
A depth-integrated model
for debris flow propagation
by adopting SPH method

M.Sc. Thesis of
Seyed Ali Mousavi Tayebi

Supervisor:
Dr. Andrea Galli

Co-supervisor:
Dr. Manuel Pastor Pérez

Programme:
Civil Engineering for Risk Mitigation

School of Civil, Environmental and
Land Management Engineering
Politecnico di Milano





Seyed Ali Mousavi Tayebi
A depth-integrated model for debris flow propagation by adopting SPH method
2023





Contents
List of Figures 7

Abstract 9

Sommario 11

Acknowledgments 13

1 Introduction 15
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3 Types and Classification . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.4 Fluid phase and consolidation . . . . . . . . . . . . . . . . . . . . 19

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 Scope of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Mathematical and Numerical Modeling 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Interaction laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.6 Some useful simplifications: . . . . . . . . . . . . . . . . . . . . . . 33
2.2.7 Integration along depth . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.8 Pore pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.9 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.1 Proposed SPH model . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Pore pressure modeling . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Rheological Model 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5



Contents

3.2 The simple shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Bingham fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Voellmy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 Influence of viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.3 Influence of yield stress . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.4 Influence of friction angle . . . . . . . . . . . . . . . . . . . . . . . 56

4 Two-Phase Model 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Dewatering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 A dam break problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Influence of pore-water pressure . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Influence of elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Influence of permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Basal Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Influence of screen on different permeabilities . . . . . . . . . . . . . . . 65

5 Application to a real case 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Bed entrainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Back analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Bottom drainage screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Some considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 81

6



List of Figures
1.1 Tessina Valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 San Martino Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Landslide susceptibility map . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Yu Tung debris flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Rock avalanche on Lecco-Ballabio road . . . . . . . . . . . . . . . . . . . . 21
1.6 Mudflow in Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Debris flow in Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.8 Debris flow Damage in Varena, Italy . . . . . . . . . . . . . . . . . . . . . 24
1.9 Research Methodology Workflow . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Two-phase scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Reference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Definition of auxiliary variables hs and hw. . . . . . . . . . . . . . . . . . 35
2.4 Deformation of a soil column. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 SPH nodes with FD meshes at solid nodes. . . . . . . . . . . . . . . . . . 43

3.1 Simple shear infinite landslide . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Simple shear infinite landslide diagrams . . . . . . . . . . . . . . . . . . . 48
3.3 Rheological laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Flow structure of a Bingham fluid . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Initial configuration of the dam break problem. . . . . . . . . . . . . . . . 53
3.6 Displacement-time graph Newtonian . . . . . . . . . . . . . . . . . . . . . 53
3.7 Velocity-time graph Newtonian . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Profile Newtonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.9 Displacement-time graph Bingham . . . . . . . . . . . . . . . . . . . . . . 55
3.10 Velocity-time graph Bingham . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11 Profile Bingham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.12 Displacement-time graph Voellmy . . . . . . . . . . . . . . . . . . . . . . 56
3.13 Velocity-time graph Voellmy . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.14 Profile Voellmy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Definition of components in partially saturated case . . . . . . . . . . . . 60
4.2 Pore-water pressure distribution in two-phase mixture . . . . . . . . . . 61
4.3 Initial configuration of the dam break problem. . . . . . . . . . . . . . . . 61
4.4 Influence of pore-water pressure . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Influence of elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Influence of permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Influence of permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7



List of Figures

4.8 Influence of screen on total pore pressure . . . . . . . . . . . . . . . . . . 65
4.9 Influence of screen on runout . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.10 Influence of screen on different permeabilities . . . . . . . . . . . . . . . 66
4.11 The profiles of the propagation heights . . . . . . . . . . . . . . . . . . . 67
4.12 The profiles of the excess pore-water pressure . . . . . . . . . . . . . . . . 69

5.1 debris flows in Favazzina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Debris flow deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Debris flow evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Location of the screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Screens’ location and their corresponding runout . . . . . . . . . . . . . . 77
5.6 Specified checkpoint to record data . . . . . . . . . . . . . . . . . . . . . . 78

8



Abstract
Debris flows are complex natural phenomena that cause significant economic damage
and casualties in mountainous regions and along rivers. Accurate and efficient debris
flow analysis is crucial for assessing risks and identifying vulnerable areas that require
mitigation measures. This study presents an advanced numerical modeling approach
to simulate debris flows, focusing on the integration of excess pore-water pressure for
a better analysis.

The proposed model implements a two-phase model and provides evolution of
excess pore pressure. The mathematical approach is a depth integrated model, which
can reproduce debris flow propagation with soil permeability ranging from high to
low. The equations are discretized using the Smooth Particle Hydrodynamic (SPH)
technique, featuring a double set of nodes for solid and fluid particles.

The SPH depth integrated model is a 2D model capable of predicting runout distance,
flow velocity, deposition pattern, and final volume of debris flows. It is based on
a coupled depth integrated model derived from a velocity-pressure version of Biot-
Zienkiewicz equations, and uses constitutive or rheological models such as the frictional
and Bingham models to simulate debris flows. A case study validated the model
through back-analysis.

The performance and limitations of the proposed model are assessed using bench-
mark exercises, including dam break problems and real-case scenarios with reliable
information. The validation analysis demonstrates that the model can accurately re-
produce debris flow propagation velocity, runout distance, and deposit thickness, and
effectively model the time-space evolution of excess pore-water pressures throughout
the propagation stage.

In conclusion, the advanced numerical modeling approach presented in this study
offers significant improvements in debris flow analysis, specifically by integrating more
precise excess pore-water pressure description as well as providing erosion simulation.
This enhanced model can help decision-makers and practitioners in assessing and
managing risks associated with debris flows, ultimately contributing to the protection
of lives and infrastructure in vulnerable areas.
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Sommario
Le colate di detriti sono fenomeni naturali complessi che causano ingenti danni eco-
nomici e vittime nelle regioni montuose e lungo i fiumi. Un’analisi accurata ed effi-
ciente delle colate di detriti è fondamentale per valutare i rischi e individuare le aree
vulnerabili che richiedono misure di mitigazione. Questo studio presenta un avanzato
approccio di modellazione numerica per simulare le colate di detriti, concentrandosi
sull’integrazione della pressione interstiziale in eccesso per una migliore analisi.

Il modello proposto implementa un modello a due fasi e fornisce l’evoluzione della
pressione interstiziale in eccesso. L’approccio matematico è un modello integrato in
profondità, in grado di riprodurre la propagazione delle colate di detriti con perme-
abilità del suolo che varia da alta a bassa. Le equazioni sono discretizzate utilizzando
la tecnica Smooth Particle Hydrodynamic (SPH), caratterizzata da un doppio insieme
di nodi per particelle solide e fluide.

Il modello SPH integrato in profondità è un modello 2D in grado di prevedere la
distanza di esaurimento, la velocità del flusso, il modello di deposizione e il volume
finale delle colate di detriti. Si basa su un modello integrato in profondità accoppiato
derivato da una versione di velocità-pressione delle equazioni di Biot-Zienkiewicz
e utilizza modelli costitutivi o reologici come i modelli frizionali e di Bingham per
simulare le colate di detriti. Un caso di studio ha validato il modello attraverso un’analisi
retrospettiva.

Le prestazioni e i limiti del modello proposto sono valutati utilizzando esercizi di
riferimento, tra cui problemi di rottura di dighe e scenari reali con informazioni affid-
abili. L’analisi di validazione dimostra che il modello può riprodurre con precisione la
velocità di propagazione delle colate di detriti, la distanza di esaurimento e lo spessore
del deposito, e modellare efficacemente l’evoluzione spazio-temporale delle pressioni
interstiziali in eccesso durante la fase di propagazione.

In conclusione, l’avanzato approccio di modellazione numerica presentato in questo
studio offre miglioramenti significativi nell’analisi delle colate di detriti, in partico-
lare integrando una descrizione più precisa della pressione interstiziale in eccesso e
fornendo una simulazione dell’erosione. Questo modello migliorato può aiutare i re-
sponsabili delle decisioni e i professionisti nella valutazione e nella gestione dei rischi
associati alle colate di detriti, contribuendo in ultima analisi alla protezione delle vite e
delle infrastrutture nelle aree vulnerabili.
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1 Introduction

1.1 Background
A landslide, also referred to as a landslip, is a hazardous event which puts together
various types of ground instability, like rockfalls, deep slope failures, and shallow
debris flows. These can take place in offshore, coastal, or onshore settings. While
gravity is the primary cause of a landslide, other elements also play a role in impacting
the initial stability of the slope.

Normally, pre-existing factors lead to certain sub-surface conditions that make the
area or slope susceptible to failure. The actual landslide, however, usually requires a
trigger to start it. The stages of landslide events can be broken down into three parts
(fig. 1.1):

1. Initiation: In this phase the initial mass is released.

2. Propagation: In this phase the mass flows along the travel path.

3. Deposition: In this phase the mass stops and is deposited on a colluvial fan [17].

Figure 1.1: Landslide of Tessina Valley on the Bellunese edge of the Alps (1960)
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1 Introduction

1.1.1 Initiation
The initiation of landslides holds significant relevance as the magnitude of such events
hinges on the volume set in motion. Landslides are usually caused by slope instability,
but one or more triggering factors can usually be identified as:

• Geological: Sheared materials, permeability contrasts, jointed or fissured mate-
rials, earthquakes, etc.

• Morphological: Slope angle, erosion, slope loading, etc.

• Physical: Heavy rainfall, rapid snow melt, volcanic eruption, ground water
changes, soil pore water pressure, etc.

• Human: Excavation, loading, mining, deforestation, water management, etc.

In the majority of cases the main initiator of landslides is heavy or prolonged rainfall.
Typically, this takes the form of either an exceptional short-lived event or a long-duration
rainfall event of low intensity. A very high rate of rainfall is necessary in the former case,
whereas in the latter, a moderate rainfall intensity may be sufficient; what is critical is
the duration and existing pore water pressure conditions. Figure 1.2 shows heavy rain
that triggered floods and landslides which cut roads in San Martino in Badia, Italy, 05
August 2022.

Figure 1.2: Landslides in San Martino in Badia, Italy, (2022)[10]

Constitutive models are capable to describe solid behavior up to failure during the
triggering stage. To this day, many physically based methods based on these models

16



1.1 Background

have been proposed to provide landslide susceptibility analysis. Figure 1.3 illustrates
a landslide susceptibility map computed with r.slope.stability code in the La Arenosa
catchment, northern Colombian Andes.

Figure 1.3: Landslide susceptibility map computed with r.slope.stability[29]

1.1.2 Propagation

In planning infrastructure and residential locations, it is essential to study propagation
up to deposition. When soil has been liquefied or fluidized, propagation occurs, in
other words, the soil behaves like a fluid. Currently, no satisfactory constitutive model
has been developed that can fully describe the behavior of soil mixtures under the
full range of strain rates present in a rapid landslide (from its initiation to deposition,
passing through its propagation). Rheological models have traditionally been used
to describe the propagation of flowing masses due to the fluid-like nature of this
behavior. On Lantau Island, Hong Kong, a real landslide occurred on Yu Tung Road
(fig. 1.4(a)). A particle-based meshless method implementing rheological models was
used to simulate this event (fig. 1.4(b)).
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Figure 1.4: Yu Tung debris flow on a hillside in Lantau Island, Hong Kong (a)Aerial
View of the debris flow event (b)Debris flow numerical simulation[39]

1.1.3 Types and Classification
Landslides can be identified by a number of criteria, including the failure mechanisms,
nature of the materials, propagation, and other parameters such as geomorphological
features, slope geometry, and climate. One of the most used classifications for landslides
is the Varnes classification (1978). The landslide classification based on Varnes’ system
is composed of two terms:

1. Material

2. Movement

The material types used in the various schemes are rock, soil, earth, mud and debris,
classified as follows:

• Rock: A dense or firm mass that was intact and in its natural place before move-
ment began.

• Soil: An aggregate of solid particles, generally of minerals and rocks, that either
was transported or formed by the weathering of rock in place.

• Earth: Material in which 80% or more of the particles are smaller than 2mm, the
upper limit of sand-sized particles.

18



1.1 Background

• Mud: Material in which 80% or more of the particles are smaller than 0.06mm,
the upper limit of silt-sized particles.

• Debris: Contains a significant proportion of coarse material; 20% to 80% of the
particles are larger than 2mm, and the remainder are less than 2mm.

There are five distinct kinematical types of movement [41]:

• Falls

• Topples

• Slides

• Spreads

• Flows

Combining materials and types of movements, classification terms will appear like
those given in table 1.1.

1.1.4 Fluid phase and consolidation

Consolidation is another significant aspect of some types of flows. This is when excess
pore pressure is dissipated or generated and as a result, mixture dynamics are affected.
It is worth mentioning that another classification can also be defined based on charac-
teristic times, i.e. propagation time (tp) and consolidation time (tc) for different types
of materials. These characteristic times will also determine the number of phases to
consider and whether to take into account the effect of excessive pore-water pressure.
Table 1.2 shows different categories based on this classification. In the following, each
class will be briefly discussed.

When rock avalanches occur, solid blocks become disintegrated into smaller pieces
as they gain speed. The discrete element model (DEM) is particularly well suited for
modeling granular flows, such as rock avalanches, which contain fragments of different
sizes and shapes. However, the model generally takes a considerable amount of time
to compute. Therefore, continuum models are frequently used here, using a one-
phase granular fluid. On December 9th 2022 the devastating impact force of the stones
detached from Monte Due Mani next to Lecco-Ballabio road, tore apart the protection
nets installed at the top of the tunnel and destroyed the retaining wall (fig. 1.5)[5].

The two-phase models can be applied to saturated granular flows such as rock
avalanches where the permeability is high enough so that the consolidation time is
much shorter than the time of propagation, and the material behaves as drained. In
this case solid particles and water can have different velocities, therefore, models must
include the velocities of both solid and fluid phases.

19
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Table 1.1: Varnes’ classification of slope movement (1978)
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1.1 Background

Table 1.2: Types of flows

Figure 1.5: Rock avalanche on Lecco-Ballabio road [11]
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A mudflow is a mixture of fine soil particles and water, with a viscoplastic behavior.
They can be modeled with continuum models using one-phase viscous fluids. Since
permeability is very low in mudflows, the excessive pore-water pressure dissipation
time is much higher than the propagation time. Therefore, flow behavior can be
assumed to be undrained and excessive pore-water pressure must be considered.
Figure 1.6 displays an event at Casamicciola in Italy where mudflows are visible, also
indicating that typically, mudflows have a high run-out distance due to the significant
effect of pore-water pressures [12].

Figure 1.6: The mudflow at Casamicciola in Italy (2022)

Debris flows are a mixture of water and/or air with high concentrations and sedi-
ments (rocks, gravel, clay and organic material) that have medium permeability. Debris
flows can travel at extremely rapid velocities, and their debris mass moves long dis-
tances as a result of the presence of excess pore-water pressures at the propagation
stage. The propagation and consolidation times in such cases are very close. Therefore,
quantitative modeling of excess pore pressure time-space evolution and flow propaga-
tion is essential to assessing these hazards. From the modeling point of view, debris
flows are a more complex phenomenon, as both solid particles and water can have
different velocities and the stresses acting on them are needed to be involved. As a
result, a two-phase model considering excessive pore-water pressure can be applied
in these cases. Figure 1.7 depicts a debris flow that occurred in the South Tyrol region,
Italy in 2022 in which different phases can be observed.
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1.2 Motivation

Figure 1.7: Debris flow damage in South Tyrol region [10]

1.2 Motivation
This study focuses on debris flows. Debris flows are among the most destructive
and unpredictable geological phenomena, posing a significant risk to human lives,
infrastructures, and the natural environment (fig. 1.8). They are typically triggered
by extreme weather conditions, such as intense or prolonged rainfall and rapid snow
melting. The increasing frequency and intensity of such extreme weather events, driven
by climate change, further exacerbate debris flow hazards. In order to mitigate these
risks and protect lives and properties, it is crucial to develop accurate and reliable
predictive models that can simulate the dynamics and complicated behavior of these
natural disasters. Accordingly, two-phase modeling will be applied to consider both
solid and fluid phases, and their mutual interaction.

Traditional simulation approaches, such as the Finite Element Method (FEM), have
proven useful in many applications but face challenges when dealing with large defor-
mations. Meshless or mesh-free methods, which discretize space into particles without
relying on fixed connectivity, have emerged as promising alternatives to address these
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challenges. During the past decade, an expert research team in Madrid has developed
the simulation model presented in this thesis. The model is named GeoFlow SPH
and has previously been applied to theoretical, experimental, and real case histories
[44]. It is based on rational continuum models which can be used to solve a variety of
problems. Rational methods are based on mathematical models, usually expressed by
partial differential equations. Empirical methods are used to estimate travel distances
rather than providing quantitative values such as velocity. The advantage of continuum
models is that they can consider the coupling of mechanical and hydraulic behavior in
the model. In contrast, discrete models are better suited for cases where the granularity
of the moving mass is critical, such as rock avalanches [27].

Figure 1.8: Debris flow that broke through the structure of the Fiumelatte road and
railway tunnel in Varenna, Italy, (2023)

1.3 Objectives
The primary goal of this M.Sc. thesis is to examine and critically discuss a two-phase
Smoothed Particle Hydrodynamics (SPH) depth integrated model, which can effectively
simulate the behavior of debris flows and landslides in various geological and climatic
conditions [34]. The specific objectives of the study are as follows:

i. To integrate the principles of meshless methods and SPH to develop a robust and
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accurate numerical model capable of simulating debris flows and landslides with
large deformations.

ii. To investigate the effects of pore-water pressures and bed entrainment on the
dynamics and behavior of debris flows, and incorporate these factors into the
developed model.

iii. To analyze and evaluate the performance of the two-phase SPH depth integrated
model and compare its effectiveness against a real-world case study.

iv. To provide insights and recommendations for the implementation of effective
countermeasures and mitigation strategies in areas prone to debris flows and
landslides.

1.4 Scope of the Work

This research will primarily focus on the implementation and validation of the two-
phase SPH depth integrated model, which will be applied to simulate various scenarios
of debris flows and landslides. The model’s performance will be assessed through a
series of numerical simulations, and comparisons with real-world case studies. Further-
more, the study will investigate the potential of various debris flow countermeasures,
such as screens, in reducing the destructive impact of these natural disasters on infras-
tructure and human lives.

1.5 Research Methodology

The research methodology employed for this investigation can be described as follows:

a. Reviewing existing literature on debris-flow phenomena, associated mitigation
strategies, and computational modeling of debris-flow.

b. A study of common constitutive/rheological models and investigating their pa-
rameters and behaviours.

c. Performing a computational modeling study by evaluating the screen’s perfor-
mance and assessing it in a real-world debris-flow scenario.

To provide a comprehensive overview of the research methodology, a workflow
diagram is displayed in figure 1.9.
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Research Methodology

Literature Review

Constitutive and Rheological Models Mathematical and Numerical Modeling

Two Phase Modeling

Case Study

Results and Discussion

Figure 1.9: Flowchart describing the research methodology

1.6 Structure of the Work
In accordance with the mentioned objectives, the thesis is structured as follows:

Chapter 1 serves as the introduction, initially providing a brief overview of the land-
slide phenomenon and its fundamental aspects. Subsequently, various landslide types
and their characteristics are concisely discussed, focusing on their relevant numerical
modeling. The final section introduces the predictive tools and models that will be
employed in this study to simulate the rapid landslide propagation.

Chapter 2 is devoted to presenting alternative mathematical models and the nu-
merical discretization methods employed in this study. The chapter starts with basic
concepts and theorems of continuum mechanics and the general mathematical model,
based on Biot equations. Subsequently, the specialized mathematical model is de-
rived from the Zienkiewicz-Shiomi model, and its governing equations are integrated
along depth for an optimal balance between accuracy and computational effort. Next,
the depth-integrated mathematical model is discretized using the Smoothed Parti-
cle Hydrodynamics Method (SPH). The chapter concludes with the presentation of a
propagation-consolidation model that assumes interstitial pressure evolution occurs
solely along the depth. Then, the consolidation equation is discretized with the Fi-
nite Difference Method (FDM) in each time step to account for excess pore pressure
evolution.
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Chapter 3 introduces the general framework for constitutive and rheological models.
Optimal expressions for basal friction forces are determined through various rheologi-
cal laws. These expressions are then utilized to complete the mathematical equations,
which have been detailed in Chapter 2. Finally, to better understand and compare dif-
ferent constitutive and rheological models, some parametrical and sensitivity analyses
will be conducted.

Chapter 4 is devoted to presenting two-phase models capable of describing the cou-
pling between the solid skeleton and pore fluids. Initially, the effect of soil stiffness and
permeability will be discussed. The chapter concludes by performing several analyses
to assess drainage screens’ efficacy at different consolidation rates, and simultaneously,
provide excess pore pressure evolution for better insight.

Chapter 5 showcases a real-life example, assessing the proposed model’s ability to
replicate natural debris flows. Moreover, a simple erosion law is implemented to
represent the bed entrainment phenomenon. Ultimately, the results are displayed,
analyses are provided, and mitigation measures are suggested.

Chapter 6 serves as the thesis’ concluding chapter, summarizing its contributions
and highlighting the key points.
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2.1 Introduction
Various computational tools have been created to simulate mass flow in order to esti-
mate characteristics of debris-flow movement, such as: velocity, height, impact force,
run-out distance, and flow dispersion. These tools can be one-dimensional (1D) or
quasi-three-dimensional (quasi-3D), which means they are essentially two-dimensional
(2D) with an averaged third dimension, and they utilize distinct basal rheological laws
based on appropriate flow behavior (shear stress versus shear rate) [44]. Some ex-
amples of these models include RAMMS::DEBRIS FLOW [7], DAN3D [21], Flo-2D
[28], MassMov2D [2], r.avaflow [22], and GeoFlow SPH [32]. Since the propagation
stage of debris flow is largely influenced by the spatiotemporal evolution of intersti-
tial pore-water pressure [6], and the selected mesh-type debris flow countermeasure
focuses on dissipating this pressure, the choice of a computational tool depends on
the model’s ability to accurately represent this particular aspect of debris flow. The
GeoFlow SPH-FD model for debris flow propagation is deemed suitable because of its
ability to simulate the development of pore-fluid pressure throughout the flow pro-
gression [30, 6]. The following sections detail the assumptions and formulations used
in the depth integrated two phase framework, as discussed in the article by Pastor et al.
(2021).

2.2 Mathematical model
A mathematical model, such as the Biot equations, can be used to explain physical
phenomena in porous media, including the propagation of landslides. In landslides,
fluidized geomaterials are mixtures of solid particles and pore fluids, and their inter-
actions are crucial. This study uses mixture theory to describe this coupling, defining
porosities, densities, and partial stresses for all constituents [27].

2.2.1 Materials
We will presume that the fluidized soil is comprised of a solid skeleton and a fluid
phase, forming a two-phase system. In this system, the fluid fully saturates the voids
(hence, the saturation ratio Sr = 1) as shown in fig. 2.1. The terms will be distinguished
by using the subscript s for the solid component andw for the fluid phase. The densities
of the two materials will be denoted by ρs and ρw. A phase density is defined as the
mass of components per unit volume of a mixture, as follows:

29



2 Mathematical and Numerical Modeling

Figure 2.1: Two-phase scheme

ρ(s) = (1 − n) ρs
ρ(w) = nρw

(2.1)

It is assumed that the velocities of the two phases may differ. As a result, the
mathematical models that describe the balance of mass and momentum for each phase
use derivatives following the solid d(s)

dt and the fluid d(w)
dt as follows:

d(s)

dt
=

∂

∂t
+ vs

T .grad

d(w)

dt
=

∂

∂t
+ vw

T .grad
(2.2)

where vs and vw are the velocities of solid and fluid particles in the mixture. The
derivatives are related by the following equation:

d(w)

dt
=

d(s)

dt
+ (vw − vs)T .grad (2.3)

Darcy’s velocity (w) can be expressed as:

vw = vs +
w

n
(2.4)

By substituting eq. (2.4) into eq. (2.3) we can obtain the relationship between material
derivatives in the two phases:

d(w)

dt
=

d(s)

dt
+ wT

n
.grad (2.5)

2.2.2 Stresses
Stresses in the phases are related to the total stress (Cauchy) in the mixture (referred to
as σ) as follows:

σ = (1 − n) σs + nσw

= σ(s) + σ(w) (2.6)
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where the partial stresses σ(s) and σ(w) can be defined as:

σ(s) = (1 − n) σs

σ(w) = nσw

(2.7)

In the case of the fluid, if we consider τw as the deviatoric stress, pw as the pore
pressure and I as the second order identity tensor, we will be able to express the fluid
stress as:

σ(w) = −npwI + nτw (2.8)

The negative sign in the first term of equation 2.8 is due to compressive stresses.
From now on, we can make the simplifying yet realistic assumption of inviscid pore
fluid, i.e. shear stress is zero in the fluid phase. Accordingly, the total stress will be:

σ = σ(s) − npwI + nτw (2.9)

Additionally, for inviscid pore fluids, we can formulate the effective stress used in
Soil Mechanics as follows:

σ′ = σ + pwI = (1 − n) (σs + pwI) (2.10)

Furthermore, it can be related to the solid partial stress as follows:

σ(s) = σ′ − (1 − n)pwI (2.11)
Finally, the partial stresses can be expressed as:

σ(s) = σ′ − (1 − n) pwI (2.12)

σ(w) = −npwI (2.13)

2.2.3 Conservation of mass
The balance of mass equations for the mixture can be formulated as:

− d(s)n
dt

+ (1 − n)div vs = 0

1
Q

d(w)pw

dt
+d(w)n

dt
+ndiv vw = 0

(2.14)

In which Q is the mixed volumetric stiffness and depends on volumetric stiffnesses
of solid grains and water:

1
Q

=
(1 − n)
Ks

+ n

Kw
≈ n

Kw
(2.15)

If we sum up the mass balance equations for each phase, we can obtain:
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1
Q

d(w)pw

dt
+ d(w)n

dt
− d(s)n

dt
+ (1 − n)div vs+ndiv vw = 0 (2.16)

Finally, if we take into account equation 2.5, we arrive to:

1
Q

d(w)pw

dt
+divw+div vs = 0 (2.17)

2.2.4 Conservation of momentum
The balance of momentum equations for the fluid and solid phases can be written as:

nρw
d(w)vw

dt
=

{
−ngrad pw

}
+ nρwb − R (2.18)

(1 − n) ρs
d(s)vs
dt

=


divσ(s) − pwgradn (a)

divσ + ngradpw
(b)

divσ′ − (1 − n)gradpw
(c)

 + (1 − n) ρsb + R (2.19)

where b is the vector of body forces, R is the interaction solid-fluid forces. If we
define R(α) as the interaction force acting on phase (α), we obtain:

R = −nRw = (1 − n)Rs (2.20)

2.2.5 Interaction laws
The Interaction law is a fundamental concept that governs the coupling between solid
and fluid. Here we introduce Anderson and Jackson law [1] which is a coupling law
used by Pitman and Le [36]. This law is suitable for a wide range of porosities, and
when the relative velocity is larger:

R =
n (1 − n)
VTnm

(ρs − ρw)g (vw − vs) (2.21)

where VT is the terminal velocity of solid particles falling in the fluid, g the accelera-
tion of gravity and m a constant.

Please note that in both cases, we can express the interaction term as:

R = Cd (vw − vs) (2.22)

where Cd is:

Cd =
n (1 − n)
VTnm

(ρs − ρw)g (2.23)

Other laws can also be written in this form, Cd being dependent on (vw − vs).
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The balance equations of mass and momentum for the mixture described above have
to be complemented by using suitable constitutive relations and kinematic equations
relating velocities to the rate of deformation tensors for both phases.

2.2.6 Some useful simplifications:
General model equations are composed of various variables, and in the case of saturated
two-phase debris flow, they are made according to the following six variables:

• Volume fractions for the phases (n)

• Total stress (σ) and pore pressure (pw)

• Velocities of the solid phase (vs) and interstitial fluids (vw)

The general model described above can be simplified in cases where

i. the gradient of porosity is small, and

ii. velocities of both phases are similar, i.e.

d(w)

dt
≈ d(s)

dt
=

d

dt
(2.24)

which implies that the term wT

n .grad is small. the resulting model is written in terms
of the following unknowns:

• Stress (σ) and pore pressure (pw)

• Velocities of the mixture (v) and Darcy’s velocity (ω)

If both balance of momentum equations are added, we obtain:

ρ
dv

dt
= divσ′ − gradpw + ρb (2.25)

where ρ is the mixture density and v the velocity of the solid skeleton.

The model is written in terms of vs, vw, σ′, pw and consists of the balance of mass
of the mixture, balance of momentum of both the mixture and the fluid phase, and a
suitable constitutive equation relating rate of deformation ds = gradsymvs to the rate
of stress tensors. The resulting model can be casted in terms of v, w and pw, hence it
is named vs −w − pw Zienkiewicz-Shiomi model.

1
Q

d(w)pw

dt
+divw+div vs = 0

ρ
dv

dt
= divσ + ρb = divσ′ − gradpw + ρb

ρw
dvw

dt
= −gradpw + ρwb − R/n

(2.26)
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In some cases [47, 45, 46], it can be assumed that the velocities and accelerations of
the fluid phase in the pores are small with respect to the solid skeleton and accordingly,
Darcy’s velocity of the pore fluid can be eliminated. The resulting model is the widely
used u − pw or vs − pw Biot-Zienkiewicz model which is found in most geotechnical
finite element codes used today.

2.2.7 Integration along depth
So far, we have considered three-dimensional continuum models which describe ge-
omaterial flow in both the triggering and propagation phases. 3D formulations of
mathematical models describing fast landslides are generally very computationally ex-
pensive. These models can be further simplified and reduced to a 2D formulation
through depth integration approximation. Since many flow-like landslides have small
average depths, or propagation heights, with respect to their length or width, the given
equations can be integrated along the vertical axis. This results in an effective bal-
ance between accuracy and computational effort, making it suitable for modeling the
majority of fast landslides.

We will use the reference system with axes {x1, x2, x3} sketched in figure 2.2. Z will
denote the basal surface elevation, and h the depth of flowing mass. Velocities will be
denoted as {v1, v2, v3}, and sub-indexes s and w will refer to solid and fluid phases.

Figure 2.2: Reference system, coordinates and notation used in the analysis.

An overbar over a magnitude indicates it is a depth averaged value. For instance:

θ̄ =
1
h

∫ h

0
θdx3 (2.27)
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Mixture averaged velocity (v̄) is defined as follows:

v̄ = (1 − n̄)v̄s + n̄ v̄w (2.28)

The “quasi material derivative” is expressed as:

d̄

dt
=

∂

∂t
+ v̄j

∂

∂xj
j = 1, 2 (2.29)

Based on Leibnitz’s rule, depth integration is performed:∫ b

a

∂

∂s
F (r, s) dr = ∂

∂s

∫ b

a

F (r, s) dr − F (b, s) ∂b

∂s
+ F (a, s) ∂a

∂s
(2.30)

Our next step will be to introduce two auxiliary variables, hs and hw, which describe
the contents of solids and fluids within a column of total height (h) (see Fig. 2.3).

h = hs + hw

hs = (1 − n)h hw = nh
(2.31)

Figure 2.3: Definition of auxiliary variables hs and hw.

If we integrate the balance of mass equations along depth (local x3 axis), we arrive
at:

d̄(s)

dt
((1 − n̄)h) + (1 − n̄)hdiv v̄s = (1 − n̄) eR

d̄(w)

dt
(n̄ h) + n̄ hdiv v̄w = n̄ eR

(2.32)

where eR is the erosion rate, defined as the height increment of moving soil per unit
time. There are various laws such as that proposed by Hungr et al. (2005)[16], which
relate erosion rate to the depth averaged velocity of the flowing material.

After applying Leibnitz’s rule to balance of momentum equations for both phases,
we obtain:
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ρshs
d̄(s)v̄s
dt

= div
(
h σ̄(s)

)
− h p̄w grad n̄

− τ
(s)
b

+ ρshsb + hs R̄s − (1 − n̄) ρs
(
v̄s − v̄

(b)
s

)
eR

ρwhw
d̄(w)v̄w

dt
= −grad (h p̄w) + h p̄wgrad n̄

− τ
(w)
b

+ ρwhwb + hw R̄w − n̄ ρw

(
v̄w − v̄

(b)
w

)
eR

(2.33)

where we have introduced the basal shear stresses of the solid and fluid phases as:

τ
(s)
bi

= −σ(s)
i 3

���
Z

τ
(w)
bi

= −σ(w)
i 3

���
Z

(2.34)

The terms v̄(b)s and v̄
(b)
w denote the basal slip velocities of solid and water phases.

The depth averaged pore pressure (p̄w) will be decomposed into a hydrostatic part
and an excess pore pressure as:

p̄w = p̄w,hydr + ∆p̄w (2.35)

One special case of particular interest is where the stresses in the solid phase are
σ1 = σ2 = σ3, the pore fluid being inviscid:

σii = ((1 − n) ρs + nρw)b3 (h − x3) i = 1..3

σ
(w)
ii

= nρwb3 (h − x3) − n∆pw

(2.36)

from where we obtain:

σ
(s)
ii

= (1 − n) ρsb3 (h − x3) + n∆pw i=1..3

σ′
ii = (1 − n) (ρs − ρw)b3 (h − x3) + ∆pw i=1..3

(2.37)

Then, the depth integrated equations are obtained as:

ρshs
d̄(s)v̄s
dt

= grad
{

1
2 (1 − n̄) ρsh2b3

}
+ grad (n̄ h∆p̄w)

+ 1
2ρwh2b3 grad n̄ − h∆p̄wgrad n̄

− τ
(s)
b

+ ρsbhs + hs R̄s − (1 − n̄) ρs
(
v̄s − v̄

(b)
s

)
eR

(2.38)

for the solid phase, and
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ρwhw
d(w)vw

dt
= grad

{
1
2 n̄ρwh2b3

}
− grad (hw∆p̄w)

− 1
2ρwh2b3 grad n̄ + h∆p̄wgrad n̄

− τ
(w)
b

+ ρwbhw + hw R̄w − n̄ ρw

(
v̄w − v̄

(b)
w

)
eR

(2.39)

for the fluid.

Above equations can be written in a more compact manner by introducing:

i. the pressure terms Ps and Pw defined as:

Ps =

{
−1

2 (1 − n̄)h2b3 −
1
ρs

n̄ h∆p̄w

}
Pw =

{
−1

2 n̄ h2b3 +
1
ρw

n̄ h∆p̄w

} (2.40)

ii. Fs and Fw:

Fs =

{
1
2
ρw

ρs
h2b3 − h

1
ρs

∆p̄w

}
Fw =

{
1
2h

2b3 + h
1
ρw

∆p̄w

} (2.41)

iii. and the source terms:

Ss =
1

ρshs

{
τ
(s)
b

+ ρsbhs + hsR̄s − (1 − n̄) ρs
(
v̄s − vbs

)
eR

}
Sw =

1
ρwhw

{
τ
(w)
b

+ ρwbhw + hwR̄w − n̄ρw

(
v̄w − vbw

)
eR

} (2.42)

The balance of momentum equations are now written as:

d̄(s)v̄s
dt

=
1
hs

gradPs + 1
hs

Fs grad n̄ + Ss

d̄(w)v̄w
dt

=
1
hw

gradPw + 1
hw

Fw grad n̄ + Sw

(2.43)

To simplify the notation, we will no longer use the overbar, assuming that all quan-
tities are integrated over depth unless specified otherwise.

It is important to note that we have assumed σ1 = σ2 = σ3 for solid phase. Equations
2.32, 2.38, and 2.39 govern the evolution of height (h), porosity (n), and the velocities of
the solid and fluid.
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Figure 2.4: Deformation of a soil column.

2.2.8 Pore pressures
We will assume that the length and width of the mixture are significantly larger than its
depth; therefore, the main dissipation mechanism will be vertical. However, changes
in average porosity can induce corresponding changes in ∆pw.

Consider the soil column depicted in figure 2.4. On the left, the initial configuration
is shown, and on the right, we see the deformed configuration. The column heights
are denoted as H (initial) and h (deformed). The coordinates of both configurations are
related as follows:

x3 = X3
h

H
(2.44)

In accordance with equation 2.33, the balance of momentum along x3 can be ex-
pressed as:

nρw
d(w)vw3

dt
= −n ∂pw

∂x3
+ nρwb3 − C̄dw3 (2.45)

where the Darcy’s velocity caused by vertical consolidation is indicated by w3. Ac-
cording to equation 2.45, w3 can be written as follows:

w3 = − n

C̄d

∂pw

∂x3
+ n

C̄d

ρwb3 − ρw
n

C̄d

d(w)vw3
dt

(2.46)

where we have introduced

C̄d =
Cd

n
(2.47)
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for convenience.

Based on the effective mean confining pressure and the pore-water pressure, we will
define the mean confining pressure (p) as follows:

p = p´ + pw (2.48)

From here, the material derivatives following the solid particles are:

d(s)pw

dt
=

d(s)p
dt

− d(s)p′

dt
(2.49)

With regard to the term d(s)p
dt , it corresponds to changes in height, whiled(s)p′

dt can
be derived using an appropriate constitutive equation for the soil skeleton. In fact, for
elastic behavior, we can express it as:

d(s)p′

dt
= −Kv

α

(
∂vs3
∂x3

− dv0

)
(2.50)

where Kv = E
3(1−2ν) is the volumetric stiffness of soil skeleton, E the Young’s modulus,

ν the Poisson’s ratio, α being a constitutive parameter and dv0 describing additional
dilatancy terms.

If the state of stress is such that σ1 = σ2 = σ3, α = 1, while under a state of stress
(k0σ1, k0 σ1,σ3), it is obtained α = k0.

The term d(s)p
dt is given by:

−ρ′ b3
d(s)h
dt

(
1 − x3

h

)
(2.51)

where ρ′ = (1 − n) (ρs − ρw).

Assuming σ1 = σ2 = σ3 = p we can obtain:

d(s)p
dt

= −ρ′b3

(
d(s)h
dt

− d(s)x3
dt

)
= −ρ′b3

d(s)h
dt

(
1 − x3

h

)
(2.52)

From equations 2.50 and 2.52, it follows:

d(s)pw

dt
= −ρ′b3

d(s)h
dt

(
1 − x3

h

)
+ Kv

α

(
∂vs3
∂x3

− dv0

)
(2.53)

Using the relations 2.14, we can approximate

∂vs3
∂x3

= −∂w3
∂x3

=
∂

∂x3

(
n

C̄d

∂pw

∂x3
− n

C̄d

ρwb3 + ρw
n

C̄d

d(w)vw3
dt

)
(2.54)

The pore pressure term can be separated into two components: a hydrostatic (pw ,hyd)
and an excess pore pressure (∆pw). This can be expressed as:
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pw = pw ,hyd + ∆pw

∂pw ,hyd

∂x3
= ρwb3

(2.55)

Taking into account the above equation, and neglecting the vertical acceleration along
x3, we obtain:

∂vs3
∂x3

=
∂

∂x3

(
n

C̄d

∂∆pw

∂x3

)
(2.56)

The extra dilatancy is approximated as:

dv0 =
1

1 − n̄

d(s)n̄
dt

(2.57)

Therefore, we can conclude:

d(s)∆pw

dt
= −ρ′b3

d(s)h
dt

(
1 − x3

h

)
+ Kv

α

∂

∂x3

(
n

C̄d

∂∆pw

∂x3

)
− Kv

α

1
1 − n̄

d(s)n̄
dt

(2.58)

which is the equation describing the evolution of pore pressure. It comprises three
terms:

i. The increment of excess pore pressure resulting from an increase in the height of
the debris flow

ii. The consolidation along x3

iii. The changes in average porosity as determined from the depth integrated equa-
tions.

2.2.9 Simplifications

Biot-Zienkiewicz-Shiomi hs hwvs vw − pw and h v − pw simplified models can be ob-
tained assuming porosity gradients are small. Then, the general equations are reduced
to the following:

ρshs
d̄(s)v̄s
dt

= grad
{

1
2 (1 − n̄) ρsh2b3

}
+ grad (n̄ h∆p̄w)

− τ
(s)
b

+ ρsbhs + hs R̄s − (1 − n̄) ρs
(
v̄s − v̄

(b)
s

)
eR

(2.59)

for the solid phase, and
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ρwhw
d(w)vw

dt
= grad

{
1
2 n̄ρwh2b3

}
− grad (hw∆p̄w)

− τ
(w)
b

+ ρwbhw + hw R̄w − n̄ ρw

(
v̄w − v̄

(b)
w

)
eR

(2.60)

for the fluid.

If we proceed with the assumption that:

d̄(s)

dt
≈ d̄(s)

dt
=

d̄

dt
(2.61)

we can add both momentum equations to obtain:

ρh
dv

dt
= grad

{
1
2ρh

2b3

}
− τb + ρbh − ρ

(
v̄ − v̄(b)

)
eR (2.62)

The balance of mass equation derives from the summation of the solid and fluid
phases presented in equation 2.32, yielding the following result:

d̄ h

dt
+ hdiv v̄ = eR (2.63)

The pore pressure equation remains the same as equation 2.58, as obtained for the
general case.

2.3 Numerical Methods
This section presents numerical methods used to discretize equations governing depth
integrated mass and momentum conservation and excess pore pressure evolution.
These methods are applicable in the propagation and consolidation stages of geotech-
nical studies. They help obtain approximate solutions when solving complex partial
differential equations (PDEs) is not analytically feasible. The process involves trans-
forming PDEs into ordinary differential equations (ODEs), making them suitable for
particle-based simulation. This is accomplished through spatial and temporal dis-
cretization of the model.

Grid-based numerical methods such as the finite difference method (FDM) or the
finite element method (FEM) have proven invaluable over the past decades, solving nu-
merous scientific and engineering issues. However, in hydraulics and fluid mechanics,
where large displacements are common, the use of meshes (especially with Lagrangian
formulations) can lead to numerical difficulties. Meshless methods like SPH offer
a compelling alternative, as they rely on moving points or nodes for discretization,
thereby eliminating or minimizing the use of grids.

We briefly describe a Lagrangian meshless numerical method called Smoothed Par-
ticle Hydrodynamics (SPH) which is used to discretize the depth integrated equations
presented. This method converts problems, originally in the form of partial differential
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equations (PDEs), into formats suitable for particle-based simulation. SPH was first in-
troduced by Lucy in 1977 and by Gingold and Monaghan (1977) to model astrophysical
problems. Due to its ability to handle complex scenarios involving large displacements
and deformations [19, 13], this technique has found applications in many areas, such
as the modeling of rapid landslides in solid mechanics [20, 31, 37].

Considering this method, the purpose of this section is to describe a new model for
problems where pore pressures play a significant role [34, 35].

2.3.1 Proposed SPH model

The depth-integrated mathematical model that we have selected to describe rapid
landslides comprises a set of five equations. These equations address the balance of
mass and momentum for both phases, as well as pore pressures. The variables include
solid and fluid heights and velocities, which vary depending on position and time.

hα (x1, x2, t) , v̄α (x1, x2, t) α = s,w (2.64)

The proposed method combines two sets of SPH nodes -for solid and water particles-
with finite difference (FD) meshes associated to SPH nodes. The former sets describe
the behaviour of depth integrated columns of soil and water, while the latter allows the
analysis along depth of pore pressures. It is an improvement over models to implement
pore pressures using simple approximations depending only on the value of the basal
pore pressure.

We will introduce:

i. two sets of nodes {xαK} with K = 1..Nα where Ns and Nw are the number of
SPH nodes in the solid and fluid phases, and,

ii. the nodal variables:

hαI heights of phases at node I

v̄αI depth averaged, 2D velocities

and the pore-water pressure at the nodes pwpI which is a vector including the
finite difference nodes along height.

In figure 2.5, we sketch the SPH soil and water nodes together with the finite difference
meshes associated to each solid point to describe pore pressure evolution.
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2.3 Numerical Methods

Figure 2.5: SPH nodes with FD meshes at solid nodes.

If the 2D area associated to a general fluid or solid node I is ΩI, we will introduce
for convenience, a fictitious volume mI with dimensions L3 moving with this node:

mI = ΩIhI (2.65)

It is important to note that mI has no physical meaning, as when node I moves, the
material contained in a column of base ΩI has entered it or will leave it as the column
moves with an averaged velocity which is not the same for all particles in it.

Regarding the balance of mass equations, we have used a simple alternative, com-
puting the heights from the position of the neighboring particles as:

[hI] = ⟨h (xI)⟩ =
∑
J

hJΩJWIJ =
∑
J

mJWIJ (2.66)

The height can be normalized, which allows improving the approximation when
SPH nodes are close to the boundaries:

hI =

∑
J

mJWIJ∑
J

(
mJ

hJ

)
WIJ

(2.67)

We will recall here for convenience the momentum equations, writing them in a more
compact form as:

d̄(α)v̄α
dt

=
1
hα

gradPα + 1
hα

Fα grad n̄ + Sα α = {s,w} (2.68)
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where the pressure terms are:

Ps =

{
−1

2 (1 − n̄)h2b3 −
1
ρs

n̄ h∆p̄w

}
Pw =

{
−1

2 n̄ h2b3 +
1
ρw

n̄ h∆p̄w

} (2.69)

and

Fs =

{
1
2
ρw

ρs
h2b3 − h

1
ρs

∆p̄w

}
Fw =

{
1
2h

2b3 + h
1
ρw

∆p̄w

} (2.70)

Finally, the source terms are:

Ss =
1

ρshs

{
τ
(s)
b

+ ρsbhs + hsR̄s − (1 − n̄) ρs
(
v̄s − vbs

)
eR

}
Sw =

1
ρwhw

{
τ
(w)
b

+ ρwbhw + hwR̄w − n̄ρw

(
v̄w − vbw

)
eR

} (2.71)

We will consider next how to discretize each of the three terms gradPα, 1
hα

Fα grad n̄ and
Sα.

Regarding the gradient terms, we will write only one of the symmetrized forms, (see
Monaghan 1982, 1985, 1992)[25, 24, 23]:

1
haI

gradPαI = −
Nαh∑

1
mJ

(
PαI

h2
αI

+ PαJ

h2
αJ

)
1

haI
grad n̄αI = −

Nαh∑
1

mJ

(
n̄αI

h2
αI

+ n̄αJ

h2
αJ

) (2.72)

which results on:

d̄(α)

dt
v̄αI =

∑
J

mJ

(
PαI

h2
I

+ PαJ

h2
J

)
gradWIJ

+ FαI

∑
J

mJ

(
nαI

h2
I

+ nαJ

h2
J

)
gradWIJ + SαI

(2.73)

2.3.2 Pore pressure modeling
Excess Pore pressures with respect to hydrostatic can be written as:
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∆pw (x1, x2, x3, t) (2.74)

which is dependent on x3 (vertical axis).

The consolidation expression given in equation (2.58) which is a classical parabolic
partial differential equations is suitable for the formulation of FDM. Based on this, the
second alternative numerical model was proposed by Pastor et al. (2015) [33], who
combined a finite difference method (FDM) for the 1D equation of a vertical consol-
idation and depth-integrated SPH model for propagation analysis (SPH-FD model).
Pastor et al. (2021) [35] extended this one-phase model to a two-phase model in order
to fully approximate the pore pressures inside a landslide. In this technique, a finite-
difference mesh, incorporated at each SPH node representing solid particles, is used to
discretize pore–water pressures along the vertical axis, as depicted in figure 2.5.

Initial conditions describe the distribution of excess pore pressure across all FD
meshes. We have assumed a simple linear law here, with values of zero at the top
and ∆p

(b)
wp,0 at the basal surface. The latter must be estimated either from field data or

from the results of a model that describes the triggering of the landslide. These initial
conditions play a pivotal role in the characteristics of debris flow propagation. When
no data is available, an estimation is necessary.

As for boundary conditions, we have assumed a zero value at the top, while it
is common to assume an impermeable boundary (zero flow) at the base. However,
there are situations where the debris flow reaches mitigation structures such as basal
screens, causing total pore pressure to dissipate and become equivalent to atmospheric
pressure. This process causes the flow to slow down or even stop, as basal friction
increases. Once the flow exits the screen, the flux returns to zero. In this context, our
boundary conditions depend on the positions of the nodes on the terrain.
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3.1 Introduction

Thus far, various constitutive models have been introduced to consider the behavior
of soil up to the point of failure. However, these models do not extend beyond this
point due to their inability to accurately represent the propagation of fluidized material
undergoing significant deformations. The aim of this section is to describe rheological
models, which establish relationships between shear stress and the rate of shear strain.
These models are utilized to study the propagation of the displaced mass. In this
study, we will use simple shear infinite landslide models to calculate the basal shear
stress (τB). This approach is more suitable for implementation in 2D depth-integrated
models.

3.2 The simple shear flow

Simple shear infinite landslide models represent a particular case of simple-shear flows.
In these models, (i) the flow is steady, and (ii) all magnitudes are independent of
the position along the landslide, which is assumed to be of infinite length (fig. 3.1).
This section is dedicated to presenting the infinite landslide model, and a method for
calculating basal friction and depth-averaged stresses.

Figure 3.1: Simple shear infinite landslide

Our objective is to determine the basal forces per unit area and the depth integrated
stresses without having information on the 3D flow structure, which is lost during the
depth averaging process.
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Figure 3.2: Simple shear infinite landslide diagrams

In the figure 3.2 a column of material of unit length and depth h is depicted. The
flow structure is that of a simple shear flow. Since the acceleration along the x-axis is
zero, the equilibrium of the column in figure 3.2 can be expressed as follows:

ρgh sin θ = τB (3.1)

where ρ is the mixture density which has been defined in chapter 2, g the gravity
acceleration, h the depth of flow, θ the slope angle, and τB the shear stress at the
bottom. By considering the equilibrium of a part of the column extending from the
surface to a depth (h − z), we can obtain the shear stress as a function of z as:

τ = ρg(h − z) sin θ (3.2)

Therefore, the shear stress varies linearly from zero at the surface to a maximum at
the bottom, as given by equation 3.1. By substituting the basal shear stress provided in
equation 3.1 into equation 3.2, the shear stress can then be obtained after eliminating
the slope angle as follows:

τ = τB

(
1 − z

h

)
(3.3)

The next step is to establish a relationship between the basal friction and the strain
rate, which is formulated as:

τB

(
1 − z

h

)
= f

(
∂v

∂z

)
(3.4)

By integrating the previous expression, we obtain the velocity profile, v(z). Subse-
quently, we can find the average depth integrated velocity, v, and finally determine the
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basal shear stress, τB, by rearranging the result. In the following sections, the most
common rheological laws that relate shear stress to shear strain rate and are used in
debris flow modeling will be introduced (fig. 3.3). Consider that the governing mathe-
matical equations, given in chapter 2, include a basal friction term. Therefore, we will
focus only on obtaining basal shear stress for the rheological models.

Figure 3.3: Rheological laws

3.3 Newtonian fluids
The Newtonian fluid is a simple rheological model characterized by one single consti-
tutive parameter, the fluid viscosity. In the case of a simple shear flow, the shear stress
is given by:

τ = µ
∂v

∂z
(3.5)

where we have introduced the viscosity coefficient (µ) with units [Pa-s]. The last
expression can be related to the shear stress equation 3.3 of the infinite landslide model
as:

µ
∂v

∂z
= τB

(
1 − z

h

)
(3.6)

Integrating the last expression along depth, the resulting velocity is obtained as:

v =

∫
τB

µ

(
1 − z

h

)
dz =

τB

µ

(
z − z2

2h

)
+ c (3.7)
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where it is important to consider that the velocity is zero at the basal surface, c = 0.
The depth integrated velocity can be related to the basal shear stress as:

v =
1
h

∫ h

0
v(z)dz = hτB

3µ (3.8)

and therefore, the basal shear stress is obtained as:

τB =
3µv
h

(3.9)

Consequently, one can conclude that an infinite slide in Newtonian fluids occurs
when the slope is not zero and does not stop until the slope is zero.

3.4 Bingham fluids
The Bingham rheological model [4] is one of the simplest and most widely used vis-
coplastic models. It introduces a threshold shear stress that must be overcome to allow
material flow and is able to explain phenomena such as formation of plug regions and
stoppage of flows. In cohesive fluids, such as clay and water mixtures, flows exhibit
yield stress. Their modeling was the pioneering work of Bingham (1922)[3]. In these
models, the flow starts once the shear stresses exceed the threshold, represented by the
yield stress

(
τy

)
then the movement is governed by a linear relationship between shear

stress and strain rates, where the constant parameter of proportionality is called the
coefficient of viscosity (µ). Rheological law governing Bingham fluid behavior is given
by:

τ = τy + µ
∂v

∂z
(3.10)

Figure 3.4: Flow structure of a Bingham fluid in an infinite simple shear flow.

Flow structure of a Bingham fluid, which is depicted in figure 3.4, consists of two
separate parts:
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3.5 Voellmy’s law

i. From points S to P, which is called the “area of the plug”, the mobilized shear
stress is less than the yield stress. Considering that the velocity is constant in this
region, therefore:

∂v

∂z
= 0 (3.11)

ii. From P to B, which is called the ”cutting zone”, the mobilized shear stress is
greater than the yield stress and varies according to the following expression:

∂v

∂z
=

1
µ

(
τy − τ

)
(3.12)

Referring to figure 3.4, Some relations of interest are obtained as follows:

hp =
τy

ρg sin θ
= h

τy

τB

hs = h

(
1 −

τy

τB

) (3.13)

Then, the relative plug height (η), which is a relation between the thickness of plug
and total thickness, is defined as:

η =
hp

h
=

(
1 − hs

h

)
=

(
1 −

τy

τB

)
(3.14)

Likewise, by integrating over the depth, and calculating the average over the thick-
ness, the following equation can be obtained:

v =
τBh

6µ (1 − η)2(2 + η) (3.15)

where η can be estimated by using the approximate method, proposed by Pastor et
al. (2004)[32], which is based on using a polynomial economization technique.

3.5 Voellmy’s law
It is a good alternative due to its simplicity and its ability to consider pore-water
pressure at the basal surface. The basal shear stress of a pure frictional mass, ignoring
cohesion and viscous terms, is given by:

τB =

(
ρ
′
dgh − ∆pb

w

) v̄i

|v̄| tanϕB + ρg |v̄|
ξ
v̄i (3.16)

where h is the propagation height, ϕB the basal friction angle, v̄ the depth averaged
flow velocity, ξ the turbulence coefficient, and ∆pb

w the excess pore-water pressure at
the basal surface, which is computed by using the consolidation equation 2.58. It can be
seen in the above equation that the basal shear stress τB will depend on the basal excess
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pore pressure, and it is modified in accordance with pore-water pressure’s evolution at
each node and time step [40]. Take into account that the higher the pore-water pressure,
the lower the shear stress at the basal surface. In this study we disregard the additional
turbulent term.

3.6 Sensitivity analysis

3.6.1 Introduction

Sensitivity analysis in geotechnical engineering plays a crucial role in improving the
safety, effectiveness, and efficiency of engineering projects. The benefits of sensitivity
analysis in this field include:

i. Risk Assessment: Sensitivity analysis helps in evaluating the risk and uncertainty
associated with different aspects of geotechnical engineering. It can identify the
factors or parameters that have a significant impact on the performance of an
engineering system or project.

ii. Decision Making: It aids in decision-making processes by providing information
on how changes in inputs impact the output. This allows engineers to make more
informed decisions and prioritize areas of focus in the design process.

iii. Design Optimization: Sensitivity analysis is useful in optimizing designs by
identifying which parameters most significantly affect performance. By under-
standing these relationships, it is possible to develop more effective and efficient
designs.

iv. Robustness of Models: By understanding which parameters are most sensitive,
engineers can ensure their models are robust against changes in these parame-
ters. This is crucial for the reliability and validity of modeling in geotechnical
engineering.

Overall, sensitivity analysis is a powerful tool in geotechnical engineering that enhances
understanding, improves design, and mitigates potential risks. In this and the following
chapters, we will perform several sensitivity analyses.

As a benchmark, we have chosen a 1D dam break problem to assess the factors
affecting runout and propagation. It consists of the dam sketched in figure 3.5, with
initial height equal to 10m and a length of 10m. The dam is filled with a fluid with a
density of ρ = 1000Kg/m3. The fluid is contained by two walls, and at the time 0s, the
wall on the right is removed. This causes the fluid to flow along the horizontal plane.
We established a checkpoint at 100m as a threshold for runout distance and recorded
the relevant data at each time step.
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Figure 3.5: Initial configuration of the dam break problem.

When assessing the risk associated with landslides, two crucial factors can be con-
sidered:

1. The time of propagation: It refers to the duration from when a landslide is trig-
gered to when it reaches its maximum extent. This can range from seconds in the
case of rockfalls or debris flows, to weeks or even years for slow-moving land-
slides. A longer time of propagation allows more time for monitoring, warnings,
evacuation, and implementation of mitigation measures.

2. Impact force: Landslides can destroy infrastructure and cause serious injury
or even death to people in their path. It is determined by a variety of factors,
including the height of the wave, mass, shape and angle of Impact, and speed.

3.6.2 Influence of viscosity
Viscosity, in fluid dynamics, is a measure of a fluid’s resistance to shear or flow. In
general, higher viscosity leads to slower flow rates. This is because the fluid resistance is
higher, making it more difficult for the fluid to move. Figure 3.6 shows the displacement-
time graph in the case of a Newtonian fluid with different viscosities.

Figure 3.6: Displacement-time graph for Newtonian fluids
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Furthermore, figure 3.7 displays the velocity-time graph for a Newtonian fluid with
different viscosities. As evident, even a highly viscous fluid will not stop flowing;
however, they will reach small velocities.

Figure 3.7: Velocity-time graph for Newtonian fluids

The longitudinal profiles of the flows are illustrated in figure 3.8. A higher viscosity
fluid would generally develop a thicker layer and is more likely to experience a laminar
(smooth and orderly) flow.

Figure 3.8: Longitudinal profiles and corresponding arrival times for Newtonian fluids

It can be concluded that, for this problem, Newtonian fluids with viscosities lower
than 250 (Pa.s) could potentially cause damage at our checkpoint, since the propagation
time of these fluids is low and they maintain their velocity throughout their path.
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3.6.3 Influence of yield stress
In viscoplastic fluid dynamics, yield stress is a fundamental parameter that greatly
influences how the fluid propagates, deforms, or resists deformation under different
conditions. As mentioned before, viscoplastic fluids like Bingham fluids tend to form
a plug zone in the upper region where the fluid behaves more like a solid because the
stress is lower than the yield stress. In order to make a parametrical analysis, we fixed
the viscosity at 100 (Pa.s) and gradually increased the yield stress. Figure 3.9 illustrates
the result for displacements as a function of time.

Figure 3.9: Displacement-time graph for Bingham fluids

Additionally, the velocity-time graph for different yield stresses is shown in figure
3.10. It is imperative to notice that viscoplastic fluids stop flowing when driving stresses
become lower than yield stresses.

Figure 3.10: Velocity-time graph for Bingham fluids
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Finally the longitudinal profiles of the flows are depicted in figure 3.11. The size of
the plug zone is influenced by the yield stress - higher yield stresses typically result in
larger plug zones, thus a steeper slope in the front region of the flow.

Figure 3.11: Longitudinal profiles and corresponding arrival times for Bingham fluids

These results indicate that yield stress can determine the flow profile shape. It can
also be observed that a fluid with a yield stress exceeding 1 (kPa) has no impact on our
control point.

3.6.4 Influence of friction angle
Voellmy’s law, uses Coulomb friction angle to estimate shear resistance. Lower friction
angles can result in landslides moving faster and farther because the resisting forces are
smaller. On the other hand, a higher friction angle can slow the movement and reduce
the distance the landslide travels because of increased resistance to motion. Figure 3.12
shows the displacement-time graph for different friction angles.

Figure 3.12: Displacement-time graph for Voellmy model
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When the slope angle (the angle the deformed material makes with the horizontal) is
less than the friction angle, then the material will stop flowing, i.e. the velocity reaches
zero. The velocity-time graph for different friction angles is demonstrated in figure
3.13.

Figure 3.13: Velocity-time graph for Voellmy model

In figure 3.14, we can see the longitudinal profiles of the flows. A higher friction
angle might lead to a more stable post-landslide slope, while a lower one may increase
the likelihood of subsequent failures.

Figure 3.14: Longitudinal profiles and corresponding arrival times for Voellmy model

All things considered, for friction angles larger than 10°, the material flow will not
reach and therefore pose any risk to our checkpoint.
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4.1 Introduction
As mentioned in the previous chapters, the debris flow propagation stage is greatly
influenced by the time-space evolution of the pore-water pressure. As a result, two-
phase modeling is crucial to consider pore pressure variations and precisely simulate
debris flows’ complex behavior. In this chapter, we will first describe the phenomenon of
dewatering. Then, we will introduce the similar one-dimensional dam break problem
as a benchmark and compare the simulation results of our general model with the
simpler approximations which do not consider excess pore pressure. Moreover, we
will discuss the impact of solid phase elastic modulus on consolidation rate and runout
distance. Also a comparison will be made between a high permeable soil and a low
permeable one. Lastly, basal screens will be proposed as a mitigation structure to
reduce debris flow velocity and run out distance. It is interesting to note that the
selected countermeasure involves pore-water pressure dissipation. Thus, the modeling
framework should capture this debris flow phenomenon.

4.2 Dewatering
To extend the proposed model to the most general case, we consider the case of the
partially saturated soil, which consists of three components: a mixture consisting of soil
grains, water, and air. We need to adjust propagation models to capture unsaturated
soil’s dynamic behavior and mechanisms. Therefore, it is essential to consider another
material layer for the air phase.

Figure 4.1-a shows a simplification of reality, where a saturated layer exists at the
bottom, where α is the relative height and αh the depth of the saturated zone, and there
is a top layer of unsaturated soil. In this model, a degree of saturation (Sr) is considered
only for the top layer. Therefore, in this study, we have considered a general case where
the total height h is divided into three layers, as shown in Figure 4.1-b. The partial
heights of solid, fluid, and air can be obtained, respectively, as follows:

hs = (1 − n̄)h (4.1)

hw = n̄ (α + Sr (1 − α))h (4.2)

ha = n̄ (1 − Sr) (1 − α)h (4.3)

where n̄ is the averaged porosity.
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Figure 4.1: Magnitudes characterizing the partially saturated debris flow components

What happens is that once the porosity reaches a lower bound n̄min (which depends
on the solid grains’ size distribution), the upper part of the sliding mass will be un-
saturated. During the computations, we obtain hw and hs from the balance of mass
equations; the porosity is computed as:

n̄ =
hw

hs + hw
⩾ n̄min (4.4)

If at a certain time it reaches the limit, we will compute the depth of the saturated
layer as:

α =
1

1 − Sr

(
1 − n̄inf
n̄inf

hw

hs
− Sr

)
(4.5)

where n̄n+1 =
(
hn+1
w /hn+1) ⩽ n̄inf .

If we are given hs, hw, Sr and α, the total height can be obtained as:

h =
hs + hw

[1 − n̄ (1 − Sr) (1 − α)] (4.6)

This remarkable phenomenon is called dewatering. In the paper published by
Tayyebi et al.[40], the altered balance equations of mass and linear momentum for
partially saturated soils have been proposed. As shown in Figure 4.2, a two-layer
model is presented. The hydrostatic and excess pore-water pressures are considered
for the lower layer. A null pore-water pressure value is assumed at the layer above the
water table.
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Figure 4.2: Pore-water pressure distribution in solid-fluid mixture of total height h. The
lower layer (Layer 1) is fully saturated, whereas the upper layer (Layer 2)
could be partially saturated or dry (Sr = 0).

4.3 A dam break problem
Like before, we have chosen a 1D dam break problem as a benchmark. It consists of
the dam sketched in Fig. 4.3, with a initial height of the material equal to 10m. and a
length of 10m.

Figure 4.3: Initial configuration of the dam break problem.

The dam is filled with a saturated loose granular material with densities of solid
particles and fluid ρs = 2400Kg/m3 ρw = 1000Kg/m3 and an initial porosity of 0.42,
for which the mixture density is ρ = 1800Kg/m3 . The minimum porosity (nmin) of
the material is assumed to be 0.4.

The material is contained by two walls, and at time 0s, the wall on the right is
removed, which causes the material to liquefy. Then, the debris flow propagates along
the horizontal plane.

To assess the factors upon which runout and propagation depend, we have made
several parametrical analysis. This would give us a better insight into the multifaceted
problem of debris flow propagation.
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4.4 Influence of pore-water pressure

To emphasize on the influence of the pore-water pressure on the runout distance for
the two-phase debris flow model, a comparison is made between the added pore-water
pressure extension or without it (fig. 4.4).

Figure 4.4: Comparison of the runouts of two-phase debris flow models with and with-
out pore-water pressure

As evident, pore-water pressure influences propagation in a profound manner, caus-
ing a larger runout distance and a higher velocity, especially in cases where consolida-
tion occurs slowly such as materials with low to medium permeability.

4.5 Influence of elastic modulus

According to equation 2.58, the vertical consolidation rate (second term) is proportional
to the volumetric stiffness of the soil skeleton, which in turn depends on the soil’s
Young’s modulus. Therefore, it is interesting to investigate the effect of elastic modulus
on runout distance, as a larger runout indicates a slower consolidation rate.
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Figure 4.5: Impact of the elastic modulus on the runout distance

4.6 Influence of permeability
In section 2.2.5 some interaction laws have been introduced. Here we will use Anderson
and Jackson law[1] where terminal velocity will be used as a measure of permeability.
To assess the effect of permeability on runout distance, a comparison will be made
between high and low permeable soil with the corresponding terminal velocity (VT )
equal to 1m/s and 10−5 m/s, respectively.

Figure 4.6: Impact of the permeability on the runout distance
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It is important to mention that, since high permeable saturated soil undergoes consol-
idation rapidly, pore fluid abandons the solid skeleton and has a larger displacement.

4.7 Basal Screens
A basal screen is a structure constructed at the base of a slope or hillside to reduce
the runout distance of landslides. The purpose of the basal screen is to intercept and
contain the mass of soil or rock material that is moving downslope during a landslide
event. These structures usually consist of parallel steel rods, with a specified gap
between them, built on a horizontal flat-deck structure (fig. 4.7). It also has a simple
structural design and can be easily installed, repaired, and maintained.

Figure 4.7: Bottom drainage screens in the Kamikami-Horisawa Valley, (a) before and
(b) after the occurrence of a debris flow [14].

The idea of installing bottom drainage screens along the propagation path of debris
flows to reduce their impact was proposed by Hashimoto in Japan in the 1950s [14].
Due to the effectiveness of this energy dissipating structure, several small-scale physical
models have been conducted to have a better understanding of debris-flow screens and
their mechanism including:

i. The effects of different opening widths of permeable screens on the debris-flow
run-out distance [14].

ii. The effects of different bed sediments with different blocking and opening widths
[18].

iii. The effects of different locations of debris flow screens, in the middle or at the end
of the propagation path, on the behaviour of debris flows [43].

When the flowing mass propagates over the screen, some water outflows through the
basal screen. Thus the degree of saturation of debris flow is reduced and dewatering
occurs. In order to study this effect, we have chosen a single node located in the middle
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of the reservoir. The basal pore pressure was monitored over time both without and
with screens (fig. 4.8).

Figure 4.8: Influence of screen on total pore pressure

Analyzing both curves, we can observe a sudden drop in total pore pressure. This is
due to the combined effect of consolidation and a decrease in the height of the mixture
column corresponding to the node. Moreover, it is evident that when the node travels
over the drainage screen, the basal pore-water pressure is fully dissipated.

During the runout, the total pore-water pressure (pb
tot) is a sum of the hydrostatic

(pb
hyd

) and the excess pore-water pressure (∆pb
w). When the moving mass runs over a

permeable screen, the total pore-water pressure (pb
tot) at the basal surface becomes zero.

Consequently, at the basal surface, the hydrostatic pressure (pb
hyd

) instantly becomes
equal, but opposite in sign, to the excess pore-water pressure (∆pb

w). Therefore, negative
values of excess pore-water pressure (∆pb

w) is expected over the permeable screen.

4.8 Influence of screen on different permeabilities

In this section, some parametrical analyses will be done to identify which factors most
significantly affect the performance of permeable screens. By understanding these
aspects, it is possible to develop more effective and efficient designs.

Figure 4.9 demonstrates the runouts for high permeable soil (VT = 1m/s) and low
permeable soil (VT = 10−5 m/s) as well as displacements in the presence of basal screens
of different lengths.
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Figure 4.9: Influence of screen on runout distance

Moreover, to better comprehend the efficacy of screens on decreasing runout distance,
the displacements (at t = 10s) as a function of screen length are depicted in figure 4.10.

Figure 4.10: Influence of screen on different permeabilities

According to figure 4.10, for low permeable soil, runout distance decreases sharply
with a longer screen. Thus, this structural countermeasure is most effective for low per-
meabilities. Figure 4.11 illustrates the profiles of the mixture as it flows on the horizontal
plane and its corresponding porosities for both high (a) and low (b) permeabilities.
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Figure 4.11: The profiles of the propagation heights and their corresponding porosity
of dam break problems with (a) high and (b) low soil permeability.

67



4 Two-Phase Model

As evident in figure 4.11(a), for higher soil permeability, the dewatering rate is
greater. This changes the dynamic behavior of the propagation mass. As shown in
figure 4.11(a-2:5), for high permeable soil on the basal screen, the minimum porosity
of the material (in this case 0.4) is reached, and desaturation starts. Dewatering of soil
reduces the fluid volume fraction in the upper part of debris flow. Consequently, the
upper part of the propagation mass may become dry, but the lower part remains fully
saturated. These factors lead to a hill-shaped accumulation over the screen (fig. 4.11
(a-2:5)).

It is also interesting to note that for high permeable soil, after a certain time (fig. 4.11
(a-3:5)), on the front side of the propagation mass, separation between the fluid and
solid phases occurs. Causing the fluid to travel at higher ranges and the porosity to
equal 1.

As shown in figure 4.11(b-2:5), in the dam break problem with low permeable soil,
the desaturation rate is low, and the porosity remains constant. This indicates that the
low permeability of the soil minimizes water outflow from the soil, and the propagation
mass maintains its mobility.

As mentioned previously, bottom drainage screens are designed to dissipate basal
pore-water pressure and desaturate flowing mass. In figure 4.12, we provide the
distribution of excess pore-water pressure at different time steps corresponding to
debris flows consisting of high (fig. 4.12(a)) and low (fig. 4.12(b)) soil permeability.

As shown in figure 4.12(a-1,b-1), the excess pore-water pressure at the base (∆pb
w)

is equal to 100 kPa which is approximately equivalent to 10 meters of water column.
This indicates that the flowing material is completely liquefied when the dam on the
right side collapses. It can be seen in figure 4.12 that once the moving mass passes over
the permeable screen, the basal total pore-water pressures (pb

tot) of the debris flows
become equal to the atmospheric pressure and the basal excess pore-water pressures
(∆pb

w) become negative.

Furthermore, it is crucial to keep in mind that in depth-integrated models, the vertical
axis of magnitudes, such as pore-water pressure, is eliminated. Therefore, it is neces-
sary to implement an additional consolidation equation describing how pore pressure
evolves over time and depth. One of the advantages of the SPH-FD model is the ability
to simulate cases where basal pore pressures drop to zero due to a landslide crossing a
terrain with very high permeability.

In addition to that, due to the dissipation of pore-water pressures through the basal
screens, soil particles regain their contact friction. Therefore, the basal shear stress of
the flowing material increases, which the presented model is capable of considering it
using the Voellmy rheological equation.

As a comparison between the cases of high (fig. 4.12(a)) and low (fig. 4.12(b)) soil per-
meability, one can observe that drainage screens affect a larger domain in a permeable
environment. While for a low permeable soil, the impact is almost limited to the base.
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Figure 4.12: The distributions of excess pore-water pressure corresponding to dam
break problems with (a) high and (b) low soil permeability.
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By applying the SPH-FD model, it was possible to evaluate how installing the bottom
drainage screens can dissipate significant energy and reduce the runout distance of
debris flows consisting of low or high soil permeability. The numerical results show
the capability of the presented model to properly reproduce the complex behaviour of
debris flows propagating over permeable bottom boundaries, taking into account (i)
pore-water pressures, (ii) porosity variations, and (iii) dewatering effects. Therefore,
the proposed approach can be considered to assess the performance of this type of
mitigation measure.
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5.1 Introduction
In this chapter, we will conduct a numerical analysis for a real case involving a landslide
event in Favazzina, a part of Scilla municipality in the province of Reggio Calabria. To
accurately model landslides, it is essential to consider erosion processes and their
interaction with slope stability. Therefore, a simple erosion law is implemented to
represent the bed entrainment phenomenon. At last, our analysis will focus on placing
bottom drainage screens at different locations.

5.2 Bed entrainment
Bed entrainment, also called basal erosion, is a process which causes an increase in
landslide volume due to the inclusion of soil, debris and trees uprooted from the
ground surface during flow propagation [38]. Entrainment of material, located along
the landslide path, is outlined as a key factor in controlling the dynamics of landslides
of a flow-like character as observed in many catastrophic landslides. Therefore, it is
necessary to understand its dynamics and consider the entrainment effects on runout
analysis results.

The key parameter in evaluating the entrainment process is called entrainment rate
(eR) which is defined as the derivative of the ground surface elevation (z) with respect
to the flow propagation time:

eR = −∂z

∂t
(5.1)

which is generally agreed that the entrainment is positive if the elevation of ground
surface diminishes [9].

Here, a simple law already implemented in the GeoFlow-SPH code, called Hungr’s
law will be described. Hungr’s erosion law [15] assumes that the total volume of debris
increases according to a specified rate. Therefore, the erosion rate (eR) is defined as:

eR = Es.h.v (5.2)
which indicates a direct proportionality between the entrainment rate and the prod-

uct of depth average velocity (v) and mobilized soil depth (h). The landslide growth
rate (Es) can be obtained directly from the initial volume entering the erosion zone (V0),
final volume exiting the erosion zone (Vf) and the path length of the erosion zone (l)
as:
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Es =

ln
(
Vf

V0

)
l

(5.3)

5.3 Case study
Our case study is a landslide event in Favazzina, part of the Scilla municipality in
the province of Reggio Calabria. The study area, of about 1 km2, is located on the
south-western coast of the province of Reggio Calabria, in the hamlet of Favazzina in
the municipality of Scilla. The area of interest is delimited by a mountainous region
approximately 600 meters above sea level and the centre of Favazzina (fig. 5.1).

Figure 5.1: 2001 and 2005 debris flows in Favazzina [8]

It is worthwhile to mention that, two significant landslide events recorded in the area
occurred in May 2001 and March 2005, causing extensive damage and involving various
lifelines. The 2001 and 2005 debris flows initiated from the slide from a steep bank and
are characterised by the small volume of the initiating slide; the bulk of the material
involved in the debris flow events originated from entrainment from the path. This
study focuses on the 2005 event, characterised by three translational shallow landslides
(fig. 5.1), at about 370 m (triggering area A03), 242 m (triggering area A04) and 170 m
a.s.l. (triggering area A05), respectively, that evolved into a debris flow. This debris
flow caused serious damage to the transport infrastructures (the SS18 state road and
the railway) and the derailment of the ICN Reggio Calabria-Milan intercity train [8].
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5.4 Previous Studies
The event has been extensively studied previously [26, 8], and several numerical sim-
ulations using GeoFlow-SPH were performed, modeling the problem as single-phase
with Bingham rheological behaviour. The choice to use this type of modeling was
made under a series of specific site information and laboratory tests on the materials
involved, such as viscometer tests and granulometric analyses. Thanks to the support
of laboratory tests and subsequently through numerical modeling, it was possible to
characterize the propagation process and identify the areas exposed to risk by deter-
mining the deposit area with a maximum accuracy of 92.5%. This demonstrates the
adequacy of single-phase modeling with Bingham rheological law for the mentioned
case. Additionally, two-phase modeling using Voellmy’s rheological law yielded the
same order of accuracy [42]. Therefore, we were confident in using the quantities
provided by the noted works.

5.5 Back analysis
In this section, we will determine the parameters and conditions to reproduce the
2005 debris flow event. It involves working backward from the observed failure and
deposition shape to estimate the initial conditions, material properties, and parameters
that created the propagating mass.

Since we are required to model the event as a two-phase phenomenon, Voellmy’s
rheological law will be used. The results of calibrating parameters are shown in table
5.1.

Table 5.1: Calibrated quantities and parameters [42]

The initial landslide volumes and deposition shape (highlighted in white) are de-
picted in figure 5.2.

73



5 Application to a real case

Figure 5.2: (a) Debris flow deposition on the real map , (b) Detached volumes [8]

For the simulation, source points have been defined in the areas of detatchment.
It is essential to note that simulations are based on Digital Terrain Model (DTM), in
which all above-ground features like buildings, vegetation, and infrastructure are not
considered. This may introduce some degree of error compared to the real event.

To get a better insight of the flow path and the debris flow evolution, the runout
at different temporal intances are displayed in figure 5.3. As evident, our numerical
model accurately approximates the behavior of real complicated phenomenon. This is
due to the precise representation of the material properties, boundary conditions, and
other relevant parameters. Moreover, it validates our modeling assumptions and the
choice of constitutive and rheological models.

However, it is worthwhile to mention that geotechnical problems often involve inher-
ent uncertainties due to natural variability and limitations in measurement techniques.
Accounting for these uncertainties can be challenging, and in most cases, it may not be
possible to precisely replicate the real event in the simulation.

Performing simulations like these allows us to determine the affected area and es-
timate economic, social, and environmental losses resulting from the damage. This
may involve assessing the cost of infrastructure repairs, the impact on livelihoods,
environmental degradation, or public health risks.

74



5.6 Bottom drainage screens

Figure 5.3: Debris flow evolution

5.6 Bottom drainage screens
As discussed in the previous chapter, bottom drainage screens can effectively dissipate
energy and decrease the distance traveled by debris flows. When it comes to bottom
drainage screen’s slope, it is beneficial that it matches the slope of our terrain. This
dramatically reduces impact forces and structural loads.

A screen with a length of 20m is placed at different locations so that more effective
and efficient designs can be developed. As illustrated in figure 5.4, according to slope
discontinuities along the propagation path, we consider four spots (A, B, C, or D) to
position the screen. Moreover, two basal screens are strategically placed at the toe
of a slope (C and D), where potential landslide material is expected to accumulate.
Following that, we can compare the runout in each case to find the optimal location.
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The deposition shape related to each case can be seen in figure 5.5.

Figure 5.4: Location of the screens

The kinetic energy of landslides is influenced by two crucial factors: velocity and
volume. Landslides with high velocities and large volumes can cause widespread
devastation and loss of life. The destructive power of such landslides is attributed to
their ability to displace structures, erode the landscape, and bury everything in their
path. To assess the extent of damage to infrastructure and buildings, a checkpoint
is considered along the flow path and just before the urban area (fig. 5.6). This is to
record the velocity and flow discharge. The volume traveled beyond the checkpoint
was calculated by integrating the discharge over time.

The results are summarized in table 5.2. It can be observed that screens at A and B,
would not reduce the magnitude of the very first impact and only decrease the passed
volume. However, screens at point C and point D decrease flow velocity and volume.
Between all four spots, point C seems to be the optimal location for setting up the
screen. To further limit the affected area, two screens are placed at points C and D. This
combination stops the flow before it reaches the urban area.
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Figure 5.5: Screens’ location and their corresponding runout
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Figure 5.6: Specified checkpoint to record data

Table 5.2: Volume and propagation velocity of the debris flow measured at the check-
point

5.7 Some considerations
The effectiveness of a basal screen in reducing the runout distance of a landslide de-
pends on various factors, including the characteristics of the slope, the magnitude of

78



5.7 Some considerations

the landslide, and the design and construction quality of the screen itself. Detailed
engineering analysis and design are typically required to determine the appropriate
dimensions, materials, and construction techniques for a basal screen in a specific
landslide-prone area.

It’s important to note that while basal screens can help mitigate the impact of land-
slides, they are not always a standalone solution. They are often implemented as part
of a comprehensive slope stabilization and landslide risk management strategy, which
may include other measures such as slope reinforcement, drainage improvements, or
vegetation management. They can also complement other structural countermeasures
like retaining walls and earthen embankments.
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6 Conclusion
This M.Sc. thesis implements a depth-integrated two-phase SPH model for replicating
the dynamics of debris flows. Debris flows are rapid landslides characterized by the
movement of fluidized geomaterials. Understanding the evolution of excess pore-
water pressure is crucial in studying debris flow behavior. The thesis is divided into
five chapters, each covering specific aspects of the research.

Chapter 1 provides a brief introduction to rapid landslides, particularly debris flows,
emphasizing the importance of considering the time-space evolution of excess pore-
water pressure.

Chapter 2 introduces the two-phase mathematical model, which includes excess
pore pressure in debris flows, specifically those consisting of low to medium perme-
able soils. This involves incorporating a one-dimensional consolidation equation into
the system of equations. This chapter also presents two numerical methods to trans-
form partial differential equations into ordinary differential equations. The mass and
momentum balance equations are discretized using SPH, while the consolidation equa-
tion is discretized using a set of finite difference meshes associated with each SPH node
representing a solid particle.

Chapter 3 explores different rheological laws to describe the behavior of fluidized
geomaterials. Depth-integrated rheological relations are then presented to complete
the governing equations discussed in Chapter 2. Additionally, several parametrical
analyses have been performed to identify the factors that have a significant impact on
the flow propagation.

Chapter 4 demonstrates the performance of the proposed two-phase SPH model.
The model is used to investigate the role of excess pore-water pressure during debris
flow propagation. Moreover, several sensitivity analyses are conducted within this
chapter to provide valuable information regarding the influence of soil stiffness and
permeability on runout distance and excess pore pressure evolution. The chapter
concludes by performing additional analyses to assess the effectiveness of drainage
screens in debris flows under different consolidation rates.

In Chapter 5, a real-life case study in Italy (Favazzina, 2005) is investigated. The
case is selected based on reliable information, including topography, volume of the
landslide, distribution of deposition, final runout, and estimated velocities. The results
indicate that the proposed model is suitable for analyzing and forecasting debris flow
propagation and deposition. As a mitigation measure, bottom drainage screens have
been placed at different spots to reduce the potential damage caused by landslides.

Overall, this numerical model proved to be beneficial as a valuable tool for predict-
ing the potential hazards associated with debris flows and can help researchers and
practitioners make informed decisions regarding mitigation measures.
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