from each other. These points represent the vertices of the initial
polytope, which is the under-approximation of the free space, Dj(k), j = 1, . . . , Nd, which
subsequently has to be expanded, as mentioned in section (3.1). This process begins with
the expansion of one vertex taking the line which connects the vertex to the center of
ellipse as direction of expansion. The vertex is moved away by a user-defined variable
ε, which represents how far the vertex is moved, from its previous position along the
direction of expansion. If the expanded vertex does not encounter any obstacle, that
vertex is frozen, otherwise it is moved back to its previous position, and this position
is kept. The operation stops when all vertices cannot be moved away from the center
or have reached the maximum distance from it. To take into account the dimensions
of vehicles, its maximum encumbrance is removed from the LiDAR readings before the
computation of the convex approximation of the free space. Figure (3.6) shows the process
of expansion:
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Figure 3.6: An example of the process of expansion of a polytope starting from the vertices of
optimal ellipse.

In conclusion, expanded vertices are converted in inequality constraints in the form
Ax ≤ b where x is a vector formed by (x, y) general coordinates. The outputs of this
process are matrix Aj and vector bj.
Remark : By construction, the proposed algorithm ensures that the current position
P x
i , P

y
i of consecutive drone i and i+1 and their tether is contained in the convex under-

approximation of the free space Dj(k) which can be considered a safe set. In conclusion,
Nd convex polytopes computed at time k for each pair of drones are collected in the set:

S(k) = {Dj(k), j = 1, . . . , Nd} (3.27)

Once the polytope is created, it is necessary to reduce it, for security reason. In fact, it
is created in such a way that its vertices are very close to the readings, which in some
cases correspond to obstacles, as it can be seen in Figure (3.6). The aim of this reduction
process is to have an offset which guarantees at least a distance, which is called demergency,
between the polytope and the readings. It is important to remark that this process is
done only when the drones are far away from their respective targets. The process can
be explained in few steps. First, the equation of the distance from a point to a line is
introduced:

d =
|ax+ by + c|√

a2 + b2
, (3.28)

where a, b and c are the coefficients of a line in canonical form: ax+ by+ c = 0. Secondly,



3| Proposed approach 27

recalling that a polytope is a set of linear constraints, it is possible to write:

ap,1 bp,1
...

...
ap,i bp,i
...

...
ap,Ne bp,Ne


[
x

y

]
≤



cp,1
...
cp,i
...

cp,Np


, (3.29)

where ap, bp and cp represent the i-th coefficients of the component of polytope inequality
and Np is the total number of them. At this point, for all i components a new coefficient
c∗p,i, which is responsible for the offset, has to be founded. The distance from a generic
point d (i.e. the position of the drone) to the i-th line which composes the polytope is
calculated, after that, this distance is perturbed as dp = d− demergency. Now, from (3.28),
c∗p,i is computed as follows:

ap,ix+ bp,iy − cp,i ≥ 0 =⇒ c∗p,i = dp

√
a2p,i + b2p,i − ap,ix− bp,iy (3.30)

ap,ix+ bp,iy − cp,i ≤ 0 =⇒ c∗p,i = −dp
√
a2p,i + b2p,i − ap,ix− bp,iy

To conclude, the reduced polytope in canonical inequality form is:

ap,1 bp,1
...

...
ap,i bp,i
...

...
ap,Np bp,Np


[
x

y

]
≤



−c∗p,1
...

−c∗p,i
...

−c∗p,Np


(3.31)

3.4. Online Path Following

This section explains how a Non-linear Model Predictive Control (NMPC) algorithm
works well with this type of problem and what are its components. First, a mathematical
formulation of optimisation problem is given, with a brief view on cost function and
constraints, then, path following strategy used to reach the targets of the drone is shown.
Finally, the concept of recursive feasibility is explained.
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3.4.1. Mathematical formulation

A real-time path following strategy is now necessary to bring the drones to the optimal
configuration C∗ obtained in section (3.2). In this algorithm, LiDAR readings, which are
provided in real-time, are used to derive an approach which is able to react to unexpected
obstacles. We consider a trajectory which is able to stop the vehicle inside S(k), the
obstacle free region, within the prediction horizon N ∈ N. The MPC algorithm consists
in solving at each iteration time a Finite Horizon Optimal Control Problem (FHOCP).
The decision variables are optimisation variables, which can be collected in a vector U =

[u(0|t)T , ...,u(N |t)T ]T ∈ R2Nd(N+1). Denoting the state of the system (2.14) with x(j|k),
at time k + j and xg as the vector of goal, the OP reads:

min
U
J(x(k),xg(k))

s.t.

x(j + 1|k) = Adtx(j|k) +Bdtu(j|k), ∀j ∈ NN−1
0

x(0|k) = x0

u(0|k) = u0

−A ≤ Kvel(Kpos(u(j|k)− xi1:2(j|k))− xi3:4(j|k)) ≤ A, ∀j ∈ NN−1
0 , ∀i ∈ NNd

1

−V ≤ xi(3:4)(j|k) ≤ V , ∀j ∈ NN
0 , ∀i ∈ NNd

1

xi1,2(j|k) ∈ Di ∩Di+1 ∀j ∈ NN
0 , ∀i ∈ NNd−1

1

d2 ≤
∥∥∥xi+1(1:2) − xi(1:2)

∥∥∥2

2
, ∀i ∈ NNd−1

1

xNd
(j|k) ∈ DNd

, ∀j ∈ NN
1

xi(3,4)(N |k) = 02×1, ∀i ∈ NNd
1 ,

(3.32a)

(3.32b)

(3.32c)

(3.32d)

(3.32e)

(3.32f)

(3.32g)

(3.32h)

(3.32i)

(3.32j)

Where all inequalities and equalities are element-wise, Nb
a = {n ∈ N| a ≤ n ≤ b}. In the

FHOCP, the stage cost (3.32a) expresses a tracking criterion. In fact, it can be written
as:

J(x(k),xg(k)) =
N∑
j=1

Nd∑
i=1

∥∥∥Q(xi(1:2)(j|k)− xgi(k))
∥∥∥2

2
+

N∑
j=1

∥Tu(u(j|k)− u(j − 1|k))∥22,

(3.33)

where Q ∈ R3×3, Tu ∈ R6×6 are positive-definite weighting matrices. In (3.33) two terms
are minimized: the square of the error between a desired state and the simulated, and
the square of the difference between two consecutive inputs. The vector of state goals xg
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is subsequently introduced in the next subsection "path following".

3.4.2. Path following

The aim of this subsection is to explain the strategy of path following. First, the concept of
path is introduced. Considering a 2D space we can define a set of points Qi, i = 0, . . . ,M .
Then, it is possible to define a set of lines li, i = 0, . . . ,M − 1, which connects the points.
In particular li connects Qi and Qi+1. Each line li is also defined by its angle of rotation Ψi

with respect x axis, taking a positive angle with a counterclockwise rotation. An example
of points connected by lines is represented in Figure (3.7).

Figure 3.7: A Representation of points connected by lines

We define a path as the set of all intermediate points si , i = 0, . . . ,MP on the lines such
that each point is sampled every τ meters (with τ user-defined variable), starting from
the initial point S0, to the final one SM . In other words, two consecutive points si and
si+1 have always the same distance τ , in addition the first point of the path is s0 = S0,
while the final point of the path is sMP

= SM . The matrix related to the path is called
Γ ∈ R2×MP . It contains (x, y) coordinates of every points of the path and can be expressed
in implicit form as:

Γ =



sx0 sy0
...

...
sxi syi
...

...
sxMP

syMP


, (3.34)
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while in explicit form it is described by:

Γ =



sx0 sy0

Sx
0 + τ cos(Ψ0) Sy

0 + τ sin(Ψ0)

Sx
0 + 2τ cos(Ψ0) Sy

0 + 2τ sin(Ψ0)
...

...
Sx
1 + µ1τ cos(Ψ1) Sy

1 + µ1τ sin(Ψ1)
...

...
Sx
2 + µ2τ cos(Ψ2) Sy

2 + µ2τ sin(Ψ2)
...

...
Sx
M−1 + µM−1τ cos(ΨM−1) Sy

M−1 + µM−1τ sin(ΨM−1)
...

...
sxMP

syMP



, (3.35)

where µi, i = 1, . . . ,M − 1 is a coefficient calculated such that the distance between the
point with this coordinates

[
Sx
i + µiτ cos(Ψi) Sy

i + µiτ sin(Ψi)
]

and the previous one is
exactly τ . An example of path, starting from the Figure (3.7), is depicted in Figure (3.8).

Figure 3.8: An example of path

Remark1: It is important to choose τ small (i.e. 0.5m), otherwise the path is not created
correctly.
Remark2: It can happen that the distance between the second last point sMP−1 and the
last one sMP

(see Figure 3.8) is not equal to τ but this is not a problem.
In our case, recalling the section (3.2), we obtain from the offline planner the vector of
optimal configuration C∗. In fact, it is possible to create a path, considering as initial
point the position of the ground station P0 and as the final point the target of the leader
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drone C∗
Nd

. The matrix related to the path is:

Γ =



P x
0 P y

0

P x
0 + τ cos(Ψ0) P y

0 τ sin(Ψ0)

P x
0 + 2τ cos(Ψ0) P y

0 + 2τ sin(Ψ0)
...

...
C∗,x

3 + µ1τ cos(Ψ1) C∗,y
3 + µ1τ sin(Ψ1)

...
...

C∗,x
2 + µ2τ cos(Ψ2) C∗,y

2 + µ2τ sin(Ψ2)
...

...
C∗,x

Nd
C∗,y

Nd



, (3.36)

where Ψi, i = 0, . . . , Nd − 1 corresponds to angle between tether i and x-axis, τ is a
user-defined variable and µi is a coefficient which guarantees that all the points on the
path are spaced by τ meters. To choose the proper value to assign as drone goal, another

vector is needed: t =
[
t1 . . . tNd

]T
, where ti, i = 1, . . . , Nd represents a particular row

of matrix Γ. To have the drones well spaced in the first iteration, we have to properly
initialize the vector t and the vector xgi , where xgi represents (x, y) coordinates of the

goal of drone i. The vector of goals xg is defined as xg =
[
xT
g1

. . . xT
gNd

]T
. Assuming

τ=0.5m an example can be

t =


t+ 4(Nd − 1)

...
t+ 4

t

 ,xgi =
[
Γ(t(i))

]T
,

where, the expression Γ(t(i)) means to select the row t(i), i = 1, . . . , Nd from the matrix
Γ. Choosing the value t means to select a proper point of the path as goal for the droneNd

.
When all the distances between the position of drones and their relative goals is lower
than a tolerance value the vector t is increased to assign the next points on the path:
t = t + υ, where υ represent the increment. A practical example is presented in Figure
(3.9).
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Figure 3.9: A representation of path. Small black dots are the points of the path, while colored
dots represent the goal and big colored dots depict the targets. The drone are described as
colored triangles, while the black one is the ground station. In blue the obstacles. The goals of
the drones are changed at iteration k + 1 (on the right) whenever the goals are reached by the
drones at iteration k (on the left). In this example υ = 2.

When the drone i is close to its target C∗
i , then the target C∗

i is assigned as goal xgi ,
which essentially means xgi = C∗

i , instead of assigning a point on the path. In Figure
(3.10) it is possible to see an example.

Figure 3.10: An example of path following, with drone i close to target C∗
i . In this case drone

3 is close to C∗
3 , so as said xg3 = C∗

3 .

The path following algorithm terminates when all the targets are reached by the drones
and the velocity of each drone is equal to zero.
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3.4.3. Obstacle check

In this subsection it is described a function whose aim is to find when leader drone has
to stop because of unexpected obstacle encountered on the path which blocks its motion
and consequently the motion of the entire chain of drones. The inputs are the matrices
of merged LiDAR readings obtained in section (3.3): Li,i+1. Then, a filtering process is
done, obtaining only the readings which are not at maximum distance RL. It is necessary
to select readings which respect this condition:

Ld,i,i+1(k) = {dm(k) ∈ Li,i+1(k) :

∥dm(k)− Pi+1(k)∥2 < RL

∥dm(k)− Pi(k)∥2 < RL

∀m = 0, . . . , Nr − 1.}

(3.37)

Moreover, a new matrix of readings is obtained combining them as

Ln(k) =


Ld,0,1(k)

...
Ld,Nd−1,Nd

(k)

 , (3.38)

where the matrix Ln(k) ∈ RNLn×2 contains all merged readings which are not at maximum
distance. The next step is to create through linear inequalities a triangle with these
vertices: xg1 , P1, P2. Since these three points tend to be aligned for the nature of path
following itself, it is necessary, only for this scope, to considered a perturbed position of
leader drone:

P x
1p = P x

1 + λ

P y
1p = P y

1 + λ

(3.39)

where λ is a user-defined parameter and has to be chosen very small, an example can be
tol ≤ 0.1. These points are collected in a matrix:

Vtriangle =

P
x
1p P y

1p

P x
2 P y

2

xxg1 xyg1

 (3.40)

Then, a set of linear inequalities is computed starting from the vertices of the triangle
(3.40)

Atrianglex ≤ btriangle (3.41)
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At this point the idea is to know when a reading is inside the triangle. For this purpose,
a linear program is built to have a feasibility check. In fact, every reading of matrix Ln

has to be checked. If a point is inside the triangle, it means that there is an obstacle,
consequently the path following algorithm is stopped. Otherwise, the triangle is considered
free. The LP has to be solved for every LiDAR reading Ln,i, i = 1, . . . , NLn , and it can
be written in this form:

min
x,y

const

s.t.

Atriangle

[
x

y

]
≤ btriangle

x0 =

[
Lx
n,i

Ly
n,i

]

(3.42a)

(3.42b)

(3.42c)

This function is not always active, to prevent unwanted stops. It works when the distance
between leader drone and its goal is relatively small, otherwise, as we can see in Figure
(3.11), it can happen that the triangle is not considered empty in wrong cases.

Figure 3.11: On the left, an example of wrong obstacle check. The triangle is not considered
empty because the check is always done, even if the leader drone is not close to its target. On
the right, it is represented the proper functioning of obstacle check function. In fact, in this
case, the function is activated only when the distance between the leader and its target is less
than a tolerance.

When an obstacle is checked, the actual position of the drones becomes their goal: xgi =

Pi, until they stop moving.
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3.4.4. Constraints

The first constraints considered in OP (3.32) are related to the convex set where the
drones can move. As it is seen previously, polytopes are a set of inequality constraints
and are created according to the rule of "visibility", it means that generally the drone i
has to move in its polytope and in the polytope of the i+1 drone, i = 1, . . . , Nd− 1, while
the droneNd

can move in polytope DNd
. To express this concept gathered matrices are

used:

Ap,i,i+1 =

[
Ap,i

Ap,i+1

]
, bp,i,i+1 =

[
bp,i

bp,i+1

]
, (3.43)

where i = 1, . . . , Nd − 1, and Ap,i, Ap,i,i+1 ∈ RNp×12, bp,i, bp,i,i+1 ∈ RNp are matrix which
extract a proper coordinate of the drone. In the first path following, the condition imposed
to create polytope constraints are summarized in (3.32g),(3.32i). In addition, when the
drone i is near the target C∗

i , the drone i− 1 can move freely in its polytope.
Second, constraints related to the model, (3.32b) are the same seen in Chapter 2 (see
Equation (2.14)). An important part of the optimisation problem is the initialization of
state (3.32c) and inputs variables (3.32d). At time k = 0, x0 takes into account the initial
position of drones used in offline optimisation problem xiinit

, while initial velocity of each
drone is sat equal to zero for simplicity.

x0 =
[
P1(0) V1(0) P2(0) V2(0) P3(0) V3(0)

]T
Pi(0) =

[
xiinit

y1init

]T

,Vi(0) =

[
0

0

]T

, ∀i = 1, . . . , Nd

When k ≥ 1 the initialization changes in

x0 = Adtx(0|k − 1) +Bdtu(0|k − 1)

This means that the initialization of states is done with the optimal trajectory obtained
in the last iteration, thus taking into account continuity of states.
Similarly, optimisation variables needed to be initialized to speed up the solver. At time
k = 0, there are no enough information to give to u0, so this initialization is done as
follows

u0 = x(0|k) (3.44)
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On the other hand, when k ≥ 1, the vector of optimisation variables is initialized with

u0 =



u(1|k − 1)

u(2|k − 1)
...

u(N − 1|k − 1)

u(N |k − 1)

u(N |k − 1)


(3.45)

This practically means that old optimisation variables, except for u(0|k), computed at
the previous iteration, are used to initialize this vector.
Third, constraints on acceleration (3.32e) and velocity (3.32f) related to the drones are
considered. Recalling the state matrices of the model in continuous time of a single drone
(2.11), we can write the acceleration of the vehicle as:

A(t) = Kvel(Kpos(Pref (t)− P (t))− V (t)), (3.46)

where Kvel, Kpos ∈ R2×2 are matrices pertaining to the gains kvel, kpos (see (2.11)) recol-
lected in matrix form. From (3.46) we can write:

−A ≤ Kvel(Kpos(u(j|k)− xi1:2(j|k))− xi3:4(j|k)) ≤ A, ∀j ∈ NN−1
0 , ∀i ∈ NNd

1 , (3.47)

where A is vector of the maximum acceleration of the drones, assumed here for simplicity
to be identical for all vehicles. For what concern velocity constraints, since the velocity
of the i-th drone is a state, it is possible to directly write the constraints as:

−V ≤ xi(3:4)(j|k) ≤ V , ∀j ∈ NN
0 , ∀i ∈ NNd

1 , (3.48)

where V , which is the maximum velocity of the drones, is assumed to be the same for all
drones.
To avoid contact between the drones during path following is necessary to include non-
linear constraints involving distance between drones (3.32h). More in the details, the
distance between drone i and drone i + 1, i = 1, . . . , Nd − 1 has to be higher than a
security distance called d, chosen by user.
The last set of constraints included in FHOCP are the terminal constraints, in fact all the
simulated trajectories have to end with a velocity equal to zero (3.32j). To summarize,
the FHOCP P(x(k), S(k),xg) presents linear constraints related to the system dynamics
(3.32b), position (3.32g), (3.32i), velocity (3.32f), acceleration (3.32e), while the non-linear
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constraints related to the distances between the drones are expressed in (3.32h). Finally,
linear constraints are imposed on the terminal state (3.32j) and on the initial condition
of states (3.32c)) and inputs (3.32d).
FHOCP is solved every sample time Ts, it is a non-convex problem, due to the non-
convex constraints (3.32h) related to the distance between drones. Its solution is denoted
as U∗(x(t), S(k),xg(k)). At any time k the latest sampling instant is denoted as k(k) < k

such that the FHOCP P(x(k(k)), S(k(k)),xg(k(k))) was feasible. FHOCP is embedded
in the following receding horizon strategy:
Algorithm: path following

1. At time k collect the LiDAR measurements and fuse them according to drones
coupling;

2. Find optimal ellipse contained in LiDAR merged readings;

3. Compute the set S(k) containing the safe sets for all coupled drones;
4. if FHOCP P(x(k), S(k),xg(k)) is feasible then

apply to the system the first control input in the optimal sequence
U∗(x(k), S(k),xg(k). Set k(k + 1) = k and store the feasible set of constraints
used to solve the problem S(k) as S(k(k + 1)).

else
solve P(x(k), S(k(k)),xg(k)) and apply to the system the first control input in
the optimal sequence U∗(x(k), S(k(k)),xg(k)). Set k(k + 1) = k(k).

end if

5. set k = k + 1 and go to 1).

Since the environment is assumed to be time invariant, the safe sets Dj(k) depend only
on the system state x(k). MPC approach results in a dynamic controller with internal
states k(k) and x(k) and xg as inputs:

k(k + 1) = η(x(k), k(k))

u(k) = κ(x(k), k(k),xg(k))

(3.49)

(3.50)

where functions η : R4Nd ×Z → Z and κ : R4Nd ×Z×R2Nd → R2Nd are implicitly defined
by Algorithm. The closed loop system is

k(k + 1) = η(x(k), k(k))

x(k + 1) = Ax(k) +Bκ(x(k), k(k),xg(k))

(3.51)

(3.52)
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In Algorithm, the role of variable k(k) is to guarantee that at each time step a feasible
FHOCP can be formulated, despite the time-varying nature of the safe convex set S(k).
This guarantee does not hold if in the environment are present time-varying obstacles.

Lemma. Assume that the FHOCP at time k = k0 is feasible and x(k0)Pxy ∈ Sfree,
(Pi+1(k0) − Pi(k0) ∈ Sfree, i = 0, . . . , Nd − 1, this basically means that the drones and
the tethers are initially in the obstacle-free region. Then, the trajectory of the closed loop
system is such that x(k)Pxy ∈ Sfree, Pi+1(k)− Pi(k) ∈ Sfree, ∀k > k0.

Proof. At k = k0, problem P(x(K0), S(k0),xg(k0)) is solved and k(k0 + 1) is sat equal
to k0. For any k ≥ k0, the optimal safe input sequence computed by MPC algorithm, is
denoted with U ∗ (k) = [u∗(1|k)T , ..., u∗(N |t)T ] be it by solving P(x(k), S(k),xgoal(k)) or
P(x(k), S(k(k)),xg((k))), leading to the optimal state trajectory
X∗(k) = [x∗(1|k)T , . . . , x∗(N |k)T ] and with x∗(N |k), which is the corresponding safe
terminal set. Then, for each k ≥ k0 + 1, there are only two possibilities:

1) If P(x(k0 + 1), S(k0 + 1),xg(k)) is feasible, x(k0 + 1)Pxy ∈ S(k)

2) Conversely, if P(x(k0 + 1), S(k0 + 1),xg(k)) is not feasible, problem
P(x(k), S(k(k)),xg(k)) is solved, where a feasible sequence can be built considering
the tail of U∗(k(k0+1)) = U∗(k0), i.e.[u∗(1|k(k0+1))T , . . . , u∗(N |k(k0+1))T , 01×2Nd .

In fact, terminal state of X∗k(k0+1) = X∗(k0) is a steady state for the system. AS
a consequence x(k0 + 1)Pxy ∈ S(k(k0 + 1)).

Therefore, in both cases 1) and 2), x(k0 + 1)Pxy belongs to a set S(j) with j ≤ k0 +

1. Now, by construction, the corresponding polytope set Dj(k) ∈ S(k) is an under-
approximation of the obstacle-free region containing two drones and also the segment
Pi+1−Pi. To conclude, if x(k0)Pxy ∈ Sfree, (Pi+1(k0)−Pi(k0) ∈ Sfree =⇒ x(k0+1)Pxy ∈
Sfree,Pi+1(k0 + 1)− Pi(k0 + 1) ∈ Sfree.

3.5. Replanning Strategy

A second offline optimisation is performed when the targets, which correspond to the
optimal configuration C∗, are reached by the drones. The policy of this OP is similar to
the one seen previously, in section (3.2) but with substantial differences. A new target
Ptarget is assigned to the leader drone, then, the offline planner starts to find a solution by
moving just the leader drone while blocking the other ones. If a solution is not obtained,
the number of moved drones is increased by one, while the number of blocked drones
is decreased by the same quantity, unless all the drones are considered free and we have
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exactly the same situation of the problem in subsection (3.2.1). The vector of optimization
variables is the vector of (x, y) coordinates of all the drones x =

[
x1 y1 . . . xNd

yNd

]
.

The mathematical formulation of this OP is similar to (3.3):

min
x∈R2Nd

f(x)

s.t

Ax = b

g(x) = 0

h(x) ≥ 0,

(3.53a)

(3.53b)

(3.53c)

(3.53d)

where (3.53a), (3.53c) and (3.53d) have the same expression of the first path planner
problem. Instead, (3.53b) represents linear equality constraints and its form depends on
the number of free drones NF . This process begins considering the leader drone as free
(NF = 1), and drones i, i = 2, . . . , Nd − 1 blocked. In this case the matrices A and b are
such that Ax = b correspond to

xNd
= P x

Nd

yNd
= P y

Nd

...

xNd−i = P x
Nd−i

yNd−i = P y
Nd−i

...

x2 = P x
2

y2 = P y
2 .

(3.54)

where i = 1, . . . , Nd − 3. If a solution is not found, then, the number of free drones is
increased by one (NF = NF + 1). This process continues until we consider as blocked
just the drone which is attached to the ground station. In fact, when the drones i,
i = 1, . . . , Nd − 1 are free, matrices A and b are such that Ax = b provide:

xNd
= P x

Nd

yNd
= P y

Nd

(3.55)

If all the drones i, ∀i = 1, . . . , Nd are considered free (NF = Nd), it means that A = [ ]

and b = [ ], which is exactly the same situation of section (3.2). With this second offline
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planner, a new optimal configuration is obtained:

C∗ =
[
C∗T

1 . . . C∗T
Nd

]T
, (3.56)

where C∗
i =

[
Cx

i

Cy
i

]
represents (x, y) target coordinate of i-th drone.

Remark: If a drone i is considered blocked, the respective row of the vector of targets
become C∗

i = Pi.
In our situation, since Nd = 3, only three cases are studied. If the leader drone is blocked,
matrices A, b are constructed such that the operation Ax = b returns:

x3 = P x
3

y3 = P y
3

x2 = P x
2

y2 = P y
2

(3.57)

If the leader drone and drone2 are considered free the blocked coordinates are:

x3 = P x
3

y3 = P y
3 (3.58)

Finally, when all drones are considered free, it means that A = [ ] and b = [ ].

3.5.1. Triangles method for replanning

When the new targets of the drones are found with second offline optimisation, a new
path is obtained, following the same steps of subsection (3.4.2). Now, a routine algorithm
decides the correct strategy which has to be followed by the drones. It is based on
the analysis of the triangles which is possible to check starting from drones position Pi,
i = 1, . . . , Nd, ground station position P0 and targets position C∗

i . The simplest situation
corresponds to get a solution from (3.53) just moving the leader drone, while drones i,
i = 2, . . . , Nd, are blocked in their position. In this case, the only relevant triangle which
is obtained has these vertices: P1, C∗

1 and P2. An example is provided in Figure (3.12).



3| Proposed approach 41

Figure 3.12: An example of triangle obtained when leader drone is free. In green and red the
obstacles. Pi are the points which represent the coordinates of drone i.

Now, a LP similar to the one seen in subsection (3.4.3) has to be solved, where every Ln

reading has to pass a feasibility check. The LP has to be solved for every LiDAR reading
Ln,i, i = 1, . . . , NLn , and it can be written in this form:

min
x,y

const

s.t.

Atriangle

[
x

y

]
≤ btriangle

x0 =

[
Lx
n,i

Ly
n,i

]

(3.59a)

(3.59b)

(3.59c)

Here, the vertices of the triangle which produce the matrices Atriangle, btriangle are:

Vtriangle =

 P x
1 P y

1

P x
2 P y

2

C∗,x
1 C∗,y

1

 (3.60)

Finally, two situations are possible, if the triangle is occupied, it means that an obstacle
is present, consequently the leader drone can not go directly towards its target C∗

1 and
has to backtrack towards drone2 (strategy chosen is called "backtrack1"), otherwise, its
goal is imposed to be its target, xg1 = C∗

1 and strategy "direct follow1" is picked.
At this point, the same steps can be done extending the reasoning to all i, i = 1, . . . , NF

free drones, while drones i, i = NF +1, . . . , Nd are considered blocked, recalling that NF is
computed during the problem (3.53). The triangles which need to be tested are a function



42 3| Proposed approach

of NF . With NF = i we have NF free drones and j drones blocked, j = NF + 1, . . . , Nd.
From this information the triangles can be computed following these steps:

1. Group in Gi sets the coupled targets and drones i, i + 1 with i = 1, . . . , NF − 1,
Gi =

{
Pi,C

∗
i ,Pi+1,C

∗
i+1

}
, . . . , GNF−1 =

{
PNF−1,C

∗
NF−1,PNF

,C∗
NF

}
;

2. From each group Gi extract the combination of 3 elements which are possible to
obtain with the all 4 elements of the set. The number of combination for each set
Gi is computed recalling to the probability theory as:

c4,3 =
4!

3!
= 4 (3.61)

3. Name each combination of group Gi as Tj, j = 1, . . . , 4 which correspond to the
triangle j;

4. Add the last triangle, which is always described by these vertices PNF+1,PNF
,C∗

NF
.

Remark: If all the drones are considered free, NF = Nd, the last triangle to be added is
P0,PNF

,C∗
NF

.
Once obtained all the triangles, a vector which contains boolean variables is introduced:
tr. The number of elements of this vector is a function of Gi. In fact, each set Gi is
composed of four triangles plus the terminal one, so, for each set we have five elements.
The elements of tr are the boolean variables tri, where tri stands for the i-th triangle
Ti. If tri is equal to 0, it means that triangle Ti is free, otherwise, if it is equal to 1, it
means that it is occupied. Then, studying the vector tr, is possible to choose the correct
strategy analyzing the free triangles. More in the details, the number of triangles to be
analyzed change with NF , in fact it is equal to 2NF − 1. The aforementioned vector tr

is filled solving at each sampling time a LP similar to the one presented in (3.59), which
has the aim to check when an obstacle is present or not in triangles.
In our case we can test the complete method with NF = 2 and NF = Nd = 3. Starting
from NF = 2, it is possible to construct only the set G1 = {P1,C

∗
1 ,P2,C

∗
2}, as we can

see in Figure (3.13).
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Figure 3.13: A representation of triangle method. In red and green the obstacles. C∗
i represent

the target of drone i. Blue segments represent the final position of the tethers, while black ones
represent the actual position.

Here, there are five triangles, which can be resumed in Table (3.1):

T1 P1 C∗
1 C∗

2

T2 P1 P2 C∗
2

T3 P2 C∗
1 C∗

2

T4 C∗
1 P1 P2

T5 P2 C∗
2 P3

Table 3.1: An example of triangles obtained when drone1 and drone2 are free

As discussed before, the vector tr =
[
tr1 tr2 tr3 tr4 tr5

]
is filled with the output of

the LP. Now, the options are discriminated through the vector tr:

• if all the elements of the vector tr are 0, it means that all the triangles are free, con-
sequently the new targets C∗

i , i = 1, 2, are just assigned as goal. The aforementioned
strategy is called "direct follow2" and can be seen in the Figure (3.14).
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Figure 3.14: A representation of "direct follow2" strategy. The five triangles all together must
be free, they are represented as the red space. The green and the red circles are the obstacles.

• if tr3, tr4, and tr5 are all equal to 0, the strategy assigned is called "d1t1-d2t2", it
means that the new target C∗

1 is assigned to drone1, then, once this is reached,
target C∗

2 is assigned to drone2. It is possible to visualize it in a proper way in the
Figure (3.15).

Figure 3.15: A representation of strategy "d1t1-d2t2", where T4 corresponds to the green triangle,
T5 corresponds to the red triangle and T3 is shown as the orange triangle.

• if T1, T2, and T5 are all equal to 0, the strategy assigned is called "d2t2-d1t1". This
means that first, new target C∗

2 is assigned to drone2 as goal, after that the target is
reached, C∗

1 is assigned to drone1 as goal. This strategy is shown in Figure (3.16).
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Figure 3.16: A representation of strategy "d2t2-d1t1", where T2 is the green triangle, T5 is
represented as the red triangle and T1 corresponds to the orange one.

• if none of the previous conditions is met, the chosen strategy is "backtrack2".

The aforementioned strategies are summarized and explained in the details in the next
subsection (3.5.2).
In the case of NF = Nd = 3, the number of triangles considered increase, as we discuss
before. In fact, we have two sets, G1 = {P1,C

∗
1 ,P2,C

∗
2}, and G2 = {P2,C

∗
2 ,P3,C

∗
3}, as

it is possible to see in Figure (3.17).

Figure 3.17: A representation of triangle method. In red and green the obstacles. C∗
i represent

the target of drone i. Blue segments represent the final position of the tethers, while black ones
represent the actual position.

Nine triangles have to be introduced, eight from the two set plus the terminal one. They
are schematically resumed in table (3.2):
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T1 P1 P2 C∗
1

T2 P2 C∗
1 C∗

2

T3 P2 P3 C∗
2

T4 P3 C∗
3 C∗

2

T5 P2 C∗
2 C∗

3

T6 P3 P2 C∗
3

T7 P2 P1 C∗
2

T8 P1 C∗
1 C∗

2

T9 P3 P0 C∗
3

Table 3.2: An example of triangles when drone1, drone2 and drone3 are free

Similarly to the previous case case, the same LP, which provides a feasibility check, has
to be solved. It finds when an obstacle is present or not in triangles, meaning whenever a
triangle is free or it is occupied. The same vector of before, tr, which contains logic vari-
ables, is introduced: tr =

[
tr1 tr2 tr3 tr4 tr5 tr6 tr7 tr8 tr9

]
, where tri stands

for the i-th triangle. As before, tri equal to 0 means that triangle Ti is free, otherwise it
means that it is occupied. The options are again explored using the vector tr:

• if the vector tr is composed by all 0 elements, then the triangles are free. As a
consequence, the new targets C∗

i , i = 1, . . . , 3 are assigned as goal directly. The
strategy "direct follow3" is chosen. An example of this strategy is described in
Figure (3.18).

Figure 3.18: A representation of "direct follow3" strategy. The nine triangles has to be considered
all free. The colored circles are the obstacles.

• when tr1, tr2, tr3, tr4 and tr9 are 0, the strategy which is chosen is called "d1t1-d2t2-
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d3t3". This strategy assigns target1 as goal1, then, after the first target is reached,
target2 is assigned as goal2. Finally, target3 is assigned as goal3. The Figure (3.19)
represents this strategy

Figure 3.19: A representation of "d1t1-d2t2-d3t3" strategy. Here, T1 is the blue triangle, T2 is
represented as the green triangle, T3 corresponds to the red one, T4 is the one with orange color
while, T9 has grey color.

• when tr1, tr2, tr5, tr6 and tr9 are 0, the strategy which is picked is called "d1t1-
d3t3-d2t2". This strategy assigns target C∗

1 as goal1, then, after reaching it, C∗
2 is

assigned as goal2. Finally, whenever the previous target is reached, C∗
3 is assigned

as goal3. This strategy is shown in Figure (3.20).

Figure 3.20: A representation of "d1t1-d3t3-d2t2" strategy. Here, T1 is the blue triangle, T2 is
represented as the green triangle, T5 corresponds to the red one, T6 is the one with orange color
while, T9 has grey color.

• when tr3, tr6, tr7, tr8 and tr9 are 0, the chosen strategy is called "d2t2-d1t1-d3t3".
This strategy assigns initially target C∗

2 as goal2, then, after it is reached, target C∗
1

is assigned as goal1. Finally, target C∗
3 is assigned as goal3. This strategy is well

shown in Figure (3.21).
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Figure 3.21: An example of strategy "d2t2-d1t1-d3t3". In this strategy, T8 is the blue triangle,
T7 is the one with green color, T3 corresponds to the red one, T6 is represented as the orange
triangle, while T9 has grey color.

• when none of these conditions is satisfied, then, the adopted strategy is "backtrack3"

Even in this case, the strategies seen before are better explained in the next subsection
3.5.2. As it is said, this are the results obtained with Nd = 3. For a generic system,
composed by Nd and Nd ≥ 4, the same steps need to be followed. As we can see, every
strategy proposed here, differs from another one because of the space occupied by the
triangles (see Figures (3.15) and (3.16) for Nd = 2, and Figures (3.19),(3.20),(3.21) for
Nd = 3). In fact, any other combination of triangles does not produce any new strategy,
because they occupy the same space. An overview of all treated strategies is presented in
the table (3.3).

Overview
NF STRATEGY TYPE

1
direct follow1 follow
backtrack1 backtrack

2

direct follow2 follow
d1t1-d2t2 follow
d2t2-d1t1 follow

backtrack2 backtrack

3

direct follow3 follow
d1t1-d2t2-d3t3 follow
d1t1-d3t3-d2t2 follow
d2t2-d1t1-d3t3 follow
backtrack3 backtrack

Table 3.3: Overview of strategies
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3.5.2. Backtrack/Follow strategy

In this subsection it is explained in the detail how the navigation algorithm behaves with
"backtrack" or "follow" strategies type (see Table (3.3)) according to subsection (3.4.2).
The first group of follow type strategies are "direct followi" i = 1, . . . , Nd. As explained
in subsection (3.5.1), this essentially means that if one of these strategies is chosen, the
vector of goal changes in xgi = C∗

i , ∀i = 1, . . . , NF , while drones j, j = 1, . . . , Nd − NF ,
remain still. The position constraints (3.32g), needed by FHOCP are constructed as:

xi1,2(j|k) ∈ Di ∀j ∈ NN
0 , ∀i ∈ NNd

1 (3.62)

An example of "direct follow2" strategy is provided in Figure (3.22).

Figure 3.22: An example of "direct follow2" strategy. The colored triangles represent the actual
position of the drones after the first path following. The black one is the ground station, while
the big colored dots represent their target. In this strategy the vector xg is constructed in this
way: xg1 = C∗

1 ,xg2 = C∗
2 ,xg3 = P3.

The second group is described by the general strategy "diti-djtj", i, j = 1, . . . , Nd − 1,
i ̸= j. In this type of strategy, first, xgi = C∗

i becomes the goal of dronei, while dronej
remains still, xgj = Pj. After that the previous target is successfully reached, the target
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C∗
j is assigned as goal of the dronej: xgj = C∗

j . Position constraints, in this case are:

xi1,2(j|k) ∈ Di ∀j ∈ NN
0 , ∀i ∈ NNd

1 (3.63)

An example of "d2t2-d1t1" strategy is reported in Figure (3.23).

Figure 3.23: An example of "d2t2-d1t1" strategy. The colored triangles represent the actual
position of the drones after the first path following. The black one is the ground station, while
the big colored dots represent their target. In blue the obstacles. On the left, the first step of
this strategy, where the vector xg is constructed in this way: xg1 = P1,xg2 = C∗

2 ,xg3 = P3.
On the right, the vector xg changes as soon as the drone2 is very close to its target. In fact, it
becomes xg1 = C∗

1 ,xg2 = C∗
2 ,xg3 = P3.

It is important to remark that this is the correct strategy to apply to the system in this
case. If the strategy algorithm had chosen an alternative strategy, this would have pro-
voked the collision between the tether2 and the obstacle on the upper-left in the Figure
(3.23).
The third group is described by the general strategy "diti-djtj-dltl", with i, j, l = 1, . . . , Nd,
i ̸= j, j ̸= l, i ̸= l). In the first part, the target of dronei is assigned as goal, xgi = C∗

i ,
while dronej and dronel remain still in their positions: xgj = Pj and xgl = Pl. After that
the previous target is successfully reached, the target C∗

j is assigned as goal of the dronej,
xgj = C∗

j , while dronel continue to remain still: xgl = Pl. Finally, When drone j reaches
its target, it is finally possible to assign C∗

l as goal of dronel, xgl = C∗
l . Even in this last

case, the position constraints of FHOCP are constructed as:

xi1,2(j|k) ∈ Di ∀j ∈ NN
0 , ∀i ∈ NNd

1 (3.64)

On the other hand, if one of the backtracki strategy is chosen, things are a little bit more
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complicated. In all the backtrack strategies a path following approach, similar to the one
presented in subsection (3.4.2) is used. First, the path is created, recalling that in this
case the initial point of the path is the position of leader drone P1, while the final point
is the position of the ground station P0. Recalling the general matrix Γ in (3.35), where
each row represent the coordinates of a point of the path, we can write the matrix Γ as:

Γ =



P x
1 P y

1

P x
1 − τ cosΨNd−1 P y

1 − τ sinΨNd−1

P x
1 − 2τ cosΨNd−1 P y

1 − 2τ sinΨNd−1

...
...

P x
2 − µ1τ cosΨNd−2 P y

2 − µ1τ sinΨNd−2

...
...

P x
Nd

− µNd
τ cosΨ0 P y

Nd
− µNd

τ sinΨ0

...
...

P x
0 P y

0



(3.65)

where recalling to subsection (3.4.2), Ψi, i = 0, . . . , Nd − 1 corresponds to angle between
tether i and x-axis, τ is a user-defined variable and µi is a coefficient which guarantees
that all the points on the path are spaced by τ meters. An example of path in backtrack
strategy is represented in Figure (3.24)

Figure 3.24: An example of path obtained during baktracki strategy

To choose the proper value to assign as drone goal, vector t =
[
t1 . . . ti . . . tNd

]T
,
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has to be initialized correctly. A proper initialization for the backtrack phase can be

t =


t

t+ 4
...

t+ 4(Nd − 1)

 (3.66)

where, the expression Γ(t(i)) means to select the row t(i), i = 1, . . . , Nd, from the matrix
Γ. Choosing the value t means to select a proper point of the path as goal for the drone1.
From the choice of t, the vector t is entirely constructed. The next concepts to introduce
is the generic behaviour of the system during the "backtracki" strategy. When one of the
"backtracki" strategy is chosen, it means that we want to have j drones, j = 1, . . . , i,
backtracked towards i + 1 drone (except for the strategy "backtrackNd

" where we want
all drones i, i = 1, . . . , Nd, backtracked towards the ground station). In Figure (3.25) we
can see the behaviour of this strategy.

Figure 3.25: An overview of backtracki strategies
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In this Figure, we can see how the position constraints and the vector xg, which are used
in the FHOCP, are changed during the simulation, according to specific rules presented
in the column "STEPS". The variable ϵ is a user-defined variable. For what concerns the
"exit conditioni", i = 2, . . . , Nd, it represents a valid condition to terminate the backtrack
algorithm. In fact, in some cases, it is not necessary that this algorithm continues working,
since it may happen that the leader drone can see a free target. To express this condition is
necessary to define some triangles. If a "backtracki", with i ≥ 2, algorithm is chosen, then,
we have to define NT = i-1 triangles that are created from P1 and Pj,C∗

j , j = 2, . . . , i. If
the strategy "backtrack1 is chosen, the exit condition is not present. The triangles defined
in this way are summarized in the table (3.4).

TE1 P1 P2 C∗
2

TE2 P1 P3 C∗
3

...
...

...
...

TENT
P1 PNT

C∗
NT

Table 3.4: An example of triangles computed during backtrack algorithm

At this point, a feasibility check has to be done to explore which triangles are free and
consequently, which target can be reached by the leader drone. To do that, the same LP
presented in subsection (3.4.3) is solved with the aforementioned triangles. The vector
ϱ =

[
ϱ1 ϱ2 . . . ϱNT

]
is filled with the output of the feasibility check, where ϱi is a

boolean variable: if it is 1, it means that TEi
is not free, if it is 0 it means that the

triangle is free. The exit conditions are described in the figure (3.26)

Figure 3.26: An overview of the exit conditions

When the exit condition is true, the backtrack algorithm is terminated in this way:

xgi = Γ
(
t(i)

)T
, ∀i = 1, . . . , Nd, (3.67)

where t(i) is the index which represents the point on the path which fulfill all the conditions
reported in Figures (3.25) and (3.26). An example of "backtrack2" is depicted in Figure
(3.27).
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Figure 3.27: An example of "backtrack2" strategy. The colored triangles represent the drones,
while the black one is the ground station. The colored big dots are the new targets computed
by the offline path planner. In blue are depicted the obstacles. On the left, it is represented the
first iteration of the path following. On the right, the backtrack strategy terminates because the
exit condition is respected, in fact, the triangle which has P1,P2,C

∗
2 as vertices, is free.

An example of "backtrack3" is given in Figure 3.28.

Figure 3.28: An example of "backtrack3" strategy. The colored triangles represent the drones,
while the black one is the ground station. The colored big dots are the new targets computed
by the offline path planner. In blue are depicted the obstacles. On the left, it is represented the
first iteration of the path following. On the right, the backtrack strategy terminates because the
exit condition is respected, in fact, the triangle which has P1,P3,C

∗
3 as vertices, is free.

At this point, the backtrack algorithm is completed and a new path following algorithm
is needed to bring the drones to their relative targets. The same steps of the subsection
(3.4.2) are done. Considering P0 as the initial point of the path and C∗

Nd
as the final
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point, it is possible to compute matrix Γ and the vector ι:

Γ =



P x
0 P y

0

P x
0 + τ cos(Ψ0) P y

0 τ sin(Ψ0)

P x
0 + 2τ cos(Ψ0) P y

0 + 2τ sin(Ψ0)
...

...
C∗,x

Nd
+ µ1τ cos(Ψ1) C∗,y

Nd
+ µ1τ sin(Ψ1)

...
...

C∗,x
2 + µNd−1τ cos(ΨNd−1) C∗,y

2 + µNd−1τ sin(ΨNd−1)
...

...
C∗,x

1 C∗,y
1



, ι =



0
...
...
0

1
...

Nd − 1
...

Nd − 1



, (3.68)

where Ψi, i = 0, . . . , Nd − 1 corresponds to angle between tether i and x-axis, τ is a
user-defined variable and µi is a coefficient which guarantees that all the points on the
path are spaced by τ meters. The new vector ι is constructed in such a way to connect
the point composing the path to the tether they belong. An example of path creation
with the vector ι is depicted in Figure (3.29).

Figure 3.29: An example of path with vector ι

Now, to initialize the vector t after the backtrack phase, we have to recall the exit condition
explained before. In fact, starting from them, the vector is initialized. As we know, if
the triangle with vertices P1, Pi and C∗

i is considered free during the backtrack phase,
it means that the target C∗

i is reachable for the leader drone. Furthermore, we just have
to select from the vector ι the index corresponding to the point of the path which comes
before the target C∗

i , which we call ι:

t =


ι

ι− 4
...

ι− 4(Nd − 1)

 , xgi =
[
Γ(t(i))T

]
, ∀i = 1, . . . , Nd (3.69)
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An example of second path following after the backtrack phase is reported in Figure
(3.30).

Figure 3.30: An example of path following after backtrack phase. The colored triangles represent
the drones, while the black one is the ground station. The colored big dots are the new targets
computed by the offline path planner. In blue are depicted the obstacles. As we can see the
target C∗

3 is considered reachable for the leader drone. In fact, the goal of the drones are assigned
starting from ι, the index related to the point of the path which precedes the target C∗

1 .

Otherwise, if the backtrack phase is terminated for distance reason (see Figure 3.25)) and
not with reference to exit condition, then, vector t and vector of goals are initialized in
the same manner of the subsection (3.4.2):

t =


t+ 4(Nd − 1)

...
t+ 4

t

 ,xgi =
[
Γ(t(i))

]T
, ∀i = 1, . . . , Nd (3.70)
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In this chapter the results obtained in numerical simulations are presented. The simula-
tions are done with MATLAB and using different solvers. More in the details, the MAT-
LAB function "fmincon", which is a Sequential Quadratic Programming (SQP) solver,
is used to solve the non-linear offline path planner presented in section (3.2) (see (3.3))
and in section (3.5) (see (3.53)). In this solver, the gradient is calculated with Central
finite Differences method (CD), to have a more precise value of the gradient, while BFGS
(Broyden, Fletcher, Goldfarb, Shanno) method is used to calculate the hessian. This
solver has many parameters which can be modified in order to obtain a different optimal
solution. In fact it is possible to increase the maximum step length, especially when the
target point of the leader is far away from the initial position of the drones. CPLEX
solver [6] is used to solve the LP related to the optimal ellipse in section (3.3) (see (3.16)),
the problem of obstacle check (3.4.3) (see (3.42)) and the problem of triangle method in
subsection (3.5.1). In conclusion, YALMIP [9] with "fmincon" set as solver is used to
solve the FHOCP seen in section (3.4) (see (3.32)) and in section (3.5). The script, every
sampling time Ts, solves these problems and generates the new reference for the drones.
Geometric parameter of ellipses used in environment are resumed in table (4.1).

Ellipse x0 (m) y0 (m) ae be α (rad)

1 3.5 3 1.5 1 0
2 12 11 2 1 0
3 11.5 4 2.5 1 π/2

4 7 5 1 1.25 π/2

5 6.5 9 2 1 π/4

6 1 9 1 2.5 π

Table 4.1: Geometric properties of obstacles

where x0, y0 are (x, y) coordinate of the ellipse center, a, b are respectively the semi-major
and semi-minor axes, α is the rotation angle with respect x axis. The parameter used in
simulations can be resumed in the Table (4.2).
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Meaning Value

Ts sampling time 0.5s

N prediction horizon of FHOCP 5

demergency offset used in polytope reduction 0.5m

l maximum extension of the cable 8m

l minimum extension of the cable 2m

d minimum permitted distance between drones 1.5m

V maximum velocity of drones 1m/s

A maximum acceleration of drones 2m/s2

δ parameter used in offline path planner 1m

σ parameter used in offline path planner 1m

υ1 increment used in follow strategy 2

υ2 increment used in backtrack strategy 1

Table 4.2: Simulation parameters

4.1. Known environment

The simulations presented in this section are related to scenarios where all the obsta-
cles are known by the drones, so the first offline optimisation problem finds an optimal
configuration which is for this reason an obstacle free path. The initial condition of the
drones and their respectively target are presented in Figure (4.1). The solver finds a set of
admissible configuration starting from the target assigned to the leader drone. From that,
the path following approach permits to create a discrete path to be followed. The solver
computes at each Ts the optimal trajectory which the drones have to follow, considering
the restricted polytope as feasible convex area. The first numerical simulation we present
starts with the drones and the ground station in these positions:

P0 =

[
0

0

]
, P1 =

[
3

0

]
, P2 =

[
1.5

0

]
, P3 =

[
0.5

1.5

]
,

while the targets assigned to the leader drone are:

Ptarget1 =

[
11.5

8.5

]
, Ptarget2 =

[
14

6

]
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In Figure (4.2) are shown the optimal predicted trajectory found by the solver over the
horizon N .

Figure 4.1: A representation of initial conditions of the drones, which are the colored triangles,
the big colored dots represent the targets, while the black dots describe the path. The ellipses
depicts the obstacles. The dashed lines are the discretized optimal ellipses, from whom are
retrieved the colored areas which correspond to the convex approximation of the free space.

Figure 4.2: A representation of the planner in action. Big colored dots denote the targets C∗
i ,

while the small colored dots are tracked goal of the drones xgi , line with ’*’ are the predicted
trajectory over the horizon N . Points represent the merged LiDAR readings while the colored
surfaces are the polytopes. In blue the known obstacles.
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After some iterations the targets are perfectly reached by the drones as we can see in
Figure (4.3).

Figure 4.3: An example of path following during simulations. Big colored dots are the targets,
denote the tracked goal of the drones.

In Figure (4.4) are depicted the plots related to the position of the drones during the
simulation. Similarly, the constraints on maximum velocity are respected as well, as we
can see in Figure (4.5). The trajectories and the final configuration reached after the first
path following are shown in Figure (4.6).

Figure 4.4: A representation of the position of the drones during the simulation. Dashed lines
are the relative target, dots represent optimal input u∗.
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Figure 4.5: A representation of the velocities of the drones during the simulation. The black
dashed line represent the reference velocity, while the dashed colored lines depict the boundaries.

Figure 4.6: Representation of trajectories and final configuration. In blue are represented ob-
stacles. On the left, the three colored lines represent the trajectories done by the drone during
the simulation. On the right, it is depicted the final position of the drones, which are shown
with colored triangles, while the ground station is the black one.

At this point, when the first path following is concluded, the second offline path planner
receives in input the second target assigned to the leader drone and is able to find a
new optimal obstacle free configuration C∗ for all the drones as we can see in Figure
(4.7). Backtrack type is chosen by the strategy algorithm, more in the details backtrack3

strategy. In fact, the solution of offline path planner consists on moving the three drones.
Every Ts, the algorithm checks when it is possible to stop the strategy. The backtrack
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strategy is depicted in Figure (4.8).

Figure 4.7: A representation of second offline optimisation. The three stars represent the new
target of the drones, while the triangles depict their actual position, except for the black one
which is the ground station. In blue are shown the obstacles.

Figure 4.8: A representation of backtrack strategy. The triangles represent the actual drone
position, while the big colored dots represent their new target. The points are the LiDAR
merged readings Li,i+1(k), while the colored surfaces are the polytopes Dj(k). On the left, a
plot of the simulation, on the right, the target C∗

1 is reachable by the leader drone, so the exit
condition is true and the backtrack phase is terminated.

The first iteration of the second path following is illustrated in the Figure (4.9). As we
can see, since the target C∗

3 is reachable for the leader, it means that the goal of the
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leader, xg1 , is set as the point of the path which comes before the target. The other goals
are simply scaled starting from that one, as we know from the theory.

Figure 4.9: A representation of the second path following. The drones moves toward their
goals, which are depicted as small colored dots, while small black dots represent the path to be
followed. Big dots denote the tracked optimal configuration C∗, line with ′∗′ are the predicted
trajectories calculated over the horizon N .

The second path following approach finishes after some iterations, in fact the prefixed
targets are perfectly reached by the drones. The Figure (4.10) shows this process.

Figure 4.10: A representation of the second path following

The Figure (4.11) depicts drones position during backtrack and second path following,
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while Figure (4.12) represent how the velocity changes during the simulation. The con-
straints on velocity as it can be seen are totally respected. Trajectories and final config-
uration reached by drones are reported in Figure (4.13)

Figure 4.11: A representation of the position of the drones during the simulation. Dashed lines
are the relative target, dots represent optimal input u∗.

Figure 4.12: A representation of the velocities of the drones during the simulation. Colored
dashed lines correspond to the boundaries, while colored dots are the velocity references.
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Figure 4.13: Representation of trajectories and final configuration of the drones involving back-
track strategy and second path following step. In blue are represented obstacles. On the left,
the three colored lines represent the trajectories done by the drone during the simulation. On
the right, it is depicted the final position of the drones, which are shown with colored triangles,
while the ground station is the black one.

The constraints related to the distance between drones as it can be seen in Figure (4.14)
are respected as well. In fact, the minimum distance is sat to be d = 1.5m (see Table
(4.2)). The computational time of each iteration (figure 4.15) is quite low, in fact in all
the simulation the mean value is about 0.2s.

Figure 4.14: Representation of distance between drones during the simulation. On the left, the
distance in the first path following, while on the right, the distance in backtrack and second
path following phases.
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Figure 4.15: A representation of the computational time at each iteration. On the left, optimi-
sation time of the first path following, while on the right computational time of backtrack and
second path following. In blue are reported the time of each iteration, dashed line represents
the mean value.

4.2. Unknown obstacles

The second set of simulations presented concern unknown obstacles in the environment
which are not known a priori by offline optimisation algorithm. It means that the optimal
target points are not found taking into account these obstacles. In this example the
function which has to check unknown obstacles is tested. The initial conditions of the
drones are different from the ones seen in the previous example:

P0 =

[
0

0

]
, P1 =

[
−1.5

0

]
, P2 =

[
−1.5

1.5

]
, P3 =

[
−3.5

2

]
,

while the targets assigned to the leader drone are:

Ptarget1 =

[
1

14

]
, Ptarget2 =

[
10

15

]

The first path following is executed and the drones reach their targets even if an unknown
obstacle is present near the target of the leader drone. In the Figure (4.16) are shown the
initial conditions of the drones.
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Figure 4.16: Representation of initial conditions of the drones with unknown obstacles. In
blue are represented known obstacles, while in red the unknown ones. Stars are the optimal
configuration found by first offline optimisation, while triangles are the drones initial position,
except for the black one, which is the ground station.

The path following approach brings the drones to their targets C∗
i as we can see in Figure

(4.17).

Figure 4.17: A representation of path following with unknown obstacles. In blue are represented
known obstacles, while in red the unknown ones. Big colored dots are the targets of the drones,
while small colored dots represent their goals.

The first path following lasts some iterations, when it is terminated the targets are per-
fectly reached by the drones as shown in Figure (4.18).
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Figure 4.18: A representation of trajectories and final configuration after path following with
unknown obstacles. In blue are represented known obstacles, while in red the unknown ones.
Big colored dots are the targets of the drones, while small colored dots represent their goals.

Now, the second offline planner, starting from the actual position of the drones, finds a
new optimal configuration C∗, as it is shown in Figure (4.19).

Figure 4.19: A representation of second offline optimisation with unknown obstacles. The stars
represent the targets of the drones, while the triangles depict their actual position, excluding
the black one, which represents the ground station. In blue are shown known obstacles, while
in red unknown ones.

The red obstacle, on the right of the figure, which is unknown for the offline algorithm,
is on the path. Even in this case the solution involves three drones moved, in fact, the
strategy backtracking3 is chosen, since the obstacles does not permit any other option.
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This strategy is subsequently terminated once the exit condition is satisfied: drone3 is close
to the ground station. In the Figure (4.20) it is depicted the aforementioned strategy.

Figure 4.20: A representation of backtrack strategy with unknown obstacles.

Once the backtrack approach is terminated, the second path following starts. As expected,
at a certain point during the simulation the leader drone encounters the unknown obstacle
on the path. It is at this point that the function which checks obstacles, is activated.
Automatically the actual position of the drones becomes their targets: xgi = Pi, i =

1, . . . , 3. In fact, after some iterations, the drones stop at that point. This process is is
depicted in the Figure (4.21).

Figure 4.21: A representation of second path following. The stars represent the targets of the
drones found by offline optimisation, while big dots depict their actual targets, imposed by
obstacle check function. In red are shown unknown obstacles, while in blue the known ones.

In the second numerical simulation that we present the positions of the drones and the
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target assigned to the leader are:

P0 =

[
0

0

]
, P1 =

[
0.5

1.5

]
, P2 =

[
1.5

0

]
, P3 =

[
3

0

]
,

while the targets assigned to the leader drone are:

Ptarget1 =

[
11

8.5

]
, Ptarget2 =

[
14

6

]

As we can see from the Figure (4.22), the unknown obstacle is not on the path, it only
occludes the range of sensors. As a consequence, the convex approximation of the free
space is relatively smaller with respect to the same example proposed in "obstacle free"
version, in section 4.1.

Figure 4.22: A representation of second path following. The stars represent the targets of the
drones found by offline optimisation, while big dots depict their actual targets, imposed by
obstacle check function. In red are shown unknown obstacles, while in blue the known ones.

The path following approach terminates whenever the targets are reached by the drones.
The offline planner finds the same three optimal configuration of the "obstacle free"
example. The result is reported in the Figure (4.23).
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Figure 4.23: A representation of second offline optimisation. The three stars represent the new
target of the drones, while the triangles depict their actual position, except for the black one
which is the ground station. In blue are shown the obstacles.

Since the environment is full of obstacles, the unique proper strategy which can be chosen
is the backtrack3 one. The backtrack approach in this case terminates because the target
C∗

3 can be reached by the drone. This situation is depicted in Figure (4.24).

Figure 4.24: A representation of backtrack strategy with unknown obstacles. On the left, the
leader drone and drone2 backtrack towards drone3. On the right, the algorithm is terminated
because the exit condition is met.

Finally, the online path following algorithm has the aim to bring the drones to their
respective target, nonetheless the unknown obstacle. In the Figure (4.25) it is reported
this situation.
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Figure 4.25: A representation of the second path following algorithm with unknown obstacles.
On the left, it can be seen that the goal of the leader is assigned as the point which comes before
the target C∗

3 . On the right, the algorithm continues working until all the targets are reached.

As we can see, the aforementioned path following algorithm is working even if an un-
known obstacles is present. Since the focus in this section is related to the simulation
environment provided with unknown obstacles, figure related to the drones position and
velocity, computational time and distance constraints have been omitted. They are very
similar to the previous example in section (4.1). All the constraints are satisfied and the
computational time is low, with a mean value about 0.2s.
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5| Conclusions and future

developments

An approach to navigate systems of tethered quadcopters in a partially known environ-
ment has been presented, where an offline optimization problem computes the optimal
configuration to reach a target considering the known obstacles. A real-time MPC al-
gorithm allows to reach the desired configuration, involving some backtrack process if
needed. The algorithm is able to stop the chain of drones if an insurmountable obstacle
is present or to decide which is the better strategy which the system has to follow. A
novel approach to approximate the free-space where the drones can move with a convex
polytope able to guarantee that the vehicles and tethers remain in an obstacle-free area
has been used. In addiction, a strategy able to guarantee the existence of a feasible prob-
lem at each time step and consequently guarantee obstacle avoidance is reported. The
current research aim to extend this approach with a 3D scenario, including uncertainty
and model mismatch quantification, or to implement this approach on a real system. The
other possibility is to distribute the problem between the different vehicles and include
dynamic obstacles with a proper algorithm of obstacle avoidance.
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