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Sommario

Nello sviluppo software, la metafora del Debito Tecnico indica un compro-
messo atto a conseguire obiettivi di breve termine in un modo che pud in-
fluire negativamente sulla salute e sulla manutenibilita di prodotti software
sul lungo periodo. Il Debito Tecnico Self-Admitted Issue-based (SATD-I) ¢
una sotto-categoria del Debito Tecnico che indica debito riconosciuto dagli
sviluppatori e riportato in sistemi di tracciamento di issues. L’obiettivo di
questo lavoro ¢ di identificare il SATD-I (nello specifico debito di codice,
debito di documentazione, e debito di test) dal testo, con sistemi di Natu-
ral Language Processing, e analizzare il comportamento degli sviluppatori
a riguardo, studiando chi risolve le issues relative al debito tecnico, quante
issues sono risolte, e quanto tempo € necessario per risolverle. Per rispon-
dere a questi quesiti, sono stati utilizzati due modelli di Machine Learning,
comparando tra loro i risultati ottenuti. Con 972 issues classificate a mano,
abbiamo addestrato e validato una modello basato su Support Vector Ma-
chine, e uno basato su Logistic Regression, ottenendo un punteggio F1 di
0.678 per il primo, e di 0.7722 per il secondo. In seguito, abbiamo estratto
un insieme di 1500 token dal modello di Logistic Regression, addestrato, a
causa delle sue migliori performace, per mostrare come il SATD-I puo essere
identificato e spiegare i risultati del modello. Abbiamo poi classificato 2.3M
di issues che coprono oltre 20 anni di sviluppo di progetti Apache e Mozilla,
usando questi dati per capire qual € 'approccio degli sviluppatori verso il
SATD-I, in confronto agli altri tipi di issues. I risultati hanno mostrato che
la maggior parte dei prodotti hanno una percentuale di issues che identifi-
cano Debito Tecnico tra il 14.8% and 23.3%, che il debito di codice & spesso
pagato nella prima settimana dalla sua documentazione, che la percentuale
di debito pagato ¢ tra il 68.86% e il 93.74%, e che gli utenti che creano queste
issues sono anche i risolutori tra il 43.54% e il 93.08% dei casi.
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Abstract

Technical Debt metaphor in software development introduces a compromise
to deliver short-term goals in a way that can negatively affect the health
and maintainability of products in the long term. Self-Admitted Technical
Debt Issue-based (SATD-I) is a branch of Technical Debt that refers to ac-
knowledged debt reported by software developers in issue tracker systems.
The purpose of this work is to identify SATD-I (Code debt, Documentation
debt, and Test debt) from text, using Natural Language Processing tech-
niques, and analyze the behaviour of developers against it, by studying who
resolves debt, how much debt is solved, how long is needed to resolve it. To
do this, two different Machine Learning models were used and their results
compared. Using 972 manually classified issues, we trained and validated
an SVM and a Logistic Regression models, resulting on F1 scores of 0.678
for the former, and 0.7722 for the latter. Due to higher performance, we
extracted a set of 1500 weighted tokens from the logistic regression trained
model, that shows how SATD-I can be identified. We used this model to
classify a dataset of 2.3M issues from more than 20 years of development of
Mozilla and Apache projects, using these data to compare how developers
approach SATD-I, against the rest of the issues. The results showed that
most of the products have a percentage of Technical Debt issues between
14.8% and 23.3%, that Code Debt is often paid in the first week from its
report, that the percentage of paid debt is between 68.86% and 93.74%, and
that the creator of the issues also resolves it between 43.54% and 93.08% of
the cases.
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Chapter 1

Introduction

1.1 Overview

The study presented in this thesis aims to explore the field of automatic
Technical Debt detection in software development using Natural Language
Processing techniques, and its management by software developers. In par-
ticular, the focus of the research is the debt reported in issue tracker systems,
creating an approach that is able to classify an issue as soon as it is created.
To the best of our knowledge, this approach was explored once in 2022, and
we aim to improve the reliability of the classification, to inspire some future
work in this field.

The study was supervised by Prof. Mark James Carman of Politecnico
di Milano®.

1.2 Problem

The concept of Debt in software development was introduced to refer to low-
quality deliverables that will likely need to be fixed (paid) in the future. We
will see in Chapter 2.1 how Technical Debt is identifiable and how it affects
the present and future work for developers.

As many studies have pointed out, if the introduction of Technical Debt
seems to help the development in the short term allowing the software engi-
neers to deliver their solution early, repaying the debt in the long run may be
very expensive, and its cost increases with time. In fact, the sooner Technical
Debt is repaid, the shorter is the time needed to actively repay it.

'Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria,
Via Ponzio 34/5, 20133, Milano, Italy.
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For example, talking about software Technical Debt, it is easy to notice
how a quick and non-optimal solution may impact the future development:
we know that the implementation of a fragile component will require revision
in the future, but the more time that passes since the review, the more likely
the component will be used in multiple parts. So, to modify it, it will be
needed to check and test all the code blocks in which that component is used
and to review all the design choices made around it.

From requirements collection to test writing, from design to release to
production, every phase of software development may be affected by Tech-
nical Debt, and a bad decision in one of them affects all the work done after
it.

The importance of identifying it at an early stage considers the possibility
of saving resources by giving the chance of minimizing unnecessary code
maintenance.

1.3 Goal

As we will see in Chapter 2, many studies explored the automatic detection
of self-admitted Technical Debt - Code Based with several techniques. The
main goal of the this research, instead, is to apply this field in issue tracker
systems, studying an approach that is able to classify the software issues, to
identify if they are related to Technical Debt or not.

Once we obtain a good classifier, it is possible to use its abilities to
identify some trends about how Technical Debt is solved and who does it.
Specifically, we will try to answer to the following questions:

e RQI: How can Technical Debt be identified from issues? Creating a
tool that identifies Technical Debt allows to classify more data, to have
a better overview of the trends we are going to study.

o RQ2: What type of Technical Debt is mainly paid in issues? |Xavier
et al., 2020] Among the existing types of Technical Debt, we can detect
which is prioritised by developers.

e RQ3: How do software developers resolve technical debt in issues?
To facilitate the search for an answer, this question is divided into three
main sub-questions:

— RQ3.1 Who resolves Technical Debt tracked in issues? Based on
the data we collect, it is possible to check if the Technical Debt
is resolved by those who reported the issue or by others.
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— RQ3.2: How much Technical Debt tracked in issues is resolved?
Answering this question shows the attitude of developers towards
Technical Debt, to understand how much importance they give
to it.

— RQ3.3: How long does it take to resolve Technical Debt tracked in
issues? Tracking the time needed to resolve Technical Debt, it is
possible to check how developers approach the issues they created
compared to others.

The dataset used to answer these questions is 20-MAD [Claes and

Maéntyla, 2020]. It contains over twenty years of information about 820

Apache and Mozilla open source projects. With 2.3M issues, it is a good

representative of the way software developers work. Then, it will be possible,

to compare some computed metrics with studies that were made considering

different contexts.

1.4

Thesis Structure

After this introduction, the thesis is structured as follows:

Chapter 2 presents the state of the art of the topic we are working on.
It discusses which are the key studies and researches that prepare the
base for this thesis.

Chapter 3 describes in details how the study was designed and the
shape of the data we use to perform the training, the validation, and
the real world use case that will be used to extract the data to answer
the research questions.

Chapter 4 explains in details how the classifiers we consider for this
study were designed and built, the metrics that we use to evaluate their
performances, and a comparison between them.

In Chapter 5 we discuss the results of the experiment and present the
answers to the three research questions.

Chapter 6 draws the conclusions of the research considering the aggre-
gated results and presents some possible future work.
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Chapter 2

State of the Art

2.1 Technical Debt

According to Avgeriou et al., "Technical Debt is a collection of design or
implementation constructs that are expedient in the short term, but set up
a technical context that can make future changes more costly or impossible"
[Avgeriou et al., 2016].

The Technical Debt metaphor was firstly introduced by Ward Cunningham
in 1992 in The wycash portfolio management system |Cunningham, 1992].
Cunningham put a developer’s unfamiliarity with code and their obfuscated
long-term view about the software they are working on as the primary reasons
for creation of Technical Debt. As software evolves, it needs refactoring that
takes into account features that didn’t exist long ago, when the implemented
solution seemed like the best possible one. In addition, if a developer is
not fully familiar with the software and the technology they are working
on, their implementations of new features may not be optimal given how
little experience they may have. Again, as time goes by and people become
more familiar with the application, the code will need to be reorganized to
avoid losing functionality and to make sure the code is kept clean and easily
maintainable, as if the developers exactly knew what they were doing all
along.

Since its introduction, Technical Debt has been taken up in several stud-
ies and its meaning expanded to include contexts in which time savings are
preferred at the expense of quality, like in presence of tight deadlines or
different priorities.
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Cunningham’s observation considered the shipment of sub-optimal code
like getting into debt. A little debt may help to speed up the development,
but if it is not promptly repaid, the debt starts to grow soon. The meaning
of "repaying" in this context is associated to the code rewriting to eliminate
the sub-optimal solution in favor of a more stable and maintainable one.

Why does the debt grow over time?

When the debt lives long, the sub-optimal solution affects the future de-
velopment of the software in a significant way. Due to inter-dependencies
between components, each block of code will have an influence on future
development choices. So, the more a weak solution survives, the harder will
be to change it in favor of a better one. That’s why we can consider the time
passing as an interest on the debt.

According to Cunningham, unpaid debt can have a huge impact on entire
organizations, and development approaches like the waterfall model aims to
reduce debt problems by planning every single aspect of the software require-
ments. Unfortunately, these approaches in many cases are not optimal, for
example when the software needs a continuous growth or when encountering
a change in the requirements, and we will often end up dealing with some
forms of Technical Debt.

Avgeriou et al. consider that the interest on debt is composed of two
main parts: recurring interests and accruing interests [Avgeriou et al., 2016].
The first groups the indirect additional costs of the presence of Technical
Debt, like the reduced velocity of development and the loss of quality that
affects the maintainability of the software; the accruing interest, instead,
considers the additional costs caused by not-quite-right code, that affects its
evolvability.

Among the reasons of the introduction of Technical Debt in software, the
early shipping is the most considered by the developers [Xavier et al., 2020].
Often, in fact, they prefer to quickly deliver what they are working on,
due to deadlines or other time management issues. Several studies have,
instead, found several other causes that involve all the phases of software de-
velopment: starting from bad design decisions about structures, frameworks,
technologies and languages [Verdecchia et al., 2020|, unavailability of a key
person and lack of information about a technical feature [Avgeriou et al.,
2016|, architecture violations [Martini et al., 2014|, while, originally, Cun-
ningham was referring to lacks of experience of the developers on a project



2.1. Technical Debt 7

they were moved on and to a lack of flexibility of the software due to a

not-too-long term view.

Types of Technical Debt

To better understand the origin of the Technical Debt and to optimise its
prevention, several studies created a classification of Technical Debt based
on its causes. One of the first works was performed by Tom et al., collecting
information from multivocal literature reviews, from interviews to software
developers and academics, and final reviews. The purpose of the study was
to create a classification by dimension, ending up with the following division
into five categories: Code, Design and architecture, Environmental, Knowl-
edge distribution and documentation, Test [Tom et al., 2013|.

Alves et al., then, broke and integrated this result into a set of more
detailed categories, based on the nature of the debt as the main factor of
classification, that allow to immediately identify which phase of software de-
velopment the debt belongs to. The Technical Debt types defined in Towards
an Ontology of Terms on Technical Debt |Alves et al., 2014] are the following
[Magnoni et al., 2016]:

e Architecture debt: Technical Debt caused by architectural sub-optimal
choices that compromised the scalability, maintainability or other as-
pects of the quality of the product.

e Build debt: Poor building process, with flaws in a software’s build
system that consume unnecessary time and resources.

e (Code debt: Violated best practices and low quality code, like dupli-
cated code, complex or inconsistent code, slow algorithms and low
multi-threading quality.

e Defect debt: Refers to bugs and failures found but postponed due to
tasks with higher priorities.

e Design debt: Poorly detailed design or violations of best practices
about object-oriented design, like bad usage of patterns or imprecise
structure of components to be developed.

e Documentation debt: Outdated, incomplete or lack of project docu-
mentation, such as code comments or user documentation.

o Infrastructure debt: Sub-optimal configuration of technologies, frame-
works, inadequate programming languages and other development-
related processes.
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e People debt: People issues that can cause problems with the devel-
opment activities. Examples are experienced people considered single
point of failure due to a late or a lack of training of the team.

e Process debt: Refers to inefficient processes, like communication or

development processes or others.

e Requirements debt: Gap between requirements of a software and its
actual implementation, like non respected constraint or inconsistent
assumptions.

e Service debt: Issues introduced by selection and substitution of web

services.

e Test automation debt: Issues with the automation of the tests of old
features to support continuous integration and faster development cy-
cles.

e Test debt: Refers to shortcuts taken in automated acceptance, inte-
gration and unit testing. Examples are lack of tests, low quality tests,
test errors or low coverage.

2.2 Self-Admitted Technical Debt

Self-Admitted Technical Debt (SATD) is a type of Technical Debt that is
acknowledged and documented by developers. To report it, several meth-
ods are used, like comments in source code, or the usage of issue tracking
systems, or any other other type of documentation that is written to sup-
port the software’s life cycle. Even when these workarounds are detected by
developers, a significant subset of them is never repaid, due to the Rework
Effort that is needed that would lead to short term additional costs in soft-
ware development [Mensah et al., 2016], even if the long term benefit may
be higher.

Several tools exist to identify SATD from source code, but the most
performing tool that we found is SATD Detector |Liu et al., 2018], built
as an Eclipse plug-in to detect and track SATD comments from the IDE.
The approach used to automatically classify the comments is based on Text
Mining, and its performance was based on 212 thousands comments from 8
different open source projects, showing an F1-score between 0.518 and 0.841,
with an average of 0.737 [Huang et al., 2018|.
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2.3 Issue-based Self-Admitted Technical Debt

Among Self-Admitted Technical Debt types, Issue-Based SATD (as known
as SATD-I) has been gaining more and more interest in the recent times.
Until 2022, SATD-I used to be manually identified. This highlighted evident
limitations on the extraction of relevant examples to study, to understand
how Technical Debt is treated by software developers. Recent studies that
are focused on SATD-I compare the different types of debt found in issue
tracker systems and the reasons behind its creation [Xavier et al., 2020], or
try to understand when software developers identify Technical Debt and how
they resolve it |Li et al., 2020], starting from a small set of issues to study,
composed by a few hundreds of items.

In 2022, the publication of the research Identifying self-admitted techni-
cal debt in issue tracking systems using machine learning [Li et al., 2022] in-
troduced the automatic detection of SATD-I, using CNN-based model that
resulted in a Fl-score of 0.686, studying 4,200 issues. To the best of our
knowledge, up to now, this is the study that takes into consideration the
biggest dataset used to detect SATD-I.

2.4 20-MAD Dataset

Answering the proposed research questions requires some real world data
to understand how Technical Debt is treated by Software Developers. To
reach this goal, we decide to use 20-MAD (20 Years of Issues and Commits
of Mozilla and Apache Development) [Claes and Méantyla, 2020] dataset, an
open source dataset that contains detailed information about issues tracked
in several Mozilla and Apache products. 20-MAD dataset includes informa-
tion about 3.4M of commits, 2.3M of issues, and 17.3M of issue comments,
all wrapped into 820 different projects, from 1994 to 2020. As we focus our
research on issues, the data contained in this source matches perfectly our
needs, as each issue is composed by the product they are part of, a summary,
a description, anonymized data about the users who created and worked on
it, the date of creation, resolution, and last update, and so on.

2.5 Hadoop/Camel Technical Debt Dataset

Examples of Technical Debt issues are reported in the dataset extracted for
the study Identification and Remediation of Self-Admitted Technical Debt in
Issue Trackers [Li et al., 2020], where 500 issues from Hadoop and Camel
projects were extracted and classified for a similar purpose. The dataset
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contains information about different types of Technical Debt, specifying for
each issue the debt type (among the ones mentioned in 2.1) and sub-type.

2.6 Natural Language or Not (NLoN)

Natural Language or Not (NLoN) [Méntyl4 et al., 2018] is an open-source R
package for text analysis, that is able to recognize natural language. Mostly
used in text pre-processing, it separates strings such as source code or stack
traces from input text. The solution uses regular expressions, machine learn-
ing, and language detection techniques to achieve high performance in identi-
fying natural language in different types of software engineering text inputs,
including descriptions of issues.

2.7 TF-IDF

Term Frequency-Inverse Document Frequency (7F-IDF) is a numerical
statistic used to calculate the importance of terms and keywords in a set
of documents or a corpus, firstly introduced by Salton and Buckley [1988].
TF-IDF is the product of two values: Term Frequency identifies the fre-
quency of the usage of a term in a document; Inverse Document Frequency,
instead, represents the rarity of the same in the corpus. To calculate the
TF-IDF score, the following formulas are applied:

occurrencies of a term in the document

TF =
#terms in the document

#documents
IDF = log(

)

#documents containing the term

TF—-IDF =TF «=IDF

The obtained TF-IDF score is higher for terms that are rarely used across
the corpus but often in the considered document, and lower for broadly used
terms across all the corpus. This technique is commonly used in Natural
Language Processing applications, like information retrieval or text classifi-
cation, and can be adapted in classification of issue’s titles and bodies.
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2.8 Support Vector Machine

Support Vector Machine is a supervised machine learning model used for clas-
sification and regression analysis. Developed by Cortes and Vapnik [1995],
it works by finding the hyperplane that best separates different classes of
data in a feature space, being able to handle non-linearly separable data as
well. Compared to non-linear SVMs, linear ones are more efficient and less
prone to overfitting, and easier to interpret. There is no limit on the number
of features that SVMs can handle, and they are considered robust to noise
and outliers. In Natural Language Processing field, SVMs are used for in-
formation retrieval, sentiment analysis, and text classification, both binary
and multi-class.

2.9 Logistic Regression

Logistic Regression is a binary classification model used in statistics and
machine learning, that uses the probability of the class label starting from
the input features, using a logistic function. The concept of logistic regression
was firstly introduced by Cox [1970], as a way to provide the relationship
between one or more predictor variables with a binary response. Compared
to neural networks, Logistic Regression models do not have any hidden layer
between input and output nodes, but a logistic activation function is applied
to the output. However, they can be used as a part of neural network or
deep learning architectures.
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Chapter 3

Design of the study and input
datasets

This chapter presents the input datasets we used to study and answer the
research questions presented at the beginning of the thesis, and the design of
the study. The main idea is to build a classifier, using Machine Learning, to
help us identify the issues that describe Technical Debt. In order to do that,
we used Natural Language Processing techniques to process two datasets of
issues: one to train our classifier with (D1) and one that represents the real
world dataset, from which we extract the statistics to explore how developers
manage debt. Our classifier will be trained and evaluated with D1, and we
must ensure that the data taken as input are optimised for our purpose.
20-MAD must be reviewed and cleaned as well, to let it be comparable with
the training data.

The whole design and implementation are presented in details in the

following sections.

3.1 Real World dataset

Issues reported in 20-MAD dataset are used in our study to finalize the results
to answer the research questions. Data reported in the dataset are consistent
and provide a perfect overview of software’s life cycles, with historical and
detailed information on how the work is organised by software developers.
We exclude commits and comments from our study, and we just focus on
issues, that have enough details for our research.

Every row of the Issues.parquet dataset in of 20-MAD represents an issue.
A full list of attributes that we are interested in follows:
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e source: it specifies if the issue comes from an Apache or a Mouzilla
product;

e product: name of the project for which the issue was created;
e created: timestamp of creation of the issue;
e updated: timestamp of last update of the issue;

e last_resolved: timestamp of last resolution of the issue (resolved issues
can be reopened);

e summary: short text to identify the core of the issue (cannot be empty);
e description: text to describe the issue in details (can be empty);

e status: status of the issue (can be Open, Resolved, In progress, In
review, Blocked, ...);

e reporter key: identifier of the user who is the issue reporter;
e creator_key: identifier of the user who is the issue creator;

e assignee_ key: identifier of the user who is the issue assignee;

Summary and Description are the two attributes that will be used to
build the classifiers to detect Technical Debt, while the rest of the attributes
will be used to perform studies about it. As some results will be grouped
on product level, we decide to remove from the dataset the issues from the
products that contain less than 500 items, to avoid highly biased results. By
doing so, we discard 68,089 issues (2.3% of the total) from 477 products,
leaving us with 2,246,038 issues grouped in 343 products. In the following
sections and chapters, when we refer to 20-MAD dataset, we are considering
its cleaned version that we just described.

3.2 Evaluation dataset and Debt types

Issues in 20-MAD dataset do not contain information about their category,
if they refer to Technical Debt or not. For this reason, we must create the
source that will be used as training dataset by ourselves. Starting from
Hadoop/Camel Technical Debt dataset presented in section 2.5, we can ad-
just it to better fit our study. The dataset contains 383 issues that do not
refer to Technical Debt, and 117 issues related to Technical Debt. Among
the second group, the types of Technical Debt have very different frequency:
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out of 117 Technical Debt issues, there are 59 that refer to Code debt, 33 to
Documentation debt, and 28 to Test debt. All together, these three types
represent 79% of the total debt found in the study. Architecture, Build,
Defect, Design, and Requirement debts are represented 10 times or less.

We do not consider this dataset strong enough to support our training,
and we prefer to expand it by taking random issues from 20-MAD dataset
and classifying them manually, based on their summaries and descriptions.
We decide to focus on specific types of debt because of two main reasons:
the difficulty to find less frequent technical debt types, and the balance we
want to keep among the categories in the training set, in order to reduce
biases. The types we focus on are Code Debt, Test Debt, and Documentation
Debt. From now on in this research, we consider the rest of the Technical
Debt categories as Non Technical Debt, together with the issues that do not
represent any type of Technical Debt.

We start by removing duplicates from Hadoop/Camel dataset (some is-
sues refers to multiple Technical Debt types and are reported multiple times),
remaining with 480 items, and we assign a binary value to each item (0 or
1) based on our definition of Technical Debt. Then, we extend this dataset
to have around one third of Technical Debt issues and around one thousand
elements in total. To reach this goal, we extract random issues from 20-MAD
using python’s random! library, until we reach 110 issues for each type of
Technical Debt. By doing so, we complete our dataset with 972 issues: 330
Technical Debt issues and 642 Non Technical Debt ones. This dataset will be
used to train and validate the models that we are presenting in the following

pages.

3.3 Data pre-processing

Before implementing the classifier, the structure of the data must be defined.
The goal of the first phase is to clean the data and remove what is not
relevant for the classifier, from both the dataset we use: the one we trained
our classifier with (training and test sets, i.e. D1) and the one representing
the real world dataset we are going to classify (i.e. 20-MAD). Usually, in fact,
raw data contains noise that should be managed prior to the classification,
to avoid biased results.

The classification of the issues based on text requires special attention on
the domain we are working on. The language used in the issues by the users
is a technical language and it often contains blocks of code and logs or code-

'yandom: https://docs.python.org/3/library /random.html
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specific words, like names of classes, methods, packages and frameworks.
The challenge of the text pre-processing phase is to build a bias-free input
for our classifier, or at least to reduce it at minimum.

3.3.1 Text cleaning

A classification based on domain-specific words (like the training set we are
using) can reduce its accuracy when run on a much broader dataset. To
reduce at minimum this risk, we decided to remove from our two datasets
all the words and blocks that could badly interfere with the result of the
classification. Moreover, since D1 is mainly composed by issues from Hadoop
and Camel projects, we tried to filtered out all the words that were linked
to these specific projects, as we considered them not to be relevant as input
of the classifier.

To provide an example of each single step of the cleaning process we
performed, we are going to show how a single item of the dataset would be
processed during each step. The example issue we are going to process in
the following pages is identified by these two fields:

Summary: "[TEST| Remove hadoop.logfile.* and fix dependencies”

Description: "The package is only called in the root file and doesn’t look
like it is used anywhere at all. It causes the following message while building
due to a conflict with TestPipeline Utils methods:
[ERROR] PipelineUtils.java line 147 - getProfileUpdates failed with error
code 1"

The resulting text after each step can be found in Table 3.1 for the
Summary field and in Table 3.2 for the Description field of the example.

Removing code blocks and logs from text

Many issues report entire blocks of code or lines of logs, in some rare cases
even thousands of lines. We considered the presence of these lines not to be
relevant for the detection of Technical Debt with Natural Language Process-
ing for several reasons. First of all, the blocks of code are not considered
natural language, we cannot classify them with the same techniques we use
for English text. If we ignore them, many strings or words related to specific
programming languages or used to name variables would interfere with the
input of the classifier. For example, the words true and false are present in
many programming languages as Boolean values (both Java and Python use
them, just to mention two programming languages); so, we cannot consider
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their usage to be irrelevant compared to the usage of the words true and
false outside of this context.

In the same way, logs are not reliable for the purpose of this research.
They contain in general several lines of text, sometimes written as natural
language, sometimes not. There is no difference for us between the lines
composed by natural language from the others within logs because all the
text in these cases is machine-generated and copy-pasted into the description
of the issue. Several words are widely used in logs (like error or warning)
and they would bias the data collection for the classifier.

The removal of code from the issues in the dataset D1 took place in two
stages and it was focused on the description of the issues and not their title,
as we assumed that the titles are not automatically generated or copy-pasted
from code. We used an open source solution called NLoN (Natural Language
or Not) [Méntyld et al., 2018| to separate natural language from log mes-
sages or code. We processed each issue of D1 splitting its description by the
new line character (|n) and letting the NLoN predictor classify the obtained
strings. The strings classified as Natural Language (NL) were then concate-
nated with a new line separator, while the others were removed, obtaining

the new description of the issue.

After this computation, we manually reviewed all the issues in D1 to
check if there still was any line of code that was not detected by NLoN,
removing few lines of logs from 16 descriptions out of 972 issues.

The removal of code in 20-MAD was completely done using NLoN, with
the same process described above. The manual check in 20-MAD was not
performed due to the amount of data contained in the dataset, but we do not
expect a relevant impact from the margin of error we have with NLoN. Tests
made on NLoN showed good performance indexes for our purpose, achiev-
ing an area under ROC curve between 0.976 and 0.987 on three different
data sources and between 0.913 and 0.98 in cross-source prediction. We can
consider these performance indexes good enough for filtering the real world
dataset we have. We explore in Chapter 4 why having extremely accurate

data in D1 was much more important.

The description of the issue we took as example would be broken into
two strings by the new line character and given as input to NLoN. The first
string is considered natural language, while the second one is considered a
log.
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Cleaning symbols

The second phase of the cleaning process was performed to eliminate irrele-
vant symbols from single words. This section describes a process performed
for both the title and the description of the issues. The cleaning started
splitting the text (the whole title and the whole description) into tokens
using any whitespace character as separator. Then, from each token we re-
moved any symbol from its ends to avoid the influence of punctuation of
any type and we removed any apostrophe in the token. The symbols were
removed from the left and the right of the tokens because, while the punc-
tuation marks are positioned in the right end of the words, characters like
parenthesis can be found both on the left and on the right end of words.
The removal was iterative because we can have ellipsis or multiple question
marks or exclamation points.

In the presented example we see that the token [TEST] lost its square
brackets, while hadoop.logfile. * was reduced by two characters from right. In
the description, the apostrophe in the token doesn’t and all the punctuation
marks were removed.

Removing irrelevant words

In the next phase the words that we considered irrelevant were filtered out
from the dataset. We divided irrelevant words into extremely short words,
stop words, and meaningless tokens.

We considered extremely short words as the ones composed by one or
two characters. They were filtered out to avoid confusion between different
abbreviations or acronyms, typos or other words that would interfere with
the input of the classifier.

The stop words, instead, are words that are very common and do not add
significant meaning to the text we are evaluating. Examples of stop words
are this, the, yours, while, and they are generally ignored by search engines.
To filter them out we used the NLTK? Python library to check, for each
token, if it is considered part of the English stop words or not and, in case,
we deleted them from the text. There is not a unique set of stop words but
the one used by NLTK is one of the most used in Python and our research
relies on it.

Meaningless words were represented by tokens with a structure that is
not common in a natural language. We defined them as the tokens that
contain one or more symbols enclosed by two letters (e.g. alpha-beta) or

2NLTK: https://www.nltk.org/
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tokens that contain a number (e.g. java8). We decided not to split tokens
containing symbols, and we preferred to delete them, because those tokens
are likely related to code, like an attribute call (e.g. array.size) or a package
(e.g. import java.util.*). Our definition included some tokens with typos
among the meaningless words (e.g. a missing space after using the comma)
but unfortunately we are not able to recognize the intention of the authors,
so we decided to discard these tokens as we assumed these cases to be rare
enough not to affect the results of our study.

In the summary of the example issue, hadoop.logfile is considered a mean-
ingless token due to the dot in the middle, while the word and is in the set
of the English stop words. In the description, the words is, in, it, at, to,
a are extremely short words as we defined them. The remaining ones that
were deleted, instead, were stop words, and they are The, only, the, and, all,
while, with.

Stemming words

The goal of the next phase was to transform the single words into their stem,
so that the terms we have become independent of their usages. The purpose
of this step is to reduce the used vocabulary into stem words so that we can
compare and group words with same meaning used in different contexts with
different inflections.

To do so, all the letters that compose the dataset were lowered. Then,
the NLTK Python library was used to perform the stemming of the words.
The algorithm used was PorterStemmer |Porter, 1997].

Removing little used words

The last step of the cleaning process was related to context-specific words.
The purpose of this step is to avoid a language that is used in a very small
subgroup of projects because it would distort the data used for the classi-
fication. The risk would be to give much weight to context-specific tokens,
but we expect them to be words related to code or to names of services, not
relevant for our goal.

This step was performed creating a dictionary with all the remaining
stem words of D1 as keys and the number of different projects of 20-MAD in
whose problems the words appeared as values. We decided to remove from
D1 the tokens used in less than 80 projects out of 820. This step does not
modify the content of 20-MAD, because the classifier we are creating is not
influenced by little used words of the real world dataset.
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From the example we are considering, the token testpipelineutil is
context-specific. Probably, the reason is that it represents the name of a test
class of a specific project, not used in many other projects of our dataset.

Phase Summary

|TEST| Remove hadoop.logfile.* and fix dependen-
cies

Remove code | [TEST| Remove hadoop.logfile.* and fiz dependen-
blocks cres

Initial text

Remove symbols TEST Remove hadoop.logfile and fix dependencies

R irrel t
emove irrelevan TEST Remove fiz dependencies
words

Stemming test remov fix depend

Remove little used
test remov fix depend
words

Table 3.1: Result of Summary field of example issue after each cleaning
phase.

3.3.2 Labelling Technical Debt

After the data cleaning, we decided to classify the issues of D1 assigning
them a label based on the type of debt they represent. As specified above,
we focused our study on three categories of Technical Debt, that are Code
debt, Documentation debt, and Test debt. So, we added a binary label called
technical _debt to each issue to specify whether it is related to one of the three
mentioned types of debt or not. A value equal to 0 was assigned to the issues
that do not represent Technical Debt and the ones that describe Architecture
debt, Build debt, Defect debt, Design debt or Requirement debt. For the
others, we assigned a value equal to 1 to the technical debt field.
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Phase

Description

Initial text

The package is only called in the root file and doesn’t look
like it s used anywhere at all. It causes the following mes-
sage while building due to a conflict with TestPipeline Utils
methods:

[ERROR] PipelineUtils.java line 147 - getProfileUpdates
failed with error code 1

Remove
code blocks

The package is only called in the root file and doesn’t look
like it is used anywhere at all. It causes the following mes-
sage while building due to a conflict with TestPipeline Utils
methods:

The package is only called in the root file and doesnt look

Remove like it is used anywhere at all It causes the following mes-
symbols sage while building due to a conflict with TestPipeline Utils
methods
Remove package called root file doesnt look like used anywhere
irrelevant causes following message building due conflict Test-
words Pipeline Utils methods
. packag call root file doesnt look like use anywher caus fol-
Stemming . . o .
low messag build due conflict testpipelineutil method
R
-emove packag call root file doesnt look like use anywher caus fol-
little used . .
low messag build due conflict method
words

Table 3.2: Result of Description field of example issue after each cleaning

phase.
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Chapter 4

Development of a binary
classifier for text

In this chapter we present two Machine Learning models developed for our
classification problem, trained and evaluated with the test and the validation
sets we pre-processed in Chapter 3. The first model uses Support Vector
Machine, while the second one is based on Logistic Regression. After the
explanation of the implementations, we analyse the obtained results, to see
where they perform better and which one we consider the more reliable for

our research.

4.1 Evaluation of the models

To compare the performance of the models, we evaluate the classification
of the validation data we described before, with each model, comparing the
real binary labels of the issues with the ones assigned by the two models.
A common approach used with binary classifiers is to presents the results
with a confusion matrix, a table that shows numerically how many elements
the model classifies correctly for each class. The matrix is composed by four

numbers that indicate:

e True Negative (TN): number of issues not related to technical debt,
correctly classified by the model;

e False Positive (FP): number of issues not related to technical debt,
classified by the model as "Related to technical debt";

e False Negative (FN): number of issues related to technical debt, clas-
sified by the model as "Not related to technical debt"



24 Chapter 4. Development of a binary classifier for text

e True Positive (7P): number of issues related to technical debt, cor-
rectly identified by the model.

These values, analysed singularly, may lead to inaccurate conclusions,
especially when we deal with imbalanced dataset or when the consequences
of a wrong classification are different between the classes. That’s why we
also use other indices that, based on the values of the confusion matrix, help
us to better evaluate the two models. These indices are:

e Accuracy, indicates how often the classifier has a correct outcome.

TP+ TN

AOCZTP+TN+FP+FN

e Precision, or Positive Predictive Value, indicates how often the classi-
fier has a correct outcome when it assigns a Technical Debt label.

TP

PPV = ——
V=7piFpP

e Recall, or True Positive Rate, indicates how often the classifier is cor-
rect when it deals with Technical Debt issues.

TP

TPR=—
R=TpiFN

e F1, that combines Precision and Recall to a single value, performing
the harmonic mean between the two scores.

PPV «TPR

Fle2s—— "
*PPV + TPR

We use these rates to compare the results of the two models and see how
they handle different classes of data, to see which algorithm would better
perform to answer the research questions presented at the beginning of the
document.

4.2 Classification with Support Vector Machine

This section describes the implementation of the model based on Support
Vector Machine (SVM), used for the classification. To use this technology,
new operations need to be performed on the training dataset to optimise it
as input of the classifier. Next, the performed actions on the data and the
implementation of the classifier are described, and some considerations on
the first results are presented.
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abil abl access account | adjust
0 0 0 0.056 0 0.21
1 0 0 0.31 0.18 0
2 0 0.3 0 0.42 0
3 0.29 0 0 0 0

Table 4.1: Exzample of a tf-idf matriz. The rows represent the indexes of
the documents, the columns represent the terms contained in at least one
document.

4.2.1 Text to numeric values

To evaluate text with a Support Vector Machine, we need to find a meaning-
ful way to represent words as a numeric values. A broadly used approach in
Natural Language Processing field is to use tf-idf (Term Frequency - Inverse
Document Frequency) to compute which are the terms that characterise each
class.

Assigning numeric values to terms

Applying the tf-idf to the training dataset, we compute two sparse matrices
composed by terms (¢) as columns, and issues (d) as rows, one for summaries
and one for descriptions. The matrices are then filled with the tf-idf scores
(tfidf (t,d, D), being D the set of documents, i.e. the issues in our case). If
the term ¢; is not contained in the document d;, then t fidf (t;, d;, D) score is
equal to zero. An example of the structure of the obtained matrix is visible
in Table 4.1.

For each (%, d) couple, we now have a value that represents the importance
of the term ¢ in the issue d, compared to all the other issues.

Our next objective is to separate the terms that most likely identify tech-
nical debt from the ones that identify other issues. This is achieved by
summarising into a single score for each term the statistics we just com-
puted. For each term of the table, the score is calculated by the average
of all its tf-idf scores, taken positive if the related document is labelled as
technical debt, or negative if it is not. Due to the imbalance of the training
set, each tf-idf value was divided by the percentage of the class it was part of
(0.346 for Technical Debt issues, 0.654 for Non Technical Debt issues). We
now have a score for each term, negative or positive, that represents how
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likely it is to be correlated with debt. The highest the score, the more likely
it is.

Assigning numeric values to issues

To shape the input of the SVM, we decided to assign two numeric values
to each issue: one representing its summary, and one its description. The
two values are calculated as the sum of the scores we just computed for each
term contained in the summary and the sum of the ones contained in the
description, separated. Terms in the validation set that were not met in the
training set have a score equal to zero. The main consideration to take into
account to optimise these values is related to the length of the issues and
the uniqueness of the used terms. Summaries are in general shorter than
descriptions, and rarely contain the same term twice, while descriptions can
be very long and detaild, or even empty strings. In the algorithm we built
to compute these values, repeated terms were considered only once because
their tf-idf scores already represent their volume of usage in the text. The
length of the texts, instead, is not considered to be a problem. Considering
that we have both positive and negative scores for terms, long texts have
a broader range of values compared to short ones. This should not cause
problems to the algorithm we are using, as a very high or very low scores are
caused by a high usage of terms related to a specific classes of issues, and
their prediction should then be expectedly straight forward.

4.2.2 Building the classifier

After we shaped our training data, we can create the binary classifier that
predicts the Technical Debt label of the issues we want to classify. The
input we obtain is composed by triplets of values: a decimal number for
the summary of the issue, another one for its description, and a binary
value label that represents the class to which the issue belongs to. As we
mentioned above, the expectation we have with the way we shaped the text
is that Technical Debt issues are represented in general with higher scores,
while the others have lower scores, both for summaries and descriptions. So,
distributing them in a plane, we should see the the two clusters occupying
different parts of it. The projection of the training data on a bi-dimensional
plane is visible in Figure 4.1.

As we can see from the figure, the model we built seem to well divide
the two classes on the training data, with the Technical Debt issues that
mostly occupy the Quadrant I of the plane, while the others mostly occupy
the Quadrant III. We can also notice a high number of dots on the X-axis,
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Training dataset
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Figure 4.1: Representation on a plane of the training dataset

with a description value equal to zero: most of them represent issues that
do not have a description, but only a summary.

The model we chose for the implementation of the binary classifier is
a Support-vector machine because of its performance with classification, as
we are trying to divide the two classes of issues on a bi-dimensional space.
Due to the structure of the input data, a linear classification adapts well to
our problem and is able to optimise the parameters of the hyperplane used
as margin to give the right importance to summaries and descriptions. In
fact, we need some computation in order to understand what is the role that
single features have on the classification.

4.2.3 Preliminary results

The validation of the model with the test data allows us to verify the per-
formances of the classifier we built. To do that, we assign numeric val-
ues to summaries and descriptions of the issues that compose the test set,
as we did for the training set, using the weighted tf-idf scores computed
earlier. In Figure 4.2 we can see how the test data is distributed in the
summary /description scores plane and how the decision regions are divided
between the two classes of issues we have. Table 4.2 represents, instead, the
confusion matrix for the data of the graph, containing the number of issues
for each class and how they are classified.

From the confusion matrix we obtained, we can compute the performance
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Decision regions with validation data
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Figure 4.2: Decision regions with test data

Predicted label
Negative | Positive | Total
Negative 133 29 162
Positive 25 57 82
Total 158 86 244

Real label

Table 4.2: Confusion matriz for test classification with SVM.

indexes described in section 4.1 to better understand the strengths and weak-
nesses of this model. The number of T'P recognised by the SVM model is 57,
and it represents almost the two thirds of the issues predicted as Technical
Debt related. The value of Precision is in fact 0.6628. The number of FFN
is lower than F'P, and so, value of Recall is higher than Precision and is
equal to 0.6951. It means that almost 70% of issues labelled as Positive are
correctly identified and labelled by this model. The obtained F'1 score is
equal to 0.6786.

In Table 4.6 we can see how the Technical Debt issues of our validation set
are classified, grouped by Debt type and indicator. Comparing the number
of TP with FFN, we can notice how much the model is able to classify the
different types of debt. The performance is good on Code debt, where the
algorithm correctly recognised 79% of the issues, while on Documentation
debt the correct classifications are 20 out of 28, that is 71%. With Test
debt, instead, the model does not perform well. Only 56% of the issues
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Debt type Debt indicator FN | TP
Code Complex code

Code Dead code

Code Duplicated code

Code Low-quality code

Code Multi-thread correctness

Code Slow algorithm

Documentation | Lack of documentation

Documentation | Low-quality documentation

Documentation | Outdated documentation

W[ OINDOO| WO~ O
N[ O| 0[O W N[ W| D[ ||+~

Test Lack of tests
Test Low coverage
Test Low-quality test

Table 4.3: Number of FN and TP predicted by SVM model divided by
Technical Debt type.

are classified as Technical Debt, 14 out of 25. Among the Test debts, a
reasonable classification is performed on Low-quality tests, but the Lack of
tests and the Low coverage are not easily predicted by our SVM model.

SVM linear model is not based on randomness. So, we can run the same
algorithm using only the summaries of the issues as input, to evaluate how
much the single features contribute to the final classification. We do not
perform the same experiment using only the descriptions because it is con-
sidered an optional field, that is not present in many of the issues of the
dataset, and it would require a balance of training and test dataset that
would not allow us to have a fair comparison of the final results. Running
the same algorithm providing only summaries as input, the classification of
the validation set ends with a Recall value equal to 0.6585 and a Precision
equal to 0.6667. F'1 score is 0.6626. These values do not differ much from
the original indexes. Compared to the previous results, the Precision score
is very similar, but the Recall is lower by 0.0366 points, due to a lower num-
ber of TP, and a higher number of F'N as a consequence. When present,
the value added by the descriptions is low but significant. The reason of
such a high importance of summaries may be their structure, because they
should only contain meaningful words to represent the core of the issues, to
let developers identify immediately what is the main goal and topic with few
words. Descriptions, instead, are more broad and more difficult to classify
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just giving a score to the words that are used in the text, as the algorithm
just described does.

4.3 Classification with Logistic Regression

The model we use to compare our previous results with is a logistic regression
model that we build. Also in this case, we need to reshape the data to fit the
input of the new model. In the next sections we describe how the training
and validation data were processed and what shape and parameters were
used for the model, before the evaluation of the results.

4.3.1 Input of the model

The input chosen for the input nodes are the tf-idf scores for summaries and
descriptions of the issues contained in the training set. The terms considered
for the input are the top 750 for each feature, ordered by term frequency,
chosen to let the model have a number of nodes in the input layer equal
to 1500. So, some terms selected to evaluate the descriptions are different
from the ones for the summaries, because we expect them having different
structures.

Other options were evaluated to shape the input of the model in a dif-
ferent way, but then discarded. The first one was to use the Bag-Of-Words
vectors, a list of binary values that represent the presence of terms in the
text. We considered it to be less effective than tf-idf because of the loss of
information about the text we are evaluating. With Bag-Of-Words, in fact,
we do not know how many times a term is present inside a text, which can be
relevant for the evaluation. The second option we discarded was the merge
of summary and description into a single text feature, so that the input of
the model could be a tf-idf representation of a single text. Due to the differ-
ent structures of summaries and descriptions, we considered this option not
to be powerful due to the generalisation of the usage of terms. If a term is
present in the text of a summary, in fact, can be probably considered much
more important than the presence of the same term in the text of a descrip-
tion. The reason we believe this to be possible is the role of summary, that
is written to encapsulate the main point of the issue, and often it is then
shorter then descriptions. Having them separate lets the model decide if the
inputs have different relevance or not.
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4.3.2 Building the classifier

The model used for the classification is a single layer MISO (Multiple Input-
Single Output) network with 1500 input and a single output. No hidden
layer was added due to the structure of the output, that is linearly separable
for the final evaluation, and hidden layers are usually used for non-linear
separations. The activation function used is a Sigmoid, that fits the binary
classification we perform with the logistic regression. The described model
gives us the probability for a certain element to belong to each class, so that
we can use that number to make a prediction to label that issue. The label
assigned to each element is the class the element has the highest probability
to belongs to.

To setup the model and run the experiment, PyTorch! library was used.

4.3.3 Preliminary results

The number of epochs our classifier runs is chosen to minimise the loss on
the validation dataset. In Fig 4.3 we can see the graph of the Validation Loss
function, that reaches a flat trend after about 400 epochs. In few trials we
made to tune the parameters of the network, the trend starts to slightly rise
after about 500 epochs, but stopping the run before the absolute minimum
of the loss function lets us prevent to overfit the model on the training data.

At the end of the training, the model is ready to classify the test data
to evaluate its performance. The confusion matrix in Table 4.4 shows the
results of the validation from which we can extract some performance indices.
Almost three quarters of the Technical Debt issues are classified as positive,
having a Recall equal to 0.7439. Out of 76 positively-predicted elements,
only 15 are F'N, and the Precision index is 0.8026. So, F'l score is equal to
0.7722, significantly higher than the score obtained with SVM.

Predicted label

Negative | Positive | Total
Real label Neg.a‘.clve 147 15 162
Positive 21 61 82
Total 168 76 244

Table 4.4: Confusion matrixz for test classification with Logistic Regression.

'PyTorch: https://pytorch.org/
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Figure 4.3: Representation on a plane of the training and validation loss
functions.

From Table 4.5, we can see the details of the classification. Code Debt is
the hardest debt to be detected by the developed logistic regression classifier:
66% of the issues in this category is correctly classified. Among subcate-
gories, we have bad performance on Complex code, Duplicated code and Slow
algorithm, while Multi-thread correctness from our validation set is fully de-
tected. Moving on, Documentation Debt has a better result, with 79% of the
issues classified as positive, with very good results on Outdated documenta-
tion and Lack of documentation. The highest score is obtained by Test Debt,
composed by 80% of true positive on the validation data. Low coverage debt
was not detected, but it is validated on only one element, so its percentage
is not considered meaningful for the evaluation of the results.

As we already mentioned above, each input node of the classifier han-
dles the tf-idf score of a single term, whether it is in the summary or in
the description of the issues. At the end of the training phase, for each
input we can extract the weight tuned by the model to explore which are
the terms that most influence the outcome of the prediction. We should
not consider those terms as the most significant ones, as their weights are
also influenced by their tf-idf scores in the dataset, i.e. by their frequencies.
The highest weights among the 750 tokens related to summaries, that most
likely identify technical debt, are the following: test: 6.45; document: 5.44;
doc: 5.20; improv: 3.91; cleanup: 3.46. Other meaningful terms among the
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Debt type Debt indicator FN | TP
Code Complex code 1 0
Code Dead code 2 6
Code Duplicated code 2 2
Code Low-quality code 3 6
Code Multi-thread correctness 0 3
Code Slow algorithm 2 2
Documentation | Lack of documentation 0 3
Documentation | Low-quality documentation | 4 9
Documentation | Outdated documentation 2 10
Test Lack of tests 3 12
Test Low coverage 1 0
Test Low-quality test 1 8

Table 4.5: Number of False Negative and True Positive Technical Debt
1ssues predicted by Logistic Regression model divided by Technical Debt type.

top 10 are inconsist, that is intuitively linked to technical debt, and javadoc,
another term that identifies documentation. The reason of so many terms
related to documentation may be the fact that, if present in the summary,
these terms likely identify the core of the issue. So, when an issue related to
documentation is open, it is likely not because of software failures, or new
feature requests, but it may be related to a needed improvement or a missed
update of the software documentation. Among the description tokens, some
of the met top scores have a similar impact on the detection of Technical
Debt. For example, the weights assigned to doc and document are 3.32 and
3.27 when present in the issue’s description. Due to the fact that the de-
scriptions are generally broad and more descriptive compared to summaries,
similar weights end to have a different impact on the categorization of issues,
as their tf-idf scores may vary based on the whole description. Among the
negative weights, the lowest ones in the summaries are receiv: -3.59; fail:
-3.06; empti: -2.998; languag: -2.94; work: -2.69; the token receive appears
only twice in the summaries of the training set, both related to errors on
received messages, and both non technical debt related. The token fail is
usually related to software failures, expected not to be technical debt, and
the token empti often represents unexpected values returned by functions:
again software failures.
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4.4 Comparison of the models

SVM | LR
True positive 57 61
True negative 133 147
False positive 29 15
False negative 25 21

Table 4.6: Confusion matriz for Support Vector Machine model (SVM) and
Logistic Regression model (LR).

Debt type Debt indicator SVM | LR
Code Complex code 100% | 0%
Code Dead code 88% 75%
Code Duplicated code 100% | 50%
Code Low-quality code 67% | 67%
Code Multi-thread correctness 100% | 100%
Code Slow algorithm 50% | 50%
Documentation | Lack of documentation 100% | 100%
Documentation | Low-quality documentation | 69% 69%
Documentation | Outdated documentation 67% 83%
Test Lack of tests 53% 80%
Test Low coverage 0% 0%
Test Low-quality test 67% | 89%
Total 70% | 74%

Table 4.7: Percentage of True Positive issues, among all positive, predicted
by Support Vector Machine model and Logistic Regression model, divided by
Technical Debt type.

Comparing the results of the two models, we notice that the Logistic Re-
gression model have higher performance overall, as each value of its confusion
matrix is better than the SVM approach’s one, with a higher F1 score, equal
to 0.7722 against 0.6786 of the SVM model. Focusing on positive items, the
Recall values give us a performance index on Technical Debt issues, and it is
visible from our data that the Logistic Regression model classifies correctly
almost 5% more of them. Taking into consideration the single Debt cate-
gories, instead, we can see discordant results in some of them. The SVM
model performs better on Code debt (79% of correctly classified debt issues
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against 66%), a bit worse on Documentation debt (71% versus 79%) and
significantly worse on Test debt (56% for the SVM model and 80% for the
Logistic Regression model).

Among the 5 most frequent types of debt, the Logistic Regression model
has significantly better performance on Lack of tests, Outdated documenta-
tion and Low-quality test, while the results for Low-quality code and Low-
quality documentation are equal for the two models. Immediately after,
ranking the items by frequency, we find Dead code subcategory, better iden-
tified by the SVM model for 1 issue; then, the next two subcategories have
again the same results with both the models. So, if we consider the frequency
of the types of debt, we find again that our Logistic Regression model per-
forms better than the SVM model.
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Chapter 5

Experimental Evaluation

Looking at the data presented in Chapter 4, we identify the Logistic Regres-
sion as a more reliable model, with better performance on several aspects of
the classification. To answer the research questions of this study, we use the
results of the classification of 20-MAD dataset using the Logistic Regression
classifier we built, that we find to be the most accurate among the described
ones.

5.1 RQ1l: How can Technical Debt be identified
from issues?

We demonstrated how text can be used to identify Technical Debt. Our Lo-
gistic Regression model let us classify issues using 1500 pre-identified tokens.
These tokens are divided into two groups, Summary tokens and Description
tokens, that were used as input labels of the nodes of the binary classifier.
Every token has a weight assigned by the model, that was tuned during its
training, and these weights can let us understand which are the ones that
can most likely label an issue. This set of tokens can be further extended
using a bigger dataset to train the model.

Some of the tokens in the two groups are the same, as they were found in
both description and summary during the classification, but they have been
assigned different weights, due to the difference in structure of summaries
and descriptions. While the first one should identify the core of the issue in a
few words, the latter can be broad and full of details to describe the problem,
and it can mention the related tasks, the needed steps to resolve an issue,
and so on. A word does not have the same importance in the identification
of Technical Debt if used in the summary or used in the description of an
issue.
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Table 5.1 and Table 5.2 contain the top ten tokens with highest and
lowest weights for Summary and Description. In the two sets we can de-
tect some similarities, like doc and document, both present among the top
tokens, or clean and cleanup, the first one among the Description’s tokens,
the second one among the Summary’s ones. Other tokens, instead, have very
different weights between the two sets, like extend, (3.8069 among summaries
and -0.8507 among descriptions), or improv (3.9118 among summaries and
-0.74189 among descriptions).

Summary TD Weight Description TD Weight
tokens tokens

test 6.4485 root 3.9995
document 5.4352 clean 3.5577
doc 5.1959 config 3.4452
improv 3.9118 doc 3.3175
mani 3.8773 document 3.2721
extend 3.8069 print 3.1746
cleanup 3.4584 size 2.9688
javadoc 3.4431 row 2.9246
inconsist 3.2619 thread 2.9190
rewrit 3.1673 dynam 2.6284

Table 5.1: Top ten tokens that identify Technical Debt issues with relative
score, from Summary and Description.

In figure 5.1 it is possible to see the distribution of the weights for the two
groups of tokens. The computed weights for summaries have a broader range
of values, from -3.5853 to 6.4485, with an average score of 0.0346, while the
ones for the descriptions vary from -3.4368 to 3.9995, with an average score
of 0.1196. Overall, the two distributions follow the same trend.
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Summary Non- . Description .

TD tokezs Weight Non—TIE) tokens | " oisht
receiv -3.5853 stack -3.4368
fail -3.0584 mapreduc -3.0102
empti -2.998 click -2.7957
languag -2.9362 jvm -2.6944
work -2.6859 stuff -2.5716
custom -2.6636 log -2.5645
http -2.5932 box -2.5068
profil -2.5419 run -2.4959
search -2.5251 bodi -2.2827
version -2.4991 environ -2.1827

Table 5.2: Top ten tokens that identify Non-Technical Debt issues with
relative score, from Summary and Description.

+ summary tokens
6 description tokens

weight

-2

-4

Figure 5.1: Weight distribution of Summary and Description tokens, sorted.
Every dot represents the weight of a single token.

Our binary classifier can be used to identify Technical Debt from the real
world dataset we pre-processed, and perform some studies on the output.
By feeding the classifier with the td-idf score of the identified tokens for
summary and description of every single item, one by one, we can classify
all the issues. The result of the labelling for the issues from 20-MAD is
summarised in Figure 5.2. The graph shows the distribution of the rates of
Technical Debt issues for each product. The products taken into account are
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the ones that have at least 500 issues reported in the dataset, to reduce at
minimum the noise in the results. We can see that half of the projects have
a percentage of issues related to Technical Debt between 14.8% and 23.3%,
with a median equal to 18.9%. The project with the minimum percentage is
Plugins Graveyard with 3.56% of Technical Debt issues, while the one with
the maximum value turned out to be Mozilla QA with 37.14% of issues that
refer to Technical Debt.

Rate of TD items ameng different products
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Figure 5.2: Rate of Technical Debt issues grouped by product.

5.2 RQ2: What type of Technical Debt is mainly
paid in issues?

The types of Technical Debt we can compare in this section are the ones
taken into account for our study: Code Debt, Documentation Debt and Test
Debt. To understand how these categories are treated by software developers
we can target the training dataset of our study, where we can get the issues
divided by debt type. For each category, 110 issues were considered, and
they are presented in Table 5.3. We divide the Technical Debt issues by
debt type. The issue statuses are divided into Paid and Not paid: the
first encloses issues with status "Done", "Resolved", or "Verified", while the
second includes all the others. Counters and percentages are shown in the
table too.

Comparing the results, we can notice that Documentation Debt is the
most paid category compared to the others, with 39 issues resolved out of
110, equal to 43.6%. Between the remaining two types, Test Debt has the
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Debt type Issue status | Counter | Percentage
Code Paid 39 35.5%
Code Not paid 71 64.5%
Documentation | Paid 48 43.6%
Documentation | Not Paid 62 56.4%
Test Paid 44 40.0%
Test Not Paid 66 60.0%

Table 5.3: Counter and percentage of Paid and Not paid Technical Debt,
divided by category.

highest score, with 40.0% of resolved issues, while Code debt is resolved for
the 35.5%, having probably less priority compared to the rest.

From the mentioned paid debt, we extracted data about the time needed
to resolve the issues. Table 5.4 describes how much time was needed to
resolve the issues, dividing the data into four time sections that are: less
than a week; between a week and a month; between a month and a year;

more than one year.

Days | Code Documentation | Test

0-6 42.9% 37.1% 37.5%
7-29 17.9% 34.3% 25.0%
30-365 | 25.0% 5.7% 25.0%
>365 14.2% 22.9% 12.5%

Table 5.4: Time needed to resolve Technical Debt, by type.

We can notice that in the first week of detection, the highest priority is
given to Code debt, that is resolved within 6 days for almost the 43%, while
the other categories are equally at 37%. In the first month, Documentation
debt is the most paid one, as more than 70% of the issues is resolved between
0 and 29 days, while Code and Test debt are slightly above 60%. The last
two, in the same way, are treated equally in the first year after reporting the
issue, both with 25% of issues resolved between one month and one year.
22.9% of the Documentation debt is paid after more than one year, meaning
that if not solved in the first month, these types of issues are hardly resolved
in 365 days.
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5.3 RQ3: How do software developers resolve tech-
nical debt in issues?

To identify how Technical Debt is resolved, we used the real world dataset
classified by the previously described Logistic Regression model, to compare
how software developers treat Technical Debt and Non-Technical Debt issues.
First, we check how much Technical Debt is resolved for each product (con-
sidering only products with highly reported issues, to reduce noise), relying
on the binary classification performed by the model. Then, we compare who
usually resolves the Technical Debt. As last, we compare the time needed
to resolve Technical Debt issues, that gives us an idea on how much paying
debt is prioritised among teams.

5.3.1 RQ3.1: How much Technical Debt tracked in issues is
resolved?

The first sub question makes us compare the quantity of issues resolved.
Tracking how much Technical Debt is solved gives us an idea on the impor-
tance that is given to its repayment. Table 5.5 summarise the number and
percentage of issues identified as related to Technical Debt by our model, for
ten different products from the real-world dataset we classified. The table
contains a counter of the Technical Debt Issues for each product, the number
and percentage of resolved Technical Debt issues, and the percentage of TD
issues that were not resolved. Issues identified as Solved are the ones which
have a status equal to "Done", or "Resolved", or "Verified".

Product | # Issues | # Solved | % Solved | % Remaining
SOLR 3,213 2,322 72.27% 27.73%
MESOS 3,362 2,315 68.86% 31.14%
HADOOP 3,543 2,940 82.98% 17.02%
AMBARI 3,817 3,506 91.85% 8.15%
FLEX 3,837 3,394 88.45% 11.55%
HDFS 4,212 3,359 79.75% 20.25%
FLINK 4,450 3,654 82.11% 17.89%
HIVE 5,093 3,737 73.38% 26.62%
HBASE 6,373 5,455 85.60% 14.40%
SPARK 9,356 8,864 94.74% 5.26%

Table 5.5: How much Technical Debt is resolved, divided by product.

Among the considered products, SPARK is the one with the highest
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percentage of repaid Technical Debt, with the 94.74% of issues in a Complete
state. On the other side, MESOS has the lowest percentage of resolved issues,
that is 68.86% for the ones that represent Technical Debt. In all the products,
most of the Technical Debt is actually repaid, and four of the mentioned
products have a percentage of open issues that is less than 15% (AMBARI:
8.15%; FLEX: 11.55%; HBASE: 14.40%). This is an indicator that software
developers are conscious of the importance of repaying Technical Debt, and
that the related issues are most likely resolved when identified.

5.3.2 RQ3.2: Who resolves Technical Debt tracked in issues?

Our real world dataset allows us to verify who works on and repays Technical
Debt. In the dataset, anonymized information about creators of the issues,
reporters, and solvers, are present. We extracted these data from the ones
we identified as related to Technical Debt, reporting our findings in Table
5.6. The table presents data about 10 different products that in the original
study were extracted from Jira, as not all the products have these information
available in 20-MAD. In the table we find the number of Technical Debt issues
that were marked as resolved, and the number of them that were assigned
to creators of the issues, or to their reporters, or to other people. As can be
noticed, sum and percentage of the issues in each row do not match the total
count of resolved, because a user can act both as creator and reporter of the
same issue. The Others column counts the issues that are not assigned to
creators nor to reporters of the issues.

The presented data shows very similar values for issues assigned to cre-
ators and to reporters for all the mentioned products. This can be partially
explained by the issue-tracker system used to extract these data. Jira, in
fact, during the creation of a new issue, automatically sets as Reporter the
user who is creating it. This field can be then modified manually, if needed,
but it requires an active action from the creator, and we can assume that the
Reporters column is biased. Percentages of Technical Debt issues resolved by
Creators or Reporters, instead, have very different values among the prod-
ucts. SPARK is the one with the lowest percentage of issues assigned to
Creators (43.54%) or to Reporters (43.72%), while the percentage of issues
assigned to thirds parties is 52.44%, one of the highest values among the
selected products. On the other side, FLEX product has the highest per-
centage of Technical Debt issues assigned to Creators and Reporters (93.08%
and 93.02%), and 6.92% to Others. From these data, we can also compute
the percentage of Technical Debt issues assigned to Creators not Reporters
and to Reporters not Creators, that are minimal due to the premises we
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Assigned to

Creators Reporters Others
Product 7 +# % # % # %
Solved
SOLR 2,322 1,062 | 45.74% | 1,059 | 45.61% | 1,260 | 54.26%

MESOS 2,315 1,066 | 46.05% | 1,076 | 46.48% | 1,237 | 53.43%
HADOOP | 2,940 1,759 | 59.83% | 1,775 | 60.37% | 1,163 | 39.56%
AMBARI | 3,506 3,204 | 91.39% | 3,170 | 90.42% | 302 8.61%

FLEX 3,394 3,159 | 93.08% | 3,157 | 93.02% | 235 6.92%
HDFS 3,359 2,380 | 70.85% | 2,376 | 70.74% | 975 | 29.03%
FLINK 3,654 1,991 | 54.49% | 1,992 | 54.52% | 1,657 | 45.35%
HIVE 3,737 2,869 | 76.77% | 2,852 | 76.32% | 864 | 23.12%

HBASE | 5,455 | 3,673 | 67.33% | 3,666 | 67.20% | 1,782 | 32.67%
SPARK | 8,864 | 3,859 | 43.54% | 3,875 | 43.72% | 4,648 | 52.44%

Table 5.6: Who resolves Technical Debt issues, divided by product.

did about the origin of the data. They can be computer with the following
formula:

%Creatorsnotreporters = 1 — %Others — % Reporters

Y% Reportersnotcreators = 1 — %O0thers — %Creators

Of those 43.54% of Creators, in SPARK 3.85% of the Technical Debt
issues are assigned to Creator that are not also Reporters, and 4.03% are
assigned to Reporters and not Creators. For FLEX, instead, only 0.06% of
Technical Debt issues are assigned to Creators Not Reporters, but none is
assigned to Reporters that are not also Creators of the issues. Generally,
we can see that three products have slightly less than half of the Techni-
cal Debt issues assigned to Creators and Reporters (SOLR: 46%; MESOS:
46%; SPARK: 44%), and seven that have more than half assigned to them
(HADOOP: 60%; AMBARI: 91%-90%; FLEX: 93%; HDFS: 71%; FLINK:
54%-55%; HIVE: 77%-76%; HBASE: 67%). In general, from our data, we
cannot identify a pattern that shows who are the developers who work on
self-admitted Technical Debt. Based on product, creators of the issues and
their reporters can be the assigners of most of these tasks (up to 93.08% of
issues), while the percentage of third users that have these issues assigned
fluctuates in a high range, between 6.92% and 54.26%.
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5.3.3 RQ3.3: How long does it take to resolve Technical Debt
tracked in issues?

Time needed to resolve Technical Debt is another indicator of the priority
that is given to it. To better understand the data, we compare the results
with the same extracted from Non Technical Debt issues, to study how soft-
ware developers behave when dealing with each type. Figure 5.3 shows the
distribution of the average resolution time, grouped by products, for Tech-
nical Debt and Non Technical Debt issues.
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Figure 5.3: Distribution of average resolution time in days for Technical
Debt and Non-Technical Debt issues, grouped by product.

For Non Technical Debt issues, the boxplot that is shown is slightly more
compressed, indicating that all the values are distributed in a smaller range.
50% of the products have an average resolution time for Technical Debt
issues between 126 and 445 days, with a median of 207 days, while for Non
Technical Debt issues, developers of 50% of those products needed between
111 and 389 days on average to complete them, with a median equal to
193 days. An overview of these data shows that Non Technical Debt issues
take more priority overall compared to Technical Debt, but we can see more
detailed data in the following graphs: Figure 5.4 and Figure 5.5 represent
the distributions of the rate of issues resolved in less than a week, between
a week and a month, between a month and a year, and more than a year,
for each product, divided into Technical Debt (5.4) and Non Technical Debt
(5.5) issues.
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Figure 5.4: Frequency of resolution time for Technical Debt Debt issues, in
days, grouped by product.
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Figure 5.5: Frequency of resolution time for Non-Technical Debt Debt is-
sues, in days, grouped by product.

From the two graphs we can notice the difference between the time needed
to resolve the two types of issues. In half of the products, the Technical Debt
issues resolved in less than week are between 28.2% and 42.9%, with a median
equal to 36.2%, while the rest of the issues are resolved between 25.3% and
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43.6%, with a median 33.7%, in half of the products, showing that the first
are preferred to be the ones solved in a very short time. The second box
plot in each figure represents issues resolved between a week and a month.
Technical Debt issues have the first quartile equal to 13.8%, a median equal
to 16.9%, and the third quartile is 19.2%. On the other side, Non Technical
Debt issues have first quartile, median and third quartile equal to 11.6%,
16.2%, and 19.5%. Again, even in medium-short time, the priority seems to
be given to Technical Debt issues. Moving on, issues resolved between 30
and 365 days have the mentioned values equal to 23.2%, 27.4%, and 31.5%
for Technical Debt, and 23.0%, 27.2%, and 33.3% for Non Technical Debt. In
this case, the box plots are very similar, with a slightly lower third quartile
in the first case. Finally, Technical Debt issues resolved in more than one
year have first and third quartiles equal to 11.2% and 22.6%, while for Non
Technical Debt are 10.23% and 26.0%, and the medians are 16.7% for the
first one, and 16.4% for the latter. From the data we extracted, Technical
Debt issues seem to slightly take priority over the rest in the first month
of their report into the ticket tracker systems, but they need more time on
average to be resolved. Even if there are more issues that are resolved in
less than 30 days, the ones resolved in more than one year take much longer
compared to Non Technical Debt issues in the same category.
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Chapter 6

Conclusions

In this work, we created a study about Self-Admitted Technical Debt - Issue
Based, to understand how it can be identified and how software developers
approach it. We now present our original contribution and the future re-
search that can be done to support and further improve the Technical Debt

management in software life cycle.

6.1 Original Contribution

The analysis of the management of Technical Debt requires an important
amount of data from different sources to reduce at minimum the bias of the
study and ensure generalizable results. With this purpose, we labelled the
biggest dataset of issues as Technical Debt related or not, classifying 2.3M of
issues from 820 different Apache and Mozilla projects, building the biggest
dataset of issues containing Technical Debt information. To do this, we built
and compared the results of two different classifiers, using Support Vector
Machine and Logistic Regression, to have a good approach to classify these
issues. Of these two classifiers, the first one, with an F1 score of 0.6786, was
able to almost match the performance of a recent classifier with the same
goal, built and published by Li et al. [2022], with an F1 score of 0.686. The
second model, instead, has considerably higher performance, as it reached
an F1 score equal to 0.7722. From this model, we extracted a list of tokens
with a weight attached that helps to explain the model, showing which are
the words that most likely identify Technical Debt issues or Non-Technical
Debt issues. After the labelling, we showed that most of the products have
a percentage of Technical Debt issues between 14.8% and 23.3%, with a
median equal to 18.9%, while outliers can go up to 37.14%. In terms of
priority, among the types Code, Documentation, and Test, the second one
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is the most likely to be paid, but the first one is the quickest one to be
resolved, as almost 43% of the resolved Code debt is paid in the first week of
its reporting. Depending on the products, the percentage of paid debt varies
between 68.86% and 94.74%, showing that often its resolution is considered
a priority by developers. In terms of who resolves these issues, the results
fluctuate in a wider range. Comparing the different projects, we saw that the
creators and the reporters of the debt issues can also be the ones who resolve
it between 43.54% and 93.08% of cases. Taking time into consideration, we
also noticed that Technical Debt issues take more time to be resolved on
average compared to Non-Technical Debt ones. On the other hand, higher
percentages of debt issues are resolved in the first week and in the first month
of their report, showing that, when they are resolved in more than one year,
debt issues take much more time compared to the rest.

6.2 Future Work

The main limitations of the described work are related to the size of the
dataset used to train the model and their performance review. Unfortu-
nately, the process of manual labelling of the single issues does not allow to
increase the scale of the training dataset. To confirm the results obtained by
this study, the two models described in Chapter 4 can be trained and vali-
dated against bigger dataset, like for example the ones labelled by software
developers in private company’s projects. Often, these datasets already con-
tain issues with a Technical Debt label attached, as several teams explicitly
dedicate part of their work-time to repay debt, to avoid to find themselves
working on an unmaintainable software in the long term. Unfortunately, the
access to similar dataset for research purposes was not granted to us. More-
over, the training can be expanded using n-grams instead of single tokens to
identify the context in which some words are used, that would increase the
reliability of the models.

The whole study on Technical Debt performed as part of this research,
in the future should also include all the types of Technical Debt identified by
Alves et al. [2014], as our study was focused on Code, Documentation, and
Test debt. Even if these often represent most of the debt present in issues,
results can significantly change when considering other types of debt, like
Infrastructure Debt or Architecture Debt, that can often require more time
to be addressed compared to simple unit tests or a code change.

This research provides insights to Self-Admitted Technical Debt - Issue
Based management and how developers approach it. As we saw, debt re-
payment occupies a significant part of software developer’s work, and ad-hoc
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solutions to identify and keep track of it, and measure its impact, can be
one of the next challenges that issue tracker systems can have. Knowing the
impact of an implemented workaround after weeks, months, or years, be-
fore its repayment, can give awareness on the importance of Technical Debt
mitigation and save time and money on software development.
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