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Abstract 

The advent of electric vehicles (EVs) promises to be a game-changer for the world’s shift to 

sustainability. EV deployment has been accelerating in the past decade due to many factors, and 

it is expected to increase in the future at an exponential pace. However, the higher the EV 

penetration level, the higher power demand is imposed on the power system, which increases the 

risk of frequency unbalance at the grid. Moreover, the main challenge ahead lies in improving the 

range and reducing the cost of the currently available technologies, especially the charging costs. 

This thesis aims to provide a sort of solution to minimize the impact of EV charging on the power 

grid by providing smart charging models and proposing new smart charging technologies for two 

scenarios of namely, a residential neighbourhood scenario and a commercial building scenario. 

We formulate a cost minimization model that minimizes the electricity bill of a commercial facility 

by optimizing the charging schedule of its EVs based on the variable electricity prices and using a 

proposed technology of three-phase charging clusters. In addition, we formulate another model 

for a residential neighbourhood of two optimization stages; The first is based on the peak shaving 

concept of reducing the impact of high power demand due to enormous EV penetration from an 

energy supplier standpoint. The second subsequent stage aims to reduce the houses’ electricity 

bills obtained by the first stage in the entire neighbourhood. After performing extensive 

experiments of different scenarios for both models, we find that the commercial model proves 

the advantages of high power charging clusters having charging points up to 4 to replace the 

single-phase single-socket chargers. Similarly, the results of the residential scenario show the high 

feasibility level of the proposed model in reducing the peak power demand to its minimum values 

compared to using only cost minimization models. It also proves that the two-stage model can 

satisfy at least 90% of the houses in a particular neighbourhood with a cost reduction rate that 

could reach 20% in some cases. 

 

Keywords: Electric Vehicles, Electric Freight Vehicles, Residential Neighbourhoods, Commercial 

and Industrial Facilities, Smart Charging, Smart Pricing, Charging Clusters, Cost Minimization, Peak 

Power Shaving, Load Shifting, Optimization, Mixed Integer Linear Programming. 
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Sommario 

 L'avvento dei veicoli elettrici (EV) promette di essere un game-changer per il passaggio del 

mondo alla sostenibilità. La diffusione dei veicoli elettrici è stata accelerata nell'ultimo decennio a 

causa di molti fattori e si prevede che aumenterà in futuro ad un ritmo esponenziale. Tuttavia, più 

alto è il livello di penetrazione dei veicoli elettrici, più alta è la domanda di energia che viene 

imposta al sistema elettrico, il che aumenta il rischio di squilibrio di frequenza nella rete. Inoltre, 

la sfida principale è quella di migliorare l'autonomia e ridurre il costo delle tecnologie attualmente 

disponibili, specialmente i costi di ricarica. Questa tesi mira a fornire una sorta di soluzione per 

ridurre l'impatto della ricarica dei veicoli elettrici sulla rete elettrica, fornendo modelli di ricarica 

intelligente e proponendo nuove tecnologie di ricarica intelligente per due scenari, ovvero uno 

scenario di quartiere residenziale e uno scenario di edificio commerciale. Formuliamo un modello 

di minimizzazione dei costi che minimizza la bolletta elettrica di una struttura commerciale 

ottimizzando il programma di ricarica dei suoi veicoli elettrici basato sui prezzi variabili 

dell'elettricità e utilizzando una tecnologia proposta di cluster di ricarica trifase. Inoltre, 

formuliamo un altro modello per un quartiere residenziale di due livelli di ottimizzazione dove il 

primo è basato sul concetto di peak shaving per ridurre l'impatto dell'alta domanda di energia 

dovuta all'enorme penetrazione dei veicoli elettrici dal punto di vista del fornitore di energia. 

Mentre la seconda fase successiva mira a ridurre le bollette elettriche delle case ottenute dalla 

prima fase in tutto il quartiere. Dopo aver eseguito ampi esperimenti di diversi scenari per 

entrambi i modelli, troviamo che il modello commerciale dimostra i vantaggi dei cluster di ricarica 

ad alta potenza con punti di ricarica fino a 4 per sostituire i caricabatterie monofase a presa 

singola. Allo stesso modo, i risultati dello scenario residenziale mostrano l'alto livello di fattibilità 

del modello proposto nel ridurre la domanda di potenza di picco ai suoi valori minimi rispetto 

all'utilizzo di soli modelli di minimizzazione dei costi. Si dimostra anche che il modello a due fasi 

può soddisfare almeno il 90% delle case in un certo quartiere con un tasso di riduzione dei costi 

che potrebbe raggiungere il 20% in alcuni casi. 

 

Parole chiave: Veicoli elettrici, veicoli elettrici per il trasporto merci, quartieri residenziali, strutture 

commerciali e industriali, ricarica intelligente, tariffazione intelligente, cluster di ricarica, 

minimizzazione dei costi, riduzione dei picchi di potenza, spostamento del carico, ottimizzazione, 

programmazione lineare integrale mista. 
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Extended Abstract 

 Introduction 
The advent of electric vehicles (EVs) including battery electric vehicles (BEVs) and plug-in 

hybrid electric vehicles (PHEVs) promises to be a game-changer for the world's shift to 

sustainability. Nowadays, transport electrification is considered one of the top technological 

alternatives to mitigate climate change as it contributes significantly to reducing GHG emissions, 

especially CO2 emissions and energy dependence on petroleum fuel and other external energy 

supplies offering the potential to reduce the oil imports and many economic benefits.  

The main challenge ahead lies in improving the range and reducing the cost of the currently 

available technologies, whether it is the price of buying the EV or the charging fees. The energy 

system is evolving due to a steady increase in electric vehicles on the demand side and local output 

(mostly from solar panels) on the supply side. Both technologies could bring the energy grid under 

strain at certain times of the day, especially that EVs require high power for an extended period 

while charging, even though there is enough capacity on the grid for most of the day. 

EV smart charging techniques are highly efficient and promising ways to deal with the surplus 

production and represent a critical component of the friendly environment and cost-effective EV 

integration into the power grid. The central concept of smart charging is to shift the charging 

schedule of EVs towards the Off-peak periods of the day and when electricity cost is at its lowest 

values to eliminate the risk of a demand spike at the same time of satisfying the vehicle owner's 

need. Smart charging techniques are based on exchanging data of electricity prices and energy 

demand and generation levels at a given time between EVs and the smart grid to offer customers 

lower charging costs when charging their EV on low demand periods of the day.  

The smart charging strategies in use could be classified into five main strategies that are as 

follows: Time-of-use-pricing without automated control, dynamic pricing with automated control, 

basic controlled (on/off), unidirectional controlled charging (V1G), and bidirectional controlled 

charging (V2G, V2H, V2B). Such technologies allow EVs to be charged during periods of the day 

with low energy costs and then supply their access energy to the house/building during periods of 

high energy prices, which helps in reducing the electricity bill.  
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We present in this research decentralized charging strategies that give individual EV users a 

level of decision making in which EV intelligent charging points often communicate a small amount 

of data with a centralized unit which then sends global coordination to all charging points. We 

propose two Mixed Integer Linear Programming (MILP) problems that refer to two different EV 

charge scheduling problems. The first problem is based on a commercial and industrial scenario 

(CIS) where we create a mathematical model to optimize the charging schedule of medium-duty 

electric trucks using a clustering technology for the charging infrastructure. This model aims to 

explore the potential of clustered charging techniques for charging commercial EVs overnight at a 

minimum cost considering the effects of grid restrictions and charging interruptions. 

The second optimization model is a two-stage EV charging problem of a residential scenario. 

The primary stage seeks to reduce the EV integration impacts on the power grid in a residential 

neighborhood as the first from a DSO point of view by developing a peak shaving model (PSM). 

However, the second one aims to minimize the total electricity bill for each housing of EV users in 

the neighbourhood by creating a charging cost reduction model (CCRM) and analyze the effects 

of smart pricing, EV penetration levels, and different approaches for the two-stage interface of the 

optimization model. 

Battery Charging Process 

EVs are commonly charged under a constant current-constant voltage (CC-CV) approach to 

minimize the impact of overcharging degradation that can cause permanent damage to EV 

batteries. CC-CV charging scheme is the most prevalent method for charging Li-ion batteries that 

are typically used in modern EVs. CC-CV method is developed from combining the two basic 

charging schemes CC and CV charging methods to increase the charging efficiency and overcome 

their major downsides such as overcharging or undercharging, battery capacity losses for the CC 

charging scheme, slow charging, and overheat for the CV charging method. The battery charging 

behavior under the CC-CV method is illustrated in Fig. 1, consisting of two stages of different 

characteristics.  

 

Fig. 1: Constant Current-Constant Voltage charging scheme. 
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We simulate the CC-CV charging process for four different Lithium-ion battery cells used in 

four different EV models of different design characteristics by referring to a simplified battery 

model. The battery charging simulations consider only the charging losses in the EV components 

as a function of the battery's SoC. The simulations were performed using a Microsoft Excel 

worksheet, whereas the results visualizations were done in python using the Matplotlib library. 

The charging simulations refer to the EV charging problem of both the commercial scenario using 

one type of medium-duty electric freight vehicle and the residential one using three different 

models of passenger EVs. 

a) b)  

Fig. 2: A comparison of the discretized CC-CV process of a 3.6V-38Ah lithium-Ion battery cell with 
different current values in the CC phase: (a) A single-phase EVSE of 7.36 kW power capacity (b) A 

three-phase EVSE of 11 kW power capacity. 

Fig. 2 illustrates a comparison of the charging simulation performed for a 3.6𝑉-38𝐴ℎ Lithium-

Ion battery cell that corresponds to a medium-duty electric vehicle having a total energy capacity 

of 82.8 (𝑘𝑊ℎ) using two 𝐼𝑐𝑐 values: (a) refers to a 3.4 (𝐴) DC value equivalent to a 0.085C charge 

rate that corresponds to the single-phase 32 (A) AC power supply of 7.36 (𝑘𝑊) power capacity. 

(b) corresponds to the usage of a three-phase power supply having a phasor current of 16 (𝐴) a 

total power capacity of 11 (𝑘𝑊), and it is able to deliver a maximum DC value of 5.09 (𝐴) 

equivalent to a 0.1275C charge rate. Fig. 3 illustrates the CC-CV charging process of the three 

batteries that correspond to three different EV models in discrete time formulation and 

accounting for the Power Electronics Unit (PEU) percentage losses defined by the parameter q. 
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a) b)  

c)  

Fig. 3: The discretized CC-CV process of different Lithium-Ion battery cells using the same power 
supply of a 7.36 kW capacity. (a) 3.6V-34Ah Lithium-Ion battery cell of a Nissan leaf EV, (b) 3.6V-

40Ah Lithium-Ion battery cell of a BMW i3 EV, and (c) 3.6V-36Ah Lithium-Ion battery cell of a 
Toyota RAV4 EV. 

The Commercial and Industrial Problem Model 

We minimize the total electricity bill of a goods distribution firm by optimizing the overnight 

charge scheduling of a fleet of electric freight vehicles charged using the conventional smart 

chargers and new proposed smart charging clusters. The model considers the electricity prices 

that vary during the day and other battery parameters of each vehicle like the remaining state of 

charge (SoC), the energy needed to perform tasks in the coming day, and the departure and arrival 

periods from and to the site for each vehicle. This model is defined over a planning interval of one 

day, assumed to be a working day. Our planning interval is discretized into a set  𝑇 =  {1, … , 𝑇𝑚𝑎𝑥} 

of 𝑛𝑡 consecutive periods, each having a duration 𝛥𝑡 of 15 minutes (0.25 h) (𝑡 ∈ 𝑇). The set 𝑉 =

 {1, … , 𝑚} represents a fleet of 𝑚 homogeneous EFVs assumed to be medium-duty electric trucks, 

each equipped with several lithium-ion battery cells combined to give the required total energy 

capacity.  
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The charging system's infrastructure in the depot consists of a set of 𝐶 dedicated clusters of 

different power capacities. Each cluster 𝑐 ∈ 𝐶  is a similar example of electric vehicle supply 

equipment (EVSE) of a specific charging power level and equipped with one or more sockets. One 

or more than one EV could be plugged simultaneously into the same cluster and share its 

maximum power such that if only one EV is plugged into the cluster, it benefits from the total 

power output of the cluster alone, which means a higher charging rate and shorter charging. If any 

other EV is plugged into the same cluster, then the power would be divided and shared between 

both EVs but not necessarily evenly distributed. We assume having three types of clusters 

classified as follows: Type one is a single-phase EVSE having an output voltage of 230 𝑉 and a 32 

(𝐴)  maximum current supply that corresponds to a power capacity 𝐺𝑐 (𝑘𝑊) of 7.36 (𝑘𝑊). Type 

two and three are three-phase EVSE with an output voltage of 400 𝑉, and current capacities per 

phase of 16 (𝐴)  and 32 (𝐴)  that are equivalent to 11 (𝑘𝑊)  and 22 (𝑘𝑊)  power capacities 

respectively. Fig. 4 shows a simplified configuration of the smart charging system's clustered 

infrastructure in the depot where the bidirectional arrows represent the direction of data 

communication among the system's different levels. However, power flow is unidirectional from 

the grid as a top-level towards EVSEs as the bottom-level and is represented by the unidirectional 

red arrows. 

 

Fig. 4: A Simplified scheme of a smart charging system's clustered infrastructure in the depot 
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Mathematical Formulation 

Six sets of decision variables are required for our formulation. Binary variables 𝑢𝑣,𝑐 take a 

value of 1 if vehicle 𝑣 is connected to cluster 𝑐, and take a value of 0 otherwise. Binary variables 

𝑧𝑡,𝑣
𝑐,𝑏 that take the value of 1 if EFV 𝑣 is retrieving current from a charging socket in cluster c during 

period 𝑡 before departure time from the site between breakpoints 𝑆𝑂𝐶𝑏−1,𝑐
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑏,𝑐

𝑏𝑟𝑒𝑎𝑘, and 

take a value of 0 otherwise. While binary variables 𝑦𝑡,𝑣, take a value of 1 when the charging event 

of EFV 𝑣 shifts from ON to OFF between periods 𝑡 − 1 and 𝑡  and take a value of 0 otherwise.  

 Real and positive variables 𝑖𝑡,𝑣,𝑐 refer to the charging current applied to EFV 𝑣 by cluster 𝑐 

during the entire period 𝑡. Real and positive variables 𝑠𝑜𝑐𝑡,𝑣 refer to the state of charge of EFV 𝑣  

at the beginning of time 𝑡. Finally, Real positive variable s indicates the maximum charging power 

retrieved from the grid during the planning interval used to determine the FRD charges. To sum 

up, our problem is presented in the following mathematical model and the mixed-integer linear 

programming formulation (MILP), respectively: 

Sets: 

 𝑇: Set of time in the scheduling horizon         (𝑇 = {1, … , 𝑇𝑚𝑎𝑥}) 

 𝑉: Set of EFVs.          (𝑣 ∈ 𝑉) 

 𝐶: Set of charging clusters.         (𝑐 ∈ 𝐶) 

 𝐵𝑐: Set of breakpoints used in the piecewise linear approximation of the CC-CV 

charging process using cluster 𝑐.         (𝑏 ∈ 𝐵𝑐) 

Parameters: 

 𝑙𝑡: non-flexible consumption profile of the commercial site (non-EFV) at time 𝑡. (𝑘𝑊) 

 𝑝𝑡: Electricity price at time 𝑡. (€/𝑘𝑊ℎ) 

 𝑄: The charge capacity of the battery of the EFV (𝐴ℎ). 

 𝑄𝐸: The energy capacity of the battery of the EFV (𝑘𝑊ℎ). 

 𝐿: The onboard power capacity of the EFV (𝑘𝑊). 

 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦: The rated voltage of the battery of the vehicle (𝑉). 

 𝑁: The maximum number of cuts allowed for the battery of EFV. 

 𝑎𝑣: The arrival time of EFV 𝑣 to the depot. 

 𝑑𝑣: The departure time of EFV 𝑣 from the depot. 

 𝑒𝑣: Energy needed for EFV 𝑣 to travel the next day (𝐾𝑊ℎ). 

 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡: The SoC associated with the first period of the time horizon for each EFV 𝑣 ∈ 𝑉. 
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 𝑃: The Grid power capacity that could be consumed by the site at any time (𝑘𝑊) 

 𝐹: FRD charge  (€/𝑘𝑊) 

 𝐺𝑐: Maximum power could be withdrawn instantaneously from cluster 𝑐. (𝑘𝑊) 

 ℎ𝑐: The number of charging sockets in cluster 𝑐.  

 𝐼𝑐,𝑏
𝑚𝑎𝑥: The maximum current that could be retrieved in the piecewise linear approximation  

           of the CC-CV charging process depending on the charging level of cluster 𝑐 between 

           the breakpoints 𝑏 and 𝑏 − 1 for 𝑏 ∈ 𝐵𝑐, b > 0. (𝐴) 

 𝐼𝑐,𝑏
𝑚𝑖𝑛 : The minimum current that should be retrieved in the piecewise linear approximation  

           of the CC-CV charging process depending on the charging level of cluster c between 

           the breakpoints 𝑏 and 𝑏 − 1 for 𝑏 ∈ 𝐵𝑐, 𝑏 > 0. (𝐴) 

 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘: The state of charge associated with breakpoints 𝑏 ∈ 𝐵𝑐 in the piecewise linear  

                    approximation of the CC-CV charging function of cluster 𝑐. 

 𝑆𝑂𝐶𝑚𝑎𝑥: The maximum state of charge that any vehicle could reach while charging. 

 𝑆𝑂𝐶𝑚𝑖𝑛: The minimum state of charge that any vehicle could reach during the discharging 

                  Process.  

 𝑞: The average weighted power loss factor during charging. 

 𝛥𝑡: Timestep in (h). 

Variables: 

 𝑖𝑡,𝑣,𝑐 ≥ 0: The current value is taken by EFV 𝑣 at time 𝑡 in cluster 𝑐. (A) 

 𝑠𝑜𝑐𝑡,𝑣 ≥ 0: The state of charge of EFV 𝑣 at time 𝑡. 

 𝑧𝑡,𝑣
𝑐,𝑏 ∈ {0,1}: 1 if EFV 𝑣 uses a cluster 𝑐 at time 𝑡 with a state of charge between 

                              𝑆𝑂𝐶𝑐,𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑐,𝑏

𝑏𝑟𝑒𝑎𝑘. 

                              0 otherwise. 

 𝑦𝑡,𝑣 ∈ {0,1} : 1 if EFV 𝑣 stops charging at time period 𝑡. 

                              0 otherwise 

 𝑢𝑣,𝑐 ∈ {0,1} : 1 if EFV 𝑣 is plugged into cluster 𝑐. 

                               0 otherwise 

 𝑠 ≥ 0: The maximum charging power withdrawn from the grid along the planned horizon. 
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Formulation: 

minimize             ∑ 𝑝𝑡𝛥𝑡 ൭𝑙𝑡 + ∑ ∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑐∈𝐶𝑣∈𝑉

൱ + 𝐹 ∙ 𝑠

𝑡∈𝑇

 (1) 

 subject to: 

𝑙𝑡 + ∑ ∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑐∈𝐶𝑣∈𝑉

≤ 𝑠         ∀𝑡 ∈ 𝑇 (2) 

0 ≤ 𝑠 ≤ 𝑃 (3) 

∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑣∈𝑉

≤ 𝐺𝑐         ∀ 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (4) 

∑ ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶𝑣∈𝑉

𝑎𝑣−1

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝑐𝑣∈𝑉

𝑻𝒎𝒂𝒙

𝑡=𝑑𝑣

= 0         (5) 

𝑠𝑜𝑐1,𝑣 = 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡           ∀𝑣 ∈ 𝑉 (6) 

𝑠𝑜𝑐𝑑𝑣+1,𝑣 = 𝑠𝑜𝑐𝑑𝑣,𝑣 −
𝑒𝑣

𝑄𝐸
         ∀𝑣 ∈ 𝑉 (7) 

𝑠𝑜𝑐𝑑𝑣,𝑣 = 𝑠𝑜𝑐𝑎𝑣,𝑣 +
𝑒𝑣

𝑄𝐸
         ∀𝑣 ∈ 𝑉 (8) 

∑ ∑
𝑖𝑡,𝑣,𝑐(1 − 𝑞)𝛥𝑡

𝑄
𝑐∈𝐶𝑡∈𝑇

+ 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛 =

𝑒𝑣

𝑄𝐸
        ∀𝑣 ∈ 𝑉 (9) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑠𝑜𝑐𝑡−1,𝑣 + ∑
𝑖𝑡−1,𝑣,𝑐(1 − 𝑞)𝛥𝑡

𝑄
𝑐∈𝐶

        ∀𝑡 ∈ 𝑇\{1, 𝑑𝑣, 𝑑𝑣 + 1}, 𝑣 ∈ 𝑉 (10) 

𝑠𝑜𝑐𝑡+1,𝑣 ≤ 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 + 1 − 𝑧𝑡,𝑣

𝑐,𝑏   ∀𝑡 ∈ {𝒂𝒗, … , 𝑑𝑣 − 1}, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐\{0} (11) 
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𝑠𝑜𝑐𝑡,𝑣 ≥ 𝑆𝑂𝐶𝑐,𝑏−1
𝑏𝑟𝑒𝑎𝑘 − 1 + 𝑧𝑡,𝑣

𝑐,𝑏   ∀𝑡 ∈ {𝒂𝒗, … , 𝑑𝑣}, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐\{0} (13) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥          ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (14) 

𝑖𝑡,𝑣,𝑐 ≤ ∑ 𝐼𝑐,𝑏
𝑚𝑎𝑥𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (15) 

𝑖𝑡,𝑣,𝑐 ≥ ∑ 𝐼𝑐,𝑏
𝑚𝑖𝑛𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (16) 

∑ ∑ 𝑧𝑡−1,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

− ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 𝑦𝑡,𝑣        ∀𝑡 ∈ {𝒂𝒗 + 𝟏, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (17) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≥ 𝑦𝑡,𝑣         ∀𝑡 ∈ 𝑇\{𝒂𝒗 + 𝟏, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (18) 

∑ 𝑦𝑡,𝑣

𝑡∈𝑇

+ ∑ ∑ 𝑧𝑇𝑚𝑎𝑥,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 𝑁 + 1         ∀𝑣 ∈ 𝑉 (19) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 1         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (20) 

∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}

≤ 𝑢𝑣,𝑐         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (21) 

∑ 𝑢𝑣,𝑐

𝑐∈𝐶

≤ 1         ∀𝑣 ∈ 𝑉 (22) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑣∈𝑉

≤ ℎ𝑐          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (23) 

∑ 𝑢𝑣,𝑐

𝑣∈𝑉

≤ ℎ𝑐          ∀𝑐 ∈ 𝐶 (24) 
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𝑖𝑡,𝑣,𝑐 ≤ ∑
𝐺𝑐 ∙ 1000

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶  (25) 

𝑖𝑡,𝑣,𝑐 ≤ ∑
𝐿 ∙ 1000

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶  (26) 

𝑧𝑡,𝑣
𝑐,𝑏 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐 (27) 

𝑦𝑡,𝑣 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (28) 

𝑢𝑣,𝑐 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (29) 

The objective function (1) minimizes the total energy costs over the planning horizon. The first 

term corresponds to the total energy cost of the site that is the cost of electricity 𝑝𝑡 (€/𝑘𝑊ℎ) 

multiplied by another two subterms that are the non-EV normal power demand of the site 𝒍𝒕 (kW) 

multiplied by the period length 𝛥𝑡 (hours) and the total energy consumed by EFVs for charging 

their batteries over the planned horizon. The second term in the objective function (1) represents 

the FRD charges that the whole site is subjected to and is determined by multiplying the fee 

𝐹 (€/kW) by the maximum charging power retrieved from the grid throughout the entire planned 

interval. EFVs would be scheduled in a way to retrieve power from the grid during the periods 

when the regular power consumption of the site 𝑙𝑡  is relatively lower than its values in other 

periods. 

Simple Example with Multiple Solutions 

To help readers comprehend the problem and its mathematical formulation, we generate 

examples of different optimal solutions for a small instance of the EFV-CCSP.  We assume having 

a time interval of 24 periods that starts from 15:00 with a time step of one hour resulting in a 

whole night charging problem such that the cost of energy 𝑝𝑡 and the non-EV power consumption 

of the building 𝑙𝑡 are given in Table 3. The grid power limit 𝑃 is set to the value of 200 (kW) that 

could be neglected for the sake of simplicity, and the FRD fees are set to be 11 (€/kW). We apply 

the experiments on a set of 3 homogeneous vehicles with an energy capacity of 82.8 (kWh), a 

charge capacity of 230 (Ah), 360 (V) battery voltage, and a 12 kW onboard charger. The energy 

needed 𝑒𝑣 (kWh), and the arrival and departure periods for each vehicle are given in TABLE 1. 
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TABLE 1: Route parameters for the simple numerical example 

𝑉 distance(km) 𝑒𝑣 (𝑘𝑊ℎ) 𝑑𝑣 𝑎𝑣 
1 62 40 17 3 
2 65 42 18 2 
3 68 44 17 4 

There are three types of clusters installed in the depot in which, for every example, all EVs for 

their charging process use the same type of cluster to analyze better the effects of the cluster's 

types on the charging behavior of the EFV behavior while performing the overnight charging. For 

the sake of simplicity, we set only two breakpoints associated with the linear approximation CC-

CV charging process of the battery using any cluster type such that 𝐵𝑐 = {0,1}. The values of the 

maximum current 𝐼𝑐,𝑏
𝑚𝑎𝑥 and the minimum current 𝐼𝑐,𝑏

𝑚𝑖𝑛 and the SoC breakpoint 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 that 

correspond to the breakpoints specified to each charging type are summarized in TABLE 2. 

TABLE 2: Design parameters associated with the breakpoints of the linear approximation of the 
charging process 

𝐵 
32 (A) single-phase EVSE 16 (A) three-phase EVSE 

𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 𝐼𝑐,𝑏

𝑚𝑎𝑥 𝐼𝑐,𝑏
𝑚𝑖𝑛 𝑆𝑂𝐶𝑐,𝑏

𝑏𝑟𝑒𝑎𝑘 𝐼𝑐,𝑏
𝑚𝑎𝑥 𝐼𝑐,𝑏

𝑚𝑖𝑛 

0 0.05 0 0 0.05 0 0 

1 0.99 20.5 4.1 0.99 30.5 6 

 

 

Fig. 5: The power consumption profile of the building when using three different charging 
infrastructure cases and the electricity prices variation with time. 
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a)  

b)  

c)  

Fig. 6: The SoC evolution with time during the charging process of EVs "1", "2" and "3" using: (a) 
3 single-socket chargers each having a 7.36 kW power capacity, (b) a double-socket charger and 
a single-socket charger both having a 7.36 kW power capacity, (c) a triple-socket charger of 11 

kW power capacity. 
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Fig. 7: The building's electricity bill as a result of three different charging infrastructure scenarios. 

Three cases are defined as A, B, and C, where A refers to a charging infrastructure composed 

of single-socket single-phase 32 (A) charging stations such that ℎ𝑐=1 for all the clusters and 

characterized by a power capacity of 7.36 kW each. Case B represents a depot equipped with two 

twin-socket single-phase 32 (A) intelligent chargers with a power capacity of 7.36 kW. Each of the 

two clusters could deliver a power of 7.36 kW per socket and the same power value combined. 

Finally, case C is similar to case B, with the difference in having a three-phase 16 (A) smart cluster 

equipped with 3 charging sockets and delivering a combined power of up to 11 kW. Figures 5, 6, 

and 7 illustrate the results of the optimal solutions for the example proposed before using the 

three different charging technologies and show their effect on the charging cost and the power 

system. 

The Residential Neighbourhood Problem Model 

This section considers having a DSO that aims to reduce the impact of the daily EVs' charging 

profile and avoid the spiking electricity demand in a particular neighborhood. To do so, the DSO 

offers its clients a new smart charging technology consisting of a dedicated smart charging station 

installed at every house in the neighborhood and is connected through the internet to a smart 

charging app installed on any smartphone. The mobile app allows communication between EVs 

and the smart grid and between all EVs in the neighborhood through the smart chargers installed 

in each house. Logically speaking, this new technology would be accepted by EV users only if it 

helps them save money and make their EV charging process more accessible and more secure in 

the sense of ensuring that their EV would be charged with at least the energy needed at the 

departure time they specify as an input parameter through the mobile app.  
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TSREV-CSP serves as an exciting charging strategy to satisfy both the DSO and EV users 

simultaneously for being designed with dual objective functions corresponding to two dependent 

optimization models. The first model is a peak shaving model (PSM) that allows the DSO to 

minimize the grid power capacity and normalize the neighborhood's load profile throughout the 

entire day. Then comes the subsequent charging cost reduction model (CCRM) based on the 

optimal solution of PSM to minimize the cost of EV charging thanks to the smart pricing strategies.  

Our problem is defined over a set T= (1,..,𝑇𝑚𝑎𝑥) the time interval of equidistant periods with 

a time step 𝛥𝑡 of 15 mins (0.25 h). The neighborhood consists of a set V of electric vehicles (EVs) 

that could be charged daily, assuming that each EV v corresponds to one house and that every 

house owns one EV. Each EV 𝑣 ∈ 𝑉 requires to be charged with a given amount of energy 𝑒𝑣 (KWh) 

estimated based on the available energy in the battery and the travel distance as a sum of the 

route destinations specified by the EV user for the next day. The arrival time 𝑎𝑣 to the house and 

the departure time 𝑑𝑣 from the house are given for each EV. The SOC for each vehicle v at the 

arrival time is defined with the input parameter 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙. Each EV 𝑣 ∈ 𝑉 is characterized by an 

energy capacity 𝑄𝐸𝑣  (kWh), an output battery voltage 𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

, a charge capacity represented by 

the parameter 𝑄𝑣 (Ah), and equipped with an onboard charger of a power capacity defined as 𝐿𝑣. 

We define the state of charge (SOC) of a battery as the amount of charge it contains divided by its 

charge capacity 𝑄𝑣. We assume that a level 2 single-phase 230V-32A smart charger with a power 

capacity of up to 7.3 kW defined by the parameter 𝐺 is installed. Based on the battery model 

presented before, we approximate a linear piecewise function for the discretized CC-CV charging 

process of the batteries, which consists of several breakpoints 𝑞𝑣 + 1 fitted to the real CC-CV 

concave charging function of the battery of vehicle 𝑣. 

Mathematical Formulation of the Peak Shaving Model 

Five sets of decision variables are required for the formulation of PSM. Binary variables 𝑧𝑡,𝑣
𝑏  

take a value of 1 if vehicle 𝑣 is retrieving current while being plugged into the EVSE during period 

t that lies in the time interval between 𝑎𝑣 the arrival time to the site and 𝑑𝑣 − 1 the period before 

departure time from the site between breakpoints 𝑆𝑂𝐶𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑏

𝑏𝑟𝑒𝑎𝑘And take a value of 0 

otherwise. While 𝑦𝑡,𝑣 are binary variables that depend on the values of 𝑧𝑡,𝑣
𝑏 . They take a value of 1 

for any interruption in the charging process of vehicle 𝑣 between periods 𝑡 − 1 and 𝑡 and takes a 

value of 0 otherwise. 
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Real and positive variables 𝑖𝑡,𝑣 refer to the charging current applied to vehicle 𝑣 during the 

entire period 𝑡. Real and positive variables 𝑠𝑜𝑐𝑡,𝑣 refer to the state of charge of vehicle 𝑣  at the 

beginning of time 𝑡. Finally, Real and positive variable 𝑋𝑚𝑎𝑥  that corresponds to the maximum 

charging power retrieved from the grid by all the neighborhood houses during the planning 

interval. To sum up, our problem is presented in the following mathematical model and the mixed-

integer linear programming formulation (MILP), respectively: 

Sets: 

 𝑇: The set of time in the scheduling horizon         (𝑇 = {1, … , 𝑇𝑚𝑎𝑥 }, (𝑡 ∈ 𝑇) 

 𝑉: Set of EVs.          (𝑣 ∈ 𝑉) 

 𝐵𝑣: Set of breakpoints used in the piecewise linear approximation of the CC-CV      

                     charging function of the battery of vehicle 𝑣.         (𝑏 ∈ 𝐵𝑣) 

Parameters: 

 𝑀𝑡: The neighborhood household total power consumption at time 𝑡. 

 𝑙𝑡,𝑣: non-flexible consumption profile (non-EV)  of each house of EV 𝑣 at time 𝑡. (𝑘𝑊) 

 𝑄𝑣: The charge capacity of the battery of EV 𝑣. (𝐴ℎ) 

 𝑄𝐸𝑣: The energy capacity of the battery of EV 𝑣. (𝑘𝑊ℎ) 

 𝐿𝑣: The onboard power capacity of the charger of EV 𝑣. (𝑘𝑊) 

 𝑁𝑣: The maximum number of cuts allowed for the battery of EV 𝑣. 

 𝑎𝑣: The arrival time of EV 𝑣 to the house. 

 𝑑𝑣: The departure time of EV 𝑣 from the house. 

 𝑒𝑣: Energy needed by EV 𝑣. (𝐾𝑊ℎ) 

 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙: The state of charge associated with the arrival time for each EV 𝑣 ∈ 𝑉. 

 𝑃𝑣 The Grid power capacity of the house of EV 𝑣 at any time(𝑘𝑊) 

 𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

: The rated voltage of the battery of EV 𝑣. (𝑉) 

 𝑙𝑣
𝑚𝑎𝑥 : Power supply limit of the EVSE installed at the house of EV 𝑣 (Charger  

                 specification). (𝑘𝑊) 

 𝐼𝑣,𝑏
𝑚𝑎𝑥: The maximum current that could be withdrawn in the piecewise linear   

           approximation of the CC-CV charging function of the charger of EV 𝑣 between the    

            breakpoints 𝑏 and 𝑏 − 1 with 𝑏 ∈ 𝐵𝑣, 𝑏 >  0. (𝐴) 

 𝐼𝑣,𝑏
𝑚𝑖𝑛 : The minimum current that could be withdrawn in the piecewise linear  

            approximation of the CC-CV charging function of the charger of EV 𝑣 between the  

            breakpoints 𝑏 and 𝑏 − 1 with 𝑏 ∈ 𝐵𝑣, 𝑏 >  0. (𝐴) 
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 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘: The state of charge associated with breakpoints 𝑏 ∈ 𝐵𝑣 of the piecewise linear  

                    approximation of the CC-CV charging function of the charger of EV 𝑣. 

 𝑆𝑂𝐶𝑚𝑎𝑥: The maximum state of charge that any vehicle could reach while charging. 

 𝑆𝑂𝐶𝑚𝑖𝑛: The minimum state of charge that any vehicle could reach during the discharging  

                  process while performing its route the next day. 

 𝑞: The average weighted power loss factor due to the AC-DC conversion. 

 𝛥𝑡: Timestep in (h). 

Variables: 

 𝑖𝑡,𝑣 ≥ 0: current withdrawn by EV 𝑣 at time 𝑡. (A) 

 𝑠𝑜𝑐𝑡,𝑣 ≥ 0: The state of charge of EV 𝑣 at time 𝑡. 

 𝑧𝑡,𝑣
𝑏 ∈ {0,1}: 1 if EV 𝑣 is charging at time 𝑡 with a state of charge between 

                       𝑆𝑂𝐶,𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑣,𝑏

𝑏𝑟𝑒𝑎𝑘. 

                       0 otherwise. 

 𝑦𝑡,𝑣 ∈ {0,1} : 1 if EV 𝑣 stops charging at time period 𝑡. 

                        0 otherwise 

 �̅� ≥ 0: The maximum total household power consumption of the neighbourhood  

 withdrawn from the grid along the planned horizon. 

Formulation: 

               minimize                             Maximum power =  �̅� (30) 

subject to: 

൭𝑀𝑡 + ∑
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣

𝑣∈𝑉

൱ ≤ �̅�         ∀𝑡 ∈ 𝑇 (31) 

𝑙𝑡,𝑣 +
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑃𝑣          ∀ 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (32) 

∑ ∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}𝑣∈𝑉

𝑎𝑣−1

𝑡=1

+  ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}𝑣∈𝑉

𝑇𝑚𝑎𝑥

𝑡=𝑑𝑣

= 0 (33) 
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𝑠𝑜𝑐𝑡,𝑣 = 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙          ∀𝑣 ∈ 𝑉, 𝑡 ∈ {1, … , 𝑎𝑣} (34) 

𝑠𝑜𝑐𝑑𝑣+1,𝑣 = 𝑠𝑜𝑐𝑑𝑣
−

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (35) 

𝑠𝑜𝑐𝑑𝑣,𝑣 = 𝑠𝑜𝑐𝑎𝑣
+

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (36) 

∑
𝑖𝑡,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
𝑡∈𝑇

+ 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑆𝑂𝐶𝑚𝑖𝑛 =

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (37) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑠𝑜𝑐𝑡−1,𝑣 +
𝑖𝑡−1,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
       ∀𝑡 ∈ T\{1, 𝑑𝑣, 𝑑𝑣 + 1}, 𝑣 ∈ 𝑉 (38) 

𝑠𝑜𝑐𝑡+1,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘 + 1 − 𝑧𝑡,𝑣

𝑏         ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣 − 1}, 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵𝑣\{0} (39) 

𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏−1
𝑏𝑟𝑒𝑎𝑘 − 1 + 𝑧𝑡,𝑣

𝑏          ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣}, 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵𝑣\{0} (40) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥          ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (41) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑎𝑥𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (42) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑖𝑛𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (43) 

∑ 𝑧𝑡−1,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

− ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≤ 𝑦𝑡,𝑣          ∀𝑡 ∈ {𝑎𝑣 + 1, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (44) 

∑ 𝑧t,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≥ 𝑦t,𝑣         ∀𝑡 ∈ T\{𝑎𝑣 + 1, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (45) 
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∑ 𝑦𝑡,𝑣

𝑡∈𝑇

≤ 𝑁𝑣 + 1         ∀𝑣 ∈ 𝑉 (46) 

𝑖𝑡,𝑣 ≤
𝑙𝑣

𝑚𝑎𝑥

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (47) 

𝑖𝑡,𝑣 ≤
𝐿𝑣

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (48) 

𝑧𝑡,𝑣
𝑏 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝑣 (49) 

𝑦𝑡,𝑣 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (50) 

The objective function (30) minimizes the maximum total household power consumption of 

the neighbourhood withdrawn from the grid along the planning horizon  �̅� to reduce the impact 

of the increasing EVs' charging demand. Specifically, �̅� represents the maximum value of the sum 

of the normal power consumption 𝑀𝑡  of all the houses in the neighborhood and the power 

retrieved by all the EVs at any period 𝑡 over the planned time interval.  

Mathematical Formulation of the Charging Cost Reduction Model  

The CCRM is a cost minimization model and is a subsequent submodel dependent on the 

primary optimization model PSM. The CCRM aims to provide EV users a degree of freedom in 

choosing their charging schedule for electricity bill reduction while not violating the maximum 

power constraint established in the primary model. This model depends mainly on the results of 

the PSM such that we generate slack parameters calculated through the difference between the 

obtained value of �̅� and the total power retrieved by all the houses, which is estimated using the 

output decision variables 𝑖𝑡,𝑣̅̅ ̅̅  at each time 𝑡 that represent the charge current applied to each 

vehicle v at time 𝑡. This model is used individually for each house in the neighbourhood that owns 

an EV. We follow two approaches of percentage and even distribution strategies to calculate the 

slack parameters for each EV.  
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The parameters 𝑢𝑡,𝑣̅̅ ̅̅ ̅ correspond to the decision variable of the charge current 𝑖𝑡,𝑣̅̅ ̅̅  applied to 

each vehicle 𝑣 at time t as an output of the first optimization stage performed in PSM. We define 

𝑢𝑡,𝑣̅̅ ̅̅ ̅ (kW) as the power retrieved by vehicle 𝑣 at time 𝑡 and is estimated by dividing the product of 

the charge current 𝑖𝑡,𝑣̅̅ ̅̅  (A) and the energy capacity 𝑄𝐸𝑣  (kWh) by the total charge capacity 𝑄𝑣 (Ah) 

for each vehicle v. The slack parameters 𝑠𝑡,𝑣̅̅ ̅̅  are the additional power allowed to be retrieved by 

vehicle 𝑣 at time 𝑡 compared to 𝑢𝑡,𝑣̅̅ ̅̅ ̅. The combination of both parameters 𝑢𝑡,𝑣̅̅ ̅̅ ̅ and 𝑠𝑡,𝑣̅̅ ̅̅  represent 

the grid limit during the charging process of vehicle v at any time t. Our problem follows the same 

mathematical model presented in the first stage of the PSM but having some changes in the input 

parameters and variables. The parameter 𝑀𝑡 and the decision variable of the maximum power �̅� 

are removed, and only the following new parameters are added: 

 𝑝𝑡: Electricity price at time 𝑡. (€/𝑘𝑊ℎ) 

 𝑢𝑡,𝑣: The power retrieved by EV v at time t as an output from the PSM. (𝑘𝑊) 

 𝑠𝑡,𝑣: The power slack parameter is given to each vehicle v at time t for more flexibility in  

         the charge schedule. (𝑘𝑊) 

Mathematical Formulation of 𝐂𝐂𝐑𝐌𝒗 ∀𝑣 ∈ 𝑉: 

The mathematical formulation of the 𝐶𝐶𝑅𝑀𝑣 is the same as in the model of PSM but having 

some changes. We replace the objective function (30) with a cost minimization objective function 

defined in Eq. (51). Moreover, we replace the constraints (31) with Eq. (52), which represent the 

weighted grid power restrictions applied to each house 𝑣 individually and composed of the power 

consumption of EV 𝑣 obtained from the PSM and the estimated slack parameters based on the 

peak power output also in the PSM. 

   minimize:      ∑ 𝑝𝑡𝛥𝑡 (𝑙𝑡,𝑣 +
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣)

𝑡∈𝑡

          (51) 

𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑢𝑡,𝑣̅̅ ̅̅ ̅ + 𝑠𝑡,𝑣̅̅ ̅̅         ∀ 𝑡 ∈ 𝑇 (52) 

The objective function (51) minimizes cost𝑣 the total electricity bill over the planning horizon 

for each house of vehicle 𝑣 ∈ 𝑉. The 𝐶𝐶𝑅𝑀𝑣 is applied individually to each house owning an EV 

by creating a loop over the set 𝑉. cost𝑣 (€) is the product of the energy cost 𝑝𝑡 (€/kWh), the 

duration of time 𝛥𝑡 (hours), and the total power retrieved by the house, including both 𝑙𝑡,𝑣 (kW) 

the household power and the EV charging power retrieved by house 𝑣 at every period 𝑡 then 

summed up over the planning horizon of set 𝑇. 
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Simple Example with Multiple Solutions 

This section aims to help the reader better understand the functionality of the RNS by 

presenting a small instance with different parameters that give other optimal solutions. We design 

this example with a time interval of 24 equidistant periods with a time step of one hour. The 

planning horizon starts from 16:00 and lasts until 15:00 the next day, such that we have a whole 

night charging problem. We discretize our planning horizon with 24 equidistant periods with 

period lengths of one hour (i.e., 𝛿 = 1 ℎ), where 16:00 is set to 1 and 15:00 is denoted by 24. We 

consider having a set of 3 EVs such that each vehicle represents a house in the neighbourhood.  

The cost of energy 𝑝𝑡 is assumed to be as follows: 0.25 (€/kWh) during the peak hours from 

periods 1 to 3 and 21 to 24 (12:00-18:00), 0.05 (€/kWh) during the off-peak hours from periods 

9 to 17 (00:00-8:00), and 0.15 (€/kWh) during the shoulder hours the rest of day. The total 

household power consumption parameters 𝑀𝑡 (kW) of all the houses in the neighbourhood and 

the individual household power consumption 𝑙𝑡,𝑣 (kW) of each house of an EV user v are given at 

every period t. The EV's specifications-related parameters and all the routes data for every vehicle 

𝑣 ∈ 𝑉 are shown in TABLE 3. 

TABLE 3: The design specifications and route parameters for the simple numerical example 

V 
EV 

model 
Q 

(Ah) 
QE 

(kWh) 
L 

(kW) 
𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

(V) 
𝑙𝑚𝑎𝑥 
(kW) 

P 
(kW) 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑎𝑙  N a d 
e 

(kWh) 

1 BMW i3 120 42.24 11 352 7.36 10 0.05 2 4 22 31.68 
2 RAV4 108 41.8 10 386 7.36 10 0.05 2 8 17 31.35 

3 
NISSAN 

LEAF 
66 24 6.6 360 7.36 6 0.05 2 6 19 18 

 

We set only three breakpoints associated with the linear approximation CC-CV charging 

process of the battery of each vehicle v using a level 2 fast charger of 7.36 (kW) power capacity 

and a charge current of 32 (A) such that 𝐵𝑣 = {0,1,2}. The values of the maximum current 𝐼𝑣,𝑏
𝑚𝑎𝑥 

and the minimum current 𝐼𝑣,𝑏
𝑚𝑖𝑛 And the SOC breakpoint 𝑆𝑂𝐶𝑣,𝑏

𝑏𝑟𝑒𝑎𝑘  that correspond to the 

breakpoints specified to each vehicle v are summarized in TABLE 4.  

TABLE 4: The design parameters associated with the linear approximation breakpoints of the 
charging process of different vehicles' models. 

𝐵𝑣 

EV 1 (BMW i3) EV 2 (RAV4) EV 3 (NISSAN LEAF) 

𝑆𝑂𝐶1,𝑏
𝑏𝑟𝑒𝑎𝑘 

𝐼1,𝑏
𝑚𝑎𝑥 

(A) 

𝐼1,𝑏
𝑚𝑖𝑛 

(A) 
𝑆𝑂𝐶2,𝑏

𝑏𝑟𝑒𝑎𝑘  𝐼2,𝑏
𝑚𝑎𝑥 (A) 

𝐼2,𝑏
𝑚𝑖𝑛 

(A) 
𝑆𝑂𝐶3,𝑏

𝑏𝑟𝑒𝑎𝑘  
𝐼3,𝑏

𝑚𝑎𝑥 

(A) 

𝐼3,𝑏
𝑚𝑖𝑛 

(A) 

0 0 0 0 0 0 0 0 0 0 
1 0.923 21 2 0.92 19.1 2 0.882 18.5 2 
2 0.99 10.5 1 0.99 10 1 0.99 10.5 1 
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a)  

b)  

c)  

Fig. 8: The power retrieved by all the houses in the neighbourhood: (a) optimal solution of the 
PSM, (b) optimal solution of the CCRM with % slack distribution algorithm. 

Figures 8 and 9 show a comparison of the solution obtained by the CCRM's percentage 

approach compared to that of the PSM. Fig. 8 presents a comparison between the building's total 

power consumption and the charging power retrieved by the EVs as obtained by the PSM and both 

approaches of the CCRM. By comparing the three graphs, we notice the role of the PSM in the 

peak power reduction as well as the effects of the CCRM in shifting the EV loads. Fig. 9 shows a 

remarkable decrease in all the houses' electricity bills with at least a 5% reduction. 

 

Fig. 9: A comparison of the electricity bills of all the houses obtained in the PSM and the CCRM. 
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Numerical Experiments and Discussions 

This section consists of the experiments we perform for each of the proposed optimization 

problems of the CIS and RNS. For both problems, we present a base case and show its results. We 

analyze our models' feasibility by generating extensive experiments of different scenarios. Each 

scenario is based on changing only one parameter while fixing the others compared to the base 

case scenario. The base case scenario of the commercial problem consists of nine test instances 

that are the results of three charging behaviors of a low, medium, and high energy demand along 

with long, medium, and short charging duration all applied to three fleet sizes of EVs of 8, 12, and 

16. Then we perform a multi-criteria analysis that consists of five scenarios represented by high 

Facility Demand Charges (FRD) of 11 (€/𝑘𝑊), low FRD charges of 0.1 (€/𝑘𝑊), lower grid power 

restrictions of 110 kW instead of 500 kW, and last two scenarios of one and zero charging 

interruptions instead of two in the base case.  

Figures 10 and 11 represent examples of the results obtained in the commercial building 

problem. The first shows the peak power demand of the building in the different test instances 

when applying both the high and low FRD charges. In general, we see that higher power demand 

is imposed on the grid when applying the low FRD charges using all charging technologies. We 

notice that the cluster "3S_22kW" of a 22 kW power capacity and consists of 3 charging sockets 

shows better results of lower power demands for both FRD values than all other technologies. 

However, Fig. 11 demonstrates the total electricity bill of the building using different charging 

technologies in all test instances. It also shows a privilege to the results obtained using cluster 

"3S_22kW". 

 

Fig. 10: A comparison between the peak power demand in the instances of high FRD charges and 
the ones with low FRD charges using different charging technology in the commercial problem. 
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Fig. 11: The total electricity bill of the commercial building for different test instances using 
multiple charging technologies under the low and high FRD charges scenario 

Similarly, we generate the same three test instances for the residential problem but with an 

additional instance representing a random mix of the other three together. We apply these 

instances on four different numbers of EVs of 30, 40, 50, and 60 EVs that result in 16 test instances 

for the base case scenario. Then we perform extensive experiments of different scenarios to check 

the feasibility of our model. We assume two charging interruptions scenarios of one and two cuts 

instead of two in the base case, a Smart-Pricing strategy of two different prices per day instead of 

three in the base case. In addition, we generate three more scenarios with contract power values 

of 6 kW, 10 kW, and a mix of both when it was 20 kW in the base case.  

We assume another three scenarios of different EV-users' percentages in the neighbourhood 

of 50%, 67%, and 75% instead of 100% in the base case scenario. We repeat the experiments in 

the base case scenario and the contract power ones using only the CCRM model while neglecting 

the global grid power limits to check the effects of the PSM on both the individual electricity bill 

of each house and the peak power demand of the neighbourhood. Finally, we generate a cost 

minimization model similar to the one in the commercial problem by including the peak power 

demand in the objective function as a high power demand penalty, and then we compare it with 

the base case. 
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Fig. 12: Comparison between the peak power demand obtained by the PSM and that obtained 
by the "Cost" model in the same neighbourhood under different scenarios. 

 

Fig. 13: The percentage distribution of all the houses in the neighbourhood in all test instances 
based on the reduction rate in their energy bills for different cases of the grid's power limit 

compared to the base case and using both models of the TSREV-CSP and "Cost". 

Figures 12 and 13 show a comparison between the results obtained from the TSREV-CSP and 

the other two cost-based models, namely a "Cost" and a "Cost-peak", in terms of peak power 

demand and the percentage distribution of all the houses in the neighbourhood based on their 

electricity bills reduction rates. We observe that the TSREV-CSP results in the least power demands 

in all the test instances compared to other models, but the results obtained by the "Cost-peak" 

are acceptable for showing slight increases in the power demand. However, the cost analysis in 

Fig. 13 gives preferences to the results obtained by "Cost" over the other two models. Since the 

goal is to satisfy both the energy supplier and the EV users, then the TSREV-CSP and the "Cost-

peak" models sound more efficient than the "Cost" one. 
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1 INTRODUCTION 

The advent of electric vehicles (EVs), including battery electric vehicles (BEVs) and plug-in 

hybrid electric vehicles (PHEVs), promises to be a game-changer for the world’s shift to 

sustainability (IRENA, 2019). The transport sector that is primarily relying on conventional internal 

combustion engine vehicles (ICEVs) is responsible for 24% of the global energy-related CO2 

emissions in which passenger cars, together with road freight vehicles, account for nearly 75% of 

transport CO2  emissions, as shown in Figure 1. Because of productivity enhancements, 

electrification of the transport sector, and expanded use of biofuels, global transportation 

emissions rose by less than 0.5 percent in 2019 (compared to 1.9 percent annually since 2000) 

(IEA, 2020).  

 
Figure 1: Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 

2000-2030. 

Source: (IEA, 2020). 

Electric vehicles deployment has been accelerating in the past decade thanks to the 

international policies, governmental incentives in many countries worldwide, and the remarkable 

improvements in EV technologies that propose electric cars as an attractive substitute for ICEVs 

(IEA, 2019). Figure 2 shows that the global stock of electric passenger cars registered an increase 

of 63% between 2017 and 2018, recording more than 5 million in 2018, where 45% of the total 

number of EVs is in china.  
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China has emerged as the leader in EV sales worldwide and is expected to promote more 

advanced EV technologies and applications in the future (Wu et al., 2021). In comparison, Europe 

accounted for 24% of the global fleet in the 2nd place and the United States with 22% being the 3rd 

in the EV sales worldwide. The EV deployment is expected to increase in the future at an 

exponential pace because EVs are cleaner, more silent, and more economical than ICEVs for having 

a lower operational cost. 

 

Figure 2: Electric car deployment in selected countries, 2013-2018 

Source: (IEA, 2019). 

Nowadays, transport electrification is considered one of the top technological alternatives to 

mitigate climate change as it contributes significantly to reducing GHG emissions, especially CO2 

emissions and energy dependence on petroleum fuel and other external energy supplies (Skerlos 

& Winebrake, 2010; Van Vliet et al., 2011), offering the potential to reduce the oil imports and 

many economic benefits (Michalek et al., 2011; Su et al., 2012). Moreover, it raises the electricity 

production company’s tendency to go for cleaner alternatives and renewable energy resources 

(Chau et al., 1999) to achieve higher environmental objectives (Zhang et al., 2012). For these 

reasons, many countries have embraced various policies to increase energy conservation and 

enhance electricity production from renewable energy sources, as in China (She et al., 2017; Wu 

et al., 2021), the Netherlands (MNP, 2006; Ros et al., 2009), Germany (Loisel et al., 2020), and 

other European countries (Dudin et al., 2020). Some countries like Norway follow the policy of 

offering incentives to encourage EV adoption and increase EV sales, as shown in  Table 5. 
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Table 5: “Norwegian EV policy time period of introduction.” 

Source: (Chaim et al., 2016) 

EV policy incentive Time period of introduction 

Exemption from registration tax 1990s 

Free public parking 1990s 

Toll exemptions 1990s 

Value added tax exemption 2001 

Bus lane access 2003 (Oslo) and 2005 (Nationwide) 

Reduced ferry rates 2009 

Public EV charging station construction 2009 

 

1.1 CHALLENGES AND OPPORTUNITIES 

Electric vehicles, just like other technologies, represent a solution for many problems and 

offer plenty of social benefits, but at the same time have their drawbacks that are under 

consideration in both the public and private realm. Compared to ICEVs, EVs overtake with zero 

exhaust emissions, higher efficiency, and considerable potential to minimize GHG emissions. 

However, they aren’t yet highly competitive for their high purchasing cost, and battery technology 

is still under development resulting in many uncertainties concerning many aspects such as 

electricity generation and large-scale introduction (Poullikkas, 2015). The main challenge ahead 

lies in improving the range and reducing the cost of the currently available technologies, whether 

it is the price of buying the EV or the charging fee (Wang et al., 2021). There are some other issues 

explained in Table 6 that might represent an obstacle nowadays for some users to adopt an EV, 

especially for passenger road vehicles.  

From an environmental standpoint, the process of replacing ICEVs with EVs makes sense only 

if those vehicles are powered solely by renewable energy sources (RES) (Helmers et al., 2020). 

However, RES such as wind and photovoltaic power (PV) differ in output independently of 

electricity demand, resulting in surplus production or shortages. Consequently, the energy system 

is evolving due to a steady increase in electric vehicles on the demand side and local output (mostly 

from solar panels) on the supply side. Both technologies could bring the energy grid under strain 

at certain times of the day, especially that EVs require high power for an extended period while 

charging, even though there is enough capacity on the grid for most of the day. One way to deal 

with grid unbalances is using electric heat pumps to satisfy heat demand, with the heat being 

stored in substantial thermal stores. Both are examples of demand-side control (DSM) (Van Der 

Burgt et al., 2015). 
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Table 6: “Explanations and sources of barriers.” 

Source: (She et al., 2017) 

Barrier type Item Possible barrier Explanation 

Financial Barrier B1 Price Original price of BEVs without purchase subsidy 

 B2 Battery cost Replacement cost of the battery once the battery 

reach the end of life 

 B3 Poor understanding of fuel cost Fuel cost refers to electric cost of driving BEVs 

 B4 Poor understanding of maintenance cost Maintenance cost refers to the routine 

maintenance cost of BEVs, not includes the 

repair cost caused by accidents 

Vehicle performance barrier B5 Safety Whether feel safe when driving a BEVs 

 B6 Range Longest driving distance after BEVs fully charged 

for one time 

 B7 Reliability Quality and stability of whole vehicle 

 B8 Battery life Lifetime of battery considered of degradation 

 B9 Charging time Overall consideration of the time to fully charge 

a BEV in a quick and slow charging model 

 B10 Power Max speed and accelerating ability of BEVs 

Infrastructure barrier B11 Public infrastructure availability Numbers and service radius of public charging 

spots or charging stations 

 B12 infrastructure availability at work Charging condition in workplace including office 

buildings 

 B13 infrastructure availability at home Charging condition in residence communities 

 B14 infrastructure availability on highway Charging condition in highway service stations 

Here comes the dilemma: How could the energy authorities worldwide maintain the annual 

increase of EV deployment at a higher rate while maintaining a highly efficient power system? 

1.2 SMART CHARGING POTENTIAL 

EV smart charging techniques are highly efficient and promising ways to deal with the surplus 

production and represent a critical component of the friendly environment and cost-effective EV 

integration into the power grid. The central concept of smart charging is to shift the charging 

schedule of EVs towards the Off-peak periods of the day and when electricity cost is at its lowest 

values to eliminate the risk of a demand spike at the same time of satisfying the vehicle owner’s 

need. Smart charging is a combination of the three key elements: “Smart pricing, Smart 

technology, and smart infrastructure,” all coupled together to enable small end-users and utilities 

to leverage the essential flexibility of charging the EVs (Hildermeier et al., 2019a).  
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When talking about smart charging, we can’t ignore the tremendous efforts exerted by many 

governments worldwide to create the so-called “Smart Cities” with those in Asia and Europe are 

at the top of the rankings (ASME, n.d.; Eden Strategy Institute & Ltd., n.d.). Smart cities require a 

modification in their urban system’s infrastructure and public services to be more interactive, 

accessible, practical, and friendly environment by utilizing information and communication 

technology (ICT)  (Pellicer et al., 2013).  

Smart charging techniques are based on exchanging data of electricity prices and energy 

demand and generation levels at a given time between EVs and the smart grid to offer customers 

lower charging costs when charging their EV on low demand periods of the day. Therefore, smart 

cities represent the perfect environment for charging EVs intelligently, in which EV users receive 

real-time information about their energy usage or prices, and they choose when to charge the EV 

(Harrison & Donnelly, 2011). 

1.3 THESIS OUTLINE 

The different charging methods for reducing the impact of EV penetration in the power 

system can be categorized based on the various actors’ perspectives, including EV end-users, 

distribution system operators (DSOs), and transmission system operators (TSOs). Liu et al., (2015) 

highlighted two main charging strategies: Centralized and decentralized charging strategies. 

Various studies have been conducted based on centralized charging strategies in which all network 

data is accessible to a centralized controller, which processes the data and determines the 

charging rate for each EV. However, centralized strategies were found to have difficulties in 

accessing the global system information and inaccurate scaling. Thus, we present in this research 

decentralized charging strategies that give individual EV users a level of decision making in which 

EV intelligent charging points often communicate a small amount of data with a centralized unit 

which then sends global coordination to all charging points.  

This research is inspired by the practices of the French energy company’s projects (EDF, n.d.), 

the 1st producer of renewable electricity in Europe. We aim to construct and model a controlled 

overnight charging technique to perform the so-called peak shaving for the power retrieved from 

the grid along a specified time horizon. Simultaneously, we minimize the EV charging fee for the 

end-users in two different scenarios: A Commercial & Industrial Scenario (CIS) of clustered 

charging points and a Residential Neighborhood Scenario (RNS). We test our models on many test 

instances. 
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Chapter 2 is the state of the art of models and smart charging technologies that are about 

similar applications. Besides, it illustrates the technologies of integrating EV charging with RES by 

showing various Smart Charging techniques and the importance of the existence of intelligent 

metering and smart grids. It also gives an overview of the different types of EVs available in the 

market, focusing more on fully electric vehicles known as Battery Electric Vehicles (BEVs) and their 

components, Battery technologies, EV charging standards, challenges, EV integration impacts on 

the power system, and future development directions on which our experimental data would be 

based. Finally, it exhibits a general understanding of the different approaches we followed to build 

up both optimization models. 

In chapter 3, we describe the generic charging process of lithium-ion battery cells and 

describe the factors affecting it. Then, we simulate the charging profile of lithium that corresponds 

to different types of chargers used in our research. We apply the simulation to medium-duty 

commercial and residential passenger EVs. 

In chapter 4, the mathematical model of the CIS and the charging technologies are explained, 

where we provide a general description of the Electric Freight Vehicles Clustered Charge 

Scheduling Problem (EFV-CCSP) and explain the approaches followed to model the charging 

process in discrete time. Then we present the EFV-CCSP mathematical formulation followed by 

descriptions of optimal solutions for a small instance of the problem and an illustration of the 

results.  

In chapter 5, The RNS mathematical model and the charging algorithms are defined. We give 

a general overview of the Two-Stage Residential Electric Vehicles Charge Scheduling Problem 

(TSREV-CSP), and we clarify the method used to model the charging mechanism in discrete time 

for different EV types included in our research. Then, we explain the mathematical model of the 

first stage defined as a Peak Shaving Model (PSM) that aims to reduce the peak power in the 

neighborhood. Subsequently, we present the second optimization level that is the Charging Cost 

Reduction Model (CCRM), and we explain its interface with the PSM that minimizes the electricity 

bill of all the houses adopting EVs. Finally, we provide a small instance with some numerical results 

to better understand the charging algorithm. 

In chapter 6, illustrates extensive computational results of multiple cases for both models, 

and we derive managerial insights. We show the base case scenario results and analyze the main 

observations. We compare the results obtained from the base case scenario and those of all the 

computational instances for both models of the Commercial and Industrial Scenario (CIS) and the 

Residential Neighbourhood Scenario (RNS), respectively.  
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2 STATE OF THE ART 

This chapter highlights the main studies on similar EV smart charging applications. In section 

2.1, we present the main features of an EV, mentioning some of its opportunities and barriers. 

Then we describe the different technologies of existing EVs and explain their functionalities briefly 

in section 2.2. In section 2.3, we show the general architecture of an EV and briefly describe the 

main components that influence our research. In section 2.4, we present the charging 

infrastructure systems available worldwide and the most interesting and highly efficient ones. 

Finally, we focus on some papers and studies that consider smart charging applications and 

describe their followed methodology to deal with the presented problem in section 2.5. 

2.1 ELECTRIC VEHICLE DEPLOYMENT: TRENDS, OPPORTUNITIES, AND BARRIERS 

The EV deployment is developing at a rapid pace, and this growth rate is expected to increase 

more in the future. Many reports and surveys (Aurora, 2018; IEA, 2019) highlight the present 

situation of EVs in the transport sector and present a forecast of a promising future for vehicle 

electrification. EV deployment trends are shown in Figure 3 with nearly 1.1 million electric vehicles 

sold in 2018. The People's Republic of China is the world's most significant electric car industry, 

and it accounts for roughly half of the total electric car stock (2.3 million units). At the end of 2018, 

Europe had 1.2 million electric vehicles, and the United States had 1.1 million, with sales increases 

of 385000 and 361000 electric cars, respectively, from the previous year. The world leader in 

terms of electric vehicle market share in 2018 remained Norway which accounts for 46% of the 

global EV market share, more than double Iceland's second-largest market share of 17%. 

The EV’s potential in dealing with three of the most crucial and universal concerns explains 

the growing interests in electrifying the transport sector and further developments of E-mobility 

technologies. The life-cycle air emissions and oil consumption assessments conducted by Michalek 

et al. (2011) for ICE vehicles, HEVs, PHEVs, and BEVs in the US show the benefits of EVs in reducing 

both GHG emissions and tail emissions that contribute to global warming, climate change, and 

other pollutants which affect the people and the environment. EVs also help to minimize the 

reliance on imported oil due to gasoline demand reduction for being powered being electricity 

rather than gasoline that results in plenty of environmental benefits. 
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Figure 3: Global electric car sales and market share, 2013-18  

Source: (IEA, 2019) 

EVs also provide different ancillary services to support the power system, such as frequency 

regulation, spinning and non-spinning reserves, and supplemental resources, which are features 

of the Vehicle-to-Grid (V2G) technology. White and Zhang,(2011) investigate the financial 

feasibility of using plug-in hybrid electric cars as a grid option and highlight some technical and 

economic benefits that PHEVs provide using the V2G technologies. This paper concludes that there 

is considerable financial potential when the V2G service is used for frequency regulation, while 

there are few financial incentives for individuals when using the V2G service solely for peak 

reduction. Moreover, the assessment by Bañol Arias et al.,(2020) presents the economic benefits 

for EV owners participating in the primary frequency regulation (PFR) market, which is responsible 

for regulating and restoring the grid’s frequency to the rated value in case of the power unbalance 

in the case of higher or lower power demands compared to the power generated. It proposes a 

heuristic method to optimize the power bid that maximizes the EV owners’ benefit. 
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EVs possess significant onboard energy storage capacities from a few kWh up to several tens 

of kWh, which imposes a high demand on the power systems, especially with the high EV 

penetration worldwide and the development of the charging infrastructure, and the introduction 

of fast and rapid chargers. Kutt et al. (2013) provides an overview of EV charging impacts on the 

power system and defines these impacts to distribution networks as thermal loading, voltage 

regulation, harmonic distortion levels, unbalances, losses, and transformers loss of life with 

focusing more on the harmonic and unbalance effects. This thesis aims to provide a solution to 

reduce the impact of EV charging on the power grid by providing controlled charging models in 

different instances. 

 

 

Figure 4: Barriers to BEV adoption. 

Source: (Berkeley et al., 2017). 
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Figure 5: A shortlist of the impacts of EVs on the power grid, environment, and economy. 

Source: (Un-Noor et al., 2017) 

EV adoption has a long way to go for facing many obstacles and challenges that require further 

researches. Besides the power system barriers that EV charging is facing, many researchers like  

(She et al., 2017; Wang et al., 2021) give an overview of the various obstacles and challenges 

affecting the widespread of battery electric vehicles. The main technological barriers nowadays 

are the long charging period and the limited range due to the limited Energy capacity (Un-Noor et 

al., 2017). Berkeley et al. (2017) has classified different barriers to EV adoption into technical 

obstacles, financial and economic barriers, and consumer awareness and attitudinal barriers, as 

shown in Figure 4.  Similarly, Un-Noor et al. (2017) present a general list of EV impacts on the power 

grid, the environment, and the economy, as shown in Figure 5. In this thesis, we will be dealing 

with the barriers related to the uncertainty concerning the process of home/public charging and 

the difficulties in calculating charging energy costs from a consumer point of view. Moreover, we 

will address some technical challenges concerning the charging duration for different vehicles and 

the potential of different types of charging infrastructure for an efficient charging process. 

The battery price accounts for a significant portion of the overall cost of BEVs, so lowering it 

is essential, which helps in reducing the effect of the high purchase price barrier that is one of the 

major financial barriers against EV adoption. Some surveys and forecasts expect the prices of 

batteries to drop in the future thanks to the technology development of Lithium-ion batteries, as 

shown in Figure 6. 
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Figure 6: A McKinsey analysis of Lithium-ion battery cost evolution, assuming learning effects 
and technology breakthrough 

Source: (Mahmoudzadeh Andwari et al., 2017). 

2.2 ELECTRIC VEHICLE TECHNOLOGIES 

Un-Noor et al. (2017) and European Environment Agency,(2019) define four types of EVs 

based on the energy sources each vehicle is as shown in Figure 7 equipped with and could be 

categorized as follows: 

2.2.1 Battery Electric Vehicle (BEV): 

BEVs are electric vehicles that rely solely on the energy contained in their battery packs to 

power the drivetrain, which makes their range directly proportional to the battery power. Charging 

the battery pack after it has been drained takes up to 36 hours. BEVs emit no GHG, generate no 

noise, and are therefore environmentally friendly. Figure 8 presents the basic configuration of 

BEVs where we see the wheels being propelled by an electric motor(s) that is driven by batteries 

via a power converter circuit. 
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Figure 7: Different powertrain technologies in detail. 

Source: (European Environment Agency, 2019) 

 

Figure 8: BEV configuration. The battery's DC-AC power conversion to power the motor. 

Source: (Un-Noor et al., 2017). 
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2.2.2 Hybrid Electric Vehicle (HEV): 

HEVs are powered by different combinations of an ICE and an electrical power train. The ICE 

mode is considered as the main driving power while the electric propulsion system is activated 

only for low power demands, which makes it an interesting technology in low-speed conditions 

like urban areas. HEVs reduce fuel consumption and GHG and other pollutant emissions because 

of relying primarily on the electric propulsion system during idling periods leaving the ICE entirely 

off, and that minimizes the effect of the residues produced from the partial fuel combustion that 

can damage the exhaust system faster. When more power is needed, the HEV switches to the ICE. 

However, the two drive trains may also cooperate for better performance. Therefore, HEVs are 

essentially ICE-powered vehicles that use an electric drive train to increase mileage or improve 

efficiency. Figure 9 shows an example of one configuration type of HEVs.  

  

 

Figure 9: Principle of ICE series hybrid vehicles. 

Source: (Mahmoudzadeh Andwari et al., 2017) 

2.2.3 Plug-In Hybrid Electric Vehicle (PHEV): 

PHEVs represent an example of HEVs equipped with an all-electric range. The main difference, 

compared to HEVs, is that they can run solely on the energy stored in their battery packs and shift 

to the ICE mode only when the batteries are low in charge, which makes their gas emissions lower 

than that of the HEVs. This means that the ICE helps in improving the range and recharges the 

batteries, and larger batteries are required. 
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2.2.4 Fuel Cell Electric Vehicle (FCEV): 

FCEVs or Fuel Cell Vehicles (FCVs) are powered by the electricity produced from hydrogen fuel 

combustion with oxygen through a chemical reaction that produces only water and zero carbon 

emissions. Excess energy is stored in energy storage devices such as batteries and supercapacitors. 

The major advantage of these vehicles is the refilling time that is almost the same as that of the 

ICEVs at a gas station. But there are also safety issues if flammable hydrogen leaks from the tanks. 

A simple configuration of the FCEV is presented in Figure 10. 

 

Figure 10: FCEV configuration. Oxygen from air and hydrogen from the cylinders react in fuel 
cells to produce electricity that runs the motor. Only water is produced as a by-product which is 

released into the environment. 

Source: (Un-Noor et al., 2017) 

 

Figure 11: Electrification evolution. 

Source: (Oestreicher, 2020) 
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In this research, we consider having only BEVs for the simulation of our both optimization 

models because they are generally equipped with larger battery packs of bigger energy capacities 

that means a higher impact on the power grid. Moreover, BEVs represent a more promising 

technology for having almost zero noise pollution and no GHG emissions compared to PHEVs, as 

shown in Figure 11. 

2.3 BATTERY ELECTRIC VEHICLE COMPONENTS 

The main components of BEVs were well explained by Mahmoudzadeh Andwari et al.,(2017). 

In Figure 12, the EV components can be classified into a high voltage (HV) battery pack, battery 

management system (BMS), power electronics unit (PEU), and the electric motor that provides a 

traction force to the wheels. 

 

Figure 12: EV block diagram. 

Source: (Oestreicher, 2020) 

2.3.1 Batteries 

Battery packs are made up of several modules that are connected in parallel to produce the 

required charge capacity and have identical nominal voltage as the battery pack. Each module is 

made up of identical cells that are bound in series resulting in the nominal voltage. Figure 13 shows 

the manufacturing process of the battery packs for EVs. For BEVs, the battery is typically sized 

based on the amount of energy required to reach the required range set by the manufacturer. 
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Table 7: Common battery types, their basic construction components, advantages, and 
disadvantages. 

Source: (Un-Noor et al., 2017) 

Battery Type Components Advantage Disadvantage 

Lead-acid 

 Negative active 

material: spongy lead 

 Positive active 

material: lead oxide 

 Electrolyte: diluted 

sulfuric acid 

 Available in production volume 

 Comparatively low in cost 

 Mature technology as used for 

over fifty years 

 Cannot discharge 

more than 20% of its 

capacity 

 Has a limited life cycle 

if operated on a deep 

rate of SoC 

 Low energy and power 

density 

  Heavier 

  May need 

maintenance 

Li-Ion 

(Lithium-Ion) 

 Positive electrode: 

oxidized cobalt 

material 

 Negative electrode: 

 carbon material 

 Electrolyte: lithium 

salt solution in an 

organic solvent 

 High energy density, twice of 

NiMH 

 Good performance at high 

temperature 

 Recyclable 

 Low memory effect 

 High specific power 

 High specific energy 

 Long battery life, around 1000 

cycles 

 High cost 

 Recharging still takes 

quite a long time, 

though better than 

most batteries 

Ni-Zn 

(Nickel-Zinc) 

 Positive electrode:  

 nickel oxyhydroxide 

 Negative electrode: 

zinc 

 High energy density 

 High power density 

 Uses low-cost material 

 Capable of deep cycle 

 Friendly to environment 

 Usable in a wide temperature 

range from -10 ◦C to 50 ◦C 

 Fast growth of 

dendrite, preventing 

use in vehicles 
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Figure 13: The schematic diagram of the manufacturing process of battery packs for EVs. 

Source: (Ding et al., 2019) 

Battery packs have been the primary energy source for EVs using various battery technologies 

characterized by high energy density and high power density. The energy capacity, power density, 

cycle life, calendar life, cost per kWh, volume, safety, and energy efficiency are the most critical 

parameters to consider when comparing batteries, according to Mahmoudzadeh Andwari et 

al.,(2017). Table 7 summarizes the different characteristics of common battery types. In this 

research, we focus more on the technology of lithium-ion battery cells, where we assume that the 

considered EVs are made up of packs of several lithium-ion batteries. 

2.3.2 Battery Management System 

According to Warner,(2014), the battery management system (BMS) is probably the most 

essential component in the EV because it is in charge of measuring the battery's output and 

adapting the system to accommodate the consumption and environment. Mahmoudzadeh 

Andwari et al.,(2017) explain the different components of an EV and highlight two prominent roles 

of the BMS that ensure an efficient and secure functionality to the battery packs.  

The first role is tracking the battery for details such as its State of Health (the battery's capacity 

to produce its specified output), State of Charge, and Remaining Life Cycle, and communicate it to 

the onboard systems during both the charging and discharging process. The second role is 

ensuring a safe, efficient, and non-damaging battery operation by balancing the charge within 

each cell and extend the stack's lifespan because balancing the charge among all cells is necessary 

since the cell characteristics vary slightly, as in Figure 14. This might cause overheat for some weak 

batteries that get fully charged while others are not, and the same happens during the discharging 

process. 
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Figure 14: Example of unbalanced cells. 

Source: (Warner, 2014) 

2.3.3 Electric Motors 

There are several benefits of using electric motors over ICEs, like having higher power 

conversion efficiency in the range of 70% to 90%, besides offering a high torque and power 

density. Moreover, electric motors are quiet, provide rapid and smooth acceleration, and can be 

used as generators while braking to recover electricity. Electric motors could be DC or AC motors, 

each of different types. The regular maintenance of DC motors due to the existence of 

commutators and brushes that are in touch and vulnerable to wear makes AC motors a better 

technology for BEVs. Chau et al.,(1999) define three main types of AC motors typically installed in 

BEVs: Induction, switched reluctance, and permanent magnet (PM) brushless motor. 

2.3.4 Power Electronics Unit 

The Power Electronics Unit (PEU) consists of power electronics that serve as intermediaries 

among the other electric components of the EV. Figure 15 shows an EV power flow block diagram 

where the power supplied by the EVSE is converted inside the PEU from AC to DC using an AC-DC 

converter (Rectifier) and then stored in the battery packs during charging. Then during the 

discharge process, the DC power is converted back into AC power using a DC-AC inverter to drive 

and fed to the AC electric motor while a portion of the power stored in the batteries passes 

through a DC-DC converter (Buck converter) to reduce its voltage making it suitable for other 

auxiliaries. 
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Figure 15: EV power flow block diagram. 

Source: (Kieldsen et al., 2016) 

2.4 CHARGING INFRASTRUCTURE 

A battery charger is a combination of an AC-DC rectifier and a DC-DC converter that are 

responsible for transferring energy to the rechargeable battery packs after processing and 

controlling the electric current passing through them. The simple configuration of the basic 

components of a battery charger is shown in Figure 16, where the battery is plugged into a 3 phase 

power supply through the charger. Charging EVs is a bit more complicated when it comes to real-

time applications, and that’s because of the different types of EVs and various types of chargers. 

EV charging is done by either an onboard charger or an off-board charger with a unidirectional or 

bidirectional power flow. European Environment Agency,(2019), Shareef et al.,(2016), and Yilmaz 

& Krein,(2013) categorize the charging infrastructure system based on the mode of energy 

transfer, charging power level, electrical current, and other standards like plugs and connectors. 

 

Figure 16: Basic components of a battery charger. 

Source: (Shareef et al., 2016) 
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2.4.1 Available Charging Systems  

The types of charging systems are determined based on the way of transferring energy from 

the power supply into the battery packs. The different types of charging systems are illustrated in 

Figure 17, which shows their main characteristics, charging duration, suitable applications, and 

current availability in the European market. These types are Battery swapping, inductive (wireless) 

charging, conductive (wired) charging. 

 

Figure 17: Electric powertrains: Charging infrastructure archetypes.  
Source: (European Environment Agency, 2019) 

2.4.1.1 Battery Swapping 

Battery swapping is based on replacing the discharged EV battery with a fully charged one at 

a special swapping station. Swapping the EV battery takes a few minutes and preserves long 

battery life. However, this charging system is still very limited in terms of availability and 

acceptance by EV manufacturers (Ahmad et al., 2020). 
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Figure 18: Inductive charging. 

Source: (Shareef et al., 2016) 

2.4.1.2 Inductive charging 

Inductive or wireless charger transfers electric current to the EV battery using an 

electromagnetic field that is created on a surface underneath the car, as shown in Figure 18. It 

represents a safer charging technique as no plugs and connectors are required, but it has low 

efficiency and high power losses and not compatible with most EVs. 

2.4.1.3 Conductive charging 

Conductive charging is the most common type of charging EVs for its simple configuration and 

high efficiency. This charging type is based on transferring power into the battery packs through 

via a physical cord of specific plugs and connectors suitable for each EV type. Wired charging could 

be an onboard method as shown in Figure 19 or and an off-board method as presented in Figure 

20. 

 

Figure 19: EVSE arrangement for onboard AC slow charging. 

Source: (Shareef et al., 2016) 
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Figure 20: EVSE arrangement for off-board DC Fast Charger(DCFC). 

Source: (Shareef et al., 2016) 

The main differences between the onboard and off-board chargers could be understood by 

comparing Figures 19 and 20. When charging using the onboard chargers, the AC EVSE consists of 

a control device that communicates with the BMS installed in the EV for current control. The AC 

power conversion takes place inside the vehicle’s PEU before being fed into the battery packs, 

which explains the existence of onboard power limits specified for each EV.  

However, off-board chargers that are themselves the EVSE are also responsible for rectifying 

and converting the AC power into a DC power supply that bypasses the onboard charger and 

charges the battery packs, as shown in Figure 21. Off-board chargers are more unrestricted in size 

limitations and power capacities but at the same time more expensive. In our research, we will 

consider using only conductive onboard chargers for charging both the residential and commercial 

EVs in the simulation of both models.  

 

Figure 21: Off-board and on-board chargers for an electrical vehicle (EV). 

Source: (Barone et al., 2020) 
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2.4.2 Charging Power Levels 

In this section, we categorize battery chargers according to their output power levels, where 

normal power or slow charging refers to single-phase AC EV chargers with a power level up to 3.7 

kW and a maximum current of 16 A equivalent to the standard domestic sockets. Medium power 

or quick charging corresponds to dedicated single or three-phase EVSE with a power level up to 

22 kW and a charge current up to 32A per phase. Finally, high power or (fast charging) refers to 

either AC three-phase chargers or DC fast chargers with a charging power superior to 22 kW. This 

classification is defined by Falvo et al.,(2014), who present the international standards of the 

charging infrastructure, including the types of chargers, plugs, and connectors available in North 

America and Europe. Table 8 represents a summary of the EV charging standards in the European 

case with providing the most relevant applications for each power level. 

Table 8: Electrical ratings of different EVS charge methods in Europe. 

Source: (Falvo et al., 2014) 

Charge Method Connection 
Power 
[kW] 

Max current [A] Location 

Normal power 
(slow charging) 

1-Phase AC connection 3,7 10-16 Domestic 

Medium power 
(quick charging) 

AC connection 1- or 3-phase 3,7 - 22 16-32 Semi-Public 

High power 
(fast charging) 

3-phase AC connection > 22 > 32 Public 

High power 
(fast charging) 

DC connection > 22 > 3,225 Public 

 

2.4.3 Charging Clusters 

Clustered charging technologies have not been fairly addressed until now as the majority of 

the researches talk about DC fast chargers and single phase. Charging clusters devices are pretty 

similar to dual chargers that are currently installed in public car parks, shopping centers, etc. (enel 

X, n.d.; pod POINT, n.d.-b). Žitnik & Mehle,(2014) and Bedogni et al.,(2015) define the cluster as a 

collection of public or semi-private EVSE that allows several EVs to be charged simultaneously 

under a specific power capacity that is optimized for each cluster by the Charging Station Operator 

(CSO) taking into consideration the grid situation of supply and demand.  
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The main benefit of using clusters is to exchange data between the clusters themselves, 

between the cluster and its EVSE, and between the cluster and the smart grid for the aim of 

reducing power demand at the same time of allowing EVs to retrieve the highest possible power 

while charging. Žitnik & Mehle,(2014) proposed the smart charging infrastructure shown in Figure 

22 for semi-private applications that is made up of: 

 The CSO is responsible for controlling the power flow among all equipment after collecting 

demand and capacities data 

 Demand Side Module (DSM) that allows the CSO to manage remotely the charging system 

 Master cluster that is connected directly to the DSM and collects data from other slave 

clusters about the current and power capacities for each EVSE and the power demand 

required for the plugged EVs based on their battery state of charge. 

 Slave clusters that receive signals and charging plans from the cluster master 

In this research, we consider having EV clusters for the commercial and industrial scenario 

only for charging the medium-duty electric freight vehicles, and we analyze the effect of the power 

capacity and the number of sockets available in each cluster. 

 

Figure 22: CSO-controlled power management. 

Source: (Žitnik & Mehle, 2014) 
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2.5 SMART CHARGING 
 

2.5.1 Smart Charging Strategies 

The concept of smart charging is as simple as a process of facilitating the EV integration in the 

power system through controlling the demand of both the power grid and the EV users while 

satisfying the mobility needs. Smart charging lowers the costs of reinforcing power grids and 

reduces simultaneity peak demand, unlike uncontrolled charging. Hildermeier et al.,(2019) stated, 

“smart EV charging can integrate increasing amounts of renewable energy resources, increase 

utilization of the existing network infrastructure, lower the operating cost of EVs, and minimize 

the need for new investment.”. There are plenty of studies that discuss the economic and technical 

benefits of EV-grid integration.  

Some research like Hildermeier et al.,(2019a) and IRENA,(2019)  provide a clear definition of 

smart charging and highlight the benefits it offers to enhance EV adoption and integration. 

Moreover, they discuss the importance of some forms of energy policies and incentives given to 

EV users, like “time-of-use pricing” that encourages EV users to shift their charging periods 

towards off-peak periods to minimize peak power demand. IRENA,(2019) mention five main smart 

charging strategies that are currently in use and are as follows:  

2.5.1.1 Time-of-use- pricing without automated control: 

The user himself chooses his charging periods based on the least energy costs during the day 

by physically plugging or unplugging the EV into the EVSE. 

2.5.1.2 Dynamic pricing with automated control: 

It’s based on reducing the charging energy costs by allowing the EV to be automatically 

charged during periods of low electricity prices that vary during the day. 

2.5.1.3 Basic controlled (on/off): 

This strategy is based on the charging scheduling of EVs throughout the day in a way to reduce 

the peak power demands, but it doesn’t include charging current adaptations, so the EV charger 

always retrieves the rated power value. 
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2.5.1.4 Unidirectional controlled charging (V1G): 

This strategy includes charging rate adjustment for the power consumed depending on the 

price of electricity, the grid and the charger capacity, and the EV’s SOC. 

2.5.1.5 Bidirectional controlled charging (V2G, V2H, V2B): 

Vehicle-to-Grid (V2G) gives EVs the potential to be considered as ancillary services on 

periods of peak demand and involves a power flow from EVs towards the grid and vice-versa 

(Yilmaz & Krein, 2013b). Similarly, Vehicle-to-House (V2H) and Vehicle-to-building (V2B) consider 

EVs to act as supplement power suppliers to the house or the building and serve as an Energy 

Storage System (ESS)as in Figure 23. 

 

Figure 23: EV charging and PV integration in a house using a V2H smart charging scheme. 

Source: (Yoshimi et al., 2012) 

Such technologies allow EVs to be charged during periods of the day with low energy costs 

and then supply their access energy to the house/building during periods of high energy prices, 

which helps in reducing the electricity bill (C. Liu et al., 2013). Figure 24 illustrates these advanced 

strategies of smart charging. This research is based on the unidirectional controlled charging 

strategy of a one-way power flow from grid to EVs based on the lowest energy costs and relatively 

lower power demands. 
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Figure 24: Advanced forms of smart charging. 

Source: (IRENA, 2019) 

Smart charging strategies offer plenty of benefits over the standard charging method. This 

fact drives scientists and researchers to invest more in exploring new opportunities. Yilmaz & 

Krein,(2013b) highlight the differences among both the controlled and uncontrolled charging 

methods and address the benefits offered by smart charging in different aspects like the reduction 

of power losses and the enhancement of the power quality. 

White & Zhang,(2011) explore the potential of using the V2G service with PHEV mainly for 

peak reduction and some financial return for EV users. In addition to showing the effect of high 

V2G participation rates in frequency regulations and market energy saturation. Similarly, Wali et 

al.,(2019) analyze the cost benefits of a smart charging schedule for V2G applications from an EV-

user point of view. Loisel et al.,(2020) examine the opportunity of V2G and G2V schemes for a 

large-scale deployment of EVs in Germany by 2030 and shows that high EV integration doesn’t 

hamper the system stability and can contribute to higher integration of intermittent renewable 

energy sources (RES) mainly wind and photovoltaic (PV). The integration of RES into the transport 

and electricity sectors through the three different bidirectional charging schemes is well explained 

in (Lund & Kempton, 2008; Mwasilu et al., 2014; Yoshimi et al., 2012). 
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2.5.2 Smart Charging Related Works 

Talking about smart charging means a combination of smart pricing strategies, smart 

technologies, and smart charging infrastructure. Hildermeier et al.,(2019a) present several smart 

pricing methods that are implemented in different countries in Europe other than the standard 

tariff, such as time-of-use (TOU) tariffs based on setting a specific price for different time blocks. 

Real-time pricing requires a smart meter to monitor the actual power and demand conditions 

across the grid. Limmer(2019) gives an overview of the dynamic pricing strategy and defines it as 

a demand response that encourages EV users to shift their charging schedule and power 

consumption based due to financial incentives. Dynamic pricing involves adapting the electricity 

price dynamically by the DSO or an operator of charging stations depending on the power supply 

and demand across the power grid. 

Smart charging infrastructure is more expensive and more complicated than conventional EV 

charging stations (Yilmaz & Krein, 2013b). It requires the installation of a dedicated measurement 

system and special smart meters that constantly monitor the EV and grid parameters. In addition 

to a bidirectional communication connection and control to send signals among the grid, charging 

station, and the BMS installed in the EV. Several studies have been conducted to assess the 

potential effect of EV charging load on power systems. Some of these studies present smart 

charging optimization models like Montoya et al.,(2017) that focus on the electric vehicle routing 

problem with a non-linear charging function to explore cheaper optimal solutions.  

Trippe et al.,(2015) and Hoke et al.,(2011) present two charge scheduling optimization models 

of a charging cost minimization problem, where the first applies the optimization model on a 

sample of passenger BEVs, and considers the effect of cycle battery aging in the cost objective 

function. However, the second is applied to PHEV and includes the impact of lithium-ion battery 

degradation costs in the optimization model. Turker et al.,(2014) solve a cost minimization 

problem of PEVs in a residential neighbourhood by generating an offline heuristic algorithm and 

considering two types of energy prices. 

Table 9: Annual relative peak power reduction under a different scenario. 

Source: (Ghotge et al., 2020) 

Nr. Scenario Relative peak power reduction (%) 

Ref. Unscheduled charging 0% 

1 No EV forecast 16% (↓) 

2 Average EV forecast 36% (↓) 

3 Robust EV forecast 39% (↓) 

Ref. Perfect forecasting 54% (↓) 
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Ghotge et al.,(2020) propose an optimization schedule model that minimizes the peak power 

demand of a solar parking lot used for EV charging. They develop a smart charging strategy based 

on a Model Predictive Control method to deal with the uncertainty in the arrival and departure 

periods of the EVs and their energy needs. The research considers a parking lot of 40 parking 

spaces each equipped with a level 2 EVSE with a rated power of 7.4 (𝑘𝑊) and powered by a roof-

mounted solar array over the parking spaces with a total power generation of 120 𝑘𝑊𝑝. Passenger 

EVs were considered, including HEVs and BEVs with battery capacities from 8 (𝑘𝑊ℎ) and up to 

100 (𝑘𝑊ℎ). The total number of EVs is equal to the number of parking spots with an additional 

stand-alone battery of 50 (𝑘𝑊ℎ) capacity to store the excess power produced. The simulations 

were performed over a year time interval under different scenarios where the results are reported 

in Table 9 that show an additional peak power reduction of up to 54% when applying using a new 

forecasting strategy of higher accuracy. 

Zhang et al.,(2012) present another example of peak reduction optimization models for a 

quadratic programming problem of EV charge scheduling at a large scale. In (Zhang et al., 2012), 

multiple case studies of the national power demand of the U.K. are considered with a series of 

different EV penetration levels from 10% and up to 50% of the total registered cars in the U.K. of 

about 28.4 million vehicles. Four scenarios were assumed of several charging behaviours of 

different charging modes considered to be either at home or public stations over a time horizon 

of 24h, besides performing an error and sensitivity analysis on the optimization model to improve 

the obtained results. The paper concluded that EV charging load shows high potential in flattening 

the national power demand curve in the U.K., especially in the EV fast-charging scenarios. 

Moreover, the increase in EV penetration level from 10% to 50% contributes to a gradual reduction 

in the power demand profile’s fluctuations. 

Pelletier et al.,(2018) consider a charge scheduling problem for electric freight vehicles (EFVs) 

and propose an optimization model to minimize the total charging cost while ensuring the energy 

needed to perform the routes assigned to each vehicle. This model allows charging to take place 

only at the depot and takes into consideration several factors like grid restrictions, degradation 

costs, time-dependent energy costs, and facility-related demand (FRD) charges. The experiments 

performed were based on a charging infrastructure composed of a reasonable number of DC fast 

chargers and level-2 AC chargers over a planning horizon of three days. 
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In (Pelletier et al., 2018), five test instances were generated for different EFV sizes of three, 

six, and nine and assumed that each EFV would perform two routes per 24-h interval. The results 

showed that the strategy of splitting long travel routes into several shorter ones contributes to the 

reduction of the total costs when considering the degradation costs, which goes along with the EV 

nature of a limited range. Moreover, it showed that an optimization model based on the 

combination of energy, FRD, and degradation costs reflects positively on the cycle and calendar 

lifetime of the batteries. 

This research proposes two Mixed Integer Linear Programming (MILP) problems that refer to 

two different EV charge scheduling problems. The first problem is based on a commercial and 

industrial scenario (CIS) where we create a mathematical model to optimize the charging schedule 

of medium-duty electric trucks using a clustering technology for the charging infrastructure. This 

model aims to explore the potential of clustered charging techniques for charging commercial EVs 

overnight at a minimum cost taking into consideration the effects of grid restrictions and charging 

interruptions similar to the work done in (Pelletier et al., 2018). 

The second optimization model is a two-stage EV charging problem of a residential scenario. 

The primary stage seeks the reduction of the EV integration impacts on the power grid in a 

residential neighborhood as the first from a DSO point of view through developing a peak shaving 

model (PSM). However, the second one aims to minimize the total electricity bill for each housing 

of EV users in the neighbourhood by creating a charging cost reduction model (CCRM) and analyze 

the effects of smart pricing, EV penetration levels, and different approaches for the two-stage 

interface of the optimization model. 
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3 BATTERY CHARGING PROCESS 

EVs are commonly charged under a constant current-constant voltage (CC-CV) approach to 

minimize the impact of overcharging degradation that can cause permanent damage to EV 

batteries (Lam, 2011). CC-CV charging scheme is the most prevalent method for charging Li-ion 

batteries that are typically used in modern EVs (Lin et al., 2019). CC-CV method is developed from 

the combination of the two basic charging schemes CC and CV charging methods to increase the 

charging efficiency and overcome their major downsides such as overcharging or undercharging 

and battery capacity losses for the CC charging scheme and slow charging and overheat for the CV 

charging method. In section 3.1, we explain the CC-CV charging scheme and the methodology 

followed to estimate the charging profile of a lithium-ion battery cell. Charging losses are discussed 

in section 3.2, with the main factors affecting them. Then we simulate the charging profile of a 

lithium-ion battery cell of some EV models commonly used in commercial and residential 

applications in section 3.3. Finally, section 3.4 presents an analysis of some variable-current 

charging schemes generated based on the CC-CV one. 

3.1 CONSTANT CURRENT-CONSTANT VOLTAGE CHARGING SCHEME 

The battery charging behavior under the CC-CV method is illustrated in Figure 25, which 

consists of two stages of different characteristics. The first stage represents the CC phase, where 

the charging current 𝐼𝑐𝑐 is held constant at a preset value based on the power supply while the 

battery terminal voltage rises until it reaches a predefined maximum value 𝑉𝑐𝑣 when the second 

phase, the CV stage, is entered. The CV phase then holds the terminal voltage constant at 𝑉𝑐𝑣 while 

the charging current decreases exponentially with time to prevent overcharging and then battery 

degradation. 

 

Figure 25: Constant Current-Constant Voltage charging scheme. 

source: (Lin et al., 2019) 
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In general, the CC phase accounts for the major part of the charging process where the SoC 

of the battery increases linearly with time at the highest rate to reach at least 85% in many cases, 

then the SoC’s rate starts decreasing during the CV charging phase with the exponential reduction 

of the electrical current till it reaches the cut-off value. The battery behavior models proposed by 

Tremblay et al.,(2007) and Pelletier et al.,(2017) help us better comprehend the CC-CV charging 

process and model the charging behavior of the vehicles used in our proposed models. During the 

CC phase, the battery behavior model requires a monitor of the instantaneous battery terminal 

voltage 𝑉𝑡𝑒𝑟𝑚 that is a function of the instantaneous SoC and the charging current. The charging 

current remains constant during the CC stage and equals to the maximum current 𝐼𝑐𝑐 specified by 

the charger’s manufacturer as shown in Eq. (1). 

𝑖(𝑡) = 𝐼𝑐𝑐      ∀𝑡|𝑉𝑡𝑒𝑟𝑚(𝑡) < 𝑉𝑐𝑣 (1) 

The instantaneous SoC of the battery is estimated based on Eq. (2) and defined as the sum of 

the SoC in the previous period and the SoC variation, which is equal to the ratio of the charging 

current over the battery charge capacity 𝑄 (Ah) multiplied by the infinitesimal time. We assume 

that the charging current is positive while charging and negative during the discharge process. 

𝑆𝑜𝐶(𝑡 + 𝑑𝑡) = 𝑆𝑜𝐶(𝑡) +
𝑖(𝑡) ∙ 𝑑𝑡

3600 ∙ 𝑄
 (2) 

Then, we calculate the battery’s open-circuit voltage 𝑉𝑜𝑐 which refers to the battery’s terminal 

voltage in the load-free situation as a function of the instantaneous SoC, the battery’s constant 

voltage 𝐸0, 𝑄 (𝐴ℎ), the polarization resistance 𝐾 (𝑉/𝐴ℎ), the exponential zone amplitude 𝐴 (𝑉), 

and the exponential zone time constant inverse 𝐵 (𝐴ℎ−1) as in Eq. (3). The parameters 𝐸0, 𝐾, 𝐴, 

and 𝐵  are basically taken from (Marra et al., 2012). The combination of Eqs. (1), (2), and (3) 

produces Eq. (4), which estimates 𝑉𝑡𝑒𝑟𝑚 till the end of the CC phase with assuming that the internal 

battery resistance is constant. 𝑉𝑡𝑒𝑟𝑚 is always greater or equal to 𝑉𝑜𝑐 during the charging process 

whereas it’s less than or equal to 𝑉𝑜𝑐  while discharging the battery. When 𝑉𝑡𝑒𝑟𝑚  reaches the 

predefined maximum voltage 𝑉𝑐𝑣 , the CC stage is finished and the battery shifts into the CV 

charging mode where the voltage is held constant with the simultaneous decrease in the charging 

current value based on Eq. (5). Unlike the CC phase, the SoC’s rate during the CV phase is no more 

constant and decreases with time simultaneously with the decrease of the charging current. We 

estimate it instantaneously by solving the differential Eq. (6). The numerical solution of the model 

proposed by Pelletier et al.,(2017) is illustrated in Figure 26. 
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𝑉𝑜𝑐(𝑆𝑜𝐶(𝑡)) = 𝐸0 −
𝐾

𝑆𝑜𝐶(𝑡)
+ 𝐴𝑒𝑥𝑝 (−𝐵𝑄(1 − 𝑆𝑜𝐶(𝑡))) (3) 

  

𝑉𝑡𝑒𝑟𝑚(𝑡) = 𝑉𝑜𝑐(𝑆𝑜𝐶(𝑡)) + 𝑅 ∙ 𝑖(𝑡)      ∀𝑡|𝑉𝑡𝑒𝑟𝑚(𝑡) < 𝑉𝑐𝑣 (4) 

  

𝑖(𝑡) =
𝑉𝑐𝑣 − 𝑉𝑜𝑐(𝑆𝑜𝐶(𝑡))

𝑅
    ∀𝑡 ≥ 𝑡𝑠 (5) 

  

𝑆𝑜𝐶̇ (t) =
𝑉𝑐𝑣 − 𝑉𝑜𝑐(𝑆𝑜𝐶(𝑡))

𝑅 ∙ 3600 ∙ 𝑄
    ∀𝑡 ≥ 𝑡𝑠 (6) 

 

Figure 26: CC-CV charging scheme. The horizontal axis shows the time; the vertical axis is not in 
scale to simultaneously illustrate the behavior of current, voltage, and state of charge. The CC 

phase (t < 𝑡𝑠) is obtained explicitly from Eq. (2). The CV phase (t > 𝑡𝑠) is obtained as a numerical 
solution of the differential Eqs. (4)-(6). 

source: (Pelletier et al., 2017) 

For the sake of simplicity, we follow the same procedure of the simplified model in Pelletier 

et al.,(2017) to avoid solving differential equations and integrating current to determine charge 

rates. Our simplified model is based on discretizing the time horizon into short intervals of 

equidistant time steps ∆𝑡 with a length of 10 seconds and under the assumption that the battery’s 

power, terminal voltage, and current remain constant. Thus, the SoC is calculated at the beginning 

of each time step 𝑘 according to Eq. (7) and for a given initial SoC and the current value applied 

during the previous time step that is equal to 𝐼𝑐𝑐 for the entire CC phase. 
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𝑆𝑜𝐶𝑘+1 = 𝑆𝑜𝐶𝑘 +
𝑖𝑘 ∙ ∆𝑡

3600 ∙ 𝑄
 (7) 

Then we use Eqs. (8) and (9) to determine the open-circuit and the terminal voltage 

respectively, with the same assumption of constant internal resistance inside the battery. When 

the CV stage is entered, the electric current value at every time step isn’t constant anymore and 

strictly less than 𝐼𝑐𝑐 and it is determined according to Eq. (10) as a function of the preset terminal 

constant voltage and the open-circuit voltage that corresponds to the SoC at the beginning of each 

time step 𝑘. 

𝑉𝑜𝑐(𝑆𝑜𝐶𝑘) = 𝐸0 −
𝐾

𝑆𝑜𝐶𝑘
+ 𝐴𝑒𝑥𝑝(−𝐵𝑄(1 − 𝑆𝑜𝐶𝑘)) (8) 

 

𝑉𝑡𝑒𝑟𝑚𝑘
= 𝑉𝑜𝑐(𝑆𝑜𝐶𝑘) + 𝑅 ∙ 𝑖𝑘 (9) 

 

𝑖𝑘 =
𝑉𝑐𝑣 − 𝑉𝑜𝑐(𝑆𝑜𝐶𝑘)

𝑅
    ∀𝑘|𝑉𝑡𝑒𝑟𝑚𝑘

≥ 𝑉𝑐𝑣 (10) 

3.2 CHARGIN LOSSES 

In real practices, the EV charging process, just like other energy transfer schemes, undergoes 

efficiency losses distributed among the different components of the charging system and have to 

be considered. Recent research conducted by Apostolaki-Iosifidou et al.,(2017) measures the 

charging and discharging losses across the different levels of the EV charging and discharging 

infrastructure. In this section, we focus only on the charging losses and specifically the current-

rate related losses that occur in the PEU. Apostolaki-Iosifidou et al.,(2017) define two main ways 

of charging losses represented in the building electrical components that consist mainly of Electric 

Vehicle Supply Equipment (EVSE), circuit breakers panel, and transformer. The other losses are 

caused by the EV components that include the battery pack, PEU, and Vehicle Smart Link (VSL). 

The losses were measured on two types of passenger EVs charging in the same building with 

different charging AC values of 10, 30, and 50 𝐴 by installing multiple AC and DC meters across the 

various components of the electrical system and the EV as shown in Figure 27 besides the building 

sub-meter to measure the transformer losses. 
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Figure 27: System components overview with the electric measurement system. 

Source: (Apostolaki-Iosifidou et al., 2017) 

𝑙 =
𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
× 100  (11) 

The power losses percentage 𝑙 for each component in the system is calculated according to 

Eq. (11) where 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 correspond to the input and output power of the specified component 

respectively and based on the current flow direction. The results of the measured losses are 

presented in Tables 10, 11, and 12.  

Table 10: Charging losses of building components. 

Source: (Apostolaki-Iosifidou et al., 2017) 

Component AC current (A) Percentage losses (%) 

EVSE 10 0.10 

 30 0.32 

 42 0.29 

Breakers 10 0.00 

 30 1.50 

 42 1.30 

Transformer 10 10.20 

 30 7.60 

 42 3.33 
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Table 10 shows the losses measured across the building components at different input AC 

values of 10, 30, and 42 (𝐴). We can see that the power losses across the transformer account for 

the major part of the building total losses at all the current values. However, the power losses in 

the transformer are the highest when charging with a slow charger and are inversely proportional 

to the current values. In general, the building total power losses are found to be the lowest for 

fast charging modes. 

Table 11: Battery losses (%) as a function of the battery state-of-charge (SOC) and the AC values.  

Source: (Apostolaki-Iosifidou et al., 2017) 

AC current (A) 
SoC 

20% 40% 60% 80% 

10 1.37 1.15 1.28 1.34 

30 2.74 3.26 2.50 2.65 

50 5.04 4.39 4.33 3.85 

70 6.39 7.87 6.27 5.27 

 

Table 12: PEU Charging Losses (%) as a function of the battery’s SOC and AC value. 

Source: (Apostolaki-Iosifidou et al., 2017) 

AC current (A) 
SoC 

20% 40% 60% 80% 

10 16.53 2.10 5.30 1.19 

30 5.91 7.68 5.73 7.82 

50 4.12 5.43 4.64 4.77 

70 1.96 2.36 0.88 2.33 

Tables 11 and 12 present the results of the charging losses measured across the battery and 

PEU respectively, as functions of the SoC of the battery and the EVSE input AC. By comparing the 

two tables, we notice that the power losses trend measured in the PEU at the SoC values 20% and 

60% is similar to that of the transformer in Table 10, in the sense that lower power losses decrease 

with the increase of AC values used with having minor exceptions. On the contrary, the power 

losses measured in the battery at any SoC increase when using higher charging levels. Talking 

about the PEU charging losses in Table 12 as a function of the battery’s SoC, we find remarkable 

fluctuations at the low current levels of 10 and 30 (𝐴). 
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3.3 CONSTANT CURRENT-CONSTANT VOLTAGE CHARGING PROCESS SIMULATION 

This section presents CC-CV charging simulations for four different Lithium-ion battery cells 

used in four different EV models of different design characteristics by referring to the simplified 

model proposed by Pelletier et al.,(2017) and using the Eqs. (7)-(10) discussed in section 3.1. The 

battery charging simulations take into consideration only the charging losses in the EV 

components, as shown in section 3.2 as a function of the battery’s SoC. The simulations were 

performed using a Microsoft Excel worksheet, whereas the results visualizations were done in 

python using the Matplotlib library. The charging simulations refer to the EV charging problem of 

both the commercial scenario using one type of medium-duty electric freight vehicle (Mitsubishi 

Fuso, 2019) and the residential one using three different passenger electric vehicles (BMW, 2018; 

Nissan, 2017; Toyota, 2013). 

3.3.1 Charging Simulation for a Lithium-Ion Battery Cell used in Commercial Electric Vehicles 

We simulate the charging process for a 3.6𝑉-38𝐴ℎ Lithium-Ion battery cell that corresponds 

to a medium-duty electric vehicle having a total energy capacity of 82.8 (𝑘𝑊ℎ) (Mitsubishi Fuso, 

2019) using different current values 𝐼𝑐𝑐 in the CC phase and a maximum voltage 𝑉𝑐𝑣 of 3.6 (𝑉) in 

the CV phase. Figure 28 illustrates a comparison of the charging simulation performed for the 

previously defined battery cell using two 𝐼𝑐𝑐 values: (a) refers to a 3.4 (𝐴) DC value equivalent to 

a 0.085C charge rate that corresponds to the single-phase 32 (A) AC power supply of 7.36 (𝑘𝑊) 

power capacity. (b) corresponds to the usage of a three-phase power supply having a phasor 

current of 16 (𝐴) a total power capacity of 11 (𝑘𝑊), and it is able to deliver a maximum DC 

current of 5.09 (𝐴) equivalent to a 0.1275C charge rate. 

Figure 28 shows that the time 𝑡𝑠 at which the CV process is entered decreases as the value of 

𝐼𝑐𝑐 increases. Similarly, as the value of 𝐼𝑐𝑐 increases, the SoC at time t at which the CV phase is 

entered decreases from 95% in (a) to 93.6% in (b) with current values of 3.6 and 5.09 (𝐴) 

respectively. By comparing the two charging profiles, we notice that the non-linear part of the 

charging process that lies in the CV phase gets greater influence and has to be considered, 

especially when using the fast chargers where the CV stage is entered at a SoC lower than 80% as 

in (Pelletier et al., 2018). We approximate the discretized CC-CV charging process by a linear 

piecewise using a set of breakpoints fitted to the real CC-CV concave function and suitable for the 

evolution of SoC over time as in (Montoya et al., 2017). 
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a)  

 

b)  

Figure 28: A comparison of the discretized CC-CV process of a 3.6𝑉-38𝐴ℎ lithium-Ion battery cell 
with different current values in the CC phase: (a) A single-phase EVSE of 7.36 kW power capacity 

(b) A three-phase EVSE of 11 kW power capacity 

Figure 29 illustrates the approximated linear piecewise of the CC-CV charging process where 

the SoC increases with time while the battery is charged with multi-level charging rates between 

different breakpoints. The charge rate 𝐶 could be defined as the ratio of charging current retrieved 

between two consecutive breakpoints over the total charge capacity 𝑄 and is reported at each 

breakpoint where we see an apparent declination in the charging rates when the CV stage is 

entered. The fluctuations in the current profile in the CC-phase are caused by the charging losses. 

The battery performs almost an entire charging event using one value for the 𝐼𝑐𝑐 in the CC phase.  
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For that reason, we replace the variable loss factor that is a function of the input AC values 

and the battery’s SoC with an average weighted loss factor for both charging levels by neglecting 

the minor differences. We notice that when using the three-phase charger in (b), the linear 

approximation requires an additional breakpoint in the charging process to keep 𝑉𝑡𝑒𝑟𝑚 under the 

predefined threshold compared to the number of breakpoints in (a), which charges with a 

relatively low current. Even though the CV phase is entered at relatively late SoC in both charging 

levels, still we set at least three breakpoints for our charging process to prevent the terminal 

voltage 𝑉𝑡𝑒𝑟𝑚 from exceeding the design limits. 

a)  

b)  

Figure 29: The CC-CV charging scheme approximation for a 3.6𝑉-38𝐴ℎ Lithium-Ion battery cell 
by a linear piecewise: (a) Using a 7.36 kW single-phase EVSE, (b) Using an 11 kW three-phase 

EVSE 
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3.3.2 Charging Simulation for a Lithium-Ion Battery Cell Used in Passenger Electric Vehicles 

This section illustrates a simulation for three different Lithium-Ion battery cells characterized 

with various charge capacities but sharing the same output voltage. These battery cells correspond 

to the three BEV models: BMW i3 which uses 3.6𝑉-34𝐴ℎ Lithium-Ion battery cells in its battery 

pack (BMW, 2018), Nissan Leaf equipped with a battery pack made of 3.6𝑉-40𝐴ℎ Lithium-Ion 

battery cells (Nissan, 2017), and Toyota Rav4 that consists of multiple 3.6𝑉-36𝐴ℎ Lithium-Ion 

battery cells in its battery pack assembly (Toyota, 2013).  

Similar to what we did in section 3.3.1, we simulate the CC-CV charging process for the three 

defined batteries using identical EVSE. However, the current values in the CC phase might vary 

from one battery cell to another because of the onboard charger’s power capacity of each EV. 

Figure 30 illustrates the CC-CV process of the three batteries that correspond to three different 

EV models in discrete time formulation as in (Pelletier et al., 2017), and also accounting for the 

PEU percentage losses defined by the parameter q.  

We can see that the maximum current Icc applied to each vehicle in the CC phase is different 

because of the differences in the onboard charger capacity of each EV. By comparing the three 

charging profiles, we notice that the charging process of the BMW EV in (b) is too close to that of 

the Rav4 EV in (c) in terms of the SoC breakpoint and the time at which the CV stage is entered. 

Unlike that of the Nissan Leaf in (a), where the effect of a higher current value in the CC phase and 

a smaller battery capacity caused the battery to shift into CV mode 7000 seconds earlier than 

those in (b) and (c) and at a lower SoC of 88%. 

Figure 31 illustrates the linear approximation of the CC-CV charging function for the same 

batteries used in Figure 30. Even that the CV phase for the battery in (a) is entered earlier, having 

the same number of breakpoints of suitable charge rates made it possible to preserve the terminal 

voltage. The EV Nissan Leaf experienced higher charge rates for all its breakpoints because it’s 

equipped with a smaller battery pack of lower energy capacity compared to the other two, even 

that the power supply is lower than 7.36 (𝑘𝑊) because of onboard charger power limitations. 
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a)  

b)  

c)  

Figure 30: The discretized CC-CV process of different Lithium-Ion battery cells using the same 
power supply of a 7.36 kW capacity. (a) 3.6V-34Ah Lithium-Ion battery cell of a Nissan leaf EV 

(Nissan, 2017), (b) 3.6V-40Ah Lithium-Ion battery cell of a BMW i3 EV (BMW, 2018), and (c) 3.6V-
36Ah Lithium-Ion battery cell of a Toyota RAV4 EV (Toyota, 2013). 
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a)  

b)  

c)  

Figure 31: The approximated linear piecewise of the discretized CC-CV process for different 
Lithium-Ion battery cells using the same power supply of a 7.36 (𝑘𝑊) capacity. (a) 3.6V-34Ah 

battery cell of a Nissan leaf EV (Nissan, 2017), (b) 3.6V-40Ah battery cell of a BMW i3 EV (BMW, 
2018), and (c) 3.6V-36Ah battery cell of a Toyota RAV4 EV (Toyota, 2013). 
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3.4 VARIABLE-CURRENT CHARGING SCHEMES 

Although the CC-CV charging scheme for charging EVs is efficient and widely used nowadays, 

it still has its share of the side effects on the battery life cycle and ageing effects. The CC-CV 

charging method has flexibility issues, especially in the CC stage, where it’s not possible to adapt 

the current values in response to the changing batter characteristics (Jiang et al., 2021).  

Table 13: Causes, effects, and influences of Lithium-ion anode ageing. 

Source: (Vetter et al., 2005) 

Cause Effect Leads to Reduced by Enhanced by 

Electrolyte decomposition Loss of lithium Capacity fade Stable SEI (additives) High temperatures 

(→SEI) (Continuous side Impedance rise Power fade Rate decreases with time High SOC (low potential) 

Solvent co-intercalation, gas 

evolution and subsequent 

cracking formation in 

Loss of active material 

(graphite exfoliation) 

Loss of lithium 

Capacity fade Stable SEI (additives) 

 
Carbon pre-treatment 

Overcharge 

particles     

Decrease of accessible surface 

area due to continuous SEI 

growth 

Impedance rise Power fade Stable SEI (additives) High temperatures 

High SOC (low potential) 

Changes in porosity due to 

volume changes, SEI 

formation and growth 

Impedance rise 

Overpotentials 

Power fade External pressure 

Stable SEI (additives) 

High cycling rate 

High SOC (low potential) 

Contact loss of active material 

particles due to volume 

changes during cycling 

Loss of active material Capacity fade External pressure High cycling rate 

High DOD 

Decomposition of binder Loss of lithium 

Loss of mechanical 

stability 

Capacity fade Proper binder choice High SOC (low potential) 

High temperatures 

Current collector corrosion Overpotentials 

Impedance rise 

Inhomogeneous 

Power fade 

 
Enhances other 

Current collector pre-treatment (?) Over-discharge 

Low SOC (high potential) 

 distribution of current and 

potential 

ageing 

mechanisms 
  

Metallic lithium plating and 

subsequent electrolyte 

decomposition by metallic Li 

Loss of lithium (Loss of 

electrolyte) 

Capacity fade 

(power fade) 

Narrow potential window Low temperature 

High cycling rates 

Poor cell balance 

Geometric misfits 

Lin et al.,(2019) state some of the CC-CV issues like higher polarization voltage due to the 

battery capacity fade, the difficulties in distinguishing among the individual cells because of its 

independence from the battery model, low charging efficiency due to the high temperature, 

especially in the CC phase where the current is high for an extended period which affects the 

battery life cycle and enhances the ageing effects. Table 13 presents an overview of the ageing 

mechanism and the related causes, effects, and impacts on the battery. By looking at the right 

column, we can see that the high temperature enhances the ageing mechanism in most cases. 
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Figure 32: Summary of various charging methods. 

Source: (Lin et al., 2019) 

The CC-CV charging approach represents a base for many optimized charging models that are 

summarized in Figure 32. Recent researchers proposed battery models based on an improved CC-

CV charging scheme that considers a variable current instead of the constant current in the CC 

phase. Table 14 presents the summary of the comparison conducted by Krieger et al., 2013 on four 

battery types using a variable current charging (VCC) method and reported their response on the 

major aspects. The results show that the LFP, which is one type of Lithium-Ion batteries that is 

widely used in EV production, has an excellent response in terms of cycle life and no measured 

effects of variability on lifetime. Moreover, LFP batteries show minimal capacity fade after over 

1000 cycles which makes them superior to the other battery types and raises the interest in 

discovering more in the VCC method. 
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Table 14: Summary of different batteries' responses to variable charging. 

source: (Krieger et al., 2013) 

Characteristic Lead-acid LCO LCO-NMC LFP 

Characteristic cycle life Poor Good Very good Excellent 

Effect of variability on 

lifetime 

Decreases lifetime No measured 

effect 

Neutral or positive 

effect 

No measured 

effect 

Pulse length 

dependence on 

Short pulses better 

than 

No measured 

effect 

No measured 

effect 

Short pulses 

better than 

charge acceptance 

Incomplete charge is a 

stressor 

longer pulses 

Yes 

 

No 

 

No 

longer pulses 

No 

Charge power fade 

observed 

Yes Yes Yes No 

Jiang et al.,(2021) and Cho et al.,(2019) have explored the effect of the VCC method on 

Lithium-Ion batteries and showed its opportunities. The first presents a VCC strategy that is based 

on breaking down the charging profile of the battery based on the SoC instead of the terminal 

voltage as in the CC-CV method. This research consists of several experiments on the same battery 

type that is charged with both the CC-CV method and the proposed VCC method, and the results 

showed an interesting reduction in the battery’s temperature of about 2.9℃ and charging losses 

reduction of about 0.5%. Similarly, Cho et al.,(2019) propose a charging algorithm that adjusts the 

charging current in response to the temperature increase inside the battery to prolong its lifetime 

and minimize the ageing effects. The charging algorithm is based on the VCC method that is 

applied on two types of Lithium-Ion cells, the high-capacity, and the high-power ones. The results 

of the experiment show that the VCC is an efficient method to decelerate the battery ageing 

mechanism caused by a repeated charging and discharging process. 

In our model, we consider a combination of the CC-CV charging method and the VCC method 

for the EV charging problem in both chapters 4 and 5. We assume a charging scheme that 

considers the charging current breakpoints estimated using the CC-CV charging method as 

thresholds for the actual current that the EV will use while charging but using the same SoC 

breakpoints. In other words, the current breakpoints approximated using the CC-CV charging 

scheme represent an upper limit to the charging current decision variable. Such a charging scheme 

gives more flexibility to the optimization model as the charging period isn’t as crucial as the 

charging cost and quality.  
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4 THE COMMERCIAL AND INDUSTRIAL PROBLEM MODEL 

This chapter presents the clustered charging strategy of the commercial and industrial 

scenario (CIS) and its mathematical model, and it’s organized as follows. First, we give a general 

description of the Electric Freight Vehicles Clustered Charge Scheduling Problem (EFV-CCSP) in 

Section 4.1. Then we present the EFV-CCSP mathematical formulation in Section 4.2, followed by 

a simple example of the problem for better understanding and analyzing several optimal solutions 

of different instances in Section 4.3. 

In this model, we consider a commercial firm for distributing goods using a fleet of electric 

freight vehicles. The aim is to optimize the overnight charge scheduling of these EFVs to minimize 

the total electricity bill taking into consideration the price of electricity that varies during the day 

and other parameters of the battery of each vehicle like the remaining state of charge (SoC), the 

energy needed to perform tasks in the coming day, and the departure and arrival periods from 

and to the site for each vehicle. To do so, we design an intelligent charging model in which we 

assume a way of communication between the charging station and the vehicle, between the 

charging station and the user through a mobile EV charging application between the charging 

stations and the cluster, between all clusters, between the charging stations themselves, and 

between the clusters and the power grid. 

Like other optimization problems, several assumptions are considered while modeling EFV-

CCSP, in which we highlight the most significant ones in this section. First, it is assumed that each 

EFV would be performing only one route during the planning horizon in which the different routes 

are of different ranges resulting in different energies needed for the EFVs. Second, the energy 

required per vehicle would be estimated automatically by the mobile charging application based 

on GPS after specifying the various destinations to be traveled on the following day, considering 

several factors as in (Schwertner & Macht, 2018). Third, the charging process can take place only 

in the depot of the commercial site, and that all EFVs can charge only in the day’s non-working 

periods, assuming a daily working period for each EFV to be from 9:30 till 17:00. Finally, we 

discretize the planning horizon and optimize the resulting problem accordingly, supposing that no 

charging occurs between the departure and the arrival times from and to the depot. 

 

 



 
47 

 

4.1 COMMERCIAL AND INDUSTRIAL PROBLEM DESCRIPTION 

This model is defined over a planning interval of one day, assumed to be a working day. Our 

planning interval is discretized into a set  𝑇 =  {1, … , 𝑇𝑚𝑎𝑥} of 𝑛𝑡 consecutive periods, each having 

a duration 𝛥𝑡 of 15 minutes (0.25 h) (𝑡 ∈ 𝑇).  The energy cost 𝑝𝑡 in Euro per kilowatt-hour (€/kWh) 

is assumed to be variable along the day any time 𝑡 ∈ 𝑇. The non-EV power consumption 

represents the site’s average power demand where the power retrieved by EFVs while charging is 

excluded and is denoted by the input parameter 𝑙𝑡 Kilowatt (kW).  

The set 𝑉 =  {1, … , 𝑚} represents a fleet of 𝑚 homogeneous EFVs assumed to be medium-

duty electric trucks, each equipped with several lithium-ion battery cells combined to give a total 

energy capacity 𝑄𝐸  kilowatt-hours (kWh), an output voltage 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦  Volts (V) and a total 

maximum charge capacity represented by the parameter 𝑄 ampere-hours (Ah). The maximum 

charge capacity is equal to the ratio of the total energy capacity 𝑄𝐸  over the battery voltage 

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦.  

Each EV is equipped with an onboard charger of maximum power capacity defined as 𝐿 (𝑘𝑊). 

We define the state of charge (SoC) of a battery as the amount of charge it contains divided by its 

charge capacity 𝑄. The whole power system of the commercial site is subjected to a grid power 

limit 𝑃 (𝑘𝑊), which’s the maximum power that could be retrieved from the grid by the site at any 

time. The maximum observed power consumption of the building throughout the planning interval 

is subjected to FRD charges of 𝐹 (€/kW). 

For each vehicle 𝑣 ∈ 𝑉, some input parameters are required to be inserted by the user before 

starting the optimization process and are as follows. Parameters 𝑑𝑣  and 𝑎𝑣  represent the 

departure and arrival time from and to the depot, respectively. The energy needed by vehicle 𝑣 to 

complete the route of the next day is defined by 𝑒𝑣 (kWh). It’s determined by summing up the 

travel distance of all the destinations specified by the user, then multiplying it by the range 

(𝑘𝑊ℎ/𝑘𝑚) of vehicle 𝑣. The SOC of each vehicle 𝑣 at the beginning of the planning horizon is 

defined as 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡. Let 𝑁 be the maximum number of cuts that can occur while charging vehicle 

𝑣 to limit the charging interruption for battery health reasons that result in longer battery life 

besides avoiding impractical solutions in which vehicles are constantly being moved from one 

cluster to another. we set a maximum and a minimum value of SOC denoted by the input 

parameters 𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛 respectively, for battery health reasons as well. 
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The charging system's infrastructure in the depot consists of a set of 𝐶 clusters of different 

power capacities. Each cluster 𝑐 ∈ 𝐶  is a similar example of electric vehicle supply equipment 

(EVSE) of a specific charging power level and equipped with one or more sockets and connectors 

of the same type (pod POINT, n.d., enel X, n.d.). One or more than one EV could be plugged 

simultaneously into the same cluster and share its maximum power such that if only one EV is 

plugged into the cluster, it benefits from the total power output of the cluster alone, which means 

a higher charging rate and shorter charging. If any other EV gets plugged into the same cluster, 

then the power would be divided and shared between both EVs but not necessarily evenly 

distributed. 

The idea behind grouping the charging stations into several clusters is to optimize the charging 

levels across all EVSE installed in the depot. Charging stations can exchange data gathered from 

EFVs that benefit the user from most of the power available on the grid without paying taxes on 

the power consumption that might exceed the contracted capacity. Besides, clusters with multiple 

charging sockets mean fewer charging devices by replacing them with only a few more 

connections. Moreover, most commercial and industrial sites are equipped with a three-phase 

power system, making it easier for the three-phase AC clusters to be installed with no significant 

modification of the site's power infrastructure. 

A charging level 1 is not considered in our modeling since the smart charging technology 

requires the installation of EVSE to communicate with the cluster and the grid. Moreover, it is 

based on connecting the onboard charger into the regular electric socket and takes at least 18 

hours to charge the EFV up to only 80%, which would be infeasible with a maximum charging 

period of 15 hours. On the other hand, The EFVs are equipped with an onboard charger of a 12 

(kW) power capacity that makes it economically infeasible to go for an EVSE of a capacity higher 

than the charger’s one. Similarly, off-board DC fast chargers are not considered for their high 

installation cost and because they are not commonly used for overnight charging but installed in 

public charging stations and shopping malls for daytime short charging periods. 

Our model is designed with several dedicated smart EVSE installed in the depot based on 

European standards. Each EVSE is assumed to be of a charging mode 3 and acts as a cluster of 

multiple charging sockets of either single or three-phase charging modes. It is equipped with a 

Mennekes type-2 connector compatible with all EVs in Europe and other countries (Falvo et al., 

2014). We assume having three types of clusters as follows: Type one is a single-phase EVSE having 

an output voltage of 230 𝑉 and a 32 (𝐴)  maximum current supply that corresponds to a power 

capacity 𝐺𝑐 (𝑘𝑊) of 7.36 (𝑘𝑊). Type two and three are three-phase EVSE with an output voltage 

of 400 𝑉, and current capacities per phase of 16 (𝐴) and 32 (𝐴) that are equivalent to 11 (𝑘𝑊) 

and 22 (𝑘𝑊) power capacities, respectively (Marra et al., 2012).  
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Parameters ℎ𝑐  refer to the number of charging sockets available in each cluster 𝑐. We assume 

that each EFV 𝑣 would be connected to only one cluster 𝑐 during its entire charging process. Figure 

33 shows a simplified configuration of the smart charging system’s clustered infrastructure in the 

depot, where the bidirectional arrows represent the direction of data communication among the 

system’s different levels. However, power flow is unidirectional from the grid as a top-level 

towards EVSEs as the bottom-level and is represented by the unidirectional red arrows. 

 

 

Figure 33: A Simplified scheme of a smart charging system’s clustered infrastructure in the depot 

By referring to section 3.3.1, we assume that each cluster 𝑐 ∈ 𝐶 has a specific CC-CV charging 

function approximated by a linear piecewise using 𝑏𝑐 + 1 breakpoints fitted to the real CC-CV 

concave function, and it’s different for each cluster type depending on its power level. The linear 

approximation of the charging process using cluster 𝑐 assumes that the charging current 𝐼𝑐,𝑏
𝑚𝑎𝑥 

between breakpoints 𝑏 and 𝑏 − 1 represents a ceiling to the actual current to be retrieved. 𝐵𝑐 is 

the set of breakpoints corresponding to the charging function of cluster 𝑐. Let 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 be the 

SoC associated with the breakpoint 𝑏 ∈ 𝐵𝑐 of the charging function of charger c. Finally, we set a 

minimum current 𝐼𝑐,𝑏
𝑚𝑖𝑛 applied to each EFV 𝑣 between two consecutive breakpoints 𝑏 and 𝑏 − 1  

of the charging function of a cluster 𝑐 for battery protection purposes. 
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4.2 MATHEMATICAL FORMULATION OF THE COMMERCIAL PROBLEM 

Six sets of decision variables are required for the formulation of the EFV-CCSP model. Binary 

variables 𝑢𝑣,𝑐 take a value of 1 if vehicle 𝑣 is connected to cluster 𝑐, and take a value of 0 otherwise. 

It is constant for the entire charging process until EFV 𝑣 this avoids impractical solutions in which 

vehicles are constantly being moved from one cluster to another. In addition, binary variables 𝑧𝑡,𝑣
𝑐,𝑏 

that take the value of 1 if EFV 𝑣 is retrieving current from a charging socket in cluster c during 

period 𝑡 before departure time from the site between breakpoints 𝑆𝑂𝐶𝑏−1,𝑐
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑏,𝑐

𝑏𝑟𝑒𝑎𝑘and 

take a value of 0 otherwise. While binary variables 𝑦𝑡,𝑣, take a value of 1 when the charging event 

of EFV 𝑣 shifts from ON to OFF between periods 𝑡 − 1 and 𝑡  and take a value of 0 otherwise.  

 Real and positive variables 𝑖𝑡,𝑣,𝑐 refer to the charging current applied to EFV 𝑣 by cluster 𝑐 

during the entire period 𝑡. Real and positive variables 𝑠𝑜𝑐𝑡,𝑣 refer to the state of charge of EFV 𝑣  

at the beginning of time 𝑡. Finally, Real positive variable s indicates the maximum charging power 

retrieved from the grid during the planning interval used to determine the FRD charges. To sum 

up, our problem is presented in the following mathematical model and the mixed-integer linear 

programming formulation (MILP), respectively: 

Sets: 

 𝑇: Set of time in the scheduling horizon         (𝑇 = {1, … , 𝑇𝑚𝑎𝑥}) 

 𝑉: Set of EFVs.          (𝑣 ∈ 𝑉) 

 𝐶: Set of charging clusters.         (𝑐 ∈ 𝐶) 

 𝐵𝑐: Set of breakpoints used in the piecewise linear approximation of the CC-CV 

charging process using cluster 𝑐.         (𝑏 ∈ 𝐵𝑐) 

Parameters: 

 𝑙𝑡: non-flexible consumption profile of the commercial site (non-EFV) at time 𝑡. (𝑘𝑊) 

 𝑝𝑡: Electricity price at time 𝑡. (€/𝑘𝑊ℎ) 

 𝑄: The charge capacity of the battery of the EFV (𝐴ℎ). 

 𝑄𝐸: The energy capacity of the battery of the EFV (𝑘𝑊ℎ). 

 𝐿: The onboard power capacity of the EFV (𝑘𝑊). 

 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦: The rated voltage of the battery of the vehicle (𝑉). 

 𝑁: The maximum number of cuts allowed for the battery of EFV. 

 𝑎𝑣: The arrival time of EFV 𝑣 to the depot. 

 𝑑𝑣: The departure time of EFV 𝑣 from the depot. 
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 𝑒𝑣: Energy needed for EFV 𝑣 to travel the next day (𝐾𝑊ℎ). 

 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡: The SoC associated with the first period of the time horizon for each EFV 𝑣 ∈ 𝑉. 

 𝑃: The Grid power capacity that could be consumed by the site at any time (𝑘𝑊) 

 𝐹: FRD charge  (€/𝑘𝑊) 

 𝐺𝑐: Maximum power could be withdrawn instantaneously from cluster 𝑐. (𝑘𝑊) 

 ℎ𝑐: The number of charging sockets in cluster 𝑐.  

 𝐼𝑐,𝑏
𝑚𝑎𝑥: The maximum current that could be retrieved in the piecewise linear approximation  

           of the CC-CV charging process depending on the charging level of cluster 𝑐 between 

           the breakpoints 𝑏 and 𝑏 − 1 for 𝑏 ∈ 𝐵𝑐, b > 0. (𝐴) 

 𝐼𝑐,𝑏
𝑚𝑖𝑛 : The minimum current that should be retrieved in the piecewise linear approximation  

           of the CC-CV charging process depending on the charging level of cluster c between 

           the breakpoints 𝑏 and 𝑏 − 1 for 𝑏 ∈ 𝐵𝑐, 𝑏 > 0. (𝐴) 

 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘: The state of charge associated with breakpoints 𝑏 ∈ 𝐵𝑐 in the piecewise linear  

                    approximation of the CC-CV charging function of cluster 𝑐. 

 𝑆𝑂𝐶𝑚𝑎𝑥: The maximum state of charge that any vehicle could reach while charging. 

 𝑆𝑂𝐶𝑚𝑖𝑛: The minimum state of charge that any vehicle could reach during the discharging 

                  Process.  

 𝑞: The average weighted power loss factor during charging. 

 𝛥𝑡: Timestep in (h). 

Variables: 

 𝑖𝑡,𝑣,𝑐 ≥ 0: The current value is taken by EFV 𝑣 at time 𝑡 in cluster 𝑐. (A) 

 𝑠𝑜𝑐𝑡,𝑣 ≥ 0: The state of charge of EFV 𝑣 at time 𝑡. 

 𝑧𝑡,𝑣
𝑐,𝑏 ∈ {0,1}: 1 if EFV 𝑣 uses a cluster 𝑐 at time 𝑡 with a state of charge between 

                              𝑆𝑂𝐶𝑐,𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑐,𝑏

𝑏𝑟𝑒𝑎𝑘. 

                              0 otherwise. 

 𝑦𝑡,𝑣 ∈ {0,1} : 1 if EFV 𝑣 stops charging at time period 𝑡. 

                              0 otherwise 

 𝑢𝑣,𝑐 ∈ {0,1} : 1 if EFV 𝑣 is plugged into cluster 𝑐. 

                               0 otherwise 

 𝑠 ≥ 0: The maximum charging power withdrawn from the grid along the planned horizon. 
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Formulation: 

minimize             ∑ 𝑝𝑡𝛥𝑡 ൭𝑙𝑡 + ∑ ∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑐∈𝐶𝑣∈𝑉

൱ + 𝐹 ∙ 𝑠

𝑡∈𝑇

 (12) 

 subject to: 

𝑙𝑡 + ∑ ∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑐∈𝐶𝑣∈𝑉

≤ 𝑠         ∀𝑡 ∈ 𝑇 (13) 

0 ≤ 𝑠 ≤ 𝑃 (14) 

∑
𝑖𝑡,𝑣,𝑐

𝑄
𝑄𝐸

𝑣∈𝑉

≤ 𝐺𝑐         ∀ 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (15) 

∑ ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶𝑣∈𝑉

𝑎𝑣−1

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝑐𝑣∈𝑉

𝑻𝒎𝒂𝒙

𝑡=𝑑𝑣

= 0         (16) 

𝑠𝑜𝑐1,𝑣 = 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡           ∀𝑣 ∈ 𝑉 (17) 

𝑠𝑜𝑐𝑑𝑣+1,𝑣 = 𝑠𝑜𝑐𝑑𝑣,𝑣 −
𝑒𝑣

𝑄𝐸
         ∀𝑣 ∈ 𝑉 (18) 

𝑠𝑜𝑐𝑑𝑣,𝑣 = 𝑠𝑜𝑐𝑎𝑣,𝑣 +
𝑒𝑣

𝑄𝐸
         ∀𝑣 ∈ 𝑉 (19) 

∑ ∑
𝑖𝑡,𝑣,𝑐(1 − 𝑞)𝛥𝑡

𝑄
𝑐∈𝐶𝑡∈𝑇

+ 𝑆𝑂𝐶𝑣
𝑠𝑡𝑎𝑟𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛 =

𝑒𝑣

𝑄𝐸
        ∀𝑣 ∈ 𝑉 (20) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑠𝑜𝑐𝑡−1,𝑣 + ∑
𝑖𝑡−1,𝑣,𝑐(1 − 𝑞)𝛥𝑡

𝑄
𝑐∈𝐶

        ∀𝑡 ∈ 𝑇\{1, 𝑑𝑣, 𝑑𝑣 + 1}, 𝑣 ∈ 𝑉 (21) 

𝑠𝑜𝑐𝑡+1,𝑣 ≤ 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 + 1 − 𝑧𝑡,𝑣

𝑐,𝑏   ∀𝑡 ∈ {𝒂𝒗, … , 𝑑𝑣 − 1}, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐\{0} (22) 
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𝑠𝑜𝑐𝑡,𝑣 ≥ 𝑆𝑂𝐶𝑐,𝑏−1
𝑏𝑟𝑒𝑎𝑘 − 1 + 𝑧𝑡,𝑣

𝑐,𝑏   ∀𝑡 ∈ {𝒂𝒗, … , 𝑑𝑣}, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐\{0} (23) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥          ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (24) 

𝑖𝑡,𝑣,𝑐 ≤ ∑ 𝐼𝑐,𝑏
𝑚𝑎𝑥𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (25) 

𝑖𝑡,𝑣,𝑐 ≥ ∑ 𝐼𝑐,𝑏
𝑚𝑖𝑛𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (26) 

∑ ∑ 𝑧𝑡−1,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

− ∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 𝑦𝑡,𝑣        ∀𝑡 ∈ {𝒂𝒗 + 𝟏, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (27) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≥ 𝑦𝑡,𝑣         ∀𝑡 ∈ 𝑇\{𝒂𝒗 + 𝟏, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (28) 

∑ 𝑦𝑡,𝑣

𝑡∈𝑇

+ ∑ ∑ 𝑧𝑇𝑚𝑎𝑥,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 𝑁 + 1         ∀𝑣 ∈ 𝑉 (29) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑐∈𝐶

≤ 1         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (30) 

∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}

≤ 𝑢𝑣,𝑐         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (31) 

∑ 𝑢𝑣,𝑐

𝑐∈𝐶

≤ 1         ∀𝑣 ∈ 𝑉 (32) 

∑ ∑ 𝑧𝑡,𝑣
𝑐,𝑏

𝑏∈𝐵𝑐\{0}𝑣∈𝑉

≤ ℎ𝑐          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (33) 

∑ 𝑢𝑣,𝑐

𝑣∈𝑉

≤ ℎ𝑐          ∀𝑐 ∈ 𝐶 (34) 
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𝑖𝑡,𝑣,𝑐 ≤ ∑
𝐺𝑐 ∙ 1000

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶  (35) 

𝑖𝑡,𝑣,𝑐 ≤ ∑
𝐿 ∙ 1000

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑧𝑡,𝑣

𝑐,𝑏

𝑏∈𝐵𝑐\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶  (36) 

𝑧𝑡,𝑣
𝑐,𝑏 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑏 ∈ 𝐵𝑐 (37) 

𝑦𝑡,𝑣 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (38) 

𝑢𝑣,𝑐 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 (39) 

The objective function (12) minimizes the total energy costs over the planning horizon. The 

first term corresponds to the total energy cost of the site that is the cost of electricity 𝑝𝑡 (€/𝑘𝑊ℎ) 

multiplied by another two subterms that are the non-EV normal power demand of the site 𝒍𝒕 (kW) 

multiplied by the period length 𝛥𝑡 (hours) and the total energy consumed by EFVs for charging 

their batteries over the planned horizon.  

By referring to some numerical simulations of the CC-CV process conducted in the battery 

model proposed by Tremblay et al.,(2007), we noted that the cumulative energy (kWh) recharged 

in the battery is constantly and linearly increasing with the increase of the SOC during the CC-CV 

process regardless of the charging current used in the CC phase. As a result, the SOC variation is 

determined by multiplying the charging current 𝑖𝑡,𝑣,𝑐 (A) by the period length 𝛥𝑡 (hours) divided 

by the battery charge capacity 𝑄 (Ah), and we then calculate the corresponding energy recharged 

in the battery by multiplying the resulting SOC variation by the energy capacity 𝑄𝐸 (kWh).  

The second term in the objective function (12) represents the FRD charges that the whole site 

is subjected to and is determined by multiplying the fee 𝐹 (€/kW) by the maximum charging 

power retrieved from the grid throughout the entire planned interval. EFVs would be scheduled 

in a way to retrieve power from the grid during the periods when the regular power consumption 

of the site 𝑙𝑡 is relatively lower than its values in other periods. 
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Constraints (13) calculates the maximum charging power retrieved from the grid throughout 

the entire planned interval. Constraints (14) ensure that the site's instantaneous total power 

consumption would never exceed the grid limit P at any time 𝑡. Constraints (15) set the power 

limit for each cluster 𝑐 ∈ 𝐶 such that the total power retrieved by all EFVs that are connected to 

the charging points in cluster 𝑐 at each 𝑡 would be less than or equal to its power capacity 𝐺𝑐 (kW) 

at any time. Constraints (16) ensure that no charging events take place while EFVs are performing 

their routes and 𝑧𝑡,𝑣
𝑘,𝑏 take the value of 0. Constraints (17) associate the SOC at the beginning of 

the time interval to the predefined SOC corresponding to the arrival time of each vehicle 𝑣. 

Constraints (18) refer to the discharge process of each vehicle upon its departure from the depot 

at period 𝑑𝑣.  

Constraints (19) and (20) ensure that each vehicle would be charged with the exact amount 

of energy needed 𝑒𝑣 (kWh) during its charging process. Constraints (21) calculate the SOC of each 

EFV 𝑣 at time 𝑡 as the sum of its SOC and the equivalent SOC of the charge value stored in the 

battery based on the current retrieved from cluster 𝑐 in the previous period 𝑡 − 1. Constraints 

(22) and (23) bound the SOC of EFV 𝑣 between two consecutive periods depending on the specific 

piecewise linear function of the CC-CV process that corresponds to charger 𝑐 where the car is 

connected. Constraints (24) bound the SOC of each vehicle during each period for a longer battery 

lifecycle.  

Constraints (25) and (26) force the charging current applied to an EFV not to exceed or go 

below the maximum and minimum current values associated with the segment of the CC-CV 

charger-specific linear piecewise linear function. Constraints (27)-(29) set the restrictions for the 

maximum number of cuts 𝑁 allowed for each EFV 𝑣 along the planning horizon to minimize the 

effects of battery degradation resulting in longer battery life. Constraints (30) ensure that each 

vehicle EFV 𝑣 could retrieve power from only one cluster 𝑐 at any time. Constraints (31) and (32) 

assign each vehicle 𝑣 to only one cluster 𝑐 for the entire charging process.  

Constraints (33) and (34) adjust the number of vehicles that are plugged into cluster 𝑐 at any 

time 𝑡 not to exceed the number of its charging sockets ℎ𝑐  and guarantee that each vehicle 𝑣 

would retrieve power from only one socket in one specific cluster for the entire charging process. 

Constraints (35) limit the power withdrawn from any socket in cluster 𝑐 not to exceed its power 

capacity 𝐺𝑐. Constraints (36) ensure that the power retrieved by EFV 𝑣 from the charging station 

of cluster 𝑐 respects the power capacity of its onboard charger. Constraints (37) and (39) define 

the domains of the variables that were not appropriately bounded by the other constraints. 
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4.3 SIMPLE EXAMPLE WITH MULTIPLE OPTIMAL SOLUTIONS 

To help readers comprehend the problem and its mathematical formulation, we generate 

examples of different optimal solutions for a small instance of the EFV-CCSP.  We assume having 

a time interval of 24 periods that starts from 15:00 with a time step of one hour resulting in a 

whole night charging problem such that the cost of energy 𝑝𝑡 and the non-EV power consumption 

of the building 𝑙𝑡 are given in Table 3. The grid power limit 𝑃 is set to the value of 200 (kW) that 

could be neglected for the sake of simplicity, and the FRD fees are set to be 11 (€/kW). We apply 

the experiments on a set of 3 homogeneous vehicles with an energy capacity of 82.8 (kWh), a 

charge capacity of 230 (Ah), 360 (V) battery voltage, and a 12 kW onboard charger. We assume 

the SoC for all vehicles equals the minimum SoC of 0.05 and could be charged up to a maximum 

SoC of 0.99. Let N the maximum number of cuts along the entire charging process be equal to 2. 

The energy needed 𝑒𝑣 (kWh), and the arrival and departure periods for each vehicle are given in 

Table 15. 

Table 15: Route parameters for the simple numerical example 

𝑉 distance(km) 𝑒𝑣 (𝑘𝑊ℎ) 𝑑𝑣 𝑎𝑣 
1 62 40 17 3 
2 65 42 18 2 
3 68 44 17 4 

There are three types of clusters installed in the depot in which, for every example, all EVs for 

their charging process use the same kind of cluster to analyze better the effects of the cluster’s 

types on the charging behavior of the EFV behavior while performing the overnight charging. For 

the sake of simplicity, we set only two breakpoints associated with the linear approximation CC-

CV charging process of the battery using any cluster type such that 𝐵𝑐 = {0,1}. The values of the 

maximum current 𝐼𝑐,𝑏
𝑚𝑎𝑥 and the minimum current 𝐼𝑐,𝑏

𝑚𝑖𝑛 and the SoC breakpoint 𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 that 

correspond to the breakpoints specified to each charging type are summarized in Table 16. 

Table 16: Design parameters associated with the breakpoints of the linear approximation of the 
charging process 

𝐵 
32 (A) single-phase EVSE 16 (A) three-phase EVSE 

𝑆𝑂𝐶𝑐,𝑏
𝑏𝑟𝑒𝑎𝑘 𝐼𝑐,𝑏

𝑚𝑎𝑥 𝐼𝑐,𝑏
𝑚𝑖𝑛 𝑆𝑂𝐶𝑐,𝑏

𝑏𝑟𝑒𝑎𝑘 𝐼𝑐,𝑏
𝑚𝑎𝑥 𝐼𝑐,𝑏

𝑚𝑖𝑛 

0 0.05 0 0 0.05 0 0 

1 0.99 20.5 4.1 0.99 30.5 6 
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a)  

b)  

c)  

Figure 34: The SoC evolution with time during the charging process of EVs "1", "2" and "3" using: 
(a) 3 single-socket chargers each having a 7.36 kW power capacity, (b) a double-socket charger 
and a single-socket charger both having a 7.36 kW power capacity, (c) a triple-socket charger of 

11 kW power capacity. 
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Table 17: The power consumption for three optimal solutions of different cluster types. 

   EV power consumption (kW) 

Periods 
(T) 

Energy 
Cost 
𝑝𝑡 

(€/kWh) 

Non-EV 
power 

retrieved 
𝑙𝑡 (kW) 

Case 1 
Single-phase 32 (A)  

3 single-socket  
EVSE A, B, and C 

Case 2 
Single-phase 32 (A)  
2 Double-sockets  
clusters A and B 

Case 3 
Three-phase 16 (A)  
one Triple-sockets  

cluster A 

1/A 2/B 3/C 1/A 2/A 3/B 1/A 2/A 3/A 

1 0.25 38.31 0 0 0 0 0 0 0 0 0 

2 0.25 34.75 0 0 0 0 0 0 0 0 0 

3 0.25 35.29 0 0 0 0 0 0 0 0 0 

4 0.1 35.25 7.36 0 0 0 1.48 0 0 0 9.25 

5 0.1 34.41 0 0 0 0 6.30 0 7.79 0 0 

6 0.1 33.14 0 0 0 0 7.36 0 0 10.98 0 

7 0.1 34.01 0 4.60 0 0 7.36 0 0 10.98 0 

8 0.1 34.87 0 7.36 0 0 7.36 0 10.98 0 0 

9 0.045 34.27 7.36 2.36 7.36 1.57 5.79 7.36 5.93 5.07 0 

10 0.045 34.93 7.36 1.70 7.36 5.88 1.48 7.36 2.06 0 8.94 

11 0.045 34.67 6.42 7.36 2.90 5.88 1.48 7.36 2.06 0 8.94 

12 0.045 34.83 2.05 7.11 7.36 7.36 0 7.36 2.06 0 8.94 

13 0.045 35.42 1.48 7.10 7.36 7.36 0 7.36 2.06 8.94 0 

14 0.045 38.09 4.43 1.48 7.36 7.36 0 5.90 2.06 8.94 0 

15 0.045 39.61 0 4.38 7.36 7.36 0 2.88 0 0 10.98 

16 0.045 43.55 6.32 1.48 0 0 6.32 1.48 7.80 0 0 

17 0.045 50.41 0 0 0 0 0 0 0 0 0 

18 0.1 51.35 0 0 0 0 0 0 0 0 0 

19 0.1 49.98 0 0 0 0 0 0 0 0 0 

20 0.1 48.30 0 0 0 0 0 0 0 0 0 

                  

 Net Charged Energy 
(kWh) 

40 42 44 40 42 44 40 42 44 

 Gross Charged 
Energy (kWh) 

42.78 44.92 47.06 42.78 44.92 47.06 42.78 44.92 47.06 

                  

 excess charged 
energy (kWh) 

0 0 0 0 0 0 0 0 0 
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Three cases are defined as A, B, and C, where A refers to a charging infrastructure composed 

of single-socket single-phase 32 (A) charging stations such that ℎ𝑐=1 for all the clusters and 

characterized by a power capacity of 7.36 kW each. Case B represents a depot equipped with two 

twin-socket single-phase 32 (A) intelligent chargers with a power capacity of 7.36 kW each. Each 

of the two clusters could deliver a power of 7.36 kW per socket and the same power value 

combined. Finally, case C is similar to case B, with the difference in having a three-phase 16 (A) 

smart cluster equipped with 3 charging sockets and delivering a combined power of up to 11 kW. 

Table 17 and figures 34, 35, and 36 illustrate the results of the optimal solutions for the example 

proposed before using the three different charging technologies and show their effect on the 

charging cost and the power system. 

Figure 34 illustrates the SOC's evolution for each of the three vehicles over the planned horizon 

in the three different cases where (a), (b), and (c) refer to the previously explained instances of A, 

B, and C respectively. The effects of using different types of chargers are evident in the 

deformation of the SoC profile of each EV. We see that the charging behaviors of all EVs in case A 

are more flexible in which all EVs are charging simultaneously and at different charging rates. 

However, in case B, EVs 1 and 2 are sharing the same charging cluster of a power capacity up to 

7.36 (𝑘𝑊) where we see that EV2 takes advantage of its earlier arrival period than that of EV1 

and starts charging at the high charging rates solely for five periods. When EV2 reaches relatively 

a high SoC, then EV1 starts charging, and the power gets divided among both EVs for only three 

periods. At period 12, EV2 stops charging, giving a privilege to the empty battery of EV1 that starts 

charging at the highest charging rate, as shown in Table 17.  

However, the charging profile of EV3 shows no significant changes because of using the same 

charger in case A. Interestingly, the charging profiles of all EVs restore their flexibility due to the 

upgrade in the power capacity of the cluster used with compared to that in case B. During the 

entire time interval, we notice that the 11 (𝑘𝑊) cluster allows only two EVs to charge at the same 

time as in the interval between periods 9 and 14 where EV1 keeps charging at a low rate while EVs 

2 and 3 are interchanging with high charging rates.  
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Figure 35: The power consumption profile of the building when using three different charging 
infrastructure cases and the electricity prices variation with time. 

Table 17 and Figure 35 present the power retrieved by each EV individually at every period and 

the total power retrieved by the building at every point of time respectively. Each color in Table 17 

refers to a specific EV where the dark colors refer to the arrival periods of the EVs, whereas the 

bright ones correspond to the departure periods. We find that the charging schedules in cases B 

and C are more flexible, where we notice that most  EVs take advantage of the high power 

availability and complete their charge in a lesser time compared to case A. The clusters in cases B 

and C contribute to a power grid’s relief by delivering higher power to the EVs on periods when 

the normal power demand is low. We can also see that the building's maximum power over all the 

day is common for all cases. However, this maximum power got registered on nine periods in case 

A that is three times more than that in case B of three periods and almost five times more 

compared to that in case C of two periods. The total power consumption profiles using all charging 

technologies show the effect of the optimization model in charging EVs only during periods of low 

household power consumption and electricity prices. 
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Figure 36: The building's electricity bill as a result of three different charging infrastructure 
scenarios. 

 

Figure 36 shows the building’s total electricity bill for the cases of using different charging 

technologies. The total electricity bill in case A having a value of about 713.4 (€) appears to be 

the least among all cases with around 0.6 (€) less than that of case B and around 1.7 (€) lower 

than the maximum value in case C of approximately 715.1 (€). The results might not be too 

impressive when comparing the variable cost of the different charging technologies, but we need 

to bear in mind that we’re using half the number of charging points and even less as in case C, 

which results in lesser installation costs. Moreover, other types of charging clusters could be more 

efficient, especially in the worst-case charging scenarios, as we will see in chapter 6. 
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5 THE RESIDENTIAL NEIGHBOURHOOD PROBLEM MODEL 

This chapter presents a two-stage optimization modeling for the EV charge scheduling 

problem of a residential neighborhood scenario (RNS), and it is laid out as follows. Section 5.1 

provides a general description of the Two-Stage Residential Electric Vehicle Charge Scheduling 

Problem (TSREV-CSP) and explains the relationship between the objective functions of both 

model’s stages. We decompose the TSREV-CSP into two distinct models that interact with each 

other. The following sections 5.2 and 5.3 present the mathematical formulations for the two 

stages of the TSREV-CSP, the Peak Shaving Model (PSM) and the Charging Cost Reduction Model 

(CCRM) respectively. Finally, we generate in section 5.4 a simple example and show different 

optimal solutions for the TSREV-CSP to help readers better understand the tradeoffs. 

TSREV-CSP is an example of multi-objective optimization problems where we have multiple 

end-users of different interests and goals to be achieved such that if each is achieved individually, 

the other’s objectives might be violated. Such a model comes as a solution to intelligently allow all 

these different objectives to be met at once. TSREV-CSP is based on the same concept in which 

we have two leading players in the game. On the one hand, the Distribution System Operator 

(DSO) and indirectly the Transmission System Operator (TSO) that co-exist with a high level of 

coordination to maintain a safe operation of the transmission system and balance the energy 

supply and demand to keep the grid frequency and the thermal burden of electrical equipment 

within defined parameters (Zipf & Most, 2016).  

In this section, we consider having a DSO that aims to reduce the impact of the daily EVs’ 

charging profile and avoid the spiking electricity demand in a particular neighborhood. To do so, 

the DSO offers its clients a new smart charging technology consisting of a dedicated smart charging 

station installed at every house in the neighbourhood (pod POINT, n.d.-a) and is connected 

through the internet to a smart charging app installed on any smartphone (ev.energy, n.d.) as 

shown in Figures 37 and 38. The mobile app allows communication between EVs and the smart 

grid and between all EVs in the neighborhood through the smart chargers installed in each house. 

Logically speaking, this new technology would be accepted by EV users only if it helps them save 

money and make their EV charging process more accessible and more secure in the sense of 

ensuring that their EV would be charged with at least the energy needed at the departure time 

they specify as an input parameter through the mobile app. 
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Figure 37: rolec-wallpod-EV-homesmart (Driving Electric, n.d.). 

 

 

Figure 38: Charging station equipment and activities (Mal et al., 2013). 
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TSREV-CSP serves as an exciting charging strategy to satisfy both the DSO and EV users 

simultaneously for being designed with dual objective functions corresponding to two dependent 

optimization models. The first model is a peak shaving model (PSM) that allows the DSO to 

minimize the grid power capacity and normalize the neighborhood’s load profile throughout the 

entire day. Then comes the subsequent charging cost reduction model (CCRM) based on the 

optimal solution of PSM to minimize the cost of EV charging thanks to the smart pricing strategies.  

Like the EFV-CCSP discussed before, the TSREV-CSP is designed for overnight charging, and 

the charging process for each vehicle would take place only through the EVSE installed in the 

house. We consider having only one EV for each house of the neighbourhood for the sake of 

simplicity. We assume that the arrival and departure periods and the energy needed for all EVs 

are inserted by the EV owners and known before the optimization process. The energy needed by 

each EV would be calculated in the app upon selecting the travel plan or could be inserted 

manually as a percentage of the car energy capacity, as shown in Figure 39. Finally, this model is 

designed in the way of allowing the charging events of all vehicles to take place only at the charging 

point installed in the house of each EV. 

 

 

Figure 39: (a) Charge status screen. (b) Charge profile screen (Mal et al., 2013). 
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5.1 RESIDENTIAL NEIGHBOURHOOD PROBLEM DESCRIPTION 

Our problem is solved with two optimization models where the primary model PSM is 

independent of the cost of electricity and aims to reduce the maximum instantaneous power 

demand over the entire day. Its optimal solution represents an input parameter for the second 

optimization stage. Specifically, the PSM is followed by the CCRM that considers the 

neighborhood’s output optimal maximum power limit and the cost of energy as new inputs 

compared to PSM to minimize each house’s electricity bill. The optimal solution in PSM is 

considered feasible in the CCRM but not necessarily optimal, so the electricity bill resulting in the 

CCRM would be less than or equal to that of the PSM. 

Our problem is defined over a set T= (1,..,𝑇𝑚𝑎𝑥) the time interval of equidistant periods with 

a time step 𝛥𝑡 of 15 mins (0.25 h). The price of electricity 𝑝𝑡 (€/KWh) is given at every time 𝑡 ∈

𝑇, where the day is divided into different intervals of different prices based on smart pricing 

strategies for the peak, shoulder, and off-peak demands. The neighborhood consists of a set V of 

electric vehicles (EVs) that could be charged daily, assuming that each EV v corresponds to one 

house and that every house owns one EV. At any time 𝑡 ∈ 𝑇 , the (non-EV) typical power 

consumption of each house of vehicle v is given as 𝑙𝑡,𝑣, that is the normal power demand of each 

house such that the power consumption of EVs is excluded (kW). 𝑀𝑡  is the neighborhood’s 

household power consumption at time t that is either equal to the sum of the parameters 𝑙𝑡,𝑣 over 

the set V if the houses’ number is the same as the number of EVs or greater when some houses 

have no EV. 

Each EV 𝑣 ∈ 𝑉 requires to be charged with a given amount of energy 𝑒𝑣  (KWh) estimated 

based on the available energy in the battery and the travel distance as a sum of the route 

destinations specified by the EV user for the next day. The arrival time 𝑎𝑣 to the house and the 

departure time 𝑑𝑣 from the house are given for each EV. The SOC for each vehicle v at the arrival 

time is defined with the input parameter 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙. Each EV 𝑣 ∈ 𝑉 is characterized by an energy 

capacity 𝑄𝐸𝑣  (kWh), an output battery voltage 𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

, a charge capacity represented by the 

parameter 𝑄𝑣 (Ah), and equipped with an onboard charger of a power capacity defined as 𝐿𝑣. We 

define the state of charge (SOC) of a battery as the amount of charge it contains divided by its 

charge capacity 𝑄𝑣. 
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All EVs are subjected to a charging interruption parameter 𝑁  for battery health reasons 

resulting in a longer battery life cycle. Like the model in chapter 4, we set a maximum and a 

minimum value of SoC defined as the input parameters 𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛  for battery health 

reasons. Each house of EV 𝑣 is subjected to a maximum contract power denoted by the parameter 

𝑃𝑣 that is agreed on by both the user and the energy supplier. In the garage of each EV house v, 

we assume that a level 2 single-phase 230V-32A smart charger with a power capacity of up to 7.3 

kW defined by the parameter 𝐺 is installed. 

Just like in section 4.1 and based on the battery model presented in section 3.3.2, we 

approximate a linear piecewise function for the discretized CC-CV charging process of the 

batteries, which consists of several breakpoints 𝑞𝑣 + 1 fitted to the real CC-CV concave charging 

function of the battery of vehicle 𝑣. The linear approximation of the battery’s charging function of 

vehicle 𝑣 assumes that the charging current 𝐼𝑣,𝑏
𝑚𝑎𝑥 represents a ceiling to the actual current to be 

retrieved between breakpoints 𝑏 and 𝑏 − 1 for 𝑏 ∈ 𝐵𝑣 having 𝐵𝑣 as the set of breakpoints fitted 

to the actual CC-CV charging process of the battery of vehicle 𝑣 . Let 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘  be the SoC 

associated with the breakpoint 𝑏 ∈ 𝐵𝑣  of the charging function of vehicle 𝑣 . Finally, we set a 

minimum current 𝐼𝑣,𝑏
𝑚𝑖𝑛 applied to EFV 𝑣 between two consecutive breakpoints 𝑏 and 𝑏 − 1 of the 

battery’s charging function for battery protection purposes. 

5.2 PEAK SHAVING MODEL FORMULATION 

Five sets of decision variables are required for the formulation of PSM. Binary variables 𝑧𝑡,𝑣
𝑏  

take a value of 1 if vehicle 𝑣 is retrieving current while being plugged into the EVSE during period 

t that lies in the time interval between 𝑎𝑣 the arrival time to the site and 𝑑𝑣 − 1 the period before 

departure time from the site between breakpoints 𝑆𝑂𝐶𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑏

𝑏𝑟𝑒𝑎𝑘 and take a value of 0 

otherwise. While 𝑦𝑡,𝑣 are binary variables that depend on the values of 𝑧𝑡,𝑣
𝑏 . They take a value of 1 

for any interruption that occurs in the charging process of vehicle 𝑣 between periods 𝑡 − 1 and 𝑡 

and takes a value of 0 otherwise. 

Real and positive variables 𝑖𝑡,𝑣 refer to the charging current applied to vehicle 𝑣 during the 

entire period 𝑡. Real and positive variables 𝑠𝑜𝑐𝑡,𝑣 refer to the state of charge of vehicle 𝑣  at the 

beginning of time 𝑡. Finally, Real and positive variable 𝑋𝑚𝑎𝑥  that corresponds to the maximum 

charging power retrieved from the grid by all the neighborhood houses during the planning 

interval. To sum up, our problem is presented in the following mathematical model and the mixed-

integer linear programming formulation (MILP), respectively: 
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Sets: 

 𝑇: The set of time in the scheduling horizon         (𝑇 = {1, … , 𝑇𝑚𝑎𝑥 }, (𝑡 ∈ 𝑇) 

 𝑉: Set of EVs.          (𝑣 ∈ 𝑉) 

 𝐵𝑣: Set of breakpoints used in the piecewise linear approximation of the CC-CV      

                      charging function of the battery of vehicle 𝑣.         (𝑏 ∈ 𝐵𝑣) 

Parameters: 

 𝑀𝑡: The neighborhood household total power consumption at time 𝑡. 

 𝑙𝑡,𝑣: non-flexible consumption profile (non-EV)  of each house of EV 𝑣 at time 𝑡. (𝑘𝑊) 

 𝑄𝑣: The charge capacity of the battery of EV 𝑣. (𝐴ℎ) 

 𝑄𝐸𝑣: The energy capacity of the battery of EV 𝑣. (𝑘𝑊ℎ) 

 𝐿𝑣: The onboard power capacity of the charger of EV 𝑣. (𝑘𝑊) 

 𝑁𝑣: The maximum number of cuts allowed for the battery of EV 𝑣. 

 𝑎𝑣: The arrival time of EV 𝑣 to the house. 

 𝑑𝑣: The departure time of EV 𝑣 from the house. 

 𝑒𝑣: Energy needed by EV 𝑣. (𝐾𝑊ℎ) 

 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙: The state of charge associated with the arrival time for each EV 𝑣 ∈ 𝑉. 

 𝑃𝑣 The Grid power capacity of the house of EV 𝑣 at any time(𝑘𝑊) 

 𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

: The rated voltage of the battery of EV 𝑣. (𝑉) 

 𝑙𝑣
𝑚𝑎𝑥 : Power supply limit of the EVSE installed at the house of EV 𝑣 (Charger  

            specification). (𝑘𝑊) 

 𝐼𝑣,𝑏
𝑚𝑎𝑥: The maximum current that could be withdrawn in the piecewise linear   

           approximation of the CC-CV charging function of the charger of EV 𝑣 between the    

           breakpoints 𝑏 and 𝑏 − 1 with 𝑏 ∈ 𝐵𝑣, 𝑏 >  0. (𝐴) 

 𝐼𝑣,𝑏
𝑚𝑖𝑛 : The minimum current that could be withdrawn in the piecewise linear  

           approximation of the CC-CV charging function of the charger of EV 𝑣 between the  

            breakpoints 𝑏 and 𝑏 − 1 with 𝑏 ∈ 𝐵𝑣, 𝑏 >  0. (𝐴) 

 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘: The state of charge associated with breakpoints 𝑏 ∈ 𝐵𝑣 of the piecewise linear  

                     approximation of the CC-CV charging function of the charger of EV 𝑣. 

 𝑆𝑂𝐶𝑚𝑎𝑥: The maximum state of charge that any vehicle could reach while charging. 
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 𝑆𝑂𝐶𝑚𝑖𝑛: The minimum state of charge that any vehicle could reach during the discharging  

                 process while performing its route the next day. 

 𝑞: The average weighted power loss factor due to the AC-DC conversion. 

 𝛥𝑡: Timestep in (h). 

Variables: 

 𝑖𝑡,𝑣 ≥ 0: current withdrawn by EV 𝑣 at time 𝑡. (A) 

 𝑠𝑜𝑐𝑡,𝑣 ≥ 0: The state of charge of EV 𝑣 at time 𝑡. 

 𝑧𝑡,𝑣
𝑏 ∈ {0,1}: 1 if EV 𝑣 is charging at time 𝑡 with a state of charge between 

                       𝑆𝑂𝐶,𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑣,𝑏

𝑏𝑟𝑒𝑎𝑘. 

                       0 otherwise. 

 𝑦𝑡,𝑣 ∈ {0,1} : 1 if EV 𝑣 stops charging at time period 𝑡. 

                        0 otherwise 

 �̅� ≥ 0: The maximum total household power consumption of the neighborhood  

 withdrawn from the grid along the planned horizon. 

Formulation: 

               minimize                             Maximum power =  �̅� (40) 

subject to: 

൭𝑀𝑡 + ∑
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣

𝑣∈𝑉

൱ ≤ �̅�         ∀𝑡 ∈ 𝑇 (41) 

𝑙𝑡,𝑣 +
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑃𝑣          ∀ 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (42) 

∑ ∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}𝑣∈𝑉

𝑎𝑣−1

𝑡=1

+  ∑ ∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}𝑣∈𝑉

𝑇𝑚𝑎𝑥

𝑡=𝑑𝑣

= 0 (43) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙          ∀𝑣 ∈ 𝑉, 𝑡 ∈ {1, … , 𝑎𝑣} (44) 

𝑠𝑜𝑐𝑑𝑣+1,𝑣 = 𝑠𝑜𝑐𝑑𝑣
−

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (45) 
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𝑠𝑜𝑐𝑑𝑣,𝑣 = 𝑠𝑜𝑐𝑎𝑣
+

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (46) 

∑
𝑖𝑡,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
𝑡∈𝑇

+ 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑆𝑂𝐶𝑚𝑖𝑛 =

𝑒𝑣

𝑄𝐸𝑣
         ∀𝑣 ∈ 𝑉 (47) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑠𝑜𝑐𝑡−1,𝑣 +
𝑖𝑡−1,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
       ∀𝑡 ∈ T\{1, 𝑑𝑣, 𝑑𝑣 + 1}, 𝑣 ∈ 𝑉 (48) 

𝑠𝑜𝑐𝑡+1,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘 + 1 − 𝑧𝑡,𝑣

𝑏         ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣 − 1}, 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵𝑣\{0} (49) 

𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏−1
𝑏𝑟𝑒𝑎𝑘 − 1 + 𝑧𝑡,𝑣

𝑏          ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣}, 𝑣 ∈ 𝑉, 𝑏 ∈ 𝐵𝑣\{0} (50) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥          ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (51) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑎𝑥𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (52) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑖𝑛𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (53) 

∑ 𝑧𝑡−1,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

− ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≤ 𝑦𝑡,𝑣          ∀𝑡 ∈ {𝑎𝑣 + 1, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (54) 

∑ 𝑧t,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≥ 𝑦t,𝑣         ∀𝑡 ∈ T\{𝑎𝑣 + 1, … , 𝑑𝑣}, 𝑣 ∈ 𝑉 (55) 

∑ 𝑦𝑡,𝑣

𝑡∈𝑇

≤ 𝑁𝑣 + 1         ∀𝑣 ∈ 𝑉 (56) 

𝑖𝑡,𝑣 ≤
𝑙𝑣

𝑚𝑎𝑥

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (57) 
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𝑖𝑡,𝑣 ≤
𝐿𝑣

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (58) 

𝑧𝑡,𝑣
𝑏 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝑣 (59) 

𝑦𝑡,𝑣 ∈ {0,1}         ∀𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (60) 

The objective function (40) minimizes the maximum total household power consumption of 

the neighbourhood withdrawn from the grid along the planning horizon  �̅� to reduce the impact 

of the increasing EVs’ charging demand. Specifically, �̅� represents the maximum value of the sum 

of the normal power consumption 𝑀𝑡  of all the houses in the neighborhood and the power 

retrieved by all the EVs at any period 𝑡 over the planned time interval.  

Constraints (41) calculates the maximum charging power retrieved from the grid throughout 

the entire planned interval. Constraints (42) ensure that the instantaneous total power 

consumption of each house would never exceed the contract power limit 𝑃𝑣  at any time 𝑡 . 

Constraints (43) ensure that no charging events take place while the EVs are performing their 

routes such that variables 𝑧𝑡,𝑣
𝑏  take the value of 0. Constraints (44) and (45) assign the discharging 

process of each vehicle 𝑣 to its departure period 𝑑𝑣 and that its SOC remains constant until the 

arrival period.  

Constraints (46) and (47) ensure for each vehicle 𝑣 to be charged the exact amount of the 

predefined needed energy 𝑒𝑣 between the departure 𝑑𝑣 and the arrival 𝑎𝑣 periods from and to 

the house, respectively. Constraints (48) define the SOC of vehicle 𝑣 at the beginning of time 𝑡 as 

the sum of its SoC at the beginning of the previous period 𝑡 − 1 and the SoC gained equivalent to 

the charge current retrieved during the entirety of period 𝑡 − 1. Constraints (49) and (50) bound 

the SoC of vehicle 𝑣 between two consecutive breakpoints depending on the specific piecewise 

linear function of the CC-CV process that corresponds to the charger installed in the house of 

vehicle 𝑣. Constraints (51) set limits for the SoC of each vehicle during the charging and discharging 

processes between the predefined parameters 𝑆𝑂𝐶𝑚𝑎𝑥  and 𝑆𝑂𝐶𝑚𝑖𝑛 for longer battery life.  
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Constraints (52)-(53) set a range for the variation of the charge current applied to vehicle 𝑣 

between the maximum and minimum current values 𝐼𝑣,𝑏
𝑚𝑎𝑥 and 𝐼𝑣,𝑏

𝑚𝑖𝑛 that are associated with the 

segment of the CC-CV charger-specific linear piecewise linear function to prevent undercharging 

and overcharging effects. Constraints (54)-(56) set a limit 𝑁𝑣 for the maximum number of cuts 

allowed for each EV along the planning horizon to minimize the effects of battery degradation 

resulting in longer battery life. Constraints (57) ensure that the charging current applied on vehicle 

𝑣  would not exceed the charging station’s power capacity. Constraints (58) force the power 

retrieved by vehicle 𝑣 from the charging station to respect its onboard charger’s power capacity. 

Constraints (59) and (60) define the domains of the variables that were not appropriately bounded 

by the other constraints. 

5.3 CHARGING COST REDUCTION MODEL FORMULATION 

The CCRM is a cost minimization model and is a subsequent submodel dependent on the 

primary optimization model PSM. The CCRM aims to provide EV users a degree of freedom in 

choosing their charging schedule for electricity bill reduction while not violating the maximum 

power constraint established in the primary model. This model depends mainly on the results of 

the PSM such that we generate slack parameters calculated through the difference between the 

obtained value of �̅� and the total power retrieved by all the houses, which is estimated using the 

output decision variables 𝑖𝑡,𝑣̅̅ ̅̅  at each time 𝑡 that represent the charge current applied to each 

vehicle v at time 𝑡. This model is applied individually to each house of the neighbourhood that 

owns an EV. 

CCRM is designed with the same sets created in the PSM: set of time 𝑇, set of EVs V, and the 

set of breakpoints 𝐵𝑣 that corresponds to the CC-CV charging process of each vehicle. The input 

parameters are considered the same as those used in the primary model but with slight changes. 

Because CCRM is applied to each house of EV 𝑣  individually, then the total household power 

consumption of the neighbourhood isn’t needed and is replaced with only the normal power 

consumption 𝑙𝑡,𝑣 (kW) of every house v at time 𝑡. The basic power and the slack parameters of the 

power allowed to be withdrawn by EV 𝑣  at time 𝑡  are defined by 𝑢𝑡,𝑣̅̅ ̅̅ ̅  (𝑘𝑊)  and 𝑠𝑡,𝑣̅̅ ̅̅  (kW), 

respectively. The parameters 𝑢𝑡,𝑣̅̅ ̅̅ ̅ correspond to the decision variable of the charge current 𝑖𝑡,𝑣̅̅ ̅̅  

applied to each vehicle 𝑣 at time t as an output of the first optimization stage performed in PSM. 

We define 𝑢𝑡,𝑣̅̅ ̅̅ ̅ (kW) as the power retrieved by vehicle 𝑣 at time 𝑡 and is estimated by dividing the 

product of the charge current 𝑖𝑡,𝑣̅̅ ̅̅  (A) and the energy capacity 𝑄𝐸𝑣  (kWh) by the total charge 

capacity 𝑄𝑣 (Ah) for each vehicle v as shown in Eq. (61). 
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𝑢𝑡,𝑣̅̅ ̅̅ ̅ =
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣      ∀𝑡 ∈ 𝑇, 𝑣 ∈ V (61) 

The slack parameters 𝑠𝑡,𝑣̅̅ ̅̅  are the additional power allowed to be retrieved by vehicle 𝑣 at 

time 𝑡 compared to 𝑢𝑡,𝑣̅̅ ̅̅ ̅. The combination of both parameters 𝑢𝑡,𝑣̅̅ ̅̅ ̅ and 𝑠𝑡,𝑣̅̅ ̅̅  represent the grid limit 

during the charging process of vehicle v at any time t, which replace the constraints (41) in the 

PSM.  𝑠𝑡,𝑣̅̅ ̅̅  estimation is done in two steps where we first calculate the total power slack 

parameters 𝑆𝑡  (kW) for all the houses in the neighbourhood and then divide these total slack 

parameters among EV users based on a particular method. 𝑆𝑡  is estimated as the difference 

between the grid’s peak power value �̅�  (kW) and the total power retrieved by all the 

neighbourhood’s houses at every time t as in Eq. (62) such that both the normal consumption of 

all houses 𝑀𝑡 and the EVs’ power consumption are included. 

𝑆�̅� = �̅� − ൭𝑀𝑡 + ∑ 𝑢𝑡,𝑣̅̅ ̅̅ ̅

𝑣∈𝑉

൱      ∀𝑡 ∈ 𝑇 (62) 

𝑆�̅� is distributed among EV users with different proportions where each EV gets an additional 

power value of 𝑠𝑡,𝑣̅̅ ̅̅  (kW) on top of its original power limit 𝑢𝑡,𝑣̅̅ ̅̅ ̅ based on two different approaches. 

At each period 𝑡, the slack parameters are assigned only to the EVs that comply with the following 

conditions: 

 Each vehicle 𝑣  must be physically plugged into its charging point such that 𝑡 lies between 

its arrival and departure periods 𝑎𝑣 and 𝑑𝑣, respectively. 

 The total power consumption of the house of vehicle 𝑣 (𝑙𝑡,𝑣 + 𝑢𝑡,𝑣̅̅ ̅̅ ̅) (kW) should be less 

than the contract power limit 𝑃𝑣. 

 The power retrieved 𝑢𝑡,𝑣̅̅ ̅̅ ̅ must be less than the charging power capacity expressed by the 

minimum value among the onboard charger capacity 𝐿𝑣 and the EVSE capacity 𝑙𝑣
𝑚𝑎𝑥. 

 Each vehicle v must be relatively empty such that the cumulative charged energy stored in 

its battery packs should be smaller than 90% of the energy needed 𝑒𝑣 (kWh) by vehicle 𝑣 

to travel its route the next day. This condition prevents the EVs that get almost fully 

charged at early periods and not in need of slack parameters from lowering the chances of 

the empty EVs benefiting from higher slack parameters for a more efficient model of higher 

cost reductions to the largest possible number of EVs. 
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We define 𝐶𝑡 as the subset of 𝑉 that consists of all the eligible EVs to be given complementary 

slack parameters 𝑠𝑡,𝑣̅̅ ̅̅  according to the previously mentioned conditions at every period 𝑡. After 

knowing the number of vehicles in 𝐶𝑡, we distribute the total power slack parameters 𝑆�̅� among 

these vehicles in a fair way to make sure that each vehicle 𝑣 take the most advantage of 𝑠𝑡,𝑣̅̅ ̅̅ . In 

Eqs. (63)-(65), we present the mathematical approach we follow to estimate the suitable slack 

value for each vehicle v at any time t. 

𝑥𝑡,𝑣 {=
min(𝐿𝑣, 𝑙𝑣

𝑚𝑎𝑥 , 𝑃𝑣 − 𝑙𝑡,𝑣) − 𝑢𝑡,𝑣                ∀𝑣 ∈ 𝐶𝑡,   𝐶𝑡 ⊂  𝑉

0                                                            ∀𝑣 ∈ 𝑉\{𝐶𝑡},   𝐶𝑡 ⊂  𝑉 
         ∀𝑡 ∈ 𝑇 (63) 

𝐹𝑡 = ∑ 𝑥𝑡,𝑣

𝑣∈𝑉

         ∀𝑡 ∈ 𝑇 (64) 

𝑠𝑡,𝑣 = {

𝑥𝑡,𝑣

𝐹𝑡
∙ 𝑆𝑡         𝑖𝑓 𝐹𝑡 > 𝑆𝑡

𝑥𝑡,𝑣                𝑖𝑓 𝐹𝑡 ≤ 𝑆𝑡

          ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (65) 

𝑠𝑡,𝑣 = {

𝑆𝑡

|𝐶𝑡|
                   ∀𝑣 ∈ 𝐶𝑡,   𝐶𝑡 ⊂  𝑉

0                ∀𝑣 ∈ 𝑉\{𝐶𝑡},   𝐶𝑡 ⊂  𝑉

          ∀𝑡 ∈ 𝑇 (66) 

 

First, and using Eq. (63), we estimate how much additional power to 𝑢𝑡,𝑣̅̅ ̅̅ ̅ each vehicle 𝑣 ∈ 𝐶𝑡 

at every time t can retrieve before reaching the power capacity of its onboard charger, the capacity 

of the EVSE, or the contract power limit 𝑃𝑣 after excluding the household power consumption 𝑙𝑡,𝑣 

and it’s denoted by the parameter 𝑥𝑡,𝑣̅̅ ̅̅̅. For the EVs that don’t respect the previously mentioned 

conditions, then they don’t belong to the subset 𝐶𝑡 and that 𝑥𝑡,𝑣 take the value of 0. In Eq. (64), 

we calculate 𝐹𝑡 the sum of all the parameters 𝑥𝑡,𝑣 at every time t which is necessary for the fair 

distribution of 𝑆𝑡 based on a percentage approach.  

Finally, and through Eqs. (65) and (66), we determine the exact slack parameter 𝑠𝑡,𝑣̅̅ ̅̅  suitable 

for each vehicle 𝑣 at any time 𝑡. Eq. (65) refers to the percentage slack distribution approach such 

that 𝑠𝑡,𝑣̅̅ ̅̅  equal to 𝑥𝑡,𝑣̅̅ ̅̅̅ if the total allowed additional power of all the EVs 𝐹�̅� is less than or equal to 

the total slack parameter 𝑆�̅�. However, if 𝐹�̅� is greater than 𝑆�̅� which means that the total slack 

parameter is not enough to provide 𝑥𝑡,𝑣̅̅ ̅̅̅ to each vehicle 𝑣, then we consider giving it a weighted 

𝑠𝑡,𝑣̅̅ ̅̅  equals to a fraction of 𝑆�̅� equivalent to the percentage of the individual required power𝑥𝑡,𝑣̅̅ ̅̅̅  

for vehicle 𝑣 out of the total required power value 𝐹�̅� for all EVs.  
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On the other hand, Eq. (66) corresponds to the even slack distribution approach where 𝑠𝑡,𝑣̅̅ ̅̅  

equal to the ratio of 𝑆�̅� the total slack parameter over the number of vehicles that belong to the 

subset 𝐶�̅� for every vehicle 𝑣 ∈ 𝐶𝑡 at every time 𝑡. Only one equation of the two Eqs. (65) and (66) 

will be used in our optimization model depending on whether we choose to follow the percentage 

distribution approach or the even one for calculating the slack parameters. 

Four sets of decision variables are required to formulate CCRM that represent a correction of 

the similar decision variables used in the PSM. Binary variables 𝑧𝑡,𝑣
𝑏  take a value of 1 if vehicle 𝑣 is 

retrieving current while being plugged into the EVSE during period t that lies in the time interval 

between 𝑎𝑣 the arrival time to the site and 𝑑𝑣 − 1 the period before departure time from the site 

between breakpoints 𝑆𝑂𝐶𝑏−1
𝑏𝑟𝑒𝑎𝑘  and 𝑆𝑂𝐶𝑏

𝑏𝑟𝑒𝑎𝑘  and take a value of 0 otherwise. While 𝑦𝑡,𝑣  are 

binary variables that depend on the values of 𝑧𝑡,𝑣
𝑏  and take a value of 1 for any interruption that 

occurs while charging vehicle v between periods 𝑡 − 1 and 𝑡  and takes a value of 0 otherwise.  

Real and positive variables 𝑖𝑡,𝑣 refer to the charging current applied to vehicle v during the 

entire period 𝑡. Finally, real and positive variables 𝑠𝑜𝑐𝑡,𝑣 refer to the state of charge of vehicle v  at 

the beginning of time 𝑡. To sum up, our problem is presented in the following mathematical model 

and the mixed-integer linear programming formulation (MILP), respectively: 

Sets: 

 𝑇: The set of time in the scheduling horizon         (𝑇 = {1, … , 𝑇𝑚𝑎𝑥}, 𝑡 ∈ 𝑇 ) 

 𝑉: Set of EVs.          (𝑣 ∈ 𝑉) 

 𝐵𝑣: Set of breakpoints used in the piecewise linear approximation of the CC-CV      

                     charging function of the battery of vehicle 𝑣.         (𝑏 ∈ 𝐵𝑣) 

Parameters: 

 𝑙𝑡,𝑣: non-flexible consumption profile (non-EV)  of each house of EV 𝑣 at time 𝑡. (𝑘𝑊) 

 𝑝𝑡: Electricity price at time 𝑡. (€/𝑘𝑊ℎ) 

 𝑄𝑣: The charge capacity of the battery of EV 𝑣. (𝐴ℎ) 

 𝑄𝐸𝑣: The energy capacity of the battery of EV 𝑣. (𝑘𝑊ℎ) 

 𝐿𝑣: The onboard power capacity of the charger of EV 𝑣. (𝑘𝑊) 

 𝑁𝑣: The maximum number of cuts allowed for the battery of EV 𝑣. 

 𝑎𝑣: The arrival time of EV 𝑣 to the house. 

 𝑑𝑣: The departure time of EV 𝑣 from the house. 
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 𝑒𝑣: Energy needed by EV 𝑣. (𝐾𝑊ℎ) 

 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙: The state of charge associated with the arrival time for each EV 𝑣 ∈ 𝑉. 

 𝑃𝑣 The Grid power capacity of the house of EV 𝑣 at any time(𝑘𝑊) 

 𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

: The rated voltage of the battery of EV v. (𝑉) 

 𝑙𝑣
𝑚𝑎𝑥 : Power supply limit of the EVSE installed at the house of EV v (Charger  

            specification). (𝑘𝑊) 

 𝐼𝑣,𝑏
𝑚𝑎𝑥: The maximum current that could be withdrawn in the piecewise linear   

           approximation of the CC-CV charging function of the charger of EV v between the    

           breakpoints b and b-1 with 𝑏 ∈ 𝐵𝑣, b > 0. (𝐴) 

 𝐼𝑣,𝑏
𝑚𝑖𝑛 : The minimum current that could be withdrawn in the piecewise linear  

           approximation of the CC-CV charging function of the charger of EV v between the  

           breakpoints b and b-1 with 𝑏 ∈ 𝐵𝑣, b > 0. (𝐴) 

 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘: The state of charge associated with breakpoints 𝑏 ∈ 𝐵𝑣 of the piecewise linear  

                    approximation of the CC-CV charging function of the charger of EV v. 

 𝑆𝐶𝑚𝑎𝑥: The maximum state of charge that any vehicle could reach while charging. 

 𝑆𝑂𝐶𝑚𝑖𝑛: The minimum state of charge that any vehicle could reach during the discharging  

                 process while performing its route the next day. 

 𝑢𝑡,𝑣: The power retrieved by EV v at time t as an output from the PSM. (𝑘𝑊) 

 𝑠𝑡,𝑣: The power slack parameter is given to each vehicle v at time t for more flexibility in  

        the charge schedule. (𝑘𝑊) 

 𝑞: The average weighted power loss factor due to the AC-DC conversion. 

 𝛥𝑡: Timestep in (h). 

Variables: 

 𝑖𝑡,𝑣 ≥ 0: current withdrawn by EV v at time t. (A) 

 𝑠𝑜𝑐𝑡,𝑣 ≥ 0: The state of charge of EV v at time t. 

 𝑧𝑡,𝑣
𝑏  ∈ {0,1}: 1 if EV v is charging at time t with a state of charge between 

                       𝑆𝑂𝐶𝑣,𝑏−1
𝑏𝑟𝑒𝑎𝑘 and 𝑆𝑂𝐶𝑣,𝑏

𝑏𝑟𝑒𝑎𝑘. 

                       0 otherwise. 

 𝑦𝑡,𝑣 ∈ {0,1} : 1 if EV v stops charging at time period t. 

                        0 otherwise 

 



 
76 

 

Mathematical Formulation of 𝐂𝐂𝐑𝐌𝒗 ∀𝑣 ∈ 𝑉: 

   minimize:          ∑ 𝑝𝑡𝛥𝑡 (𝑙𝑡,𝑣 +
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣)

𝑡∈𝑡

          (67) 

     subject to: 

𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑢𝑡,𝑣̅̅ ̅̅ ̅ + 𝑠𝑡,𝑣̅̅ ̅̅         ∀ 𝑡 ∈ 𝑇 (68) 

𝑙𝑡,𝑣 +
𝑖𝑡,𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑃𝑣          ∀ 𝑡 ∈ 𝑇 (69) 

∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

𝑎𝑣−1

𝑡=1

+  ∑ ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

𝑇𝑚𝑎𝑥

𝑡=𝑑𝑣

= 0         (70) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙           ∀𝑡 ∈ {1, … , 𝑎𝑣} (71) 

𝑠𝑜𝑐𝑑𝑣+1,𝑣 = 𝑠𝑜𝑐𝑑𝑣,𝑣 −
𝑒𝑣

𝑄𝐸𝑣
          (72) 

𝑠𝑜𝑐𝑑𝑣,𝑣 = 𝑠𝑜𝑐𝑎𝑣,𝑣 +
𝑒𝑣

𝑄𝐸𝑣
          (73) 

∑
𝑖𝑡,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
𝑡∈𝑇

+ 𝑆𝑂𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑆𝑂𝐶𝑚𝑖𝑛 =

𝑒𝑣

𝑄𝐸𝑣
          (74) 

𝑠𝑜𝑐𝑡,𝑣 = 𝑠𝑜𝑐𝑡−1,𝑣 +
𝑖𝑡−1,𝑣𝛥𝑡(1 − 𝑞)

𝑄𝑣
       ∀𝑡 ∈ T\{1, 𝑑𝑣, 𝑑𝑣 + 1} (75) 

𝑠𝑜𝑐𝑡+1,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘 + 1 − 𝑧𝑡,𝑣

𝑏         ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣 − 1}, 𝑏 ∈ 𝐵𝑣\{0} (76) 

𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑣,𝑏−1
𝑏𝑟𝑒𝑎𝑘 − 1 + 𝑧𝑡,𝑣

𝑏         ∀𝑡 ∈ {𝑎𝑣, … , 𝑑𝑣}, 𝑏 ∈ 𝐵𝑣\{0} (77) 
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𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝑡,𝑣 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥          ∀𝑡 ∈ 𝑇 (78) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑎𝑥𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇 (79) 

𝑖𝑡,𝑣 ≤ ∑ 𝐼𝑣,𝑏
𝑚𝑖𝑛𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

         ∀𝑡 ∈ 𝑇 (80) 

∑ 𝑧𝑡−1,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

− ∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≤ 𝑦𝑡,𝑣          ∀𝑡 ∈ {𝑎𝑣 + 1, … , 𝑑𝑣} (81) 

∑ 𝑧𝑡,𝑣
𝑏

𝑏∈𝐵𝑣\{0}

≥ 𝑦𝑡,𝑣         ∀𝑡 ∈ T\{𝑎𝑣 + 1, … , 𝑑𝑣} (82) 

∑ 𝑦𝑡,𝑣

𝑡∈𝑇

≤ 𝑁𝑣 + 1          (83) 

𝑖𝑡,𝑣 ≤
𝑙𝑣

𝑚𝑎𝑥

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇 (84) 

𝑖𝑡,𝑣 ≤
𝐿𝑣

𝑈𝑣
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ 1000 ∙ ∑ 𝑧𝑡,𝑣

𝑏

𝑏∈𝐵𝑣\{0}

        ∀𝑡 ∈ 𝑇 (85) 

𝑧𝑡,𝑣
𝑏 ∈ {0,1}         ∀𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝑣 (86) 

𝑦𝑡,𝑣 ∈ {0,1}         ∀𝑡 ∈ 𝑇 (87) 
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The objective function (67) minimizes cost𝑣 the total electricity bill over the planning horizon 

for each house of vehicle 𝑣 ∈ 𝑉. The 𝐶𝐶𝑅𝑀𝑣 is applied individually to each house owning an EV 

by creating a loop over the set 𝑉. cost𝑣 (€) is the product of the energy cost 𝑝𝑡 (€/kWh), the 

duration of time 𝛥𝑡 (hours), and the total power retrieved by the house, including both 𝑙𝑡,𝑣 (kW) 

the household power and the EV charging power retrieved by house 𝑣 at every period 𝑡 then 

summed up over the planning horizon of set 𝑇. The power retrieved while charging vehicle 𝑣 at 

every time 𝑡 is determined based on Eq. (61), similar to the calculation of 𝑢𝑡,𝑣̅̅ ̅̅ ̅ . Constraints (68) set 

a limit to the power retrieved by vehicle 𝑣 at every time 𝑡 using the slack parameters 𝑠𝑡,𝑣̅̅ ̅̅  such that 

their combination with the parameters 𝑢𝑡,𝑣̅̅ ̅̅ ̅ represent a weighted grid limit for each vehicle 𝑣 at 

every time 𝑡. Constraints (69)-(87) do the same job as the constraints (42)-(60) used in modeling 

the PSM; however, in the 𝐶𝐶𝑅𝑀𝑣, they are all applied to only one vehicle 𝑣 for the entire planning 

horizon. 

 

5.4 SIMPLE EXAMPLE OF SEVERAL OPTIMAL SOLUTIONS 

This section aims to help the reader better understand the functionality of the RNS and the 

correlation between both models, the PSM and CCRM, by presenting a small instance with 

different parameters that give other optimal solutions. We design this example with a time interval 

of 24 equidistant periods with a time step of one hour, resulting in a full-day instance. The planning 

horizon starts from 16:00 and lasts until 15:00 the next day, such that we have a whole night 

charging problem. We discretize our planning horizon with 24 equidistant periods with period 

lengths of one hour (i.e., 𝛿 = 1 ℎ), where 16:00 is set to 1 and 15:00 is denoted by 24. We consider 

having a set of 3 EVs such that each vehicle represents a house in the neighbourhood.  

The cost of energy 𝑝𝑡 is assumed to be as follows: 0.25 (€/kWh) during the peak hours from 

periods 1 to 3 and 21 to 24 (12:00-18:00), 0.05 (€/kWh) during the off-peak hours from periods 

9 to 17 (00:00-8:00), and 0.15 (€/kWh) during the shoulder hours the rest of day. The total 

household power consumption parameters 𝑀𝑡 (kW) of all the houses in the neighbourhood and 

the individual household power consumption 𝑙𝑡,𝑣 (kW) of each house of an EV user v are given at 

every period t. The EV’s specifications-related parameters and all the routes data for every vehicle 

𝑣 ∈ 𝑉 are shown in Table 18. 
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Table 18: The design specifications and route parameters for the simple numerical example 

V 
EV 

model 
Q 

(Ah) 
QE 

(kWh) 
L 

(kW) 
𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

(V) 
𝑙𝑚𝑎𝑥 
(kW) 

P 
(kW) 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑎𝑙 N a d 
e 

(kWh) 

1 BMW i3 120 42.24 11 352 7.36 10 0.05 2 4 22 31.68 

2 RAV4 108 41.8 10 386 7.36 10 0.05 2 8 17 31.35 

3 
NISSAN 

LEAF 
66 24 6.6 360 7.36 6 0.05 2 6 19 18 

 

For simplification, we set only three breakpoints associated with the linear approximation CC-

CV charging process of the battery of each vehicle v using a level 2 fast charger of 7.36 (kW) power 

capacity and a charge current of 32 (A) such that 𝐵𝑣 = {0,1,2}. The values of the maximum current 

𝐼𝑣,𝑏
𝑚𝑎𝑥  and the minimum current 𝐼𝑣,𝑏

𝑚𝑖𝑛And the SOC breakpoint 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘  that correspond to the 

breakpoints specified to each vehicle v are summarized in Table 19. We assume having an average 

weighted charging loss that is constant at any state of charge or any current charge value, and it 

is equal to 6.5%. We set a minimum and a maximum SOC value of 0.05 and 0.99, respectively. 

 

Table 19: The design parameters associated with the linear approximation breakpoints of the 
charging process of different vehicles' models 

𝐵𝑣 

EV 1 (BMW i3) EV 2 (RAV4) EV 3 (NISSAN LEAF) 

𝑆𝑂𝐶1,𝑏
𝑏𝑟𝑒𝑎𝑘 

𝐼1,𝑏
𝑚𝑎𝑥 

(A) 

𝐼1,𝑏
𝑚𝑖𝑛 

(A) 
𝑆𝑂𝐶2,𝑏

𝑏𝑟𝑒𝑎𝑘 𝐼2,𝑏
𝑚𝑎𝑥 (A) 

𝐼2,𝑏
𝑚𝑖𝑛 

(A) 
𝑆𝑂𝐶3,𝑏

𝑏𝑟𝑒𝑎𝑘 
𝐼3,𝑏

𝑚𝑎𝑥 

(A) 

𝐼3,𝑏
𝑚𝑖𝑛 

(A) 

0 0 0 0 0 0 0 0 0 0 

1 0.923 21 2 0.92 19.1 2 0.882 18.5 2 

2 0.99 10.5 1 0.99 10 1 0.99 10.5 1 
 

This example consists of two cases with two different solutions, where case one is based on 

distributing the slack parameters evenly among all eligible EVs at every time t as in Eq. (66). 

However, case two considers estimating specific weighted slack parameters to each vehicle v at 

every period t using the Eqs. (63), (64), and (65).
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Table 20: Optimal solution of the PSM 

                          
𝑇 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

𝑀𝑡 (kW) 9.86 10.84 11.07 12.06 9.36 10.99 9.83 4.85 1.38 0.90 1.01 0.92 1.02 3.34 0.94 2.01 8.04 6.85 5.17 4.25 5.10 5.69 5.41 5.71  
𝑝𝑡 (€/kWh) 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.25 0.25 0.25 0.25 𝑐𝑜𝑠𝑡𝑣  

(€)                          

                          
Vehicle: 1            

 

             

𝑙𝑡,1 (kW) 3.03 3.34 3.41 3.71 2.88 3.38 3.03 1.49 0.42 0.28 0.31 0.28 0.31 1.03 0.29 0.62 2.47 2.11 1.59 1.31 1.57 1.75 1.66 1.76  
𝑖𝑡,1 (A) 0 0 0 0 3.98 0 0 0 0 32 0 0 0 0 0 0 0 0 0 32 30.23 0 0 0  

𝑢𝑡,1 (kW) 0 0 0 0 0.91 0 0 0 0 7.36 0 0 0 0 0 0 0 0 0 7.36 6.95 0 0 0 10.70 
𝑠𝑜𝑐𝑡,1 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.40 0.55 0.05 0.05  

𝑧𝑡,1
𝑏  0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0  

𝑦𝑡,1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0  
Vehicle: 2           

 

              

𝑙𝑡,2 (kW) 3.64 4.00 4.09 4.45 3.46 4.06 3.63 1.79 0.51 0.33 0.37 0.34 0.38 1.23 0.35 0.74 2.97 2.53 1.91 1.57 1.88 2.10 2.00 2.11  
𝑖𝑡,2 (A) 0 0 0 0 0 0 0 22.75 32 0 10.18 0 0 0 0 32 0 0 0 0 0 0 0 0  

𝑢𝑡,2 (kW) 0 0 0 0 0 0 0 5.25 7.38 0 2.35 0 0 0 0 7.38 0 0 0 0 0 0 0 0 10.47 
𝑠𝑜𝑐𝑡,2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.17 0.33 0.33 0.38 0.38 0.38 0.38 0.38 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05  

𝑧𝑡,2
𝑏  0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0  

𝑦𝑡,2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0  
Vehicle: 3            

 

             

𝑙𝑡,3 (kW) 3.18 3.50 3.58 3.90 3.02 3.55 3.18 1.57 0.44 0.29 0.33 0.30 0.33 1.08 0.30 0.65 2.60 2.21 1.67 1.37 1.65 1.84 1.75 1.85  
𝑖𝑡,3 (A) 0 0 0 0 0 4.59 9.56 8.44 0 16.34 0 0 0 0 0 0 0 16.3 0 0 0 0 0 0  

𝑢𝑡,3 (kW) 0 0 0 0 0 1.07 2.22 1.96 0 3.80 0 0 0 0 0 0 0 3.79 0 0 0 0 0 0 9.27 
𝑠𝑜𝑐𝑡,3 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.18 0.25 0.25 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.55 0.05 0.05 0.05 0.05 0.05  

𝑧𝑡,3
𝑏  0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0  

𝑦𝑡,3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0  
                          

                          
𝑋𝑡 (kW) 9.86 10.84 11.07 12.06 10.28 12.06 12.06 12.06 8.76 12.06 3.36 0.92 1.02 3.34 0.94 9.39 8.04 10.64 5.17 11.61 12.06 5.69 5.41 5.71  
𝑆𝑡 (kW) 2.20 1.22 0.99 0 1.78 0 0 0 3.30 0 8.70 11.13 11.04 8.72 11.11 2.67 4.01 1.42 6.89 0.45 0 6.36 6.65 6.34  
�̅� (kW) 12.06                         
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Table 21: Optimal solution of the CCRM using the percentage weighted algorithm for calculating the complementary slack parameters. 

                          
𝑇 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

𝑝𝑡(€/kWh) 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.25 0.25 0.25 0.25  
𝑆𝑡 (kW) 2.20 1.22 0.99 0 1.78 0 0 0 3.30 0 8.70 11.13 11.04 8.72 11.11 2.67 4.01 1.42 6.89 0.45 0 6.36 6.65 6.34 𝑐𝑜𝑠𝑡𝑣  

(€)                          

                          
Vehicle: 1    

 

                     

𝑙𝑡,1 (kW) 3.03 3.34 3.41 3.71 2.88 3.38 3.03 1.49 0.42 0.28 0.31 0.28 0.31 1.03 0.29 0.62 2.47 2.11 1.59 1.31 1.57 1.75 1.66 1.76 

8.48 

𝑠𝑡,1 (kW) 0 0 0 0 1.78 0 0 0 1.88 0 3.55 4.01 3.98 3.27 4.01 1.55 2.75 1.42 6.89 0 0 0 0 0 
𝑖𝑡,1̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 5.34 20.91 10.08 11.40 11.32 5.13 0 0 0 0 0 0 0 0 0 0 

𝑢𝑡,1̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 1.88 7.36 3.55 4.01 3.98 1.81 0 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,1̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.25 0.33 0.42 0.51 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.05 0.05 

𝑧𝑡,1
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

𝑦𝑡,1̅̅ ̅̅  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
Vehicle: 2        

 

                 

𝑙𝑡,2 (kW) 3.64 4.00 4.09 4.45 3.46 4.06 3.63 1.79 0.51 0.33 0.37 0.34 0.38 1.23 0.35 0.74 2.97 2.53 1.91 1.57 1.88 2.10 2.00 2.11 

9.94 

𝑠𝑡,2 (kW) 0 0 0 0 0 0 0 0 0 0 2.42 4.01 3.98 3.27 4.01 0 0 0 0 0 0 0 0 0 
𝑖𝑡,2̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 19.07 0 12.31 10.37 10.30 5.72 0 0 0 0 0 0 0 0 0 0 

𝑢𝑡,2̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 7.38 0 4.76 4.01 3.98 2.21 0 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,2̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.22 0.22 0.32 0.41 0.50 0.55 0.55 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

𝑧𝑡,2
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

𝑦𝑡,2̅̅ ̅̅  0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
Vehicle: 3      

 

                   

𝑙𝑡,3 (kW) 3.18 3.50 3.58 3.90 3.02 3.55 3.18 1.57 0.44 0.29 0.33 0.30 0.33 1.08 0.30 0.65 2.60 2.21 1.67 1.37 1.65 1.84 1.75 1.85 

8.36 

𝑠𝑡,3 (kW) 0 0 0 0 0 0 0 0 1.42 0 2.73 3.11 3.07 2.19 3.10 1.12 1.27 0 0 0 0 0 0 0 
𝑖𝑡,3̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 0 8.79 7.52 8.55 8.44 2.00 0 0 0 0 0 0 0 0 0 0 

𝑢𝑡,3̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 0 3.20 2.73 3.11 3.07 0.73 0 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,3̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.17 0.28 0.40 0.52 0.55 0.55 0.55 0.55 0.55 0.05 0.05 0.05 0.05 0.05 

𝑧𝑡,3
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

𝑦𝑡,3̅̅ ̅̅  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
                          

                          
𝑋𝑡

𝐶𝐶𝑅𝑀 (kW) 9.86 10.84 11.07 12.06 9.36 10.99 9.83 4.85 10.64 11.45 12.06 12.06 12.06 8.08 0.94 2.01 8.04 6.85 5.17 4.25 5.10 5.69 5.41 5.71  
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Table 22: Optimal solution of the CCRM using the even distribution algorithm for estimating the complementary slackness 
parameters. 

                          
𝑇 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

𝑝𝑡(€/kWh) 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.25 0.25 0.25 0.25  
𝑆𝑡 (kW) 2.20 1.22 0.99 0 1.78 0 0 0 3.30 0 8.70 11.13 11.04 8.72 11.11 2.67 4.01 1.42 6.89 0.45 0 6.36 6.65 6.34 𝑐𝑜𝑠𝑡𝑣  

(€)                          

                          
Vehicle: 1       

 

                  

𝑙𝑡,1 (kW) 3.03 3.34 3.41 3.71 2.88 3.38 3.03 1.49 0.42 0.28 0.31 0.28 0.31 1.03 0.29 0.62 2.47 2.11 1.59 1.31 1.57 1.75 1.66 1.76 

8.48 

𝑠𝑡,1 (kW) 0 0 0 0 1.78 0 0 0 1.65 0 2.90 3.71 3.68 2.91 3.70 1.33 2.01 1.42 6.89 0 0 0 0 0 
𝑖𝑡,1̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 4.69 11.47 8.23 10.54 10.45 8.26 10.52 0 0 0 0 0 0 0 0 0 

𝑢𝑡,1̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 1.65 4.04 2.90 3.71 3.68 2.91 3.70 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,1̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.18 0.24 0.32 0.40 0.47 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.05 0.05 

𝑧𝑡,1
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

𝑦𝑡,1̅̅ ̅̅  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
Vehicle: 2         

 

                

𝑙𝑡,2 (kW) 3.64 4.00 4.09 4.45 3.46 4.06 3.63 1.79 0.51 0.33 0.37 0.34 0.38 1.23 0.35 0.74 2.97 2.53 1.91 1.57 1.88 2.10 2.00 2.11 

9.94 

𝑠𝑡,2 (kW) 0 0 0 0 0 0 0 0 0 0 2.90 3.71 3.68 2.91 3.70 0 0 0 0 0 0 0 0 0 
𝑖𝑡,2̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 19.07 0 13.55 9.59 9.51 6.04 0 0 0 0 0 0 0 0 0 0 

𝑢𝑡,2̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 7.38 0 5.25 3.71 3.68 2.34 0 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,2̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.22 0.22 0.33 0.42 0.50 0.55 0.55 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

𝑧𝑡,2
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

𝑦𝑡,2̅̅ ̅̅  0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
Vehicle: 3            

 

             

𝑙𝑡,3 (kW) 3.18 3.50 3.58 3.90 3.02 3.55 3.18 1.57 0.44 0.29 0.33 0.30 0.33 1.08 0.30 0.65 2.60 2.21 1.67 1.37 1.65 1.84 1.75 1.85 

8.36 

𝑠𝑡,3 (kW) 0 0 0 0 0 0 0 0 1.65 0 2.90 3.71 3.68 2.91 3.70 1.33 2.01 0 0 0 0 0 0 0 
𝑖𝑡,3̅̅ ̅̅  (A) 0 0 0 0 0 0 0 0 0 10.44 7.97 10.20 6.68 0 0 0 0 0 0 0 0 0 0 0 

𝑢𝑡,3̅̅ ̅̅̅ (kW) 0 0 0 0 0 0 0 0 0 3.80 2.90 3.71 2.43 0 0 0 0 0 0 0 0 0 0 0 
𝑠𝑜𝑐𝑡,3̅̅ ̅̅ ̅̅ ̅ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.20 0.31 0.46 0.55 0.55 0.55 0.55 0.55 0.55 0.05 0.05 0.05 0.05 0.05 

𝑧𝑡,3
𝑏̅̅ ̅̅  0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

𝑦𝑡,3̅̅ ̅̅  0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
                          

                          

𝑋𝑡
𝐶𝐶𝑅𝑀 9.86 10.84 11.07 12.06 9.36 10.99 9.83 4.85 10.41 8.74 12.06 12.06 10.80 8.58 4.65 2.01 8.04 6.85 5.17 4.25 5.10 5.69 5.41 5.71  
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Tables 20, 21, and 22 illustrate two solutions of the simple instance explained above to reduce 

the EV charging impact on the grid and show different strategies of providing the EV users a degree 

of freedom in charging their EVs with the least cost. Table 20 presents the optimal solution of the 

PSM that is the first stage of the main problem TSREV-CSP. This solution focuses on charging all 

EVs with the required energy no matter the energy cost while keeping the grid power as low as 

possible. We observe that the peak power demand �̅� obtained by the PSM has a value of 12.06 

(𝑘𝑊) that is equal to the maximum household power consumption of the building. Whereas the 

solutions in Tables 21 and 22 refer to the CCRM optimal solutions and focus on the effect of the 

slack parameters obtained in the PSM for minimizing the electricity bill of each house in the 

neighbourhood. The solution in Table 20 is common for both cases one and two because of having 

fixed input parameters in both cases and its independence from the slack parameters. Tables 21 

and 22 illustrate the results of the first and the second case based on the weighted percentage 

distribution algorithm and the even distribution algorithm of 𝑠𝑡,𝑣, respectively. 

The energy cost of each house in the specified neighbourhood is determined using Eq. (67) 

for all three tables. We find that the total energy cost of house 1 reduces from €10.7 obtained by 

the PSM down to €8.84 when applying the CCRM, while that of house 2 reduces from €10.47 

down to €9.94 and house 3 from €9.27 to €8.36. By comparing all the solutions together, it’s 

evident that both the energy supplier and EV users' goals were achieved using the optimization 

model of TSREV-CSP in both cases. That is because we see the maximum grid power obtained in 

the PSM being always respected at a value of 12.06 kW over the planned horizon. In addition to 

the apparent electricity bill reduction of each house when applying the CCRM in each of the two 

cases. However, the resultant energy cost for all houses has been constant when using the CCRM 

in both cases. The Energy cost reduction over the two stages of the optimization model TSREV-

CSP is clearly illustrated in Figure 40, where the electricity bill for house 1 registered the highest 

reduction rate of around 20%. In comparison, the least cost reduction happens to be for house 2 

with a rate of 5%. 

 

Figure 40: A comparison of the electricity bills of all the houses obtained in the PSM and the 
CCRM. 
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a)  

b)  

c)  

Figure 41: The power retrieved by all the houses in the neighbourhood: (a) optimal solution of 
the PSM, (b) optimal solution of the CCRM with % slack distribution algorithm, (c) optimal 

solution of the CCRM with even slack distribution algorithm. 
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a)  

b)  

c)  

Figure 42: The charging schedule of all the EVs in the neighbourhood: (a) optimal solution of the 
PSM, (b) optimal solution of the CCRM with % slack distribution algorithm, (c) optimal solution of 

the CCRM with even slack distribution algorithm. 
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The solutions in Tables 20, 21, and 22 are illustrated in Figures 41 and 42, where graph (a) in 

both figures corresponds to the optimal solution of the PSM, while graphs (b) and (c) refer to the 

optimal solutions of cases one and two, respectively. Figure 41 shows the total power retrieved by 

all the houses in the neighbourhood over the planning interval of the optimal solutions in both 

cases. The orange curve represents the sum of the total power retrieved, including both the 

household power consumption and the EV charging power, while the blue one corresponds to the 

household power consumption only. By looking at graph (a), we observe that EV charging impact 

on the grid capacity is negligible because the maximum power obtained in the PSM equals exactly 

the maximum household power consumption of all the houses combined of 12.06 kW at period 4. 

Then when applying the CCRM on each house in the neighbourhood as in graphs (b) and (c) of 

both cases, we see the effect of the intelligent pricing techniques on reducing the electricity bill 

represented in shifting the EV charging loads towards the periods of the day with the lowest 

household power consumption and the least energy costs that lie between the periods 9 to 15 

(00:00-06:00). 

Figure 42 presents the optimized charging schedule of all the EVs in the neighbourhood for 

the three cases. By comparing chart (a) with charts (b) and (c), we can say that the charging 

schedule obtained from CCRM in both cases is more efficient from the battery health perspective 

as it reduces the charging interruptions automatically when charging all EVs on the off-peak 

periods of the day at the same time of reducing charging costs and respecting the grid power 

capacity. We observe slight changes in the charging behavior of EVs when using the two different 

approaches in CCRM, as shown in charts (b) and (c). The reduction in the values of the slack 

parameters given to vehicle 1 using the even distribution algorithm leads to a longer charging 

period of an additional hour. In contrast, the charging time of vehicle 3 is reduced by an hour when 

gaining higher slack parameters under the same distribution approach. However, the charging 

schedule of vehicle 2 didn’t change for having insignificant variations in the slack parameters 

between cases one and two. 
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6 RESULTS, DISCUSSIONS, AND MANAGERIAL INSIGHTS 

This chapter presents the results of all the test instances we generate for both models under 

different scenarios. This chapter aims to validate the proposed smart charging strategies of the 

models discussed in chapters 4 and 5, analyze the grid impact under various scenarios, investigate 

the parameters that affect the total electricity bill and its breakdown components, and derive 

some managerial insights from the presented outcomes. All the experiments were executed using 

a machine with an operating system of Microsoft Windows 10 (64 bits and equipped with an 8 GB 

RAM processor. We use Python 3.7.3 as an open-source programming language to implement the 

formulations, generate some plots and figures, and process the results. We optimize the models 

using IBM ILOG CPLEX Optimization Studio V12.9.0.0, and it was necessary to create an interface 

between Python and the CPLEX solver by using Pyomo. Pyomo is a python optimization modeling 

object that contains a rich set of supporting libraries that simplify the formulation’s presentation. 

In section 6.1, we present the main datasets that are common for all the test instances of the 

EFV-CCSP proposed in chapter 4, and we provide a description of the base case scenario and some 

of its results. Moreover, we analyze the impact of different parameters by analyzing the results of 

the corresponding test instances and compare them with the base case scenario. Similarly, we 

present in section 6.2 the base case description of the TSREV-CSP discussed in chapter 5 with its 

corresponding results and analyze the impact of different parameters. A total of 629 experiments 

were performed with a total runtime of about five days such that 405 experiments refer to the 

EFV-CCSP and 224 correspond to the TSREV-CSP. All the experiments of the EFV-CCSP were 

subjected to a time limit of 1200 seconds (20 minutes). Similarly, we set the same time limit for 

each stage of the TSREV-CSP which means a 20 minutes time limit is applied to the PSM but in the 

CCRM, each house is subjected to this time limit. 

There are two reasons for setting a time limit to our optimization model. The first is mainly to 

have a more practical optimization model for the users. However, the second reason goes back to 

some technical limitations of the machine used to perform these tests. Moreover, we set a 

minimum optimality gap of 0.5% for the solutions generated by all the tests within the specified 

time limit. Our experiments for both problems are planned over a one-day interval for a single 

overnight charging event assumed to be from 15:15 till 15:00 of the other day with a 15 mins time 

step which results in 97 equidistant periods. 
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6.1 RESULTS OF THE COMMERCIAL AND INDUSTRIAL PROBLEM 

In this section, we present the results of the experiments performed for the commercial and 

industrial problem besides analyzing the impact of some parameters on the obtained optimal 

solutions. We generate three instances for three homogeneous fleet sizes 𝑛  of 8, 12, and 16 

medium-duty EFV. The three instances represent different travel behaviors that require different 

energy values and various arrival and departure periods for each vehicle of the fleet. We generate 

the instances as follows: instance (1) represents a case of average energy demand 𝑒𝑣 represented 

by a range of 70%-80% of the battery’s capacity equivalent to 60-65 miles as recommended by 

Feng & Figliozzi,(2013) for higher utilization efficiency of electric trucks. The overnight charging 

period of instance (1) is 15-16 hours, equivalent to an 8-9 hours working interval. Instance (2) 

refers to a case of low energy demand in the range of 60%-70% of the battery’s capacity and a 

longer charging period equal to 16-17 hours. Finally, instance (3) is the case of a long travel 

behavior equivalent to 80%-90% of the battery’s SoC and 10-11 hours charging period, and it 

represents an example of the worst-case scenario. We randomly generate the arrival and 

departure periods for each vehicle in all three instances where the arrival periods lie in the range 

of 15:30-18:00 equivalent to periods range of 2-12, whereas the departure periods are generated 

between 7:00 and 9:30 equivalent to periods range of 64-74. The nine main instances are 

summarized in Table 23. 

Table 23: The nine main instances of the commercial and industrial scenario. 

instance Number of EVs Range of SoC needed Charging period range 

1_8V 8 70%-80% 14-15 hours 

2_8V 8 60%-70% 15-16 hours 

3_8V 8 80%-90% 10-11 hours 

1_12V 12 70%-80% 14-15 hours 

2_12V 12 60%-70% 15-16 hours 

3_12V 12 80%-90% 10-11 hours 

1_16V 16 70%-80% 14-15 hours 

2_16V 16 60%-70% 15-16 hours 

3_16V 16 80%-90% 10-11 hours 
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The EFVs are considered to be a homogeneous fleet of medium-duty electric trucks like 

Mitsubishi Fuso,(2019) that are equipped with six large battery packs and capable of driving a 

range of 80 miles. These battery packs together consist of approximately 606 3.6 𝑉-38 𝐴ℎ lithium 

ion battery cells that are assembled in a special configuration of series and parallel connections to 

produce a total energy capacity of 82.8 𝑘𝑊ℎ, an output voltage of 360 𝑉, and a total charge 

capacity of 120 𝐴ℎ. These EFVs are equipped with an onboard charger of 11 𝑘𝑊 power capacity 

when using AC power supplies. 

We consider having a non-refrigerated warehouse as a commercial building type, and we 

generate full day normal power demand data in the form of 15mins-average power consumption 

based on the hourly energy consumption dataset presented by Miller & Meggers,(2017). The 

prices of electricity that vary during the day are assumed similar to those of the summer scenario 

proposed in (Pelletier et al., 2018), where we consider 0.25 €/𝑘𝑊ℎ during the peak hours (12:00-

18:00), 0.05 €/𝑘𝑊ℎ  during the off-peak hours (00:00-08:00), and 0.15 €/𝑘𝑊ℎ  during the 

shoulder hours that represent the rest of the day. We set the maximum and minimum SoC as 0.99 

and 0.05 respectively that are fixed for all the test instances and we consider that the minimum 

SoC itself is the SoC of all the EFVs at their arrival periods at the beginning of the planning horizon. 

6.1.1 Base Case Scenario Description 

The base case represents a scenario of using only an AC single-phase single-socket level-2 

smart EVSE that is characterized by a 7.36 𝑘𝑊 power capacity, a current up to 32 𝐴, and a 230 𝑉 

output voltage (pod POINT, n.d.-a). By referring to the battery charging process illustrated in 

section 3.3.1, we notice that this EVSE can charge the battery up to a SoC of 95% in a maximum of 

11.5 hours entirely in the CC phase without any breakpoint. This implies the unnecessity of so 

many breakpoints, so we approximate the battery’s charging process with only three breakpoints 

0.05, 0.95, and 0.99, and having maximum DC values of 0, 3.4 𝐴, and 1.75 𝐴 respectively excluding 

the charging losses. We estimate the battery charging losses independently of the SoC by 6.75% 

which is fixed for the other test instances. We define the minimum current that must be retrieved 

by the battery as 10% of the corresponding maximum current at the same breakpoint. We set the 

grid power for the value of 500 𝑘𝑊 to neglect its effects which we present in previous chapters. 

The FRD fees are considered higher than the electricity price with a value of 11 €/𝑘𝑊 taken from 

Pelletier et al.,(2018) as well. Finally, we allow each EFV to go through a maximum of two charging 

interruptions by setting the parameter 𝑁 to the value of two. 
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6.1.2 Base Case Results 

Table 24: The results of all instances in the base case scenario. 

 Electricity Bill (€)   Gap (%) 

instance FRD E total P_max Time(s) initial final 

1_8V 786.33 206.13 992.46 71.48 13.61 27.47 0 

2_8V 706.66 202.74 909.40 64.24 9.25 20.84 0 

3_8V 893.51 208.06 1101.57 81.23 8.58 34.65 0.05 

1_12V 980.28 234.58 1214.86 89.12 443.77 78.92 0.5 

2_12V 848.84 229.29 1078.13 77.17 77.27 33.23 0 

3_12V 1139.88 238.44 1378.32 103.63 963.06 75.99 0 

1_16V 1159.24 263.46 1422.70 105.39 160.05 49.4 0.1 

2_16V 997.83 256.80 1254.63 90.71 217.92 42.62 0 

3_16V 1382.92 267.52 1650.44 125.72 942.91 71.39 0 

Table 24 shows the results of the nine different instances under the base case scenario where 

it consists of the total energy cost of the building defined as “total” (€), its breakdown into FRD 

charges (€) and normal energy cost “E” (€), peak power demand “P_max” (𝑘𝑊), solution time 

(𝑠), and the intial and final gaps (%). We notice that we got an optimal solution for all the 

instances and with acceptable run time for almost all the cases with a maximum run time of 443.7 

𝑠 while only “3_12V” and “3_16” needed more than double the run time of the other cases to get 

an optimal solution. Moreover, all the final gaps are reported within a maximum of 0.1 %.  

Figure 43 presents the total electricity bill and the peak power demand for all the charging 

behaviours of the commercial base case. By looking at both the total energy cost and the peak 

power demand in all instances, we notice that when the number of EVs increases, the peak power 

demand and the total energy cost increase as well. Similarly, both the maximum power retrieved 

and the total electricity bill of the building are higher for the cases of higher energy demand and 

shorter charging time as in “3_8V”, “3_12V”, and “3_16V” than the cases of lower energy demands 

and longer charging periods like “2_8V”, “2_12V”, and “2_16V”.The least power demand and the 

cheapest energy cost were reported for the instance “2_8V” by 64.24 (𝑘𝑊)  and € 909.4 

respectively, while the highest ones were reported for the instance “3_16V” by 125.72 (𝑘𝑊) and 

€1382.92 respectively. We explain these increases by the limited charging capacity of the EVSE 

that might be forced to work the whole charging period at its rated power to satisfy the energy 

demand. This provides a low degree of freedom in choosing cheaper periods of the day to charge 

the EVs, which is clearly shown in instances “3_8V”, “3_12V”, and “3_16V”.  
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Figure 43: The total electricity bill and the peak power demand for all the charging behaviours of 
the commercial base case. 

The combined effects of the number of EVs and their energy demands can be understood by 

comparing the instance of a few EFVs and high energy demand “3_8V” with the instance of more 

EFVs at low energy demand “2_12V”. We can say that the additional four EFVs didn’t impact the 

power system since lower energy demands mean a more flexible charging schedule. It allows the 

EFVs’ owner to reduce both the electricity bill from €1101.57 at “3_8V” to €1078.32 at “2_12V” 

which hasn’t been affected by the increase in the EV energy costs from about €208 at “3_8V” to 

€229.29 at “2_12V”. In addition to reducing the peak power demand from around 81.23 (𝑘𝑊) at 

“3_8V” down to 77.17 (𝑘𝑊) at “2_12V”. The same exactly applies to the instances “3_12V” and 

“2_16V”.  

Figure 44 presents the percentage contribution of the FRD charges and energy costs to the 

electricity bill. It shows that as the number of EFVs rises, the share of FRD charges increases at the 

expense of the normal energy costs due to the increase in the peak power demand, and this rate 

of increase is higher for larger energy demand scenarios. Thus, the higher the number of EFVs with 

critical energy demands means more chargers functioning at their rated power which leads to 

additional power demands. 
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Figure 44: The FRD charges and energy cost contributions in the total electricity bill of the 
building for all the instances. 

6.1.3 Multi-Criteria Analysis for The Commercial Charging Problem 

In this section, we conduct extensive experiments of multiple scenarios similar to the one 

generated in the base case to analyze the effect of different parameters on the validation of our 

model and to identify better smart charging approaches. Table 25 presents a summary of all the 

experiments performed under the various scenarios in terms of the solution time of the optimality 

condition reached. Our analysis considers having eight types of charging clusters that replace the 

predefined single-phase single-socket EVSE used in the base case scenario to study the impact of 

the clustered charging techniques on the energy cost and the peak power. These eight types of 

clusters are represented by the columns’ names in each of the subtables shown in Table 25 that 

we explain in the following section. We consider having two main types of three-phase charging 

clusters in terms of power levels, where one is characterized by a maximum power capacity of 11 

𝑘𝑊 while the other has a power capacity of 22 𝑘𝑊. For each scenario of the eight ones mentioned 

previously, we use several identical clusters with an equal number of charging points defined as 

sockets.  
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The name of each cluster type is defined by “𝛼𝑆_𝛽𝑘𝑊” where “𝛼” represents the number of 

sockets available in the cluster, S stands for the word socket, 𝛽 specifies the maximum power 

capacity of the cluster and 𝑘𝑊 stands for the unit of power. For example, the seventh column in 

Table 25 that is named “3S_22kW", represents the case of using charging clusters of a 22 𝑘𝑊 

power capacity and each consists of three charging sockets. In case the number of the sockets 

available in all clusters is odd compared to an even number of EFVs, then we use the 7.36 𝑘𝑊 

single-socket charger used in the base case to make up the difference in the number of chargers 

and EVs. Each section of Table 25 refers to a different scenario by changing one parameter 

concerning the base case to identify its impact on the optimization model and the cost of energy. 

Our multi-criteria analysis consists of three main affecting parameters classified as follows: 

FRD fees scenarios where the first subtable corresponds to the base case with high FRD charges 

assumed to be 11 (€/𝑘𝑊) while the second one refers to the case of having lower FRD charges 

compared to the electricity prices with a value of 0.1 (€/𝑘𝑊). The second one is the introduction 

of grid restrictions by changing the value of 𝑃 from 500 (𝑘𝑊) in the base case to 110 𝑘𝑊as we 

see in the third subtable. Finally, the fourth and the fifth subtables correspond to the cases of and 

charging interruption control by changing the charging interruption limitations from two (𝑁 = 2) 

in the base case to zero (𝑁 = 0) and (𝑁 = 1) one interruption respectively. 

 The colors used in Table 25 represent the feasibility level of the test instances performed. The 

cells with orange color refer to an infeasible problem. The yellow and blue cells are indicators of 

the optimization model’s termination because of reaching the preset time limit. The main 

difference between these two colors is that the yellow one refers to a feasible problem with an 

integer optimal solution found upon the occurrence of the model’s termination. However, the 

blue-colored cell represents the test instance with no solution found when reaching the preset 

time limit. The optimal solution found might be of a high optimality gap, as we can see in Table 26 

that presents the final optimality gap of the solutions found for each test instance based on all 

scenarios where the colors used are similar to those in Table 25. Using Tables 25 and 26 together, 

we simplify our analysis in the coming sections by eliminating some charging technologies that 

obtain in the majority of the test instances either infeasible solutions (i.e., in orange and blue) or 

feasible and optimal solutions with poor final gap values of above 2%. 
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Table 25: The solution time of all the tests of the commercial charging problem under the five main scenarios. 

Solution Time (s) (1200 s time limit) 

High FRD (F = 11 (€/𝑘𝑊)) 

Instance Base 1S_11 2S_11 3S_11 2S_22 3S_22 4S_22 5S_22 6S_22 

1_8V 13.6 30.2 52.6  61.6 39.8 22.6 31.8  
2_8V 9.3 50.8 59.1 42.0 99.7 114.3 27.1 31.6 24.8 
3_8V 8.6 187.9 1200.1  102.5 45.8 183.0   

1_12V 443.8 1200.2 20.0  208.5 140.1 111.3 183.8  
2_12V 77.3 112.1 20.7 265.6 282.8 117.3 105.8 118.1 63.7 
3_12V 963.1 561.9 1200.1  436.9 378.9 1200.2   
1_16V 160.1 1200.3 1200.1  1200.1 394.6 376.3 318.1  
2_16V 217.9 1200.4 1200.1 716.4 80.6 368.9 218.7 172.0 217.5 
3_16V 942.9 1200.2 1200.1  1114.4 670.3 1200.1   

Low FRD (F = 0.1 (€/𝑘𝑊)) 

Instance Base 1S_11 2S_11 3S_11 2S_22 3S_22 4S_22 5S_22 6S_22 

1_8V 13.0 22.7 47.4  41.1 104.0 17.9 24.6  
2_8V 11.2 34.5 45.6 82.7 40.2 30.1 17.4 24.1 54.4 
3_8V 9.0 66.6   113.3 106.0 110.2   

1_12V 158.0 394.5 20.1  22.0 156.5 89.3 1200.1  
2_12V 61.3 129.7 294.0 223.1 27.8 103.5 83.9 484.0 47.8 
3_12V 163.5 273.7 1200.1  326.6 311.2 1200.1   
1_16V 198.3 296.7 639.3  672.0 879.4 262.7 1200.1  
2_16V 229.3 381.5 1071.8 1200.1 77.0 386.9 206.8 663.3 746.8 
3_16V 423.4 700.9 1205.7  675.3 1200.1 1200.5 1200.2  

P= 110 kW 

Instance Base 1S_11 2S_11 3S_11 2S_22 3S_22 4S_22 5S_22 6S_22 

1_8V 16.0 27.9 50.5  155.1 52.1 21.0 21.6  
2_8V 11.9 61.8 66.6 38.0 81.0 84.6 38.3 21.1 23.5 
3_8V 8.8 249.8   71.9 82.6 124.3   

1_12V 1200.1 1009.0 21.1  24.8 175.2 222.3 162.7  
2_12V 79.7 138.5 19.7 247.0 32.2 100.2 100.8 95.1 60.3 
3_12V          
1_16V          
2_16V 209.2 380.7 1200.1 916.4 753.7 437.3 234.4 270.0 213.6 
3_16V          

No interruption (N = 0) 

Instance Base 1S_11 2S_11 3S_11 2S_22 3S_22 4S_22 5S_22 6S_22 

1_8V 17.1 174.7 54.9  82.1 30.6 60.2 41.4  
2_8V 15.6 276.3 141.1 62.2 168.9 87.1 54.2 43.2 140.4 
3_8V 8.9 242.6   231.1 102.0 278.6   

1_12V 897.0 1083.5 265.1  181.6 190.4 87.8 319.8  
2_12V 68.4 1200.1 571.2 443.7 201.5 267.0 104.1 103.3 135.4 
3_12V 625.1 1200.2 1200.1  1200.1 252.7 1200.1   
1_16V 171.1 1200.5 1200.1  1200.5 485.5 1137.8 1202.0  
2_16V 243.6 1200.3 1200.1 1200.1 859.4 489.6 339.0 301.7 658.8 
3_16V 870.6 1200.1 1204.3  1200.1 1200.2 1200.1   

One interruption (N = 1) 

Instance Base 1S_11 2S_11 3S_11 2S_22 3S_22 4S_22 5S_22 6S_22 

1_8V 12.8 235.8 50.2  54.8 31.2 44.3 22.8  
2_8V 15.8 42.8 105.8 90.6 108.7 66.1 26.3 46.6 49.9 
3_8V 9.9 209.0   256.4 100.7 119.5   

1_12V 477.6 1200.1 16.5  166.1 161.3 125.7 266.6  
2_12V 63.5 1140.3 20.6 471.1 29.5 85.8 109.1 152.6 103.1 
3_12V 441.6 823.2 1200.1  1186.1 248.3 1200.2   
1_16V 166.7 1200.2 1200.1  1200.1 667.9 920.7 398.4  
2_16V 228.1 322.1 1200.1 1200.1 1200.1 802.8 475.7 263.4 267.7 
3_16V 656.3 1200.2 1200.1  1200.1 716.2 1200.1   
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Table 26: The Optimality gap of all the tests of the commercial charging problem under the five main scenarios. 

Optimality Final Gap (%) 

high FRD 

Case Base 1S_11 2S_11 2S_22 3S_22 4S_22 

1_8V 0 0.04 0.39 0.33 0.22 0 
2_8V 0 0.25 0.02 0 0 0 
3_8V 0.05 0.03  0.11 0.22 0.47 

1_12V 0.5 14.83 0.43 0 0 0 
2_12V 0 0 0.28 0.44 0.03 0 
3_12V 0 0.11  0.46 0.1  
1_16V 0.1  1.24 2.11 0.33 0.03 
2_16V 0  78.24 0.09 0 0.14 
3_16V 0   0.12 0.41  

Low FRD 

Case Base 1S_11 2S_11 2S_22 3S_22 4S_22 

1_8V 0 0.14 0.33 0.04 0.21 0 
2_8V 0.16 0.12 0 0 0 0 
3_8V 0 0.05  0.17 0.5 0.16 

1_12V 0 0 0 0.31 0 0 
2_12V 0.16 0.19 0 0.16 0.06 0.24 
3_12V 0 0.11  0.49 0.37  
1_16V 0 0.26 0 0 0.33 0 
2_16V 0.17 0.24 0.24 0.23 0 0 
3_16V 0 0.12  0.29 0.72  

P= 110 kW 

Case Base 1S_11 2S_11 2S_22 3S_22 4S_22 

1_8V 0.05 0.05 0.39 0 0 0 
2_8V 0.02 0.37 0.32 0 0 0 
3_8V 0.02 0.03  0.1 0.21 0.49 

1_12V 9.23 0 0.4 0.03 0.1 0 
2_12V 0.01 0.29 0.37 0.11 0.03 0 
3_12V       
1_16V       
2_16V 0 0.1  0.02 0 0.14 
3_16V       

No interruption (N = 0) 

Case Base 1S_11 2S_11 2S_22 3S_22 4S_22 

1_8V 0 0 0.39 0.02 0.22 0.02 
2_8V 0 0 0 0 0.24 0 
3_8V 0 0.03  0.33 0.47 0.47 

1_12V 0 0 0.44 0 0.1 0.45 
2_12V 0  0.26 0.03 0 0.13 
3_12V 0 76.23  0.38 0.32  
1_16V 0 75.5 75.5 75.5 0.33 0.37 
2_16V 0  0.44 0.02 0 0.14 
3_16V 0.03   10.44 3.25  

One interruption (N = 1) 

Case Base 1S_11 2S_11 2S_22 3S_22 4S_22 

1_8V 0 0 0.39 0.02 0.22 0 
2_8V 0.2 0.36 0.1 0 0.15 0.02 
3_8V 0.01 0.03  0.05 0.05 0.48 

1_12V 0 79.06 0.25 0 0.1 0.45 
2_12V 0 0 0.26 0.03 0.03 0.44 
3_12V 0 0.11  0.16 0.15  
1_16V 0  1.24 75.51 0.02 0.02 
2_16V 0 0.04 78.22 78.25 0 0.05 
3_16V 0   0.15 0.5  
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6.1.4 Impacts of the Clustered Charging Technology 

The breakpoints associated with the linear approximation of the discretized charging process 

presented in section 3.3.1 are considered to be kind of the same value since the onboard charger 

capacity applies a power limit while charging, allowing the EFVs to withdraw a maximum power of 

12 𝑘𝑊 that is almost equivalent to the socket power of “1S_11Kw”. That’s the reason why we 

consider at least two sockets for the cluster’s type “2S_22 𝑘𝑊”. The charging breakpoints are set 

for four since the CV stage is entered at a SoC of 0.935 and earlier than 0.95. The breakpoints for 

the 11 𝑘𝑊 clusters are as follows: 0.05, 0.935, 0.95, and 0.99 that correspond to charging currents 

of 5.1 𝐴, 3.4 𝐴 , and 1.7 𝐴. For the 22 𝑘𝑊 clusters, we apply the same breakpoints on its charging 

process but with current values of 5.6 𝐴, 3.5 𝐴, and 1.7 𝐴. By referring to Table 25, we see that 

instances “3S_11𝑘𝑊”, “5S_22𝑘𝑊”, and “6S_22𝑘𝑊” got so many infeasibilities to the level of 

ignoring them in our test instances. 

Table 27: The peak power demand in (kW) using different types of clusters. 

Case Base 1S_11𝑘𝑊 2S_11𝑘𝑊 2S_22𝑘𝑊 3S_22𝑘𝑊 4S_22𝑘𝑊 

1_8V 71.49 71.04 71.44 71.2 71.17 70.95 

2_8V 64.24 64.22 64.04 64 64 64 

3_8V 81.23 80.66  80.68 80.8 92.29 

1_12V 89.12 106.09 88.42 87.84 87.84 87.84 

2_12V 77.18 76.93 77.24 77.43 76.91 76.88 

3_12V 103.63 102.28  102.65 102.15  

1_16V 105.39  106.12 107.31 104.58 104.1 

2_16V 90.71  123.12 90.54 90.45 90.65 

3_16V 125.72   123.98 124.4  

Table 27 presents the peak power demand of 63 test instances that were performed on the 

predefined nine charging behaviors. In each instance, we use only one cluster type to charge the 

EVs. The peak power values that correspond to the instances using the single-phase EVSE are the 

highest on many instances with few exceptions that are mainly due to the optimization model 

termination when reaching the time limit before giving the optimal solution and are colored with 

yellow. All the power values are reported in the range of about 64 (𝑘𝑊) up to approximately 125 

(𝑘𝑊). Figure 45 illustrates a summary of the results presented in Table 27  that helps to easily 

allocate the variations among the different instances. In general, the charging clusters of 22 (𝑘𝑊) 

showed better results in terms of the peak power demand than the other charging types for the 

majority of the test instances. 
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Figure 45: Peak power demand variation based on the different charging clusters used for all 
charging behaviors. 

“3S_22𝑘𝑊 ” clusters give optimal solutions within the time limit and show peak power 

reduction for all the test instances performed compared to the base case. Each “3S_22𝑘𝑊” cluster 

type replaces three 7.36 (𝑘𝑊) chargers used in the base case. By looking at “4S_22𝑘𝑊”, we 

notice that the peak power values are the lowest for most of the instances except for the two 

instances “3_12V” and “3_12V” that are colored in blue which need more time to reach the 

optimal solution. The peak power reduction reflects the decrease of the FRD fees and might 

reduce the total electricity bill based on the flexibility of the charging schedule during the periods 

of the cheapest electricity prices over the planning horizon. 

Table 28 presents the total electricity bill of the building for all the test instances presented in 

Table 27, besides showing the percentage contributions of the FRD fees and energy costs in each 

electricity bill. Similar to the peak power, the energy costs follow the same trend in which the 

charging clusters with a capacity of 22 (𝑘𝑊) show better results than those of 11 (𝑘𝑊) capacity. 

This is clearly shown in the percentage of instances with either acceptable optimal solutions having 

relatively low final gaps less than 2% for each charging type where almost 50% of the instances 

using both charging types “1S_11𝑘𝑊” and “2S_11𝑘𝑊” give higher energy cost or no solution at 

all when reaching the preset time limit. However, 100% of the test instances of “3S_22𝑘𝑊” show 

cost reduction compared to the base case nad around 85% of those of “2S_22 𝑘𝑊 ” and 

“4S_22𝑘𝑊” charging techniques result in cost reduction. 
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Table 28: The cost analysis of the different charging technologies and their effect on the total 
energy cost and its contributions. 

 Instance 1_8V 2_8V 3_8V 1_12V 2_12V 3_12V 1_16V 2_16V 3_16V 

Base 

FRD (%) 79.23 77.71 81.11 80.69 78.73 82.70 81.48 79.53 83.79 

E_cost (%) 20.77 22.29 18.89 19.31 21.27 17.30 18.52 20.47 16.21 

total (€) 992.46 909.40 1101.57 1214.86 1078.13 1378.32 1422.70 1254.63 1650.44 

1S_11kW 

FRD (%) 79.07 77.65 80.95 82.59 78.65 82.44    

E_cost (%) 20.93 22.35 19.05 17.41 21.35 17.56    

total (€) 988.29 909.78 1096.05 1412.92 1075.88 1364.71    

2S_11kW 

FRD (%) 79.24 77.62  80.48 78.75  81.68 84.15  

E_cost (%) 20.76 22.38  19.52 21.25  18.32 15.85  

total (€) 991.76 907.63  1208.52 1078.86  1429.13 1609.36  

2S_22kW 

FRD (%) 79.07 77.60 80.94 80.34 78.85 82.52 81.97 79.47 83.52 

E_cost (%) 20.93 22.40 19.06 19.66 21.15 17.48 18.03 20.53 16.48 

total (€) 990.49 907.19 1096.56 1202.58 1080.21 1368.26 1440.13 1253.18 1632.93 

3S_22kW 

FRD (%) 79.13 77.60 80.97 80.34 78.65 82.40 81.33 79.46 83.56 

E_cost (%) 20.87 22.40 19.03 19.66 21.35 17.60 18.67 20.54 16.44 

total (€) 989.34 907.19 1097.69 1202.58 1075.75 1363.61 1414.47 1252.10 1637.75 

4S_22kW 

FRD (%) 79.04 77.60 83.03 80.34 78.64  81.20 79.52  

E_cost (%) 20.96 22.40 16.97 19.66 21.36  18.80 20.48  

total (€) 987.44 907.19 1222.60 1202.58 1075.46  1410.34 1253.90  

 

Figure 46: The total electricity bill of the building for all the instances using different charging 
technologies. 
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Figure 47: The percentage contributions of the FRD fees and energy costs in the electricity bill of 
different test instances using multiple charging techniques. 

Figure 46 illustrates the total electricity bill of the building for the various test instances of 

different charging techniques presented in Table 28. The charging costs for the normal charging 

behaviors “1_8V”, “1_12V”, and “1_16V” in the base case scenario are around €992, €1215, and 

€1423 respectively. The costs are the most compared to the costs of the other clustered charging 

technologies with ignoring the poor optimal solution of “1S_11𝑘𝑊” for instance “1_12V”, and 

“2S_11𝑘𝑊” and “2S_22𝑘𝑊” for instance “1_16V”. The least charging costs are around €987 and 

€1410 for instances “1_8V” and “1_16V” respectively using the clustered charging technology 

“4S_22𝑘𝑊” and around €1203 for instance “1_12V” using the clustered charging technologies 

“2S_22𝑘𝑊”, “3S_22𝑘𝑊”, and “4S_22𝑘𝑊”. 

Figure 47 shows the percentage contributions of the electricity bill’s components for each test 

instance using the different charging technologies. We see that the FRD fees generally contribute 

to around 80% in all the test instances and their percentages increase with the increase of peak 

power demand. This is clear in the instances “3_8V” and “1_12V” using clusters “4S_22𝑘𝑊” and 

“1S_11 𝑘𝑊 ” respectively where the peak power increase rises the FRD fees by around 3% 

compared to other charging technologies. Similarly, the charging cluster “2S_11𝑘𝑊” increases the 

FRD contribution by 5% in test instance “2_16V” due to the additional peak power demands. 
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6.1.5 Effects of the FRD Charges 

In this section, we study the impact of FRD charges on the peak power demand of the building 

besides its effect on the breakdown of the total electricity bill of the building. We repeat the same 

experiments performed in the previous section 6.1.4 by reducing the FRD charges to 0.1(€/𝑘𝑊) 

while fixing the other parameters. Figure 48 shows the peak power demand for all instances under 

both scenarios of high and low FRD charges. We see that the FRD charges reduction imposes 

higher power demand on the grid for all the test instances. By looking at the base case, we notice 

that the peak power demand increases by a minimum of about 19 (𝑘𝑊) in instance “3_8V” and a 

maximum of around 63 (𝑘𝑊)  in instance “1_16V”. The charging power demand when using 

clusters with a high power capacity per socket like “1S_11𝑘𝑊”, “2S_22𝑘𝑊” appears to be much 

higher than other charging technologies. In many instances like “3_16V”, we find a difference of 

around 40 (𝑘𝑊) higher compared to the power obtained by the base case charging technology of 

80 (𝑘𝑊). 

 

Figure 48: A comparison between the peak power demand in the instances of high FRD charges 
and the ones with low FRD charges using different charging technology. 
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Table 29: The total electricity bill of the building, the percentage contribution of the FRD fees in 
the total cost, and the energy cost reduction rate for different test instances using multiple 

charging technologies under the low and high FRD charges scenario. 

   Instance 

Charging 

Technology 

FRD 

Scenario 
 1_8V 2_8V 3_8V 1_12V 2_12V 3_12V 1_16V 2_16V 3_16V 

Base high FRD 79.23% 77.71% 81.11% 80.69% 78.73% 82.70% 81.48% 79.53% 83.79% 

  E (€) 206.1 202.7 208.1 234.6 229.3 238.4 263.5 256.8 267.5 

  total (€) 992.46 909.40 1101.57 1214.86 1078.13 1378.32 1422.70 1254.63 1650.44 

 low FRD 5.75% 5.37% 4.78% 6.61% 6.30% 5.46% 7.35% 7.23% 6.03% 

  E (€) 180.0 170.8 196.3 196.9 182.2 221.8 212.9 194.2 245.5 

  total (€) 191.04 180.43 206.13 210.88 194.50 234.57 229.78 209.32 261.27 

1S_11 high FRD 79.07% 77.65% 80.95% 82.59% 78.65% 82.44%    

  E . red. -0.34% -0.31% -0.37% -4.86% -0.17% -0.52%    

  total 988.29 909.78 1096.05 1412.92 1075.88 1364.71    

 low FRD 5.66% 5.28% 6.11% 6.85% 6.31% 7.43% 7.76% 7.22% 8.45% 

  E . red. 2.98% 0.05% 8.46% 4.47% -0.01% 11.38% 5.02% -0.04% 13.33% 

  total 185.16 180.18 191.36 201.97 194.52 212.30 219.21 209.39 232.43 

2S_11 high FRD 79.24% 77.62%  80.48% 78.75%  81.68% 84.15%  

  E . red. 0.12% -0.21%  -0.56% 0.01%  0.62% 0.68%  

  total 991.76 907.63  1208.52 1078.86  1429.13 1609.36  

 low FRD 4.69% 5.01%  5.16% 5.62%  5.53% 6.09%  

  E . red. -7.18% -5.63%  -9.35% -7.82%  -11.53% -10.45%  

  total 202.49 189.88  227.06 208.20  251.36 228.40  

2S_22 high FRD 79.07% 77.60% 80.94% 80.34% 78.85% 82.52% 81.97% 79.47% 83.52% 

  E . red. -0.57% -0.22% -0.47% -0.77% 0.35% -0.29% 1.42% -0.18% -0.62% 

  total 990.49 907.19 1096.56 1202.58 1080.21 1368.26 1440.13 1253.18 1632.93 

 low FRD 5.72% 5.30% 6.21% 6.79% 6.31% 7.55% 7.82% 7.25% 8.67% 

  E . red. 3.14% 0.20% 8.82% 4.12% 0.02% 11.78% 5.33% -0.01% 14.14% 

  total 184.98 179.96 190.81 202.58 194.47 211.60 218.63 209.39 230.84 

3S_22 high FRD 79.13% 77.60% 80.97% 80.34% 78.65% 82.40% 81.33% 79.46% 83.56% 

  E . red. -0.17% -0.22% -0.38% -0.77% -0.18% -0.63% -0.25% -0.15% -0.66% 

  total 989.34 907.19 1097.69 1202.58 1075.75 1363.61 1414.47 1252.10 1637.75 

 low FRD 5.30% 5.30% 5.26% 6.59% 6.34% 5.67% 7.07% 7.27% 6.14% 

  E . red. 0.77% 0.20% 3.03% -0.13% 0.15% 1.11% 0.01% 0.25% 2.20% 

  total 188.65 179.96 200.88 211.11 194.29 232.48 229.08 208.89 255.83 

4S_22 high FRD 79.04% 77.60% 83.03% 80.34% 78.64%  81.20% 79.52%  

  E . red. -0.42% -0.22% 0.30% -0.77% -0.19%  -0.66% 0.01%  

  total 987.44 907.19 1222.60 1202.58 1075.46  1410.34 1253.90  

 low FRD 4.71% 5.01% 4.39% 5.16% 5.61%  5.53% 6.10%  

  E . red. -6.82% -5.63% -5.53% -9.35% -8.09%  -11.53% -10.17%  

  total 201.83 189.88 216.62 227.06 208.70  251.36 227.85  
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However, when the number of sockets per cluster increases with a simultaneous decrease in 

the power capacity of each socket at the time all sockets are being used, then the impact of FRD 

charges is negligible compared to other charging technologies. This is clearly shown in all instances 

using clusters “2S_11𝑘𝑊” and “4S_22𝑘𝑊” that could deliver a maximum of 5.5 (𝑘𝑊) per socket 

when all sockets are occupied. This power impact for both charging technologies is recorded with 

a maximum of 40 (𝑘𝑊) in instance “2_12V” using cluster “2S_11𝑘𝑊” and 50 (𝑘𝑊) in instance 

“2_16V” using cluster “4S_22𝑘𝑊” which is way less than that of other charging technologies. 

Table 29 presents a comparison of the building’s total electricity bill in different test instances 

using the six previously discussed charging technologies under the two scenarios of high and low 

FRD charges. It also shows the energy costs in all test instances as obtained in the base case “𝐸” 

and the percentage contribution of the FRD fees in the total cost “𝐹𝑅𝐷” and the energy cost 

reduction rate “𝐸. 𝑟𝑒𝑑.” in each instance using the various charging technologies compared to the 

base case. We see that the total electricity bill of the building in all instances reduces by an average 

of 82% when applying the low FRD charges scenario. Applying the low FRD charges reduces the 

FRD fees contribution to the total electricity bill from an average of 80% down to a maximum of 

8.5%. We notice wider variations in the energy costs 𝐸 when using different charging technologies 

after applying the low FRD charges.  

The negative values of “𝐸. 𝑟𝑒𝑑.” represent the increase rate in the energy costs compared to 

the base case. By comparing the values of “𝐸. 𝑟𝑒𝑑.” obtained by the different clusters, we observe 

that clusters “1S_11𝑘𝑊”, “2S_22𝑘𝑊”, and “3S_22𝑘𝑊” show an increase in energy costs in the 

majority of the test instances in the range of 0.01% and up to 4.86% when applying the high FRD 

charge. On the contrary, applying the low FRD charges results in energy cost reduction in most of 

the instances with rates that can reach a value of 14.4% using those three clusters. However, the 

cluster “2S_11𝑘𝑊” shows the other way around of energy cost increase in the case of low FRD 

charges ranging from 5.63% and up to 11.53% and meager reduction rates in the case of high FRD 

charges that reaches a maximum of 0.68% in the best case. However, we find that cluster 

“4S_22𝑘𝑊” shows increased energy costs between 0.19% and 11.53% for both cases of low and 

high FRD charges in all test instances compared to the base case scenario. The increased energy 

costs could be explained by the lower impact of the total FRD fees resulted from lower FRD charges 

that provide the EFVs with a bigger degree of freedom to charge at any time without any power 

restrictions and only depending on the minimum electricity prices. 
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Figure 49 illustrates a comparison of the total electricity bill of the building under the high and 

low FRD scenarios in the different test instances presented in Table 29. while Figure 50 represents 

only the charging energy cost in the same tests. By looking at both figures, we can see the cost 

reduction in both the total electricity bill and the EFV charging energy cost when applying the low 

FRD charges. Moreover, we notice that the base case’s charging technology that has a power 

capacity of 7.36 (𝑘𝑊)  shows better results than the clusters with lower charging capacity. 

“2S_11𝑘𝑊” and “4S_22𝑘𝑊” are examples of these clusters that can deliver a maximum power of 

5.5 (𝑘𝑊) per socket when all are being used simultaneously and cause an average additional 

energy cost of around €16 compared to the base case technology. On the contrary, the clusters 

of type “3S_22𝑘𝑊” that can deliver a minimum of 7.36 (𝑘𝑊) per socket equivalent to the power 

capacity of the chargers used in the base case scenario show remarkable energy cost reduction 

compared to that of the base case. So far, the cluster type of “3S_22𝑘𝑊” show better results in 

terms of peak power and electricity bills when applying both the high and low FRD charges. 

 

Figure 49: The total electricity bill of the building for different test instances using multiple 
charging technologies under the low and high FRD charges scenario. 
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Figure 50: The charging energy cost for different test instances using multiple charging 
technologies under the low and high FRD charges scenario. 

6.1.6 Impact of Grid’s Power Limit 

In this section, we investigate the effects of imposing a power limit on the building’s peak 

power retrieved from the grid. We repeat the same experiments performed in section 6.1.4 by 

changing the grid power from 500 (𝑘𝑊)  to 110 (𝑘𝑊)  while fixing the other parameters. By 

referring to Table 25, we see that no feasible solutions were found for instances “3_12V”, “1_16V”, 

“2_16V”, and “3_16V” when applying the grid power limit, so we’ll exclude all the related test 

instances of all charging technology from our analysis.  

Figure 51 presents the peak power demand for different test instances using multiple charging 

technologies with setting a power limit on the grid’s capacity. We see that there are no significant 

changes in the peak power after applying the power limit except for the base case charging 

technology in instance “1_12V”, where the peak power increases by about 11 (𝑘𝑊) due to the 

poor solution reached on the optimization model’s time limit. On the other hand, the power limit 

helps the chargers “1S_11𝑘𝑊” to improve their power demand by a reduction of 18 (𝑘𝑊) and 

give an optimal charging schedule within 1009 seconds less than the time limit of the optimization 

model as shown in Table 25. 
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Figure 51: The peak power demands of the building for different test instances after applying a 
grid's power limit. 

Figures 52 and 53 present the impact of the grid’s power limit on the building’s total electricity 

bill and the EFVs’ charging energy cost respectively, in different test instances and using various 

charging technologies. By looking at both figures, we notice that the results are similar to those of 

the peak power where no significant changes are shown except for instance “1_12V” for both the 

base case charging technology and cluster “1S_11𝑘𝑊”. By looking at the base case in instance 

“1_12V”, we see that the total electricity bill increases by around €120 when applying the power 

limit even though the charging energy costs are reduced by about €4. That is due to the rise of 

peak power that maximizes the effects of FRD fees. However, using the charger “1S_11𝑘𝑊” in 

instance “1_12V” reduces the building’s total electicity bill along with the reduction of the charging 

energy costs, which is explained by the significant reduction in the peak power demand as shown 

in Figure 51. 
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Figure 52: A comparison of the building's total electricity bill in different test instances under the 
effects of the grid's power limit. 

 

Figure 53: A comparison of the charging energy cost in different test instances under the effects 
of the grid's power limit. 

6.1.7 Effects of Charging Interruptions 

In this section, we investigate the impact of charging interruptions on the solutions resulted 

in section 6.1.4 through running the same test instances after changing only the number of 

charging interruptions 𝑁 from two in the base case to one (𝑁 = 1) and zero (𝑁 = 0). By referring 

to Tables 25 and 26, we notice that these two scenarios of one and zero charging interruption 

increase the runtime of the optimization model for most test instances but keep the final gap 

within the acceptable range.  
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(a) 

 

(b) 

 

Figure 54: A comparison of the peak power demand in different test instances using the multiple 
charging technologies: (a) refers to the scenario of 𝑁 = 1, (b) refers to the scenario of 𝑁 = 0. 
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(a) 

 

(b) 

 

Figure 55: A comparison of the building's total electricity bill in different test instances using 
multiple charging technologies under two scenarios: (a) One charging interruption,                     

(b) zero charging interruptions. 

 

800

1000

1200

1400

1600

1800

2000

1_8V 2_8V 3_8V 1_12V 2_12V 3_12V 1_16V 2_16V 3_16V

TO
TA

L 
EL

EC
TR

IC
IT

Y 
B

IL
L 

(€
)

INSTANCES

Base

Base N1

1S_11

1S_11 N1

2S_11

2S_11 N1

2S_22

2S_22 N1

3S_22

3S_22 N1

4S_22

4S_22 N1

800

1000

1200

1400

1600

1800

2000

2200

1_8V 2_8V 3_8V 1_12V 2_12V 3_12V 1_16V 2_16V 3_16V

TO
TA

L 
EL

EC
TR

IC
IT

Y 
B

IL
L 

(€
)

INSTANCES

Base

Base N0

1S_11

1S_11 N0

2S_11

2S_11 N0

2S_22

2S_22 N0

3S_22

3S_22 N0

4S_22

4S_22 N0



 
109 

 

Figure 54 presents a comparison between the building’s peak power demand in different test 

instances and using various charging technologies. (a) refers to a comparison between the base 

scenario and the “N1” scenario of two and one allowed charging interruptions respectively, while 

(b) corresponds to a similar comparison but with “N0” zero charging interruptions allowed instead 

of “N1”. By comparing all charging technologies for both scenarios, we see that no significant 

changes take place for both scenarios in almost all the test instances using all charging 

technologies except for clusters “1S_11𝑘𝑊”, “2S_11𝑘𝑊”, and “2S_22𝑘𝑊” in some instances that 

correspond to 12V and 16V.  

In general, the base scenario of two charging interruptions shows better results of lower peak 

power than the other two cases. This is also clear in Figure 55 that presents a comparison of the 

building’s total electricity bill between the base scenario of two charging interruptions allowed 

and (a) of one charging interruption and (b) of zero charging interruption for different test 

instances using various charging technologies. The results of the total electricity bill show the same 

trend of the peak power demand in Figure 54 since the FRD charges contribute to around 80% of 

the total bill, which increases and decreases proportionally with the peak power value in all 

instances. 

6.2 RESULTS OF THE RESIDENTIAL NEIGHBOURHOOD PROBLEM 

In this section, we present the results of the experiments performed for the residential 

neighborhood problem, besides analyzing the impact of some parameters on the obtained optimal 

solutions. Similar to what we did in section 6.1, we generate four instances for a neighbourhood 

of four sizes 𝑚 of 30, 40, 50, and 60 heterogenous EVs. The travel and charging behaviors of 

residential EVs are more random than the commercial ones and their arrival and departure periods 

are more unpredictable.  

We generate the four instances as follows: instance (1) represents a case of relatively low 

energy demand 𝑒𝑣 represented by a range of 50%-65% of the battery’s energy capacity and with 

a long overnight charging period of 17-19. Instance (2) refers to a case of normal energy demand 

in the range of 65%-80% of the battery’s energy capacity and an average charging period in the 

range of 14-17 hours. Instance (3) is the case of a long travel behavior equivalent to 80%-90% of 

the battery’s SoC and a charging period of 11-13 hours, and it represents an example of the worst-

case scenario.  
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Finally, we generate instance (4) as a random combination of all three instances together for 

a more realistic case study. We randomly generate the arrival and departure periods for each EV 

in all instances where the arrival periods lie in the range of 15:30-23:00 equivalent to periods range 

of 2-32, whereas the departure periods are generated between 6:00 and 11:00 equivalent to 

periods range of 60-80. The sixteen main instances are summarized in Table 30. 

Table 30: The main instances of the residential neighbourhood problem. 

instance Number of EVs Range of SoC needed Charging period range 

1-30V 30 50%-65% 17-19 hours 

2-30V 30 65%-80% 14-17 hours 

3-30V 30 80%-90% 11-13 hours 

4-30V 30 65%-90% 11-19 hours 

1-40V 40 50%-65% 17-19 hours 

2-40V 40 65%-80% 14-17 hours 

3-40V 40 80%-90% 11-13 hours 

4-40V 40 65%-90% 11-19 hours 

1-50V 50 50%-65% 17-19 hours 

2-50V 50 65%-80% 14-17 hours 

3-50V 50 80%-90% 11-13 hours 

4-50V 50 65%-90% 11-19 hours 

1-60V 60 50%-65% 17-19 hours 

2-60V 60 65%-80% 14-17 hours 

3-60V 60 80%-90% 11-13 hours 

4-60V 60 65%-90% 11-19 hours 

We perform our experiments based on a full day normal power demand data in the form of 

15mins-averaged power consumption in (𝑘𝑊). Our dataset is generated based on a minute-

averaged individual household power consumption dataset by Hebrail & Berard,(2012), where 

their data were measured using several submeters installed inside a house near Paris. We assume 

that all the houses in the neighbourhood have a similar retrieved power pattern for the sake of 

simplicity all over the day. We set the maximum and minimum SoC as 0.99 and 0.05 respectively 

that are fixed for all the test instances, and we consider that the minimum SoC itself is the SoC of 

all EVs at their arrival periods at the beginning of the planning horizon. 
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We consider having only three models of passenger EVs distributed randomly among all the 

houses in the neighbourhood, where each house is assumed to have only one EV. The EV models 

used in our experiments and their technical specifications like the charge and energy capacities, 

battery output voltage, onboard charger’s power capacity, number of battery packs, and the 

house’s EVSE power capacity are summarized in Table 31. We assume that all the houses in the 

neighbourhood are equipped with only one type of EVSE that is an AC single-phase single-socket 

level-2 smart power supply characterized by a 7.36 (𝑘𝑊) power capacity, a current up to 32 𝐴, 

and a 230 𝑉 output voltage (pod POINT, n.d.-a).  

Table 31: Technical specifications of different EVs of residential users. 

EV model 
Charge 

capacity 
(𝐴ℎ) 

Energy 
capacity 
(𝑘𝑊ℎ) 

Onboard 
charger capacity 

(𝑘𝑊) 

Battery 
voltage 

(𝑉) 

EVSE power 
capacity 

(𝑘𝑊) 

Number 
of battery 

packs 
source 

BMW i3 120 42.24 11 352 7.36 3 (BMW, 2018) 

Toyota RAV4 108 41.8 10 386 7.36 3 (Toyota, 2013) 

NISSAN Leaf 66 24 6.6 360 7.36 2 (Nissan, 2017) 

By referring to section 3.3.2, we approximate the battery’s charging process for all EV models 

with the same number of breakpoints assumed to be five but having different values of 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘, 

𝐼𝑣,𝑏
𝑚𝑎𝑥, and 𝐼𝑣,𝑏

𝑚𝑖𝑛 depending on the charging profile of the EV’s battery, as shown in Table 32. 

We define the minimum current that must be retrieved by the battery as 10% of the corresponding 

maximum current at the same breakpoint. We assume the battery charging loss factor to be 6.75% 

of the input power retrieved from the EVSE independently of the SoC and input current value, just 

like in the experiments of the commercial problem. 

Table 32: The parameters corresponding to the breakpoints that are approximated for the 
charging process of a Lithium-ion battery cell for each EV model. 

 BMW i3  Toyota RAV4  NISSAN LEAF 

𝐵𝑣 
𝑆𝑂𝐶𝑣,𝑏

𝑏𝑟𝑒𝑎𝑘 

(%) 

𝐼𝑣,𝑏
𝑚𝑎𝑥 

(A) 
𝐼𝑣,𝑏

𝑚𝑖𝑛 
(A) 

 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘 

(%) 

𝐼𝑣,𝑏
𝑚𝑎𝑥 

(A) 
𝐼𝑣,𝑏

𝑚𝑖𝑛 
(A) 

 𝑆𝑂𝐶𝑣,𝑏
𝑏𝑟𝑒𝑎𝑘 

(%) 

𝐼𝑣,𝑏
𝑚𝑎𝑥 

(A) 
𝐼𝑣,𝑏

𝑚𝑖𝑛 
(A) 

0 5.0% 0 0  5.0% 0 0  5.0% 0 0 

1 92.3% 7 0.7  92.0% 6.4 0.64  88.1% 9.25 1 

2 94.9% 3.5 0.35  94.6% 3.4 0.34  92.6% 5.25 0.53 

3 95.7% 2.5 0.25  95.3% 2 2  94.2% 3.25 0.33 

4 99.0% 1.5 0.15  99.0% 0.15 0.15  99.0% 2 0.2 
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6.2.1 Base Case Scenario Description 

The base case scenario includes the sixteen test instances presented in Table 30 with the 

assumption of some parameters that will be changed in later sections to analyze the feasibility of 

our model besides the common parameters discussed above. We assume a smart pricing strategy 

of three electricity prices that vary during the day depending on the power consumption intensity 

on a zonal scale (Limmer, 2019). We consider the same pricing strategy of the summer scenario 

proposed in (Pelletier et al., 2018). We set an energy price of 0.25 (€/𝑘𝑊ℎ) during the peak hours 

(12:00-18:00), 0.05 €/𝑘𝑊ℎ during the off-peak hours (00:00-08:00), and 0.15 €/𝑘𝑊ℎ during the 

shoulder hours that represent the rest of the day. 

We assume that each house in the neighbourhood possesses an EV where its arrival and 

departure periods and the energy needed are predefined by the EV user, as explained before. We 

set the grid contract power implied on each house to a value of 20 (𝑘𝑊) such that its effect is 

neglected. We allow for each EV an interruption parameter of two cuts during the entire charging 

process. Each test instance is optimized based on both the even and percentage slack variables’ 

distribution approaches of the CCRM. 

6.2.2 Base Case Results 

In this section, we present the results of the base case scenario and interpret some indications 

of its remarkable data. Tables 33 and 34 show the numerical outcomes of the sixteen main test 

instances presented before and present a comparison between the solutions obtained by 

following both the percentage and even distribution approaches. Table 33 mainly shows the 

obtained results of the running time of both optimization stages, the output peak power demand 

from the optimization model of PSM, and the final gap. The columns “ �̅� (𝑘𝑊) ” and 

“𝑚𝑎𝑥 𝑀𝑡 (𝑘𝑊)” represent the peak power demand of the neighbourhood that is the main 

objective function of PSM and the input maximum household power consumption of the 

neighbourhood along the entire day respectively. We notice that the power retrieved by the 

neighbourhood while charging the EVs during the whole day periods never exceeded its non-EV 

maximum household power consumption for all test instances except for instance “1-50V” of a 

minor increase. Looking at the final gap of all solutions, we see that only instance “1-50V” obtained 

a solution with a gap higher than zero with a value of 0.04% that is still below our preset minimum 

gap. Column “PSM time” represents the solution time of only the optimization model of PSM 

where the maximum run time is around 67 secs and that the run time increases with more EVs 

and higher energy demands. 
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Table 33: The results obtained for the base case scenario, including peak power demand of, run 
time, and final gap comparisons. 

instance 
PSM final 

gap 
(%) 

�̅� 
(𝑘𝑊) 

max 
𝑀𝑡 

(𝑘𝑊) 

PSM 
time 
(s) 

 CCRM-%  CCRM-E 

 max 
time 
(s) 

total 
time 
(s) 

 max 
time 
(s) 

total 
time 
(s) 

1-30V 0 131.43 131.43 9.48  0.52 8.26  0.42 8.54 

2-30V 0 131.43 131.43 8.17  0.40 7.47  0.55 7.31 

3-30V 0 131.43 131.43 16.25  0.49 7.44  0.53 7.23 

4-30V 0 131.43 131.43 18.38  0.55 8.25  0.41 7.49 

1-40V 0 175.71 175.71 12.03  0.35 9.20  0.52 10.23 

2-40V 0 175.71 175.71 16.94  0.34 9.34  0.51 10.64 

3-40V 0 175.71 175.71 28.53  1.64 11.54  0.48 9.91 

4-40V 0 175.71 175.71 14.73  0.43 11.59  1.04 12.35 

1-50V 0.04 220.08 219.99 13.91  0.64 14.69  0.40 13.85 

2-50V 0 219.99 219.99 18.84  0.50 12.31  0.59 13.90 

3-50V 0 219.99 219.99 33.20  2.86 15.21  0.48 11.88 

4-50V 0 219.99 219.99 28.33  0.39 12.46  0.38 11.31 

1-60V 0 263.47 263.47 41.84  0.48 14.27  2.27 19.82 

2-60V 0 263.47 263.47 25.09  0.33 13.44  0.44 12.57 

3-60V 0 263.47 263.47 67.31  0.51 12.61  0.64 13.40 

4-60V 0 263.47 263.47 29.30  0.34 13.51  0.42 13.28 

However, the last four columns show the run time of the optimization model of “CCRM” 

where the first two refer to “CCRM-%” the case of the percentage slack distribution approach 

among the houses in the neighbourhood, while the last two correspond to the even approach 

“CCRM-E”. “max time” represents the time value of the house with highest CCRM’s run time on 

the entire neighbourhood while “total time” is the sum of the CCRM’s run time of all the houses 

in the neighbourhood. By summing the “PSM time” with each “total time” of the CCRM cases, we 

see that the total run time of the TSREV-CSP in all test instances is highly acceptable where the 

maximum time is recorded by around 80 seconds in instance “3-60V”. We also notice that the 

individual maximum run time of the CCRM model for all houses in all instances has an average 

value of 0.5 (𝑠), with some exceptions having a maximum value of 2.86 (𝑠). 
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Table 34: Cost analysis and a comparison between the results of the CCRM’s even and percentage approaches in the base scenario. 

instance 

CCRM-% (%)  CCRM-E (%) 

Z R I 
avg 
r. 

min 
r. 

max 
r. 

max 
i. 

 Z R I 
avg 
r. 

min 
r. 

max 
r. 

max 
i. 

1-30V 0 96.67 3.33 7.91 1.98 17.67 0  3.33 96.67 0 7.96 1.98 17.67 0 

2-30V 3.33 96.67 0 5.11 1.23 10.83 0  3.33 96.67 0 5.10 1.18 10.83 0 

3-30V 26.67 66.67 6.67 0.94 0.01 6.91 0.17  23.33 70 6.67 0.88 0 6.81 0.17 

4-30V 0 93.33 6.67 5.29 0.60 19.18 0  3.33 93.33 3.33 5.28 0.60 19.18 0 

1-40V 0 100 0 8.43 2.53 17.63 0  0 100 0 8.51 2.53 17.63 0 

2-40V 0 100 0 5.53 0 14.55 0  2.50 97.50 0 5.66 0.90 14.55 0 

3-40V 62.50 17.50 20 3.42 0 5.18 0  62.50 17.50 20 3.45 0 5.26 0 

4-40V 0 95 5 4.71 0.25 19.45 0  0 95 5 4.72 0.60 19.30 0 

1-50V 2 98 0 8.91 2.78 19.32 0  2 98 0 8.98 3.29 19.32 0 

2-50V 0 100 0 5.15 0.40 14.82 0  0 100 0 5.16 0.37 14.82 0 

3-50V 38 58 4 1.74 0 9.51 0  38 58 4 1.76 0 9.51 0 

4-50V 2 96 2 5.67 0.23 19.63 0  2 96 2 5.65 0.22 19.63 0 

1-60V 0 100 0 10.05 4.03 20.03 0  0 100 0 10.09 4.03 20.03 0 

2-60V 0 98.33 1.67 7.11 0.38 15.16 0  1.67 98.33 0 7.08 0.36 15.16 0 

3-60V 15 80 5 1.89 0 11.32 0  15 80 5 1.88 0 11.32 0 

4-60V 3.33 96.67 0 5.95 0.02 24.07 0  3.33 96.67 0 5.93 0.04 23.61 0 
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Table 34 shows a comparison and cost analysis between the electricity bills of all houses in the 

neighbourhood obtained from the PSM, CCRM-%, and CCRM-E in all test instances. All the values 

are represented as percentages where “Z”, “R”, and “I” refer to the percentage of houses in the 

neighbourhood that have no changes, reduction, or increase in their electricity bill when 

comparing the cost in PSM with either CCRM-% or CCRM-E. The reduction percentage for each 

house in the neighborhood is calculated using Eq. (88), in which a positive result corresponds to 

“R” while a negative one refers to “I”. The same equation is used for both comparisons of CCRM 

by simply replacing 𝐵𝑖𝑙𝑙𝑣
𝐶𝐶𝑅𝑀−% with 𝐵𝑖𝑙𝑙𝑣

𝐶𝐶𝑅𝑀−𝐸 . The electricity bill of each house in the PSM 

could be calculated in the same way as CCRM using Eq. (67). For both CCRM approaches, the 

column “avg r” represents the average value of the reduced bills among all houses in the 

neighbourhood. However, the last three columns, “min r”, “max r”, and “max i”, refer to the 

reduction percentage of the houses with the minimum and maximum reduction rate and the 

increasing percentage of the houses with the maximum increasing rate respectively. 

𝑟𝑒𝑑(%)𝑣 =
𝐵𝑖𝑙𝑙𝑣

𝑃𝑆𝑀 − 𝐵𝑖𝑙𝑙𝑣
𝐶𝐶𝑅𝑀−%

𝐵𝑖𝑙𝑙𝑣
𝑃𝑆𝑀 × 100 (88) 

Both CCRM approaches show almost the same results except for some minor variations in the 

average, minimum, and maximum reduction rates. We also find that at least 93% of the houses in 

the neighbourhood have cost reductions in their electricity bill compared to that of the PSM in all 

the test instances except those of worst-case scenarios like “3-40V” where only 17.5% of the 

houses reduced their energy cost. Moreover, in the test instances (3) of the highest energy 

demands for different EV sizes show the least values of the average and maximum reduction rates, 

besides having the only remarkable value of the cost increase rate of around 0.17%.  

On the contrary, It is always the case that the test instances with the lowest energy demands 

have the highest average reduction rate as well all test instances with relatively low energy 

demands like (1) and (2) for all EV sizes result in a higher percentage of houses with cost reduction. 

That could be explained by higher flexibility in shifting the charging schedule towards the periods 

of lower energy prices. Even though some test instances show substantial percentages of houses 

with increased electricity bills compared to those in the PSM, but the cost increased rates are 

found to be less than 0.01%, so they will be neglected and set to zero.  
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6.2.3 Effects of Smart Pricing Strategies 

In this section, we study the effects of smart pricing strategies on our optimization model by 

repeating the sixteen test instances generated in the previous section 6.2.1 with changing only the 

electricity pricing strategy from 3 periods of 3 different prices per day to only two like the case in 

Italy (Terna, 2018) while fixing all parameters. The 2-prices strategy divides the entire day into only 

two periods, mainly peak hours that are from 8:00 until 20:00 and an off-peak period that includes 

the rest hours of the day. We assume an energy price of 0.25 (€/𝑘𝑊ℎ) for the peak period while 

a value of 0.15 (€/𝑘𝑊ℎ)  is assumed for the off-peak period. Since only the electricity price 

parameters are changed and having mentioned that the optimization formulation of the PSM is 

independent of the prices and costs, then the output decision variables of PSM are not going to 

change and would be excluded from our analysis.  

Figure 56 illustrates the runtime values of the houses with the maximum solution time and the 

total runtime of the CCRM following both the “%” and “E” slack distribution approaches under the 

base case scenario and the 2-prices one. We notice that the 2-prices strategy imposes additional 

runtime in almost all test instances, especially in instances “2-30V” and “4-60V”, but the highest 

recorded time for the entire run is registered around 24 (𝑠) which is still highly acceptable. In 

instances “2-30V” and “4-60V”, the runtime values of the houses with the maximum solution time 

using the “even” approach increased by around 12 (𝑠) and 8 (𝑠) respectively. 

 

Figure 56: Comparison between the run time of the optimization models using the “CCRM-E” 
and the “CCRM-%” approaches under both scenarios of the base case and Two-price. 
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Figures 57 and 58 illustrate a comparison between the cost analysis results presented in Table 

34 of the base case scenario and the ones obtained from the 2-prices scenario. Figure 57 shows 

the percentages of the houses in the neighbourhood that have no changes, reduction, or increase 

in their electricity bill. We see that there are huge declinations by a minimum rate of 24% and up 

to 57% in the number of houses that had energy cost reductions when comparing “base_%_R” 

with “2-prices_%_R” and “base_E_R” with “2-prices_E_R”. On the other hand, both “Z” and “I” 

show a remarkable increase by average increase rates of around 20% and 15% respectively. 

 

Figure 57: Comparison between the percentages of houses in the neighbourhood with no 
changes, reduction, or increase in their energy bills under the base case and 2-prices scenarios. 

 

Figure 58: Comparison between the average reduction rates and the reduction increase 
percentages of the houses with the maximum and minimum rates under both the base case and 

2-prices scenarios. 
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Figure 58 shows the average reduction rates and the reduction percentages of the houses, and 

the maximum and minimum reduction rates besides those of the top increase rates. We notice 

the same descending trend for the three reduction rates up to 24% in some test instances like “4-

60V”. The maximum average reduction rate for both “%” and “E” decreases from 10% to around 

3.3%, while we see slight increases in the percentages of the maximum increase rates up to 0.5%. 

That proves the advantages of smart pricing strategies to improve the efficiency of smart charging 

technologies. 

6.2.4 Impacts of Charging Interruptions 

The work performed in this section is very similar to that in section 6.1.7, where we repeat 

twice the same test instances in the base case scenario after changing only the charging 

interruption parameter 𝑁𝑣  from two to one (N1) and then zero (N0) while fixing all the other 

parameters. Figure 59 illustrates a comparison of the runtime between the three scenarios of the 

base case, “N1” and “N0” applied to all test instances of the base case and using both the “CCRM-

%” and “CCRM-E” approaches. We see that the “N1” scenario shows relatively lower solution 

timings in many test instances for both the PSM and the total runtime of TSREV-CSP that reaches 

a maximum of 50 (𝑠) compared to the base case scenario. However, the optimization runtime is 

negatively influenced by the “N0” scenario for both the PSM one and the total solution time in all 

test instances where the maximum runtime gets doubled from 80 (𝑠) for instance “3-60V” in the 

base case to almost 160 (𝑠) for instance “1-60V”. 

 

Figure 59: The runtime analysis of the optimization models following the “CCRM-%” and the 
“CCRM-E” under different charging interruption scenarios compared to the base case. 
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Figure 60 presents a comparison between the peak power demand obtained from the PSM 

under three different scenarios of the base case, “N1”, and “N0” discussed before. We see that no 

changes occur when applying the three scenarios in all the test instances except for a minor power 

increase of around 1(𝑘𝑊) in test instances “3-30V” and “4-60V” when applying the “N0” scenario. 

This proves that the number of charging interruptions does not affect the objective function of 

the PSM. But that’s not the case when applying the CCRM-% and CCRM-E, as shown in Figures 61 

and 62. They present the percentage distribution of the houses based on the reduction rates in 

their electricity bills and the corresponding average, maximum, and minimum reduction rates and 

the maximum increase rate among all houses in the entire neighbourhood respectively. 

 

Figure 60: The peak power demands obtained by the PSM for two different charging interruption 
scenarios and compared to the base case one. 

By looking at Figure 61, we see that “N1” shows the best results for all percentage distribution 

parameters among all three scenarios in the majority of the test instances and using both the “%” 

and “E” approaches of CCRM. “N1” improves the percentages of houses with reduced energy costs 

“R” in all test instances. The least value of “R” is found for instance “1-30V” of 90% when applying 

both CCRM approaches of “N1” at the time of having four values of “R” with a maximum of 80% 

in the base case scenario that correspond to instances “3-30V”, “3-40V”, “3-50V”, and “3-60V”. 

However, by looking at “N0_%_R”, we notice that “N0” brings down the same percentages in all 

test instances to a maximum of 80%, except in instance “1-30V”, which is kept at 90% compared 

to “N1”. The complete opposite takes place for the houses with a non-changed electricity bill “Z” 

and those with an increased one “I”.  
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The percentage distributions of the houses of “Z” in almost all test instances decline to a 

maximum of about 7% under the “N1” scenario when it was 60% in the base case while it rises to 

the value of 43% with the majority of “Z” percentages lie in the range of 15% to 43% when applying 

the “N0” scenario. Similarly, the values of “I” for most of the test instances decrease from a 

maximum of 20% under the base case scenario to around 7% when applying “N1” to restore much 

worse values than those in the base case when applying “N0” reaching a maximum of 

approximately 18% but with an average increase rate of 7% for all test instances. 

 

Figure 61: The percentage distribution of the houses in the neighbourhood based on the 
reduction rate in their energy bills for different charging interruption scenarios compared to the 

base case. 

Figure 62 shows and compares the average reduction rates (avg r) of all the houses with 

reduced costs in the neighbourhood in all test instances besides the corresponding percentage 

values of the houses with the maximum (max r) and minimum (min r) reduced cost rates and those 

of the maximum rate of the increased bill (max i) for the scenarios of the base case, N1, and N0. 

We observe that the average reduction rates obtained by “N1” for 40% of the test instances are 

less than those resulting from the base case. However, the other 60% of the test instances show 

an increase of at least 2% and up to 6% in their “avg r” compared to those in the base case scenario. 

Still, the values of “avg r” in all test instances under the “N1” scenario are higher than those of the 

“N0” scenario by a value of at least 2% and up to 5%. Even though the percentages of “max r” for 

the “N0” scenario are higher than those of the “N1” and the base case scenarios, but its smaller 

percentages of the houses with reduced costs in all test instances explain the reasons behind 

showing the least rates of “avg r”. 
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Figure 62: The average, maximum, and minimum reduction rates and the maximum increase 
rate in electricity bills among all houses in the entire neighbourhood under the base case and 

two different charging interruption scenarios. 

6.2.5 Effects of the Grid Power Restrictions 

In this section, we study the effects of the contract power agreed on by each EV-user and the 

DSO denoted by 𝑃𝑣 by simply repeating the same test instances of the base case three times in 

which each one corresponds to a new scenario with a specific value of 𝑃𝑣. We assume having a 

scenario (P10) with a value of 10 (𝑘𝑊) assigned to the contract power for each house in the 

neighbourhood, then another scenario (P6) with a value of 6 (𝑘𝑊), and the third one (P-mix) with 

a random mix of both 6 and 10 (𝑘𝑊). Figure 63 illustrates the runtime of the PSM as well as the 

total runtime of the TSREV-CSP model in all test instances and for all the power limit scenarios 

compared to the base case. Under all the proposed scenarios, we find that the total runtime in all 

test instances reaches a maximum of 70 (𝑠) except for “3-60V” that takes around 139 (𝑠) due to 

the long runtime of the PSM while the total runtime in the base case is only 80 (𝑠). However, the 

peak power demands of the neighbourhood in all test instances for the three power limit scenario 

show no changes at all compared to their values in the base case scenario, as shown in Figure 64. 

We explain this by the effect of the PSM on reducing the power consumption of each house to its 

minimum. 
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Figure 63: The runtime comparison of the optimization model following the “CCRM-%” and the 
“CCRM-E” between different scenarios of power grid restrictions compared to the base case in 

all test instances. 

 

Figure 64: The peak power demands obtained by the PSM for two different scenarios of various 
power grid restrictions compared to the base case one.  
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Figure 65 illustrates the percentage distribution of the houses based on the reduction rates in 

their electricity bills for the entire neighbourhood in all test instances under the effects of different 

power limit scenarios. We notice that the values of “R” under the “P10” and “P-mix” scenarios are 

not that different from those of the base case wherein the majority of the test instances, there 

are at least 92% of the houses in the neighbourhood with a reduction rate. But when applying the 

“P6” scenario, we find that more than 50% of the test instances show a lower number of houses 

with energy cost reductions that reach a maximum of 87% compared to those of the base case 

and the other two scenarios. This makes the electricity contracts with a 10 (𝑘𝑊) power limit more 

efficient in our case study. 

 

Figure 65: The percentage distribution of all the houses in the neighbourhood in all test 
instances based on the reduction rate in their energy bills for different scenarios, each of a 

different power restriction value per house compared to the base case. 

That’s also obvious through the results shown in Figure 66 that present the average, maximum, 

and minimum reduction rates and the maximum increase rate among all houses in the 

neighbourhood. We also find that all the values of “avg r”, “max r” and “min r” obtained by “P10” 

in all test instances are slightly less than those of the base case but remarkably higher than all the 

values obtained by “P6” except for “max i”. We notice that all the values of “max i” obtained by all 

scenarios in all test instances are lower than 0.3%. This enhances the feasibility of our model even 

when applying power limits on all the houses in the neighbourhood. 
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Figure 66: The average, maximum, and minimum reduction rates and the maximum increase 
rate in the electricity bills among all houses in the entire neighbourhood under the base case and 

three other scenarios, each of different power grid limit values. 

6.2.6 Impacts of EV Penetration Level 

This section aims to prove the feasibility of TSREV-CSP for different types of residential 

neighbourhoods, each of a different percentage of EV users. For this reason, we redo the test 

instances generated in the base case under three new scenarios “M1/2”, “M2/3”, and “M3/4”. 

“M1/2” refers to the scenario of having a neighbourhood with half the houses as EV-users owning 

only one EV while “M2/3” and “M3/4” correspond to two different scenarios similar to “M1/2” 

but with two third and three fourth the houses in the neighbourhood are EV-users of only one EV 

respectively. Figure 67 demonstrates a comparison between the runtime of the PSM and TSREV-

CSP model using both the “%” and “E” CCRM approaches under the three scenarios of EV users’ 

sizes. We notice that the maximum total runtime among all test instances is around 81 (𝑠) which 

is relatively low compared to that of the scenarios discussed in the previous sections. We also see 

that the runtime of both the PSM and the total one increases gradually with the increase of the 

number of EVs in the neighbourhood and with higher energy demand. However, as the percentage 

of EV users in the neighbourhood increases with the rise of the number of EVs, then the 

optimization model starts taking more time to obtain an optimal solution, and that’s clear, and the 

low runtime of “M1/2” for the majority of test instances. 
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Figure 67: Comparison of the PSM and the TSREV-CSP model’s total runtime between different 
scenarios of EV penetration levels compared to the base case in all test instances. 

Figure 68 shows a comparison of the peak power demands obtained by the PSM in each 

instance for the different scenarios of EV users’ percentage with the maximum household power 

consumption of all the houses and the peak power retrieved by EV users together in the entire 

neighbourhood. We notice that the optimized peak power is always less than or equal to that of 

the fixed household power consumption in all test instances and for the four different scenarios. 

This proves the role of PSM in reducing the uncertainty about the increasing energy demand for 

charging EVs due to their higher penetration levels. However, we see that as the percentage of EV 

users in the neighbourhood rises, the peak power demand of all the EV users’ houses decreases 

significantly. That’s obvious when comparing the values of the base case scenario having all houses 

as EV users with those of the other scenarios in all test instances. For instance, the peak power in 

instance “1-50V” reduces from 237.33 (𝑘𝑊) under the scenario “M3/4” to 220.08 (𝑘𝑊) for the 

base case scenario recording the least reduction rate of around 7%. The power reduction reaches 

its maximum in instance “3-50V” with a rate of 41% where the peak power demand of all EV users 

decreases from around 373 (𝑘𝑊) for “M1/2” to a value of 220 (𝑘𝑊) for the base case scenario. 

By comparing the peak power of EV users only in all test instances for all the four scenarios, 

including the base case, we find that the values of “Xmax” under the base case scenario are at an 

average of 22.3% less than those of “EVmax” obtained by the other scenarios. 
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Figure 68: Comparison between the peak power demand of the neighbourhood and the peak 
power demand of EV users only in the same neighbourhood obtained by the PSM for three 

scenarios of different EV sizes compared to the base case one. 

Moreover, Figures 69 and 70 demonstrate a cost analysis and comparison among the four 

presented scenarios by showing the percentage distribution of the houses based on the reduction 

rates in their electricity bills and the corresponding average, maximum, and minimum reduction 

rates and the maximum increase rate among all houses in the entire neighbourhood respectively. 

We notice that the test instances with the worst-case scenario “3-30V”, “3-40V”, “3-50V”, and “3-

60V” always show the lowest percentages of houses with reduced electricity bills and the worst 

average reduction rates as well as the highest ones of the houses with non-changes or increased 

bills. If we ignore these four test instances, we observe that all scenarios show satisfying results 

regarding the percentages distribution of the houses in the neighbourhood with at least 94% of 

“R”, and a maximum of 6% for both “Z” and “I” except for some test instances like “4-30V” and “4-

60V” that obtained poor values of “R”. We note that “M1/2” results in at least 50% of the test 

instances with reduced electricity bills for all the houses in the neighbourhood. 
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Figure 69: The percentage distribution of all the houses in the neighbourhood in all test 
instances based on the reduction rate in their energy bills for different cases EV users’ 

percentages compared to the base case. 

 

Figure 70: The average, maximum, and minimum reduction rates and the maximum increase 
rate in the electricity bills among all houses in the entire neighbourhood under the base case and 

three other scenarios, each of a different percentage of EV users in the same neighbourhood. 
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Figure 70 shows a privilege for “M1/2” over the other scenarios in the percentages of the 

average reduction rates in all test instances for both CCRM approaches the “%” and “E”. We notice 

that the values of “avg r” decrease with the increase of the percentage of EV users in the 

neighbourhood in all test instances where the “avg r” at each instance reduces by 2% to 5% as 

moving from the scenario of 50% EV users “M1/2” to the base case of 100%. Similarly, the best 

value of the maximum reduction rate in most test instances is obtained by “M1/2” compared to 

those obtained by other scenarios. In general, the results obtained by the scenarios of EV 

penetration level less than 100% are relatively better than those of the base case. 

6.2.7 Significance of The Peak Shaving Model 

In this section, we analyze the importance of the PSM in reducing the peak power demand of 

the neighbourhood and help to normalize the power consumption profile to reduce uncertainty 

in the power retrieved values throughout the day. To do so, we formulate two optimization models 

with single-stage objective functions and independent from that of the PSM. “Cost” refers to one 

of the two new models and is characterized by only one objective function of a cost minimization 

problem for the electricity bill of each house in the neighbourhood individually. It shares the same 

mathematical formulation as the one of CCRM presented in section 4.3 except for removing the 

constraint (68)  to neglect the effect of PSM. This model is applied to the sixteen test instances 

under the base case scenario as well as being applied to the two scenarios of different contract 

power values “P10” and “P6” presented in section 6.2.5 that are referred to as “Cost-base”, “Cost-

P10”, and “Cost-P6” respectively. The second optimization model is a heuristic one based on the 

concept of adding FRD fees in the objective function as in Eq. (12). The mathematical formulation 

is identical to that of the CCRM but with replacing the objective function (67) with Eq. (89) and 

replacing constraint (68) with Eq. (90) where "𝑥" in both equations is a new decision variable to 

calculate the peak power demand. This model is denoted by “Cost-peak” and is applied only to the 

base case scenario to compare results with those obtained in section 6.2.2. 

minimize:          ∑ 𝑝𝑡𝛥𝑡 (𝑙𝑡,𝑣 +
𝑖𝑡.𝑣

𝑄𝑣
𝑄𝐸𝑣) + 𝑥 ∙ 10

𝑡∈𝑡

 (89) 

  

𝑙𝑡,𝑣 +
𝑖𝑡.𝑣

𝑄𝑣
𝑄𝐸𝑣 ≤ 𝑥         ∀ 𝑡 ∈ 𝑇 (90) 
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Figure 71: Comparison of the overall runtime of the optimization models between the TSREV-
CSP and the Cost model. 

Figure 71 shows the overall runtime needed by the optimization models of the TSREV-CSP and 

“Cost” to obtain an optimal solution in each instance under different scenarios of the grid’s power 

limit. We find that the “Cost” model applied to the base case, P10, and P6 so far takes the least 

time to obtain an optimal solution in all test instances compared to the time taken by TSREV-CSP 

under the same scenarios. Moreover, the highest runtime is shown for the “Cost-peak” model in 

80% of the test instances but recording a maximum runtime of 63 (𝑠) which is around 20 (𝑠) less 

than that needed by the TSREV-CSP in the base case scenario. 

The comparison between the peak power values obtained by the models of both the TSREV-

CSP and “Cost” under the base case, P10, and P6 scenarios are presented in Figure 72. We notice 

a considerable peak power values increase in all test instances that vary from at least 37% in all 

the instances of the size of “30V” for the “Cost-P6” scenario and up to around 130% in instances 

“1-40V”, “1-50V”, and “1-60V” for the “Cost-P10” case. When using the “Cost” model, the 

maximum power rises from around 264 (𝑘𝑊) in instance “1-60V” under the TSREV-CSP base case 

to a maximum value of around 600 (𝑘𝑊). However, the “Cost-peak” scenario that uses the “Cost” 

model shows no significant changes for the peak power demand in all test instances, which proves 

the capability of such an optimization approach to substitute our TSREV-CSP. 
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Figure 72: Comparison between the peak power demand obtained by the PSM and that obtained 
by the “Cost” model in the same neighbourhood under different scenarios. 

The cost analysis is presented in figures 73 and 74 that show the percentage distribution 

values of all the houses in the entire neighbourhood based on their reduction rate in the electricity 

bill and the percentages of cost reduction and increase corresponding to the houses with the 

maximum reduction and increase rates respectively. It is pretty apparent the improvements in the 

percentage of houses that had energy cost reductions which goes along with the positive 

declination in the portion of houses with no changes or even increase in their electricity bill when 

applying the “Cost” model compared to the TSREV-CSP one. “Cost-base”, “Cost-P10”, and “Cost-

P6” show the best results in both figures with 100% of the houses having cost reductions in more 

than 80% of the test instances and a minimum of 94% in the worst case, besides the highest 

average reduction rate of at least 7.5% and negligible “max I” values. But the fact that “Cost” 

doesn’t satisfy the objectives of the DSO with the lowest power demand and power system relief, 

then these results would be neglected. However, the “Cost-peak” model still shows a good record 

with at least 97% and a maximum of 6% of the houses with cost reduction and increase in their 

electricity bills respectively, after ignoring the worst-case test instances like “3-30V”, “3-40V”, “3-

50V” and “3-60V”. This makes its average reduction rates in all test instances way better than that 

of the base case with a minimum of 6.5%, but its maximum increase rates are slightly worse with 

a maximum of around 2%. 
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Figure 73: The percentage distribution of all the houses in the neighbourhood in all test 
instances based on the reduction rate in their energy bills for different cases of the grid’s power 

limit compared to the base case and using both models of the TSREV-CSP and “Cost”. 

 

Figure 74: The average reduction and the maximum increase rates in the electricity bills of all 
houses in the entire neighbourhood obtained from the optimization models of the “Cost” and 

TSREV-CSP under the base case and different scenarios each of various grid’s power limit values. 
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7 CONCLUSIONS 

This research highlighted a few of the most critical challenges that EV adoption is still facing 

nowadays and explored opportunities for new technologies and strategies to prove EVs’ credibility 

and help to overcome some of its drawbacks that represent barriers to higher adoption rates. We 

shed light on problems related to high charging costs, poor charging accessibility, and the 

uncertainty in charging power demands due to the increasing level of EV penetration with 

uncontrolled charging behaviors, which negatively impacts the power grid. Two case studies of 

two different scenarios were presented where one considers minimizing the total electricity bill of 

a commercial facility by optimizing the charging schedule of its medium-duty electric freight 

vehicles on periods of low energy costs. Moreover, we proposed a new technology of three-phase 

smart charging clusters where each could replace up to four single-phase smart chargers for better 

charging accessibility and some economic benefits. We formulate a mathematical model for a cost 

minimization problem, and we apply it to different cases of different input parameters, using 

several clustered charging technologies. 

The second scenario considers a residential neighbourhood problem supplied with electric 

energy by a DSO that aims to reduce and normalize the peak power demand of the entire 

neighbourhood for higher grid efficiency and better frequency balance. At a residential scale, the 

DSO considers EVs as a remarkable load on the grid and relates the peak power reduction to the 

optimization of the charging schedule of EVs to shift their charging profile towards periods with 

the lowest energy demands. This requires a replacement of the conventional EV chargers installed 

in each house with smart ones, which cause additional costs on EV users that might be solved with 

some incentives.  

We proposed a two-stage optimization model that consists of two submodels. The first is a 

peak shaving model (PSM) that aims to minimize the peak power demand of the neighbourhood 

by optimizing the charging schedule of EVs during low energy periods independently of the energy 

prices. However, the second model is a subsequent one that is charging cost reduction model 

(CCRM) performed individually on each house of the neighbourhood to minimize its total 

electricity bill by rescheduling the charging periods obtained by the PSM based on the low 

electricity prices during the day. It depends on the optimized peak power demand of the 

neighbourhood obtained by the PSM to evaluate an average weighted grid power limit specific to 

each house to ensure the respect of the obtained global power limit. 
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We generated several test instances of different travel behaviors and various energy demands 

that represent the base case scenario for both models of the commercial and residential problems. 

Then we repeated the same test instances under several scenarios of different charging 

interruption parameters, different values of power grid restrictions, new energy smart pricing 

strategies, and multiple cases of EV users’ sizes in the residential neighbourhood. Moreover, we 

performed all the tests on the commercial problem using several proposed charging technologies. 

Finally, we generated an optimization model similar to the one in the commercial problem with 

the same concept of FRD charges applied to the peak power demand of each house individually, 

and then we compared its results with those obtained by the PSM. All the instances under all 

scenarios resulted in 629 experiments. 

By comparing all the results obtained from both problems, we could say that the optimization 

models of both problems have proven their feasibility. Concerning the proposed cluster charging 

technologies, we found that the clusters with a power capacity of 22 (𝑘𝑊) and equipped with 

three (3S-22𝑘𝑊) and up to four sockets (4S-22𝑘𝑊) showed better results than those of the base 

case and other charging technologies in most of the test instances. However, “3S-22𝑘𝑊” which 

can replace three single-phase chargers used in the base case scenario of one charging point 

having a maximum power of 7.36 (𝑘𝑊) appeared to be the most efficient among all. When 

applying low FRD charges, which means the possibility of retrieving higher power at low cost, the 

base scenario was limited in retrieving higher power at periods of the lowest prices. In contrast, 

“3S-22𝑘𝑊” gave EVs a higher possibility to reduce their charging cost by shifting their charging 

schedule towards periods of low prices with a power capacity above 7.36 (𝑘𝑊) and up to 12 

(𝑘𝑊). Most of the test instances obtained an optimal solution with a relatively short time using 

“3S-22𝑘𝑊” just like in the base case. 

The results obtained in the residential neighbourhood problem were quite attractive 

compared to the ones of the commercial problem. Even though peak power reduction means a 

lower charging cost in most cases compared to uncontrolled charging strategies, but using the 

CCRM for each house in the neighbourhood helped in further reducing the electricity bills. In the 

majority of the proposed scenarios and almost all test instances, an average of 85% of the houses 

in the neighbourhood were able to reduce their energy costs with an average reduction of 7%, 

which reached a maximum of 25% in some cases.  
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The base case scenario has shown improved results than that of the two-prices smart pricing 

strategies, where more variable prices during the day give EV users a better degree of freedom for 

choosing their charging schedule at lower costs. Moreover, we obtained the best results for the 

case of 10 (𝑘𝑊) power restrictions applied to each house as well for the scenarios of allowing EVs 

to have only one charging interruption. The final task was the comparison between the results of 

both optimization models of the two-stage and the cost-based ones. The comparison showed that 

the cost minimization problems without power restrictions might cause the same effects as 

uncontrolled charging strategies in terms of power impacts on the grid. Having the lowest prices 

of electricity during the night, cost minimization models would charge all EVs at the same periods 

of the lowest energy prices that might result in extremely high power demand from the grid to 

unbalance. However, the heuristic cost minimization model with penalized peak power in the 

objective function showed a high potential of substituting the two-stage model but with slightly 

higher peak power values and caused some houses to have increased energy costs compared to 

the ones obtained by the two-stage model. 

All in all, we proposed new charging technologies and strategies and proved their technical 

feasibilities, but some of the poor obtained results require furthermore studies. Further research 

goals may be aimed at exploring more parameters and constraints to improve the obtained results. 

More heuristic models would help in reducing the solution time for cases of higher EV capacities. 

It could also be interesting to explore more clustering methods for EV chargers and apply them on 

larger scales and different case studies like public parks and daytime commercial buildings, e.g., 

shopping centers and office buildings. An economic analysis in the long run for the proposed 

clustered charging technology might be necessary to enhance their feasibility level over the 

traditional charging methods, especially in the case of commercial scenarios. 
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