
Executive Summary of the Thesis

MemTrace: a dynamic memory overlaps tracing tool

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Kristopher Francesco Pellizzi

Advisor: Prof. Mario Polino

Co-advisors: Prof. Michele Carminati, Prof. Stefano Zanero

Academic year: 2020-2021

1. Introduction
Nowadays mitigation techniques against mem-
ory corruption vulnerabilities are commonly im-
plemented in essentially all the major operating
systems and compilers. Techniques such as stack
canaries, W⊕X and ASLR effectively raised the
bar, thus increasing the effort needed to write
an exploit that allows to inject and execute ar-
bitrary code, as it usually requires a leak that
allows the attacker to get either the stored ca-
nary or the address of some memory section or
library function.
A frequently used technique to get a leak
consists in exploiting uninitialized memory
reads. Since memory is a limited resource, it
is continuously allocated and deallocated dur-
ing a program’s execution according to its needs.
This way, memory locations can be reused mul-
tiple times, thus possibly generating some unin-
tended overlaps. The combination of memory
overlaps and uninitialized memory reads may
therefore allow to obtain a leak that may be used
to bypass mitigation techniques.
The most usual way of approaching a program
looking for some leaks is by manually perform-
ing a combination of static and dynamic anal-
ysis using tools like decompilers and debuggers.
But such kind of analysis may require a large

amount of time. Even with simple programs, it
may require hours to analyze the possible mem-
ory overlaps to try and obtain a leak; while the
analysis of more complex programs may also re-
quire days or weeks of analysis.
Some of the existing tools ([6]) allow to analyze
a binary looking for possible uninitialized reads.
They, however, provide no insight information
about what we can read from them, thus leaving
the responsibility to perform additional manual
analysis to the user. Other approaches to try
and detect uninitialized reads or leaks require
the availability of the source code or to lift the
binary to an intermediate representation in or-
der to perform static analysis ([2]), or they make
use of symbolic execution([3]).
For what concerns the static analysis approach,
we must consider 2 main situations:
Source code required: closed-source soft-

ware is always released without making
the source code publicly available, thus
preventing the analysis.

Binary lifted to IR: static analysis per-
formed on lifted binaries may generate
many false positives or false negatives
due to the lack of semantic information
about symbols and variables which are lost
during compilation.

The symbolic execution approach, instead, can

1



Executive summary Kristopher Francesco Pellizzi

be applied to binaries directly. However, sym-
bolic execution is known to be subjected to path
explosion, which may slow down or even prevent
analysis with higher program complexity. More-
over, in order to avoid execution to get stuck,
symbolic execution engines usually use models of
the most frequent and complex library functions.
Therefore, if the model over simplifies the actual
function, the symbolic execution may generate
many false positives or false negatives, and
it can still get the analysis stuck if it is not im-
plemented at all.
We developed MemTrace, a new tool which
makes use of Dynamic Binary Instrumentation
(DBI) to detect uninitialized reads in a binary
and report the memory overlaps that are gener-
ated during its execution. We then paired our
tool with a well-known fuzzer (AFL++) in or-
der to try and explore as much execution paths
as possible and report all the overlaps that may
happen during binary’s execution. Since it is
even possible that a binary changes its behavior
according to the arguments it is executed with,
we leveraged the fuzzer in order to try and per-
form command-line arguments fuzzing as
well.
Finally, we tested our tool with a set of bina-
ries having known vulnerabilities. In most cases,
the tool, paired with the fuzzer, was able to au-
tomatically report the known vulnerability. In
all the cases, however, the tool was able to re-
port the vulnerability, when it was triggered by
a manually crafted input.
In summary, our main contributions are the fol-
lowing:
• We leveraged DBI to perform a new kind of

dynamic binary analysis, which aims at re-
porting memory overlaps, i.e., uninitialized
reads together with write accesses overlap-
ping the same memory location

• We used a fuzzer to explore a program’s
control flow graph and increase branch cov-
erage

• We leveraged the fuzzer to perform also
command-line arguments fuzzing

2. MemTrace
2.1. Overview
The main idea behind MemTrace is to execute
the binary and keep track of all the executed

memory accesses. This way, as soon as it de-
tects an uninitialized memory read, MemTrace
can report it and look backward at which mem-
ory writes were executed last on the same mem-
ory location.
As a means to keep track of the state of bytes
in memory (i.e., either initialized or unini-
tialized), MemTrace uses a shadow memory
which associates a bit to each byte of memory
used by the analyzed application.
During a program’s execution, it is not rare that
some values are copied into other registers or
other memory locations. So, in order to deal
with these data transfers, we also designed a
taint analysis that allows MemTrace to keep
track of copies of uninitialized bytes and there-
fore detect also indirect uninitialized reads and
usages of uninitialized bytes.

2.2. Approach & Implementation
MemTrace has been implemented as a dynamic
binary analysis tool using Intel PIN [4] as the
underlying DBI framework and makes use of
DBI in order to analyze the instructions exe-
cuted by a binary and detect the ones perform-
ing a memory access. Whenever a memory ac-
cess is detected, MemTrace will store informa-
tion about it, so that it will be possible to review
the whole history of executed memory accesses.
By doing this, MemTrace is able to group to-
gether read memory accesses with all the write
memory accesses that overlap the same mem-
ory location and are not completely overwritten
before the execution of the read access itself.
In order to achieve its goal, MemTrace must be
able to recognize read accesses that read unini-
tialized data. To do that, MemTrace must know,
at any moment, the state of memory bytes. For
this purpose, we designed and implemented a
shadow memory that mirrors the actual mem-
ory used by the application, thus allowing to
store information about memory content.
MemTrace leverages the shadow memory to
store state information about every single byte
of memory, which can be either initialized or
uninitialized. So, when MemTrace detects a read
memory access, it can query the shadow mem-
ory to check whether the data the program is
going to read is initialized or not.
It essentially works as an ideal hash table, thus
uniquely associating each bit of the shadow

2



Executive summary Kristopher Francesco Pellizzi

memory to only one byte of the actual process
memory, therefore avoiding collisions. Working
as an hash table, update and lookup operations
are very fast (i.e., O(1)), and the absence of col-
lisions allows to avoid the linear cost due to the
presence of multiple elements in the same bucket,
thus making it very efficient.
Unlike [5], MemTrace does not need to cover the
whole process address space. Indeed, MemTrace
is meant to keep track of uninitialized reads
happening on the stack or on the heap, so it is
sufficient to mirror only those memory regions
with the shadow memory. Still, there are some
difficulties that need to be addressed. First of
all, both the stack and the heap may allocate
memory pages that are not actually used by the
process. This is done simply because the alloca-
tion of new memory pages is performed through
the invocation of system calls, and is therefore
considered an expensive operation. So, in order
to avoid allocating memory pages too frequently,
a whole block of memory pages are initially allo-
cated for the stack and the heap. If some of these
pages are never used by the program, it is not
useful to mirror them with the shadow memory.
Then, notice that the stack and the heap may re-
quire to allocate new pages during program’s ex-
ecution, so, MemTrace cannot know on process
startup how many pages they will need. Finally,
the program may allocate more than a single
heap. Therefore, to keep track of the memory
accesses performed during execution, MemTrace
must be able to handle all of them. So, Mem-
Trace’s shadow memory is not implemented as a
single huge block of sequential shadow addresses,
but it is partitioned and allocated on demand.
The stack and each allocated heap will be mir-
rored by their own independent shadow memo-
ries, which will be composed of only a few pages
at the beginning. If required, then, new pages
will be allocated to a shadow memory, and the
new page will be made virtually sequential with
the previously allocated ones by adding them to
a vector containing all the shadow pages belong-
ing to the same region. Moreover, the compu-
tation of the shadow address only involves some
arithmetic operations using division and modulo
operators, just like an actual hash computation,
thus making it very fast.
Since our objective is try to report uninitialized
reads that could possibly lead to a leak, not all

the uninitialized reads performed during a pro-
gram’s execution are really interesting. Indeed,
it may happen that the bytes read by an unini-
tialized read access are simply loaded into a reg-
ister, but then they are never used by any in-
struction, or they are used only by a cmp or test
instruction to evaluate the condition of a branch.
In those cases, the uninitialized read cannot lead
to a leak.
Moreover, it often happens that the same value
is copied in more registers or even in other mem-
ory locations. In order to be able to keep track
of usages, transfers and copies of uninitialized
bytes, MemTrace implements a taint analysis.
Since it requires to keep track of uninitialized
bytes, the taint analysis performed by Mem-
Trace marks as tainted all the bytes that are in
the uninitialized state when a memory read ac-
cesses them, and then it proceeds following the
flow of the tainted bytes and marking as tainted
all of their copies. In summary, the taint analy-
sis has the following main goals:

1. Reduce false positives by ignoring unini-
tialized reads whose bytes are never used by
any other instruction (and therefore cannot
lead to a leak)

2. Reduce false negatives by detecting us-
ages of copies of uninitialized bytes

3. Detect and correctly report indirect
uninitialized reads

In order to achieve its objectives, the taint anal-
ysis required to design a Shadow Register File.
Indeed, while the shadow memory allows to keep
track of loads and stores of uninitialized bytes,
it does not allow to follow the propagation of
uninitialized bytes within registers. Besides it
has an objective similar to the shadow memory,
the shadow register file is not implemented in the
same way due to some major differences. First
of all, registers have a fixed size, so it is not
needed to implement the on demand allocation
of shadow pages, as we can allocate all the space
we need on program’s startup. Also, the imple-
mentation of the shadow register file is actually
more complex than the shadow memory. This is
because the physical register file of a processor
contains many registers which can be very dif-
ferent both in size and in behavior. Moreover,
MemTrace must also take into account alias-
ing registers. For instance, if a program writes
bytes inside register rax, also its aliasing reg-

3



Executive summary Kristopher Francesco Pellizzi

isters will be written, and therefore MemTrace
must be able to update their state accordingly.
The shadow register file hides all the complex-
ities related to different types of registers and
aliasing sets, exposing a very simple interface to
the other components, which can use it as an
intermediary to request to update or query a
certain register.
By using both the shadow memory and the
shadow register file, the taint analysis is always
able to detect and manage usages and copies
of uninitialized bytes, thus successfully reduc-
ing the number of false positives and false nega-
tives. However, being able of following the flow
of uninitialized bytes is still not enough to allow
MemTrace correctly report the indirect unini-
tialized reads. Indeed, it is still unable to trace
the original memory read access that first loaded
the uninitialized bytes from memory. To enable
this capability, besides propagating the state of
the copied bytes, the taint analysis must also
propagate the origin of the uninitialized bytes.
In the context of taint analysis, we call an origin
the first memory access that loaded the unini-
tialized bytes stored in a register or in a memory
location.
The most straightforward method to propagate
information about origins would be to copy the
whole data structure representing the uninitial-
ized read access every time uninitialized bytes
are propagated somewhere else. This, however,
is not very efficient, as it requires to perform
many copies of a complex data structure. For
this reason, we implemented a tag manager,
which is responsible to uniquely associate an in-
teger value, which we called tag, to a memory
access. The implementation of the tag manager
is quite simple, as it mainly consists in a map
associating a tag to a memory access. The tag
manager also holds a reference count for each
tag. The reference count is not really necessary,
but it allows to free memory allocated to the as-
sociation of a certain tag when it is not useful
anymore, thus reducing the total amount con-
sumed memory. Given an integer tag, the tag
manager is of course able to return a reference
to the corresponding memory access, so that it is
possible, in any moment, to retrieve information
about the origin of uninitialized bytes.
Figure 1 shows the basic structure of MemTrace.

3. Fuzzing
MemTrace is a dynamic analysis tool and, as
such, has an intrinsic limitation: it can only re-
port overlaps detected in the execution paths the
program traverses.
In order to partially deal with this limitation, we
combined MemTrace with AFL++[1], which is
one of the most effective and widely used fuzzers.
By fuzzing the binary, AFL++ will generate a
lot of inputs, which can be subsequently used as
an input for the program executing it through
MemTrace.
AFL++ is designed to try and explore as many
paths as possible and it will store only those in-
puts that manage to crash the program and the
ones which explore new paths w.r.t. previous ex-
ecutions. So, by using the inputs generated by
the fuzzer to execute the program with Mem-
Trace, we are able to explore more execution
paths. By executing MemTrace once for each
input generated by the fuzzer, it will generate as
many binary reports, that require to be merged
in a single human-readable report.
So, we implemented a merging script that ex-
tracts information about overlaps from every
generated binary report and merges them all in
a merged report.
Besides helping exploring more execution paths,
the fuzzer is helpful also because it allows to de-
tect those uninitialized reads that can be some-
how controlled. Indeed, if we want to exploit
an uninitialized read to obtain a leak, we would
need to control either the content of the memory
location it reads from or the memory location it-
self. So, it would be useless to report uninitial-
ized reads that always read from the same mem-
ory location and always read the same bytes.
Since MemTrace analyzes executable binaries,
it cannot really distinguish which uninitialized
reads actually lead to information disclosure.
However, by inspecting the merged report and
analyzing its overlaps (e.g., through a debugger)
the user can see which are the uninitialized reads
in the program that can lead to a leak and the
reported overlap sets are helpful to understand
if and how it is possible to control them to get
arbitrary information.
Finally, notice that, as a side effect, MemTrace
also helps detecting other types of vulnerabilities
involving an uninitialized read.

4



Executive summary Kristopher Francesco Pellizzi

Figure 1: Block diagram of MemTrace

Command-line arguments fuzzing
Sometimes the command-line arguments passed
to a program may change program’s behavior,
thus making the execution traverse paths that
would not be taken otherwise. In order to deal
with this, we leveraged the fuzzer once again.
Extending an example provided within
AFL++’s repository, we implemented a li-
brary for AFL++ that allows to fuzz also
the arguments passed to the fuzzed program.
The library simply implements a hook for
function __libc_start_main. So, the call
to this function is intercepted and, before
calling its original version, some of the bytes
generated by the fuzzer are extracted and used
as a command-line argument, updating argc
and argv accordingly. Finally, the original
__libc_start_main is called, passing it the
new values of argc and argv. This way, the
fuzzer may help traversing new paths in the
executable, thus increasing the coverage.

4. Validation
We performed 2 types of tests: timing and func-
tional.
Since Memcheck [6] is a memory error checker
also implemented as a DBI tool, we collected the
execution times for both Memcheck and Mem-
Trace and computed the analysis overhead for
both the tools to enable a comparison. As a
dataset, we used the utilities from package Core-
utils. From this test, we found out that, de-
spite the additional overhead for each memory

access, MemTrace is only about 4 times slower
than Memcheck.
Then, we used MemTrace to analyze a set of bi-
naries with known uninitialized read vulnerabil-
ities, and verified whether it was able to detect
them and correctly report the memory overlaps.
More specifically we tested the tool with:
• 4 real-world binaries
• 3 binaries from Capture The Flag (CTF)

competitions
• 5 binaries from Cyber Grand Challenge

When the binary was executed with a manu-
ally crafted input that triggered the vulnerabil-
ity, MemTrace was always able to correctly de-
tect and report it. After that, we also tested the
effectiveness of the combined execution of Mem-
Trace and AFL++, and in most of the cases
(7 out of 11), this combination successfully de-
tected the vulnerability. Since MemTrace al-
ways detected the vulnerability with a manually
crafted input, we can state that the main limita-
tion of the combined execution is the exploration
of the program’s CFG. Indeed, we manually in-
vestigated the reasons for the failures, and we
found out they were mostly due to the strictness
of the conditions required to be satisfied to tra-
verse the vulnerable path, thus preventing the
fuzzer from generating an input that triggered
the vulnerability.
For each executed test, we also manually verified
the correctness of all the reported overlaps.

5



Executive summary Kristopher Francesco Pellizzi

5. Conclusions
The main goal of our work was to design an anal-
ysis tool to detect uninitialized reads in a binary
executable that might allow to leak informa-
tion. For this purpose, we developed MemTrace,
which makes use of dynamic binary instrumen-
tation to keep track of the memory accesses per-
formed by a program and generates a report con-
taining all the memory overlaps, intended as all
the uninitialized reads grouped with all the write
accesses that overlap the same memory location.
In order to let the tool explore paths in a pro-
gram and discover potential vulnerabilities, we
also paired MemTrace with AFL++.
We tested our tool setting up different types of
tests. First, we tested the execution time over-
head introduced by MemTrace and compared
it with the overhead introduced by Memcheck,
which is implemented in a similar way, showing
that MemTrace’s overhead is reasonably higher,
given the additional amount of operations per-
formed for each memory access.
Then we verified the capability of MemTrace to
detect uninitialized read vulnerabilities. To do
so, we launched MemTrace’s analysis on several
binaries with a known uninitialized read vulner-
ability using a crafted input that triggered it and
verified that the reports generated by MemTrace
pointed out the known vulnerability.
Finally, we verified the efficacy of the combined
execution with AFL++ by verifying that the
generated report contained the known vulnera-
bility and, in most of the cases, the analysis was
able to automatically discover the vulnerability
lying in the binaries.
Besides being an immature tool which might be
improved in future, the results obtained during
testing prove that MemTrace is a valuable tool
to support the user detecting potential leaks in
a binary.

References
[1] Andrea Fioraldi, Dominik Maier, Heiko

Eißfeldt, and Marc Heuse. Afl++ : Combin-
ing incremental steps of fuzzing research. In
14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20). USENIX Association,
August 2020.

[2] Behrad Garmany, Martin Stoffel, Robert
Gawlik, and Thorsten Holz. Static detec-

tion of uninitialized stack variables in binary
code. 2019.

[3] Christophe Hauser, Jayakrishna Menon, Yan
Shoshitaishvili, Ruoyu Wang, Giovanni Vi-
gna, and Christopher Kruegel. Sleak: au-
tomating address space layout derandomiza-
tion. 2019.

[4] Chi-Keung Luk, Robert Cohn, Robert Muth,
Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instru-
mentation. 40, 2005.

[5] Nicholas Nethercote and Julian Seward. How
to shadow every byte of memory used by a
program. June 2007.

[6] Julian Seward and Nicholas Nethercote. Us-
ing valgrind to detect undefined value errors
with bit-precision. 2005.

6


	Introduction
	MemTrace
	Overview
	Approach & Implementation

	Fuzzing
	Validation
	Conclusions

