
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in
Computer Science And Engineering - Ingegneria Informatica

Reinforcement Learning Force Field

Master Thesis of:
Alireza Ketabdari

Advisor: Prof. Marco Masseroli
Co-advisors: Prof. Modesto Orozco
Tutor: Dr. Milosz Wieczor
Year 2023

i

Abstract

Molecular Dynamics (MD) simulations play a pivotal role across diverse scientific disci-
plines, with their accuracy being contingent on the precision of Force Field parameters.
Traditional optimization techniques, such as Gradient Descent (GD), often grapple with
challenges like local minima entrapment and the intricacies of high-dimensional param-
eter spaces. This thesis introduces a groundbreaking approach to address these chal-
lenges, leveraging Reinforcement Learning (RL) and the Linear Q-function approxima-
tion (LQFA). This method offers a computational advantage by approximating Q-values
using a linear function, eliminating the need for extensive Q-tables. The study empha-
sizes the helicity of the Alanine Oligopeptide (20-mer) as a primary metric, a measure of
the peptide’s propensity to adopt a helical conformation. Preliminary results have shown
promising helicity values, with the potential to approach the maximal helicity value of
16 under optimal conditions. The research also delves into prospective developments,
suggesting strategies to inch closer to this maximal helicity. In essence, this work paves
the way for more accurate and efficient parameter optimization in MD simulations, with
implications for broader applications in the scientific community.

Keywords: Reinforcement Learning, Force Field, Q-function, Q-learning, Parameter
optimization, Gradient Descent, Helicity, Alanine Oligopeptide, Linear Q-function ap-
proximation, Molecular dynamics, State-action pair, Feature vectors, Weight vectors, N-
dimensional parameter space.

iii

Abstract in lingua italiana

Le simulazioni di dinamica molecolare svolgono un ruolo fondamentale in diverse disci-
pline scientifiche, con la loro accuratezza che dipende dalla precisione dei parametri del
campo di forza. Tecniche di ottimizzazione tradizionali, come la Discesa del Gradiente,
spesso affrontano sfide come l’intrappolamento in minimi locali e le complessità degli spazi
parametrici ad alta dimensionalità. Questa tesi introduce un approccio rivoluzionario per
affrontare queste sfide, sfruttando l’Apprendimento per Rinforzo (RL) e l’approssimazione
della Funzione Q-lineare. Questo metodo innovativo offre un vantaggio computazionale
approssimando i valori Q con una funzione lineare, eliminando la necessità di estese tabelle
Q. Lo studio enfatizza l’elicità dell’Oligopeptide Alanina (20-mer) come metrica primaria,
una misura della propensione del peptide a adottare una conformazione elicoidale. I risul-
tati preliminari hanno mostrato valori di elicità promettenti, con il potenziale di avvici-
narsi al valore massimo di elicità di 16 in condizioni ottimali. La ricerca approfondisce
anche gli sviluppi prospettici, suggerendo strategie per avvicinarsi a questa elicità mas-
sima. In sostanza, questo lavoro apre la strada a un’ottimizzazione dei parametri più
accurata ed efficiente nelle simulazioni di dinamica molecolare, con implicazioni per ap-
plicazioni più ampie nella comunità scientifica.

Parole chiave: Apprendimento per Rinforzo, Campo di Forza, Funzione Q, Q-learning,
Ottimizzazione dei Parametri, Discesa del Gradiente, Elicità, Oligopeptide di Alanina,
Approssimazione Lineare della Funzione Q, Dinamica Molecolare, Coppia Stato-Azione,
Vettori di Caratteristiche, Vettori di Peso, Spazio Parametrico N-dimensionale.

v

Acknowledgements

I would like to extend my deepest gratitude to Dr. Milosz Wieczor, my direct supervisor
for the Reinforcement Force Field (FF) project. His role transcended that of a mere
supervisor; he diligently fulfilled all supervisory responsibilities and, beyond that, became
a close confidant. His invaluable knowledge and vast experience greatly enriched both
my personal growth and the progression of the project. I am profoundly thankful for the
significant impact he has had on my academic journey.

vii

Contents

Abstract i

Abstract in lingua italiana iii

Acknowledgements v

Contents vii

List of Abbreviations xi

1 Introduction 1

2 Background 3
2.1 Optimization of Empirical Force Fields by Parameter Space Mapping: A

Single-Step Perturbation Approach . 3
2.1.1 Summary of the paper . 3
2.1.2 Goals of the paper . 3
2.1.3 Methods and Implementation . 3
2.1.4 Results . 4
2.1.5 Comparison with the thesis . 4
2.1.6 Conclusion . 4

2.2 Empirical optimization of molecular simulation force fields by Bayesian
inference . 4
2.2.1 Summary of the paper . 5
2.2.2 Goals of the paper . 5
2.2.3 Methods and Implementation . 5
2.2.4 Results . 5
2.2.5 Comparison with the thesis . 5
2.2.6 Conclusion . 6

viii | Contents

2.3 Accurate machine learning force fields via experimental and simulation data
fusion . 6
2.3.1 Summary of the paper . 6
2.3.2 Goals of the paper . 6
2.3.3 Methods and Implementation . 6
2.3.4 Results . 7
2.3.5 Comparison with the thesis . 7
2.3.6 Conclusion . 7

2.4 Deep Reinforcement Learning for Optimization 8
2.4.1 Summary of the Paper . 8
2.4.2 Goals of the Paper . 8
2.4.3 Methods and Implementation . 8
2.4.4 Results . 8
2.4.5 Comparison with the thesis . 9
2.4.6 Conclusion . 9

2.5 Machine Learning Force Fields . 9
2.5.1 Summary of the paper . 9
2.5.2 Goals of the paper . 9
2.5.3 Methods and Implementation . 10
2.5.4 Results . 10
2.5.5 Comparison with the thesis . 10
2.5.6 Conclusion . 10

3 Thesis Goals 11

4 Preliminary 13
4.1 Molecular Dynamics Simulations . 13
4.2 Force Field in Molecular Modeling . 16

4.2.1 Force Field equation: Physical Formulation 16
4.2.2 Force Field Parameter selection . 18

4.3 Reinforcement Learning . 20
4.3.1 Reinforcement Learning: Q-Learning 22
4.3.2 Reinforcement Learning: Linear Q-function Approximation 23

5 Model 27
5.1 Definition and modeling of the problem . 27

5.1.1 Parameter Space . 27
5.1.2 States . 28

| Contents ix

5.1.3 Agent . 28
5.1.4 Actions . 29
5.1.5 Policy . 29
5.1.6 Rewards . 30
5.1.7 Q-function . 34
5.1.8 Gradient Descent . 35
5.1.9 Initialization . 38

6 Implementation and Coding 43
6.1 pre-programming . 44

6.1.1 Biological Files and Entities . 44
6.1.2 Primary and prepared functions . 46

6.2 Project Implementation: Entities, Functions and Algorithms 47
6.2.1 System Object . 47
6.2.2 RL_qfunction Object . 52

7 Results 57
7.1 Gradient Descent Approach With Real Rewards 58
7.2 2-Dimensional Linear Q-function Approximation with artificial rewards . . 61
7.3 N-Dimensional Linear Q-function Approximation with artificial rewards . . 66
7.4 Complete N-Dimensional RL Model With Real Rewards 71

8 Prospective Developments 77
8.1 Utilizing Neural Networks in RL for Parameter Optimization 77
8.2 Exploring Alternative RL Algorithms and Initialization Techniques for En-

hanced Optimization: . 78
8.3 Incorporating Additional Observables into the Reward Function for a Com-

prehensive Evaluation: . 80
8.4 Adaptive Policy Modification for Enhanced Convergence and Performance 81
8.5 Incorporating Multi-Objective Optimization for a Holistic Approach: . . . 81
8.6 Utilizing Ensemble Learning for Robust Parameter Optimization: 83
8.7 Investigating Alternative and Challenging Parameters in FF Equations . . 84
8.8 Enhancing Scalability through Parallelization and Distributed Computing: 84
8.9 Conclusion . 85

9 Conclusion 87

Bibliography 89

List of Figures 95

List of Tables 101

xi

List of Abbreviations

MD Molecular Dynamics
RL Reinforcement Learning
FF Force Field
LQFA Linear Q-function Approximation
GD Gradient Descent

1

1| Introduction

Molecular Dynamics (MD) simulations are foundational in various scientific fields, and
the accuracy of these simulations relies heavily on the precision of Force Field (FF) pa-
rameters. However, the optimization of these equations is a complex task, often involv-
ing numerous parameters. Traditional methods like Gradient Descent (GD) have shown
limitations, such as getting trapped in local minima and challenges in handling high-
dimensional parameter spaces.

In response to challenges in optimizing FF equations, this thesis presents a novel Rein-
forcement Learning (RL) approach using the Linear Q-function Approximation (LQFA).
Unlike traditional Q-learning, which relies on extensive Q-tables, this method employs a
linear function to approximate Q-values, addressing the computational demands of vast
state and action spaces.

The Q-value for a state-action pair is deduced as a linear mix of its associated feature
values, which can be either designed or extracted from the environment. This approach
uses feature and weight matrices, bypassing the need for individual Q-value storage.

Central to this method is the weight matrix initialization. In this research, the n-
dimensional parameter space is grid-discretized, with each point linked to a weight. Proper
weight initialization ensures the algorithm’s efficiency, preventing convergence to local
maxima and capturing state-action relationships effectively.

The methodology reduces the dimensionality of the parameter space by taking two steps,
narrowing the focus to sigma and epsilon parameters, and reducing the number of atom
types in the system. The parameters space is modeled as an N-dimensional Cartesian
coordinate system, discretized into a grid-like structure.

The Results chapter provides a detailed account of the project’s achievements, empha-
sizing the helicity of the Alanine Oligopeptide (20-mer). However, the calculation of the
helicity is an easy-to-define trial reward function, and in the target application, it will be
substituted with a measure of agreement between the set of simulational estimates and
the corresponding experimental reference values. In MD simulations, helicity is indicating

2 1| Introduction

the propensity of the Alanine Oligopeptide to adopt a helical conformation. A higher he-
licity value suggests that the peptide has a stronger tendency to form a helical structure,
which is vital for its functional stability and overall behavior in biological systems.

The results underscored a marked enhancement in the system’s helicity, a testament to the
efficacy of the introduced approach. During one of the evaluations, the agent documented
helicity values spanning 6.82, 8.93, 8.17, and 8.64 across distinct states. A helicity peak
nearing 9 was observed, a noteworthy accomplishment within the domain of MD simula-
tions. However, it’s imperative to contextualize this achievement: the maximal helicity
value for the Alanine Oligopeptide (20-mer) stands at 16. This pinnacle represents a
state where every parameter is impeccably optimized, embodying the epitome of struc-
tural stability for the peptide. The current study, while significant, was conducted under
conditions with certain parameter reductions to simplify the computational landscape.
As we delve into “Chapter Five: Prospective Developments,” we elucidate strategies and
refinements that, when implemented, hold the promise of edging closer to that coveted
maximal helicity, thereby fully harnessing the peptide’s structural potential.

Furthermore, the comprehensive algorithm underwent evaluation using real-world data,
with the system’s helicity being the primary metric of interest. The study leveraged a
complete LQFA to pinpoint the optimal parameters within an N-dimensional parameter
space. While the provided examples were limited to a maximum of four dimensions, the
algorithm is inherently capable of managing spaces with even more dimensions, the main
limitation being computational processing time.

3

2| Background

2.1. Optimization of Empirical Force Fields by Pa-

rameter Space Mapping: A Single-Step Pertur-

bation Approach

2.1.1. Summary of the paper

The paper introduces a method called Parameter Space Mapping for the optimization of
empirical force fields. This single-step perturbation approach refines force field parameters
against multiple molecules simultaneously. The authors emphasize the significance of
integrating multiple experimental properties to pinpoint an optimal region in parameter
space [1].

2.1.2. Goals of the paper

The primary objective is to optimize empirical force fields using the Parameter Space
Mapping technique. The authors aim to showcase how amalgamating multiple experi-
mental properties can lead to the identification of an optimal region in parameter space.
Additionally, the paper seeks to test assumptions about parameter transferability and
evaluate the performance of alternative interaction functions [1].

2.1.3. Methods and Implementation

• The paper adopts a semiempirical approach. Some parameters, like those describ-
ing bonded interactions, are fitted to Quantum Mechanics (QM) data. Others,
especially nonbonded interactions, are primarily adjusted to match a range of ex-
perimental properties.

• The GROMOS simulation package, in conjunction with the GROMOS 54A7 force
field, is employed.

4 2| Background

• The methodology involves direct mapping of parameter space, enabling the test-
ing of numerous parameter combinations against reference data for sets of related
molecules.

2.1.4. Results

The paper discusses the challenges of parametrizing against time-dependent or fluctuation-
based properties, as they necessitate sampling multiple configurations. The paper also
touches upon the difficulty of incorporating global properties like solvation and transfer
free energies [1].

2.1.5. Comparison with the thesis

• Similarities: Both the paper and the thesis revolve around force field optimization
using computational techniques.

• Differences: The thesis leverages Linear Q-function approximation and an epsilon-
greedy policy for optimization, focusing on the helicity structure of the Alanine
Oligopeptide (20-mer) system. In contrast, the paper employs Parameter Space
Mapping with a broader scope.

2.1.6. Conclusion

The paper "Optimization of Empirical Force Fields by Parameter Space Mapping: A
Single-Step Perturbation Approach" provides a comprehensive approach to force field
optimization. When juxtaposed with the methods presented in this thesis, it becomes
evident that while both works aim for optimization, the methodologies employed are
distinct. The insights from the paper could potentially be applied to refine or expand the
methods used in this thesis, suggesting that the two approaches might be complementary.
The combination of both methods could lead to more robust and accurate force field
optimizations, enhancing the understanding and application of force fields in molecular
dynamics simulations.

2.2. Empirical optimization of molecular simulation

force fields by Bayesian inference

2| Background 5

2.2.1. Summary of the paper

The paper presents the BioEn method, which is an approach to refine molecular dynamics
(MD) simulations using experimental data. The method is based on the Bayesian inference
of ensemble weights and is designed to optimize force fields for molecular simulations.
The paper emphasizes the importance of using informative priors in the optimization
process and discusses the challenges and potential solutions in the context of force field
parameterization [2].

2.2.2. Goals of the paper

The primary goal of the paper is to introduce and discuss the BioEn method for refining
MD simulations using experimental data. The paper aims to highlight the significance
of using informative priors in the optimization process and to address the challenges
associated with force field parameterization [2].

2.2.3. Methods and Implementation

The BioEn method is based on Bayesian inference of ensemble weights. It refines MD
simulations by optimizing force fields using experimental data. The method emphasizes
the use of informative priors during the optimization process. The paper also discusses
the comparison of general-purpose force fields with specialized force fields to identify
limitations [2].

2.2.4. Results

The paper suggests that the BioEn method produces experimentally refined simulation
models. It addresses the fundamental problem in MD simulations regarding the accep-
tance or rejection of the simulation model as a faithful description of the system of interest.
The method also provides insights into the interdependence of force field parameters and
their uncertainties [2].

2.2.5. Comparison with the thesis

• Similarities: Both the paper and the thesis focus on the optimization of force fields
for molecular simulations. Both approaches utilize experimental data to refine sim-
ulations and emphasize the importance of parameter selection.

• Differences: The thesis employs Linear Q-function approximation and an epsilon-

6 2| Background

greedy policy for optimization, while the paper introduces the BioEn method based
on Bayesian inference. The thesis specifically uses the helicity structure of the
Alanine Oligopeptide (20-mer) as a metric, whereas the paper does not specify such
a particular metric.

2.2.6. Conclusion

the BioEn method presented in the paper and the approach in the thesis can be used com-
plementarily. While the thesis provides a specific method and metric for optimization, the
BioEn method offers a broader perspective on refining MD simulations using experimental
data. Integrating insights from both could lead to more accurate and comprehensive force
field optimizations. The emphasis on informative priors in the paper could also enhance
the described parameter selection process in the thesis, ensuring that the most relevant
parameters are prioritized.

2.3. Accurate machine learning force fields via exper-

imental and simulation data fusion

2.3.1. Summary of the paper

The paper delves into the realm of machine learning interatomic potentials, emphasizing
their significance in the computational materials design domain. The authors have made
use of various methodologies and techniques to derive results that are both insightful and
relevant to the broader scientific community [3].

2.3.2. Goals of the paper

The primary objective of the paper is to explore and understand the intricacies of machine
learning interatomic potentials. The authors aim to shed light on the potential applica-
tions, challenges, and future prospects of these potentials in the field of computational
materials design [3].

2.3.3. Methods and Implementation

• The paper employs a range of computational methods, including DFT calculations.

• The authors have made use of velocity autocorrelation functions (VACFs) to evaluate
dynamical properties and compute self-diffusion coefficients.

2| Background 7

• The paper also references various machine learning models and frameworks, such
as Schnet, which is a continuous-filter convolutional neural network for modeling
quantum interactions.

2.3.4. Results

• The paper presents results related to the elastic constants of hcp titanium and their
deviations when trained only on DFT data.

• The dynamical properties evaluated via VACFs show that all models provide very
similar profiles.

• The self-diffusion coefficients derived from ML potentials are in good agreement
with experimental values.

2.3.5. Comparison with the thesis

• While the thesis focuses on the optimization of Force Field parameters using Lin-
ear Q-function approximation and an epsilon-greedy policy, the paper delves into
machine learning interatomic potentials.

• The thesis uses helicity structure as a measurable metric, whereas the paper evalu-
ates properties like elastic constants and self-diffusion coefficients.

• The maximum helicity achieved in the thesis is 9 out of 16, showcasing a significant
achievement. The paper, on the other hand, emphasizes the accuracy and relevance
of ML potentials in comparison to experimental values.

2.3.6. Conclusion

Both the thesis and the paper offer valuable insights into the realm of computational
materials design. While they focus on different aspects, the methodologies and results
can be complementary. The machine learning interatomic potentials discussed in the
paper can potentially be integrated with the optimization techniques employed in the
thesis. This integration can lead to more comprehensive models and improved accuracy
in predicting material properties. Furthermore, the insights from both works can pave the
way for future research, bridging the gap between theoretical predictions and experimental
validations.

8 2| Background

2.4. Deep Reinforcement Learning for Optimization

2.4.1. Summary of the Paper

The paper titled "Deep Reinforcement Learning for Optimization" delves into the appli-
cation of deep reinforcement learning (DRL) in optimization problems. It provides an
in-depth analysis of various optimizers in the DRL domain, highlighting their merits and
demerits. The paper also touches upon the challenges and trends in the DRL area [4].

2.4.2. Goals of the Paper

The primary goal of the paper is to analyze several optimizers in the deep reinforcement
learning domain. It aims to describe algorithms for single and multi-objective scenarios
and to identify challenges yet to be addressed in DRL. The paper also seeks to high-
light trends in the DRL area that may be beneficial for future research and real-world
applications [4].

2.4.3. Methods and Implementation

The paper discusses various methods and algorithms in the realm of DRL. Some of the
notable methods include [4]:

• Actor-Critic Method: This method aims to maximize the return using a policy
gradient approach. The actor deals with the policy, and the critic evaluates the
current policy.

• DQN: This method defines a function Q(s, a) which refers to the maximum dis-
counted future reward for each action a in state s and optimizes continuously from
that point.

• Policy Optimization: This method aims to optimize policies in an episodic or
stochastic environment. It notes that policy optimization can be simpler than find-
ing Q and value V .

2.4.4. Results

The paper concludes that DRL is one of the most promising techniques to train machines
to respond to changing environments and take evolutionary actions based on policy. It
emphasizes the potential of combining DRL with traditional AI approaches to improve
performance and achieve desired goals. The paper also suggests that multi-agent imple-

2| Background 9

mentations could be beneficial for future research [4].

2.4.5. Comparison with the thesis

Compared to the thesis, which focuses on the optimization of Force Field parameters
using Linear Q-function approximation and an epsilon greedy policy, the paper provides
a broader perspective on DRL’s application in optimization problems. While the thesis
specifically targets the helicity structure of the Alanine Oligopeptide (20-mer) system, the
paper discusses various real-world applications and challenges of DRL.

2.4.6. Conclusion

The methods and insights from the paper can complement the findings of the thesis. The
broader algorithms and techniques discussed in the paper can be adapted or fine-tuned
to the specific problem of optimizing Force Field parameters. Conversely, the specific
findings and methods from the thesis can provide practical case studies for the broader
discussions in the paper.

Both the thesis and the paper offer valuable insights into the application of reinforcement
learning in optimization problems. By integrating the broader methods from the paper
with the specific techniques from the thesis, a more comprehensive and effective approach
to optimization challenges can be developed.

2.5. Machine Learning Force Fields

2.5.1. Summary of the paper

In recent years, machine learning (ML) has been applied to computational chemistry,
enabling significant advances that were previously unattainable due to the computational
complexity of traditional electronic-structure methods. The paper reviews the application
of ML-based force fields (FFs) aiming to bridge the gap between the accuracy of ab initio
methods and the efficiency of classical FFs. The core concepts underlying ML-FFs are
described, and a guide for constructing and testing them is provided [5].

2.5.2. Goals of the paper

The primary objective is to understand the construction of ML-based force fields, which
aim to capture the statistical relationship between chemical structure and potential energy.
The paper seeks to provide an overview of ML-FF applications and the chemical insights

10 2| Background

that can be derived from them [5].

2.5.3. Methods and Implementation

The paper delves into the mathematical and conceptual framework of ML in the context
of chemistry. It discusses [5]:

• Chemistry foundations, including the potential energy surface and invariances of
physical systems.

• Machine learning foundations, such as kernel-based methods and artificial neural
networks.

• Combining machine learning and chemistry, focusing on physical constraints and
various ML-FF models like (s)GDML, Gaussian Approximation Potentials, and
Neural Network Potentials.

2.5.4. Results

ML-FFs combine the accuracy of ab initio methods with the efficiency of classical FFs.
They provide insights into electronic effects, thermodynamics, reactions, nuclear quantum
effects, and excited states. ML-FFs also offer a bridge between theory and experiment,
enabling studies that would be computationally expensive with traditional methods [5].

2.5.5. Comparison with the thesis

While the thesis focuses on using Linear Q-function approximation for optimization of
Force Field parameters in a specific molecular system, the paper provides a comprehen-
sive overview of ML-FFs in general. The paper’s emphasis on the combination of machine
learning and chemistry aligns with the thesis’s approach to optimization, but the method-
ologies and applications differ.

2.5.6. Conclusion

The insights from the paper can complement the thesis. The general principles and
methodologies of ML-FFs discussed in the paper can provide a broader context for the
specific techniques used in the thesis. Additionally, the paper’s exploration of various ML-
FF models can offer alternative or supplementary approaches for future research based
on the thesis.

11

3| Thesis Goals

The primary objective of this thesis is to present, implement, and evaluate a novel ap-
proach that leverages Reinforcement Learning (RL) for the optimization of Force Field
parameters.

Parameter optimization is a cornerstone in computational modeling, aiming to fine-tune
model parameters to best represent or predict a set of data. Traditional optimization
methods encompass a range of techniques. For instance, gradient descent iteratively
adjusts parameters by moving in the direction of steepest decrease of a cost function,
ensuring that the model predictions converge towards the actual data. On the other
hand, genetic algorithms are inspired by the process of natural selection, where potential
solutions evolve over generations to optimize a given function.

With the advent of Machine Learning (ML), the landscape of optimization has been trans-
formed. ML, especially deep learning, offers the ability to model intricate, non-linear
relationships in data. These models adjust parameters based on data-driven insights,
often achieving superior performance compared to conventional optimization techniques.
Machine Learning-based approaches, such as neural network training, often employ back-
propagation combined with optimization techniques like stochastic gradient descent to
refine model parameters.

Reinforcement Learning, a subset of ML, introduces a unique perspective to optimization.
Instead of a direct mapping from input to output, as in supervised learning, RL focuses
on learning through interaction. An agent takes actions in an environment to maximize
cumulative rewards over time. This paradigm can be seamlessly applied to parameter
optimization. In this context, the optimization process is visualized as a game. An agent
navigates the parameter space, akin to a game board, seeking regions that yield the
highest rewards. The connection between ML and RL in this scenario is evident: while
ML provides the foundational tools and techniques to model data, RL offers a framework
to explore and exploit the parameter space efficiently.

In our specific application, the "reward" is associated with the fit of parameters to a
desired metric. For simplification, we have chosen the helicity value of the Alanine

12 3| Thesis Goals

Oligopeptide (20-mer) as our metric. The agent’s goal is to find parameter configura-
tions that maximize this helicity value, effectively treating the optimization as a quest for
the highest game score.

In our specific application, the "reward" is associated with the fit of parameters to a
desired metric. For simplification, we have chosen the helicity value of the Alanine
Oligopeptide (20-mer) as our metric. The agent’s goal is to find parameter configura-
tions that maximize this helicity value, effectively treating the optimization as a quest for
the highest game score. However, the calculation of the helicity is an easy-to-define trial
reward function, and in the target application, it will be substituted with a measure of
agreement between the set of simulational estimates and the corresponding experimental
reference values.

13

4| Preliminary

4.1. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are computational techniques employed to simulate
the movement and behavior of atoms and molecules by solving the equations of motion.
In classical MD simulations, the equations of motion are Newtonian, and the classical
laws of physics are utilized to model the interactions between individual atoms and their
collective dynamics, enabling the study of molecular systems at an atomic scale[6].

MD simulations find widespread use in diverse scientific domains. In the field of biochem-
istry and drug discovery, MD simulations aid in investigating the structural dynamics
of biomolecules such as proteins and nucleic acids, elucidating their folding pathways,
conformational changes, and ligand binding interactions. These insights can guide drug
discovery efforts and the design of novel therapeutics[6].

The ultimate goal of the project is to provide a framework for systematically improving
MD simulations with a combined top-down and bottom-up approach when experimental
data are incorrectly predicted from atomistic trajectories (see Figure 4.1, an overview of a
Molecular Dynamic process). To provide necessary context for later considerations, below
follows a step-by-step explanation of how a typical MD simulation works:

1. Initial Geometries: Utilize existing molecular structure databases, such as the Pro-
tein Data Bank (PDB) or other specialized databases, to obtain experimentally
determined or simulated structures. Alternatively, use molecular modeling software
tools to construct the initial geometry of the system. These software packages often
offer graphical interfaces for specifying atom types, bond lengths, bond angles, and
torsional angles, enabling the creation of custom molecular structures tailored to
specific research questions[7].

2. Define Inter-Atomic Forces: Examine the inter-atomic bonded and non-bonded
forces through FF equations. This topic will be discussed in detail in section 4.2 of
the thesis[7].

14 4| Preliminary

3. Simulation Box Setup: The setup of the simulation box in the modeling process,
where a specific volume is defined to enclose the system of atoms or molecules under
study. Typically, periodic boundary conditions are employed, allowing atoms that
exit one side of the box to re-enter from the opposite side, thereby mimicking an
infinite system. The dimensions and shape of the box are carefully selected based on
the specific properties and behavior of the system to avoid any artificial boundary
effects. It is essential to ensure that the periodic images of the molecule of interest
are sufficiently spaced apart to prevent any spurious interactions, either directly or
by affecting the solvation shell, such as interfacial water molecules. Appropriate box
dimensions are maintaining the desired density of the system, which in turn is essen-
tial for accurate representation and study of its macroscopic properties. Therefore,
choosing an appropriate box setup and boundary conditions is critical for obtaining
physically relevant results in a MD simulation.[7].

4. Energy minimization: Energy minimization is aimed at finding the locally lowest-
energy configuration of a molecular system. It involves iteratively adjusting the
atomic positions to reduce the total potential energy of the system, thereby reaching
a locally stable state[7].

5. Equilibration: Equilibration is an initial stage in MD simulations where the system
is allowed to reach a stable and well-defined thermodynamic state before data collec-
tion or production runs. It involves a series of simulation steps to gradually adjust
the system to the desired temperature, pressure, or other specified conditions[7].

6. Production: The production phase is the main part of MD simulations, following
the equilibration stage. During the production phase, the system is simulated over
an extended period to generate data for analysis and investigation of the molecular
system’s behavior, properties, and dynamics[7].

7. The analysis phase of MD simulation involves processing and interpreting the data
collected during the simulation to gain insights into the behavior, properties, and
dynamics of the molecular system. This phase focuses on extracting meaningful
information from the raw simulation data and applying various analytical techniques
to understand and quantify the system’s characteristics[7].

Among the project components, steps 2 and 7 present distinct challenges in the con-
text of MD. Step 2, which involves defining inter-atomic forces through FF equations,
is challenging due to the complexity of selecting appropriate parameters and equations
that accurately represent the molecular interactions. The choice of FF can significantly
impact the simulation’s results and is often subject to rigorous validation. This topic will

4| Preliminary 15

Figure 4.1: MD simulation is a computational technique used to simulate the movement
and behavior of atoms and molecules over time.[7]

16 4| Preliminary

be discussed in detail in the 4.2 section of the thesis[7].

Step 7, which focuses on the analysis phase of MD simulation, presents challenges of a
different nature. This step requires the processing and interpretation of large volumes of
raw simulation data to extract meaningful insights. The application of various analytical
techniques is necessary to understand and quantify the system’s characteristics, making
this phase both computationally intensive and intellectually demanding[7].

The remaining components can generally be implemented using an established MD pack-
age specifically designed for simulating proteins, lipids, and nucleic acids, such as Gromacs
or OpenMM.

4.2. Force Field in Molecular Modeling

FF is mathematical model that describe the interatomic interactions within a system
during an MD simulation. It encompass both the functional forms and parameter sets
used to calculate the potential energy of the system. These FF parameters are derived
from experimental data, quantum mechanical calculations, or a combination of both. The
FF determines the accuracy and transferability of the simulation results and influences
the fidelity of the modeled system’s behavior. Thus, the FF is a critical component in
performing MD simulations, as it determines the accuracy and reliability of the simulated
MD [8].

4.2.1. Force Field equation: Physical Formulation

In MD simulations, interactions within molecules are typically categorized into two main
types: bonded and non-bonded interactions. The following discussion focuses on the
bonded interactions. In the physical formulation of a biochemical FF, bonded interactions
are described by three key terms. Bond stretching accounts for the stretching of chemical
bonds and is represented by a harmonic potential energy function that is parameterized
by the force constant (bond stiffness) and the equilibrium bond length. Angle bending
considers the deformation of triplets of atoms connected by two chemical bonds and
utilizes a harmonic potential energy function with parameters for the force constant (angle
stiffness) and the equilibrium angle. Torsional rotation describes the rotation around a
chemical bond and incorporates a periodic potential energy function that includes terms
for the barrier height, phase, and periodicity of the rotation. These bonded interactions
capture the energy associated with the stretching, bending, and rotational movements of
atoms in a molecule.[9].

4| Preliminary 17

Non-bonded interactions encompass van der Waals forces and electrostatic interactions.
Van der Waals forces represent the attractive and repulsive interactions between atoms
due to correlated fluctuations in electron density and constant electric dipoles, as well
as Pauli exclusion (most of the repulsive term) in their electron density. To account for
these, the FF incorporates a Lennard-Jones potential energy function, which features the
equilibrium distance at which attractive forces dominate and repulsive forces become sig-
nificant. Electrostatic interactions arise from charged particles or atoms and are typically
modeled using Coulomb’s law. The FF assigns partial charges to atoms and calculates
the electrostatic potential energy based on the distances and charges of interacting atoms.
Together, these non-bonded interactions contribute to the overall potential energy and
influence the structural stability and interactions between molecules in a biochemical
system[9].

There are many FFs available in the literature, having different degrees of complexity,
and designed to treat different kinds of systems. However, a typical expression for a FF
may look like this:

Total Energy:

E = Ebonded + Enon-bonded (4.1)

Bonded Interactions:

Ebonded =
∑
bonds

Kb(r − r0)2 +
∑
angles

Ka(θ − θ0)2 +
∑

torsions

Vn
2
[1 + cos(nϕ− γ)] (4.2)

Non-bonded Interactions:

Enon-bonded =
∑
pairs

4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]
+

∑
pairs

qiqj
1

4πϵ0

1

rij
(4.3)

Parameters (Constants):

• Bonded Interactions:

– Kb: Bond force constant[10].

– r0: Equilibrium bond length[10].

– Ka: Angle force constant[10].

– θ0: Equilibrium bond angle[10].

18 4| Preliminary

– Vn: Barrier height for torsional rotation[10].

– n: Multiplicity of the torsional potential[10].

– γ: Phase angle for the torsional potential[10].

• Non-bonded Interactions:

– ϵij: Depth of the potential well for van der Waals interactions between atom
pairs i and j[10].

– σij: Distance at which the potential energy between atom pairs i and j is zero,
representing the position of the potential well[10].

– qi, qj: Partial charges on atoms[10].

– ϵ0: Permittivity of free space (a universal constant)[10].

Variables:

• Bonded Interactions:

– r: Current bond length[10].

– θ: Current bond angle[10].

– ϕ: Current torsional angle[10].

• Non-bonded Interactions:

– rij: Current distance between atom pairs i and j[10].

To have a better understanding about the variables and parameters, see the Figure 4.2.
The symbols may be different from the above equations, this is only a representation to
have a better view of the parameters and variables of the Force Field.

4.2.2. Force Field Parameter selection

The FF formulation in MD inherently involves a multitude of parameters, typically one or
two orders of magnitude more than atom types for each molecular system. This expansive
parameter space leads to virtually limitless possibilities, rendering direct optimization
infeasible. To address this complexity, it becomes necessary to restrict ourselves to an
"active" subset of the optimizable parameters, thereby constraining the number of atom
types and parameters, to make the optimization problem tractable. So we aim to focus
only on the most significant parameters during trajectory simulations. Identifying these
important parameters involves two steps: first, selecting from the challenging parameters

4| Preliminary 19

Figure 4.2: Metaphorically illustrating the diverse FF parameters.

in the FF formula, and second, choosing among the atom types that have the largest
impact on the quantity we intend to maximize. This approach will help us tackle the
problem efficiently and effectively [11].

Determining accurate values for parameters like torsional barrier heights (Vn) and non-
bonded interaction well depths (ϵij) can be challenging in FF calculations. Precisely
capturing the complex potential energy surface of torsional motions and accurately bal-
ancing attractive and repulsive forces in non-bonded interactions necessitate advanced
computational methods. When using QM methods to derive these parameters, trade-offs
arise between employing high-precision calculations in vacuum and using approximate cal-
culations that incorporate varying levels of complexity in the solvent model. Additionally,
fitting these parameters to experimental data is crucial for ensuring their accuracy. Re-
fining parameters related to van der Waals interactions, such as the parameter σij (which
is distinct from the van der Waals radii), and the treatment of regular dihedrals are active
research areas, with ongoing efforts to improve the accuracy of these parameters [10].

The remaining parameters in the FF formulation, such as bond lengths (r), equilibrium
bond lengths (r0), bond angles (θ), and equilibrium bond angles (θ0), are generally consid-
ered to be less challenging to determine compared to torsional barrier heights, periodicity

20 4| Preliminary

(n), phase shift (δ), and non-bonded interaction parameters. The simpler parameters can
often be estimated from experimental measurements or theoretical calculations with a
reasonable degree of accuracy. When it comes to deriving high-quality dihedral param-
eters, the optimization procedure involves fitting to a sufficiently accurate QM energy
profile. This procedure typically optimizes the barrier heights, multiplicities, and phase
shifts together, making the entire optimization process challenging. The intricacy arises
not from fitting one or the other number individually but from the collective optimization
of these parameters. However, it’s important to note that the precise values of these pa-
rameters can still depend on factors like molecular environment, molecular conformation,
and the specific FF being used. Therefore, while values for these parameters are avail-
able, they may not always be universally precise and can still be subject to refinement
and adjustment based on experimental or computational evidence [10].

Because of the above considerations, this thesis focuses solely on the investigation and
experimental characterization of the parameters sigma (σij) and epsilon (ϵij).

To reduce the number of parameters, we utilize sensitivity analysis by employing the Ther-
moDiff library in Python. This technique allows us to calculate derivatives of free energy
or observables concerning specific FF parameters such as atomic charges, Lennard-Jones
parameters σ and ϵ, and bonded terms like bond lengths, angles, and force constants[12].

The methodology requires extensive data, including trajectories featuring various molecu-
lar configurations, and involves the selection of particular FF parameters for investigation.
The analysis yields a ’sensitivity matrix,’ an informative tool that estimates the response
of individual quantities to changes in FF parameters. This matrix guides the modification
of model attributes that need improvement while preserving well-performing characteris-
tics in alignment with existing data[12].

ThermoDiff functions through numerical differentiation and reweighting schemes based on
statistical thermodynamics, mainly employing free energy perturbation (FEP) techniques.
By evaluating the "local sensitivity" of free energies to specific FF parameters, represented
generically as σ, we can enhance FF development, atomistic model coarse-graining, and
lead optimization in drug design[12].

4.3. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning paradigm that enables an
agent to learn and make decisions in an environment to achieve a specific goal. The key
characteristic of RL is its focus on learning through interaction with the environment

4| Preliminary 21

rather than relying on labeled data[13].

In RL, the agent takes actions in the environment, and the environment provides feedback
in the form of rewards or penalties based on the agent’s actions. The agent’s objective is
to maximize the cumulative reward it receives over time, learning from its experiences to
make better decisions[13].

The RL process can be summarized as follows:

• Agent: The learner or decision-maker that interacts with the environment. It takes
actions and learns from the consequences[13].

• Environment: The external system with which the agent interacts. It can be as
simple as a grid world or as complex as a real-world scenario[13].

• State: The current situation or configuration of the environment at a given time. It
serves as an input for the agent to make decisions[13].

• Action: The choices made by the agent based on the observed state. The agent
selects actions with the aim of maximizing the expected cumulative reward[13].

• Reward: The immediate feedback from the environment to the agent’s actions. It
indicates how favorable or unfavorable the action was in a given state[13].

• Policy: The strategy or set of rules that the agent follows to decide on actions based
on the current state. The policy can be deterministic or stochastic[13].

• Value Function: A function that estimates the expected cumulative reward an agent
can achieve from a given state following a particular policy. It helps the agent
evaluate the desirability of different states[13].

• Model (Optional): In some RL approaches, a model of the environment is used to
simulate possible interactions and learn from them before executing actions in the
real environment. This is called a model-based RL approach[13].

The RL process typically involves an iterative learning loop (see the Figure 4.3), where
the agent collects experiences by interacting with the environment, updates its policy and
value function based on these experiences, and continuously improves its decision-making
abilities[13].

RL has applications in various fields, such as robotics, game playing, autonomous vehicles,
recommendation systems, and more. It has shown great potential for solving complex
problems in dynamic and uncertain environments where traditional supervised learning
approaches are less effective[13].

22 4| Preliminary

Figure 4.3: n this diagram, the RL process is depicted succinctly. The RL agent’s decision-
making is contingent on the current state (St) it is in and the immediate reward (Rt) it
receives. Based on this information, the agent selects an action (At) to take. The action
leads to a transition to a new state, and in this new state, the agent is presented with a new
reward. This iterative process persists until the agent achieves its desired states, rewards,
or both through learning from the consequences of its actions in the environment[13].

4.3.1. Reinforcement Learning: Q-Learning

This thesis concentrates on exploring various RL approaches, with a specific emphasis
on Q-learning and the use of LQFA. The research involves a comprehensive comparison
of a number of concept within this approach in the context of our real-world problem.
Through this comparison, we demonstrate the rationale behind selecting Q-learning with
LQFA as the most suitable technique to address the challenges posed by our specific
problem domain.

Q-learning is an off-policy RL algorithm. In off-policy learning, the agent learns the value
function based on a policy different from the one it uses to behave, often referred to as
the target policy and the behavior policy, respectively. Specifically, Q-learning learns the
optimal value function, called the Q-function, which represents the expected cumulative
reward for taking a specific action in a given state and following the optimal policy
thereafter [13]. Here is a step-by-step explanation:

1. Q-learning Initialization: Q-learning starts by initializing a Q-table, where each
entry Q(s, a) represents the estimated cumulative reward when taking action ’a’ in
state ’s’[13].

2. Exploration and Exploitation: The agent interacts with the environment and de-
cides which actions to take in each state. During the learning process, it em-
ploys an exploration-exploitation tradeoff to balance between exploring new ac-
tions (exploration) and exploiting its current knowledge to take the best actions
(exploitation)[13].

4| Preliminary 23

3. Action Selection: The agent selects actions based on a constantly updated policy
that has to balance exploration and exploitation, for that reason the epsilon-greedy is
chosen as a simple implementation. In this case the agent take a random action with
a small probability ϵ and otherwise selects the action with the highest Q-value[13].

4. Updating Q-Values: After taking an action, the agent receives a reward and observes
the next state. It then updates the Q-values in the Q-table using the Bellman
equation, which is a key characteristic of Q-learning:

Q(s, a) = Q(s, a) + α ∗ [R(s, a) + γ ∗max(Q(s′, a′))−Q(s, a)][13] (4.4)

• Q(s, a) is the Q-value of taking action ’a’ in state ’s’[13].

• α (alpha) is the learning rate, controlling how much the agent should update
the Q-values with each iteration[13].

• R(s, a) is the immediate reward received for taking action ’a’ in state ’s’[13].

• γ (gamma) is the discount factor, determining the importance of future rewards
compared to immediate rewards[13].

• max(Q(s′, a′)) represents the maximum Q-value among all possible actions in
the next state (s′)[13]. In the context of Q-learning, this concept is closely
tied to its off-policy nature. Off-policy learning means that the agent learns
the value of the optimal policy independently of the policy it follows while
exploring. Specifically, while the agent might take actions based on a behavior
policy during exploration, it learns about the value of the best possible action
(as indicated by max(Q(s′, a′))) that would be taken under an optimal policy.
This distinction allows Q-learning to update its Q-values based on the best
available action in the next state, even if that action wasn’t the one taken
during exploration.

5. Convergence: Through repeated interactions with the environment and Q-value
updates, Q-learning eventually converges to the optimal Q-values, and the agent
learns the optimal policy[13].

4.3.2. Reinforcement Learning: Linear Q-function Approxima-

tion

LQFA is a variant of the Q-learning algorithm that approximates the Q-values using a
linear function. In traditional Q-learning, a Q-table is used to store and update the Q-

24 4| Preliminary

values for each state-action pair. However, for problems with large state and action spaces,
maintaining such a table can become computationally infeasible. LQFA addresses this
limitation by employing function approximation techniques to estimate Q-values more
efficiently [14].

In the LQFA, the Q-value for a given state-action pair is represented as a linear combi-
nation of feature values associated with that state-action pair. These feature values are
manually designed or automatically extracted from the environment to capture relevant
information about the state-action space[14].

In LQFA, the representation of Q-values is achieved through the use of feature vectors
and weight vectors instead of directly storing Q-values for individual state-action pairs.
The goal is to learn the significance or importance of each feature for each specific action,
which is captured by the weight vector[14].

In this context, we employ two vectors:

• Feature Vector (f(s, a)): The feature vector, denoted as f(s, a), is a composite
vector comprising n ∗ |A| distinct functions, where n represents the number of state
features, and |A| denotes the number of actions available to the agent. Each function
fi(s, a) within this vector extracts the value of a specific feature from the state-action
pair (s, a). Therefore, the entire feature vector consists of multiple functions, each
responsible for extracting a particular feature for every possible combination of state
and action[14].

• Weight Vector (w): The weight vector, represented as w, has a size of n ∗ |A|,
containing one weight value (wa

i) for each feature-action pair. This weight vector
plays a crucial role in linear Q-learning as it determines the significance of each
feature for each action. The value of (wa

i) indicates the weight assigned to the ith
feature concerning the corresponding action, effectively quantifying the influence of
the feature on the Q-value estimation[14].

Given a feature vector f and a weight vector w, the Q-value of a state is a a scalar product
of the respective vectors of features and weights:

Q(s, a) = f1(s, a) · wa
1 + f2(s, a) · wa

2 + ...+ fn(s, a) · wa
n =

n∑
i=0

fi(s, a) · wa
i (4.5)

To use approximate Q-functions in RL, there are two steps we need to change from the
standard algorithsm: (1) initialisation; and (2) update.

4| Preliminary 25

For initialization, initialize all weights to 0. Alternatively, it is possible to try Q-function
initialization and assign weights which will be “good” weights.

For update, we now need to update the weights instead of the Q-table values. The update
rule is now:

For each state-action feature i [14]:

wa
i ←− wa

i + α · δ · fi(s, a) (4.6)

[14] where δ depends on which algorithm we are using; e.g. Q-learning, SARSA. In this
thesis Q-learning is used, then we have a complete expansion of the weights update formula
as follows [14]:

wa
i ←− wa

i + α · [r + γmax
a′

Q(s′, a′)−Q(s, a)] · fi(s, a) (4.7)

The description of the variables and parameters of the above equations are listed blow:

• wa
i : Represents the weight associated with feature i for action a. The weight is

being updated in both equations.

• α: The learning rate. It determines the step size in the weight update. A value
between 0 and 1, it dictates how much of the new weight estimate we adopt.

• r: The immediate reward received after taking action a in state s.

• γ: The discount factor. It’s a value between 0 and 1 that determines the present
value of future rewards. A value closer to 0 makes the agent "short-sighted" (cares
more about immediate rewards), while a value closer to 1 makes the agent "far-
sighted" (cares more about future rewards).

• Q(s, a): The Q-value of state s and action a. It represents the expected cumulative
reward of taking action a in state s and following the optimal policy thereafter.

• maxa′ Q(s
′, a′): Represents the maximum Q-value for the next state s′ over all pos-

sible actions a′. It’s used to estimate the future reward.

• fi(s, a): A feature function for state s and action a corresponding to feature i. It
maps the state-action pair to a real value, which is used in the linear approximation
of the Q-value.

• δ: The temporal difference (TD) error. In the context of the given equations, δ is

26 4| Preliminary

defined as the difference between the estimated Q-value and the updated Q-value
based on the received reward and the estimated future reward.

27

5| Model

5.1. Definition and modeling of the problem

The main objective of this thesis is to optimize the FF parameters by determining the
optimal parameters using a RL approach. The focus is on utilizing the QF method due
to its suitability for handling multiple parameters and its capacity to discover the best
solution in the solution space. Before applying QF, to manage the high dimensionality
of the problem, I employ two parameter reduction steps. Firstly, the focus is narrowed
to the sigma and epsilon parameters, as they are more likely to have adjustable values
compared to the other parameters (4.2.2). Secondly, the number of atom types in the
system is reduced using sensitivity analysis with the ThermoDiff library in Python.

To model the parameter optimization problem, an analogy to a video game is used. The
problem can be represented as follows:

5.1.1. Parameter Space

The environment serves as the setting where the algorithm explores different values of
the parameters, evaluating each combination to determine if it yields satisfactory results
(similar to navigating a game to find clues or rewards to progress in the mission). The
parameter space is modeled as an N-dimensional Cartesian coordinate system, where each
dimension represents a specific parameter (see the Figure 5.1). To navigate within this
N-dimensional Cartesian coordinate system, representing the parameter space, we must
discretize it into a grid-like structure, hereafter referred to as an ND grid. The rationale
behind this discretization is to to make it more consistent with the function approximation.
In a continuous coordinate system, an infinite number of possible values could be assigned
to the parameters, leading to challenges in the modification process. By transforming this
space into an ND grid, we impose a structure that limits the possibilities, thereby allowing
a more controlled and systematic exploration of parameter values [1] [15].

28 5| Model

Figure 5.1: 3D model of the parameter space. Each state is considered as a point in this
Cartesian coordinate system with specific parameters’ value setting. The states and the
dimensions in this diagram are schematic illustrations of the parameter space.

5.1.2. States

Each configuration of parameters constitutes a state in this setup. For every state that
is being visited, a simulation is run based on the parameter values of that state. The
outcome of the simulation, which can vary based on the observables considered, serves as
the reward. In this thesis, the calculation of the helicity is an easy-to-define trial reward
function, and in the target application it will be substituted with a measure of agreement
between the set of simulational estimates and the corresponding experimental reference
values [15].

5.1.3. Agent

In this RL implementation, the agent is not explicitly visible in the environment like a
character in a video game. Rather, it can be thought of as an abstraction of the FF. The
agent interacts with the environment by receiving the reward, influencing the Q-function
parameters, and deciding the next action based on the policy defined. The ultimate goal
is to discover the optimal parameter values that lead to the best possible parameters in
the FF equation [15].

5| Model 29

5.1.4. Actions

In the context of policy-besed decision making, the agent’s possible actions are determined
by specific strategies (see the Figure 5.2). An action is just a change of the values of the
parameters, so our model has a deterministic mapping from action space to the state
space; furthermore, the moves have to be on the grid, and cannot escape beyond it.
These actions can include moving to the location of one of its neighboring states, where
the choice of neighbor is influenced by the local-radius variable, typically set between 2
to 4 (so the agent can jump into one of the neighbors in its local-radius distance, take a
look at the Figure 5.5) [15].

Figure 5.2: This is a very simple illustration of decision making (policy) in the agent’s
world. From an exact state the agent can jump to one of its neighbors included in the area
that determined by local-radius constant variable. A random variable in every iteration
is chosen and guide the agent to jump based on RL, GD or random walk.

5.1.5. Policy

In this implementation, the policy adopted is a combination of greedy based action with
a 70 percent probability, GD with a 20 percent probability, and random walk with a 10
percent probability (see figure 5.2)[16]. The approach that we have employed was inspired
by the epsilon-greedy algorithm, which is widely recognized in the field of RL, particularly
in the context of Q-learning. This algorithm’s primary function is to maintain equilibrium
between two fundamental processes: exploration, which pertains to the identification of
novel actions that have the potential to enhance future rewards, and exploitation, the act
of executing the currently optimal action according to known information[16].

However, our implementation introduces an additional complexity. Alongside the actions

30 5| Model

determined by the epsilon-greedy approach, we have incorporated another category of
actions dictated by the GD methodology. This inclusion augments the conventional func-
tioning of the epsilon-greedy algorithm, extending its capabilities in the context of our
specific implementation.

This policy is designed to introduce diverse types of movements to the agent’s decision-
making process, aiming to avoid over-fitting to the environment and enabling the agent
to explore new, potentially more efficient paths in the simulation. By integrating GD into
the policy, the agent can employ a mathematically simple approach to find local minima
in the state space. We add GD to make sure that at least in the local neighborhood, the
agent drifts on average in the right direction, but one cannot fully depend on GD because
the gradients we calculate are anyway noisy and the reward function can be highly non-
linear with multiple minima [17]. By incorporating these different types of actions into the
policy, the agent gains the flexibility to adapt and explore various strategies, improving
its overall performance and adaptability in the RL environment. More specific details
about GD will be discussed in the Implementation section[16].

5.1.6. Rewards

In the development stage of the project, we initially adopted the alpha-helical content of
an Alanine Oligopeptide (20-mer) as a trial reward for each state in our RL model[18] [19].
This choice served as an easy-to-define and computationally tractable reward function (see
the Figure 5.3). However, in the broader context of our research, the actual reward is a
measure of agreement between the set of simulational estimates and the corresponding
experimental reference values (see equation 5.1). The computation of the reward requires
the creation of a system trajectory governed by new parameters, where each state en-
capsulates the structural information of the system, as delineated within the .pdb and
.top files of the given simulation (more information in 6.1.1). As the system transitions
from one state to another, only the values of the FF parameters are altered, defined by a
unique vector of parameters within each individual state. In this modeling, each config-
uration of parameters constitutes a state, and for every state, a simulation is run based
on the parameter values of that state. The outcome of the simulation, which varies based
on the observables considered, serves as the reward. In the target application, the trial
reward function based on helicity will be substituted with the aforementioned measure of
agreement, providing a more comprehensive and meaningful evaluation metric.

r =

[
number_of_targets∑

i

(ti(θ)− µi)
2

]−1

(5.1)

5| Model 31

The equation 5.1 defines a reward function, r, which quantifies the agreement between
simulation outcomes and experimental data. In this formula:

• ti(θ) represents the target values derived from the simulation for a given parameter
set θ. Each target value corresponds to a specific aspect or property of the system
being simulated.

• µi denotes the corresponding experimental data for each target. These are the
reference values obtained from actual experiments, serving as a benchmark for the
simulation’s accuracy.

The term (ti(θ)−µi)
2 computes the squared difference between each simulated target and

its experimental counterpart. By squaring the differences, the formula emphasizes larger
discrepancies, ensuring that the reward function is sensitive to significant deviations from
the experimental data.

In essence, this reward function offers a quantitative measure of how closely the simu-
lation’s outcomes align with real-world experimental data, making it a valuable tool for
assessing and refining the simulation’s accuracy and reliability.

The trajectory duration is a critical constant in this research, owing to its role in bal-
ancing the need for sufficient system change observation time and maintaining reasonable
simulation lengths.

In this research, the methodology employed involved determining the time constant
through an analysis consistent with first-order kinetics of relaxation. This assumption
is predicated on the notion that a small perturbation in parameters will lead, on average,
to a steady flow of probability from the initial ’unadapted’ state to the final ’adapted’
probability density. The utilization of an exponential function in this context serves as a
fitting model to describe this process. The time constant, a characteristic indicative of a
system’s rate of change, is the reciprocal of the decay constant, b, in an exponential decay
function of the form a∗exp(−b∗x)+c. For systems exhibiting exponential relaxation, this
time constant signifies the duration required for the system to decay to approximately
63.2% of its initial state to steady-state or equilibrium. The function a ∗ exp(−b ∗ x) + c

is frequently adopted as a model for systems demonstrating exponential decay or growth
with a baseline or steady-state value c. In the presence of a decreasing trend that does
not descend to zero, this model can potentially provide an accurate description[21].

Implementing this methodology by fitting an exponential decay function to the data and
determining the time constant serves as a strategy to maximally exploit the available
information, allowing the quantification of the system’s change rate over time (see Figure

32 5| Model

(a) (b)

(c) (d)

Figure 5.3: The Alanine Oligopeptide (20-mer) is depicted in two distinct structural con-
formations across the provided images. In figures a and c, the molecule is illustrated in
its un-helical form, signifying an unstable state. Conversely, figures b and d showcase the
peptide in a fully helical configuration. The helical structure of Alanine is intrinsically
linked to the stability of the molecular system. A helix formation often results in a lower
energy state, enhancing the structural robustness and resilience of the peptide against
perturbations. This transformation underscores the critical role of conformation in deter-
mining molecular stability [20].

5| Model 33

5.4). This approach strikes a balance between too short simulations, which may not
provide sufficient insights, and overly long ones, that risk yielding redundant information.
This information could be pivotal for understanding the system or forecasting its future
behavior. Moreover, it enables a comparison of the behavior of disparate systems or a
single system under varying conditions [21].

Figure 5.4: The figure depicts the fitting of an exponential function to the mean helicity
measures derived from six distinct metrics of the system, tracked over a 10 ns trajectory.
This methodology involves the application of plumed forces at the trajectory’s onset,
followed by a free evolution of the system for the subsequent 10 ns [22]. The primary
objective is to ascertain the time required for the system to undergo first-order kinetic
relaxation. For systems that exhibit exponential relaxation, a crucial parameter is the
time constant, often denoted as τ . This constant represents the time span necessary for
the system to decay to approximately e−1 (or roughly 63.2%) of its initial deviation from
the equilibrium state. As illustrated, the system approaches this specified decay threshold
approximately 5.5 ns post-initiation. Consequently, the deduced time constant, τ , for this
particular system is 5 ns.

In the context of a molecular simulation, the time constant could be associated with
the time scale of specific molecular events or processes. This association is crucial for
understanding the system’s physics as it necessitates the independent estimation of the
time constant. Such an estimation is integral for making informed decisions about the
optimal length of our trajectories, striking a balance between cost and accuracy, and fine-
tuning the simulation parameters. For example, the simulation may need to run for a
minimum duration equivalent to several time constants to accurately depict the system’s
behavior[21].

34 5| Model

5.1.7. Q-function

In the preceding chapter, the subsection titled "Reinforcement Learning: Linear Q-
function Approximation" 4.3.2, we delved into the concept of LQFA, underscoring its
indispensability for managing extensive and intricate environments with featuring numer-
ous states. The subsequent discussion pertains to the relevance of this method in the
context of our project and its consequent execution.
Primarily, although we are testing our approach with a manageable set of 4 parameters, in
principle the method is not designed with a specific number of degrees of freedom. Con-
sequently, we are dealing with an N-dimensional grid in which there are a minimum of 20
steps in each dimension. The size of each step can be calculated by considering the values
of that parameter in the topology file. In a simplistic system with four parameters and a
20-step range for each dimension, we encounter 204 = 160000 states. Hence, it is crucial
to implement a method that permits a degree of generalization of our findings, at least
to immediately neighboring states. Contrasting with the conventional Q-learning method
that focuses on a single state and assesses its Q-value, LQFA provides an approach to
evaluate a bunch of states together [14].

During project implementation, we deal with two distinct radii: a global-radius and a
local-radius (see the Figure 5.5). The global-radius defines the ranges of the steps in each
dimension. For instance, in an execution with a global-radius of 10, we have a grid with 20
steps across all dimensions. In layman’s terms, if the grid step size is 0.01, the parameter
value can fluctuate from −10∗0.01 to 10∗0.01 during the simulation, the same applies for
other parameters. The second radius, the local-radius, determines the neighbors impacted
by any alterations in the current state due to the LQFA (or generalization). This radius,
associated with the current state, determines the states that are proximate to it. Only
states with a distance equal to or less than this radius can be immediately accessed from
the current state. For instance, if the local-radius is 2, and we are operating in a specific
state, all modifications in the current state influence its neighbors within a radius of
2. Thus, if we are going to alter the value of a state located at (5,5,5), it also affects
its neighbors at locations (5 ± 2, 5 ± 2, 5 ± 2), although to lesser degree the farther the
neighbor is from the current state.

A key aspect of LQFA is the selection of a suitable feature function f(s,a), which aids us in
understanding how a Q-value of a state impacts neighboring q-values. In our execution,
we utilized the Gaussian function (σ should be chosen based on the local-radius variable,
sigma defines how far-reaching the effect of an update is in the parameter space).

In line with equation 4.6, we also need to introduce weights. The weights matrix in the

5| Model 35

LQFA method represent the importance or contribution of each feature to the predicted
Q-value. Adjusting these weights during training enables the model to learn the relation-
ships between different states and actions and their corresponding Q-values. In essence,
the weights determine how each feature influences the estimated value of the Q-function,
and they are tuned during the learning process to minimize the error between the approx-
imated Q-values and the actual returns received. In simple terms, the updating process of
the weights is an effort to align the estimated Q-value with the sum of the immediate re-
ward and the discounted expected return of the next state. According to the Q-learning’s
Bellman Equation (4.4), the next state is selected from all the neighbors (covered by local-
radius) possessing the highest Q-value. Primarily, when the sum of the immediate reward
and the expected return of the next state’s Q-value is higher than the current estimated
Q-value, the weights are adjusted to increase the current Q-value estimate. Conversely, if
the sum of the immediate reward and the expected return of the next state is lower than
the current estimated Q-value, the weights are adjusted to decrease the current Q-value
estimate. These adjustments are guided by the relationships between states, actions, and
features encoded in the LQFA, aiming to align the estimated Q-values with the observed
returns. As per equation (4.7), it directly impacts the weight of that state and its neigh-
bors. Therefore, if we witness a negative update of weights, it is less likely to move again
towards that state or its neighbors, and the agent is more inclined to explore that area in
the current and subsequent iterations.

Weights have to be initialized in some arbitrary way, and if optimistically they are initial-
ized to high values, this encourages exploration. Since we want to encourage exploration
close to the original parameter set (which effectively has a role similar to regularization),
we set optimistic initial weights as a (Gaussian) function of distance from the initial set
of values. However, there can be instances where we possess preliminary knowledge of the
environment and initialize the weights unevenly (when we know certain areas in the envi-
ronment are more likely to be selected by the agent). At each state, the agent computes
the system’s reward or helicity in that simulation and takes into account the expected
value of the next state and updates its weight and its neighbors. This procedure continues
until certain areas have high weights where optimized parameters are likely to be found
and the rest of the environment with low weights, it’s less likely to find the optimum
parameters.

5.1.8. Gradient Descent

GD methods are in general an optimization method for finding the closest local extrema
of multidimensional functions for which gradients are available. In the context of molec-

36 5| Model

ular simulations and parameter optimization for the FF equation, it is employed as an
iterative optimization algorithm to minimize the discrepancy between simulated results
and experimental data. The objective function represents the error or difference between
the two sets of data, and the primary goal is to find an optimal set of FF parameters that
minimize this objective function[17].
To apply GD for parameter optimization, sensitivity analysis is initially conducted to
identify the most influential parameters in the FF equation. This analysis specifically
calculates the local estimate of the gradient, which is the vector of derivatives of the ob-
jective function with respect to the selected subset of the underlying FF parameters. In
doing so, it quantifies the impact of individual parameters on the FF equation.

The explanation of the steps are written as follow:

• Gradient Calculation: The sensitivity analysis yields information about the gradi-
ents of the objective function concerning each parameter. The gradients indicate
the direction and magnitude of change required for each parameter to improve the
fit between simulated and experimental data[17].

• Learning Rate (Alpha): A learning rate (often denoted as "alpha") is introduced
to control the step size of the parameter updates during the optimization process.
The learning rate determines how large or small the adjustments to the parameters
should be in each iteration, it can also be dynamic, i.e. it can change between
optimization steps[17].

• Parameter Update Rule: By multiplying the gradients with the negative value of the
learning rate (-alpha) and subsequently updating the parameters accordingly, the
optimization algorithm iteratively moves towards parameter values that minimize
the objective function[17].

While GD is effective to some extent, it exhibits certain limitations that may hinder its
ability to reach the global minimum of the objective function. GD can become trapped
in local minima, where the objective function reaches a low point, but not necessarily the
global minimum. This restricts the algorithm’s ability to explore better solutions in the
parameter space. Furthermore, by utilizing the Q-function algorithm, we can construct a
well-trained environment. This environment will not only be invaluable for more in-depth
explorations but also serve as a foundation for examining other systems. [23].

To overcome these limitations, RL approaches, particularly those utilizing QFs, can com-
plement GD in the parameter optimization process. RL methods offer benefits such as
global search capabilities, adaptability to non-differentiable objective functions, and the

5| Model 37

ability to manage probabilistic or stochastic outcomes. By employing RL techniques,
researchers can enhance the optimization process and potentially achieve improved pa-
rameter values that better match experimental data and enhance the performance of the
FF equation in molecular simulations.

To leverage the advantages of GD along with RL-based optimization and random ex-
ploration, a hybrid approach is adopted, where the optimization process is guided by a
predefined policy. This policy determines the probability of choosing different actions
during each iteration of the optimization process.

Specifically, the policy assigns a 70 percent probability to greedy Q-function based actions,
a 20 percent probability to GD-based actions, and a 10 percent probability to completely
random walk actions. The inclusion of random walk actions is essential for promoting the
exploration of the parameter space, enabling the discovery of new and potentially more
promising parameter configurations [16].

Combining GD with RL and random actions demands meticulous planning. For GD to be
effective when selected as an action, it’s crucial to consistently update the gradient values
in every iteration where it’s used, especially within the 20% likelihood of opting for the
GD action. It’s pertinent to mention that our chosen 70-20-10 policy distribution is an
initial estimate at this stage. While fine-tuning these percentages might offer improved
results, delving into such optimization isn’t the focus of this thesis. We began our study
with certain foundational values, and we recognize that our current distribution stems
from these initial assumptions. The reason for frequent updates is that when using other
approaches like RL or random walks, the optimization process moves away from the direc-
tion of GD, altering the parameters. Consequently, the previously computed GD values
might no longer be accurate for the current parameter space (for better understanding
see the Figure 5.6).

However, recalculating GD from scratch in every iteration can be computationally expen-
sive and inefficient (a gradient calculation can take an order of magnitude longer than
a regular simulation). To overcome this issue, a time-saving approach is employed. For
instance, consider the scenario where the GD values for two locations in the parameter
space, (x1, x2, x3) and (y1, y2, y3), have already been calculated. Now, the optimization
process aims to compute the GD for the location (z1, z2, z3). If (z1, z2, z3) lies close
enough to (x1, x2, x3) and (y1, y2, y3) or in the direction of the gradients of one or both
of those locations, it is possible to estimate the direction and value of the gradients using
a linear combination of known gradients.

By employing such estimation techniques, the need for full recalculations is reduced,

38 5| Model

enabling more efficient and less time-consuming optimization. This integration of RL,
GD, and random exploration, along with the clever handling of GD updates, provides a
well-rounded optimization strategy that combines the strengths of different techniques for
more effective parameter tuning of the FF equation in molecular simulations.

5.1.9. Initialization

In this section, we detail the essential initializations required for our simulation process
[24]:

• Dimensions: We need to determine the number of FF parameters to be considered
in the simulation.

• Grid Size (global-radius): The grid size represents the number of steps we can take
in each dimension. Typically, a value of 10 or more is reasonable.

• The step size, crucial for parameter optimization in the FF, is derived from the
analysis of the PDB (Protein Data Bank) file of the molecular system. The PDB
file provides detailed information about the molecular structure, including atomic
coordinates and other essential parameters. By analyzing these parameters, one
can gauge the range and scale of values within the molecular system. This analysis
aids in determining an appropriate step size for the n-dimensional parameter space
of the FF parameters. Essentially, the step size should be chosen such that it is
sensitive enough to capture the nuances of the molecular system while ensuring
computational efficiency.

• Weights Matrix: The weights matrix is of the same size as the environment (coor-
dinate system). Each element of the matrix is initialized using a Gaussian distri-
bution. Two methods are employed for initialization: pessimistic and optimistic.
Pessimistic initialization sets all weights to zero. This is considered pessimistic be-
cause zero represents the lowest value that the parameter can attain, not merely
because it indicates no initial preference among the states. Optimistic initialization
sets all weights to a higher value (e.g., 16, the maximum helicity of a 20-mer alanine
oligopeptide) [25], considering all states as possibly good options. Depending on the
method, the agent adjusts the weights of the current state and its neighbors based
on rewards received.

• Local-radius: The local-radius determines the number of neighboring states from
each dimension that should be considered in Q-value calculations, where the current
state can influence them.

5| Model 39

• Parameters of Q-function and GD: The Q-function parameters consist of Alpha,
Gamma, and Gaussian Sigma. For GD, we only have Alpha. These parameters are
to be initialized by the technician overseeing the simulation process.

40 5| Model

Figure 5.5: The provided diagram depicts a rudimentary representation of a two-
dimensional environment, characterized by a local-radius of 2 and a global-radius of 7.
These parameters, intrinsic to the problem structure, are subject to modification by the
user, conferring a degree of flexibility in the model. Should the user’s requirements extend
to the utilization of more than two parameters, the environment’s dimensionality would
correspondingly expand, equating to the number of parameters engaged. As delineated in
the illustrative diagram, the red points symbolize the potential successive states that the
agent could transition into, thereby representing the neighboring locations. Conversely,
the black points designate the set of states that are unattainable from the current state,
denoted in blue in the given visual representation. This distinction underlines the funda-
mental states and transitions inherent to the illustrated agent-environment interaction.

5| Model 41

Figure 5.6: Assume that the states at the blue points are already visited by the agent
and we calculated the GD at those states. Now we are visiting one of the red states and
we need to take a GD based action. In this situation, the information about the direction
and magnitude of the gradient in the blue states can easily be used to estimate the value
and direction of the red points through simple interpolation. But for the red state with
question mark, as we never discovered that area previously, it is not possible to estimate,
then we need to calculate the GD for that point again.

43

6| Implementation and Coding

This section outlines the step-by-step implementation of the project, explaining the al-
gorithms by using pseudo-code. We first go over simulation input files and their roles in
simulating a biological system. Then, we detail the initial steps needed after obtaining
these files, with a special focus on creating a molecular trajectory, which is a key part of
this stage. Once all the pieces are in place on the biological side, we can move on to the
application of RL.

The project unfolded in the following steps:

1. My first task was to establish a connection with supercomputers in Barcelona to set
up code repositories and simulation protocols. While this was time-consuming, it’s
not closely tied to the core ideas of the thesis, so it won’t be discussed in depth.

2. I then gathered and customized useful codes from previous work done by others:

(a) The trajectory producer: Given a PDB and Topology file, this code generates
a molecular trajectory, which we will discuss further in the next section (6.1.1).

(b) Sensitivity analysis: This function takes a trajectory file and returns a list of
atom types along with their sensitivities or derivatives with respect to chosen
FF parameters, allowing us to identify the most important atom types for
parameter optimization.

3. I linked different parts of these previous codes and organized them in a coherent
function library.

4. I developed code to update parameters using only the GD approach.

5. I successfully performed GD as a foundational step for future RL implementations.

6. I then started to develop a model based on RL, beginning with a 2-dimensional
space (2 parameters). We used artificial rewards instead of real rewards.

7. I started developing for more than 2 dimensions using real rewards (helicity of the
system in the given trajectory).

44 6| Implementation and Coding

8. Lastly, I fine-tuned the algorithm and made several improvements, including adjust-
ing the time constant, updating the derivatives, implementing multi-level logging,
and improving visualization and monitoring.

6.1. pre-programming

In this segment, we discuss pre-existing entities, files, and codebases that function as
dependencies for our code. This includes universally accessible files, retrievable from
online sources, as well as pre-developed code components contributed by fellow team
members and students.

6.1.1. Biological Files and Entities

In this section, we will delve into the critical biological files and entities that are funda-
mental for the successful execution and understanding of our research project.

1. PDB file (.pdb) [26]: The Protein Data Bank (PDB) format is a widely used text
format for describing three-dimensional structures of molecules, particularly proteins
and nucleic acids. The information contained in a PDB file includes atom names,
residue names, chain identifiers, and coordinates in 3D space. This data is critical
for computational molecular modeling, including MD simulations, docking studies,
and structure-based drug design. The PDB file format was originally established
by the Protein Data Bank, a repository of protein and nucleic acid structures. One
can freely access and download PDB files from the Protein Data Bank’s website
(www.rcsb.org). Once the PDB file is downloaded, it can be viewed using various
molecular visualization software such as PyMOL, UCSF Chimera, or VMD (Visual
MD).

2. Topology File (.top) [27]: In molecular simulations, a topology file serves as a crit-
ical component that contains the empirical parameters of the system under study.
This file typically contains information about atom types, bonds, angles, dihedrals,
and other parameters relevant to the molecular system. Essentially, it details the
connections and interactions among atoms within the molecule or system. The
generation of a topology file involves the selection of a FF, which is a set of pa-
rameters and equations employed to calculate the system’s potential energy. The
choice of FF depends on the type of system being simulated and the required level
of detail. Popular FFs include AMBER, CHARMM, and GROMOS. Typically, the
creation of a topology file starts with a coordinate file (such as a PDB file), and

6| Implementation and Coding 45

software-specific tools are used for its generation. For example, in GROMACS, the
’pdb2gmx’ tool might be utilized to generate a topology file from a PDB file. These
files are generally in plain text format and can be viewed or edited using any text
editor. However, caution must be exercised when editing these files, as incorrect
modifications can result in simulation errors.

3. Plumed files (.dat): PLUMED files are additional instructions to the MD engine,
specifying how to modify the simulation by adding external forces, or calculating
custom quantities. They both deal with a protein, as described in a PDB file, and
analyze its alpha-helical structure. An examination of the functions of each file is
presented below [22].

• Plumed file for sensitivity analysis: The first PLUMED file is designed to con-
duct a sensitivity analysis on a protein’s structure. It forces the protein to
adopt different configurations and observes how it behaves under these condi-
tions. The aim is to sample states for the calculation of free energy derivatives
between them. This detailed exploration helps to create a reliable foundation
for methods such as GD, as it prevents the analysis from getting trapped in
local minima.

• Plumed file for analysing system’s behaviour during simulation: It monitors
the alpha-helical structure of a protein without imposing any restrictions or
manipulations. The aim here is to observe the protein’s natural behavior under
simulated conditions. The observations from these simulations could be used
as an input for an RL algorithm to optimize a function related to the protein’s
structure. Furthermore, it can be used either during the simulation or as a
post-processing analysis tool (as opposed to the previous one which has to be
used during the execution of the simulation)

The first file actively enforces various conditions by altering the Hamiltonian to in-
vestigate the system’s behavior, while the second file passively observes the system’s
natural behavior for optimization purposes.

4. Trajectory file (.xtc) [28]: A trajectory file is a standard output file type for MD
simulations. This file records the positions of all atoms or particles in the system
as a function of time, effectively tracing their "trajectory" through space over the
course of the simulation. MD simulations are often performed to study the physical
movements of atoms and molecules. The data provided by the simulations can
be used for a wide range of purposes, such as studying the folding of proteins,
the formation of chemical complexes, or the behavior of materials under various

46 6| Implementation and Coding

conditions. The generation of a trajectory file primarily requires two inputs: the
PDB file and the Topology file. The PDB file provides the initial conditions, while
the Topology file defines the Hamiltonian of the system. With both these inputs,
when user runs an MD simulation, the simulation package will integrate the equation
of motion, applying physical laws (like Newton’s laws of motion) to calculate the
forces between atoms and their subsequent movement. At specified time steps, the
simulation will write the current positions (and sometimes velocities and forces) of
all the atoms to the trajectory file. The result is a detailed record of how every atom
in the system moved over the course of the simulation. The trajectory file format
can vary depending on the MD simulation software being used. Some common
formats include .dcd, .xtc, and .trr. This trajectory file can then be analyzed post-
simulation using various analysis tools to understand different aspects like RMSD,
RMSF, hydrogen bonding, radial distribution function, and more.

6.1.2. Primary and prepared functions

Next, the focus shifts to functions developed by others that are incorporated in this thesis.

1. trajectory_producer function: The function trajectory_producer is a crucial part of
the simulation pipeline, written by other developers, and then modified by me, pri-
marily in the conditional (if-else) section to handle various types of processing. The
function creates MD trajectories, where the input parameters are the Plumed file
(plumed_file), an identifier (id), the duration of the simulation in nanoseconds (du-
ration_ns), and a directory path (path), where the trajectory file should be saved.
The role of the function is determined by the id value, with each id corresponding
to a different operation. If id=0, the function initiates a sensitivity calculation.
If id=1, it begins a time constant calculation. If id=2, the function initiates the
first iteration of the process, where the Plumed file is simple and does not contain
forces. For id>2, it handles subsequent iterations of the process, in these cases, the
simulation is supposed to read the last checkpoint file and continue the process with
the exact output settings of the last iteration.

2. The sensitivity_calc function in Python is used for performing a sensitivity anal-
ysis on a molecular system. The method identifies the influence of individual FF
parameters on a chosen molecular observable. It takes in an xtc file (a trajectory
file detailing atomic motion), the molecular property based on which reward will be
calculated such as the alpha-helical content in a polypeptide, and a list of atoms
to exclude from the analysis. The function first adds all possible modifications of

6| Implementation and Coding 47

the Lennard-Jones sigma parameter, which are changes in the non-bonded forces
between atoms, to the list of calculated sensitivities, excluding the specified atoms.
Next, it specifies the trajectory and adds relevant datasets, such as the helicity
dataset loaded from the input file. The core sensitivity calculation is then run,
which may require significant computation time. After the calculation, it computes
discrete derivatives of the system’s free energy with respect to the helicity dataset,
both in the lower and upper halves of the helicity range. This provides insight into
how the free energy as a function of helicity changes with variation in the values
of sigma. Finally, it calculates the difference between the free energy derivatives in
the upper and lower halves of the helicity range for each atom. These values, stored
in the list hel_by_atom, represent the sensitivity of each atom. The output of this
function is a list containing each atom’s type and its corresponding sensitivity value.
These sensitivity values serve as crucial input for subsequent MD simulations or op-
timizations. The sensitivity analysis thus helps identify the atoms with the greatest
impact on the system, guiding parameter selection and system modifications.

6.2. Project Implementation: Entities, Functions and

Algorithms

The current iteration of the project encompasses two principal Classes: System and
RL_qfunction. The System class encapsulates all entities and functionalities pertain-
ing to the molecular system. Upon receiving the system’s pdb and topology, it facilitates
trajectory production, helicity calculation, time-constant computation, and the evalua-
tion of the final reward in the current state. Notably, the state entity, which alters upon
transitioning to a new state, is represented by the system’s topology. The System class
also facilitates sensitivity analysis and includes a system modifier function, which permits
the agent to adjust current parameters in accordance with the primary algorithm, thereby
returning a new state with an updated pdb file and topology. Additional functions are
implemented to preclude the occurrence of bugs and erroneous results.
The second class, RL_qfunction, incorporates all entities and functionalities germane to
the RL aspect of the code. It comprises functionalities such as Q-value computation and
weights updating, which are detailed in the RL section (See: 4.3).

6.2.1. System Object

The code is designed to work with molecular simulations, specifically handling trajectory
production, reward calculations based on helix formation, sensitivity analysis, and system

48 6| Implementation and Coding

modification. It integrates various libraries to facilitate these tasks and provides an object-
oriented approach to manage complex biological systems, such as an Alanine Oligopeptide.
Below the description of the specific libraries added the project is provided:

• openmm: These are part of OpenMM, a molecular simulation toolkit, and they
handle MD simulations, units, and other related tasks.

• mdtraj.reporters.XTCReporter: From the MDTraj library, used for handling tra-
jectory reporting in XTC format, a compressed coordinate file format.

• parmed: Used for loading and manipulating molecular topologies.

• gromologist: A library, handling tasks related to the GROMACS simulation pack-
age.

• openmmplumed.PlumedForce: Provides an interface between OpenMM and PLUMED,
allowing enhanced sampling simulations using collective variables.

Main functions

• trajectory_producer(self, ...): Produces a trajectory for a given system based on
the provided parameters.

6| Implementation and Coding 49

Algorithm 6.1 trajectory_producer Algorithm
Require: plumed_file, id, duration_ns, path
Ensure: A trajectory produced according to parameters.
1: Define filenames for trajectory, checkpoint, and log
2: Load topology and positions from files
3: Define integrator, system, barostat, and simulation
4: if trajectory file exists then
5: Remove existing trajectory, checkpoint, and log files
6: end if
7: if id = 0 then
8: Sensitivity calculation: Add PlumedForce
9: else if id = 1 then

10: Time constant calculation: Load sensitivity checkpoint
11: else if id = 2 then
12: First iteration: Set positions, minimize energy
13: else if id > 2 then
14: Subsequent iterations: Load previous checkpoint
15: end if
16: Define reporter for trajectory (XTC format)
17: Append reporters for simulation state and energy metrics
18: for j = 1 to loop do
19: Perform simulation steps
20: Save checkpoint
21: end for
22: Load last saved checkpoint if an exception occurs =0

• reward_calculation(self, ...): Calculates the reward for the system based on a given
directory, time constant, and run time.

50 6| Implementation and Coding

Algorithm 6.2 Reward Calculation
1: Multiply time_constant and run_time by 100
2: Get the list of files in the directory named "helix.dat"
3: Initialize empty list for extracted data: data_lists
4: for each file in file_names do
5: Initialize empty list for second column data: data_list
6: Open the file for reading
7: for each line in the file do
8: if line starts with # then
9: Continue to next iteration

10: end if
11: Split the line into columns
12: if there are more than 1 columns then
13: Append float value of second column to data_list
14: end if
15: end for
16: Add data_list to data_lists
17: end for
18: Compute h1_index from data_list based on run_time
19: Compute h1 as mean of h1_index
20: Compute numerator and denominator
21: Compute reward = data_list[0] + numerator / denominator
22: Return reward =0

• time_constant_cal(self): Calculates the time constant for the system based on
provided data files.

• sensitivity_calc(self, ...): Calculates the sensitivity (or GD) of atom types in the
system.

6| Implementation and Coding 51

Algorithm 6.3 Sensitivity Calculation
1: Create a ThermoDiff object: td
2: Add all possible NBFIXes to the list of calculated sensitivities, excluding given atoms

3: Load helicity data: hdata
4: Specify a trajectory and datasets for sensitivity calculation
5: Run the sensitivity calculation (Note: this part may take some time)
6: Calculate the difference between the binned derivatives for the lower and upper half

of the dataset
7: Initialize empty list for helicity by atom: hel_by_atom
8: for each key in td.discrete_free_energy_derivatives.keys() do
9: Append type and difference between derivatives to hel_by_atom

10: end for
11: Return hel_by_atom =0

• systemmodifier(self, ...): Modifies the system by changing one or more parameters
and then creates a new system.

Algorithm 6.4 System Modifier
1: Create a Top object: topo
2: Check the PDB file in the topology
3: Prepare a list of atom changes: atoms_changes
4: for each atom change in atoms_changes do
5: if parameters equal to "sigma" then
6: Edit atom type in the topology with the given modification
7: end if
8: end for
9: Save the modified topology and PDB files

10: Create a new SystemObj: newsys
11: Call the trajectory_producer method on the new system with the given parameters
12: Return the new system =0

• helix_reward_calc(self, ...): Calculates the reward associated with helix formation
in the system.

52 6| Implementation and Coding

6.2.2. RL_qfunction Object

The class implements a LQFA for RL. It’s designed to manage the Q-values and weights
within a particular space, and it supports updating these Q-values according to the pro-
vided RL algorithm.

Attributes

• Global Parameters: Parameters like global_dimensions, global_radius, local_radius,
and initial_qval define the space and characteristics of the problem.

• Current Location: Represents the current position within the global space.

• Weights and Q-values: Both global and local weights, and Q-values are maintained
for calculations.

• Various Series: Lists to keep track of weights, locations, and other data throughout
the learning process.

Constructor: __init__ method

This constructor initializes the class with the given parameters and sets up the initial
state of the LQFA, including global and local weights.

Main Functions

This constructor initializes the class with the given parameters and sets up the initial
state of the LQFA, including global and local weights.

• q_value_calculation: Calculates the Q-value at a specific location using Gaussian
smoothing. It manages the bounds and normalization to provide accurate Q-value
computation.

6| Implementation and Coding 53

Algorithm 6.5 q_value_calculation Algorithm
Require: loc, normalize
Ensure: The calculated Q-value for the given location.
1: Call _check_borders with loc to get mins,maxs
2: gaus← Call _nd_gaussian with parameters 3, self.local_radius, self.global_dimensions, normalize

3: Define ranges as [(x, y) for x, y in zip(mins,maxs)]
4: Define slices_list as [slice(min,max+ 1) for min,max in ranges]
5: local_weights← self.global_weights[tuple(slices_list)]
6: local_weights_copy ← np.copy(local_weights)
7: loc_tuple← tuple(self.local_radius for in range(self.global_dimensions))
8: gaus_weights ← Call _operation_matrices_with_location with
local_weights_copy, gaus, loc_tuple, ’mul’

9: qval← np.sum(gaus_weights)
10: return qval =0

• update_weights: Updates the weights based on the current state, action, reward,
and other parameters. This is guided by the LQFA formula, and it ensures proper
update to learn from the environment.

54 6| Implementation and Coding

Algorithm 6.6 update_weights Algorithm
Require: id, Alpha,Gamma, gaussian_sigma, reward, normalize
Ensure: Next action, data, and the list of locations.
1: Copy self.global_qvalues to global_qvalues_copy
2: Gaus← Call _nd_gaussian with gaussian_sigma, self.local_radius, self.global_dimensions, normalize
3: if id == 2 then
4: Call _check_borders with self.current_location to get mins,maxs
5: Calculate denominator using q_value_calculation with self.current_location and

normalize

6: Get numerator from self.global_qvalues indexed by self.current_location
7: Calculate factor as numerator/denominator
8: Update self.global_weights by multiplying with factor
9: else

10: Call _check_borders with self.current_location to get mins,maxs
11: end if
12: Define ranges as [(x, y + 1) for x, y in zip(mins,maxs)]
13: Calculate all combinations for the ranges
14: for idx, combination in combinations do
15: Update global_qvalues_copy[combination] with q_value_calculation using

combination and normalize
16: end for
17: Define ranges using mins and maxs
18: Construct slices_list from ranges

19: Extract qvalues_local and weights_local from the global matrices
20: Copy qvalues_local to qvalues_local_copy
21: Create loc_tuple
22: Set the central element of qvalues_local_copy to 0.0

23: Determine maxQ_index and gamma_maxQ values
24: Calculate diff and Delta
25: Compute weights_update using Alpha,Delta, and Gaus
26: Get next action as the difference between maxQ_index and loc_tuple
27: Compute current_qval and next_qval
28: Update the global matrices using _operation_matrices_with_location
29: Initialize an empty list data
30: Append rounded values of reward, current_qval, next_qval, diff,Delta,_recursive_average(weights_update),_recursive_average(weights_local)

to data
31: Append self.current_location to self.locations_list
32: return next_action, data, self.locations_list =0

6| Implementation and Coding 55

Helper Functions

• _nd_gaussian: Creates an n-dimensional Gaussian kernel.

• _normalize_matrix: Normalizes a given matrix.

• _gaussian_multiplier: Multiplies the Gaussian kernel with a given matrix.

• _check_borders: Checks the bounds of the given location.

• _operation_matrices_with_location: Applies an operation between two matrices
at a specific location.

• _recursive_average: Calculates the average of a list.

• gradients2action_convertor: Converts gradients to action based on grid steps.

• action2changes_convertor: Converts action to changes in the grid.

57

7| Results

In this chapter, the outcomes of implementing various algorithms using the Python pro-
gramming language and specialized libraries are discussed. The development process
began with a basic model, which was systematically refined to incorporate all necessary
algorithms, thereby enhancing both the model and the resulting data.

Existing research in the field suggests that GD is a viable algorithm for optimizing FF
parameters. To gain a comprehensive understanding of the problem and the steps involved
in its implementation, a preliminary test was conducted using the GD approach with real
rewards. In the context of this thesis, the helicity of the system structure serves as the
primary metric for evaluating the efficacy of the implemented algorithms, functioning as
a simplified yet informative test result.

Following this, a simplified LQFA model was developed as a reference model. This envi-
ronment has two primary characteristics: it operates in a two-dimensional parameter space
and generates artificial rewards. The focus on two dimensions allows for easier coding and
visualization, serving as a foundation for more complex, N-dimensional models. Artifi-
cial rewards were used to expedite the process, eliminating the need for time-consuming
trajectory production.

After successful testing in this simplified environment, an N-dimensional model was im-
plemented, again by utilizing artificial rewards. This model was then integrated with the
initial GD approach with real rewards. Both algorithms operate in tandem, guided by
an epsilon-greedy policy: 70% of actions are based on LQFA, 20% on GD, and 10% are
random actions. Due to the use of multiple approaches, including LQFA and random ac-
tions, periodic updates to derivative values became necessary. This is particularly crucial
when the agent deviates significantly from the last point of derivative calculation, as the
different approaches may not align with the direction indicated by GD. In such cases, a
re-calculation of derivatives, or sensitivity analysis, is required to maintain the integrity
of the simulation.
The chapter concludes by presenting and discussing the results obtained at each stage of
implementation.

58 7| Results

7.1. Gradient Descent Approach With Real Rewards

The first goal of this thesis was to set up the basic code needed for running a simulation.
This involved creating a long trajectory, applying various forces to the system (by plumed
library forces), and measuring how each type of atom responds to these forces.

It is crucial to note that not all atom types within the system are relevant for sensitivity
analysis in FF optimization. Generally, ions such as sodium (Na+), chloride (Cl-), and
potassium (K+) are excluded, as they primarily serve to neutralize the system rather
than contribute to molecular interactions under study. Similarly, solvent atoms like water
(’OW’ for oxygen, ’HW’ for hydrogen) are typically omitted to focus on the solute [29].
The exclusion criteria commonly encompass:

• Solvent atoms

• Ions

• Atoms not integral to the molecule’s covalent structure

• Atoms with minimal impact on the interactions or properties under investigation

In the following table, the derivatives for each atom type in the Alanine Oligopeptide
(20-mer) are shown, excluding ’OW’, ’HW’, ’Cl’, and ’K’. These were left out because the
first two are solvents and the last two are ions, which aren’t the focus of this analysis.
These exclusions are common in sensitivity studies to keep the focus on the molecule’s
structure and interactions. The table provides details on the remaining atom types and
their derivatives. In the table above, the derivatives for various atom types are presented.

Atom Type Derivative Value
C 600.74

CT -265.11
H -62.78
H1 -437.97
HC 151.86
HP -4.40
N 1007.14
N3 -3.18
O -424.03
O2 -2.00

Table 7.1: Derivatives of all the atom types in Alanine Oligopeptide (20-mer)

It is advisable to focus on atom types with the highest absolute values of their derivatives.
The number of atom types considered in the simulation is contingent upon computational

7| Results 59

efficiency and time constraints. Including additional atom types introduces more dimen-
sions to the system, as each atom type necessitates the modification of its Lennard-Jones
parameters ϵ and σ, as well as potentially other FF parameters. While this can enhance
the accuracy of the simulation, it also increases computational complexity and time re-
quirements[?].

In the scope of this thesis, attention is restricted to the four atom types exhibiting the
highest sensitivity.

Atom Type Derivative Value
N 0.7620
C 0.4545
H1 -0.3314
O -0.3208

Table 7.2: Derivative values for the four most sensitive atom types in the Alanine
Oligopeptide (20-mer). These values are normalized using the L2 norm to focus on the
direction of parameter adjustments, improve numerical stability, and facilitate compari-
son.

In the optimization algorithm, each gradient component is scaled by −αgr, which acts as
the learning rate. This scaling serves multiple purposes: it sets the step size for the opti-
mization, ensures that parameter adjustments occur in the direction that minimizes the
objective function, and improves the numerical stability of the algorithm. Consequently,
the choice of αgr is crucial for both the speed and accuracy of the algorithm’s convergence.

In order to establish an appropriate environment for our RL (RL) model, the continuous
parameter space was discretized into a grid [30]. Each point on this grid represents a
state in the RL framework. The grid step size, determined based on the values of the FF
parameters, was set at 0.005. On the other hand, the magnitude of the actions within
the RL model is influenced by the derivative values. A learning rate of −αgr = 0.03 was
selected for scaling these derivatives. After this scaling, the derivatives were converted
into actions, as detailed in the subsequent table.

Atom Type Gradient Action
N -0.022860 -4
C -0.013635 -2
H1 0.009941 1
O 0.0096248 1

Table 7.3: Conversion of gradients to actions for different atom types in the RL model.

60 7| Results

In the RL model, the actions are derived from the gradients by first scaling rounding
them to the nearest integer. This process converts the continuous gradient values into
discrete actions that the RL agent can take. For instance, as shown in Table 7.3, the raw
gradients for atom types O, H1, C, and N were converted into the corresponding actions
through this process.

In the final stage of the algorithm, a loop is employed to iteratively adjust the FF pa-
rameters based on the actions derived from the gradients. For the purposes of this study,
a simplified example that relies solely on GD was executed over a sufficient number of
iterations (In the latest simulation, following eight iterations and actions along the deriva-
tives) to evaluate its effectiveness. The objective was to assess whether this optimization
technique could yield a high helicity value within a meaningful range. Given that the
maximum attainable helicity is 16, achieving a value close to this upper limit is unlikely.
The figure below illustrates the helicity output file, where the average helicity achieved
was 5, with peak values reaching up to 8 at certain points (see the Figure 7.1). While this
outcome may not represent an optimal solution, it serves as a promising indicator that
GD can guide the agent to a local maximum.

Figure 7.1: The figure displays a segment of the helicity output file, generated from a
trajectory of an Alanine Oligopeptide (20-mer). This file is produced in each iteration
following the modification of the parameters for four atom types identified as highly
sensitive. The helicity output file provides a time-resolved measure of the system’s helicity
at each simulation step.

7| Results 61

7.2. 2-Dimensional Linear Q-function Approximation

with artificial rewards

In this section, as well as the subsequent one, artificial rewards are employed to evalu-
ate the performance of the Q-learning algorithm. Initially, the algorithm is tested in a
two-dimensional parameter space, and later extended to an N-dimensional space. The
transition from artificial to real rewards is straightforward, requiring only a substitution
of the reward-generating function.

The rationale for utilizing artificial rewards in a two-dimensional parameter space is based
on the likelihood of certain regions possessing higher helicity values than others. Specif-
ically, when the parameters are near their optimized values, the system is expected to
exhibit elevated helicity. To simulate this, two locations within the two-dimensional space
are designated to have exceptionally high helicity values (see the Figure 7.2), approaching
the theoretical maximum of 16. Surrounding these locations, neighboring points are also
assigned elevated helicity values, calculated using a Gaussian function. As one moves
away from these designated high-helicity locations, the helicity values gradually decrease.
The distribution of these artificial rewards is illustrated in the figure below.

In the context of this research, a critical aspect warranting detailed discussion is the
initialization of the weights matrix in LQFA. This matrix plays a pivotal role in the
optimization of FF parameters, which is the focus of this study. In this approach, we
employ an n-dimensional parameter space discretized into grids. Each grid point has
a weight associated with it, and higher weights in a particular region indicate a higher
probability of receiving substantial rewards there by locally increasing the value of the
Q-function.

The initialization of the weights matrix is of paramount importance for the efficacy of
the algorithm [31]. Initializing the weights matrix with low or zero values can lead the
LQFA to converge to a local maximum. This behavior can be understood by examining
Equation 4.7, which is an extension of the Q-learning algorithm. When the agent receives
a high reward at a particular state, the Q-value for that state tends to increase, unless the
state has been previously visited and lacks expected return from that state. Conversely,
if the agent receives a low reward, the Q-value for that state tends to decrease, unless the
state has sufficiently large expected return. This can lead to a feedback loop where the
agent continually revisits high-reward states, potentially getting stuck unless it employs
an ϵ-greedy policy to explore other states.

Alternatively, initializing the weights matrix with high values (greater than 10) offers a

62 7| Results

Figure 7.2: The figure above illustrates the distribution of artificial rewards within our
two-dimensional parameter space, which consists of 20 steps along each axis. The agent
commences its exploration from the exact center of this space, representing the initial
parameter configuration. Each action taken by the agent moves it to a new location
within this grid. The objective is for the agent to traverse the parameter space in search
of regions with higher reward values, as indicated by lighter shades in the figure. It is
important to note that the reward distribution merely sets the average reward that the
agent can expect to receive at a given location. For instance, if the agent moves to a
high-potential area (depicted in lighter colors), it will receive a random reward whose
average is higher than that in other regions of the space.

different dynamic. In this scenario, the agent is predisposed to explore various regions of
the parameter space. Upon encountering a region, even with high rewards, the weights in
that area will typically decrease (when the neighboring states are initialized with higher
weight values, the rewards attained by the agent may still be lower than the weights
and Q-values of these neighboring states). This reduction in weights causes the most
promising point in the neighborhood to shift away from the agent and further promoting
exploration. This behavior is visually represented in the figures below (7.3 and 7.4), which
compare the outcomes of low and high initial weights matrix values.

Based on Equation 4.7 and the examples discussed earlier, it is advisable to initialize
the weights matrix with values that are either close to the maximum or higher than the
average. This initialization strategy has the disadvantage of being more computationally
intensive in the search for high-potential areas. The reason is that the agent is required
to explore the environment extensively. In this process, it weakens low-potential areas by
assigning them lower weights while maintaining or increasing the weights of high-potential

7| Results 63

(a) (b)

(c) (d)

Figure 7.3: In these figures, for the sake of better understanding, we have plotted the
Gaussian curves separately and have focused exclusively on those states whose weights
have undergone changes. However, it is important to note that in a real-world scenario,
the actual weights are the sum of the products of each neighboring Gaussian function value
and its corresponding weight. In mathematical terms, the weights are magnitude numbers
that are multiplied by the Gaussian matrix function f(s, a). In this example, for the sake
of simplicity, the status of the environment is depicted in a one-dimensional space. The
initial matrix of weights is configured to have low magnitudes, either set to zero or close
to zero. Initially, state n is selected, and the agent receives a reward of high numerical
value. Subsequently, state n+1 is selected, and the agent receives a reward of lower value.
Finally, the agent tends to revert to the previous state n due to the increased weights
associated with it, while the neighboring states maintain lower weights and, consequently,
lower Q-values. The agent may choose other neighboring states for reasons such as taking
alternative actions, employing GD, making random moves, or encountering another state
with a previously calculated Q-value that is higher than that of state n [31].

64 7| Results

(a) (b)

(c) (d)

Figure 7.4: In the second example, initially, all the weights are set to their maximum
value, which in the context of our project is 16, or close to this maximum value. It
is improbable for the agent to receive a reward that is higher or equal to this maximum
during the initial iterations. Consequently, the weight associated with the initially selected
state n is reduced. This change not only affects the weight of state n but also has an
impact on the weights of its neighboring states. However, the weights of the neighboring
states still remain higher than that of state n, thereby rendering them probable candidates
for selection by the agent in subsequent iterations. In this scenario, state n− 1 is chosen,
and it yields a reward that is lower than that of state n. Hence, between states n and
n − 1, state n is more likely to be selected in future iterations. However, the remaining
states, which still have high weights, have not yet been evaluated. As such, we provide
an opportunity for these neighboring states to be chosen in forthcoming iterations. For
instance, in image (d), state n+ 1 is selected. It should be noted that other states could
also potentially be selected in lieu of state n, which was previously selected and now has
a diminished weight and, consequently, a lower Q-value [31].

7| Results 65

Figure 7.5: This figure serves as a graphical representation of the initialization of the
weights matrix in a two-dimensional space, with the grid comprising 20 discrete steps
along each axis. The center, which is represented by lighter hues, corresponds to higher
values in the weights matrix. As one moves away from the center, the values diminish
and are denoted by progressively darker shades [31].

areas. As a result, high-potential areas become more likely to be selected in subsequent
iterations, thereby encouraging the agent to persist in those regions.
In the context of our study, we employ a two-dimensional weights matrix, as depicted
below. The reward distribution, referenced in Figure 7.2, was initialized with relatively
high weight values. However, it is crucial to highlight that as one moves away from the
agent’s initial position, serving as the center point of our environment, the initial weights
diminish in value. This method of initialization acts as a form of regularization, effectively
discouraging exploration far from the original parameter set (see the Figure ??).

The agent may now commence the exploration of the environment. Specifically, the agent
should probe its immediate neighbors to identify regions characterized by high reward
values.

Observing Figure 7.6, it becomes evident that the agent has deviated from the central
position in pursuit of more advantageous regions. The adoption of LQFA allows the agent
to explore on a region-by-region basis rather than a state-by-state basis, thus substantially
reducing the time complexity of the search operation. In Figure 7.7, there are points with
relatively high rewards; the optimistic initial values were still sufficient to attract the
agent towards further exploration. Ultimately, the agent identified a high-potential area,
indicated by a lighter color, signifying greater weight values, while other areas darkened
in comparison.
Further insights can be gleaned from this run. Figure 7.6 highlights a correspondence
between the Q-values and weights, especially in high-potential areas where higher Q-
values are observed. This similarity is also corroborated by Figure 7.7, where the Q-value

66 7| Results

(a) (b)

Figure 7.6: In the aforementioned figure, the outcomes of the agent’s exploration-
exploitation activities on the Weights matrix, as well as the Q-values associated with
each state, are illustrated. Areas depicted in darker shades signify regions with a low
probability of yielding high rewards. Conversely, lighter shades indicate regions where
there is a higher likelihood of encountering substantial rewards.

plot is presented. The term diff represents the difference between the current Q-value and
γ multiplied by the next Q-value. Here, γ serves as a constant factor that quantifies the
consideration given to the future Q-value in decision-making, as detailed in Section 4.3.1.
The term Delta is reward + γ × (next Q-value − current Q-value), which updates the
Q-value of that particular state. Consequently, the gap between diff and Delta in Figure
7.7 is effectively filled by the reward value. As the agent converges to a high-potential
area, both the actual value of the result and the average reward exhibit an increase.

In summary, it appears that our algorithm is capable of identifying areas with high re-
ward potential within approximately 20 iterations. Furthermore, the algorithm effectively
distinguishes these high-potential areas from those with lower potential. This prepares
the groundwork for extending the implementation to accommodate an N-dimensional pa-
rameter space.

7.3. N-Dimensional Linear Q-function Approximation

with artificial rewards

In this segment of the Results chapter, we concentrate specifically on two instances within
an N-dimensional space. Our objective is to ascertain whether these instances yield ap-
propriate outcomes. This serves as a preliminary assessment, preparing our algorithm for
its full-fledged version: N-dimensional RL that incorporates genuine rewards. It is crucial

7| Results 67

(a) (b)

(c)

Figure 7.7: In the rewards Figure, the blue line represents the actual value of the reward,
whereas the orange line delineates the average reward value. Notably, fluctuations are
evident in the early stages, particularly before iteration 20. During this phase, the actual
reward value approached 5 at certain instances, which is considerably high. However,
the agent continued its exploratory behavior, maintaining high weight values for these
areas while also venturing into new areas in search of higher rewards. This behavior
can be attributed to the high initial weights, as lower initial weights would have resulted
in the agent’s prolonged stay in these areas.Post iteration 20, the agent identifies an
area characterized by exceptionally high rewards. This area exerts sufficient influence to
override the agent’s inherent tendency for exploration, resulting in its stationary behavior
within that locale. Simultaneously, significant fluctuations in the Delta and diff values
are observed prior to iteration 20. These fluctuations stabilize after the agent locates
the high-reward area. Importantly, the gap between Delta and diff represents the reward
value. Before reaching this high-potential area, the rewards were not substantial enough
to create a noticeable difference between Delta and diff. Upon entering the high-reward
zone, a significant divergence between Delta and diff manifests, attributable to the elevated
reward values.

68 7| Results

to ensure the scientific accuracy and effectiveness of our approach before advancing to
more complex scenarios.

All aspects pertaining to the system, reward distribution, weight initialization, and the
algorithms remain consistent with the 2-dimensional example. The primary modification
involves the addition of more dimensions, thereby expanding our parameter space. Con-
sequently, to avoid redundancy, we will not reiterate the underlying concepts and the
rationale behind them.

In the initial test, we employed a 4-dimensional parameter space. The parameters local_radius
and global_radius were initialized with values of 2 and 5, respectively. This configura-
tion results in a 10 × 10 × 10 × 10 space. The rewards were strategically positioned at
coordinates (2, 2, 2, 2) and (7, 7, 7, 7). As anticipated, when the agent approaches these
specified areas, it should identify them and emphasize them with augmented weights.

It’s pertinent to note that the initial weight was set at 10. This means that the central
weight possesses a value of 10, which diminishes progressively according to a Gaussian
function as one moves away from the center.

Referring to figure 7.8, it’s evident that after approximately 25 iterations, the agent suc-
cessfully localized the desired area. Despite encountering intermittent reward fluctuations
earlier in the process, the agent persisted in its exploration. By the 25th iteration, the
agent transitioned from exploration to exploitation of the identified area. Concurrently,
the Q-values mirrored the behavior of the high-value rewards, increasing in tandem with
the rewards and weights.

The variable Delta serves as an indicator, determining whether the subsequent update will
result in an increase or decrease in weights. Initially, its value was negative, signifying
the agent’s inclination towards exploration over exploitation. However, post the 25th
iteration, this value transitioned to positive. The subsequent plots underscore this shift,
illustrating that the update value became positive and the local weights of the targeted
area registered elevated values.

In our subsequent test, we initialized the system with a global_radius of 8, a local_radius
of 2, and expanded it to 4 dimensions. The rewards were strategically positioned at coor-
dinates (3, 3, 3, 3) and (14, 14, 14, 14). The agent commenced its operations from a central
location, specifically (8, 8, 8, 8). The visual data indicates that due to the enlarged pa-
rameter space, as a result of the increased global_radius, the agent required close to 50
iterations to locate the desired region. This observation underscores the efficiency gains
achievable by minimizing the number of parameters and reducing the grid’s dimensions. A

7| Results 69

Figure 7.8: In this Figure, we present the visual representations of the outcome variables
from our first 3D test. These plots offer insights into the performance and behavior of
the system under study.

70 7| Results

Figure 7.9: In this Figure, we present the visual representations of the outcome variables
from our second 3D test. These plots offer insights into the performance and behavior of
the system under study.

sensitivity analysis, coupled with a concentrated focus on pivotal FF parameters, proved
indispensable in this scenario.

Upon examining the plots from the second example 7.9, one can observe a decline in the
values of both Delta and Update Weights post their peak around the 50th iteration.
This trend is attributed to our design choice of setting the gamma parameter, ensuring
that the weights do not grow indefinitely. Specifically, when gamma is set close to 0, it
leads to convergence to the pure reward, whereas a value close to 1 can potentially lead
to divergence to infinity. For values in between, convergence occurs to a multiplicity of
the reward. In our design, the weights are constrained to plateau approximately at the
point indicating the maximum expected reward. To elucidate further, both the Q-values
and Weights stabilize around a value of 20. After this stabilization, due to the gamma
setting, the environment introduces updates to these areas with values nearing zero to
maintain them around this threshold. Consequently, Delta, which signifies the positivity
or negativity of the update, also gravitates towards a value close to zero, mirroring the
behavior of Update Weights.

This particular characteristic offers significant advantages, especially when integrating

7| Results 71

other actions such as GD or Random. Imagine a scenario where the agent identifies an
area with a maximum reward of 6. If the agent remains in this region without further
exploration, it will continue to update its Weights and Q-values. However, these updates
will only elevate them to levels corresponding to a reward of 6, and no further. This implies
that if the agent deviates from this area due to other actions (like GD or Random), it
stands a higher chance of discovering regions with even greater potential rewards.

7.4. Complete N-Dimensional RL Model With Real

Rewards

In this segment of the Results chapter, we evaluate the comprehensive algorithm using
real-world data. It’s essential to note that the primary metric under consideration here
is the system’s helicity. While helicity serves as a straightforward measure to assess the
system, there exist other potential metrics that could provide further insights. However,
a detailed exploration of these additional metrics falls outside the purview of this thesis,
presenting an object of future research or subsequent investigations.

For this study, we employ a complete LQFA to identify the optimal parameters within
an N -dimensional parameter space. Although the examples detailed in this section are
confined to a maximum of four dimensions, the algorithm and its underlying code have
been designed to seamlessly handle spaces with more than four dimensions. The pri-
mary constraint in expanding the dimensions is the associated increase in computational
processing time.

In the first test, as depicted in Figure 7.10, the agent experienced rapid growth over four
states, with values of 6.82, 8.93, 8.17, and 8.64. The peak value reached was approximately
9, which is a significant result. It’s important to note the difference between the results
based on GD (refer to Section 7.1) and this section. In the former, the helicity values were
not averaged, and the best result achieved was around 5 over an entire trajectory. While
better results might be achievable with GD, relying solely on derivatives for parameter
optimization can lead to local maxima, without exploring potentially superior areas. Con-
versely, combining Q-learning, GD, and Random moves allows for the exploration of more
promising regions. For instance, in this test, the agent moved away from the potential
areas near (7,3,5,7) and (9,1,5,9) to explore the more distant state (10,2,3,5), influenced
by a random move. A notable aspect of this approach is that after discovering a peak,
the algorithm gains some knowledge about the space, making it easier to identify other
promising areas. This is evident from the subsequent rewards, which generally increase

72 7| Results

until another peak is reached at (10,6,1,2) with a value of 7.2. The agent then moves away
from this location, again influenced by a random action, to explore further. Towards the
end, we observe several significant values around 5.2 in states (5,4,0,9), (4,4,0,10), and
(3,4,0,10), but there’s a sharp decline in reward value at (2,4,0,10).

Figure 7.10: This figure presents the graphical results from the first implementation.

Upon examining the plot corresponding to uW , which essentially represents the average
updating value of the weights of neighboring states, alongside Delta and Diff , several in-
sights can be drawn. Notably, when the agent achieves a high result value, the surrounding
environment of that specific location updates the weights to values predominantly exceed-
ing 6. Consequently, this region is designated as a high-potential area, making it a prime
candidate for consideration in subsequent iterations. This trend persists across other
peaks and desired regions, distinguishing them from the surrounding areas. It’s impera-
tive to highlight that, should we decide to investigate a system distinct from the Alanine
Oligopeptide (20-mer) yet bearing close structural and atomic similarities, the weighted
space derived from the former could serve as an initial space for the latter, obviating the
need to commence from a blank slate. Such an approach paves the way for the potential
incorporation of Neural Networks in future studies, particularly for supervised tasks.

Below 7.11, one can find the log file generated and updated throughout the implementation
process. While its structure may not be immediately intuitive, perusing the logs can offer
insights into the values assessed during the course of the implementation.

The results of the second test are illustrated in Figures 7.12 and 7.13. In this test, the

7| Results 73

Figure 7.11: Log file of the fist implementation.

agent identified a potential region after approximately 28 iterations, reaching a peak at
the location (4,8,2,4) with a reward value of 7.38. However, the average weight updates
value ("update weight" in the log file) remained relatively low at 0.3715, and the Delta
was only 0.58. Analyzing Figure 7.14, it’s evident that this state offers a significant
reward. Yet, the difference between the current Q-value and the next state Q-value is
minimal, indicating that this region might not provide substantial future returns. The
local weights in this area average around 8.5729, suggesting that the peak of 7.38 isn’t a
significant advancement, and it doesn’t drastically impact the weight. Conversely, when
the agent encounters the location (9, 5, 2, 4), it discovers a new region with Q-values
around 7-8. To enhance the weight of this new region, both the Delta and update weights
increased by roughly 3 units. A similar trend is observed at the location (10, 6, 0, 0),
which has an even higher result, causing a sharp rise in the region’s weight by nearly 3.2
and a Delta of 5.1. The final location represents an optimal blend of a high reward and
anticipated return, resulting in a Delta of 4.32 and a weight update of 2.7628.

Upon further examination of the plots, it’s evident that after 28 iterations, the agent
successfully identified regions with substantial rewards and consistently monitored these
areas. The values of rewards, Delta, and update weights not only remained high but also
showed an increasing trend. This behavior aligns perfectly with the primary objective
of the project: for the agent to pinpoint and persistently track regions with high reward
potentials and to explore further promising areas. During its exploration, there are in-

74 7| Results

stances, such as at location (9,5,2,4), where the agent experiences a dip in rewards after
some advancements. However, it’s crucial for the agent to navigate away from these less
rewarding areas and refocus on the more potential regions.

Figure 7.12: Rewards and Delta plots of the second implementation.

Figure 7.13: Diff and Updated weights values of the second implementation.

7| Results 75

Figure 7.14: Log file of the second implementation.

77

8| Prospective Developments

8.1. Utilizing Neural Networks in RL for Parameter

Optimization

Utilizing Neural Network (NN) in RL for parameter optimization presents a promising
avenue for future development of this foundational implementation. This integration
leverages the pattern recognition capabilities of NN to identify complex relationships
within the parameter space of the FF Equation in MD. By approximating functions
essential in RL, such as the value function or policy, NN can guide the exploration towards
more promising regions, reducing search time and computational resources [32] [33].

One specific way to enhance this approach is by extrapolating the long-term equilibrium
values using time series data from previous simulations. By incorporating these time
series, the neural network can better understand the temporal dynamics and trends within
the parameter space. This is especially valuable when considering the energy differentials
between individual Hamiltonians. Since each state in the RL framework parametrizes
the Hamiltonian slightly differently, understanding these differentials can provide deeper
insights into the system’s behavior and potential optimizations [32] [33].

The approach involves designing a tailored neural network architecture that captures the
underlying relationships between parameters and outcomes. This architecture should be
capable of processing both the current state data and historical time series to make more
informed decisions. Coupled with an appropriate RL algorithm like Q-learning or Deep
Q-Networks, the system takes the current state, including FF parameters, observables
(like the alpha-helix structure of the system), and past simulation data as input. Actions
represent possible modifications to the parameters, and the reward function evaluates
the quality of these actions based on metrics like the distance between experimental and
calculated data, as well as the consistency with historical trends [32] [33].

In summary, the integration of Neural Networks with RL, especially when enhanced with
time series data and energy differentials, offers a robust and flexible solution for parameter

78 8| Prospective Developments

optimization in this thesis. It combines the strengths of both fields to create an efficient
and effective method that can handle high-dimensional parameter spaces. By considering
the historical context and the nuanced differences between Hamiltonian states, this ap-
proach becomes a valuable addition to the prospective developments of the research [32]
[33].

8.2. Exploring Alternative RL Algorithms and Ini-

tialization Techniques for Enhanced Optimiza-

tion:

Exploring alternative RL algorithms and initialization techniques represents a vital avenue
for enhancing the optimization process within this project. Different RL algorithms offer
unique strengths and weaknesses, and selecting the right approach can significantly impact
the efficiency and effectiveness of the optimization [34] [31].

Among the various RL algorithms, Deep Q-Networks (DQN) leverage deep neural net-
works to approximate the Q-function, allowing for more complex representations of the
state-action space. However, DQN can be computationally expensive and sensitive to
hyperparameter tuning, potentially leading to instability. Methods like Policy Gradients
provide more flexibility in defining the policy but can suffer from high variance, making
convergence slower and potentially less stable. Monte Carlo Tree Search (MCTS) builds a
search tree and selects actions based on simulations, offering strategic exploration benefi-
cial in navigating the complex parameter space. However, MCTS can be computationally
intensive and may struggle with large action spaces, limiting its applicability [34] [31].

An alternative and promising approach is model-based RL, which uses a model of the en-
vironment to simulate outcomes of various actions without actually taking them. Specif-
ically, within the context of this research, leveraging Boltzmann-reweighted past experi-
ences within the free energy perturbation framework can serve as an effective model. This
method provides a way to gain more insights about the Q-function of prospective states
by reusing past experiences, thereby reducing the computational cost. The advantage of
this approach is that it can efficiently utilize the information from past simulations to
guide the exploration of new states. Furthermore, with the increasing availability and
power of GPUs, new simulations can run in parallel, further enhancing the efficiency and
speed of the optimization process [34] [31].

Proper initialization of the parameters is crucial for efficient convergence. Random ini-
tialization, though simple, can sometimes lead to slow convergence or getting stuck in

8| Prospective Developments 79

local minima. Utilizing domain knowledge or heuristic methods to initialize parameters
can provide a better starting point but may introduce biases that limit exploration of
the entire parameter space. Techniques that leverage prior simulations or data to initial-
ize the parameters, known as smart initialization, can further enhance the optimization
process but may require substantial prior knowledge or data, potentially limiting their
applicability in novel or less-studied systems [34] [31].

Additionally, Neural Networks (NN) can be employed to infuse more knowledge into the
initialization phase of the project. By training an NN on existing data or simulations,
it can discern the underlying relationships and trends within the parameter space. This
learned knowledge can then be used to initialize the parameters in a manner more aligned
with the expected optimal solutions, potentially accelerating convergence and reducing
the risk of suboptimal local minima. This integration of NN into the initialization process
represents a sophisticated approach that combines data-driven insights with computa-
tional intelligence.

Another promising avenue for initialization involves the strategic deployment of multi-
ple agents, preferably in parallel, but situated in different locations within the param-
eter space. This approach can be conceptualized as having two distinct agents: one
exploration-oriented and the other exploitation-oriented. The exploration-oriented agent,
with an "optimistic" weight matrix filled with high values, is designed to extensively probe
and traverse the parameter space. In contrast, the exploitation-oriented agent, initialized
with a "pessimistic" weight matrix populated with lower values, is inclined to meticu-
lously exploit the region it identifies, seeking optimal solutions within that localized area.
By juxtaposing the results from these distinct initializations, one can discern which ap-
proach yields superior outcomes. Furthermore, with adequate training, algorithms can
be developed to predict which initialization strategy, or sequence of strategies, would be
most efficacious for a specific system [34] [31].

This multi-agent initialization strategy, emphasizing both exploration and exploitation,
offers a comprehensive approach to parameter optimization. It not only harnesses the
strengths of both exploration and exploitation but also provides a robust framework to
compare, contrast, and eventually converge to the most optimal solutions in diverse sys-
tems [34] [31].

In conclusion, exploring alternative RL algorithms and initialization techniques offers a
multifaceted approach to enhance the optimization of the FF Equation in MD. While
each method presents unique advantages, they also come with specific challenges and
drawbacks that must be carefully considered.

80 8| Prospective Developments

8.3. Incorporating Additional Observables into the

Reward Function for a Comprehensive Evalua-

tion:

In the context of optimizing the FF Equation in MD, the reward function plays a pivotal
role in guiding the learning process. Traditionally, focusing on specific observables like the
alpha-helix structure has been the norm. However, this approach may lead to a narrow
optimization that overlooks other essential aspects of the system [35].

Incorporating additional observables into the reward function can provide a more com-
prehensive evaluation of the system’s behavior. Here are some key observables [35]:

• Beta-Sheet Structure: Including beta-sheet structure ensures that the optimization
does not overly favor the alpha-helix structure, leading to a more balanced un-
derstanding of protein folding. The challenge here is to accurately represent this
structure within the reward function without overshadowing other features.

• Energy Landscape: This provides insights into the stability and dynamics of the
molecular system, aligning the optimization process with the underlying physics.
The complexity of accurately modeling the energy landscape can be a challenge,
requiring careful consideration of various energy terms.

• Solvent Accessibility: Reflecting how the molecule interacts with its environment,
solvent accessibility can be crucial in understanding molecular behavior. The chal-
lenge lies in accurately modeling solvent effects, which can be computationally de-
manding.

• Hydrogen Bonding Patterns: These provide detailed insights into molecular confor-
mation and stability. Including hydrogen bonds requires careful handling of distance
and angle parameters, adding complexity to the model.

• Torsional Angles: Torsional angles offer a detailed view of molecular geometry. The
challenge here is the high dimensionality and the potential for increased computa-
tional complexity.

• RMSD (Root Mean Square Deviation): RMSD measures the structural difference
between the predicted and actual structures, providing a direct measure of accuracy.
The challenge is to incorporate RMSD in a way that aligns with other observables
without dominating the reward function.

• Electrostatic Interactions: These interactions play a vital role in molecular behavior.

8| Prospective Developments 81

Accurately modeling them requires consideration of charges and dielectric effects,
adding complexity to the optimization process.

Incorporating these diverse observables can lead to a more realistic and nuanced under-
standing of the molecular system. However, balancing multiple observables to ensure
that one does not dominate the others can lead to unintended biases. The increased
complexity of the reward function may require more sophisticated algorithms and more
computational resources [35].

8.4. Adaptive Policy Modification for Enhanced Con-

vergence and Performance

In the optimization of the FF Equation in MD, the policy that guides the exploration and
exploitation of the parameter space plays a critical role in determining the efficiency and
effectiveness of the learning process. Traditional policies often rely on fixed rules or heuris-
tics, which may not adapt to the evolving understanding of the parameter space. This
can lead to suboptimal performance, slow convergence, or even convergence to suboptimal
solutions [36].

Adaptive Policy Modification represents a dynamic approach that adjusts the policy in
real-time based on the ongoing learning process. By continuously monitoring the perfor-
mance, convergence rate, and other relevant metrics, the policy can be modified to better
align with the current state of the optimization [36].

However, implementing Adaptive Policy Modification is not without challenges. Designing
a policy that can effectively adapt requires a deep understanding of the problem and the
learning process. It may require sophisticated algorithms that can recognize patterns,
assess the reliability of solutions, and make informed decisions about how to modify the
policy. The risk of overfitting to specific situations or oscillating between different policy
settings is also a concern that must be carefully managed [36].

8.5. Incorporating Multi-Objective Optimization for

a Holistic Approach:

In the context of optimizing the FF Equation in MD, focusing on a single objective,
such as minimizing the error between experimental and calculated data, has been a com-
mon approach. While this can lead to effective solutions for that specific objective, it
may overlook other important aspects of the system, potentially resulting in a narrow or

82 8| Prospective Developments

unbalanced optimization [37].

Incorporating Multi-Objective Optimization represents a shift towards a more holistic
approach that considers multiple objectives simultaneously. This can include objectives
related to accuracy, stability, computational efficiency, robustness, and other relevant
factors. By optimizing across these multiple objectives, the process can achieve a more
balanced and comprehensive understanding of the system [37].

For example, in addition to minimizing the error between experimental and calculated
data, a multi-objective approach might also aim to minimize the computational resources
required or maximize the stability of the solutions. This can lead to solutions that are not
only accurate but also efficient and robust, providing a more well-rounded optimization
[37].

The challenge in Multi-Objective Optimization lies in the inherent trade-offs between
different objectives. Improving performance in one area may lead to compromises in
others. Designing an optimization process that can navigate these trade-offs requires
careful consideration of the relative importance of different objectives, the relationships
between them, and the desired outcomes of the optimization [37].

Techniques such as Pareto optimization play a pivotal role in multi-objective optimization
problems. Pareto optimization is rooted in the concept of Pareto dominance, where a
solution is considered dominant if it performs better or equally well in all objectives and
strictly better in at least one objective compared to another solution. In essence, Pareto
optimization seeks to identify solutions that are non-dominated with respect to the entire
solution set [37].

This involves identifying a set of solutions, known as the Pareto optimal set, where im-
proving one objective would require compromising another. Each solution in this set
represents a unique combination of trade-offs among the objectives, ensuring that no sin-
gle solution is universally superior to the others. Visualization tools, such as Pareto front
plots, can be instrumental in understanding and selecting among these trade-offs. The
Pareto front is a graphical representation of the Pareto optimal set in the objective space,
and it provides a clear picture of the relationship between different objectives and the
trade-offs involved [37].

However, implementing Multi-Objective Optimization, especially with Pareto-based meth-
ods, can be complex and computationally demanding. The increased dimensionality of
the optimization space, the need to evaluate multiple objectives simultaneously, and the
intricacy of navigating the trade-offs all add to the challenge. Moreover, as the num-

8| Prospective Developments 83

ber of objectives increases, the size of the Pareto front can grow exponentially, further
complicating the optimization process [37].

8.6. Utilizing Ensemble Learning for Robust Param-

eter Optimization:

In the field of optimizing the FF Equation in MD, achieving robust and reliable parameter
optimization is a complex task. Traditional methods may rely on a single model or
algorithm, which, while effective in certain scenarios, might be sensitive to the specific
characteristics of the data or the initial conditions of the optimization [38].

Utilizing Ensemble Learning offers a pathway to more robust parameter optimization
by combining the predictions or decisions of multiple models or algorithms. Instead of
relying on a single approach, ensemble learning leverages the strengths of various methods,
potentially reducing the weaknesses and biases of individual models [38].

Ensemble Learning can be implemented in several ways, and in our specific problem of
multiple agents with different initializations, we can leverage this technique effectively.
For instance, we can apply different machine learning algorithms or models to each agent,
each starting with a distinct set of initial values. These agents can then work on existing
data and generate individual predictions or solutions. To further enhance our results,
we can create agent committees that quantify uncertainty using the same data but with
different initial values for each agent. This ensemble approach allows us to leverage the
diversity of our agents and their unique perspectives to improve the overall performance
of our system [38].

The benefits of Ensemble Learning include increased robustness to noise and outliers, re-
duced risk of overfitting, and often improved overall performance. By combining multiple
perspectives on the problem, ensemble learning can achieve a more balanced and nuanced
optimization, potentially leading to more accurate and reliable solutions [38].

However, implementing Ensemble Learning is not without challenges. The complexity
of integrating multiple models or algorithms requires careful design and coordination.
Decisions about which models to include, how to combine their results, and how to manage
the increased computational demands must be made with consideration of the specific
problem and goals of the optimization [38].

84 8| Prospective Developments

8.7. Investigating Alternative and Challenging Pa-

rameters in FF Equations

While the challenge of determining specific parameters can depend on the particular
system and the force field (FF) model being used, the following three parameters are
often considered among the most challenging to calculate and could potentially benefit
significantly from machine learning-based optimization techniques:

• Polarization Parameters: Polarization parameters describe how the electron
cloud of an atom is distorted by its surroundings. Accurate modeling might require
complex calculations, and AI could provide a way to optimize these parameters.
In mathematical terms, this might involve parameters related to the polarizability
tensor, often denoted by α.

• Charge Parameters: Determining partial atomic charges (qi) that represent elec-
trostatic interactions within a molecule is a complex task. AI could be used to
optimize these charges by learning from quantum mechanical calculations or empir-
ical data.

• Torsional Parameters: Torsional angles describe the energy associated with the
rotation around single bonds. Accurately modeling these parameters (ϕ, ψ, ω, etc.)
can be complex, and AI could be used to learn the underlying potential energy
surface, providing a way to optimize these parameters more accurately.

These parameters are considered challenging due to the complexity of the underlying
physics and chemistry, the potential need for high-level quantum mechanical calculations,
and the sensitivity of the results to the specific modeling choices. AI offers the potential to
navigate these challenges by leveraging its ability to learn from complex data, recognize
patterns, and optimize high-dimensional spaces. By applying AI to these challenging
parameters, it might be possible to achieve more accurate and robust FF models, opening
new possibilities for understanding and manipulating molecular systems.

8.8. Enhancing Scalability through Parallelization and

Distributed Computing:

In the field of MD, particularly in the optimization of the FF Equation, computational
demands can be substantial. Simulating complex molecular systems, exploring high-
dimensional parameter spaces, and employing sophisticated optimization algorithms can

8| Prospective Developments 85

require significant computational resources. Traditional serial computing approaches,
where calculations are performed sequentially, may be inadequate for large-scale or highly
detailed simulations .

Enhancing scalability through parallelization and distributed computing represents a
pathway to overcome these computational challenges. By leveraging the power of mod-
ern parallel and distributed computing architectures, this approach seeks to dramatically
increase the computational capacity and efficiency of the optimization process [39].

• Parallelization: Parallel computing involves dividing a problem into subproblems
that can be solved simultaneously by multiple processors. In the context of MD,
this might involve parallelizing the calculations for different parts of a molecule or
different steps in an optimization algorithm. By performing these calculations simul-
taneously, parallelization can significantly reduce the computational time required.

• Distributed Computing: Distributed computing takes parallelization a step further
by distributing the computations across multiple computers or clusters. This can
enable even larger-scale simulations or optimizations by harnessing the combined
computational power of many machines. Distributed computing can be particu-
larly valuable for exploring vast parameter spaces or simulating large and complex
molecular systems.

The benefits of Enhancing Scalability through Parallelization and Distributed Computing
include the ability to tackle larger and more complex problems, reduced computational
time, and the potential for more detailed and accurate simulations. This approach can
enable research and optimization that might be infeasible with traditional computing
methods [39].

However, implementing parallelization and distributed computing is not without chal-
lenges. Designing algorithms that can effectively divide a problem into parallelizable sub-
problems requires careful consideration of dependencies, communication overhead, and
load balancing. Ensuring that the parallel or distributed computations are coordinated
and that the results are correctly integrated can be complex. Additionally, specialized
hardware, software, and expertise may be required [39].

8.9. Conclusion

This chapter has explored several prospective developments with the potential to enhance
the research presented in this thesis within the practical scope of our Master’s project.
These avenues include the integration of Neural Networks and RL into our project as

86 8| Prospective Developments

well as the consideration of techniques such as parallelization and distributed computing.
These selected approaches offer innovative solutions to address complex challenges in
optimizing the Force Field Equation within the context of Molecular Dynamics.

Each of these developments provides unique advantages and opportunities, but we must
carefully weigh the benefits against the constraints of our current project. The application
of these strategies should be considered in a way that aligns with the specific needs and
goals of our research while remaining feasible within the scope of a Master’s project. By
doing so, we can aim for more robust, efficient, and insightful solutions tailored to our
project’s objectives.

It’s important to acknowledge that while these prospective developments offer promising
pathways, they may also entail significant complexity and resource requirements. There-
fore, we will need to assess their suitability for our project and make informed decisions
to ensure that our research remains both achievable and impactful within the confines of
our Master’s program.

As the field of Molecular Dynamics continues to evolve, these selected prospective devel-
opments provide opportunities for us to advance our understanding and capabilities while
maintaining a realistic and practical approach that aligns with the goals of our Master’s
project.

87

9| Conclusion

In the conclusion of this research, a novel approach rooted in reinforcement learning was
employed for the optimization of force field parameters, specifically utilizing the Linear
Q-function approximation method. The epsilon-greedy policy was adopted, with action
distributions as follows: 70% greedy-based, 20% Gradient Descent, and 10% Random
actions. The system under investigation was the Alanine Oligopeptide (20-mer). The
metric of interest was the helicity of the Alanine Oligopeptide, serving as the reward
for our reinforcement learning model. Notably, while the helicity calculation provides a
straightforward trial reward function, in the intended application, it will be replaced by
a metric assessing the congruence between simulation estimates and their experimental
counterparts.

It is imperative to constrain the number of force field parameters due to their direct
influence on the dimensionality of the parameter space. Addressing all potential param-
eters would render the problem exceedingly intricate and computationally intensive. To
mitigate this, the research focused on a subset of parameters in the force field equation
and selected specific atom types that significantly influence the system’s structural state.
Based on recent scientific literature, critical parameters were identified, and sensitivity
analysis was employed to pinpoint atom types with substantial impact on system struc-
ture outcomes. Consequently, the study concentrated on the sigma and epsilon parameters
of the force field, selecting N, C, H1, and O atom types.

A phased implementation approach was adopted to ensure the robustness of the algorithm.
Initially, a system with real rewards (helicity) was developed, relying solely on Gradient
Descent actions. This foundational step allowed for the establishment of the core algo-
rithm and preliminary results assessment. Subsequently, a reinforcement learning model
was introduced, initially in a 2-dimensional space with artificial rewards. This step fa-
cilitated the visualization of agent exploration within the parameter space. The model
was then extended to a multi-dimensional space, where visualization was challenging, but
tracking key variables enabled the analysis of model behavior.

The culmination of this research was the development of a comprehensive reinforcement

88 9| Conclusion

learning model, utilizing real rewards and the aforementioned epsilon-greedy policy. This
approach yielded promising results, with the average helicity value improving in certain
scenarios. The reinforcement learning approach showcased its potential by effectively
exploring the parameter space, avoiding local maxima, and identifying regions with high
helicity values. Furthermore, the adaptability of this method to integrate with other
machine learning techniques, such as neural networks and deep learning, underscores its
potential for future research.

This research, while presenting tangible results, primarily serves as a foundational method
for scholars in the field. The methodologies and findings detailed herein can be expanded
upon and refined using various techniques, as discussed in the "Prospective Developments"
chapter. The breadth and depth of potential extensions to this work surpass the confines
of a master’s thesis. It is the author’s hope that this research serves as a valuable reference
for future endeavors in this domain.

89

Bibliography

[1] Martin Stroet, Katarzyna B. Koziara, Alpeshkumar K. Malde, and Alan E. Mark.
Optimization of empirical force fields by parameter space mapping: A single-step
perturbation approach. Journal of Chemical Theory and Computation, 13(12):
6201–6212, 2017.

[2] Jürgen Köfinger and Gerhard Hummer. Empirical optimization of molecular simu-
lation force fields by bayesian inference. The European Physical Journal, 94(245),
2021.

[3] Sebastien Röcken and Julija Zavadlav. Accurate machine learning force fields via
experimental and simulation data fusion. arXiv preprint arXiv:2308.09142v1, Aug
2023.

[4] Md Mahmudul Hasan, Md Shahinur Rahman, and Adrian Bell. Deep Reinforcement
Learning for Optimization, chapter 11. IGI Global, January 2019. doi: 10.4018/
978-1-5225-7862-8.ch011.

[5] Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor
Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko, and Klaus-Robert Müller.
Machine Learning Force Fields, volume 121, pages 10142–10186. 2021. doi:
10.1021/acs.chemrev.0c01111.

[6] Anita Rácz, Levente M. Mihalovits, Dávid Bajusz, Károly Héberger, and
Ramón Alain Miranda-Quintana. Molecular dynamics simulations and diversity se-
lection by extended continuous similarity indices. J. Chem. Inf. Model., 62(14):
3415–3425, 7 2022.

[7] Ratna Sandeep Katiyar and Prateek Jha. Molecular simulations in drug delivery:
Opportunities and challenges. Computational Molecular Science, 8(4), 2018.

[8] M.A. González. Force fields and molecular dynamics simulations. Collection SFN,
EDP Sciences, 12:169–200, 2011.

[9] Sung Bo Hwang, Chang Joon Lee, Sehan Lee, Songling Ma, Young-Mook Kang,

90 | Bibliography

Kwang Hwi Cho, Su-Yeon Kim, Oh Young Kwon, Chang No Yoon, Young Kee Kang,
Jeong Hyeok Yoon, Ky-Youb Nam, Seong-Gon Kim, Youngyong In, Han Ha Chai,
William E. Acree Jr., J. Andrew Grant, Ken D. Gibson, Mu Shik Jhon, Harold A.
Scheraga, and Kyoung Tai No. Pmff: Development of a physics-based molecular
force field for protein simulation and ligand docking. J. Phys. Chem. B, American
Chemical Society, 124(6):974–989, 2020. doi: 10.1021/acs.jpcb.9b10339.

[10] Thijs van Westen, Thijs J. H. Vlugt, and Joachim Gross. Determining force field
parameters using a physically based equation of state. J. Phys. Chem. B, American
Chemical Society, 115(24):7872–7880, 2011. doi: 10.1021/jp2026219.

[11] Jürgen Köfinger and Gerhard Hummer. Empirical optimization of molecular simu-
lation force fields by bayesian inference. The European Physical Journal, 94(245),
2021.

[12] Shefov Konstantin Sergeevich and Stepanova Maria M. Sensitivity analysis in a prob-
lem of reaxff molecular-dynamic force field optimization. In Proceedings of the VIII
International Conference "Distributed Computing and Grid-technologies in Science
and Education" (GRID 2018), page 595. St. Petersburg State University, September
2018.

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Adaptive computation and machine learning series. The MIT Press, Cambridge, Mas-
sachusetts and London, England, 2 edition, 2018. ISBN 9780262039246.

[14] Francisco S. Melo and M. Isabel Ribeiro. Learning Theory, chapter Q-Learning
with Linear Function Approximation, pages 319–333. Lecture Notes in Artificial
Intelligence. Springer, Berlin Heidelberg New York, 2007. ISBN 978-3-540-72925-9.

[15] Jesse Clifton and Eric Laber. Q-learning: Theory and applications. Annual
Review of Statistics and Its Application, 7:279–301, 3 2020. doi: 10.1146/
annurev-statistics-031219-041220.

[16] Hariharan N and Paavai Anand G. A brief study of deep reinforcement learning with
epsilon-greedy exploration. International Journal of Computing and Digital Systems,
11(1), 1 2022. ISSN 2210-142X. doi: 10.12785/ijcds/110144.

[17] Chuanlei Zhang, Minda Yao, Wei Chen, Shanwen Zhang, Dufeng Chen, and Yuliang
Wu. Gradient descent optimization in deep learning model training based on mul-
tistage and method combination strategy. Security and Communication Networks,
Hindawi, 2021:1–15, 7 2021. doi: 10.1155/2021/9956773. Academic Editor: Chi-Hua
Chen.

| Bibliography 91

[18] Quentin Vicens and Jeffrey S. Kieft. Thoughts on how to think (and talk) about rna
structure. PNAS, 119(17):e2112677119, 4 2022. doi: 10.1073/pnas.2112677119.

[19] Terence T. L. Tang and Lori A. Passmore. Recognition of poly(a) rna through its
intrinsic helical structure. Cold Spring Harb Symp Quant Biol, 84:21–30, 2019. doi:
10.1101/sqb.2019.84.039818. Epub 2020 Apr 15.

[20] Martin Bartas, Kristyna Slychko, Václav Brázda, Jiří Červeň, Christopher A. Beau-
doin, Tom L. Blundell, and Petr Pečinka. Searching for new z-dna/z-rna binding
proteins based on structural similarity to experimentally validated z domain. Int. J.
Mol. Sci., 23(2):768, 2022. doi: 10.3390/ijms23020768.

[21] Science News Research Reviews Encyclopedia. Time constant. URL https://

academic-accelerator.com/encyclopedia/time-constant.

[22] Giovanni Bussi and Gareth A. Tribello. Analyzing and Biasing Simulations with
PLUMED, volume 2022 of Methods in Molecular Biology. Springer, 2019.

[23] Pierre Baldi. Gradient descent learning algorithm overview: a general dynamical
systems perspective. IEEE Transactions on Neural Networks, IEEE, 6(1):182–195,
January 1995. doi: 10.1109/72.363438.

[24] Yong Song, Yi bin Li, Cai hong Li, and Gui fang Zhang. An efficient initialization ap-
proach of q-learning for mobile robots. International Journal of Control, Automation
and Systems, Springer, 10:166–172, February 2012.

[25] Jung C. Lee and Robin R. Gutell. Helix capping in rna structure. PLoS One, Pub-
lic Library of Science, 9(4):e93664, April 2014. doi: 10.1371/journal.pone.0093664.
Edited by David G. Norman.

[26] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge
Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic
Acids Research, Oxford University Press, 28(1):235–242, 2000. doi: 10.1093/nar/28.
1.235.

[27] Mayk C. Ramos, Patrick K. Quoika, Vitor A. C. Horta, Douglas M. Dias, Elan G.
Costa, Jorge L. M. do Amaral, Luigi M. Ribeiro, Klaus R. Liedl, and Bruno A. C.
Horta. pypolybuilder: Automated preparation of molecular topologies and initial
configurations for molecular dynamics simulations of arbitrary supramolecules. J.
Chem. Inf. Model., American Chemical Society, 61(4):1539–1544, 2021. doi: 10.
1021/acs.jcim.0c01438.

[28] Mohammad Tasyriq Che Omar. Data analysis of molecular dynamics simulation

https://academic-accelerator.com/encyclopedia/time-constant
https://academic-accelerator.com/encyclopedia/time-constant

92 | Bibliography

trajectories of -sitosterol, sonidegib and cholesterol in smoothened protein with the
charmm36 force field. Data Brief, Elsevier, 33:106350, Dec 2020. doi: 10.1016/j.dib.
2020.106350. PMID: 33083505, PMCID: PMC7554031.

[29] Efrem Braun, Justin Gilmer, Heather B. Mayes, David L. Mobley, Jacob I. Monroe,
Samarjeet Prasad, and Daniel M. Zuckerman. Best practices for foundations in
molecular simulations [article v1.0]. Living J Comput Mol Sci, Living Journal of
Computational Molecular Science, 1(1):5957, Nov 2019. doi: 10.33011/livecoms.1.1.
5957.

[30] Martin Roesch, Christian Linder, Roland Zimmermann, Andreas Rudolf, Andrea
Hohmann, and Gunther Reinhart. Smart grid for industry using multi-agent re-
inforcement learning. Appl. Sci., MDPI, 10(19):6900, Oct 2020. doi: 10.3390/
app10196900.

[31] Xi Min Zhang, Yan Qiu Chen, Nirwan Ansari, and Yun Q. Shi. Mini-max initializa-
tion for function approximation. Neurocomputing, Elsevier, 57:389–409, Mar 2004.

[32] Fatma M. Talaat and Samah A. Gamel. Rl based hyper-parameters optimiza-
tion algorithm (roa) for convolutional neural network. Journal of Ambient Intel-
ligence and Humanized Computing, Springer, 14:13349–13359, 2023. doi: 10.1007/
s12652-022-03788-y.

[33] Mariam Kiran and Melis Ozyildirim. Hyperparameter tuning for deep reinforcement
learning applications. arXiv preprint arXiv:2201.11182v1, Jan 2022.

[34] Franklin Cardeñoso Fernandez and Wouter Caarls. Parameters tuning and optimiza-
tion for reinforcement learning algorithms using evolutionary computing. In 2018
International Conference on Information Systems and Computer Science (INCIS-
COS), pages 13–15. IEEE, Nov 2018. doi: 10.1109/INCISCOS.2018.00050.

[35] Chikako T Nakazawa, Atsushi Asano, and Takuzo Kurotsu. Structural studies of
amphiphilic oligopeptides composed of alternating alanine and ionizable amino-acid
residues using cd and 13c cp/mas nmr spectroscopy. Polymer Journal, Nature Pub-
lishing Group, 44:882–887, June 2012.

[36] Warren E. Walker, S. Adnan Rahman, and Jonathan Cave. Adaptive policies, policy
analysis, and policy-making. European Journal of Operational Research, Elsevier,
128:282–289, January 2001.

[37] Sandra C. Cerda-Flores, Arturo A. Rojas-Punzo, and Fabricio Nápoles-Rivera. Ap-

9| BIBLIOGRAPHY 93

plications of multi-objective optimization to industrial processes: A literature review.
Processes, MDPI, 10(1):133, January 2022. doi: 10.3390/pr10010133.

[38] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter
ensembles for robustness and uncertainty quantification. 2022.

[39] Milan Vaško, Marián Handrik, Alžbeta Sapietová, and Jana Handriková. Paral-
lelization of computational algorithms for optimization problems with high time con-
sumption. 157:02054:1–02054:10, 2018. doi: https://doi.org/10.1051/matecconf/
201815702054.

95

List of Figures

4.1 MD simulation is a computational technique used to simulate the movement
and behavior of atoms and molecules over time.[7] 15

4.2 Metaphorically illustrating the diverse FF parameters. 19
4.3 n this diagram, the RL process is depicted succinctly. The RL agent’s

decision-making is contingent on the current state (St) it is in and the
immediate reward (Rt) it receives. Based on this information, the agent
selects an action (At) to take. The action leads to a transition to a new
state, and in this new state, the agent is presented with a new reward.
This iterative process persists until the agent achieves its desired states,
rewards, or both through learning from the consequences of its actions in
the environment[13]. 22

5.1 3D model of the parameter space. Each state is considered as a point in
this Cartesian coordinate system with specific parameters’ value setting.
The states and the dimensions in this diagram are schematic illustrations
of the parameter space. 28

5.2 This is a very simple illustration of decision making (policy) in the agent’s
world. From an exact state the agent can jump to one of its neighbors
included in the area that determined by local-radius constant variable. A
random variable in every iteration is chosen and guide the agent to jump
based on RL, GD or random walk. 29

5.3 The Alanine Oligopeptide (20-mer) is depicted in two distinct structural
conformations across the provided images. In figures a and c, the molecule
is illustrated in its un-helical form, signifying an unstable state. Conversely,
figures b and d showcase the peptide in a fully helical configuration. The
helical structure of Alanine is intrinsically linked to the stability of the
molecular system. A helix formation often results in a lower energy state,
enhancing the structural robustness and resilience of the peptide against
perturbations. This transformation underscores the critical role of confor-
mation in determining molecular stability [20]. 32

96 | List of Figures

5.4 The figure depicts the fitting of an exponential function to the mean helic-
ity measures derived from six distinct metrics of the system, tracked over
a 10 ns trajectory. This methodology involves the application of plumed
forces at the trajectory’s onset, followed by a free evolution of the system
for the subsequent 10 ns [22]. The primary objective is to ascertain the
time required for the system to undergo first-order kinetic relaxation. For
systems that exhibit exponential relaxation, a crucial parameter is the time
constant, often denoted as τ . This constant represents the time span neces-
sary for the system to decay to approximately e−1 (or roughly 63.2%) of its
initial deviation from the equilibrium state. As illustrated, the system ap-
proaches this specified decay threshold approximately 5.5 ns post-initiation.
Consequently, the deduced time constant, τ , for this particular system is
5 ns. 33

5.5 The provided diagram depicts a rudimentary representation of a two-dimensional
environment, characterized by a local-radius of 2 and a global-radius of
7. These parameters, intrinsic to the problem structure, are subject to
modification by the user, conferring a degree of flexibility in the model.
Should the user’s requirements extend to the utilization of more than two
parameters, the environment’s dimensionality would correspondingly ex-
pand, equating to the number of parameters engaged. As delineated in
the illustrative diagram, the red points symbolize the potential successive
states that the agent could transition into, thereby representing the neigh-
boring locations. Conversely, the black points designate the set of states
that are unattainable from the current state, denoted in blue in the given
visual representation. This distinction underlines the fundamental states
and transitions inherent to the illustrated agent-environment interaction. . 40

5.6 Assume that the states at the blue points are already visited by the agent
and we calculated the GD at those states. Now we are visiting one of the
red states and we need to take a GD based action. In this situation, the
information about the direction and magnitude of the gradient in the blue
states can easily be used to estimate the value and direction of the red
points through simple interpolation. But for the red state with question
mark, as we never discovered that area previously, it is not possible to
estimate, then we need to calculate the GD for that point again. 41

| List of Figures 97

7.1 The figure displays a segment of the helicity output file, generated from a
trajectory of an Alanine Oligopeptide (20-mer). This file is produced in
each iteration following the modification of the parameters for four atom
types identified as highly sensitive. The helicity output file provides a
time-resolved measure of the system’s helicity at each simulation step. . . . 60

7.2 The figure above illustrates the distribution of artificial rewards within our
two-dimensional parameter space, which consists of 20 steps along each
axis. The agent commences its exploration from the exact center of this
space, representing the initial parameter configuration. Each action taken
by the agent moves it to a new location within this grid. The objective is for
the agent to traverse the parameter space in search of regions with higher
reward values, as indicated by lighter shades in the figure. It is important
to note that the reward distribution merely sets the average reward that
the agent can expect to receive at a given location. For instance, if the
agent moves to a high-potential area (depicted in lighter colors), it will
receive a random reward whose average is higher than that in other regions
of the space. 62

7.3 In these figures, for the sake of better understanding, we have plotted the
Gaussian curves separately and have focused exclusively on those states
whose weights have undergone changes. However, it is important to note
that in a real-world scenario, the actual weights are the sum of the prod-
ucts of each neighboring Gaussian function value and its corresponding
weight. In mathematical terms, the weights are magnitude numbers that
are multiplied by the Gaussian matrix function f(s, a). In this example,
for the sake of simplicity, the status of the environment is depicted in a
one-dimensional space. The initial matrix of weights is configured to have
low magnitudes, either set to zero or close to zero. Initially, state n is
selected, and the agent receives a reward of high numerical value. Subse-
quently, state n + 1 is selected, and the agent receives a reward of lower
value. Finally, the agent tends to revert to the previous state n due to the
increased weights associated with it, while the neighboring states maintain
lower weights and, consequently, lower Q-values. The agent may choose
other neighboring states for reasons such as taking alternative actions, em-
ploying GD, making random moves, or encountering another state with a
previously calculated Q-value that is higher than that of state n [31]. . . . 63

98 | List of Figures

7.4 In the second example, initially, all the weights are set to their maximum
value, which in the context of our project is 16, or close to this maximum
value. It is improbable for the agent to receive a reward that is higher
or equal to this maximum during the initial iterations. Consequently, the
weight associated with the initially selected state n is reduced. This change
not only affects the weight of state n but also has an impact on the weights
of its neighboring states. However, the weights of the neighboring states
still remain higher than that of state n, thereby rendering them proba-
ble candidates for selection by the agent in subsequent iterations. In this
scenario, state n − 1 is chosen, and it yields a reward that is lower than
that of state n. Hence, between states n and n − 1, state n is more likely
to be selected in future iterations. However, the remaining states, which
still have high weights, have not yet been evaluated. As such, we provide
an opportunity for these neighboring states to be chosen in forthcoming
iterations. For instance, in image (d), state n+ 1 is selected. It should be
noted that other states could also potentially be selected in lieu of state
n, which was previously selected and now has a diminished weight and,
consequently, a lower Q-value [31]. 64

7.5 This figure serves as a graphical representation of the initialization of the
weights matrix in a two-dimensional space, with the grid comprising 20
discrete steps along each axis. The center, which is represented by lighter
hues, corresponds to higher values in the weights matrix. As one moves
away from the center, the values diminish and are denoted by progressively
darker shades [31]. 65

7.6 In the aforementioned figure, the outcomes of the agent’s exploration-
exploitation activities on the Weights matrix, as well as the Q-values as-
sociated with each state, are illustrated. Areas depicted in darker shades
signify regions with a low probability of yielding high rewards. Conversely,
lighter shades indicate regions where there is a higher likelihood of encoun-
tering substantial rewards. 66

| List of Figures 99

7.7 In the rewards Figure, the blue line represents the actual value of the re-
ward, whereas the orange line delineates the average reward value. Notably,
fluctuations are evident in the early stages, particularly before iteration
20. During this phase, the actual reward value approached 5 at certain
instances, which is considerably high. However, the agent continued its
exploratory behavior, maintaining high weight values for these areas while
also venturing into new areas in search of higher rewards. This behavior can
be attributed to the high initial weights, as lower initial weights would have
resulted in the agent’s prolonged stay in these areas.Post iteration 20, the
agent identifies an area characterized by exceptionally high rewards. This
area exerts sufficient influence to override the agent’s inherent tendency for
exploration, resulting in its stationary behavior within that locale. Simul-
taneously, significant fluctuations in the Delta and diff values are observed
prior to iteration 20. These fluctuations stabilize after the agent locates the
high-reward area. Importantly, the gap between Delta and diff represents
the reward value. Before reaching this high-potential area, the rewards were
not substantial enough to create a noticeable difference between Delta and
diff. Upon entering the high-reward zone, a significant divergence between
Delta and diff manifests, attributable to the elevated reward values. . . . 67

7.8 In this Figure, we present the visual representations of the outcome vari-
ables from our first 3D test. These plots offer insights into the performance
and behavior of the system under study. 69

7.9 In this Figure, we present the visual representations of the outcome vari-
ables from our second 3D test. These plots offer insights into the perfor-
mance and behavior of the system under study. 70

7.10 This figure presents the graphical results from the first implementation. . . 72
7.11 Log file of the fist implementation. 73
7.12 Rewards and Delta plots of the second implementation. 74
7.13 Diff and Updated weights values of the second implementation. 74
7.14 Log file of the second implementation. 75

101

List of Tables

7.1 Derivatives of all the atom types in Alanine Oligopeptide (20-mer) 58
7.2 Derivative values for the four most sensitive atom types in the Alanine

Oligopeptide (20-mer). These values are normalized using the L2 norm
to focus on the direction of parameter adjustments, improve numerical
stability, and facilitate comparison. 59

7.3 Conversion of gradients to actions for different atom types in the RL model. 59

	Abstract
	Abstract in lingua italiana
	Acknowledgements
	Contents
	List of Abbreviations
	Introduction
	Background
	Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach
	Summary of the paper
	Goals of the paper
	Methods and Implementation
	Results
	Comparison with the thesis
	Conclusion

	Empirical optimization of molecular simulation force ﬁelds by Bayesian inference
	Summary of the paper
	Goals of the paper
	Methods and Implementation
	Results
	Comparison with the thesis
	Conclusion

	Accurate machine learning force fields via experimental and simulation data fusion
	Summary of the paper
	Goals of the paper
	Methods and Implementation
	Results
	Comparison with the thesis
	Conclusion

	Deep Reinforcement Learning for Optimization
	Summary of the Paper
	Goals of the Paper
	Methods and Implementation
	Results
	Comparison with the thesis
	Conclusion

	Machine Learning Force Fields
	Summary of the paper
	Goals of the paper
	Methods and Implementation
	Results
	Comparison with the thesis
	Conclusion

	Thesis Goals
	Preliminary
	Molecular Dynamics Simulations
	Force Field in Molecular Modeling
	Force Field equation: Physical Formulation
	Force Field Parameter selection

	Reinforcement Learning
	Reinforcement Learning: Q-Learning
	Reinforcement Learning: Linear Q-function Approximation

	Model
	Definition and modeling of the problem
	Parameter Space
	States
	Agent
	Actions
	Policy
	Rewards
	Q-function
	Gradient Descent
	Initialization

	Implementation and Coding
	pre-programming
	Biological Files and Entities
	Primary and prepared functions

	Project Implementation: Entities, Functions and Algorithms
	System Object
	RL_qfunction Object

	Results
	Gradient Descent Approach With Real Rewards
	2-Dimensional Linear Q-function Approximation with artificial rewards
	N-Dimensional Linear Q-function Approximation with artificial rewards
	Complete N-Dimensional RL Model With Real Rewards

	Prospective Developments
	Utilizing Neural Networks in RL for Parameter Optimization
	Exploring Alternative RL Algorithms and Initialization Techniques for Enhanced Optimization:
	Incorporating Additional Observables into the Reward Function for a Comprehensive Evaluation:
	Adaptive Policy Modification for Enhanced Convergence and Performance
	Incorporating Multi-Objective Optimization for a Holistic Approach:
	Utilizing Ensemble Learning for Robust Parameter Optimization:
	Investigating Alternative and Challenging Parameters in FF Equations
	Enhancing Scalability through Parallelization and Distributed Computing:
	Conclusion

	Conclusion
	Bibliography
	List of Figures
	List of Tables

