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1. Introduction 

Bipolar Disorder (BD) is a chronic and disabling 

mood disorder with a lifetime prevalence of 

around 2-5%. People suffering from BD switch 

between depressive, maniac, and euthymia phases. 

However, the majority of BD patients suffer from 

depression at their first-lifetime affective episode 

and are initially misdiagnosed. Furthermore, BD 

heterogeneity has prevented the identification of 

specific neurobiological markers that could lead to 

an early, objective, and precise diagnosis of the 

disease. Structural magnetic resonance imaging 

(sMRI) data has been widely used to detect 

differences in white matter (WM) and grey matter 

(GM) morphology between HC and BD, but 

findings are fragmented.  

Increased interest in Machine Learning (ML) has 

bloomed in the psychiatric disorder research field 

due to usefulness in assisting psychiatrists with 

diagnosis and prognosis. Nevertheless, reported 

results on the accuracy of BD diagnosis through 

ML analysis have been rather polarizing, ranging 

from 54.8% to 100% perhaps due to a lack of 

methodological standards, including data 

processing methods. Besides, many criticisms have 

been raising up, concerning the lack of domain 

relevance of most “black box” models, providing 

no insight related to the pathophysiology 

mechanisms. Recently, innovative approaches 

based on Deep Learning (DL) models using 

anomaly detection methods have successfully 

attenuated this issue [1]. Up to now, autoencoder 

(AE) normative models have been successfully 

used to detect alterations in brain morphology in 

autism and schizophrenia, showing their 

remarkable potential in the search for biomarkers 

of psychiatric disorders.  

Within this context, this thesis aims to provide 

knowledge of neuroanatomical bases of BD in 

order to accurately and automatically recognize 

BD from healthy controls (HC).  We use a multisite 

dataset composed of HC and BD samples, totaling 

1163 subjects, from which we extract cortical 

thickness and volumetric regions of interest (ROI) 

features. An AE-based normative model is then 

developed in order to assess the possibility to 

automatically detect BD patients as deviating 

samples. 

To design a reliable DL model, yielding clinical 

applicability, we addressed the following issues. 

Confounding effects like age, sex, total intracranial 

volume (TIV) and non-biological site effects, e.g., 

those associated with center-specific sMRI 

parameters, must be removed from data. Finally, 

an appropriate Cross-Validation (CV) framework 
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for internal validation and an external validation 

pipeline must be employed to achieve a robust 

models’ generalization error estimation. 

2. Aim of the work 

We propose to investigate a normative approach 

for BD discrimination, by employing an AE model 

trained on HC data. A secondary objective of this 

work is to find a proper data processing pipeline, 

for which we evaluate different harmonization 

methods combined with biological covariates 

correction. 

We use the trained model to reconstruct test set 

data and the reconstruction errors between HC and 

BD to evaluate models’ discriminative 

performance. Then, we extract patterns of 

neuroanatomical deviations identified in the BD 

group and evaluate if this subset of features is 

generalizable and improves discriminative 

performance in an external independent set. We 

parallelly train an SVM model to classify BD to be 

use as baseline comparison, and we consider the 

ENIGMA study [2] results as most updated state-

of-art for BD classification comparison. 

Thus, the aims of this work are: to produce a 

successful normative model to reconstruct healthy 

brain features; to discriminate BD against HC 

using the normative model; to extract brain-feature 

abnormalities characterizing patients within the 

heterogeneous BD spectrum; to assess if BD can be 

classified by using the subset of unique relevant 

brain features instead of all brain features; assess 

any improvement in BD classification obtained 

using the normative-based approach with respect 

to the classical SVM classifier; identify the optimal 

site-effect removal pipeline to be integrated into a 

ML analysis. 

3. Methods 

MRI scans and pre-processing pipelines were 

performed in Matlab R2018a (The Mathworks, 

Inc®) environment. Data processing and ML 

pipelines, were built using Google Colaboratory  

with Python 3.7.13. 

3.1. Dataset Description 

The dataset used in this thesis work is composed of 

605 HC subjects and 558 BD patients, gathered 

from 7 centers, whose description is reported in 

Table 3.1. 

ID  Center HC BD Total 

1 AUOV 93 20 113 

2 
FSL_ 

ROME 
250 257 507 

3 JUH 111 23 134 

4 MI_POLI 26 12 38 

5 OSR 67 133 200 

6 PITTS 28 58 86 

7 UBC 30 55 85 

Table 3.1 Dataset Description. 

As reported in Table 3.2, the BD group is on 

average older than the HC group and within each 

group, there are slightly more females than male 

subjects. 

 
Training  

Set 

Test  

Set 

External 

Set 

HC 
Sex 230|289 27|31 13|15 

age 37.1±15.0 33.9±14.0 28.6±4.6 

BD 
Sex - 34|41 24|34 

age - 40.3±12.7 33.8±10.4 

*Age in years; Sex numerosity reported as: Males | Females 

Table 3.2 Dataset Demographic Description. 

3.2. MRI pre-processing 

The sMRI scans were acquired in the 7 centers 

using T1-weighted sequences on 3T RMN 

scanners. The raw MRI scans were processed using 

a gold-standard protocol. The Voxel-Based 

Morphometry (VBM) pre-processing was 

performed using the SPM12 Computational 

Anatomy Toolbox (CAT12) toolbox. The following 

GM morphological features were extracted 

through anatomical automatic labeling: 68 cortical 

thickness (CT) values from Desikan-Killiany atlas 

cortical regions and 52 GM volume (GMV) values 

from CoBra atlas subcortical regions. 

3.3. Cross-Validation Framework 

A center dataset was randomly holdout as an 

external set, PITTS center data, for an external 

validation of the neuroanatomical deviating 

features. For internal validation, the remaining 6 

centers were split with an holdout method, 

stratifying for center proportions, where the 

training set is only composed of HC samples. The 
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HC dataset was split into 90% training (519) and 

10% test  (58) sets, and the BD test set was 

composed of 15% (75) randomly selected from the 

total BD dataset (500). The analysis of 

neuroanatomical deviating features, the feature 

selection step, was performed using the BD dataset 

composed of 500 subjects. A 10-fold CV was used 

for model optimization, for which only the training 

set was used, retrieved from the splitting 

previously described. The training set 10-fold CV 

splits were stratified for center proportions. 

The best hyperparameter combination was chosen 

based on the lower mean reconstruction error, 

MSE, in the fold used for validation. Then, the 

model was retrained with the entire training set. 

3.4. Modeling Confounding 

Variables 

To correct for confounding signals encoded in the 

neuroimaging data, two separate regression 

methods were applied to control for non-biological 

site effects and biological covariates.  

• Data Harmonization 

The harmonization step should remove from data 

systematic non-biological differences from data 

that make samples not directly comparable due to 

the inter-site variability (i.e., batch effect) while 

preserving the association between data and 

biological covariates of interest. Thus, site effects 

were removed employing ComBat (Combatting 

Batch Effects) tool, an empirical Bayes framework 

[3]. Because there is no standardized approach for 

multisite data harmonization in a ML analysis, we 

specifically designed a pipeline that can be 

integrated into both internal and external ML 

validation frameworks, i.e., to only estimate effects 

in a training set and to apply them separately to a 

test set or external set. For the internal validation, 

we use the neurocombat function [4], provided in 

https://github.com/Jfortin1/ComBatHarmonizatio

n, available in the form neuroCombatFromTraining, 

for separate test set harmonization, which we have 

called the CV-ComBat option. For the external 

validation framework, we design a pipeline based 

on C. Stein et al.[5], M-ComBat function, which 

proposes to center data on a location and scale of a 

pre-determined batch reference. Thus we 

harmonize a posteriori an external set with 

neurocombat function, by setting the 

reference_batch option as the whole harmonized 

training set. We have named this approach as Ref-

ComBat option. 

CT and GMV features are harmonized separately. 

For CT features, age and sex are considered as the 

biological covariates, whereas for GMV features, 

we also include TIV. For the latter step, TIV is first 

itself harmonized with the GMV. Afterward, the 

original GMV features are harmonized considering 

age, sex, and harmonized TIV as biological 

covariates. 

• Regressing-out bio-covariates 

For the biological covariates removal we followed 

the CV method recommended in [6]. Linear 

regression is fitted to training data, considering 

each brain feature as dependent variable Y, and 

biological covariates as independent variables. We 

assume that age-related changes and inbetween 

sex differences are comparable between HC and 

BD. Data is standardized by estimating statistics in 

the training set, before the regression fit, and after 

removing the confounder effects. 

• Processing Pipelines 

We investigate four harmonization options: No 

harmonization (A), harmonizing within an internal 

validation framework, using CV-ComBat (B) and 

external validation framework using Ref-ComBat 

(C), and harmonizing the whole data set prior to 

dataset splitting (D). The 5 parallel processing 

pipelines which will be compared are then: 

1) No Data Correction (A) Pipeline  

Including correction for bio-covariates: 

2) No Harmonization (A) Pipeline 

3) Whole Dataset Harmonization (D) Pipeline  

4) Whole Dataset Harmonization (D) + External 

Set Harmonization (C) Pipeline 

5) CV-Harmonization (B+ C) Pipeline 

3.5. AE Normative Model 

• AE-based model 

The AE is composed of 5 layers, including input 

and output with 120 hidden units. Table 3.3 shows 

the chosen fixed hyperparameters. Besides, the 

output layer is composed of a linear activation 

function using a Glorot uniform parameter 

initializer. The hyperparameters which were tuned 

were: layer dimensions 2,3,4 – constraining dim 

2>dim3<dim4, L2 norm regularization technique 

(the same for all layers), and learning rate. The  

training process was allowed to stop when 

overfitting after more than 250 epochs, restoring 

the best model parameters.  

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
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AF Loss Optimizer Batch Epochs 

SELU MSE Adam 35 2000 

Table 3.3: Fixed Hyperparameters. 

• Model Evaluation 

All processing pipelines were tested with the 

following framework. The test set is passed 

through the trained model and a reconstruction 

error score is attributed to each subject, a Deviation 

Metric (DM), equal to the reconstruction MSE, 

averaging all features per subject. The group 

comparisons are performed by employing a one-

sided Mann-Whitney U (MWU) test applied to the 

DM, assuming the alternative hypothesis of BD-

DM to be greater than HC-DM (p<0.05). A ROC 

curve is carried out using the subject DM data and 

the diagnosis as the binary target variable, 1 for BD 

and 0 for HC. 

• Feature Selection 

In this step, we use all BD subjects’ dataset (n=500 

samples). Each brain regional feature is considered 

alone and its square reconstruction error calculated 

for each BD subject and for each HC subject. Then, 

the two groups are compared for each feature with 

a one-sided MWU-Test. The brain regional features 

that are found to be associated with a significant p-

value (i.e. p< 0.05) indicate that their reconstruction 

error was significantly greater in the BD group. 

The AUC-ROC curve is re-performed considering 

only this subset of features, a form of circular 

analysis, but confirms whether they improve the 

models’ discriminative power.  

• Classification 

The BD classification is performed considering the 

previous feature subset. The features are selected 

in the test set and thus must be validated in an 

external independent set. The PITTS external set is 

passed through the network and the subject DM is 

calculated, by averaging only the subset of 

features. If the feature subset is generalizable, the 

discriminative performance of the model using 

these features should be comparable between the 

test set and the external set. 

3.6. SVM model 

From the 7 centers contained in the dataset, one out 

of four is holdout as an external site set, specifically 

all data from MI_POLI, OSR, PITTS, and UNC 

sites, thus following a LOSO-CV framework, for 

which processing pipeline 1 (i.e., no data 

correction, A) and 5 (CV-Harmonization, B+C) are 

tested. Afterward, for each LOSO trial, the rest of 

the dataset, 6 centers, was split into a 70% training 

set and a 30% test set, stratifying for center 

proportions. Since data on the training set included 

both HC and BD, the diagnosis is included as a 

biological covariate in the harmonization with 

ComBat. The SVM model used was the one 

reported in the ENIGMA Study [2] which uses a 

linear kernel and parameter C=1. 

4. Results 

4.1. Model Optimization 

From the hyperparameter combinations reported 

in Table 4.1. The combination yielding the lower 

reconstruction error in the training set folds was: 

Layer 2,4=100, Layer 3=85, L2_regul=1e-4, Lr=1e-4. 

The learning rate schedule, denoted as lr_schedule 

in the table above had initial learning rate= 0.001 

and decay step= 0.9977 . 

 
Layer 

2,4 

Layer 

3 

L2 

regularizer 

Learning  

rate 

100 
80,75, 

60 

110-5,110-4, 

110-3, 0.01 

110-4, 110-3, 110-2, 

lr_schedule 

100 
85,70, 

65 

110-5,  

110-4 
110-4, lr_schedule 

80 75 
110-5,110-4, 

110-3, 0.01 

110-4, 110-3, 110-2, 

lr_schedule 

Table 4.1 Hyperparameter Grid. 

4.2. AE Normative Approach 

The results will be reported in detail for pipeline 5, 

CV Harmonization (option B +C), because we 

consider and suggest that the processing pipeline 

integrated into the CV framework is the most 

rigorous one. A summary table, reported in Table 

4.2, shows the results for all pipelines.  

The best model gave an average reconstruction 

error on the training set (i.e., only HC) of 0.0278 

and 0.0710 in the HC test set. The MWU test 

performed on BD and HC DM gave p-value=0.282 

(statistic=15172), showing BD DM was not 

significantly greater than HC DM. The AUC-ROC 

curve result, using the BD test set DM (15% of all 

BD subjects) and HC test set DM was 0.51, in the 

chance line. The models’ reconstruction error 

didn’t yield any discriminative performance in the 

test set. 

In the feature selection procedure, the regions 

found deviating significantly in the BD group 
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were: left medial orbital frontal, left superior 

parietal, left superior posterior cerebellar lobule VI, 

left hippocampus CA1, right globus pallidus, and 

right amygdale. The subject DM was again 

calculated in the test set, considering this subset of 

features, and an MWU test was performed 

resulting in a p-value=.001 and an AUC-ROC curve 

improving to 0.66. 

To assess the generalizability of the subset of 

features they are tested using the PITTS external 

set, which is passed through the model, and 

respective subject DMs are calculated, for both all 

features and in the subset of features, resulting in 

an AUC=0.58 and AUC=0.61 respectively.  

 

Pipeline 

Test Set External Set 

All 

feat. 

AUC 

Subset feat. 

AUC 

All feat. 

AUC 

Subset 

feat. 

AUC 

1 0.56 0.69 0.45 0.51 

2 0.56 0.72 0.39 0.43 

3 0.52 0.61 0.91 0.71 

4 0.50 0.63 0.45 0.54 

5 0.51 0.66 0.58 0.61 

Table 4.2: Processing Pipelines Results. 

4.3. SVM model 

The average results for the LOSO-CV analysis are 

reported in Table 4.3 in the two first rows, while 

the third represents the unique result for pipeline 5 

when the PITTS set is considered the external set. 

For the site-level analysis, the AUC-ROC curve 

ranged from 0.25 to 0.91.  

Pipeline 
Test set 

AUC 

External Set 

AUC 

1 0.6300±0.0158 0.5050±0.0918 

5 0.5350± 0.0150 0.5125±0.0621 

5(PITTS) 0.55 0.50 

Table 4.3: LOSO-CV Results. 

5. Discussion 

Regarding the AE-based normative approach, we 

can verify in pipeline 1, and pipeline 2, results that 

the model fails to generalize to the external set. The 

AUC results drop to the chance line or below-

chance line from the test set (AUC_1=0.56, 

AUC_2=0.56), to the external set (AUC_1=0.45 and 

AUC_2= 0.39). Interestingly, comparing pipelines 1 

and 2 external set AUCs the performance 

worsened in the second. Seems that removing 

biological covariates effects from non-harmonized 

data resulted in better performance in the test set 

but worst in the external set PITTS, which could be 

explained by a covariate shift in the latter set. In 

pipeline 3, WD- harmonization (D), the external set 

is harmonized outside the external validation 

framework, which breaks its independence from 

training and test set, while in pipeline 4 (option 

D+C), the external set is kept separated and 

harmonized a posteriori with ref-ComBat option. 

We verify that the good performance in the 

external set in pipeline 3 drops to chance-line in 

pipeline 4 (AUC_3=0.92, AUC_4=0.45), which 

shows how indirect data leakage could positively 

bias the results. Finally, in pipeline 5, CV-

Harmonization (option B+C), we verify a good 

generalization performance to the external set 

(AUC_test=0.51, AUC_ext=0.58), although the 

result in the test set depicts a lack of discriminative 

capability of the models’ reconstruction error. 

Besides, the latter improved AUC in the external 

set might be explained by some remaining 

heterogeneity in the test set, composed of data 

from 6 centers that were randomly split, which due 

to an average effect cancels out above-chance 

performances, while the external set data is fully 

homogeneous. Moreover, assessing the results of 

the feature subset generalization we verify that the 

circular analysis in the test set gave an AUC=0.66, 

improved from AUC=0.51, and the test in the 

external set resulted in an AUC=0.61, improved 

from AUC=0.58 using all features thus, showing 

that the feature subset was generalized to the 

external set. Comparing the normative approach 

performance for all features with our SVM model, 

for pipeline 5, we can conclude that in the test set 

they show comparable AUCs results, on chance-

line, while in the PITTS external set the normative 

approach yields better generalization performance 

(AUC_SVM=0.50, AUC_AE=0.58). Nevertheless, 

we verify that our SVM model had worst results 

than the SVM model in the ENIGMA study, which 

reported a LOSO-CV AUC=60.92 compared to our 

AUC=53.00, and a site-level analysis with an AUC 

ranging from 40.00 to 71.00, while we achieved 

AUC ranging from 25.00 to 91.00 [2]. The key 

methodological differences that might have 

hampered the performance of the SVM model in 

our analysis concern mainly the data numerosity. 
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Finally, performing a recall-precision curve with 

the external set subject’s DM for the feature subset, 

in pipeline 5, we extract the optimal result, yielding 

a recall of 0.40 and a precision of 0.85. Since the 

average psychiatrist's sensitivity (also called recall) 

in diagnosing BD is estimated at 31%, we argue 

that the normative approach yields promising 

results. 

6. Conclusions 

We had proposed to investigate different 

processing pipelines and normative approach 

performance for BD discrimination. Regarding the 

first, we can conclude that the CV-Harmonization 

(option B+C), used in pipeline 5, was effective in 

harmonizing data and is the most rigorous option 

to use, as it can be integrated into both internal and 

external validation frameworks. Using the latter 

option, we verify the best generalization results to 

the external set. We conclude that harmonizing 

data helps improve models’ generalization 

capability while not doing so leads the model to 

have good performances in an internal validation 

framework (test set) but failing to generalize to an 

external set (pipelines 1 and 2). We also show the 

dangers of performing data processing steps 

outside the validation frameworks in an ML 

analysis, by the performance in pipeline 3 and 

consequent drop in pipeline 4. Finally, we can 

conclude that our proposed methodological 

approach for BD classification yields promising 

results, as the neuroanatomical deviating features 

selected in the test set were generalizable to the 

external set. Nevertheless, future development of 

this work would be to perform a LOSO-CV and a 

nested 10-fold CV for the AE-based model, to have 

results yielding higher statistical power in the 

normative approach. We also conclude that the 

model was not able to discriminate BD when 

considering all features. The latter could be a 

consequence of the heterogeneity of BD, deeming 

the anomaly detection approach inappropriate to 

detect BD.  However, it could also be a 

consequence of a poor optimization strategy, since 

minimizing reconstruction error does not 

necessarily lead to maximizing anomaly detection 

performance. In fact, our normative model yields 

good reconstruction performances for both HC 

and BD. Future development would be to explore 

improved optimization strategies to achieve better 

discrimination based on the reconstruction error. 
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