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Sommario

In letteratura attuariale è presente una diffusa trattazione della caratterizzazione matem-
atica dei principi di premio. Tuttavia, questa è limitata al solo contesto statico, in cui i
rischi sono modellizzati come singole variabili aleatorie non dipendenti dal tempo.

Lo scopo essenziale di questa tesi è di fornire una trattazione sistematica e rigorosa in un
contesto dinamico. Ciò può essere potenzialmente utile per molte branche della letteratura
attuariale, come la progettazione dei contratti, il controllo del rischio, strategie ottime di
riassicurazione ed altre. L’analisi è svolta per due diversi modelli di rischio: il modello
di Cramér-Lundberg, ampiamente usato nel settore assicurativo,e il modello di rischio
basato sui processi di Hawkes, che è adatto a descrivere possibili clustering di eventi, che
un portafoglio assicurativo può subire.

Parole-chiave: Assicurazioni, principi di premio, modelli di rischio.
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Abstract

In actuarial literature there is a widespread treatment about the mathematical character-
ization of the premium principles. However, this is limited to the static context, in which
risks are modeled as singles random variables, that are not time-dependent.

The essential aim of this thesis is to provide a systematic and rigorous treatment of pre-
mium principles in a dynamic context. This can be potentially useful for many branches
of actuarial literature, such as contracts design, risk control, optimal reinsurance policies
and others. The analysis is carried out for two different risk models: the Cramér-Lundberg
model, widely used in the insurance business, and the risk model based on Hawkes pro-
cesses, which is suitable for describing possible clustering of events, which an insurance
portfolio can suffer.

Key words: Insurance, premium principles, risk models.





v

Contents

Contents v

Introduction vii

1 Premiums in static context 1
1.1 Properties of the premium functional . . . . . . . . . . . . . . . . . . . . . 1
1.2 Catalog of premium principles . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Net premium principle and expected value premium principle . . . 7
1.2.2 Variance and standard deviation premium principles . . . . . . . . 8
1.2.3 Wang’s premium principles . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Table of properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Decomposition of the premium functional into risk and deviation measures 15

2 Theoretical elements on jump processes 19
2.1 Brief review of stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Marked point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Premiums in dynamical context 35
3.1 The Cramér-Lundberg model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Net premium and expected value premium . . . . . . . . . . . . . . 41
3.1.2 Variance premium and Standard deviation premium . . . . . . . . . 44

4 Hawkes processes 47
4.1 Review of theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Risk model with Compound Hawkes . . . . . . . . . . . . . . . . . . . . . 54
4.3 Estimation of the error of a Cramér-Lundberg model in a context with

clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Another choice of the premium rate in the risk model with Hawkes . . . . 62



vi | Contents

Bibliography 65



vii

Introduction

One of the most relevant topic in actuarial literature is the characterization of the premium
principle, namely the rule for assigning the correct premium to an insurance risk. Indeed,
in a perfect market, with infinitely many players, perfect information and complete di-
versifiability of risks, the insurance price should be the expected value of the loss, since
the market should not provide rewards for diversifiable risks (see [23]). However in more
realistic contexts, markets present prices larger than the expected value of the insured
claims. Therefore, actuaries need more sophisticated mathematical tools for developing
premium principles.

The terms premium or insurance price will refer to pure premium, so the net expected
loss plus a risk load charge, ignoring loadings for profit or expenses. The present thesis
aims to review and extend the existing literature about premium principles by proposing
a treatment both in static and dynamic context, in which risks are modeled by stochastic
processes. Indeed, in order to analyze the state of an insurance company portfolio, it
is required to consider its value as a time-dependent quantity, introducing therefore a
counting process for describing the arrival of the claims, and the premiums collected as a
rate. The results contained in this work are thus useful for having risk models in which
the premium rate is a well-defined variable, with a solid mathematical basis that proves its
properties and shows its connection with the loss process, underlying possible advantages
and drawbacks for each proposal. Moreover, the theory developed can be used for further
works in which classical problems of the actuarial sector such as contracts design, risk
control (see [2]) for an example), optimal reinsurance policies (see [18]) and others (for
instance the estimation of the ruin probability according to the choice of the premium
rate as in [15]). Eventually, the approach used for the characterization of the premium
rate can be extended to other risk models in addition to the ones dealt with here.

The thesis is structured as follows:

• In chapter 1 the desired properties of a good premium principle are listed, then it
follows the treatment of different premium principles in a static context, focused in
particular on providing proves or counterexamples for each property. Eventually,
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it is presented the result of decomposition of the premium functional into a risk
measure and a deviation measure (see [19]).

• In chapter 2 theoretical elements of stochastic calculus are introduced, with a par-
ticular care with respect to point processes and marked point processes, which are
fundamental in the sequel of the work in order to build actuarial models in a dynamic
context.

• In chapter 3 is analyzed the Cramér-Lundberg model, a standard risk model in
the actuarial framework, with the aim of underlying its features and disadvantages.
Moreover, the premium principles mentioned in chapter 1 are extended to this dy-
namical context, with an original treatment of their properties in continuous time.

• In chapter 4 there is a theoretical introduction to mono-dimensional Hawkes pro-
cesses, then it is proposed a risk model for an insurance portfolio in which the loss
is distributed as a Compound Hawkes. The net and the expected value princi-
ples are treated in this context, with an analysis of the properties as done in the
previous chapter. It is also present an estimation of the error committed by the
Cramér-Lundberg model with an expected value premium with respect to the new
risk model, in a situation with clustering of claims. Eventually, a brief section shows
that for the model provided, a premium based on the stochastic intensity of the loss
allows to keep the portfolio surplus positive on average.
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1.1. Properties of the premium functional

Let (Ω,F , P ) be a probability space in which Ω is the set of states of the world or possible
outcomes, F ⊆ 2Ω is a σ-algebra that is the collection of events in Ω and P is a probability
measure. Let χ be the set of non-negative random variables measurable in the probability
space defined before, which represents the set of possible losses due to insurance risks. In
this mathematical environment, a premium is described as a functional from the set of
insurances to the set of real non-negative numbers, therefore:

H : χ → [0,+∞) (1.1)

Moreover, in order to characterize the distribution of a risk X ∈ χ, it is often used the
concept of decumulative distribution function (or survival function).

Definition 1.1 (Decumulative distribution function or survival function). The ddf of a
random variable X is denoted as:

SX(t) = P (ω : X(ω) > t) (1.2)

Using the definition of ddf it is possible to introduce the stochastic dominance as follows:

Definition 1.2 (First stochastic dominance). Let X and Y in χ, X precedes Y in first
stochastic dominance (FSD) if SX(t) ≤ SY (t) for all t ≥ 0.

This concept is useful for comparing two risks and the potential losses they entail. Lastly,
it is important to introduce the definition of comonotonicity:

Definition 1.3 (Comonotonicity). Let X and Y in χ, they are comonotonic if and only
if

[X(ω1)−X(ω2)][Y (ω1)− Y (ω2)] ≥ 0 a.s. for ω1, ω2 ∈ Ω (1.3)
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Comonotonic literally means "Common monotonic", thus their outcomes move on the
same direction. The following result about comonotonicity, presented in [10], gives another
useful characterization of the concept of comonotonicity:

Theorem 1.1. X = [X1, X2] is a random vector comonotonic ⇐⇒ ∃Z random variable
and ∃f1, f2 non-decreasing functions such that X d

= [f1(Z), f2(Z)];

Proof. (⇒) Let U be a random variable distributed as a Uniform[0, 1]. Now it suffices
do the following observation, due to the integral transform of probability:

FX(x) = P (U ≤ FX1(x1), U ≤ FX2(x2)) = P (F−1
X1

(U) ≤ x1, F
−1
X2

(U) ≤ x2)

The inverse functions of the cumulative distribution functions satisfy all the properties
requested.

(⇐) Trivial, since the two functions f1, f2 are non-decreasing.

Remark 1.1. The equation (1.3) may resemble the formula of covariance and leads to
think that two comonotonic random variables should be positively correlated. This can
be shown by developing the first expected value in the definition of covariance; Let X, Y

two well-defined and comonotonic random variables in a probability space (Ω,F , P ) and
X, Y ∈ L2(Ω,F , P ). Then:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] =
∞∑
i=1

(X(ωi)− E[X])(Y (ωi)− E[Y ])P (ωi).

Since the two variables are comonotonic, the sum above is composed only by non-negative
terms if the mean of each random variable belongs to its support, therefore it is non-
negative as well. The result can be easily extended to the general case by defining a
set

∼
Ω = Ω ∪ ∼

ω and two random variables
∼
X(ω) = X(ω) for each ω ∈

∼
Ω, ω ̸= ∼

ω and
∼
Y (ω) = Y (ω) for each ω ∈

∼
Ω, ω ̸= ∼

ω such that P (
∼
ω) = 0. Noticing that the covariance

of the two new random variables is equal to Cov(X, Y ), the result is obtained. Moreover,
it can be noticed that the covariance can be null only if at least one of the two random
variables is constant a.s. Eventually, if two variables are perfect correlated, it means that
one is a linear and non-decreasing function of the other one, and for the characterization
given in theorem 1.1, it follows that they are comonotonic.

Having set these definitions, now it is possible to start asking how a "good" premium
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principle can be defined. There are different methods to achieve this goal. The "ad hoc"
one consists in defining the functional and then determine its properties, the characteri-
zation one instead consists in looking for a principle starting from the properties it should
have (see [24]).

This section presents and discusses a set of conditions which can be desirable for H:

1. Conditional state dependence: For a given market condition, the premium for a risk
X depends only on its ddf.

This property is quite reasonable since two risks with the same distribution in the
same market should have the same insurance price.

2. Monotonicity: Let X and Y be in χ, if X(ω) ≤ Y (ω) a.s., then H(x) ≤ H(y)

Trivially, if a risk is dominated by another almost surely, its insurance price should
be smaller than the other one.

3. Comonotonic additivity: If X and Y are in χ and comonotonic,then: H(X + Y ) =

H(X) +H(Y )

4. Continuity: If X ∈ χ and d ≥ 0, then: limd→0+ H((X − d)+) = H(X) and
limd→∞H(min(X, d)) = H(X)

5. Risk loading: H(X) ≥ E[X] for all X ∈ χ.

An insurer generally wants to receive premiums greater than the expected value of
the risk in order to gain money on average.

6. No unjustified risk loading: if X = c, X ∈ χ and c constant, then H(X) = c.

If the loss is deterministic there is no reason for adding a risk loading to the premium
since it is known the outcome for the insurer with probability 1

7. Maximal loss: H(X) ≤ esssup(X) for all X ∈ χ

The premium cannot be greater than the maximal possible outcome for the insurer.

8. Translation equivariance or invariance: H(X + a) = H(X) + a for all X ∈ χ and
a ≥ 0.

If the risk is increased by a fixed deterministic amount, then the premium should
be increased by the same amount.

9. Scale equivariance or invariance: H(bX) = bH(X) for all X ∈ χ and b ≥ 0.

This property guarantees no arbitrage.
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10. Additivity: H(X + Y ) = H(X) +H(Y ) for all X, Y ∈ χ.

Also this property is useful to prevents arbitrage opportunities.

11. Subadditivity: H(X + Y ) ≤ H(X) +H(Y ) for all X, Y ∈ χ.

12. Superadditivity: H(X + Y ) ≥ H(X) +H(Y ) for all X, Y ∈ χ.

13. Additivity for independent risks:H(X + Y ) = H(X) + H(Y ) for all X, Y ∈ χ

independents.

14. Preserves FSD ordering: If SX(t) ≤ SY (t) for all t ≥ 0, then H(X) ≤ H(Y ).

15. Preserves stop-loss ordering:E[X − d]+ ≤ E[Y − d]+ for all d ≥ 0, then H(X) ≤
H(Y ).

Approaching the problem with the characterization method does not entail that H must
have all the features listed above. For instance, in [23], a premium principle is defined as
the integral of the ddf of the risk X, by imposing that just the first four properties holds,
however, one can show that many other properties such as sub-additivity or scale and
translation equivariance can be derived by the definition. Furthermore, many properties
can be justified with a "no arbitrage" argument, such as the scale equivariance or the
additivity ones; indeed, if the former does not hold and, for example, the premium for 2X
were greater than twice the premium of X, one could buy insurance for 2X and sell two
different policies for X, making an arbitrage profit; a same reasoning holds also for the
latter one. However, this is a questionable argument to justify some properties, in fact
one can argue that buying an insurance for X+Y and then selling the two risk separately
is not allowed by the market itself, and therefore, it should be sufficient to require just
the weaker property of subadditivity.

In general, it is interesting to notice how the first and the second properties are related
to the 14-th.

Theorem 1.2. If X precedes Y in FSD, then there exist a random variable Z with SY = SZ

such that X ≤ Z a.s.

Proof. 1 From hypothesis:

SX(t) ≤ SY (t) ∀t ⇒ ∃c(t) : R −→ [1,+∞)

1I am grateful to Jacopo Somaglia for his precious help in the development of the proof and in the
construction of the next counterexample.
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such that SX(t/c(t)) = SY (t), by continuity of the survival functions. c(t) is a continuous
function in (0,∞), and it exists its continuous extension by imposing c(0) = 1, since, by
considering two non-negative random variable X, Y , SX(0) = SY (0) = 1.

Let define
Z(ω) = c(t)X(ω) ∀ω ∈ X−1(t).

By definition, Z ≥ X a.s. It remains to prove that it has the same distribution of Y.
Considering the survival function of Z:

SZ(t) = P (Z ≥ t) = P (c(t)X ≥ t) = P (X ≥ t/c(t)) = Sx(t/c(t)) = SY (t);

This concludes the proof.

Remark 1.2. The function c(t) used in the proof exists if the two random variables X, Y

are continuous, indeed another possible definition for Z can be: Z = S−1
Y (SX(t)) = c(t)X.

By looking at this alternative writing, it is obvious that the survival functions must be
strictly monotone, and therefore the random variables continuous.

Remark 1.3. The original result provided in [23] does not contain the hypothesis of con-
tinuity of the two random variables X, Y , but it was already underlined in the previous
remark the importance of it for the construction of the function c(t) and, thus, of the
random variable Z, since it is needed the invertibility of the two survival functions. The
following counterexample shows that the theorem 1.2 does not hold in the discrete case:

Let (Ω,F , P ) be a probability space such that Ω = {ω1, ω2}, F = 2Ω, P a probability
measure with P (ω1) = 1/10, P (ω2) = 9/10. Let define two random variables in it with
X(ω1) = 1, X(ω2) = 0 and Y (ω1) = 0, Y (ω2) = 1. X precedes Y in FSD as shown in the
figure below but it is not possible to find a random variable Z with the same distribution
of Y such that Z ≥ X a.s.
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Figure 1.1: Plot of the possible realizations of X, Y and their survival functions.

As an immediate consequence of the theorem 1.2, properties of conditional state depen-
dence and monotonicity imply that the premium functional preserves FSD, for continuous
risks.(see [16]).

1.2. Catalog of premium principles

This section has the purpose of showing some premium principles and discussing their
properties proving them. In particular:

• Net premium principle: H(X) = E[X];

• Expected value premium principle: H(X) = (1 + θ)E[X], θ > 0;

• Variance premium principle: H(X) = E[X] + αV ar(X), α > 0;

• Standard deviation premium principle: H(X) = E[X] + α
√
V ar(X), α > 0;

• Wang’s premium principle: H(X) =
∫∞
0

g(Sx(t))dt;
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1.2.1. Net premium principle and expected value premium prin-

ciple

These are probably the two most intuitive premium principles; the former consists just
in taking as insurance price the expected value of the risk, and owns all the properties
enumerated in section 1.1, the latter is built on the first one by adding a proportional
risk loading, and it loses properties 6,7 and 8. First of all, it will be shown that these
three ones do not hold for the expected value premium principle, then the proves of the
remaining properties considered not trivial will be reported.

• Unjustified risk loading:

If X = c a.s. with c ≥ 0 then H(X) = (1 + θ)c ≥ c;

• No maximal loss:

It can be proven that this does not hold by many counterexamples, however, trivially,
the previous reasoning is already sufficient.

• No translation equivariance:

H(X + a) = (1 + θ)E[X + a] = H(X) + a+ aθ ̸= H(X) + a;

The next proves, instead, follow for the net premium principle by considering the special
case θ = 0:

• Continuity:

Let IA represent the indicator function in the set A and fx the density function of
X;

Regarding the maximum:

lim
d→0+

(1 + θ)E[(X − d)+] = lim
d→0+

(1 + θ)

∫ +∞

0

(X − d)I(X>d)fxdx = (1 + θ)E[X];

Instead, for the minimum part:

lim
d→∞

(1 + θ)E[min(X, d)] = lim
d→∞

(1 + θ)(

∫ +∞

−∞
xI(X<d)fxdx+

∫ +∞

−∞
dI(X≥d)dx

= lim
d→∞

∫ d

−∞
xfxdx+

∫ +∞

d

d · dx

= (1 + θ)E[X];
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• Additivity:

It follows by the additivity of the expected value.

• Monotonicity:

The expected value is an operator trivially monotonic, in fact, considering the defi-
nition, if X(ω) ≤ Y (ω) ∀ω:

E[X] =
∞∑
i=1

xiP (x = xi) ≤
∞∑
i=1

yiP (y = yi) = E[Y ].

Therefore:
H(X) = (1 + θ)E[X] ≤ (1 + θ)E[Y ] = H(Y );

• Preserving FSD:

It follows by theorem 1.2, since properties 1 and 2 hold.

• Preserving stop-loss ordering:

If X(ω) > d then:

(1 + θ)E[X] = (1 + θ)E[(X − d)+ + d] ≤ (1 + θ)E[(Y − d)+ + d] = H(Y );

If X(ω) ≤ d then:

(1 + θ)E[X] = (1 + θ)E[(X − d)+ +X] ≤ (1 + θ)E[(Y − d)+ +X] ≤ H(Y );

1.2.2. Variance and standard deviation premium principles

These two premium principles consist in adding to the net premium a risk load which is
proportional to variance or standard deviation. Unfortunately, they do not have many of
the properties listed in section 1.1. As done before, the proves considered too simple are
omitted, in particular just the property of continuity is proved, while properties that do
not hold for at least one principle are discussed more in details. It is important to notice
that the following arguments proposed for variance premium principle apply also for the
standard deviation one, except for property 9, which is owned only by this last principle,
and property 13, owned only by variance one.

• Continuity:
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Figure 1.2: Net and expected value premium principles compared for two exponential
risks with parameters λ1 = 0.8 and λ2 = 1.15, θ = 0.5.
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First of all, one can notice that, since continuity is guaranteed for the expected value,
then it is sufficient to show that it is also guaranteed for the variance. However,
since V ar(X) = E[X2]−E2[X], the proof consists in studying the behaviour of the
term E[X2]; by repeating the reasoning done for the mean, the proof can be easily
completed, indeed:

lim
d→0+

E[(X − d)2+] = lim
d→0+

∫ ∞

−∞
(x− d)2fxI(x>d)dx

= lim
d→0+

∫ ∞

d

(x− d)2fxdx

=

∫ ∞

0

x2fxdx = E[X2];

A similar procedure can be applied to show that limd→∞ E[(min(X, d))2] = E[X2].

• No monotonicity:

It can be proved constructing a counterexample; let consider a risk X ∼ B(1/2)
distributed as a Bernoulli and another one defined as Y = X/2 + 1. Then:

H(X) = 1/2 + α/4.

H(Y ) = 5/4 + α/16.

By taking, for instance, α = 5, H(X) > H(Y ) even if X(ω) < Y (ω) ∀ω;

• No max-loss:

As counterexample it can be considered a risk X ∼ B(1/2). Thus:

H(X) = 1/2 + α/4 ≥ 1

for α ≥ 2;

• No scale equivariance:

H(bX) = bE[X] + b2V ar(X) ̸= bH(X);

As mentioned above, this is one of the two properties that variance premium and
standard deviation one have not in common.

• No additivity, sub-additivity and super-additivity:
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It simply follows by the fact that variance and standard deviation are not additive,
sub-additive and super-additive.

• Additivity for independent risks:

H(X + Y ) = E[X] + E[Y ] + α(V ar(X) + V ar(Y ) + 2Cov(X, Y ));

If X, Y are independent Cov(X, Y ) = 0 and H(X + Y ) = H(X) +H(Y );

Considering instead the standard deviation:

H(X + Y ) = E[X] + E[Y ] + α(
√
V ar(X) + V ar(Y )) ̸= H(X) +H(Y );

• No preserving FSD:

As counterexample one can take X ∼ B(1/2) and Y = 1 a.s. Then:

H(X) = 1/2 + α/4.

H(Y ) = 1.

The property does not hold for α > 2;

• No preserving stop-loss ordering:

The same counterexample used for denying the preserving of first stochastic domi-
nance ordering can be applied also in this case;
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Figure 1.3: Variance and standard deviation premium principles compared for two expo-
nential risks with parameters λ1 = 0.8 and λ2 = 1.15, a = 0.8.

1.2.3. Wang’s premium principles

This part of the treatment about premiums in static context is dedicated to a brief intro-
duction to the class of Wang’s premium principles, which is well-known and widely dealt
with in actuarial literature (see for instance [23], in which they are introduced). First
of all it is needed a clarification about the function g in the formula of the functional H
written at the beginning of the section 1.2.

Definition 1.4 (Distortion function). A function g : [0, 1] → [0, 1] is called a distortion
function if g is non-decreasing with g(0) = 0 and g(1) = 1.

The main feature of Wang’s class of premiums is that it is a unique representation of each
premium which owns property 1-4. This is a result proved by Greco (see [9]), but here it
is reported and proved in a simpler way approaching firstly risks with bounded support,
and then generalizing the characterization of the class premium principles to all risks (see
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[11]). Before doing this, it can be interesting see that many of the other properties listed
hold for Wang’s premiums; straightforwardly, by looking at the integral that define H, one
can notice that properties 5,6 and 7 hold true, moreover it is easy to show also properties
8 and 9.

Theorem 1.3. Wang’s premium principle is invariant for affine transformations.

Proof. Let a ≥ 0 and b ≥ 0.

Since

SaX+b(t) =

{
1, 0 ≤ t < b

SX((t− b)/a), t ≥ b

then:

H(aX + b) =

∫ b

0

dt+

∫ ∞

b

g(SX((t− b)/a))dt =

b+ a

∫ ∞

0

g(SX(t))dt = aH(X) + b;

Now, the main result about the characterization of Wang’s class of premiums:

Theorem 1.4. Let H : χ → [0,∞) be a functional such that properties from 1 to 4 hold,
then ∃! g distortion function concave such that H =

∫∞
0

g(Sx(t))dt

Proof. Let consider a risk X with bounded support [0, b] and with a decumulative distri-
bution function piecewise constant. Thus, it exists a sequence 0 = x0 < ... < xn = b such
that:

SX(x) =
n−1∑
i=0

piIxi≤x≤xi+1

X can be written as:

X =
n−1∑
i=0

L(xi, xi+1),

where

L(xi, xi+1) =


0, 0 ≤ X ≤ xi

X − xi, xi < X < xi+1

xi+1 − xi, X ≥ xi+1
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For comonotonic additivity:

H(X) =
n−1∑
i=0

H(L(xi, xi+1)).

Observing that L(xi, xi+1)
d
= (xi+1 − xi) · B(pi), for scale invariance:

H(L(xi, xi+1) = (xi+1 − xi) ·H(B(pi)) = (xi+1 − xi) · g(pi).

Recollecting all the equations:

H(X) =
n−1∑
i=0

(xi+1 − xi)g(pi) =
n−1∑
i=0

∫ xi+1

xi

g(SX(t))dt =

∫ b

0

g(SX(t))dt.

The function g, found as g(t) = H(B(t)), has all the properties desired, and this concludes
the first part of the proof. Now let X be bounded with a generic decumulative distribution
function, SX(t) can be approximated as follows:

SXn(t) =
2n−1∑
i=0

SX((i+ 1)b/2n)I(ib/2n≤t≤(i+1)b/2n).

After some computations, one can get |S−1
X (t) − S−1

Xn
(t)| ≤ b/2n that implies |H(X) −

H(Xn)| ≤ b/2n. Therefore, H(X) = limn→∞ H(Xn). Applying dominated convergence
theorem it follows:

H(X) =

∫ b

0

g(SX(t))dt.

Arrived so far, it remains just to generalize the result for a generic unbounded risk. In
order to do so, it is sufficient to notice from the last equation that the premiums for
a random variable with support [0, b] and the one for min(X, b) are the same. Since
continuity holds for hypothesis, then the thesis follows straightforward.

1.2.4. Table of properties

For the sake of synthesis, here there is a table resuming the principles discussed with their
properties.
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Properties 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Net pp Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Expected value pp Y Y Y Y Y N N N Y Y Y Y Y Y Y
Variance pp Y N N Y Y Y N Y N N N N Y N N
Std pp Y N N Y Y Y N Y Y N N N N N N
Wang pp Y Y Y Y Y Y Y Y Y N Y N N Y Y

1.3. Decomposition of the premium functional into

risk and deviation measures

This section presents a central result, found by Nendel, Riedel and Schmeck (see [19] for
further details), which clarifies the structure of premium principles providing a decompo-
sition valid in a very general setting. First of all, it is necessary to recall the concepts of
monetary risk measure and deviation measure, commonly used in financial mathematics.
Let χb ⊆ χ the set of non-negative and bounded measurable random variables.

Definition 1.5 (Monetary risk measure). A functional ρ : χb → R is a monetary risk
measure if it is:

1. Normed; (ρ(0) = 0)

2. Translation invariant;

3. Monotone.

Definition 1.6 (Deviation measure). A functional ρ : χb → [0,+∞] is a deviation mea-
sure if :

1. It is normed;

2. ρ(X +m) = ρ(X), ∀m ∈ R, ∀X ∈ χb;

With these two notions, it can be proved that a premium principle, normed and translation
invariant, can be decomposed into a monetary risk measure, which catches all the risky
components of the claim, and a deviation measure, which catches in some sense the
possible fluctuation of the insured loss, and therefore represents the part of the premium
that cannot be explained by any risk measure. Another possible interpretation is that the
first term of the decomposition is a net premium, while the second one is a safety loading
proportional to the variability of the risk.

Lemma 1.1. Let H : χb → [0,+∞] be a premium principle normed and translation
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invariant. Let define:

Rmax(X) = inf (H(X0)|X0 ∈ χb, X0 ≥ 0) (1.4)

Dmin(X) = H(X)−Rmax(X); (1.5)

Then Rmax is a well-defined monetary risk measure with Rmax ≤ H(X) and Dmin is a
well-defined deviation measure, such that:

H(X) = Rmax(X) +Dmin(X). (1.6)

Moreover, for every decomposition of the form H(X) = R(X) +D(X) in which R and D

are respectively a risk and deviation measure, R ≤ Rmax(X) and D(X) ≥ Dmin(X).

Proof. Rmax : χb → R is well-defined, in fact sup(X) ∈ χb and H(X0) ≥ H(inf(X))

∀X0 ∈ χb. Moreover Rmax(X) ≤ H(X0) by definition, so Dmin(X) is non-negative.
Showing that Rmax is effectively a monetary risk measure the proof is complete. Since
the premium principle is normed by hypothesis, it follows that also the two measures
are normed. About monotonicity, let Y, Y0 ∈ χb, Y0 ≥ Y ≥ X. Then, by definition,
Rmax(X) ≤ H(Y0) and taking the infimum over all Y0 defined as before, it holds that
Rmax(X) ≤ Rmax(Y ). Lastly, it remains translation invariant property; let X ∈ χb,
m ∈ R and X0 ∈ χb with X0 ≥ X. Then:

Rmax(X +m) ≤ H(X0 +m) = H(X0) +m.

Taking the infimum over all X0 implies that Rmax(X+m) ≤ Rmax(X)+m. On the other
hand:

Rmax(X) +m = Rmax(X +m−m) +m ≤ Rmax(X +m).

Eventually, the second property of the deviation measure follows straightforward from the
translation invariance of the risk measure.

Moreover, if R : χb → R is a risk measure with R(X) ≤ H(X) ∀X ∈ χb, then,

R(X) ≤ R(X0) ≤ H(X0) ∀X ∈ χb, X0 ∈ χb, X0 ≥ X.

By taking the infimum over all X0, it follows R(X) ≤ Rmax(X) ∀X ∈ χb.
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From this lemma it derives trivially that many different decompositions are allowed for
the same premium, by considering an R(X) ≤ Rmax(X) and consequently a D(X) ≥
Dmin(X). Furthermore, the next theorem can be easily deduced:

Theorem 1.5. H is a premium principle normed and translation invariant ⇐⇒ H(X) =

R(X) +D(X) such that R(X) is a well-defined risk measure and D(X) is a well-defined
deviation measure.

Proof. The result follows from lemma 1.1 by choosing R(X) = Rmax(X) and D(X) =

Dmin(X).

The principles listed in the previous section can be viewed under the new light given by
theorem 1.5, but before it may be useful to make an observation about the property of
monotonicity of H, and how it is related to the decomposition. Indeed, by adding it to
the hypothesis of the theorem, it follows that H can be interpreted as a monetary risk
measure, thus the decomposition trivially becomes an identity with Dmin(X) = 0. This
observation makes easier to identify the deviation measure and the risk one in the different
principles; indeed, the expected value and Wang’s principles are monetary risk measures
as well, and they have null deviation part, while the variance and standard deviation
principles, which are not monotonic, have the first term, namely the mean of the risk, as
Rmax(X), and the second term as Dmin(X).
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processes

A jump process is a stochastic process which presents discrete movements. On the oppo-
site, a diffusive process is characterized by continuous trajectories. Jump-based models
allow to treat many problems where diffusion does not fit well, such as the realization of
a set of claims in an insurance portfolio in a given time interval. Because of the different
nature of the two processes, many calculus tools developed for one of them cannot be
applied for the other and vice versa. Therefore, a theoretical background specific to each
one of the aforementioned processes is needed for a good comprehension of both.
The whole chapter has the purpose of recalling many fundamental mathematical concepts
for the future treatment of premium principles in dynamical context. All the presented
topics are well-known and widely developed in literature, and, for more details, the follow-
ing textbooks are suggested: [3], for a detailed review of stochastic calculus in a general
diffusive framework, which is omitted in this work, and [5], which has been used as refer-
ence for the chapter.

2.1. Brief review of stochastic calculus

Let fix a probability space (Ω,F , P ). Let define in this space a filtration Ft, namely an
increasing family of sub-σ-algebra of F : Fs ⊂ Ft whenever s ≤ t.

Definition 2.1 (Stopping time). Let (Ft)t∈T be a filtration. A random variable τ : Ω →
T ∪ {+∞} is a stopping time if ∀t ∈ T , {τ ≤ t} ∈ Ft.

Definition 2.2 (Martingale). A real-valued process X = (Ω,F ,Ft, Xt, P ) is a martingale
if:

Xt is P-integrable ∀t ∈ T (Xt ∈ L1(Ω,F , P )); (2.1)

E[Xt|Fs] = Xs, ∀0 ≤ s ≤ t; (2.2)
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Definition 2.3 (Brownian motion or Wiener process). A real-valued process W = (Ω,F ,Ft,Wt, P )

is a Brownian motion or Wiener process if:

W0 = 0; (2.3)

Wt −Ws is independent of Fs, ∀0 ≤ s ≤ t; (2.4)

Wt −Ws ∼ N(0, t− s), ∀0 ≤ s ≤ t; (2.5)

Remark 2.1. The Brownian motion is a martingale, indeed it is P -integrable ∀t ∈ T since
it has gaussian law, and it holds:

E[Wt|Fs] = E[Wt −Ws +Ws|Fs] = E[Wt −Ws|Fs] +Ws = Ws;

Definition 2.4 (Local martingale). A process X = (Ω,F ,Ft, Xt, P ) is a local martingale
if there exists an increasing sequence (τn)n≥1 of stopping times such that:

1. τn → +∞ as n → ∞ a.s.;

2. (Xt∧τn)t is a Ft-martingale for every n;

Definition 2.5 (Predictability). Let Ft be a filtration on (Ω,F , P ) and define P(Ft) to
be the σ-field over [0,∞]× Ω generated by the rectangles of the form:

(s, t]× A with 0 ≤ s ≤ t, A ∈ Fs.

P(Ft) is called the Ft-predictable σ-field over [0,∞] × Ω. A real-valued process X such
that X0 is F0-measurable and the mapping (t, ω) → Xt(ω) defined from [0,∞]×Ω into R
is P(Ft)-measurable is said to be Ft-predictable.

2.2. Point processes

The concept of point process is crucial in order to model phenomena subjected to jumps.
Stochastic processes whose realizations consist of point distributed along time can be
viewed in different ways, here they will be introduced via their associated counting process.

Definition 2.6 (Point process). A realization of a point process over [0,∞) can be de-
scribed by a sequence {Tn}n≥1 of random variables, which take values in [0,∞), and defined
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on a probability space (Ω,F , P ), such that:

T0 = 0, Tn < ∞, Tn < Tn+1;

To each realization of Tn corresponds a counting function Nt defined by:

Nt =

n, t ∈ [Tn, Tn+1], n ≥ 0

∞, t ≥ T∞

(2.6)

Therefore, Nt is a right-continuous step function such that N0 = 0 and its jumps are
upward and of magnitude 1.

Remark 2.2. The family of counting function Nt is the counting process associated to the
point process. Sometimes, Nt is also called point process. Moreover, it follows by the
definition that the point processes belong to the class of "cadlag" processes (continue à
droite, limitée à gauche), i.e. processes which are both right-continuous and left-limited.

Definition 2.7 (Non-explosivity). The realization of a point process described by a se-
quence Tn in [0,∞) is non-explosive if and only if:

T∞ = lim
n→∞

Tn = +∞. (2.7)

The next definition introduces a point process that can be considered as the building
block of stochastic jump framework, as well as the Brownian motion for the stochastic
diffusive one.

Definition 2.8 (Poisson Process). A N-valued process N = (Ω,F ,Ft, Nt, P ) is a Poisson
process with intensity λ > 0 if:

N0 = 0; (2.8)

Nt −Ns is independent of Fs, 0 ≤ s ≤ t; (2.9)

Nt −Ns ∼ Poiss(λ(t− s)), 0 ≤ s ≤ t; (2.10)
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Remark 2.3. The condition (2.10) can be explicitely rewritten as:

P (Nt −Ns = n) =
eλ(t−s)(λ(t− s))

n!

Remark 2.4. It is possible to characterize the Poisson process in many different ways, the
definition above was chosen among the others because it returns immediately the distri-
bution of the process and the similarity with the definition of Brownian motion. However,
for completeness, it is reported the following lemma, which provides an alternative charac-
terization of the Poisson process, in which it is built with a sequence of random variables
according to the definition 2.6.

Lemma 2.1. Let (τi)i be a sequence of random variables such that τi ∼ E(λ). Let Tn =∑n
i=1 τi and define Nt as Nt =

∑∞
n=1 I(t≥Tn). Then, Nt is a Poisson process with intensity

λ.

Proof. The property (2.8) is trivially verified. If one assumes that each increment of
the form Nt − Ns is distributed as a Poisson with parameter λ(t − s), the property
(2.9) holds because the Poisson distribution is stable under convolution, therefore, since
Nt − Nh = (Nt − Ns) + (Ns − Nh) ∀ h ≤ s ≤ t, the increments (Nt − Ns) + (Ns − Nh)

must be independent. Thus, proving that Nt is Poisson distributed, the statement holds.
Let consider that:

P (Nt = n) = P (Tn+1 > t)− P (Tn ≥ t);

But:
P (Tn+1 > t) = 1− P (Tn+1 < t) = 1−

∫ t

0

λ
e−λs(λs)n

n!
ds.

The density function of Tn+1 is known for a standard result of probability, which states
that a sum of n exponential random variables independent and identically distributed
defines a gamma random variable with λ as shape parameter and n as rate parameter.
Integrating by parts:

P (Tn+1 > t) = 1 +
e−λt(λt)n

n!
−
∫ t

0

e−λs(λs)n−1

n− 1!
ds

= 1 +
e−λt(λt)n

n!
− P (Tn < t)

=
e−λt(λt)n

n!
+ P (Tn ≥ t).
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Therefore:

P (Tn+1 > t)− P (Tn ≥ t) =
e−λt(λt)n

n!

which is the distribution of a Poiss(λt);

By the definition 2.8 and the lemma 2.1, many properties can be deduced straightforwardly
with simple computations such as the moments of the Poisson process, its characteristic
function, and its stationarity. In particular, by observing its mean, it is easy to notice
that this process does not enjoy the martingale property. However, it can be built a
martingale from any Poisson process by simply subtracting its expected value. The result
of this operation is called "Compensated Poisson process".

Lemma 2.2. The compensated version of a Poisson process Ft-adapted with intensity λ

defined as
∼
N t = Nt − λt is a Ft-martingale.

Proof. Let be t > s; Since:

E[Nt|Fs] = E[Nt −Ns +Ns|Fs] = E[Nt −Ns|Fs] +Ns = λ(t− s) +Ns;

Then:

E[
∼
N t|Fs] = E[Nt − λt|Fs] = λ(t− s) +Ns − λt = Ns − λs =

∼
N s;
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Figure 2.1: Two possible sample paths of a Poisson process with intensity equal to 2, and
the paths of a compensated Poisson compared to its related process;

Up to this point, it was dealt with only the case in which the intensity is deterministic. In
particular, a point process can be a Poisson one only if its intensity is constant and, obvi-
ously, the other conditions of the definition 2.8 are satisfied. However, for a general point
process, it can be introduced another source of randomness by considering as intensity
another stochastic process which respects the following definition:

Definition 2.9 (Stochastic intensity). A point process Nt admits stochastic intensity λt

if, ∀ Ct non-negative and Ft-predictable:

λt ≥ 0 ∀t > 0; (2.11)

∫ t

0

λsds < ∞, P − a.s.; (2.12)

E

[ ∫ ∞

0

CsdNs

]
= E

[ ∫ ∞

0

Csλsds

]
; (2.13)

Remark 2.5. The integral with respect to dNs is defined as:∫ t

0

CsdNs =
∑
n≥1

CTnI(Tn≤t) (2.14)
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and ∫ ∞

0

CsdNs =
∑
n≥1

CTnI(Tn<∞) (2.15)

Remark 2.6. The stochastic intensity is always referred to a probability measure and a
filtration. It is in fact correct to say that λt is the (Ft, P )-intensity of the process Nt. In
order to ease the notation, however, this complete writing is omitted.

It is possible to find a bound between a general point process and the concept of martingale
even under the framework of stochastic intensity, as done before with the compensator
of the Poisson process. In order to present this result, it is necessary to introduce the
following preliminary lemma (contained in [5], appendix A1, theorem 4):

Lemma 2.3 (Verification theorem). Let Ω be a set and S a π-system (stable by finite
intersection) on Ω. Let H be a vector space of real-valued functions such that:

• 1 ∈ H and IA ∈ H whenever A ∈ S;

• if Xn is an increasing sequence of non-negative functions of H such that Xn is
bounded, then supXn ∈ H;

Then H contains all real-valued and bounded mappings measurable with respect to σ(S).

Proof. Define D = {A|IA ∈ H}. By the first hypothesis S ⊂ D. Also D owns the following
three properties: Ω ∈ D, it is stable under strict difference because H is a vector space
and it is stable by increasing sequential limit, namely, if An → A and An ∈ D then
A ∈ D. Therefore, by monotone convergence theorem, σ(S) ⊂ D. Thus, H contains all
the mappings (IA, A ∈ σ(S)). Let X be a real-valued σ(S)-measurable r.v. Then, X+

and X− are increasing limits of real-valued step r.v. with respect to σ(S). They belong
to H because IA ∈ H ∀A and H is a vector space. Proof is concluded using the second
hypothesis.

This important lemma provides a powerful tool in order to handle the condition (2.13).
Indeed, proving that it holds for a choice Ct = IAI(r,t] ∀A ∈ Fr and r < t, namely for the
generator class of the predictable and non-negative processes, it is proved for a generic Cs

which owns these properties. Now there are all the theoretical elements for demonstrating
the next two results.

Theorem 2.1. If a point process Nt admits the Ft-intensity λt, then Nt is non-explosive
and the process Mt = Nt −

∫ t

0
λsds is an Ft-local martingale.
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Proof. Let define a sequence of stopping times Sn = inf (t|
∫ t

0
λsds ≥ n). Writing (2.13)

with Ct = I(t≤Sn), one obtains:

E[NSn ] = E

[ ∫ Sn

0

λsds

]
≤ n < ∞ ∀n.

Therefore, NSn < ∞ P -a.s., which implies the non-explosivity since Sn → ∞ when
n → ∞.

It remains to prove the local martingality. Let choose Ct = IAI(t≤Tn) ∀A ∈ Ft arbitrary,
in which Tn is a sequence of stopping times as in definition 2.4. It holds:

E

[ ∫ ∞

0

IAI(t≤Tn)dNs

]
= E

[ ∫ ∞

0

IAI(t≤Tn)λsds

]
=⇒ E[IA(Nt∧Tn)] = E

[
IA

∫ t∧Tn

0

λsds

]

Since Nt∧Tn ≤ n < ∞, integrability is checked. By taking r < t, it is possible to write,
applying, as done before, the condition (2.13) and an opportune choice of Ct, namely
IA(I(t≤Tn) − I(r≤Tn)):

E

[
IA(Nt∧Tn −

∫ t∧Tn

0

λsds)

]
= E

[
IA(Nr∧Tn −

∫ r∧Tn

0

λsds

]
By moving the term on the right to the left, for linearity of the expected value and the
arbitrariness of A the second condition of martingality is verified, indeed the terms in the
last equation can be recollected in the form:

E[IA(Mt∧Tn −Mr∧Tn)] = 0 for r < t;

This concludes the proof.

Theorem 2.1 shows a relation between the stochastic intensity and the possibility of con-
structing a martingale starting from Nt. It is natural to ask if also the opposite implication
holds, ensuring that if such a local martingale exists, then λt is the stochastic intensity of
Nt, deducing, thus, a martingale characterization of it. This result is guaranteed by the
following theorem:
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Theorem 2.2. Let Nt be a non-explosive point process Ft-adapted, and suppose that Mt =

Nt −
∫ t

0
λsds is a local martingale, with λt non-negative and Ft-progressively measurable.

Then, λt is the intensity of Nt.

Proof. The condition (2.11) is guaranteed by the hypothesis, while (2.12) follows by choos-
ing Cs = I(0,t], therefore it is sufficient to prove (2.13). Indeed, if it holds, one can write:

E

[ ∫ t

0

dNs

]
= E

[ ∫ t

0

λsds

]
=⇒ E

[ ∫ t

0

λsds

]
= Nt < ∞

for the hypothesis of non-explosivity.

By taking an arbitrary A ∈ Fr, and the sequence Tn of stopping times for which Mt is a
local martingale, it holds:

E[IA(Mt∧Tn −Mr∧Tn)] = 0 for r < t;

Making explicit the terms in function of the point process Nt and λt, one can get:

E[IA(Nt∧Tn −Nr∧Tn)] = E

[
IA

∫ t∧Tn

r∧Tn

λsds

]
.

By letting Tn go to infinity, this writing is equivalent to the desired equation by taking
Cs = IAI(r,t], in fact it can be rewritten as:

E

[ ∫ ∞

0

IAI(r,t]dNs

]
= E

[ ∫ ∞

0

IAI(r,t]λsds

]
By applying the verification theorem, the result can be extended to a generic process Cs

predictable and non-negative, hence, λt is the stochastic intensity of Nt.

After having a characterization for the stochastic intensity, it is natural looking for some
result about its uniqueness. The following theorem provides it and adds useful properties
regarding the stochastic intensity stopped at a jump time, shown in the corollaries.

Theorem 2.3. Let Nt be a point process Ft-adapted, let λt and
∼
λt be both two intensities

of Nt such that they are Ft-predictable. Then:
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λt(ω) =
∼
λt(ω), dPdNt − a.e. (2.16)

Proof. Let consider (2.13) with Cs = I
(λs>

∼
λs)

I(s≤t). The chosen Cs is Ft-predictable
because the two intensities are Ft-predictable. Thus:

E

[ ∫ t

0

CsdNs

]
= E

[ ∫ t

0

Csλsds

]
= E

[ ∫ t

0

Cs

∼
λsds

]
=⇒

E

[ ∫ t

0

I
(λs>

∼
λs)

I(s≤t)λsds

]
= E

[ ∫ t

0

I
(λs>

∼
λs)

I(s≤t)

∼
λsds

]
=⇒

E

[ ∫ t

0

I
(λs>

∼
λs)

λsds

]
= E

[ ∫ t

0

I
(λs>

∼
λs)

∼
λsds

]

By looking at the last equation, it is easy to notice that it holds only if I
(λs>

∼
λs)

= 0

dPdNt-a.e. The same reasoning can be applied similarly for I
(λs<

∼
λs)

, concluding the
proof.

Corollary 2.1. Let τn be a jump time of the point process Nt, let λt and
∼
λt be both two

intensities of Nt such that they are Ft-predictable. Then:

λτn(ω) =
∼
λτn(ω), P − a.s., for n ≥ 1.

Proof. Let be Ct = I
(λτn ̸=

∼
λτn )

. Then:

0 = E

[ ∫ ∞

0

CtdNt

]
= E

[∑
n≥1

CτnI(τn<∞)

]
= E

[∑
n≥1

I
(λτn ̸=

∼
λτn )

I(τn<∞)

]
=

∑
n≥1

P (λ
(τn ̸=

∼
λτn )

; τn < ∞);

The last term shows that the equation holds if and only if P (λτn ̸=
∼
λτn) = 0;
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Corollary 2.2. Let τn be a jump time of the point process Nt, let λt an intensity of Nt

such that it is Ft-predictable. Then:

λτn(ω) > 0 P − a.s., for n ≥ 1.

Proof. By the fact that λt is the stochastic intensity of Nt, considering Ct = I(λt=0)I[τn−1,τn]:

E[

∫ ∞

0

CsdNs] = E[

∫ ∞

0

Csλsds]

=⇒E[

∫ ∞

0

I(λt=0)I[τn−1,τn]dNs] = E[

∫ ∞

0

I(λt=0)I[τn−1,τn]λsds]

=⇒E[I(λt=0)] = E[

∫ τn

τn−1

I(λt=0)λsds

=⇒P (λt = 0) = 0,

because the term in the last integral must be null.

Since λt is non-negative, the proof is complete.

Eventually, in order to finish the review of the stochastic intensity properties, the next
theorem shows the form of the stochastic intensity for a given process adapted with respect
to a smaller filtration of the given one.

Theorem 2.4. Let Gt and Ft two filtrations such that Gt ⊂ Ft ∀t ≥ 0. Then, if λt is a
Ft-intensity of the point process Nt and E[λt|Gt] is Gt-progressively measurable, E[λt|Gt]

is a Gt-intensity for Nt.

Proof. The hypothesis which states that λt is a stochastic intensity allows to write, for a
generic Cs Ft-predictable:

E

[ ∫ ∞

0

CsdNs

]
= E

[ ∫ ∞

0

Csλsds

]
=

∫ ∞

0

E

[
Csλs

]
ds

=

∫ ∞

0

E

[
CsE[λs|Gs

]
ds

= E

[ ∫ ∞

0

CsE[λs|Gs]

]
,

in which it was applied the Fubini’s theorem.



30 2| Theoretical elements on jump processes

The condition (2.13) for E[λt|Gt] was shown. It remains to prove the (2.12), since non-
negativity is trivial:

∞ > E

[ ∫ t

0

λsds

]
=

∫ t

0

E[λs]ds

=

∫ t

0

E

[
E[λs|Gs]

]
ds

= E

[ ∫ t

0

E[λs|Gs]ds

]

Remark 2.7. This proof is valid by using the extra hypothesis which guarantees that
E[λt|Gt] is Gt-progressively measurable. It exists a more technical result from a mathe-
matical point of view, which avoids the use of this condition (see [5], chapter 2, theorem
14), however, for practical purposes, the issue can be ignored by taking for granted the
Gt-progressive measurability of the Gt-intensity, that is ensured in many models.

2.3. Marked point processes

The theory developed in section 2.2 allows to model the occurrence of a jump at a certain
time, it remains to introduce the part which models the random width of it.

Definition 2.10 (Marked point process). Let (Ω,F , P ) be a probability space and consider
a measurable space (E, E). Defining:

1. a point process Tn (or Nt) on (Ω,F , P );

2. a sequence (Zn, n ≥ 1) of random variables which takes values in (E, E).

The double sequence (Tn, Zn, n ≥ 1) is called E-marked point process and (E, E) is called
mark space.

Remark 2.8. By taking Zn = 1 a.s. in the definition 2.10, the result will be a counting
process.

Remark 2.9. It is possible to consider, with the usual definition, a counting process for
each measurable subset of E. For instance, with A ⊂ E:

Nt(A) =
∑

n≥1 I(Zn∈A)I(Tn≤t).

Since this is basically equivalent to define a new measure, another possible notation is:
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Nt(A) = µ(ω, [0, t]× A).

In order to avoid a too heavy notation, the term ω is omitted, and it is preferred the form
µ(dt× dz).

The following definition presents a particular marked point process that, for its simplicity,
is relevant in many applications.

Definition 2.11 (Compound Poisson process). Let Nt be a Poisson process with intensity
λ and Zn a sequence of random variables i.i.d and independent with respect to Nt, such
that Zn ∼ Z ∀n. Then, the process

∑Nt

n=1 Zn is called compound Poisson process.

Definition 2.12 (Kernel of the intensity). Let µ(dt × dz) be an E-marked point process
with a filtration Ft. If, ∀A ∈ E, Nt admits λt(z) as intensity, then µ(dt × dz) is the
(P,Ft)-intensity kernel λt(dz).

Definition 2.13 (E-indexed process). Any mapping H : (0,∞) × Ω × E → R which is
Ft-predictable is called Ft-predictable process indexed by E.

Remark 2.10. The class of the E-indexed processes is generated by the following mappings
H(t, ω, z) = Ct(ω)IA(z), where Ct is a Ft-predictable process and A ∈ E . Many results
are proved for the generators and then extended to the all class, as done before with the
class of predictable processes. Moreover, it is usually used the smaller notation H(t, z).

Remark 2.11. The integral with respect to dNs(A), A ∈ E , is defined as:∫ ∞

0

∫
A

Csµ(ds× dz) =

∫ ∞

0

CsdNs(A) =

∫ ∞

0

Csλs(A)ds. (2.17)

Theorem 2.5 (Projection theorem). Let µ(dt × dz) be an E-marked point process with
the (P,Ft)-intensity kernel λt(dz). Then, for each non-negative Ft-predictable E-marked
process H:

E

[ ∫ ∞

0

∫
E

H(s, z)µ(ds× dz)

]
= E

[ ∫ ∞

0

∫
E

H(s, z)λs(dz)ds

]
(2.18)

Proof. The proof is done on the class of generators of H(t, z) and then the result is
straightforwardly extended to the all class of the E-indexed processes.
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Let be H(t, z) = IA(z)Ct, A ∈ E .

E

[ ∫ ∞

0

∫
E

H(s, z)µ(ds× dz)

]
= E

[ ∫ ∞

0

∫
A

Csµ(ds× dz)

]
= E

[ ∫ ∞

0

Csλs(A)ds

]
In the last equation it has been used the definition (2.17). Now the following computations
leads to the statement:

E

[ ∫ ∞

0

Csλs(A)ds

]
= E

[ ∫ ∞

0

∫
E

CsIA(z)λs(dz)ds

]
= E

[ ∫ ∞

0

∫
E

H(s, z)λs(dz)ds

]
.

Remark 2.12. λs(dz)ds = ν(ds× dz) is called dual projection measure.

Corollary 2.3 (Integration theorem). Let µ(dt × dz) be a E-marked point process with
the (P,Ft)-intensity kernel λt(dz). Let H be a Ft-predictable E-indexed process such that,
∀t ≥ 0, it holds:

E

[ ∫ t

0

∫
E

|H(s, ω, z)|λs(dz)

]
< ∞;

Then, defining the compensated E-marked point process
∼
µ(ds×dz) = µ(dt×dz)−λs(dz)ds,

Mt =

∫ t

0

∫
E

H(s, ω, z)
∼
µ(ds× dz)

is a (P,Ft)-martingale.

Proof. As done before, the proof is done on the class of generators of H(t, z) and then
extended. By taking r < t, let define H(t, ω, z) = H ′(t, ω, z)IA(I[0,t]−I[0,r]), with A ∈ Fr

and H ′(t, ω, z) a Ft-predictable E-indexed process. Now, let consider the theorem 2.5; By
moving the quantity on the right to the left in (2.18), and collecting the terms in order
to obtain the compensated E-marked point process, one can get:

E

[ ∫ ∞

0

∫
E

H(s, ω, z)
∼
µ(ds× dz)

]
= 0;

It remains to apply the choice of the process described before:

E

[ ∫ ∞

0

∫
E

H ′(t, ω, z)IA(I[0,t] − I[0,r])
∼
µ(ds× dz)

]
= 0;
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Exploiting the indicator functions and the Fubini’s theorem, it is possible to write:

E[IA(Mt −Mr)] = 0;

This shows the martingale condition for Mt and the proof is concluded.

Definition 2.14 (Local characteristics). Let µ(dt× dz) be a E-marked point process with
(P,Ft)-intensity kernel λt(dz) of the form:

λt(dz) = λtΦt(dz) (2.19)

where λt is non-negative and Ft-predictable process and Φt(dz) is a probability density.
The pair (λt,Φt(dz)) is called (P,Ft)-local characteristics of µ(dt× dz);

Remark 2.13. Φt(E) = 1, therefore λt = λt(E) is the (P,Ft)-intensity of the underlying
counting process Nt. Moreover, it can be useful to notice that the following writing holds:

Φt(dz) =
λt(dz)

λt

;

The notions developed will be useful in the sequel in order to deal with the dynamic risk
models. In particular, the tools of calculus which manage marked point processes will be
exploited for the computations of many quantities related to the loss process.
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3| Premiums in dynamical

context

The chapter contains some proposals to model the surplus of an insurance portfolio, using
the theory of jump processes developed in chapter 2. In particular, the treatment is based
on the Cramér-Lundberg model, which represents a standard choice in literature (see for
instance [4] for the study of the non-ruin probability of a portfolio), and it is focused
on the estimation of a "fair" premium rate, extending the principles explained in the
first chapter to the dynamical context. Then, for each principle proposed, it follows a
discussion of its properties.

3.1. The Cramér-Lundberg model

The Cramér-Lundberg model is a risk model in which the claims have a compound Poisson
distribution, and it is one of the simpler choice to deal with an insurance portfolio in a
continuous time framework. Part of the results contained in this section follows the
treatment of [20], chapter 5.

The surplus of an insurance portfolio is, according to the model:

Rt = R0 + ct−
Nt∑
n=1

Zn (3.1)

in which:

• R0 represents the starting value of the portfolio, and it is obviously non-negative.

• c > 0 is the premium rate, namely the model assumes that the premium income
is continuous over time, and, therefore, proportional in any time interval to the
interval length.

•
∑Nt

n=1 Zn is a compound Poisson as in definition 2.11. Since the sequence of {Zn}
represent the claims, they must have positive support.
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Many drawbacks of the model arises immediately by looking at its hypotheses; first of
all it does not seem reasonable that the claims can arrive with an intensity constant
along time. Indeed, many events can present clustering behaviours or seasonality, such
as car accidents, that could happen with an higher frequency during periods with bad
weather conditions. Moreover, the independence between the counting process Nt and
the risks {Zn} is a strong hypothesis which could be unjustified in many situations of real
world, again, considering the insurance contracts on car accidents, a catastrophic event
like a flood will affect at the same time the intensity of the Poisson process and the size
of the claims, therefore the two quantities cannot be considered independent. However,
the model presents also many advantages due to its simplicity, indeed, it is possible to
compute easily the mean and the variance of Rt.

Lemma 3.1. The mean and the variance of the process Rt are:

E[Rt] = R0 + ct− λtE[Z]; (3.2)

V ar(Rt) = λtE[Z2]; (3.3)

Proof. Before starting with the actual proof, it can be useful to do two important remarks
which will be applied during the development of the computations; first of all, let recall
this standard result of calculus about the exponential series:

∞∑
n=0

xn

n!
= ex.

Then:

E

[ Nt∑
n=0

Zn

]
= E

[ ∞∑
n=0

n∑
i=0

ZiI(Nt=n)

]
=

∞∑
n=0

n∑
i=0

E[Zi]E[I(Nt=n)]

=
∞∑
n=0

ne−λt (λt)
n

n!
Zn

= λtZn

∞∑
n=1

e−λt (λt)
(n−1)

n− 1!

= λtZn;

Moreover, in order to perform the computation of the variance, it will be useful the
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following:

E

[ Nt∑
n=0

Z2
n

]
= E

[ ∞∑
n=0

n2∑
i=0

Z2
i I(Nt=n)

]
=

∞∑
n=0

n2e−λt (λt)
n

n!
Z2

n

=
∞∑
n=0

[n(n− 1) + n]e−λt (λt)
n

n!
Z2

n

= λtZ2
n + (λt)2Z2

n

∞∑
n=2

e−λt (λt)
n−2

(n− 2)!

= (λt)2Z2
n + λtZ2

n;

Furthermore, since the {Zn} are i.i.d., by supposing that the number Nt is known, then

Nt∑
n ̸=m

ZnZm =
Nt(Nt − 1)

2
ZnZm;

Exploiting the knowledge of these quantities, the first and second moment of the Cramér-
Lundberg model can be easily computed:

1. Mean:

E[Rt] = R0 + ct− E[
Nt∑
n=1

Zn]

= R0 + ct− E[E[
Nt∑
n=1

Zn|Nt = n]]

= R0 + ct− E[λtZn]

= R0 + ct− λtE[Z];

2. Variance:

V ar(Rt) = V ar(
Nt∑
n=1

Zn)

= E

[
(

Nt∑
n=1

Zn)
2

]
− λ2t2E2[Z];

Let consider the second moment of the Compound Poisson; the following computa-
tions are performed taking into account that, by hypotheses, Zn and Zm with n ̸= m
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are independent and identically distributed, and, exploiting the observations above:

E

[
(

Nt∑
n=1

Zn)
2

]
= E

[ Nt∑
n=1

Z2
n + 2

Nt∑
n̸=m

ZnZm

]

= E

[
E[

Nt∑
n=1

Z2
n + 2

Nt∑
n̸=m

ZnZm|Nt = n]

]
= E

[
λtE[Z2

n] + 2
(λt)2 − λt+ λt

2
E[ZnZm]

]
= λtE[Z2] + λ2t2E2[Z];

Putting this result into the original equation:

V ar(Rt) = E

[
(

Nt∑
n=1

Zn)
2

]
− λ2t2E2[Zn]

= λtE[Z2
n] + λ2t2E2[Zn]− λ2t2E2[Zn]

= λtE[Z2];

Remark 3.1. Since the model is characterized by a marked point process, it is possible to
define it by specifying its local characteristics. Because of the simplicity of the compound
Poisson, recognize its local characteristics is intuitive and straightforward, indeed, the
terms in (2.19) become:

λt = λ,

Φt(dz) = F (dz)
(3.4)

in which f(dz) is the distribution of the random variables Zn.

This statement is proved as follows:

Let consider a generic Ft-predictable E-indexed process, with ν(ds, dz) the dual projection
measure of the Cramér-Lundberg model. Then, indicating as usual with {τn} the jump
times sequence: ∫ t

0

∫
E

H(t, z)ν(ds, dz) =
∑
n≥1

H(τn, Zn)I(Zn∈E)I(τn≤t).

According to the standard procedure, the proof is done on the class of generators of
H(t, z). In particular, let be H(t, z) = CtIA(Zn), for an arbitrary A ∈ E and Ct an
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Ft-predictable process. The following chain of equation holds:

E

[ ∫ t

0

∫ ∞

0

H(t, z)ν(ds, dz)

]
= E

[ ∫ t

0

∫ ∞

0

CtIA(Zn)ν(ds, dz)

]
= E

[∑
n≥1

CτnIA(Zn)IE(Zn)Iτn≤∞

]
=

∑
n≥1

E[CτnIτn<∞]E[IA(Zn)]

= Fz(A)E

[ ∫ ∞

0

CτnIτn<∞

]
= Fz(A)E

[ ∫ ∞

0

CtdNs

]
= E

[ ∫ t

0

∫ ∞

0

CtIAλF (z)dzds

]
;

This proves that the dual projection measure can be decomposed in the local character-
istics mentioned before, indeed it was obtained:

E

[ ∫ t

0

∫ ∞

0

H(t, z)ν(ds, dz)

]
= E

[ ∫ t

0

∫ ∞

0

H(t, z)λF (z)dsdz

]
(3.5)

Exploiting this alternative definition, it can be computed the mean of the loss in a different
way. Indeed, imposing H(t, z) = z, it follows:

E[Lt] = E

[ ∫ t

0

∫ ∞

0

zν(ds, dz)

]
= E

[ ∫ t

0

∫ ∞

0

zλf(dz)ds

]
= λE

[ ∫ t

0

∫ ∞

0

zf(dz)

]
= λE

[
E[Z]

∫ t

0

ds

]
= λtE[Z].

The knowledge of mean and variance of the process suggests to look for an extension
of the premium principles discussed in the chapter 1 suitable for the Cramér-Lundberg
model.
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Figure 3.1: Simulated paths of a Cramér-Lundberg portfolio with net premium rate, time
horizon T = 1, intensity λ = 2,R0 = 100. In the exponential case, the parameter is
−
λ = 0.2, in the Pareto one the parameters are α = 1.2,β = 0.8.

Estimation of the premium rate

The model does not provide any information about a reasonable value that c should
assume in order to be a "fair" premium rate. Inspired by the premium principles adopted
in a static context, it is possible to define a correspondent premium rate in the dynamic
case. First of all, easing the notation, let define the loss of the portfolio as Lt =

∑Nt

n=1 Zn.
Moreover, it is important to notice that all the properties of the premium principles
already presented must be extended for stochastic processes, therefore they must hold
∀t ≥ 0 fixed. However, the property of continuity seems to have no meaning in the
Cramér-Lundberg model, as shown in the following remark:

Remark 3.2. Let consider two different portfolios:

Rt = Ro + ct+
Nt∑
n=1

Zn

∼
Rt = Ro +

∼
ct+ (

Nt∑
n=1

Zn − d) =
∼
R0 +

∼
ct+

Nt∑
n=1

Zn,

with
∼
R0 = R0 + d;
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By considering c = H(Lt), in which H is an suitable functional, it does not make sense the
study of the behaviour of limd→0+ H((Lt − d)+), since, as one can notice above, reducing
the loss of a fixed quantity corresponds to a translation of the starting value, which usually
has no importance in the computation of the premium rate, and therefore c =

∼
c = H(Lt).

Indeed, if R0 contributes to c, the property of conditional state dependence is denied.
However, a more reasonable extension of the property could be:

If d ≥ 0, then :

lim
d→0+

H

( Nt∑
n=1

(Zn − d)+

)
= H(Lt)

lim
d→∞

H

( Nt∑
n=1

min(Zn, d)

)
= H(Lt).

(3.6)

3.1.1. Net premium and expected value premium

These two premium principles can be extended by imposing:

ct = (1 + θ)E[Lt] ⇒ c = (1 + θ)λE[Z]

As usual, the net premium is a trivial case in which θ = 0.

It is interesting to notice how the properties change with respect to the static case.
Indeed, even though this particular choice for c is the simplest possible, one can notice
that, for the expected value premium, the property of max loss now holds. In order to
make the treatment not too heavy, just the properties considered not trivial are discussed.
Moreover, for extending the definition of monotonicity for the losses, and thus for two
compound Poisson, it is important to do the following observations:

Remark 3.3. A natural way to extend the concept of monotonicity to (3.1) is:

c ≤ ∼
c if Lt(ω) ≤

∼
Lt(ω) ∀ω ∈ Ω, ∀t ≥ 0. (3.7)

It is possible to distinguish five cases:

1.
∼
Nt(ω) ≥ Nt(ω) ∀ω ∈ Ω, ∀t ≥ 0 and Z =

∼
Z a.s.;

2.
∼
Nt(ω) = Nt(ω) and Z(ω) ≤

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

3.
∼
Nt(ω) ≥ Nt(ω) and Z(ω) <

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

4.
∼
Nt(ω) ≤ Nt(ω) and Z(ω) >

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;
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5.
∼
Nt(ω) > Nt(ω) and Z(ω) >

∼
Z(ω ∈ Ω, ∀t ≥ 0;

• Monotonicity:

The main case of interest in order to define an ordering between two Poisson pro-

cesses is when the greater
∼
Nt is built starting from the smaller Nt as

∼
Nt = Nt +

−
Nt,

with Nt,
−
Nt independent.The third and fourth cases are not possible in order to have

an ordering between the two losses. Let consider the following counterexample:

Let suppose the usual probability space (Ω,F , P ) endowed of a filtration Ft in which

are defined two Poisson process Nt and
∼
Nt = Nt +

−
Nt and two random variables

such that Z = 3 a.s. and
∼
Z = 1 a.s. It exists an ∼

ω with P (
∼
ω) > 0 such that Nt = 2

and
−
Nt = 1 at a given time t > 0, indeed:

P (Nt = 2,
−
Nt = 1) =

e−λt(λt)2

2
e−

−
λt

−
λt > 0;

In this particular case Lt = 6 and
∼
Lt = 3. This shows that monotonicity cannot be

defined in the third case. Similar counterexamples can be constructed for the fourth
one, leading to states that:

Lt(ω) ≤
∼
Lt(ω) ∀ω ∈ Ω, ∀t ≥ 0 ⇐⇒

Nt(ω) ≤
∼
Nt(ω) and Z(ω) ≤

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

(3.8)

In the first case, indeed, it is sufficient to observe that, since
∼
λ ≥ λ, then:

c = (1 + θ)λE[Z] ≤ (1 + θ)
∼
λE[Z] =

∼
c.

In the second case, since the counting process is the same for both the two losses,
the proof follows straightforwardly:

c = (1 + θ)λE[Z] ≤ (1 + θ)λE[
∼
Z] =

∼
c;

Finally, since the property holds in the first two possibilities, a fortiori the property
holds for the last case.

• Unjustified risk loading: Also for this request it is necessary to write an extension
suitable for the compound Poisson which is well-formulated. Indeed it seems not
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reasonable to impose the loss equal to a constant. However, it can be interesting
to analyze the case in which the jump size is constant, imposing that in which case
the premium rate should be equal to the average number of jumps multiplied for
the magnitude of them. Therefore:

If Zn = k a.s., then c = λk;

Trivially, this is verified only for the net premium.

• Maximal loss: This property holds trivially since:

c = (1 + θ)λE[Z] ≤ ess supLt = ∞ for t > 0;

• Preserving FSD:

By exploiting theorem 1.2, since monotonicity holds ∀t and conditional state depen-
dence is verified, this property holds true ∀t;

The proves of all the other properties are similar to the ones in the static case, except for
the fact that now they hold for each t ≥ 0 fixed. Eventually, it can be interesting to do
the following observation;

Remark 3.4. By adopting the net premium principle for c, the process Rt enjoys the
martingale property, indeed, the term ct−Lt can be interpreted as a compensated version
of the compound Poisson. The following equations show the result:

E

[ Nt∑
n=1

Zn|Fs

]
= E

[ Nt∑
n=1

Zn −
Ns∑
n=1

Zn +
Ns∑
n=1

Zn|Fs

]

= E

[Nt−Ns∑
n=1

Zn|Fs

]
+

Ns∑
n=1

Zn

= λ(t− s)E[Z] +
Ns∑
n=1

Zn.
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Thus:

E[Rt|Fs] = R0 + λtE[Zn]− E

[ Nt∑
n=1

Zn|Fs

]

= R0 + λtE[Z]− λ(t− s)E[Z]−
Ns∑
n=1

Zn

= R0 + λsE[Z]−
Ns∑
n=1

Zn

= Rs.

3.1.2. Variance premium and Standard deviation premium

The variance principle can be generalized as:

ct = E[Lt] + αV ar(Lt) =⇒ c = λE[Z] + αλE[Z2];

Instead, the standard deviation one:

ct = E[Lt] + α
√

V ar(Lt) =⇒ c = λE[Z] + α

√
λ

t
E[Z2];

By taking as a choice for the premium rate one of these two functionals, and trying to check
if the properties valid in the static context are preserved, one can obtain many surprising
results. Indeed, not only all the properties before true keep holding, but, moreover, many
others now holds. As done for the expected value premium, only the properties considered
not trivial will be shown, moreover the reasoning proposed are valid for both the premium
principles if not specified.

• Monotonicity: In the static case this does not hold since the variance does not
preserve monotonicity, however, the variance of the compound Poisson is equal to
a constant that multiply the second moment of the variable which represents the
jump size. Since these variables are for definition non-negative and the expected
value operator preserves monotonicity, then the variance and standard deviation
premium principles are monotonic themselves.

• Unjustified risk loading: Recalling the considerations done in the discussion
of the expected value premium principle, one can notice that this does not hold
for both the two principles. However, by taking a time horizon much large, the
standard deviation premium provides a rate which is similar to the net one, anyway
in practical situations it is not reasonable to study the state of the premium rate
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for t → ∞, therefore, in general the property is not valid.

• No additivity: Let consider the following computations, with two different losses
Lt,

∼
Lt:

V ar(Lt +
∼
Lt) = V ar

( Nt∑
n=1

Zn +

∼
Nt∑

m=1

∼
Zm

)

= V ar

( Nt∑
n=1

Zn

)
+ V ar

( ∼
Nt∑

m=1

∼
Zm

)
+ 2Cov

( Nt∑
n=1

Zn,

∼
Nt∑

m=1

∼
Zm

)
.

Now let focus on the covariance term, exploiting the same technique used for the
computation of mean and variance of the Cramér-Lundberg model:

Cov

( Nt∑
n=1

Zn,

∼
Nt∑

m=1

∼
Zm

)
= E

[
E[(

Nt∑
n=1

Zn)(

∼
Nt∑

m=1

∼
Zm)|Nt = n,

∼
Nt =

∼
n]

]
− λ

∼
λt2E[Z]E[

∼
Z]

= λ
∼
λt2E[Z

∼
Z]− λ

∼
λt2E[Z]E[

∼
Z]

= λ
∼
λt2Cov(Z,

∼
Z)

Putting it into the starting equation:

V ar(Lt +
∼
Lt) = V ar

( Nt∑
n=1

Zn

)
+ V ar

( ∼
Nt∑

m=1

∼
Zm

)
+ 2λ

∼
λt2Cov(Z,

∼
Z).

It is obvious that additivity can be guaranteed only by adding a condition for which
all the covariance contributes between the two losses are null. This proves the
additivity for independent risks, for the variance premium principle, the standard
deviation one does not enjoy the property for the same reasons of the static case.
Subadditivity and superadditivity do not hold since the covariances can be both
positive and negative, eventually the comonotonic additivity does not hold in fact,
for the theorem 1.1, it is known that comonotonicity implies positive covariance.

• Max loss: The same reasoning done in the case of the expected value principle
applies also in this case.

• Preserving FSD and Stop-loss ordering: The result obtained about the mono-
tonicity allows to exploit the theorem 1.2, therefore the premiums preserve FSD.
Moreover, it is known (see for instance [14] for further details), that the FSD order-
ing implies the stop-loss ordering, therefore, also this property is valid.
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The other properties keep the same behaviour of the static context and their proves or
counterexamples can be applied in the same way by fixing t, ∀t ≥ 0.

Remark 3.5. Recalling the treatment presented in section 1.3, one can notice that, in
the Cramér-Lundberg model, all the premium principles presented can be interpreted as
monetary risk measure, since the property of monotonicity implies that the deviation
measure part of the principle is null ∀t.

Table of properties

Here the table resuming the properties of the principles in the Cramér-Lundberg model,
the numbering is the same of the chapter 1:

Properties 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Net pp Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Expected value pp Y Y Y Y Y N Y N Y Y Y Y Y Y Y
Variance pp Y Y N Y Y N Y Y N N N N Y Y Y
Std pp Y Y N Y Y N Y Y Y N N N N Y Y
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As seen in chapter 3, the model (3.1) presents many drawbacks which does not properly
match reality, such as the constant intensity for the claims arrival. A possible extension
which improve the Cramér-Lundberg model, dealing with the aforementioned issue, is the
introduction of a Hawkes as counting process instead of the Poisson one. This means
using a time-dependent intensity which grows up with the occurrence of events, for this
reason Hawkes processes are also called "self-exciting" processes. This chapter develops
some theory about one-dimensional Hawkes processes, then it presents a new risk model
and some proposal about the computation of the premium rate. The first work which
introduced self-exciting processes was [12], many proposals to extend their applications
in finance and insurance frameworks are contained also in [13] and [21]. Moreover, some
of the theoretical results presented here are treated also in [17], [7] and [22].

4.1. Review of theory

A Hawkes process is a point process with self-exciting property, which allows to model
clustering effects in the sequence of arrivals into a system. Let consider a probability
space (Ω,F , P ) endowed with a filtration Ft.

Definition 4.1 (Conditional intensity function). Consider a counting process Nt with an
associated filtration Ft for t ≥ 0. If a non-negative function λ∗

t exists such that

λ∗
t = lim

h→0

E[Nt+h −Nt|Ft]

h
(4.1)

it is called conditional intensity function for the process Nt

According to the theory developed in chapter 2, it is possible, exploiting the fact that λ∗
t

is the conditional intensity of Nt, to define the compensator of the point process with the
usual quantity:
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Λt =

∫ t

0

λ∗
sds

The definition of Hawkes process, based on (4.1), is the following:

Definition 4.2 (Hawkes process). A counting process Nt, with the associated filtration
Ft, that satisfy:

P (Nt+h −Nt = m|Ft) =


λ∗
th+ o(h),m = 1

o(h),m > 1

1− λ∗
th+ o(h),m = 0

(4.2)

Suppose, moreover, the process conditional intensity function is of the form:

λ∗
t = λ+

∫ t

−∞
µ(t− s)dNs (4.3)

for some λ > 0 and µ : (0,∞) −→ [0,∞). Such a process Nt is a Hawkes process and
µ(t) is called excitation function.

Remark 4.1. By setting the function µ(t) = 0 ∀t ≥ 0, one can obtain the trivial case of a
Poisson process.

Remark 4.2. The integral in (4.3) can be rewritten according to (2.14), therefore:

∫ t

−∞
µ(s)dNs =

∑
n≥1

µ(Tn)I(Tn≤t)

The choice of the function µ(t) may lead to an explosive process, therefore it is necessary
a supplementary hypothesis which guarantees to avoid this event.

Lemma 4.1. The stationarity condition:

m =

∫ ∞

0

µ(s)ds < 1 (4.4)

is sufficient for non-explosivity.

Proof. Let consider the condition of non-explosivity for the Hawkes process with intensity
(4.3):
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E

[ ∫ t

0

λ∗
sds

]
< +∞

It is possible to apply the Fubini’s theorem, since the conditional intensity function is
non-negative and measurable by definition. Indeed, for (2.14), the integral with respect
to a point process is a sum of measurable random variables. Therefore, the problem can
be rewritten looking for a condition such that:

∫ t

0

E[λ∗
s]ds < +∞ (4.5)

Now let consider the mean of the conditional intensity function:

E[λ∗
t ] = λ+ E

[ ∫ t

0

µ(t− s)dNs

]
= λ+ E

[ ∫ t

0

µ(t− s)λ∗
sds

]
= λ+ µ(t) ∗ E[λ∗

t ]

In the last equivalence it was applied again the Fubini’s theorem and the definition of
convolution. Hence, it holds:

E[λ∗
t ] = λ+ µ(t) ∗ E[λ∗

t ]

This kind of equation is called in literature "Renewal equation", and it is widely treated
in literature. In particular, considering the defective case, that is the case in which the
condition (4.4) holds, it can be proved (see [1], proposition 7.4) that:

lim
t→∞

E[λ∗
t ] =

limt→∞ λ

1−m
=

λ

1−m
< +∞

This implies that (4.5) is verified, and the proof is concluded.

The definition (4.2) points out that the choice of the function µ(t) is crucial in order to
characterize the Hawkes process. There are different excitation functions used in litera-
ture, a standard one is the exponentially decaying excitation function.

Definition 4.3 (Exponentially decaying Hawkes process). A point process Nt satisfying
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(4.2) and (4.3) with excitation function of the form:

µ(t) = αe−βt (4.6)

is an exponentially decaying Hawkes process, with α, β > 0.

Remark 4.3. The condition (4.4), which avoid the explosion of the process, becomes:

∫ ∞

0

αe−βsds < 1 =⇒ α < β

By considering the choice (4.6), the conditional intensity function for the exponentially
decaying Hawkes process follows straightforwardly:

λ∗
t = λ+

∫ t

−∞
αe−βsdNs (4.7)

The quantity (4.7), given an initial condition λ∗(0) = 0, satisfies the stochastic differential
equation

dλ∗
t = β(λ− λ∗

t )dt+ αdNt (4.8)

.

Lemma 4.2. The equation (4.8) admits as unique solution

λ∗
t = λ+ e−βt(λ0 − λ) +

∫ t

0

αe−β(t−s)dNs (4.9)

Proof. Since (4.8) is linear, it seems reasonable trying to solve the equation in a similar
way to the Ornstain-Uhlenbeck case in a diffusive framework (see [3], chapter 9, for further
details), therefore, let derive the quantity λ′

t = eβtλ∗
t :

d(eβtλ∗
t ) = βeβtλ∗

tdt+ eβtdλ∗
t

= βeβtλ∗
tdt+ eβt(β(λ− λ∗

t )dt+ αdNt)

Thus:

dλ′
t = eβtβλdt+ eβtαdNt
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with λ′(0) = λ0;

Integrating, one can obtain

∫ t

0

dλ′
s =

∫ t

0

eβsβλds+

∫ t

0

eβsαdNs

=⇒ eβtλ∗
t − λ0 = eβtλ− λ+

∫ t

0

eβsαdNs

=⇒ λ∗
t = e−βt(λ0 − λ) + λ+

∫ t

0

e−β(t−s)αdNs

This concludes the proof.

Remark 4.4. The solution (4.9) allows to extend the treatment to the case in which an
exponential decaying Hawkes process with parameters (λ, α, β) has already started in the
past, but it is observed starting from the time t = 0, in which its conditional intensity
function has value λ0. This writing is consistent with the definition (4.7), considering as
initial condition λ∗

−∞ = λ.

Given the conditional intensity function (4.9), it is possible to compute the mean of the
process. First of all, let consider the following lemma:

Lemma 4.3. Let Nt be a Hawkes process with conditional intensity as in (4.9). Then,
the following equations holds:

dE[Nt] = E[λt]dt (4.10)

dE[λ∗
t ] = βλdt+ (α− β)E[λ∗

t ]dt (4.11)

Proof. The equation (4.10) follows straightforwardly by considering the theorem 2.1 for
the Hawkes process, indeed:

Mt = Nt −
∫ t

0

λ∗
sds

=⇒ E[Mt] = E[Nt]−
∫ t

0

E[λ∗
s]ds

=⇒ E[Nt] = N0 +

∫ t

0

E[λ∗
s]ds

in which it was applied the Fubini’s theorem. By taking the derivative in the last equation,
the first part of the statement is proved.
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Figure 4.1: Simulated path of an exponentially decaying Hawkes process with its intensity.
The parameters are λ = 1, α = 0.4, β = 0.5 and λ0 = 1.2; The algorithm used is the one
proposed in [8].
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In order to get the equation (4.11), let consider the stochastic differential equation (4.8):

dλ∗
t = β(λ− λ∗

t )dt+ αdNt

By taking its integral form, one can obtain:

λ∗
t − λ0 =

∫ t

0

β(λ− λ∗
s) +

∫ t

0

αdNs

=⇒ E[λ∗
t ] = λ0 +

∫ t

0

E[β(λ− λ∗
s]ds+ αE

[ ∫ t

0

dNs

]
Exploiting the fact that λ∗

t is the stochastic intensity of the process, using (2.13) with
Cs = I(s<t):

E[λ∗
t ] = λ0 + βλt+ (α− β)

∫ t

0

E[λs]ds

Again, deriving, it follows (4.11), and the proof is concluded.

Theorem 4.1. Let Nt be a Hawkes process with conditional intensity as in (4.9). Then,
its mean is:

E[Nt] = N0 +
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2
+

λ0(−1 + e(α−β)t)

α− β
(4.12)

Proof. The proof is just done by solving the equations (4.11) and (4.10), considering an
appropriate initial condition; These are linear ODE of the first order, so their solution
follows straightforwardly by using standard tools of calculus. In particular, from (4.11)
with E[λ0] = λ0, one can get:

E[λt] = e(α−β)t

(
λ0 +

βλ

α− β
(1− e−(α−β)t)

)
(4.13)

Now, putting this solution into (4.10) and solving the integral, the statement is proved,
considering as initial condition E[N0] = N0.

Remark 4.5. The solution provided by the theorem above is valid in the most general
case. Considering the definition (4.7) instead of (4.9), the formula can be adapted easily
since it represents the situation in which N0 = 0 and λ0 = λ, becoming:



54 4| Hawkes processes

E[Nt] =
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2
+

λ(−1 + e(α−β)t)

α− β
(4.14)

4.2. Risk model with Compound Hawkes

Exploiting the properties of the Hawkes processes it is possible to provide a risk model
which achieve the goal of avoiding a constant intensity in the arrival of the claims, that
represents instead one of the main drawback of the Cramér-Lundberg model. Therefore,
the surplus of an insurance portfolio can be modeled as:

Rt = R0 + ct−
Nt∑
n=1

Zn (4.15)

in which:

• R0 and c > 0 have the same meaning in (3.1)

•
∑Nt

n=1 Zn = Lt represents as usual the loss of the portfolio. {Zn} is a sequence of
random variable i.i.d with positive support, while Nt is an exponentially decaying
Hawkes process, hence its self-exciting function is as in (4.6). Again, Nt and Zn are
independent ∀t ≥ 0 ∀n ∈ N.

Even though the introduction of a compound Hawkes as loss process seems to make the
model much more complicated with respect to the (3.1), the computation of its mean can
be easily done exploiting the properties of the marked point processes.

Lemma 4.4. The mean of Lt =
∑Nt

n=1 Zn is:

E[Lt] = E[Nt]E[Z]

Proof. Using the equation (3.5) with H(t, z) = z, one can obtain:
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E[Lt] = E

[ ∫ t

0

∫ +∞

0

zν(ds, dz)

]
= E

[ ∫ t

0

∫ +∞

0

zλsF (z)dsdz

]
= E

[ ∫ t

0

λs

(∫ +∞

0

zF (z)dz

)
ds

]
= E

[
E[Z]

∫ t

0

λsds

]
= E[Z]E

[ ∫ t

0

dNs

]
= E[Z]E[Nt]

Remark 4.6. In the case of study presented, considering the exponentially decaying Hawkes
process, the mean of the loss becomes:

E[Lt] =
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2
E[Z] +

λ(−1 + e(α−β)t)

α− β
E[Z]

For the sake of simplicity, in fact, it will be considered the case in which the conditional
intensity is given by (4.7).

As already done for the Cramér-Lundberg one, it is possible to extend the premium
principles valid in the static case to the model (4.15). In particular, the treatment will be
focus on the net premium principle and the expected value premium principle. Although
the new risk model is more advanced, due to the presence of the Hawkes as counting
process, it can be shown that the principles mentioned keep all the properties valid in
(3.1).

First of all, let define the premium rate according to the principles selected:

ct = (1 + θ)E[Lt]

=⇒ c = (1 + θ)

(
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2t
+

λ(−1 + e(α−β)t)

(α− β)t

)
E[Z]

(4.16)

with the net premium obtained as usual with the special case in which θ = 0. Given
the formula (4.16), an insurer has two possible approaches: the first consists in fixing a
time horizon t for covering the risks in [0, t], the second one instead is recomputing the
premium rates continuously over time. Basically, this choice means that the insurance
company recomputes the premium rates ∀t ≥ 0. Obviously this does not make sense in
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reality, but it is interesting to study the case in which the company applies a discrete
monitoring to its portfolio, changing the rate for each time interval, so updating c in tn

with ∀n = 0, ..., N − 1 covering the risks in [tn, tn+1], following the same principle with
0 = t0 < t1 < ... < tn < ... < tN = t.

The following discussion of the properties presents only the results considered not trivial:

• Conditional state dependence: This is verified since the premium rate depends
only on the distribution of the loss process.

• Monotonicity: By definition (3.7), it is possible to distinguish the same five cases of
the previous treatment for the Cramér-Lundberg model. For the reader convenience,
they will be reported here, moreover it is important to recall that the only ordering
between two counting processes considered in this work is the one in which the

greater is defined as the smaller added to another one, therefore:
∼
Nt = Nt +

−
Nt.

1.
∼
Nt(ω) ≥ Nt(ω) ∀ω ∈ Ω, ∀t ≥ 0 and Z =

∼
Z a.s.;

Since E[
∼
Lt] ≥ E[Lt], straightforwardly one can have:

c =
(1 + θ)

t
E[Lt]E[Z] ≤ (1 + θ)

t
E[

∼
Lt]E[Z] =

∼
c

2.
∼
Nt(ω) = Nt(ω) and Z(ω) ≤

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

This case is easily solved as follows:

c = (1 + θ)E[Lt]E[Zn] ≤ (1 + θ)E[Lt]E[
∼
Zn] =

∼
c;

3.
∼
Nt(ω) ≤ Nt(ω) and Z(ω) >

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

It can be shown, with a counterexample similar to the one presented with
the compound Poisson in the previous chapter, that this does not define an
ordering between the two losses.

4.
∼
Nt(ω) ≤ Nt(ω) and Z(ω) >

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

As in the third case, this does not define a valid ordering.

5.
∼
Nt(ω) > Nt(ω) and Z(ω) >

∼
Z(ω) ∀ω ∈ Ω, ∀t ≥ 0;

Trivial, since the property holds in the first two cases.
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• Continuity: Considering (3.6) it is easy to show that the property holds true if the
following equations hold:

lim
d→0+

(1 + θ)E[(Z − d)+] = (1 + θ)E[Z]

lim
d→∞

(1 + θ)E[min(X, d)] = (1 + θ)E[Z]

These were already proved in chapter one.

• Unjustified risk loading: Inspired by the extension done for the Cramér-Lundberg
model, the property becomes:

If Zn = k ∀n ∈ N, k ∈ R =⇒ ct = E[Nt]k

This is verified only for the net premium.

• Maximal loss: This one can be proved exploiting the same reasoning used for the
Cramér-Lundberg.

• Preserving FSD: The theorem 1.2 guarantees it, since conditional state depen-
dence and monotonicity holds. Moreover, this property implies that the principles
preserve also the stop-loss ordering.

Remark 4.7. The net premium principle for the risk model proposed does not make the
process Rt a martingale as in (3.1). Indeed, for t > s ≥ 0:

E[Rt|Fs] = R0 + E[Nt]E[Z]− E[
Nt∑
n=1

Zn|Fs]

= R0 + E[Nt]E[Z]− E[
Nt∑
n=1

Zn −
Ns∑
n=1

Zn +
Ns∑
n=1

Zn|Fs]

= R0 + E[Nt]E[Z]− Ls + E[
Nt−Ns∑
n=1

Zn|Fs]

= R0 + E[Nt]E[Z]− Ls − E[Nt −Ns|Fs]E[Z]

= R0 + (E[Nt]− E[Nt −Ns|Fs])E[Z]− Ls

The martingale condition is respected if (E[Nt]−E[Nt−Ns|Fs]) = E[Ns]. Unfortunately,
this equation does not hold true, since, exploiting (4.12), one can observe that:
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E[Nt −Ns|Fs] =
λβ(−1 + e(α−β)(t−s) − (α− β)(t− s))

(α− β)2
+

λ0(−1 + e(α−β)(t−s))

α− β

Remark 4.8. Since monotonicity holds ∀t ≥ 0, the treatment presented in section 1.3
guarantees that the premium rate with expected value principle can be interpreted as
monetary risk measure as well as in the Cramér-Lundberg framework.
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Figure 4.2: Simulated paths of the portfolio surplus in the risk model with Compound
Hawkes and net premium rate, time horizon T=10, the parameters of the counting process
are λ = λ0 = 1, α = 0.4, β = 0.5. The claims are exponential distributed with parameter
−
λ = 0.08. It is interesting to notice that there is a scenario in which the clustering of
events causes a default while in the other ones, in which this effect is reduced, the portfolio
surplus grows.

4.3. Estimation of the error of a Cramér-Lundberg

model in a context with clustering

Let suppose that an insurance company collects premiums considering the rate provided
by the model (3.1) with the expected value principle, but in a context in which the
loss presents clusters of events, hence the claims should be modeled with an Hawkes as
counting process. Formally, this situation is described by the following equation:
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∼
Rt = R0 +

∼
ct−

Nt∑
n=1

Zn (4.17)

with Nt exponentially decaying Hawkes process with parameters λ, α, β, and ∼
c = (1 +

θ)λE[Z]. It can be interesting to study the error committed using the rate ∼
c instead

of the "correct" one, written in (4.16). Therefore, considering the risk model (4.15), let
define the error as:

ϵt = Rt −
∼
Rt = (c− ∼

c)t

The analysis will be done from the two different points of view aforementioned: for the
first one it is fixed an infinite time horizon and then it is studied the error, thus, let be
T > 0, then:

ϵt = (1 + θ)E[Z]

(
E[NT ]

T
− λ

)
t

As one can observe, the error grows up linearly.

The second consists in keeping "t" as a variable, thus without fixing a time horizon,
therefore:

ϵt = (1 + θ)E[Z]

(
E[Nt]

t
− λ

)
t

= λ(1 + θ)E[Z]

(
β(−1 + e(α−β)t − (α− β)t)

(α− β)2t
+

λ(−1 + e(α−β)t)

(α− β)t
− 1

)
t

Studying the limits of the quantity above, it is possible to notice that:

lim
t−→0+

ϵt = lim
t−→0+

(1 + θ)λE[Z](λ− 1)t = 0

lim
t→∞

ϵt = lim
t→∞

(1 + θ)λE[Z](− β

α− β
− 1)t = +∞

Remark 4.9. The limit above shows that the error grows linearly and thus explodes with
t −→ +∞, indeed the quantity (− β

α−β
− 1) is always positive with β > α > 0, because:

− β

α− β
> 1 =⇒ α > 0
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Now, it is possible to extend the treatment to a fixed time interval [t1, t2] with t2 > t1 > 0,
considering thus the situation in which the insurance company, which uses the expected
value principle on a compound Hawkes as loss, is updating the premium rate in the instant
t1. The problem becomes the study of:

(c− ∼
c)(t2 − t1) = (1 + θ)(E[Lt2|Ft1 ]− λE[Z])(t2 − t1)

First of all, let consider the conditional expected value of the loss, the following chain of
equations holds:

E[Lt2|Ft1 ] = E[Lt2 − Lt1 + Lt1|Ft1 ]

= Lt1 + E[

Nt2−Nt1∑
n=1

|Ft1 ]

= Lt1 + E[Nt2 −Nt1|Ft1 ]E[Z]

But, exploiting (4.12):

E[Nt2 −Nt1|Ft1 ] = E[Nt2 |Ft1 ]−Nt1

=

(
β(−1 + e(α−β)(t2−t1) − (α− β)(t2 − t1))

(α− β)2
+

λ(−1 + e(α−β)(t2−t1))

(α− β)

)

Therefore:

(c− ∼
c)t2 = (1 + θ)Lt1t2+

+ λ(1 + θ)E[Z]

(
β(−1 + e(α−β)(t2−t1) − (α− β)(t2 − t1))

(α− β)2t2
+

λ(−1 + e(α−β)(t2−t1))

(α− β)t2
− 1

)
t2

Eventually, let compute as done before the following two limits:

lim
t2−→t+1

(c− ∼
c)t2 = (1 + θ)(Lt1 − λE[Z])t1

lim
t2→∞

(c− ∼
c)t2 = lim

t2→∞
(1 + θ)Lt1t2 + λE[Z](− β

α− β
− 1)t2 = +∞

As expected, with t2 −→ t+1 , the error assumes exactly the real loss accumulated until
t1 minus the premiums gained considering it as a compound Poisson, multiplied for the
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parameter (1+θ), whilst the error explodes for t2 −→ +∞ linearly, as in the first approach.

4.4. Another choice of the premium rate in the risk

model with Hawkes

In literature, in risk models with stochastic intensity λt, it is also used as possible choice
of the premium rate c a quantity proportional straightforwardly to the intensity (see [6]
for an example applied to the optimal reinsurance problem in the Hawkes framework).
Inspired by the net value principle, let consider as premium rate the following:

c = λtE[Z] (4.18)

This is justified by the fact that the stochastic intensity of the loss is correlated to its
mean and that the writing (4.18) is the one which straightforwardly adapts the net value
principle of (3.1) to more complicated models. This work, however, has already shown
that the actual mean of the loss process with stochastic intensity such as the Compound
Hawkes is a completely different quantity with respect to (4.18). Moreover, using as
estimation for c the intensity of the counting process presents some drawbacks: indeed,
it is a random variable ∀t > 0, so, doing computations and simulations can be more
expensive. Anyway, it can be shown that it is a reasonable choice in the context of the
Hawkes process. Let consider, in fact, the condition:

E[ct− Lt] ≥ 0

It becomes:

E[λtE[Z]t− Lt] = (E[λt]t− E[Nt])E[Z] ≥ 0

Exploiting (4.13) and (4.14), considering λ0 = λ, one can have:

(
te(α−β)t(λ+

βλ

α− β
(1− e−(α−β)t)− λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2
− λ(−1 + e(α−β)t)

α− β

)
E[Z] ≥ 0

Studying the derivative of this quantity, after some easy computations, one can obtain:
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d

dt
E[ct− Lt] = αte(α−β)tλE[Z] ≥ 0

This shows that the function studied is increasingly monotone. Moreover:

lim
t−→0+

E[ct− Lt] = 0

lim
t→+∞

E[ct− Lt] = − λ

α− β
E[Z] > 0

In conclusion, the principle (4.18) enjoys the desirable property of increasing on average
the portfolio surplus without exploding for large value of t.
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