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Abstract

As proved by the occurrence of the recent NASA Demo-2 mission,
the space sector is featured by a significant push for innovation;
among many other challenges, the ability to extensively exploit
robots to perform in-space operations will play a key role in the
next decades. The research on the on-orbit servicing requires the si-
multaneous processing of the dynamics of both the satellite and the
manipulator, therefore demanding a unified framework to describe
and solve the problem.

Within the thesis, we suggest the use of dual quaternions as
an effective tool to model both the satellite and the robot kinemat-
ics and dynamics. This mathematical framework naturally keeps
into account the complex coupled character of the equations, hence
allowing us to propose a unique nonlinear control law to achieve
coordinated pose tracking, involving both the satellite base and the
end effector.

After developing the necessary nominal controllers, we advocate
for the use of control barrier functions (CBFs) to achieve forward
invariance of the solution with respect to a singularity-free subset
of the state. This novel singularity avoidance controller proves to
be robust to disturbances, as it shows enhanced tracking capability
also when an unforeseen external force enters the system.
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Sommario

Come dimostrato dalla recente realizzazione della missione NASA
Demo-2, il settore spaziale è caratterizzato da una significativa
spinta all’innovazione; tra le tante sfide, la capacità di utilizzare
sistemi robotici per svolgere operazioni in orbita giocherà un ruolo
chiave nei prossimi decenni. La ricerca in questo ambito richiede
una trattazione simultanea della dinamica del satellite e del ma-
nipolatore, facendo quindi appello a una struttura unitaria per la
descrizione e soluzione del problema.

All’interno della tesi viene proposto l’uso dei dual quaternions
per modellare in modo efficiente sia la cinematica che la dinam-
ica del sistema satellite-manipolatore. Questa cornice matemat-
ica è in grado di descrivere la natura complessa e accoppiata delle
equazioni, e consente perciò di sviluppare un unico controllore al
fine di tracciare in modo coordinato un input di posizione e traiet-
toria, sia con il satellite che con il braccio robotico.

Dopo avere sviluppato le leggi di controllo nominali, viene gius-
tificato l’utilizzo delle control barrier functions (CBFs) per ottenere
invarianza controllata della soluzione in un sottoinsieme dello stato
libero da singolarità cinematiche. Questo nuovo controllore rende
il sistema robusto ai disturbi, dato che esplica un migliore traccia-
mento del segnale di riferimento anche in presenza di sollecitazioni
impreviste.
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Chapter1

Introduction

Mankind was born on Earth... It
was never meant to die here.

From Interstellar

When we think about the future of mankind, whether we are
engineers, poets or politicians, we cannot help ourselves but stare at
the sky and imagine an era of space travels, planets colonization and
every other sort of activities that books, movies and science fiction
have been describing throughout the last century.

Leaving the imagination to the movie directors and their akin,
it is still clear that the access to space has opened a wide range of
commercial, military and scientific perspectives which have already
had a huge impact on our everyday life - think about GPS during
the daily commute or the satellite-enabled TV broadcast. In the next
decades the space exploitation is expected to grow and, according to
twomain players in the global economy such asMorgan Stanley and
Merrill Lynch, the space-based market will generate an estimated
revenue between 1100 and 2700 US$bn per year within the first half
of the 2040s [1, 2].

The counterpart to all this is that access to space still has high
costs and technical difficulties which makes it profitable mainly
for a few organizations all around the world; the NASA report in
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CHAPTER 1. INTRODUCTION

[3] highlights how our space exploitation paradigm is based on
expensive pieces of hardware which allow no room for failures and
still need to bringwith them everything they need. This proves to be
limited both from a commercial and scientific viewpoint, whereas
instead we would highly profit of more flexible platforms with an
higher operational autonomy, an extended lifetime and an increased
fault-tolerance.

Another major obstacle to the further development of space ac-
tivities is caused by the so called space debris phenomenon, as pos-
tulated by Kessler [4]; its existence was already under study in the
1960s [5] and eventually led to the creation of the Inter-Agency Space
Debris Coordination Committee (IADC) in 1993 to better face the
global dimension of the problem.

Figure 1.1: Space debris count evolution according to ESA, [6]

The already large space debris population (Fig. 1.1) increases on
a daily basis whenever a collision between two orbiting objects takes
place, whether they are spent upper stages, particles coming from
explosions of satellites or rocket bodies, etc: all these high-speed
orbiting fragments not only represent a risk for operating satellites
in LEO and GEO but also a potential hazard to the future access of
man to space.
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From the previous considerations it is possible to argue that,
even if extra-terrestrial activity is considered a promising land with
almost no boundaries in terms of commercial and scientific oppor-
tunities, there are still a lot of open questions and existing problems
that need to be addressed to further push the boundaries of our
ventures into space.

After briefly mentioning two of the main scientific and technical
challenges which space exploration science needs to take into ac-
count, it is possible to move forward and start analyzing some of the
solutions that have gained growing popularity in the last years.

CubeSats, a particular branch of the smallsat category, are one of
the most innovative elements in the spectrum of viable solutions to
some aspects of the previously highlighted problems; the CubeSat
program was initiated in the early 2000s as a collaboration between
Stanford University and the California Polytechnic State University
[7]. An early concern during the project development was to create
standards that could be used to simplify a large scale production of
the CubeSats and facilitate their subsequent launch into orbit: this
per se is an element of newness in the space sector,where components
and their assemblies are usually a one-of-a-kind solution to a very
peculiar problem. This idea allowed several research institutes and
emerging countries to gain access to space while facing relatively
low development and operational costs, and still has to prove its
full capabilities: in the future CubeSats will probably be deployed
in swarms or constellations [8] to optimize their usage and share
resources, further expanding their range of use.

If the rise of CubeSats leaves the door open to an interesting
future in which a lot of small organizations will be able to afford
their share of real-estate in the near-Earth space environment, still
it poses the question on how such a boost in the amount of in-orbit
objects could be managed from the maintenance and end-of-life
standpoint. As suggested by Morris and Tamanini [9], the possible
presence of an high number of small satellites also at GEO causes
concerns related to the Space Situational Awareness (SSA) and to

3



CHAPTER 1. INTRODUCTION

the tracking capability of the Space Surveillance Network (SSN) for
such small and far objects.

In light of these considerations, it’s reasonable to highlight the
role and the benefits of what will be themain character of this study,
the so called On-Orbit Servicing (OOS).

1.1 On-Orbit Servicing: a brief overview

«The term on-orbit servicing refers to operations conducted on in-
orbit spacecraft intended to accomplish some value-added task.»
[10]

Figure 1.2: The first servicing mission to the Hubble Space Telescope saw
astronauts install a set of specialized lenses to correct the flawed main
mirror in the telescope. Credits: NASA

4



As of now, major space agencies and research institutions, be-
tween which ESA, NASA and DARPA [3, 11–13], have ongoing re-
search programs and planned missions whose key idea is the one
of actively exploiting an orbiting spacecraft to perform a number
of different tasks, which include robotic manipulations, life exten-
sion, towing and inspections. The potential of OOS has widely been
proved by the fiveHubble Space Telescope (HST) servicingmissions
and by the extensive use of robotic manipulators in the assembly,
operation and maintenance of the International Space Station - the
Space Station Remote Manipulator System (SSRMS) or Canadarm2
is perhaps the most famous example. Without neglecting the her-
itage of successful past missions, it is worth underlining that the
foreseeable future of OOS seems to differ in a lot of aspects frompast
experiences; each HST servicing mission had an estimated cost be-
tween 1 and 2 US$bn and was featured by intensive extra-vehicular
activity (EVA) of the crew, hence being a rather not appealing ex-
ample in terms of cost and risk. Recall that the astronauts during
EVA are subject to an heavy physical stress both due to the effort of
the cardiovascular system and to the presence of radiation; this can
lead to a peak metabolic consumption of about 200 kcal/h and to
significant weight losses (0.7 to 2.2 kg) [14]. Next OOSmissions will
likely require partnership with commercial organizations, as in the
case of the NASA OSAM-1 [10]. Moreover, the express purpose of
suchmissions is to «transfer [...] technologies to commercial entities
to help jump-start a new domestic servicing industry» [12], rather
than to be an outstanding scientific and technical unicum with few
chances to be replicated. The underlying belief conveyed by these
words is that OOS really has the potential to widen in a dramatic
way both the commercial and scientific opportunities introduced by
the space frontier.

Even though OOS missions may have very different profiles, a
significant percentage of them is distinguished by the presence of
a robotic subsystem which can be of help in a number of different
situations (docking, refueling, rescuing, active debris removal...).

5



CHAPTER 1. INTRODUCTION

The first appearance of a manipulator in the context of a space
mission canbeplacedback in 1981with the second shuttleflight STS-
2 [15]; from then on, space agencies and research organizations have
put a lot of effort in developing dexterous space manipulators able
to carry on tasks that were previously performed by astronauts in
EVA. Among them the Deutsches Zentrum für Luft- und Raumfahrt
(DLR) has had a long time space robotic program [16], while JAXA,
NASA and DARPA realized a number of successful demonstration
missions featuring space robots [17–19].

1.2 Thesis recap and goals

The content of this thesis can be summarized in the following way:
first, the authors will exploit theDual Quaternions (DQ) formulation
of the 6 DOF dynamics and control of a rigid body [20–25], which
was recently extended to the SMM case by Valverde and Tsiotras
[26, 27], to build a flexible high-fidelity simulation environment de-
signed to reproduce thedynamics of a SMM.This general framework
will then be adjusted to describe the recently installed experimental
platform of theDynamics and Control System Laboratory (DCSL) at the
Georgia Institute of Technology, consisting of a 6R Universal Robot
manipulator (UR10e) attached to the wall via a prismatic joint. Af-
ter numeric verification of the model, the authors will derive the
control laws to perform some pose tracking maneuvers and will test
them against the aforementioned simulation environment. In order
to account for possible kinematic singularities in the manipulator
workspace, a novel CBF based singularity avoidance method will
be proposed. After dealing with the necessary theoretical back-
ground, the results of the numerical simulations will be reported
and discussed to support the validity of the adopted approach.

The purpose of this work is manifold: first, the authors want to
prove the effectiveness of the DQ in the description of a complex
multibody spacecraft-manipulator system. Although the general
problem is widely treated in the literature, the DQ formulation for a

6



multibody robotic system is surprisingly recent, and thereforeworth
using also to fill the gap in the literature. TheDQ algebra stems from
its quaternion counterpart, a formulation which is already familiar
to the guidance, navigation& control (GNC) community, henceprovid-
ing a tool to relate twomain aspects of any OOSmission, i.e. control
of the satellite and of the manipulator. A second goal of the thesis is
to exploit the previously described dynamics environment to derive
nonlinear torque-based control laws and to prove the pose track-
ing capability of the end-effector of the UR10e arm. The problem
setup will be such that it will be straightforward to draw a parallel
between the DCSL testbed and a possible space application of the
aforementioned control laws. Also, the authors will show that the
DQ framework is a particularly suitable one for a control-oriented
description of the problem. After ensuring theoretical convergence
of the controlled system towards the desired state, it will be shown
that the nominal control strategy reveals weaknesses in the presence
of kinematic singularities, which can arise, for example, in the case
of disturbances or model uncertainties. Hence the work will focus
on enforcing controlled forward invariance of the set of joints val-
ues, so that it will be possible to prove that the space of the feasible
solutions is singularity-free. In conclusion, the purpose of the last
section is to further clarify the overall framework through the intro-
duction and discussion of practical numerical examples; moreover,
the simulations will prove the suitability of the above explained
approach if tested against possible different solutions.

1.3 Literature review and state of the art

The authors relied on several other previous works in order to un-
derstand and then try to give their contribution to the treatment of
the topics involved in this thesis. The present section ismeant to be a
brief literature review and inquiry on the state of the art, i.e. the sci-
entific foundations anddevelopments that brought the discussion to
the current state. Some of the documents involved were thoroughly
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CHAPTER 1. INTRODUCTION

analyzed, some others are reported because of their undisputed rel-
evance for a more general understanding of the problems and of
their possible solutions. For the sake of clarity a further subdivision
on the basis of the different topics is hereby made.

1.3.1 Spacecraft-mounted manipulators

Once proved that OOS can increase flexibility and provide addi-
tional opportunities to the present and future of the space infras-
tructure, it is necessary to point out that modeling and operating a
Spacecraft-mounted Manipulator (SMM) remains a complex task with
a lot work that still needs to be carried out.

A classic description of a SMM features the presence of a base
with 6 degrees of freedom (6 DOFs) plus a N-DOFs manipulator
attached to the base, hence leading to a multibody systemwith 6+N
DOFs. The main difference between a space robot and a ground-
based manipulator is that the SMM doesn’t experience constraints
due to the presence of the ground and is usually subject to reduced
gravity force, hence resulting in the conservation of linear and angu-
lar momentum. A further distinction can be made between SMMs,
depending on whether the spacecraft base is actively controlled in
both its translational and rotational dynamics, only in the rotational
one (i.e. no thrusters, only reaction wheels) or completely non-
actuated and therefore free to move accordingly to themotion of the
manipulator. The first two cases (fully or partially actuated base)
are often grouped together and referred to as free-flying case, while
the last one goes under the name of free-floating case [28]. As it
will be clear in the following, these two cases give birth to highly
different problems in the description of the systems, which need to
be taken into account with a number of different mathematical tools
and models.

The free-floating case has received extensive attention from sci-
entific literature, its appeal also being due to the fact that achieving
end-effector control assuming a non-actuated base means saving
fuel and electric energy; path planning in this case has to compen-
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sate a priori for the motion of the base caused by the manipulator.
Sticking to this framework Vafa and Dubowsky in [29] proposed a
Virtual Manipulator (VM), i.e. a massless kinematic chain attached
to the so called Virtual Ground, a virtual point coinciding with the
center of mass of the SMM. Due to the conservation of the system
center of mass, the virtual kinematic chain originating in this point
has some useful properties which allowed the authors to describe
the kinematics and dynamics of the free floating robot in a much
simpler way. Their idea was further developed by Liang et al. in
[30] with the Dynamically Equivalent Manipulator (DEM), not only
a useful mathematical abstraction but also a physically realizable
platform which proved its utility also in a testing environment [31].

A solution of the kinematic problem in the framework of the
under-actuated base was presented by Umetani and Yoshida in [32]
recurring to a Generalized Jacobian Matrix (GJM) which takes into
account inertial properties of the system and compensates the ro-
tational movement of the base under assumptions of non-attitude
control of the main satellite body. The authors proved trajectory-
tracking capability under the assumption of non-singularity of the
GJM. Papadopoulos and Dubowsky pointed out that such singular-
ities may arise not only as a consequence of the kinematic properties
of the system, but can depend on its masses and inertias, and there-
fore can be addressed to as dynamic singularities [33]. Unlike their
kinematic counterparts, which are fixed in the inertial workspace,
dynamic singularities are path dependent; this happens because there
is not a uniquemapping from the singular point in the joint space to
a point in the inertial workspace, as each point in the manipulator
workspace can be reached with infinite different system configu-
rations for its redundant nature. Therefore a position in the end-
effector workspace can or cannot be singular depending on the joint
configuration which leads to that position. The workspace locations
that may be reached in singular configurations give birth to the
Path Dependent Workspace (PDW), while subtracting the PDW from
the reachable workspace results in the Path Independent Workspace
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CHAPTER 1. INTRODUCTION

(PIW), i.e. the collection of workspace points that «can be reached
by any path, assuming that this path lies entirely in the PIW» [33].

The work by Papadopoulos and Dubowsky shed some light on
the complex kinematic and dynamic coupling between the manipu-
lator and its base in the free-floating case; they highlighted the fact
that even if more energy-efficient, the design of a safe non-attitude
controlled strategy for a SMMwould come across significant issues.

The analysis of free-flying SMM is therefore resumed; this par-
ticular configuration presents criticalities related to fuel and energy
consumption, while on the other hand it has some advantages that
makes it a valuable tool in thefield ofOOS. The simultaneous control
of base and manipulator (coordinated control) allows the end-effector
to reach the desired position and attitude (in the following, pose) in
the optimal configuration to apply a prescribed force, for example,
or to couple the end-effector motion with a base motion such that
also pointing requirements are fulfilled, etc. The SMM coordinated
control has been attempted in a variety of different ways; Dubowsky
and Papadopoulos in [34] adopted a Lagrangian approach relying
on null potential energy (null gravity and null strain forces) and
writing the system Lagrangian exploiting equivalence with the sys-
temkinetic energy; they also proposed a controller in the operational
space. Highlighting difficulties in the hand derivation of Lagrange’s
equation, Stoneking [35] presented a method based on Newton-
Euler equations of motion for a two-body system connected by a
joint; as highlighted by the author, the approach is easily adjustable
to an arbitrarily complex N-body tree-topology system. Antonello
and al. in [36] expanded the existing Newton-Euler approach to co-
ordinated control design, involving accurate treatment of the system
actuators (thrusters andwheels) and achieving simultaneous station
keeping of the base and end-effector trajectory tracking; the control
design is carried out in the joint space, assuming that the reference
trajectory is in a singularity-free space.

In conclusion, the research field on SMMs modeling has been a
vivid one since the ’80s, whenmannedmissions onboard the shuttle
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started to urge scientists to find more effective ways to describe and
plan space manipulators activities. Even in front of the aforemen-
tioned works, it remains clear that further steps in the understand-
ing of the problem from different perspectives can be done, along
with innovative solutions to better tackle such always challenging
problems.

1.3.2 Kinematic singularities avoidance

The American National Standard for Industrial Robots and Robot
Systems defines singularities as «a condition caused by the collinear
alignment of two ormore robot axes resulting in unpredictable robot
motion and velocities» [37]. Singular configurations cause diffi-
culties in the inverse mapping from Cartesian space to joint space
(inverse kinematic), because in correspondence of a joint space singu-
larity inifinite inverse kinematic solutions exist, namely the Jacobian
(the matrix mapping joint velocities into Cartesian ones) becomes
rank deficient and its inverse cannot be found. A number of differ-
ent workarounds have been investigated in the literature to restrict
problems originating from singularities, providing numerical and
physical robustness to the system; a main contribution to this field
of research is the one from Nakamura and Hanafusa [38], who in-
troduced a singularity robust inverse (SR-inverse) of the Jacobian
matrix based on the simple but effective idea of adding an extra
parameter to the pseudo-inverse of the Jacobian when the system
is close to singularity. This method has been successfully applied
to other cases featuring close-to-singular matrix inversion as in the
case of control moment gyros steering laws [39, 40]. Another class
of methods is based on the so called null-space, derived from re-
dundant manipulators and adapted to the non-redundant case: the
end-effector trajectory is parametrized using an additional depen-
dent variable, which is not the time, obtaining an augmented joint
space. The consequent augmented Jacobian will maintain rank also
at singular points, provided that a suitable parameterization has
been used (see [41, 42]).
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1.3.3 Control barrier functions

The study of barrier functions and their alternative forms is tightly
related to the notion of safety, in particular when safety can be
described drawing a parallel with the invariance of a set, i.e. the fact
that a trajectory starting from a certain "safe" set will never reach
the complement of such set, i.e. the "unsafe" region. A landmark
result in this sense was obtained by Nagumo, who postulated the
necessary and sufficient conditions to obtain set invariance [43] for
a dynamical system in the form ẋ = f(x). This result was then
adapted to prove safety of nonlinear andhybrid systems introducing
the notion of barrier certificates [44, 45]. these works, initially valid
in the context of closed dynamical systems (i.e. systems without
input), were later extended to the case of open dynamical systems
(ẋ = f(x) + g(x)u), earning relevance for the control theory and
leading to the nameControl Barrier Functions (CBF) [46]. Themodern
meaningofCBF is related to theworkofAmes andal. in [47, 48], who
extended the barrier function condition which was initially limited
to the boundary of the set to thewhole set, therefore allowing design
of controllers satisfying safety requirements. The effectiveness of
this approach has been proved by the wide range of its applications
in different fields, including robotics (see [49] for an overview of the
different applications).

1.4 Thesis structure

Chapter 2 develops the main mathematical tools of this thesis.
Sec. 2.2 introduces quaternions and dual quaternions as two dif-
ferent groups within the Clifford algebra framework, highlighting
similarities between the two cases. Sec. 2.3 relates the dual quater-
nions to the description of the physicalmodel of the SMM. In Sec. 2.4
the authors derive the equations of the system, highlighting a pos-
sible solution routine for a simulation environment.
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Chapter 3 is about the SMM control design strategy. After a
general layout of the main ideas behind feedback linearization in
Sec. 3.2, Sec. 3.3 investigates the dual quaternion form of the pro-
posed approach. Sec. 3.4 exploits the above mentioned framework
to derive and discuss validity of nolinear control laws for the UR10e
manipulator.

Chapter 4 displays the approach pursued by the authors to en-
sure singularity robustness even in case of disturbances, uncertain-
ties, etc. Sec. 4.2 offers a brief review of the control barrier functions
theory, while Sec. 4.3 applies the tool to the above mentioned singu-
larity avoidance scheme, with a particular focus on the manipulator
of interest.

Chapter 5gathers the simulations and results performed through-
out the research to ensure feasibility, validity and suitability of the
whole work. Sec. 5.2 includes the technical details and specifica-
tions of the UR10e manipulator. Sec. 5.3 collects the simulations
which have been carried out to numerically verify the model of the
arm. Sec. 5.4 shows the numeric generation of the reference pose
trajectories in terms of dual quantities. Sec. 5.5 exploits the previ-
ously derived control laws to track the reference pose, illustrating 3
different approaches to deal with the problem. In Sec. 5.6 a num-
ber of different simulations and results are displayed to assess the
performance of the proposed solution strategy.

Chapter 6 provides a final overview of the work, drawing the
conclusions and making some final remarks on possible next devel-
opments of the research.
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Chapter2

Dual quaternion in robotics

2.1 Introduction

Dual quaternion (DQ) algebra provides the mathematical frame-
work for the development of this work. To the authors’ view, its
most attractive feature is the inherent potential of expressing a rigid
spatial motion with a representation close to the minimal one; the
special Euclidean group SE(3), which is widely used in robotics to rep-
resent rigid body motions, is the set of all 4x4 real matrices T such
thatNote that the position

and orientation of a rigid
body expressed in some

coordinate system is
known as pose.

T =
[
R p

0 1

]
, (2.1)

whereR ∈ SO(3) represent the orientation of the reference frameand
p ∈ R3 its origin. This representation involves the use of 16 scalars,
6 of which are independent, while the dual quaternion formulation
implies 8 scalars subject to two scalar constraints. A wide use of
the latter has been made to parametrize a rigid body displacement
within the screw theory [50].

Another benefit is that the DQ formulation allows ’recycling’ of
a great part of the quaternion-based control strategies which have
been successfully applied to the spacecraft attitude control prob-
lem in the past. Possible drawbacks of the DQ approach are the
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loss of physical sense with respect to a vector-matrix formulation,
and the unwinding phenomenon leading to large (>180°) physical ro-
tations even when smaller rotations exist to achieve the same final
attitude; this problem has already been tackled in other works (see
for example [25]).

Once the algebraic framework will be established, the chapter
will deal with the physical and mathematical model of the problem
at hand, hence The physical model

provides the "engineer’s
perception" of the real
system, i.e. it involves
abstraction and
assumptions, while the
mathematical model is in
charge of developing
equations to describe the
behavior of the physical
model

leading to the representation of the spacecraft and its
manipulator(s) in terms of sketches and algebraic/differential equations.

Sec. 2.2 will introduce some basic notions regarding Clifford
algebras and then will put both quaternions and dual quaternions
within this context, in order to highlight differences and similarities
between the two. After the neededalgebraic tools aremade available
to the reader, Sec. 2.3 will deal with the physical model of the real
system (bodies, joints, masses, inertias. . . ) and with the algebraic
quantities needed to represent and characterize such features and
the existing relationships between them. Sec. 2.4 will cover the
differential and algebraic equations which describe the dynamics
and kinematics of the multibody system.

2.2 Dual quaternions mathematical

preliminaries

2.2.1 Clifford algebras

The common idea of Euclidean vector space can be extended to
the notion of Clifford space, which is populated by more general
elements, called multivectors. The definition of a product between
multivectors (Clifford product or geometric product) generates a
Clifford algebra.

These algebras are unital and associative over a vector space V
with quadratic form v

2 = Q(v), v ∈ V . The set of basis vectors
e0 = 1 (unit, or scalar) and {e1, . . . , en} constitutes a standard basis
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CHAPTER 2. DUAL QUATERNION IN ROBOTICS

for V , and e2
i
∈ {+1,−1, 0}. Every Clifford algebra Cl(p,q,r)(V,Q)

is identified by the previously defined V , Q and by its signature
elements (p, q, r) which satisfy the relationship n = p + q + r, where
n is the dimension of V . The basis elements e

i
satisfy

e2
i
=


+1 if i ∈ {1, . . . , p}
−1 if i ∈ {p + 1, . . . , p + q}
0 if i ∈ {p + q + 1, . . . , n}

(2.2)

and
e
i
e
j
+ e

j
e
i
= 0, if i 6= j. (2.3)

Using Eq. (2.2) and Eq. (2.3), a product of basis vectors

e
abc...d

, e
a
e
b
e
c
. . . e

d
, {a, b, c, . . . , d} ⊆ {1, . . . , n}, (2.4)

can always be simplified such that each e
i
appears at most once. If

the basis vectors appear in the form

e
k1k2...kp

, k
i
∈ {1, . . . , n} (2.5)

where k1 < k2 < . . . < kp, then the product in Eq. (2.5) is grade-p,
or e

k1k2...kp
∈
∧ p

V , the p-th exterior algebra of V . This creates a
canonical basis for the Clifford algebra expressed as

Cl(p, q, r) =
i=n⊕
i=0

∧
iV. (2.6)

The Clifford algebra in Eq. (2.6) can be decomposed as

Cl(p, q, r) = Cl+(p, q, r)⊕ Cl−(p, q, r), (2.7)

where the even terms and e0 form a sub-algebra closed under mul-
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tiplication

Cl+(p, q, r) =
i=n⊕
i = 0
i even

∧
iV. (2.8)

2.2.2 Quaternions

The relationshipbetweenquaternions andCliffordalgebras is straight-
forward if the algebraCl(0,2,0)

(
R2
, Q(v)

)
is considered,whereQ(v) =

−v
2
1 − v

2
2 given v = v1e1 + v2e2. The canonical basis for this algebra is

{1, e1, e2, e12}, and reminding Eq. (2.2) it is immediate to write

e21 = e
2
2 = −1

e212 = e12e12 = e1e2e1e2 = −e1e1e2e2 = −(−1)(−1) = −1 (2.9)
e1e2e12 = e1e2e1e2 = −e1e1e2e2 = −e21e

2
2 = −(−1)(−1) = −1

Recalling the definition of quaternions by Lord Hamilton (1843),
H , {q = q0+q1i+q2j+q3k : i2 = j2 = k2 = ijk = −1, q0, q1, q2, q3 ∈ R}
defines a four-dimensions associative algebra over the real numbers
field. It is straightforward to see that Cl(0,2,0) ' H. In detail,

Cl(0,2,0) H
e0 1
e1 i
e2 j
e12 k

Table 2.1: Comparison between Cl(0,2,0) and H
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Operation Definition

Addition a + b = (a0 + b0, ā + b̄)

Multiplication by scalar λa = (λa0, λā)

Multiplication ab = (a0b0− ā · b̄, a0b̄+b0ā+ ā× b̄)

Conjugate a
∗ = (a0,−ā)

Dot product a · b = (a0b0 + ā · b̄, 03×1) =
1
2 (a
∗
b +

b
∗
a)

Cross product a × b = (0, a0b̄ + b0ā + ā × b̄) =
1
2 (ab− b

∗
a
∗)

Norm ‖a‖ =
√
a · a

Table 2.2: Quaternion operations

Quaternions are often decomposed in a scalar and a vector part
hence becoming q = [q0, q̄]

T where q0 ∈ R, q̄ = [q1, q2, q3] ∈ R3.
The quaternion formulation is particularly suitable to display ro-

tations, but since these are described by three independent param-
eters the unit norm constraint is enforced; hence, each quaternion
representing rotations is part of the set defined as Hu = {q ∈ H :
q
∗
q = qq∗ = 1}, 1 = [1, 0, 0, 0]T . The quaternion expression of a

rotation is related to the Euler’s rotation theorem; every rotation
quaternion can be built accordingly as q = [cos(θ/2), n̄ sin(θ/2)]T ,
being n̄ the Euler axis and θ the corresponding angle.

The orientation of a frameYwith respect to a frameX is expressed
as q

Y/X
, and q∗

Y/X
q
Y/X

= q
Y/X
q
∗
Y/X

= 1. Given three different refer-
ence frames X, Y, Z,

q
Z/X

= q
Y/X
q
Z/Y
. (2.10)
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Any 3-dimensional vector s̄, expressed in a reference frame X such
that s̄X ∈ R3, can be expressed as a quaternion sX = [0, s̄X]T be-
longing to the vector quaternion set Hv = {q ∈ H : q0 = 0}; this
formulation allows to exploit the quaternion formulation to express
a change of reference frame, as in

sY = q∗
Y/X
sXq

Y/X
= q

X/Y
sXq∗

X/Y
. (2.11)

In addition, given s ∈ Hv it is possible to define an operator
[·]× : Hv 7→ R4×4 as

[s]× =
[

0 01×3
03×1 [s̄]×

]
, where [s̄]× =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

 . (2.12)

The quaternion product can be represented in the matrix-vector
product form by suitably defining the left and right quaternion
multiplication operators J·K

L
, J·K

R
: H 7→ R4×4; if a = [a0, ā]

T
, b =

[b0, b̄]
T ∈ H, then

ab , JaK
L
∗ b , a ∗ JbK

R
, (2.13)

with

JaK
L
=

a0 −ā

ā
T
a0I3 + [ā]×

 and JbK
R
=

b0 −b̄

b̄
T
b0I3 − [b̄]×

.
(2.14)

As a last remark, the spatial attitude kinematics of a reference frame
Y expressed with respect to a frame X evolves according to

q̇
Y/X

= 1
2qY/Xω

Y

Y/X
= 1
2ω

X

Y/X
q
Y/X
, (2.15)

where ωZ
Y/X

= [0, ω̄Z
Y/X

]T ∈ Hv, and ω̄Z
Y/X

is the angular velocity of
frame Y with respect to frame X expressed in Z−frame coordinates.
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2.2.3 Dual quaternions

Exploiting the very same frameworkof theprevious two sections,we
first consider a Clifford algebra Cl+(0,3,1)

(
R4
, Q(v)

)
whose standard

basis {e1, e2, e3, e4} fulfill Eq. (2.2), leading to e21 = e
2
2 = e

2
3 = −1, e24 =

0. Given an element v = v1e1+v2e2+v3e3+v4e4,Q(v) = −v
2
1−v

2
2−v

2
3;

the canonical basis for this algebra can be expressed as in Eq. (2.6),
therefore leading to {e0, e12, e13, e14, e23, e24, e34, e1234}.

Two of themost relevant properties arising fromClifford algebra
vectors are hereby reported:

e212 = e
2
13 = e

2
23 = e12e13e23 = −1,

e21234 = −e123e
2
4e123 = 0.

(2.16)

The dual quaternion group is defined as

Q
d
= {−1, i, j, k, ε, εi, εj, εk : i2 = j2 = k2 = ijk = −1,

εi = iε, εj = jε, εk = kε, ε 6= 0, ε2 = 0}. (2.17)

Cl
+
(0,3,1) H

d

e0 1
e12 i
e13 j
e23 k
e34 εi

e24 −εj

e14 εk

e1234 −ε

Table 2.3: Comparison between Cl+(0,3,1) and Hd

As for the quaternion case, it is interesting to match the algebra
Cl

+
(0,3,1) with the dual quaternion algebra in Eq. (2.17) (see Table 2.3).
The vector dual quaternion set will be extensively used in this

work; in a similar fashion to what already done for quaternions it is
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defined as Hv
d
, {q = q

r
+ εq

d
: q
r
, q
d
∈ Hv}, where q

r
, q
d
will be

referred to as real and dual part of the dual quaternion and ε is the
dual unity. The definition of the dual quaternion operations will
closely follow the one by Filipe and Tsiotras in [25]; a table featuring
the different operations is hereby reported.

Operation Definition

Addition a + b = (a
r
+ b

r
) + ε(a

d
+ b

d
)

Multiplication by scalar λa = (λa
r
) + ε(λa

d
)

Multiplication ab = (a
r
b
r
) + ε(a

d
b
r
+ a

r
b
d
)

Conjugate a
∗ = (a∗

r
) + ε(a∗

d
)

Dot product a ·b = (a
r
·b
r
)+ε(a

d
·b
r
+a

r
·b
d
) =

1
2 (a

∗
b + b∗a)

Cross product a×b = (a
r
×b

r
) + ε(a

d
×b

r
+a

r
×

b
d
) = 1

2 (ab− b
∗
a
∗)

Circle product a ◦ b = (a
r
· b
r
+ a

d
· b
d
) + ε0

Swap a
S = a

d
+ εa

r

Norm ‖a‖ =
√
a ◦ a

Vector part vec(a) = (0, ā
r
) + ε(0, ā

d
)

Table 2.4: Dual quaternion operations

It is also useful to define the unit dual quaternion which will often
be mentioned in the Recall that 0 = [0, 0̄]T is

the null quaternion,
while 0 = 0 + ε0.

following of the discussion, namely 1 = 1 + ε0.
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Similarly to what was done in Eq. (2.12), the operator [·]× : Hv
d
7→

R8×8 can be created, where

[s]x =
[
[s
r
]× 04×4

[s
d
]× [s

r
]×

]
. (2.18)

In order to express dual quaternionmultiplication in themore famil-
iar matrix-vector form, two other operators J·K

L
, J·K

R
: H

d
7→ R8×8

are defined; if a = a
r
+ εa

d
, b = b

r
+ εb

d
and ? is the operator

representing dual quaternion product as a matrix-vector product,
then

ab , JaK
L
? b , JbK

R
? a, (2.19)

where

JaK
L
=
[
Ja
r
K
L

04×4
Ja
d
K
L

Ja
r
K
L

]
and JbK

R
=
[
Jb
r
K
R

04×4
Jb
d
K
R

Jb
r
K
R

]
. (2.20)

Two properties descending from Table 2.4 and Eq. (2.19) are worth
mentioning as they will be used in the following of this work; the
first shows that dual quaternion cross product is invariant to frame
transformation, i.e.

aY × bY = (q∗
Y/X
aXq

Y/X
)× (q∗

Y/X
bXq

Y/X
) = q∗

Y/X
(aX × bX)q

Y/X
.

(2.21)
Eq. (2.21) can be easily proved:

q∗
Y/X

(aX × bX)q
Y/X

= q∗
Y/X

(aXbX − (bX)∗(aX)∗)q
Y/X

= q∗
Y/X
aXbXq

Y/X
− q∗

Y/X
(bX)∗(aX)∗q

Y/X

= q∗
Y/X
aXq

Y/X
q∗
Y/X
bXq

Y/X

− q∗
Y/X

(bX)∗q
Y/X
q∗
Y/X

(aX)∗q
Y/X

= (q∗
Y/X
aXq

Y/X
)× (q∗

Y/X
bXq

Y/X
)

= aY × bY

(2.22)
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The second property is about the left and right dual quaternion
multiplication operators defined in Eq. (2.19):

JqK
L
Jq∗K

R
Jq∗K

L
JqK

R
= I8×8,

Jq∗K
L
JqK

R
JqK

L
Jq∗K

R
= I8×8.

(2.23)

A simple proof is hereby reported:

JqK
L
Jq∗K

R
Jq∗K

L
JqK

R
? a = JqK

L
Jq∗K

R
Jq∗K

L
? aq

= JqK
L
Jq∗K

R
? (q∗aq)

= JqK
L
? (q∗aq)q∗ (2.24)

= q(q∗aq)q∗

= qq∗︸︷︷︸
1

aqq∗︸︷︷︸
1

.

Note that spatial rigid body motions are uniquely defined by six
independent parameters, corresponding to three rotations and three
translations. As a dual quaternion encompasses eight scalars, there
must be two scalar constraints such that two scalars can be recovered
from the other six independent elements. The relation

q
B/I

= q
B/I,r

+ εq
B/I,d

= q
B/I

+ ε12qB/Ir
B

B/I
(2.25)

describes the pose of the reference frame B with respect to the
frame I, where rB

B/I
is the vector quaternion position expressing

the distance from the origin of frame I to the origin of frame B, ex-
pressed in frame B; the two necessary constraints are expressed as
q
B/I,r

· q
B/I,r

= 1 and q
B/I,r

· q
B/I,d

= 0. Moreover, a dual quater-
nion q expressing a pose transformation is a unit dual quaternion,
q ∈ Hu

d
, i.e. it satisfies the relation q · q = q∗q = 1.

Drawing a parallel with Eq. (2.10), having two pose transforma-
tions q

Y/X
and q

Y/Z
, the pose transformation leading from X to Z is
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CHAPTER 2. DUAL QUATERNION IN ROBOTICS

the composition of the previous two through the product

q
Z/X

= q
Y/X
q
Z/Y
. (2.26)

Another key quantity in the description of a spatial rigid body mo-
tion is the dual velocity, a dual quantity collecting both the linear
and angular velocity components. Its expression is

ωZ

Y/X
= q∗

Z/Y
ωY

Y/X
q
Z/Y
, (2.27)

where ωZ

Y/X
= ωZ

Y/X
+ ε(vZ

Y/X
+ ωZ

Y/X
× rZ

Y/X
) ∈ Hv

d
describes the

dual velocity of the frame Y with respect to a frame Xwritten in a Z
coordinate system. BothωZ

Y/X
, v
Z

Y/X
∈ Hv,ωZ

Y/X
= [0, ω̄Z

Y/X
]T , vZ

Y/X
=

[0, v̄Z
Y/X

]T and ω̄Z
Y/X
, v̄
Z

Y/X
∈ R3 are the usual Cartesian velocities.

The kinematic equation describing the time evolution of the pose

q̇
Y/X

= 1
2qY/Xω

Y

Y/X
= 1
2ω

X

Y/X
q
Y/X

(2.28)

is the dual counterpart of Eq. (2.15), but it also includes an informa-
tion on the position of the origin of Y with respect to X.

Since the overall model has to be completely written in the dual
quaternion formulation to fully take advantage of it, also forces
and torques have to be encoded in a dual vector as already done for
kinematic quantities; by doing this the dual wrench (force and torque)
applied to a certain point of a multibody system can be shifted
to another point of the same system by simply applying the dual
quaternion pose transformation rules. The wrenchWZ(O

p
) ∈ Hv

d
,

i.e. the force-torque pair applied to a point O
p
and expressed in

Z−frame coordinates, is written as

WZ(O
p
) = fZ + ετZ, (2.29)

and fZ = [0, f̄Z]T , τZ = [0, τ̄Z]T . In order to express the dynamical
equivalent of Eq. (2.29) if reported to another pointO

q
, the transport
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theorem yields to

WZ(O
q
) = fZ + ε(τZ + rZ

p/q
× fZ), (2.30)

where rZ
p/q

is the distance from O
q
to O

p
in frame Z. If instead

one wants to study the effect of the wrench WX(O
X
) = f

X + ετX

on another point O
Y
expressed in a different reference frame Y, i.e.

W
Y(O

Y
), the following holds:

WY(O
Y
) = q∗

Y/X
WX(O

X
)q
Y/X

= (q
Y/X

+ ε12r
X

Y/X
q
Y/X

)∗(fX + ετX)(q
Y/X

+ ε12r
X

Y/X
q
Y/X

)

= (q∗
Y/X

+ ε12q
∗
Y/X
rX∗
Y/X

)(fX + ετX)(q
Y/X

+ ε12r
X

Y/X
q
Y/X

)

= (q∗
Y/X

− ε
1
2q
∗
Y/X
rX
Y/X

)(fX + ετX)(q
Y/X

+ ε12r
X

Y/X
q
Y/X

)

= (q∗
Y/X

− ε
1
2q
∗
Y/X
rX
Y/X

)
(
fXq

Y/X
+ ε(τXq

Y/X
+

+ fX12r
X

Y/X
q
Y/X

)
)

= q∗
Y/X
fXq

Y/X
− ε(12q

∗
Y/X
rX
Y/X
fXq

Y/X
) (2.31)

+ ε(q∗
Y/X
τXq

Y/X
+ q∗

Y/X
fX

1
2r
X

Y/X
q
Y/X

)

= fY + ε(τY + 1
2q
∗
Y/X
fXq

Y/X
q∗
Y/X
rX
Y/X
q
Y/X

−
1
2q
∗
Y/X
rX
Y/X
q
Y/X
q∗
Y/X
fXq

Y/X
)

= fY + ε(τY + 1
2f
YrY
Y/X

−
1
2r
Y

Y/X
fY)

= fY + ε
(
τY + 1

2f
YrY
Y/X

−
1
2(r

Y

Y/X
)∗(fY)∗

)
.

Applying the quaternion cross product as defined in Table 2.2, the
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expression becomes

WY(O
Y
) = q∗

Y/X
WX(O

X
)q
Y/X

= fY + ε(τY + fY × rY
Y/X

)

= fY + ε(τY + rY
X/Y
× fY)

(2.32)

As expected, Eq. (2.32) shows that in order to express a wrench
in a different reference frame it is not enough to rotate its compo-
nents, but a transport term has to be added to obtain a dynamically
equivalent condition.

As a recap, Table 2.5 collects somequantities of interest expressed
with the previously explained tools.

R3 H H
d

Position r̄
Y

Y/X
r
Y

Y/X
= [0, r̄Y

Y/X
]T q

Y/X
= q

Y/X
+

+ε1
2qY/Xr

Y

Y/X
Attitude − q

Y/X

Linear

velocity

v̄
Y

Y/X

v
Y

Y/X
=

[0, v̄Y
Y/X

]T
ω
Y

Y/X
= ωY

Y/X
+

+ε(vY
Y/X

+ωY
Y/X
× rY

Y/X
)

Angular

velocity

ω̄
Y

Y/X

ω
Y

Y/X
=

[0, ω̄Y
Y/X

]T

Force f̄
Y

f
Y = [0, f̄Y]T

W
Y = fY + ετY

Torque τ̄
Y

τ
Y = [0, τ̄Y]T

Table 2.5: Variable construcion in the different frameworks
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2.3 Physical model of a spacecraft

multibody robotic system

2.3.1 Assumptions

As a first step, we highlight the main assumptions that were made
in the transition from the real system to the physical one:

• All the bodies constituting the overall system are considered
rigid. This is reasonable since there is no interest in studying
possible structural effects; possible deformations are consid-
ered negligible when compared to rigid bodymotion for what
concerns computations of the system position/orientation.

• The masses of some elements of the manipulator (joints, mo-
tors, . . . ) are lumped into the link masses; similarly, all the
components attached to the satellite base (instruments, solar
panels, . . . ) are neglected and their mass is part of the base
mass. All the rigid bodies have uniform and constant density;
this means that, for example, no fuel consumption is consid-
ered when it comes to mass properties of the base.

• No friction force due to the interaction between different bod-
ies has been taken into account; every degree of freedom is
either completely blocked by reaction forces (e.g. translational
motions for a revolute joint) or subject to null force if not con-
strained. This assumption has indeed some significant effects
on the overall modeling and simulation framework; thinking
of friction as a velocity-dependent force, it is however rea-
sonable to neglect it whenever mechanical parts in contact
are moving at low relative velocities, which may be the case
for a spacecraft mounted manipulator and in particular for
the problem of interest. On the other hand, involving a non-
conservative force into the model means that the mechanical
energy is not conserved, thus changing the system’s behavior
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in a number of different situations. Dissipative effects, which
must be carefully considered in the design of a space mission,
are however out of the scope of this discussion; it would be
interesting to consider them in a further development of this
work to get an idea of their impact on the system.

• When dealing with the generation of a control input, no ac-
tuator dynamics will be considered; the control forces and
torques introduced in the system will therefore correspond to
the ideal ones computed with the different control strategies.
Given the performances of the modern actuators, especially
when it comes to the field of robotics, it is assumed that they
will accurately reproduce the ideal control profile.

2.3.2 System topology

Intuitively, it is straightforward to imagine a SMM as a multibody
system made up by the combination of a base (the satellite itself)
and one or more multibody subsidiary structures, the manipula-
tors, attached to the base through some kind of connections. This
idea, although basic, is nonetheless able to capture the core of the
problem, and it is the starting point of the proposed analysis. The
connections between the manipulators and the base and between
the manipulator links themselves are described by different joint
types, which define the constraint imposed by the connection to its
adjacent bodies; the possible joint types for the model at hand will
be

• Revolute (R)

• Prismatic (P)

• Spherical (S)

• Cylindrical (C)

• Cartesian (U).
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Figure 2.1: Canadarm2 and Dextre, the Special Purpose Dexterous Ma-
nipulator. Credits: ESA/NASA

Given thismain framework,which is supportedby thegeneric layout
of a space manipulator (see an example in Fig. 2.1), the SMM can be
thought of as a Directed Acyclic Graph G(v, e), where v is the number
of vertices and e the number of edges; this graph corresponds to
a directed and rooted tree structure where direction of the edges
matters. The rigid bodies composing the system will be the nodes
(vertices), while the joints will act as the edges (Fig. 2.2).

Figure 2.2: Graph representation of a spacecraft mounted manipulator
with two branches.

In order to render relationships between elements at the graph
level, i.e. to describe the system’s topology, two different matrices
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are used, namely C and T . The first is the incidence matrix, which
highlights the type of connection between the elements of the graph;
each row inCwill represent the ith joint, while every column gathers
information about the jth body. Thus, the element c

ij
returns the

relationship between joint i and body j in the form

c
ij
,


1 if joint i is proximal, body j is distal
0 if joint i is not connected to body j
−1 if joint i is distal, body j is proximal.

(2.33)

T is instead the branch termination vector and it defines whether a
body j terminates a branch, according to

t
j
,

{
1 if body j terminates a branch,
0 otherwise.

(2.34)

As a last remark, two operators P[·] andN[·] are defined to extract in-
formation fromC, T ; given either the incidence matrix or the branch
termination vector, or a single row/column of one of them, P[·] re-
turns the indices of the "1" entries whileN[·] does the same for "−1"
values.

Once the system’s configuration is known in terms of number
of branches, number of bodies per branch and types of joints, these
information uniquely define some meaningful quantities. If B is
the number of branches, then i ∈ {1, . . . , B} identifies a particular
branch andN

i
is the number of bodies in that branch, whileN is the

total number of bodies; similarly, if the system has J joints, d
i
is the

number of degrees of freedom of the ith joint, i ∈ {1, . . . , J}. Hence,
N = 1 + J where J =

∑B

i=1Ni, cause the first and last element of the
manipulator chain is always a rigid body; the previous expressions
of C and T can be specialized, becoming C ∈ RJ×N and T ∈ RN.
D =
∑J

i=1 diwill be the number of degrees of freedomallowedby the
joints (e.g., the number of degrees of freedom of the manipulator),
and conversely R =

∑J

i=1 ri =
∑J

i=1(6 − d
i
) will be the number of
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reaction forces exerted by all the joints.
A vector Y ∈ R8N collecting the dual velocities of all the bodies

can be defined as

Y ,



ω 1

1/I

...

ω i

i/I

...

ω N

N/I


, (2.35)

whereω 1

1/I
is the velocity of the base, i.e. the satellite. The collection

of all the joints generalized coordinates Γ ∈ RD can be found as

Γ ,



Γ
J1
...

Γ
Ji
...

Γ
JJ


. (2.36)

Note that the size and parametrization of each Γ
Ji
varies upon the

type of joint J
i
, according to Table 2.6 (see [27]). The generalized

coordinates of each joint
are always written in the
reference frame of the
joint itself

A three-axial rotation
due to a spherical (S)
joint is modeled with a
3-2-1 (ψ− θ− φ)
Eulerian rotation

Joint type Generalized joint coordinates Γ
Ji

d
i
(DOF)

R θ
i/ k
∈ R1 1

P z
i/ k
∈ R1 1

S [φ
i/ k
, θ
i/ k
, ψ
i/ k

]T ∈ R3 3

C [θ
i/ k
, z
i/ k

]T ∈ R2 2

U [x
i/ k
, y
i/ k
, z
i/ k

]T ∈ R3 3

k = N[C(i, :)]

Table 2.6: Generalized joint coordinates ΓJi for the different joint types.
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The N[·] operator has been used in Table 2.6 to define the k
subscript, since the generalized coordinates of each joint J

i
express

a motion with respect to its proximal body; the joint coordinates
have to be interpreted as the parametrization of the motion of an i
reference frame attached to the ith joint.

Although in principle a joint frame can be oriented in a number
of differentways, some conventions are adopted tomake the process
more intuitive. When dealing with a joint featuring a single degree
of freedom (R or P), this will act along the joint’s Z axis, so for
example the local Z axis of a prismatic joint will be parallel to its
linear translation with respect to the parent body, and the same
holds for the rotation of a revolute joint; the orientation of the other
two axes can be chosen arbitrarily. In the cylindrical joint case, two
joints R and P are joined, leading to a rotation and translation on
the local Z axis; when a joint displays three degrees of freedom, the
axes will be aligned to the directions of the physical motion for a
Cartesian joint, while in the case of a spherical one it is common to
define the localX pointing towards the next body in themanipulator
chain.

2.3.3 Frames and variables definition

Before going on with the discussion it is necessary to thoroughly
explain the characterization of the physical system from a practical
standpoint; Fig. 2.3 will act as a reference for the next remarks.
In the first place, the general configuration is assessed by visual
inspection of the system; this step is necessary to model the SMM as
a graph (Fig. 2.2), i.e. to define the previously mentioned quantities
C, T,N, B, J. Once this is done the designer shall make a distinction
between the joints according to their features and pick a particular
type for each one of them, choosing between the proposed ones.
Once every joint is associated to a specific joint type, D and R are
known and therefore the size of both Y, Γ (Eqs. (2.35) and (2.36))
is defined. Since the system’s physical features (masses, inertias,
dimensions, . . . ) are assumed to be perfectly known, it is possible
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to iteratively define a frame of reference for both the bodies and the
joints, moving outwards from the inertial I reference frame.

Figure 2.3: Frames and distances labeling for the physical model; the
coordinate systems attached to the centers of mass of the links are not
reported for brevity.

Each body framewill originate at a center ofmass, while the joint
frameswill be defined according to the previous considerations; this
procedure will lead to the creation of an inertial I frame, N body
frames and J joint frames. Note that the orientation of each frame
with respect to the inertial one is known by construction, and so
are the quaternions q

i/I
, q

k/I
, where k = N[C(i, :)]. Hence, it is

straightforward to find the relative orientation of each frame with
respect to its parent one; for example, using the result of Eq. (2.10),
q
i/I

= q
k/I
q
i/ k

, where q
i/ k

is the only unknown. Applying the
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conjugate q∗
k/I

and recalling the conjugate properties, the relative
orientation can be expressed as

q
i/ k

= q∗
k/I
q
i/I
, k = N[C(i, :)]. (2.37)

The same holds when the parent frame is a joint frame, as in

q
i+1/i

= q∗
i/I
q

i+1/I
. (2.38)

By suitably rearrangingquaternion rotations as inEqs. (2.37) and (2.38),
any relative orientation between different frames can be easily ob-
tained; to the purpose of this work, the link frames will always be
oriented as their parent joint frame, so q

i+1/i
= 1, i = {1, . . . , J}. This

is justified because the links are rigid, so no relative rotationwill ever
take place between a joint and its child body. On the other hand,
the q

i/ k
will play a major role in the discussion as they encompass

the information on the displacement of each joint.
A similar methodology has to be exploited when dealing with

the position vectors, which are necessary to fully define the ge-
ometry of the system. The spatial configuration of the system is
known (CAD measurements, inspection, . . . ), so as long as the I
frame is defined, the designer also knows the quaternion positions
r
I

i/I
, r
I

i/I
∈ Hv. Once more, the relative distance vectors can be

computed in a quaternion form through simple subtractions, as in

rI
i/ k

= rI
i/I

− rI
k/I
, (2.39)

and then expressed in another frame ri
i/ k

= q∗
i/I
r
I

i/ k
q
i/I

at the oc-
currence. The relative orientations and positions can be blended
together to get the relative dual pose, i.e. the relative rigid displace-
ment between different frames expressed in dual quaternions, such
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as

q
i/ k

, q
i/ k

+ ε12qi/ k
ri
i/ k
,

q
i+1/i

, q
i+1/i

+ ε12q i+1/i
r i+1
i+1/i

.

(2.40)

The forward kinematics formulas expressed in Eq. (2.40), which
were introduced in Eq. (2.25) in a more general form, encase two
different information, one about a translation and the second about
a rotation; this is made evident if we rewrite q

i+1/i
as a dual quater-

nion product by separating the translation from the rotation in the
form

q
i+1/i

= (q
i+1/i

+ ε0)︸ ︷︷ ︸
rotation

(1 + ε12r
i+1
i+1/i

)︸ ︷︷ ︸
translation

, (2.41)

or, equivalently,

q
i+1/i

= (1 + ε12r
i

i+1/i
)︸ ︷︷ ︸

translation

(q
i+1/i

+ ε0)︸ ︷︷ ︸
rotation

. (2.42)

Even though the two expressions give the same result, they have
different physical meaning: Eq. (2.41) first carries out the rotation
and then the translation, Eq. (2.42) does the opposite. The exam-
ple case illustrated in Fig. 2.3 still misses wrenches as defined in
Eq. (2.29). Taking Fig. 2.4 as reference, it is possible to distinguish
different kinds of wrenches; as a first remark, wrenches enter the
system acting either on a center of mass (body wrenches) or on a
joint (joint wrenches). Body wrenches W i

i
(O

i
) arise as a conse-

quence of both natural phenomena (gravity, atmospheric drag, . . . )
and control inputs (base actuation); they are always expressed in the
body frame. Joint wrenches instead are divided into two different
types; they may describe the control input itself, in which case they
are referred to as actuation wrenches Wi

act,i(Oi), or represent the
reaction forces/torques due to the physical constraint imposed by
the joint on its two adjoining bodies, hence being reaction wrenches
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Figure 2.4: Definition and labeling of the different kinds ofwrenches. Note
that k = N[C(i, :)].

W
i

i+1/ k
(O
i
). The notation here is meaningful as it shows that a re-

action wrench acts on the origin of the joint frame O
i
and is caused

by the presence of the joint itself acting on the kth and (i + 1)th body.

2.3.4 Kinematics and mapping matrices

Position and velocity kinematics

Starting from the ideas of Secs. 2.3.2 and 2.3.3, we now focus on
the assembly of the previous information, building the kinematic
tools and relations that will enable the solution of the problem at
hand. Given the SMM configuration, its kinematics is fully defined
if and only if the base linear and angular coordinates and the joint
generalized coordinates (see Eq. (2.36) and Table 2.6) are known;
this provides a set of 6 +D scalars which has to be updated at each
step of the solution process.

Labeling the base as the first body, its kinematics will be ex-
pressed using the result in Eq. (2.28), therefore leading to

q̇
1/I

= 1
2q 1/I

ω 1
1/I
. (2.43)
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The manipulator kinematics instead depend on the kind of joints;
for anN−bodies SMM the general forward kinematics has the form

q
N/I

= q
1/I
q1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1, (2.44)

where q
i/i−1 = q

k/i−1qi/ k
. For N = 4 (see Fig. 2.3) the product

operator
∏

takes the form

3∏
i=2

= q2/1q3/2. (2.45)

Note also that once the generic pose q
J/I

is known, the quaternion
position of the origin of frame Jwith respect to frame I (rJ

J/I
) can be

easily reconstructed; recalling that q
J/I

= q
J/I,r

+ εq
J/I,d

= q
J/I

+
ε1
2qJ/Ir

J

J/I
, if we pre-multiply the dual part by 2q∗

J/I
,

2q∗
J/I
q
J/I,d

= 2q∗
J/I

1
2qJ/I︸ ︷︷ ︸
1

rJ
J/I

= rJ
J/I
.

(2.46)

The velocity is instead obtained deriving Eq. (2.44) and applying
the product rule to the right hand side of the equality, recalling that
q

N/N−1 is constant:

q̇
N/I

= q̇
1/I
q1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q
1/I
q̇1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q
1/I
q1/ 1

N−1∑
k=2

(
q
k−1/1q̇k/k−1qN−1/k

)
q

N/N−1 (2.47)
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= 1
2q 1/I

ω 1
1/I
q1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q
1/I

1
2q1/ 1

ω1
1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q
1/I
q1/ 1

N−1∑
k=2

(
q
k−1/1

1
2qk/k−1ω

k

k/k−1qN−1/k

)
q

N/N−1.

The end-effector dual velocity (the dual velocity of the Nth body)
can be put into evidence multiplying each side by 2q∗

N/I
, which is

obtained from Eq. (2.44):

ω N

N/I
= q∗

N/I
q

1/I
ω 1

1/I
q1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q∗
N/I
q

1/I
q1/ 1

ω1
1/ 1

(
N−1∏
i=2

q
i/i−1

)
q

N/N−1+

+ q∗
N/I
q

1/I
q1/ 1

N−1∑
k=2

(
q
k−1/1qk/k−1ω

k

k/k−1qN−1/k

)
q

N/N−1.

(2.48)

Using that

q∗
N/I
q

1/I
= q∗

N/ 1
q∗

1/I
q

1/I︸ ︷︷ ︸
1

and q∗
N/ 1
q1/ 1

= q∗
N/1
q∗1/ 1

q1/ 1︸ ︷︷ ︸
1

,

(2.49)

and carrying out the dual quaternion products, Eq. (2.48) becomes

ω N

N/I
= q∗

N/ 1
ω 1

1/I
q

N/ 1
+q∗

N/1
ω1

1/ 1
q

N/1
+
N−1∑
k=2

q∗
N/k
ωk

k/k−1q N/k
.

(2.50)
This expression ofω N

N/I
has a straightforward physical interpreta-

tion: the dual velocity of the Nth body with respect to an inertial
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frame is obtained summing a first term due to the velocity of the
base to a series of terms descending from the joint velocities; all the
different terms are rightfully expressed in the Nth body frame.

Keeping in mind the general result obtained in Eq. (2.50), we
want to further specialize the dual velocities for different joint types
and introduce some quantities that will allow a more familiar way
to express end-effector velocity. Recalling that the manipulator may
involve different types of joint, it is possible to draw a parallel with
Table 2.6 and characterize theωi

i/ k
according to a joint type-based

criterion (Table 2.7).

Joint type Dual velocity,ω
i

i/ k

R
(
0, [0, 0, θ̇

i/ k
]T
)
+ ε0

P 0 + ε
(
0, [0, 0, ż

i/ k
]T
)

S
(
0,M(φ

i/ k
, θ
i/ k
, ψ
i/ k

)[φ̇
i/ k
, θ̇
i/ k
, ψ̇
i/ k

]T
)
+ ε0

C
(
0, [0, 0, θ̇

i/ k
]T
)
+ ε
(
0, [0, 0, ż

i/ k
]T
)

U 0 + ε
(
0, [ẋ

i/ k
, ẏ
i/ k
, ż
i/ k

]T
)

k = N[C(i, :)]

Table 2.7: Dual velocities for different joint types.

Table 2.7 is built following the conventions suggested in Sec. 2.3.2
regarding the axis of translation and/or rotation for R, P, C joints;
M(φ

i/ k
, θ
i/ k
, ψ
i/ k

) must be defined coherently with the Eulerian
sequence chosen for the spherical rotation, and in our case is equal
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to

M(φ
i/ k
, θ
i/ k
, ψ
i/ k

) =

1 0 − sin(θ
i/ k

)
0 cos(φ

i/ k
) cos(θ

i/ k
) sin(φ

i/ k
)

0 − sin(φ
i/ k

) cos(θ
i/ k

) cos(φ
i/ k

)

 .
(2.51)

Before further rearrangement of Eq. (2.50), we also need to introduce
screw matrices ζ

i
∈ R8×di for every type of joint; they are assembled

so thatωi

i/ k
= ζ

i
Γ̇
Ji
.

Joint type Screw matrix, ζ
i
= ∂ωi

i/ k
/∂Γ̇

Ji

R [0, 0, 0, 1, 0, 0, 0, 0]T

P [0, 0, 0, 0, 0, 0, 0, 1]T

S


01×3

M(φ
i/ k
, θ
i/ k
, ψ
i/ k

)

04×3


C

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

T

U

05×3
I3



Table 2.8: Screw matrices for different joint types.

Going back to Eq. (2.50), the result can now be rewritten in a
more familiar form; using Eq. (2.19) yields
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ω N

N/I
= Jq∗

N/ 1
K
L
Jq

N/ 1
K
R
?ω 1

1/I
+ Jq∗

N/1
K
L
Jq

N/1
K
R
?ω1

1/ 1
+

+
N−1∑
k=2

Jq∗
N/k

K
L
Jq

N/k
K
R
?ωk

k/k−1.

(2.52)

Substituting the dual velocities with the screw matrices and the
joint-level velocities results in

ω N

N/I
= Jq∗

N/ 1
K
L
Jq

N/ 1
K
R
?ω 1

1/I
+ Jq∗

N/1
K
L
Jq

N/1
K
R
ζ1Γ̇J1

+

+
N−1∑
k=2

Jq∗
N/k

K
L
Jq

N/k
K
R
ζ
k
Γ̇
Jk

= Jq∗
N/ 1

K
L
Jq

N/ 1
K
R
?ω 1

1/I
+ J (q, ζ) Γ̇ ,

(2.53)

where J (q, ζ) ∈ R8×D is the body-frame Jacobian which has been
defined as

J (q, ζ) ,
[
Jq∗

N/1
K
L
Jq

N/1
K
R
ζ1, . . . , Jq

∗
N/i

K
L
Jq

N/i
K
R
ζ
i
, . . . ,

Jq∗
N/N−1KLJq

N/N−1KRζN−1

]
.

(2.54)

If we express the end-effector velocity with respect to the satellite
base, Eq. (2.53) is brought back to thewell knownvelocity kinematics
result obtained for a fixed-base manipulator, i.e.

ω N

N/I
− Jq∗

N/ 1
K
L
Jq

N/ 1
K
R
?ω 1

1/I︸ ︷︷ ︸
ω N

N/ 1

= J (q, ζ) Γ̇ . (2.55)

Mapping matrices

Screwmatrices are necessary when it comes to rearranging the time
derivative of the joint coordinates into a dual quaternion velocity,
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i.e. they provide a map ζ
i
: Rdi 7→ Hv

d
. Other similar mappings

are worth defining as they provide a fast way to switch from/to a
real quantity to/from its dual quaternion counterpart; in order to
do that, we define the matrix E

π(·), which is built removing the rows
returned by function π(·) from the 8 × 8 identity matrix I8. The
function π(·) selects an ordered subset of {1, 2, 3, 4, 5, 6, 7, 8} upon
necessity; for example, if π(·) returns values 1, 5:

E15 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (2.56)

Such matrices can be exploited for example when dealing with
wrenches, in order to build two kinds of reduced vectors for differ-
ent joint types, namely the reduced reactionwrenches W̃i

i+1/ i
(O
i
) ∈

Rri (collection of reaction forces/torques applied by the ith joint)
and the reduced actuation wrenches W̃i

act,i(Oi) ∈ Rdi (actuation
forces/torques displayed by the ith joint). Using the definitions in
Tables 2.10 and 2.11, where V

i
: Rri 7→ Hv

d
and Vact,i : R

di 7→ Hv
d
, we

obtain Wi

i+1/ i
= V

i
W̃
i

i+1/ i
and Wi

act,i = Vact,iW̃
i

act,i. The reduced
reactionwrenches W̃i

i+1/ i
can be stacked in a vector T ∈ RR defined

as

T ,



W̃
1
2/ 1

(O1)
...

W̃
i

i+1/ i
(O
i
)

...

W̃
J

N/ N−1
(O
J
)


. (2.57)

A similar result can be obtained for velocities byusing twomappings
Λ
i
: Hv

d
7→ Rri and L

Ji
: Hv

d
7→ Rdi (see Table 2.9); the first extracts
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the null entries of a joint dual velocity in the form 0 = Λ
i
ω
i

i/ k
, while

the latter performs the operation opposite to ζ
i
, hence leading to

Γ̇
Ji
= L

Ji
ωi

i/ k

= L
Ji

(
q

i+1/i
ω i+1

i+1/I
q∗

i+1/i
− q∗

i/ k
ω k

k/I
q
i/ k

)
, k = N[C(i, :)].

(2.58)

Note that matrix L(φ
i/ k
, θ
i/ k
, ψ
i/ k

) in Table 2.9 depends on the
Euler sequence used to parametrize the spherical joint, as in

L
(
φ
i/ k
, θ
i/ k
, ψ
i/ k

)
=M−1

(
φ
i/ k
, θ
i/ k
, ψ
i/ k

)
=

1 tan(θ
i/ k

) sin(φ
i/ k

) cos(φ
i/ k

) tan(θ
i/ k

)
0 cos(φ

i/ k
) − sin(φ

i/ k
)

0 sin(φ
i/ k

)/cos(θ
i/ k

) cos(φ
i/ k

)/cos(θ
i/ k

)

 . (2.59)

Joint type L
Ji

Λ
i

R [0, 0, 0, 1, 0, 0, 0, 0] E145
P [0, 0, 0, 0, 0, 0, 0, 1] E158
S

[
03×1 L(φ

i/ k
, θ
i/ k
, ψ
i/ k

) 03×4
]
E12345

C
[
0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 1

]
E1458

U

0, 0, 0, 0, 0, 1, 0, 00, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 1

 E15678

Table 2.9: Velocity mapping matrices.
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Joint type W
i

i+1/ i
W̃
i

i+1/ i
V
i

R
(
0, [f

x
, f
y
, f
z
]T
)
+

ε
(
0, [τ

x
, τ
y
, 0]T

) [f
x
, f
y
, f
z
, τ
x
, τ
y
]T E

T

158

P
(
0, [f

x
, f
y
, 0]T

)
+

ε
(
0, [τ

x
, τ
y
, τ
z
]T
) [f

x
, f
y
, τ
x
, τ
y
, τ
z
]T E

T

145

S
(
0, [f

x
, f
y
, f
z
]T
)
+

ε
(
0, [0, 0, 0]T

) [f
x
, f
y
, f
z
]T E

T

15678

C
(
0, [f

x
, f
y
, 0]T

)
+

ε
(
0, [τ

x
, τ
y
, 0]T

) [f
x
, f
y
, τ
x
, τ
y
]T E

T

1458

U
(
0, [0, 0, 0]T

)
+

ε
(
0, [τ

x
, τ
y
, τ
z
]T
) [τ

x
, τ
y
, τ
z
]T E

T

12345

Table 2.10: Full and reduced reaction wrenches.
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Joint type W
i

act,i W̃
i

act,i Vact,i

R
(
0, [0, 0, 0]T

)
+

ε
(
0, [0, 0, τ

z
]T
) τ

z
E
T

1234567

P
(
0, [0, 0, f

z
]T
)
+

ε
(
0, [0, 0, 0]T

) f
z

E
T

1235678

S
(
0, [0, 0, 0]T

)
+

ε
(
0, [τ

x
, τ
y
, τ
z
]T
) [τ

x
, τ
y
, τ
z
]T E

T

12345

C
(
0, [0, 0, f

z
]T
)
+

ε
(
0, [0, 0, τ

z
]T
) [f

z
, τ
z
]T E

T

123567

U
(
0, [f

x
, f
y
, f
z
]T
)
+

ε
(
0, [0, 0, 0]T

) [f
x
, f
y
, f
z
]T E

T

15678

Table 2.11: Full and reduced actuation wrenches.

2.4 Robot dynamics

2.4.1 Dual form of dynamic quantities

Using the formulation introduced by [51], the mass and inertia ma-
trices computed about a rigid body’s center of mass can be rear-
ranged into a dual inertia matrix

M
i
,


1 01×3 0 01×3

03×1 m
i
I3 03×1 03×3

0 01×3 1 01×3
03×1 03×3 03×1 Ī

i

 , (2.60)

where m
i
∈ R is the mass of the ith rigid body, Ī

i
∈ R3×3 is the

inertia matrix of the same body and I3 is the 3x3 identity matrix.
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M
i
can be exploited to compute the dual momentum of the ith

body about its center of mass and expressed in local body frame
i

as
H i

i
(O

i
) = H i

i/I
,M

i
? (ω i

i/I
)S. (2.61)

Recalling Newton’s second principle,

dH i

i/I

dt =W i

i
(O

i
), (2.62)

whereW i

i
(O

i
) = f i + ετ i is the net force applied on the ith body;

as H i

i/I
is expressed in a rotating frame

i
, Eq. (2.62) is equivalent

to
Ḣ i

i/I
+ω i

i/I
×H i

i/I
=W i

i
(O

i
). (2.63)

The latter can be rearranged to make the acceleration appear in the
equations of motion, hence getting

M
i
? (ω̇ i

i/I
)S +ω i

i/I
×
(
M

i
? (ω i

i/I
)S
)
=W i

i
(O

i
). (2.64)

In order to avoid using the swap, we can define an operator H[·] :
R8×8 7→ R8×8 such that

H(M) ? a ,M ? aS. (2.65)

If for example H[·] operator is applied to a block matrix M =
[M1,M2], whereM ∈ R8×8 andM1,M2 ∈ R8×4, then

H(M) = H
(
[M1,M2]

)
= [M2,M1]. (2.66)

This applies toM
i
leading to

H(M
i
) =


0 01×3 1 01×3

03×1 03×3 03×1 m
i
I3

1 01×3 0 01×3
03×1 Ī

i
03×1 03×3

 , (2.67)
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which can be used to rewrite Eq. (2.61) in a swap-free form:

H i

i/I
= H(M

i
) ?ω i

i/I
. (2.68)

In order to integrate the dynamics we will rely on the inverse of
H(M

i
), which is defined as

H(M
i
)−1 =


0 01×3 1 01×3

03×1 03×3 03×1 Ī
−1
i

1 01×3 0 01×3
03×1

1
m

i

I3 03×1 03×3

 ; (2.69)

this canbeprovedverifying thatH(M
i
)−1
H(M

i
) = H(M

i
)H(M

i
)−1 =

I8.
The ith body’s kinetic energy can be computed as

E
ki

= 1
2(ω

i

i/I
)S ◦

(
M

i
? (ω i

i/I
)S
)
. (2.70)

Considering a multibody system made of N rigid bodies whose
centers of mass are at

i
, Eq. (2.61) can be specialized for such a

system yielding to

HI
S
(O
I
) =

N∑
i=1

q
i/I
H i

i
(O

i
)q∗

i/I
=

N∑
i=1

q
i/I

(
M

i
? (ω i

i/I
)S
)
q∗

i/I
,

(2.71)
which represents the overall dual momentum for the system, com-
puted about the origin of inertial frame I and expressed in the same
frame. We can proceed in a similar fashion to generalize Eq. (2.70)
for a multibody system, hence obtaining

E
k
= 1
2

N∑
i=1

(ω i

i/I
)S ◦

(
M

i
? (ω i

i/I
)S
)
; (2.72)

note that both Eqs. (2.71) and (2.72) provide constant quantities for
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the case under analysis.

2.4.2 Dynamics

The previous sections laid out the concepts and relationships which
characterize the dual quaternion description of a generic spacecraft
mountedmanipulator; the next step of our dissertation is to develop
the Newton-Euler equations for the system, in a form which will be
suitable for numerical simulation. After developing all the neces-
sary equations, we also suggest a general solution routinewhich can
be easily implemented in any numerical computing environment.

Eq. (2.64) provides the general Newton-Euler equation describ-
ing the combined translational-rotational motion of a 6-DOF rigid
body; to the aim of our discussion these equations must be special-
ized to take into account the different nature of the forces acting
on each body. We can rearrange Eq. (2.64) and move the nonlinear
velocities term to the right-hand side, hence

H(M
i
)ω̇ i

i/I
= −ω i

i/I
×
(
M

i
? (ω i

i/I
)S
)
+W i

i
(O

i
), (2.73)

where in their turn the wrenches acting on body i are the sum of
different contributions,

W i

i
(O

i
) =W i

i
(O

i
)−

∑
j∈N[C(:,i)]

W i

act,j +
∑

j∈P[C(:,i)]

W i

act,j

−
∑

j∈N[C(:,i)]

Wj

i+1/ i
+
∑

j∈P[C(:,i)]

Wj

i/ i−1
.

(2.74)

WrenchesW i

i
(O

i
) represent body forces, andmay either be caused

by a control action (W i

i,act
) or by exogenous phenomena, such as

disturbances (W i

i,non-act
); W i

act,j arise from the actuation of the ad-
jacent joints while the last two terms express the effect of reaction
wrenches on thedynamics of the body. Note thatwhile thefirst three
terms are known, reaction forces must be computed at each step of
the solution process; they are therefore treated as unknowns and
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moved to the left-hand side of the Newton-Euler equation, which
becomes

H(M
i
)ω̇ i

i/I
+
∑

j∈N[C(:,i)]

Wj

i+1/ i
−

∑
j∈P[C(:,i)]

Wj

i/ i−1
=

−ω i

i/I
×
(
M

i
? (ω i

i/I
)S
)
+W i

i
(O

i
)+

−
∑

j∈N[C(:,i)]

W i

act,j +
∑

j∈P[C(:,i)]

W i

act,j. (2.75)

In order to solve for both the velocities and reaction forces we need
to deploy another set of equations which relates dual accelerations
and the constraints acting at each joint; knowing that every joint
dual velocity can be expressed in joint coordinates as the difference
between the velocities of its adjoining bodies, we obtain

ωi

i/ k
= q

i+1/i
ω i+1

i+1/I
q∗

i+1/i
− q∗

i/ k
ω k

k/I
q
i/ k
, k = N[C(i, :)],

i = {1, . . . , J}. (2.76)

Taking the derivative of Eq. (2.76) yields

ω̇i

i/ k
= q

i+1/i
ω̇ i+1

i+1/I
q∗

i+1/i
− q∗

i/ k
ω̇ k

k/I
q
i/ k

+

− q∗
i/ k

(ω k

k/I
×ω k

i/ k
)q
i/ k
. (2.77)

ApplyingΛ
i
(seeTable 2.9) toboth sides, and recalling thatΛ

i
ω̇
i

i/ k
=

0 by construction, the set of equations to be added to Eq. (2.75) is

Λ
i

∑
j∈P[C(i,:)]

ω̇i

j/I
−Λ

i

∑
j∈N[C(i,:)]

ω̇i

j/I
= Λ

i
(ωi

k/I
×ωi

i/ k
). (2.78)

This set of equations can be cast in the form[
S11 S12
S21 S22

][
Ẏ

T

]
=
[
B1
B2

]
, (2.79)
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where Y and T were introduced in Eqs. (2.35) and (2.57).
The different blocks in Eq. (2.79) gather the terms of Eqs. (2.75)

and (2.78), and are hereby characterized; S11 ∈ R8N×8N is a block
diagonal matrix collecting the dual inertia matrices in the form

S11 =



H(M
1
) · · · 08×8
. . .

...

H(M
i
)

...
. . .

08×8 · · · H(M
N
)


, (2.80)

and its inverse S−1
11 can be easily recovered assembling the inverse of

each sub-block (see Eq. (2.69)). S12 ∈ R8N×R collects the frame trans-
formations and mapping matrices to couple the reduced reaction
wrenches in T with the rigid body dynamics; it can be built putting
together block matrices (S12)ij ∈ R8×rj as in

S12 =



(S12)11 · · · (S12)1J
. . .

...

(S12)ij
...

. . .

(S12)N1 · · · (S12)NJ


, (2.81)

where

(S12)ij =


−Jq∗

i/j
K
L
Jq

i/j
K
R
V
j
, if c

ji
= 1,

08×rj, if c
ji
= 0,

Jq
j/ i

K
L
Jq∗
j/ i

K
R
V
j
, if c

ji
= −1.

(2.82)

Sub-block S21 ∈ RR×8N gathers the terms of Eq. (2.78), hence express-
ing the null accelerations of the constrained degrees of freedom of
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the joints. Block matrices (S21)ij ∈ Rri×8 are given by

(S21)ij =


Λ
i
Jq

j/i
K
L
Jq∗

j/i
K
R
, if c

ij
= 1,

0
ri×8

, if c
ij
= 0,

−Λ
i
Jq∗
i/ j

K
L
Jq
i/ j

K
R
, if c

ij
= −1,

(2.83)

and are located in S21,

S21 =



(S21)11 · · · (S21)1N
. . .

...

(S21)ij
...

. . .

(S21)J1 · · · (S21)JN


. (2.84)

Sub-matrix S22 ∈ RR×R bonds reaction wrenches and constraint
equations, but since no such forces appear in these equations (they
express a kinematic relationship, not a dynamic one), S22 is filled
with zeros, S22 = 0

R×R.
The vectors B1 and B2 are the recollection of the right-hand side

terms of Eqs. (2.75) and (2.78); these quantities are already known
but often need to undergo a pose transformation into the suitable
reference system. B1 ∈ R8N gathers the right-hand side terms of
the Newton-Euler equations, i.e. the nonlinear termω× (M ? (ω)S)
and the different loads applied to each body i; it is found stacking
sub-vectors (B1)i ∈ R8,

B1 =
[
(B1)1, · · · , (B1)i, · · · , (B1)N

]T
, (2.85)

where

(B1)i = −ω i

i/I
×
(
M

i
? (ω i

i/I
)S
)
+W i

i
(O

i
)+
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−
∑

j∈N[C(:,i)]

q
j/ i
Wj

act,j(Oj)q
∗
j/ i

+
∑

j∈P[C(:,i)]

q∗
i/j
Wj

act,j(Oj)q i/j
.

(2.86)

Recall thatW i

i

includes contributions
both due to the control
input and to exogenous
phenomena, soW i

i
=

W i

i,act +W
i

i,non-act Likewise, B2 ∈ RR stacks the right-hand side terms of Eq. (2.78); its
sub-vectors (B2)i ∈ Rri are given by

(B2)i = Λiq
∗
i/ k

(ω k

k/I
×ω k

i/ k
)q
i/ k

= Λ
i
q∗
i/ k
ω k

k/I
q
i/ k
×ωi

i/ k
, k = N[C(i, :)],

(2.87)

and then collected in

B2 =
[
(B2)1, · · · , (B2)i, · · · , (B2)J

]T
. (2.88)

Note that the terms featured in (B1)i are all expressed in body co-
ordinates

i
as they describe the rigid body dynamics, while (B2)i

must be expressed in joint frames.
If for example we consider the first body, expanding Eq. (2.79)

and exploiting the aforementioned definitions we get the dynamics
equations of the satellite base in the form

H(M
1
) ? ω̇ 1

1/I
+ Jq1/ 1

K
L
Jq∗1/ 1

K
R
V1W̃

1
1/ 2

=

−ω 1
1/I
×
(
M

1
? (ω 1

1/I
)S
)
+W 1

1
(O

1
)+

− q1/ 1
W1

act,1q
∗
1/ 1
. (2.89)

The same can be done for the set of constraint equations, and con-
sidering i = 1 (i.e. the joint connecting the manipulator to the base)
we get

Λ1Jq 2/1
K
L
Jq∗

2/1
K
R
ω̇ 2

2/I
−Λ1Jq

∗
1/ 1

K
L
Jq1/ 1

K
R
ω̇ 1

1/I
=

Λ1q
∗
1/ 1
ω 1

1/I
q1/ 1

×ω1
1/ 1
. (2.90)

The solution of Eq. (2.79) allows to recover both the dual velocity
of every rigid body in the system and the reaction wrenches arising
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from the joint action between adjoining bodies, evolving as[
Ẏ

T

]
= S−1

[
B1
B2

]
, (2.91)

where

S ,

[
S11 S12
S21 S22

]
. (2.92)

Exploiting the easily invertible block-diagonal structure of S11 and
the fact that S22 = 0

R×R, direct computation of the large matrix S
−1

can be recast into amore computationally-friendly procedure. Once
defined the Schur complement of S11 as

S/S11 , −S21S
−1
11 S12 (2.93)

the inverse of S becomes

S−1 =

S−1
11 + S

−1
11 S12(S/S11)

−1
S21S

−1
11 −S

−1
11 S12(S/S11)

−1

−(S/S11)
−1
S21S

−1
11 (S/S11)

−1

 ; (2.94)

note that if the masses and inertias are constant - as it is in our case -
S
−1
11 can be computed offline once and for all at the beginning of the

numerical routine. By expansion of Eq. (2.91), the system’s solution
has the form

T =
(
S21S

−1
11 S12

)−1 (
S21S

−1
11 B1 −B2

)
,

Ẏ = −S−1
11 S12T + S−1

11 B1

= −S−1
11 S12

(
S21S

−1
11 S12

)−1 (
S21S

−1
11 B1 −B2

)
+ S−1

11 B1.

(2.95)

The complete characterization of the system’s coupled kinematics
and dynamics is therefore allowed by the solution of the system
of ODEs described by Eqs. (2.43), (2.58) and (2.95). The system’s
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evolution can then be rearranged in the form

ẋ = f(x, u,w), (2.96)

where
x ,

[
q

1/I
, Γ,Y

]T
∈ R79 (2.97)

is the state vector,

u ,
[
W 1

1,act
,W

1
act,1, · · · ,W

J

act,J

]T
∈ R64 (2.98)

is the control input and

w ,
[
W 1

1,non-act
, · · · ,W N

N,non-act

]T
∈ R64 (2.99)

is the vector collecting exogenous inputs.

2.4.3 Computer procedure

The relationships shown in the previous sections can be rearranged
in an algorithm-like fashion to build a computer subroutine able to
simulate the evolutionof the statex, starting froman initial condition
x0; the procedure displayed in Algorithm 1 can be used to solve
the coupled kinematics and dynamics for any configuration of a
spacecraft mounted manipulator, as long as its physical description
is compliant with what already discussed.

Moreover, Algorithm 1 will provide a valuable tool to prove the
correctness of our approach; starting from non-null initial condi-
tions we can simulate the system in absence of external forces and
disturbances to verify that the overall dual momentum H

I

S
(O
I
) is

null, while the kinetic energy E
k
must remain constant due to the

absence of dissipative forces.
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Algorithm 1 Kinematics and dynamics of a spacecraft-mounted
manipulator (SMM)

Input: x0,qi/ k
,q

i+1/i
, r k

i/ k
,W

i

act,i,W
i

i
,M

i
, S

−1
11 , C, Vi, Λi, LJi

, t
f

Output: ẋ

1: function SMMdynamics
2: while t < t

f
do

3: Extract q
1/I
, Γ,Y from x

4: Compute q̇
1/I

from Eq. (2.43)
5: for i = 1 : J do
6: if i ∈ {R, S} then . Select joint type
7: Update q

i/ k
using Γ

Ji

8: else if i ∈ {P, U} then

9: Update r k

i/ k
using Γ

Ji

10: else

11: Update q
i/ k
, r k

i/ k
using Γ

Ji

12: Compute q
i/ k

using Eq. (2.40)
13: Compute Γ̇

Ji
using Eq. (2.58)

14: for i = 1 : N do . Assemble S12
15: for j = 1 : J do
16: c

ji
= C(j, i)

17: Compute (S12)ij using Eq. (2.82)

18: for i = 1 : J do . Assemble S21
19: for j = 1 : N do

20: c
ij
= C(i, j)

21: Compute (S21)ij using Eq. (2.83)

22: Compute S/S11 using Eq. (2.93)
23: Compute (S/S11)

−1

24: for i = 1 : N do . Assemble B1
25: Compute (B1)i using Eq. (2.86)
26: for i = 1 : J do . Assemble B1
27: Compute (B2)i using Eq. (2.87)
28: Compute T, Ẏ using Eq. (2.95)
29: Assemble ẋ from q̇

1/I
, Γ̇ , Ẏ

30: return ẋ
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Chapter3

Spacecraft-manipulator control

3.1 Introduction

After deriving in a general way the kinematics and dynamics of a
spacecraft mounted manipulator, we want to exploit the framework
described in Chapter 2 to better understand its potential and deepen
our understanding of the system itself. Although the model in
Eq. (2.96) is already capable of simulating the system’s behaviour
when excited by any force/torque described by one of the types
listed in the model, we still have to design and/or characterize the
system’s inputs. A first remark concerning the exogenous inputs
presented in Eq. (2.99) has to bemade; vectorw collects all the forces
acting on the systemwhich have an external origin, i.e. are caused by
phenomena not accounted by the model itself. Note that any type
of environmental force (gravity gradient, atmospheric drag, solar
radiation pressure, . . . ) will act as an exogenous input to the system
and therefore fall within the w vector. Many of these phenomena
have been modeled in the past and their effects on space systems
are well known; however, none of them has been considered to the
purpose of our study, and this choice has a twofold justification. On
the one hand, the main orbital perturbations are accurately studied
anddescribedbyagooddeal of the space-related scientific literature,
so we can reasonably assume that their action will be successfully
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counteracted with ad-hoc choices during the mission design. If
we take these for granted when dealing with our study, there is
no reason in taking perturbations into account a second time. On
the other hand, the space environment has most of the time a non-
negligible effect when a long timewindow is considered; in this case
we can witness orbit degradation, changes in the satellite attitude,
and a number of other undesired effects. To the aim of our work
no such time interval is considered, as we are mostly interested in
maneuvers that are likely to be considered short, if compared with
a characteristic orbital time.

Besides orbital perturbations, all the other disturbances taking
place during a spacemission can be considered as exogenous inputs;
these can be causedby inaccuracy in themodel, noisymeasurements
and every other phenomenon whose effect cannot be foreseen due
to poor knowledge and/or random nature of the phenomenon it-
self. The best way to counteract this is to exploit modern filtering
techniques to blend the available knowledge of the model with the
information coming from sensors; the estimation problem, although
interesting and essential for the successful outcome of the whole de-
sign process, is however out of the scope of this work. In light of
these considerations, we choose to neglect exogenous inputs, so
w = 0; the system will only be excited by the control action, hence
ẋ = f (x, u).

The design of the control input u will play a major part in the
following of our discussion; our purpose is to lay out some general
ideas which will be applicable to any type of SMM model coher-
ent with the one in Chapter 2. This framework can be exploited to
perform a number of different tasks involving coordinated control
of the base and of its manipulator, but it can also be specialized
at the occurrence to focus on a particular aspect of the problem,
e.g. to only study the end-effector trajectory tracking or the atti-
tude stabilization of the base. The dual quaternion algebra will
prove its value in formulating control laws descending from the
well known attitude-only quaternion-based controllers, whose ef-
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fect is now broadened to the control of position and attitude of the
whole spacecraft-manipulator system; the end-effector control will
be performed in the task space, hence resulting in a more intuitive
formulation of both the control target and policies.

In order to achieve these results, we will develop control policies
with the goal of performing pose trackingmaneuvers involving both
the satellite base and the manipulator; these can be thought of as
representative of a large class of possibleOOS tasks, such asdocking,
refueling, inspection, berthing . . .

3.1.1 Case study

To the aim of developing the different control strategies, we need
to consider a model with a known topology; we will deal with
the analysis of a 6R arm attached to a satellite base through a cart
which will be modeled as a prismatic (P) joint; our robot is therefore
a redundant one, identified by the P6R acronym (Prismatic + 6
Revolute). Recalling the definitions introduced in Sec. 2.3.2, our
case study configuration is characterized as inTable 3.1 andEqs. (3.1)
and (3.2).

Parameter Description Quantity

B Branches 1
N Bodies 8
J Joints 7
D DOFs allowed by the joints 7
R DOFs constrained by the joints 35

Table 3.1: Topology of a P6R spacecraft-mounted manipulator.

The branch termination vector Eq. (2.34) is

T =
[
0 0 0 0 0 0 0 1

]T
, (3.1)
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while the incidence matrix Eq. (2.33) will be

C =



1 2 3 4 5 6 7 8
Joint J1 −1 1 0 0 0 0 0 0
Joint J2 0 −1 1 0 0 0 0 0
Joint J3 0 0 −1 1 0 0 0 0
Joint J4 0 0 0 −1 1 0 0 0
Joint J5 0 0 0 0 −1 1 0 0
Joint J6 0 0 0 0 0 −1 1 0
Joint J7 0 0 0 0 0 0 −1 1


. (3.2)

3.2 Overview on feedback linearization

The problem of designing a coordinated controller for a spacecraft-
mounted manipulator is a complex one, since there is the necessity
to deal with a large set of nonlinear-coupled differential equations
which are the mathematical counterpart of a complex physical sys-
tem. In order to address such complexities the proposed approach
relies on the feedback linearization theory [52], which features a set
of useful tools to reduce a nonlinear system to a fully or partially
linearized one. This kind of procedure is not to be confused with
the conventional (or Jacobian) linearization, which involves linear
approximations of the state dynamics; feedback linearization is in-
stead achieved by exact full or partial state feedback. This means
that, when considering a class of nonlinear systems of the form

ẋ = f(x) + g(x)u
y = h(x),

(3.3)

we want to design a state feedback controller evolving as

u = α(x) + β(x)µ (3.4)
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and a change of variables

z = T (x) (3.5)

which transformEq. (3.3) in an equivalent linear - or partially linear -
system. Note that the map T must be invertible, i.e. the inverse map
T
−1(·) must exist and be defined such that x = T−1(z), ∀z ∈ T (D),

where D is the domain of T. Moreover, both the map T (·) and its
inverse T−1(·) are required to be continuously differentiable in D,
thus T is a diffeomorphism in D.

The following ideas stem from the Input/Output linearization
technique, a specific approach to the feedback linearization frame-
work, which encompasses linearization of the input/output map,
while the state is only partially linearized. To achieve this, we con-
sider a multi-input multi-output nonlinear system represented by

ẋ = f(x) +
m∑
i=1

g
i
(x)u

i

y1 = h1(x), . . . , ym = h
m
(x),

(3.6)

where x ∈ D ⊆ Rn is the state vector, u = [u1, · · · , um]
T ∈ Rm is

the input vector and y = [y1, · · · , ym]
T ∈ Rm is the output vector.

The output can be recursively differentiated with respect to time to
make the control input appear in its expression; using Eq. (3.3), this
leads to

ẏ = ∂h
∂x

[f(x) + g(x)u] , L
f
h(x) + L

g
h(x)u, (3.7)

where by definition

L
f
h(x) , ∂h

∂x
f(x) (3.8)

is the Lie derivative of h along vector field f. Note that, according
to this notation,

L
g
Lk
f
h(x) =

∂(Lk
f
h)

∂x
g(x). (3.9)

Carrying out the recursive differentiation of y
i
, i = 1, . . . ,m in
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Eq. (3.6), having defined y(k)
i

as the kth-order time derivative of
y
i
, if h

i
(x) satisfies

L
gj
Lk−1
f
h
i
(x) = 0, k = 1, . . . , ρ

i
− 1, j = 1, . . . ,m and

L
gj
Lρi−1
f

h
i
(x) 6= 0,

(3.10)

then u
j
does not appear in the expressions of y

i
, ẏ
i
, . . . , y

(ρi−1) and
appears in y(ρi) obtained as

y(ρi) = Lρi
f
h
i
(x) +

m∑
j=1

L
gj
Lρi−1
f

h
i
(x)u

j
. (3.11)

Using a compact notation for the sake of brevity,

y(ρ) = D(x) + E(x)u, (3.12)

where

y(ρ) =
[
y
(ρ1)
1 , · · · , y(ρm)

m

]T
∈ Rm, (3.13)

D(x) =


L
ρ1
f
h1(x)
...

L
ρm

f
h
m
(x)

 ∈ Rm, (3.14)

E(x) =


L
g1
L
ρ1−1
f

h1(x) · · · L
gm

L
ρ1−1
f

h1(x)
...

. . .
...

L
g1
L
ρm−1
f

h
m
(x) · · · L

gm
L
ρm−1
f

h
m
(x)

 ∈ Rm×m. (3.15)

If E(x) is non-singular, the feedback control law consists in

u = E(x)−1 (µ−D(x)) = R(x) +Q(x)µ, (3.16)

which substituted in Eq. (3.12) yields the linearized differential in-
put/output map

y(ρ) = µ. (3.17)
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Eq. (3.17) is equivalent to a chain of ρ integrators, and the integer
ρ =
∑m

i=1 ρi is called the relative degree of the system.

Theorem 3.1. We can suppose the system in Eq. (3.6) to have relative
degree ρ 6 n in D. If ρ = n, then for every x0 ∈ D, a neighborhood N of
x0 exists such that the map

T (x) =


h(x)

L
f
h(x)
...

L
n−1
f
h(x)

 (3.18)

restricted to N, is a diffeomorphism on N. If ρ < n, a neighborhood N of
x0, ∀x0 ∈ D, and smooth functions η1(x), . . . , ηn−ρ(x) exist such that

∂η
i

∂x
g(x) = 0, ∀i 1 6 i 6 n− ρ, ∀x ∈ N, (3.19)

and the map

z = T (x) =



η1(x)
...

η
n−ρ

(x)
h(x)
...

L
ρ−1
f
h(x)


=
[
η(x)
ξ(x)

]
, (3.20)

restricted to N, is a diffeomorphism on N.

Proof. See [52].

Note that Eq. (3.19) ensures that the control input u cancels out
when we compute

η̇
i
=
∂η
i

∂x
(f(x) + g(x)u) . (3.21)
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The changeof variables inEq. (3.20) and the control input inEq. (3.16)
transform the system of Eq. (3.6) into

η̇ = ϑ(η, ξ)
ξ̇ = Aξ + Bµ

Aξ + BQ(x)−1 (u− R(x))
y = Cξ,

(3.22)

where η ∈ Rn−ρ is known as the internal part, ξ ∈ Rρ as the external
part. Recalling the definition ofy(ρ) in Eq. (3.11) and of ξ in Eq. (3.20),
it is straightforward to verify that ξ = [y, ẏ, · · · , y(ρ)]T ; hence A,B,C
represent a chain of integrators in canonical form, as in

ξ̇ =



0
m×m I

m×m 0
m×m · · · · · · 0

m×m
0
m×m 0

m×m I
m×m 0

m×m
...

. . .
...

0
m×m 0

m×m I
m×m

0
m×m 0

m×m 0
m×m · · · 0

m×m 0
m×m


︸ ︷︷ ︸

A∈Rmρ×mρ

ξ +



0
m×m
0
m×m
...

0
m×m
I
m×m


︸ ︷︷ ︸
B∈Rmρ×m

µ,

y =
[
I
m×m 0

m×m · · · 0
m×m

]
︸ ︷︷ ︸

C∈Rm×mρ

ξ.

(3.23)

Note that the linearizing feedback control makes the internal dy-
namics ϑ(η, ξ) unobservable from the output; in order to ensure
stability of the whole system, it is therefore required that the zero
dynamics are stable, so the choice of η must respect the condition
ϑ(η0, 0) = 0 [52].

We will now briefly show how the previously outlined theory
leads to some meaningful results in terms of both system stabi-
lization and reference tracking; we start by considering a partially
feedback linearizable system of the form described in Eq. (3.22),
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where

z = T (x) =
[
η

ξ

]
(3.24)

is a diffeomorphism on a domain D ⊂ Rn, D
z
= T (D) contains the

origin, A,B is controllable, ϑ(0, 0) = 0 and ϑ(η, ξ), Q(x)−1
, R(x) are

continuously differentiable. The state feedback control

u = R(x) +Q(x)µ (3.25)

reduces Eq. (3.22) to the form

η̇ = ϑ(η, ξ)
ξ̇ = Aξ + Bµ,

(3.26)

where the outputy has been dropped as it has no role in the system’s
stabilization. By choosing µ = −Kξ, the system becomes

η̇ = ϑ(η, ξ)
ξ̇ = (A− BK)ξ,

(3.27)

which reaches asymptotic stability in the origin if (A−BK) isHurwitz
and if the origin of η̇ = ϑ(η, 0) is asymptotically stable.

Similar ideas [52] can be exploited if we want to track a reference
r(t). We define a reference signal vector R collecting the reference
signal r(t) and its derivatives up to the (ρ− 1)th-order,

R =


r
...

r
(ρ−1)

 . (3.28)

Exploiting knowledge ofR, we define a change of variables e = ξ−R,
which transforms Eq. (3.22) into

η̇ = ϑ(η, e + R)
ė = Ae + B

(
Q(x)−1 (u− R(x)) − r(ρ)

)
.

(3.29)
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If a state feedback control in the form

u = R(x) +Q(x)
(
µ + r(ρ)

)
(3.30)

is applied to Eq. (3.29), then the system is reduced to

η̇ = ϑ(η, e + R)
ė = Ae + Bµ,

(3.31)

and therefore tracking capability is ensured under the same condi-
tions expressed for the system in Eq. (3.27).

3.3 Dual quaternion based feedback

linearization

Having sorted out some main ideas regarding feedback lineariza-
tion techniques, we can move to the description of how these con-
cepts can be applied to the problem of controlling the spacecraft-
manipulator; we will show how this framework allow us to both
stabilize the system and track a reference signal.

3.3.1 Stabilization

First of all, the system model presented in Eq. (2.96) must be rear-
ranged in the form proposed by Eq. (3.3); in order to do that we note
that the state evolution can be expressed as

q̇
1/I

Γ̇
J1
...

Γ̇
JJ

Ẏ


=



1
2q 1/I

ω 1

1/I

L
J1
ω

1
1/ 1
...

L
JJ
ω
J

J/ J

S
−1
11 (B1 − S12T)


, (3.32)
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where the control input only appears in the equation of Ẏ, which
can be expanded in the form

Ẏ = S−1
11

(
I8×8 − S12

(
S21S

−1
11 S12

)−1
S21S

−1
11

)
B1+S

−1
11 S12

(
S21S

−1
11 S12

)−1
B2.

(3.33)
We canwriteB1 = B1,act+B1,non-act, whereB1,act gathers the actuation
terms present in B1, while B1,non-act collects the nonlinear terms.

Note that we are
assuming

W i

i,non-act = 0

Specifically,(
B1,non-act

)
i
= −ω i

i/I
×
(
M

i
? (ω i

i/I
)S
)
, i = 1, . . . , N. (3.34)

and(
B1,act

)
1
=W 1

1,act
− q1/ 1

W1
act,1(O1)q

∗
1/ 1
,(

B
i,act

)
i
=
∑

j∈P[C(:,i)]

q∗
i/j
Wj

act,j(Oj)q i/j
−
∑

j∈N[C(:,i)]

q
j/ i
Wj

act,j(Oj)q
∗
j/ i
,

i = 2, . . . , N. (3.35)

The control inputu can be put into evidence bywritingB1,act = B
u
u,

having defined B
u
∈ R64×64 as

B
u
=



I8×8 −Q(q∗1/ 1
)
R

08×8 · · · · · · 08×8
08×8 Q(q∗

2/1
)
L

−Q(q∗2/ 2
)
R
· · · · · · 08×8

...
. . .

...
... Q(q∗

7/6
)
L

−Q(q∗7/ 7
)
R

08×8 · · · · · · · · · 08×8 Q(q∗
8/7

)
L


,

(3.36)
given

Q(q∗
X/Y

)
L
= Jq∗

X/Y
K
L
Jq
X/Y

K
R
,

Q(q∗
X/Y

)
R
= Jq

X/Y
K
L
Jq∗
X/Y

K
R
.

(3.37)
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Rearranging Eq. (3.33) with this decomposition of B1 allows to ex-
press Ẏ as

Ẏ = Φ(x) + Ψ(x)u, (3.38)

whereΦ(x) ∈ R64 is

Φ(x) = S−1
11

(
I8×8 − S12

(
S21S

−1
11 S12

)−1
S21S

−1
11

)
B1,non-act+

+ S−1
11 S12

(
S21S

−1
11 S12

)−1
B2 (3.39)

and Ψ(x) ∈ R64×64 is

Ψ(x) = S−1
11

(
I8×8 − S12

(
S21S

−1
11 S12

)−1
S21S

−1
11

)
B
u
. (3.40)

We can now express the state evolution in a form suitable for feed-
back linearization, i.e.

q̇
1/I

Γ̇
J1
...

Γ̇
JJ

Ẏ


︸ ︷︷ ︸
ẋ∈R79

=



1
2q 1/I

ω 1

1/I

L
J1
ω

1
1/ 1
...

L
JJ
ω
J

J/ J

Φ(x)


︸ ︷︷ ︸

f(x)∈R79

+



08×64
01×64
...

01×64
Ψ(x)


︸ ︷︷ ︸
g(x)∈R79×64

u. (3.41)

The proposed output is now

y =
[
ω̃ 1

1/I

Γ̇

]
∈ R13. (3.42)

Note that when a vector dual quaternion q ∈ Hv
d
has a tilde accent

as in q̃, this means that the first and fifth row associatedwith its null
components have been removed; recalling the mapping matrices of
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Sec. 2.3.4, q̃ = E15q, so

˙̃ω 1
1/I

= E15ω̇
1
1/I
. (3.43)

A similar operation can be carried out on the input vector u; we
know from Eq. (2.98) that u ∈ R64, corresponding to an 8x1 dual
actuation wrench on the base and on each of the joints. However,
all the joint actuation wrenchesWi

act,i, i = 1, . . . , J have null entries
in correspondence of the locked degrees of freedom (e.g., there
is no actuation along a translation-related degree of freedom for
a revolute joint). To take this into account, we squeeze u into a
reduced form ũ ∈ R13 which only collects the nonzero components
of u. In detail,

u = Vmap,allũ, (3.44)

having defined the block-diagonal matrix Vmap,all ∈ R64×13 as

Vmap,all =



Vact,base 08×1 08×1 · · · · · · 08×1
08×6 Vact,prism 08×1 08×1
08×6 08×1 Vact,rev 08×1
...

. . .
...

... Vact,rev 08×1
08×6 · · · · · · · · · 08×1 Vact,rev


, (3.45)

and

Vact,base = E
T

15 ∈ R8×6,

Vact,prism = ET1235678 ∈ R8×1,

Vact,rev = E
T

1234567 ∈ R8×1.

(3.46)

Once the output is defined (Eq. (3.42)) we want to obtain an in-
put/outputdifferential relationship in the formdescribedbyEq. (3.11);
in this case this is achieved in a straightforward manner computing
the first-order time derivative of y, which already leads to an input-
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dependent expression in the form[
˙̃ω 1

1/I

Γ̈

]
︸ ︷︷ ︸

ẏ

=
[(
Φ̃(x)

)
1

∆(x)

]
︸ ︷︷ ︸
D(x)∈R13

+
[(
Ψ̃(x)

)
1

H(x)

]
Vmap,all︸ ︷︷ ︸

E(x)∈R13×13

ũ

= D(x) + E(x)ũ.

(3.47)

Note that (Φ(x))
i
and (Ψ(x))

i
are the rows of Φ(x), Ψ(x) associated

with the dual acceleration of the ith body, while the following steps
have to be made in order to define D(x), E(x). First, we have to put
in evidence the dependence of Γ̈ on the control input, rearranging
Eq. (2.77); using that ω̇ i+1

i+1/I
= (Φ(x))

i+1 + (Ψ(x))
i+1 u,

ω̇i

i/ k
= q

i+1/i

[
(Φ(x))

i+1 + (Ψ(x))
i+1 u

]
q∗

i+1/i
− q∗

i/ k

[
(Φ(x))

k
+

+ (Ψ(x))
k
u
]
q
i/ k

− q∗
i/ k

(ω k

k/I
×ω k

i/ k
)q
i/ k

= Q(q∗
i+1/i

)
R
(Φ(x))

i+1 −Q(q∗
i/ k

)
L

[
(Φ(x))

k
+ω k

k/I
×ω k

i/ k

]
+

+
[
Q(q∗

i+1/i
)
R
(Ψ(x))

i+1 −Q(q∗
i/ k

)
L
(Ψ(x))

k

]
u, k = N[C(i, :)].

(3.48)

Hence,

Γ̈
Ji
= L

Ji

{
Q(q∗

i+1/i
)
R
(Φ(x))

i+1 −Q(q∗
i/ k

)
L

[
(Φ(x))

k
+ω k

k/I
×ω k

i/ k

]}
︸ ︷︷ ︸

(∆(x))i

+

+ L
Ji

{[
Q(q∗

i+1/i
)
R
(Ψ(x))

i+1 −Q(q∗
i/ k

)
L
(Ψ(x))

k

]}
︸ ︷︷ ︸

(H(x))i∈R1×64

u.

(3.49)

We can now proceed with the change of variables highlighted in
Eq. (3.20); note that the output was differentiated only one time to
make the input appear, so ρ =

∑m

i=1 ρ
(i) = 13. The unobservable

dynamics η are given by q1/ i
and Γ , so n− ρ = 15. This leads to the
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definition of

η =
[
q1/ i

Γ

]
∈ R15, ξ =

[
ω̃ 1

1/I

Γ̇

]
∈ R13, (3.50)

which are stacked in

z =
[
η

ξ

]
∈ R28. (3.51)

The change of variables is enabled by the diffeomorphism T (x),


q

1/I

Γ

ω̃ 1

1/I

Γ̇


︸ ︷︷ ︸

z

=



I15×15 015×64

013×15

A
1
· · · 0 0

...
. . .

...
...

0 · · · A62 0
0 · · · A71 A72




q

1/I

Γ

Y


︸ ︷︷ ︸

T (x)

, (3.52)

where

A
1
= E15 ∈ R6×8,

A
i1 = −L

Ji
Q(q∗

i/ k
)
L
∈ R1×8, i = 1, . . . , J

A
i2 = LJiQ(q∗

i+1/i
)
R
∈ R1×8.

(3.53)

The evolution of the transformed system recalls Eq. (3.22), where in
this case the internal dynamics η̇ = ϑ(η, ξ) are specified by

q̇
1/I

Γ̇
J1
...

Γ̇
JJ

 =


1
2q 1/I

ω 1

1/I

L
J1
ω

1
1/ 1
...

L
JJ
ω
J

J/ J

 , (3.54)

which fulfill the stability condition ϑ(η0, 0) = 0, hence allowing sta-
bilization of the entire system. The dynamics of the external part ξ
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evolve as
ξ̇ = D(x) + E(x)ũ. (3.55)

If we choose the control ũ as

ũ = E(x)−1 (µ−D(x)) , (3.56)

Eq. (3.55), which describes the linearizable part of the system, be-
comes

ξ̇ = µ, (3.57)

which is feedback stabilized by an appropriate choice of µ, e.g.,
µ = −Kξ, with K positive definite.

3.3.2 Reference tracking

Exploiting the relationships in Sec. 3.3.1, it is also possible to re-
arrange the equations such that a different task is achieved by the
control, namely the tracking of a reference signal r(t) whose deriva-
tives up to the ρ order are available on-line. Oncemore, the key idea
is the one of exploiting a change of variables ξ 7→ e, where e = ξ−R.

Assume we want to perform simultaneous velocity control of
both the base and end-effector of the manipulator; we may want to
choose an output as

y =
[
ω̃ 1

1/I

ω̃ 8

8/I

]
∈ R12, (3.58)

while the known reference signal would be

R =
[
ω̃ 1
S/I

ω̃ 8
E/I

]
∈ R12. (3.59)

In order to make the control input u appear, y only needs to be
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differentiated once, hence getting[ ˙̃ω 1

1/I

˙̃ω 8

8/I

]
︸ ︷︷ ︸

ẏ

=
[(
Φ̃(x)

)
1(

Φ̃(x)
)
8

]
︸ ︷︷ ︸
D(x)∈R12

+
[(
Ψ̃(x)

)
1(

Ψ̃(x)
)
8

]
Vmap,all︸ ︷︷ ︸

E(x)∈R12×13

ũ. (3.60)

In this case matrix E(x) is rectangular because of the redundant
nature of the problem - note that we are trying to control the 12 in-
dependent nonzero entries of ω̃ 1

1/I
, ω̃ 8

8/I
having 13 control inputs.

The problem can however be successfully addressed if E(x) has full
column rank, and therefore a pseudoinverse E(x)+ ∈ R13×12 exists
such that E+E = I13×13.

By definition of ξ, once more it is straightforward to verify that
ξ = y, and the diffeomorphism T (x) : x 7→ z is described by

q
1/I

Γ

ω̃ 1

1/I

ω̃ 8

8/I


︸ ︷︷ ︸

z∈R27

=


I15×15 015×64

012×15
A11 06×56
06×56 A81



q

1/I

Γ

Y


︸ ︷︷ ︸

T (x)

, (3.61)

where
A11 = A81 = E15 ∈ R6×8. (3.62)

Note that the velocities ω i

i/I
, i = 2, . . . , N − 1 are considered ob-

servable due to Eq. (2.53); if the Jacobian J (q, ζ) is invertible, then
a relationship in the form ω i

i/I
= F

(
ω 1

1/I
,ω 8

8/I

)
exists and is

unique.
In order to obtain the error dynamics ė = ξ̇ − Ṙ, we first differ-

entiate ξ, and from Eq. (3.60)

ξ̇ = D(x) + E(x)ũ. (3.63)
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By assumption Ṙ is known, hence

ė = D(x) + E(x)ũ− Ṙ

= D(x)− Ṙ︸ ︷︷ ︸
Ξ∈R12

+E(x)ũ. (3.64)

If
ũ = E(x)+ (µ− Ξ(x)) , (3.65)

then again
ė = µ, (3.66)

and upon fulfillment of the previous considerations on the design
of µ, the error is driven towards zero, i.e. the transformed state is
able to track the reference R.

3.4 Derivation of nominal control laws

The ideas developed up to now prove that, by exploitation of a gen-
eral kinematic/dynamic framework based on the dual quaternion
formalism, whose equations have been rearranged in a form suitable
for feedback linearization, it is possible to design a control strategy
in which the control input u is obtained upon definition of a much
simpler linearized control input µ, which in its turn is in charge of
leading the linearized dynamics to zero.

We now want to narrow our analysis to the design of some spe-
cific control laws for the spacecraft-manipulator system character-
ized by the topology in Sec. 3.1; as anticipated in Chapter 1, this
choice is motivated by the configuration of the UR10e manipula-
tor of the Dynamics and Control System Laboratory (DCSL), a testbed
whose purpose is to help the researchers understand and design the
interactions between a manipulator and a spaceborne platform, be
it a service satellite, a bigger structure like the ISS, etc. The presence
of another experimental facility (see [53]) aimed at reproducing a
5DOFs free floating base and its maneuvers (mainly autonomous
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rendez-vous and docking operations), further motivates the model-
ing and design choices carried out in the following.

In order to faithfully describe the facility we need to point out
some aspects of the modeling phase which will impact the control
design strategy; first of all, as the UR10e is clearly not floating but
is constrained to the wall through a prismatic joint, we modeled the
wall as a free-floating basewhosemass ismuch larger than the one of
the manipulator itself. In this way we both conserve the structure of
the equations in Chapter 2, which describe the base as free-floating,
and successfullydescribe thephysics of the experimental platformof
interest. Moreover, in order to retain the general analysis carried out
in the previous sections, we draw a parallel between the problem
of controlling the position of the prismatic joint and the case in
which all the 6DOFs of the base have to be controlled; even if we
are interested in dealing only with the translational movement of
the P joint, the equations could be effortlessly expanded to cover the
multi-dimensional case in which the spatial movement of a rigid
body has to be controlled.

We want in this way to both build an accurate simulation envi-
ronment coherent with the experimental platform of the DCSL, and
to provide some useful insights for anyone interested in using the
proposed approach in the study of a real space system.

3.4.1 Arm stabilization

In a number of different cases during the operational life of a
spacecraft-mounted manipulator, the robot arm may need to main-
tain a certain configuration described by Γ

d
, even if subjected to

forces/torques which act as disturbances; this problem can be re-
ferred to as a stabilization one, and can be tackled using the ideas
explained in Sec. 3.3.1. Using themodel in Sec. 3.1.1wewill consider
the stabilization of the 6 revolute joints of an UR10e manipulator.

If we choose the output of the system to describe the angular
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rates of the joints, we obtain

y = Γ̇ ∈ R6. (3.67)

By taking the derivative of y, we make the control input appear
exploiting the relation in Eq. (3.49), where in this case we drop the
prismatic joint, hence

Γ̈
Ji
= (∆(x))

i
+ (H(x))

i
u, i = 2, . . . , J. (3.68)

Performing the change of variables introduced in Eq. (3.20), the new
system becomes


q

1/I

Γ

Γ̇


︸ ︷︷ ︸

z

=



I15×15 015×64

06×15

0 A21 A22 · · · 0
0 0 A31 · · · 0
...

...
...

. . .
...

0 0 0 · · · A72




q

1/I

Γ

Y


︸ ︷︷ ︸

T (x)

, (3.69)

where again

A
i1 = −L

Ji
Q(q∗

i/ k
)
L
∈ R1×8,

A
i2 = LJiQ(q∗

i+1/i
)
R
∈ R1×8, i = 2, . . . , J.

(3.70)

According to the feedback linearization procedure, for this specific
case ξ = y, hence the dynamics of the transformed state will be
described by

ξ̇ = ∆(x)︸︷︷︸
D(x)

+H(x)Vmap,arm︸ ︷︷ ︸
E(x)

ũ, (3.71)
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Vmap,arm =



08×1 08×1 · · · · · · 08×1
08×1 08×1 08×1
Vact,rev 08×1 08×1
...

. . .
...

08×1 Vact,rev 08×1
08×1 08×1 · · · 08×1 Vact,rev


, (3.72)

where Vact,rev is defined by Eq. (3.46). Eq. (3.71) is then feedback
linearized by

ũ = E(x)−1 (µ−D(x)) (3.73)

which yields
ξ̇ = µ. (3.74)

In order to design µ we advocate the use of a candidate Lyapunov
function defined as

V = 1
2

(
Γ − Γ

d

)T
K
p

(
Γ − Γ

d

)
+ 1
2 Γ̇
TK
v
Γ̇ , (3.75)

for the equilibrium points Γ̇ = 0, Γ = Γ
d
. Note that the proposed

function is a valid one as

V
(
Γ = Γ

d
, Γ̇ = 0

)
= 0, (3.76)

and
V
(
Γ, Γ̇
)
> 0, ∀

(
Γ, Γ̇
)
∈ R6 \ {Γ

d
, 0}. (3.77)

In order to asymptotically stabilize the system of Eq. (3.74) at the de-
sired equilibrium points, following the Lyapunov stability criterion
in [54], we want to compute µ so that

V̇ = −Γ̇TK
s
Γ̇ . (3.78)

Differentiating Eq. (3.75) we obtain

V̇ = Γ̇TK
p

(
Γ − Γ

d

)
+ Γ̇TK

v
Γ̈ ; (3.79)
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recalling that Γ̈ = µ, equating Eq. (3.78) and Eq. (3.79),

K
v
µ + K

p

(
Γ − Γ

d

)
= −K

s
Γ̇ , (3.80)

from which
µ = K−1

v

(
−K

s
Γ̇ − K

p

(
Γ − Γ

d

))
. (3.81)

Substituting µ into Eq. (3.73) the actual control input vector ũ can
be recovered as

ũ = E(x)−1
(
K−1
v

(
−K

s
Γ̇ − K

p

(
Γ − Γ

d

))
−D(x)

)
. (3.82)

3.4.2 Simultaneous base/end-effector pose tracking

After dealing with the problem of driving the joint coordinates and
rates to a desired stationary condition, we now suggest a possible
strategy to simultaneously control the linear position and velocity of
the base, along with the dual pose and velocity of the end-effector;
our aim is to track a time-variant reference, with the purpose of
simulating a coordinate maneuver accomplished by both the base
and end-effector of the spacecraft-manipulator system.

With reference to the system described in Sec. 3.1, the notation
will address the second body (the child body with respect to the
prismatic joint) as equivalent to a new base, so

B
= 2. The ref-

erence pose, velocity and acceleration of the base will be marked
with a S subscript/superscript and will be expressed in the inertial
I frame, hence

q
S/I

= q
S/I

+ ε12r
I

S/I
q
S/I
,

ωI

S/I
= ωI

S/I
+ ε(vI

S/I
+ rI

S/I
×ωI

S/I
),

ω̇I

S/I
= ω̇I

S/I
+ ε(v̇I

S/I
− ω̇I

S/I
× rI

S/I
−ωI

S/I
× vI

S/I
).

(3.83)

In a similar fashion, the reference for the end effectorwill be denoted

77



CHAPTER 3. SPACECRAFT-MANIPULATOR CONTROL

by E,

q
E/I

= q
E/I

+ ε12r
I

E/I
q
E/I
,

ωI

E/I
= ωI

E/I
+ ε(vI

E/I
+ rI

E/I
×ωI

E/I
),

ω̇I

E/I
= ω̇I

E/I
+ ε(v̇I

E/I
− ω̇I

E/I
× rI

E/I
−ωI

E/I
× vI

E/I
).

(3.84)

Note that the trajectory generator is in charge of providing q
S/I
, r
I

S/I
,

ω
I

S/I
, vI
S/I

, q
E/I

, rI
E/I

,ωI
E/I

, vI
E/I

at every time step, and these quan-
tities in their turn will be transformed into dual quaternions by
the model. Once the reference condition is available, in order to
compute the error we want to express all the quantities in the cor-
respondent body axes, so the necessary pose transformations are
carried out,

ω B

S/I
= q∗

B/I
ωI

S/I
q

B/I
,

ω̇ B

S/I
= q∗

B/I
ω̇I

S/I
q

B/I
,

ω 8
E/I

= q∗
8/I
ωI

E/I
q

8/I
,

ω̇ 8
E/I

= q∗
8/I
ω̇I

E/I
q

8/I
.

(3.85)

The relative pose errors are then retrieved, according to the relations

q
B/S

= q∗
S/I
q

B/I
,

q
8/E

= q∗
E/I
q

8/I
;

(3.86)

note that a null error state is represented by unit dual quaternion
errors, q

B/S
= 1 and q

8/E
= 1. The evolution of the relative error

kinematics is obtained with

q̇
B/S

= 1
2q B/S

ω B

B/S
,

q̇
8/E

= 1
2q 8/E

ω 8
8/E
,

(3.87)
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where

ω B

B/S
=ω B

B/I
−ω B

S/I
,

ω 8
8/E

=ω 8
8/I

−ω 8
E/I
,

(3.88)

and, when the relative velocity error is null,ω B

B/S
=ω 8

8/E
= 0. The

relative dual accelerations between the bodies and their reference
value can be accordingly stated as

ω̇ B

B/S
= ω̇ B

B/I
− ω̇ B

S/I
,

ω̇ 8
8/E

= ω̇ 8
8/I

− ω̇ 8
E/I
.

(3.89)

Once all these quantities are defined, as introduced in Eqs. (3.58)
and (3.59), we build

y =
[
ω̃ B

B/I

ω̃ 8

8/I

]
and R =

[
ω̃ B

S/I

ω̃ 8
E/I

]
, (3.90)

so the error becomes

e =
[
ω̃ B

B/S

ω̃ 8

8/E

]
. (3.91)

The following steps closely mimic the procedure outlined from
Eq. (3.60) to Eq. (3.65); once more, after feedback linearizing we
get a linear differential relation between the evolution of the error
and the linearized control input vector, ė = µ. The problem lies now
in the design of µ such that the state is driven towards the desired
condition, not only in terms of dual velocities but also in terms of
dual poses.

Since the desired condition corresponds to q
B/S
,q

8/E
→ 1,

ω B

B/S
,ω 8

8/E
→ 0, we consider a candidate control Lyapunov func-

tion (CLF) for equilibrium points q
B/S

= 1, q
8/E

= 1, ω B

B/S
= 0,

ω 8

8/E
= 0,
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V
(
q

B/S
,ω B

B/S
,q

8/E
,ω 8

8/E

)
= 1
2(ω

B

B/S
)S ◦

(
K

B
? (ω B

B/S
)S
)
+

+ p
B
(q

B/S
− 1) ◦ (q

B/S
− 1) + 1

2(ω
8
8/E

)S ◦
(
K

8
? (ω 8

8/E
)S
)
+

+ p
8
(q

8/E
− 1) ◦ (q

8/E
− 1), (3.92)

where p
B
, p

8
> 0 are tunable scalar gains and K

B
, K

8
∈ R8×8 are

diagonal gain matrices. Note that V is a valid control Lyapunov
function as

V
(
q

B/S
= 1,ω B

B/S
= 0,q

8/E
= 1,ω 8

8/E
0
)
= 0, (3.93)

and

V
(
q

B/S
,ω B

B/S
,q

8/E
,ω 8

8/E

)
> 0,

∀ (q
B/S
,ω B

B/S
,q

8/E
,ω 8

8/E
) ∈ Hu

d
×Hv

d
×Hu

d
×Hv

d
\ {1, 0, 1, 0}.

(3.94)

In order to stabilize the system at the desired equilibrium point,
according to the Lyapunov stability criterion we want to impose a
negative value of V̇ ; taking the time derivative of V ,

V̇ = (ω B

B/S
)S ◦

(
K

B
? (ω̇ B

B/S
)S
)
+ 2p

B
(q

B/S
− 1) ◦ q̇

B/S
+

+ (ω 8
8/E

)S ◦
(
K

8
? (ω̇ 8

8/E
)S
)
+ 2p

8
(q

8/E
− 1) ◦ q̇

8/E
, (3.95)

and recalling that if a,b, c ∈ H
d
[23]

a ◦ (bc) = (b)S ◦ ((a)Sc∗) = (c)S ◦ (b∗(a)S), (3.96)

Eq. (3.95) can be expressed as

V̇ = (ω B

B/S
)S ◦

(
K

B
? (ω̇ B

B/I
− ω̇ B

S/I
)S + p

B
q∗

B/S
(q

B/S
− 1)S

)
+

+ (ω 8
8/E

)S ◦
(
K

8
? (ω̇ 8

8/I
− ω̇ 8

E/I
)S + p

8
q∗

8/E
(q

8/E
− 1)S

)
. (3.97)
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By imposing that

V̇ = −k
B
(ω B

B/S
)S ◦ (ω B

B/S
)S − k

8
(ω 8

8/E
)S ◦ (ω 8

8/E
)S, (3.98)

if we equate the right hand sides of Eqs. (3.97) and (3.98), by rear-
ranging the circle products and swapping every term of the equality
we get

[
ω B

B/S

ω 8

8/E

]
◦

p B

(
q
∗
B/S

(q
B/S

− 1)S
)S

+ K
B
? (ω̇ B

B/I
− ω̇ B

S/I
)

p
8

(
q
∗
8/E

(q
8/E

− 1)S
)S

+ K
8
? (ω̇ 8

8/I
− ω̇ 8

E/I
)

 =

−

[
ω B

B/S

ω 8

8/E

]
◦

[
k
B
ω B

B/S

k
8
ω 8

8/E

]
. (3.99)

The vector [ω B

B/S
,ω 8

8/E
]T can be dropped on both sides of the

equation, hence the scalar equality can be written in a vector form;
reminding the use of the E15 mapping matrix, we assemble an oper-
ator Eall

Eall =
[
E15 06×8
06×8 E15

]
∈ R12×16 (3.100)

which we apply on both sides of the vector equality. Recalling the
definition of e in Eq. (3.91),

Eall

[
K

B
? (ω̇ B

B/I
− ω̇ B

S/I
)

K
8
? (ω̇ 8

8/I
− ω̇ 8

E/I
)

]
=
[
K̃

B
0

0 K̃
8

][
E15(ω̇

B

B/I
− ω̇ B

S/I
)

E15(ω̇
8

8/I
− ω̇ 8

E/I
)

]

=
[
K̃

B
06×6

06×6 K̃
8

]
ė =

[
K̃

B
06×6

06×6 K̃
8

]
µ

(3.101)

where K̃
B
, K̃

8
are the previous diagonal gain matrices whose first

and fifth rows and columns have been deleted (note that this is
allowedas theymatch the entries of thedual velocities). Substituting
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Eq. (3.101) in the vector equality, we obtain

[
K̃

B
06×6

06×6 K̃
8

]
µ = Eall

−k B
ω B

B/S
− p

B

(
q
∗
B/S

(q
B/S

− 1)S
)S

−k
8
ω 8

8/E
− p

8

(
q
∗
8/E

(q
8/E

− 1)S
)S
 ,

(3.102)
from which the linearized control input µ ∈ R12 can be recovered as

µ =

−k B
K̃

−1
B
E15ω

B

B/S
− p

B
K̃

−1
B
E15

(
q
∗
B/S

(q
B/S

− 1)S
)S

−k
8
K̃

−1
8
E15ω

8

8/E
− p

8
K̃

−1
8
E15

(
q
∗
8/E

(q
8/E

− 1)S
)S
 .
(3.103)

Aswenowwant to solve for the real control input ũ, weuse Eq. (3.65)
where, for the case under analysis,

E(x) =
[(
Ψ̃(x)

)
2(

Ψ̃(x)
)
8

]
Vmap,prism-arm︸ ︷︷ ︸
R12×7

, (3.104)

and

Ξ(x) =
[(
Φ̃(x)

)
2 − ω̇

B

S/I(
Φ̃(x)

)
8 − ω̇

8

E/I

]
︸ ︷︷ ︸

R12×1

. (3.105)

As ũ = E(x)+ (µ− Ξ(x)), the nonlinear control input will be

ũ = E(x)+
 −

(
Φ̃(x)

)
2 + ω̇

B

S/I
+ K̃−1

B

[
−k

B
E15ω

B

B/S
+

−
(
Φ̃(x)

)
8 + ω̇

8

E/I
+ K̃−1

8

[
−k

8
E15ω

8

8/E
+

−p
B
E15

(
q
∗
B/S

(q
B/S

− 1)S
)S]

−p
8
E15

(
q
∗
8/E

(q
8/E

− 1)S
)S]

 . (3.106)

The mapping matrix Vmap,prism-arm ∈ R64×7 : u ∈ R64 7→ ũ ∈ R7 in
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Eq. (3.104) is defined as

Vmap,prism-arm =



08×1 08×1 · · · · · · 08×1
Vact,prism 08×1 08×1
08×1 Vact,rev 08×1
...

. . .
...

... Vact,rev 08×1
08×1 · · · · · · 08×1 Vact,rev


. (3.107)

The result presented in Eq. (3.106) is meaningful; from a unique
compact equation we are able to find the 7 elements of ũwhich cor-
respond to the control inputs on each joint; by construction, these
are able to track a reference linear and angular position of the end ef-
fector togetherwith the corresponding linear and angular velocities,
while the prismatic joint is simultaneously brought to the desired
state in terms of position and velocity.

This result has been achieved without the need of any kinematic
inversion; it is however crucial to point out that matrix E(x) must
feature full column rank in order to be pseudo-invertible. This
condition on the rank suggests that the manipulator should always
be in a nonsingular configuration in order to recover the vector ũ;
as a consequence, the reference signal has to be designed so that
the condition on the nonsingularity of the manipulator is respected.
Moreover, even if the reference signal enables a singularity free
trajectory in the joint space, the presence of disturbances could lead
the manipulator close to a singularity, and therefore compromise
the soundness of the solution. We will tackle these problems in a
specific way in the remainder of the discussion, exploiting the idea
of Control Barrier Functions (CBFs).
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Chapter4

Control barrier functions

based singularity avoidance

4.1 Introduction

The growing complexity of modern control systems is only partially
due to an increase in the difficulty of the control goal itself, while
instead is often to be attributed to always more challenging opera-
tional requirements. Not only trains, planes or cars should be able
to reach a certain destination without danger for the customers, but
also they are supposed to do so in an autonomous way, with the
minimum possible emissions, the best user experience, the most
profitable performances, and so on. All these requirements clearly
have an impact on the control design philosophy, meaning for ex-
ample that it is often no more sufficient to grant a certain rate of
convergence to a certain desired state, cause at the same time there
might be other multiple conditions to be fulfilled, possibly with
different levels of priority; this translates in the need of adjusting
the still valid results from classical control theory to new methods,
which allow wider coverage of the problem.

The same considerations hold when it comes to the problem of
the spacecraft-manipulator, as the control strategy design must take
into account a wide range of factors; first of all, the system should be
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able to perform operations with a degree of accuracy which is often
not required in ground-based applications. Moreover, the system
is required an high level of autonomy, this mainly being due to the
high communication latency, while at the same time it may have
to cooperate with other agents to achieve its control goal; all these
factors steer our research towards the implementation of a more
comprehensive control strategy, in order to widen the applicability
of what discussed in Chapter 3.

As already mentioned, the construction of the control input in-
troduced in Eq. (3.106) is subject to one main condition, namely that
the matrix E(x) has full column rank; if this happens, we can always
find a pseudoinverse E(x)+ (in particular, a left inverse) s.t. E+E = I.
By recalling the definition given in Eq. (3.104), we can argue that
the columns of E(x) are linearly independent (i.e. E has full column
rank) whenever a mapping ũ 7→ Γ̈ exists, such that a target Γ

d
can be

achieved in a finite time with finite values of ũ. Given the structure
of E(x), such a mapping is clearly configuration-dependent, and re-
calling the results from classic robotics (see for example [55]), any
singular configuration of the manipulator will prevent E(x) from
fulfilling the previously mentioned conditions on the full rank.

In the remainder of the discussion we advocate the use of con-
trol barrier functions (CBFs in the following) as a tool to provide
stability and enhanced performances to our system. To do so, we
will focus on singularity avoidance and robustness with respect to
disturbances as two additional requirements for the control system,
keeping in mind that the introduction of CBFs leaves the door open
to a lot of different options in the system’s design.

In the next sections we first suggest a brief introduction to the
theory of control barrier functions, highlighting how they provide
a good match for the control design techniques explained in Chap-
ter 3; then, we further inquire the singular configurations of our case
study. As a last step we specialize the theory to the aim of enforc-
ing singularity avoidance, while simultaneously satisfying reference
tracking requirements.
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4.2 CBF mathematical preliminaries

4.2.1 Overview on control barrier functions

The main idea behind the use of control barrier functions is the
one of ensuring the safety of a system through the achievement of
controlled invariance. This means that, if we define a safe set C as
the subset of the state space which satisfies a certain safety-related
condition, we want to keep the trajectory of the state inside this set
by means of an appropriate control action. We can assume C to be
the superlevel set of a smooth function h : Rn → R, i.e.

C = {x ∈ Rn : h(x) > 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0},
(4.1)

where ∂C is the boundary of C. According to Nagumo’s theorem
([43]), if a dynamical system of the form ẋ = f(x) is considered, the
necessary and sufficient condition to obtain set invariance is

C is invariant ←→ ḣ(x) > 0, ∀x ∈ ∂C. (4.2)

The same result can be obtained exploiting C
u
, which is the (unsafe)

complement of the safe set, and a set of initial conditions C0. If we
define a function B : Rn → R, where B(x) 6 0 for all x ∈ C0 and
B(x) > 0 for all x ∈ C

u
, then

Ḃ(x) 6 0 → C is invariant. (4.3)

If instead we consider an affine control system in the form

ẋ = f(x) + g(x)u, (4.4)

we can state that our aim is to design a control input u ∈ Rm which
renders the set C forward invariant, i.e. for every x0 ∈ C, x(t) ∈ C for
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x(0) = x0 and all t ∈ I(x0), where I(x0) = [0, τmax) is the maximum
interval of existence such that x(t) is the unique solution to Eq. (4.4)
(see [49]).

Definition 4.1. Let C ⊂ Rn be defined by Eq. (4.1) with h : Rn → R
continuously differentiable, then a functionB : C→ R is a control barrier
function (CBF) if there exist classK functionsα1, α2 and a constantγ > 0
such that

1
α1(h(x))

6 B(x) 6 1
α1(h(x))

,

inf
u∈Rm

[
L
f
B(x) + L

g
B(x)u−

γ

B(x)

]
6 0.

(4.5)

Lemma 4.1. Given a set C ⊂ Rn defined by Eq. (4.1), if a function
B(x) : C → R for a continuously differentiable function h(x) : Rn → R
satisfies the following conditions:

inf
x∈Int(C)

B(x) > 0, lim
x→∂C

B(x) =∞, (4.6)

Note that the use of the
term "barrier" comes
from the fact that the
value of B(x) blows up
on the boundary of C

and B(x) → ∞ if and only if x → ∂C, then there exist class K functions
α1, α2 such that

1
α1(h(x))

6 B(x) 6 1
α1(h(x))

. (4.7)

Proof. See [56].

As a result, the set of control inputs we are interested in is ex-
pressed as

K
B
(x) = {u ∈ Rm : L

f
B(x) + L

g
B(x)u−

γ

B(x) 6 0}, (4.8)

where B(x) can be built according to Eq. (4.6). Note that if B(x) is
chosen such that L

g
B(x) = 0, then K

B
(x) is empty. Therefore, we

will follow the backstepping-like procedure outlined in [49, 56] to
render C forward invariant even when h(x) has relative degree ρ
higher than 1; whenever h(x) expresses a constraint relative to a
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robot configuration, as it happens when dealing with singularity
avoidance, ρ > 1. In this case, we differentiate h in a recursive
fashion, until we obtain

h(ρ)(x, u) = Lρ
f
+ L

g
Lρ−1
f
h(x)u, (4.9)

with L
g
L
ρ−1
f
h(x) 6= 0, and L

g
L
k−1
f
h(x) = 0, k = 1, . . . , ρ − 1. Next,

we define the new coordinates

ζ1(x) = h(x)
ζ̇1(x) = ζ2(x)
ζ̇2(x) = ζ3(x)

...

ζ̇
ρ
(x) = Lρ

f
+ L

g
Lρ−1
f
h(x)u,

(4.10)

whose dynamics can be described by

ζ̇(x) = Aζ(x) + Bµ,
h(x) = Cζ(x),

(4.11)

where A,B,C have the form already seen in Eq. (3.23), and u has
been chosen such that

Lρ
f
+ L

g
Lρ−1
f
h(x)u = µ. (4.12)

Now we define a control barrier function candidate in the form

B
ρ
(x) = B1(x) +

ρ−1∑
i=1

E
i
(h
i
), (4.13)

where h
i
= ζ

i+1 − ξi, and

ξ1 = 0,
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ξ2 =
−1
dE1

dh1

dB1
dh h1,

... (4.14)

ξ
i
= ξ̇

i−1 −
1

dEi−1

dhi−1

dE
i−2

dh
i−2
h
i−1.

Moreover, B1(x) is picked such that the first inequality in Eq. (4.5) is
respected, while each E

i
(h
i
) has the following properties:

inf
x∈Int(C)

E
i
(h
i
) > 0,

sup
x∈Int(C)

E
i
(h
i
) 6 Emax,i,

dE
i
(h
i
)

dḣ
i

= 0 if and only if ḣ
i
= 0,

(4.15)

where Emax,i is a positive constant dependent on the choice of E
i
(h
i
).

The derivative of B
ρ
(x) can be computed therefore as

Ḃ
ρ
(x) =

dE
ρ−2

dh
ρ−2

h
ρ−1 +

dE
ρ−1

dh
ρ−1

(
Lρ
f
h(x) + L

g
Lρ−1
f
h(x)u− ξ̇

ρ−1

)
(4.16)

If dEρ−1

dhρ−1
= 0, then Ḃ

ρ
(x) = 0, which is still compliant with the con-

dition expressed in the second inequality of Eq. (4.5), equivalent
to Ḃ

ρ
(x) 6 γ

Bρ(x) . If instead dEρ−1

dhρ−1
6= 0, depending on the sign of

dEρ−1

dhρ−1
L
g
L
ρ−1
f
h(x), the controller will either be

u 6
1

dEρ−1

dhρ−1
L
g
L
ρ−1
f
h(x)

(
γ

B
ρ
(x) −

dE
ρ−2

dh
ρ−2

h
ρ−1

)
−

L
ρ

f
h(x)− ξ̇

ρ−1

L
g
L
ρ−1
f
h(x)

(4.17)
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if dEρ−1

dhρ−1
L
g
L
ρ−1
f
h(x) > 0, or

u >
1

dEρ−1

dhρ−1
L
g
L
ρ−1
f
h(x)

(
γ

B
ρ
(x) −

dE
ρ−2

dh
ρ−2

h
ρ−1

)
−

L
ρ

f
h(x)− ξ̇

ρ−1

L
g
L
ρ−1
f
h(x)

(4.18)
if dEρ−1

dhρ−1
L
g
L
ρ−1
f
h(x) < 0, where L

g
L
ρ−1
f
h(x) 6= 0 because of the as-

sumption on the relative degree of h.

Theorem 4.1. Given a set C ⊂ Rn defined by Eq. (4.1), if h(x) has a
relative degree ρ, then B

ρ
(x) as defined in Eq. (4.13) is a control barrier

function and any Lipschitz continuous controller u(x) ∈ K
Bρ
(x) for the

system Eq. (4.4) renders the set C forward invariant.

Proof. See [56].

4.2.2 Combining CLFs and CBFs via quadratic

programs (QPs)

The previously outlined CBF framework provides a solution to the
problem of designing a control uwhich renders the set C in Eq. (4.1)
controlled forward invariant. This means that whenever the control
input fulfills the conditions in Eqs. (4.17) and (4.18), the trajectory
x(t) which is the unique solution to Eq. (4.4) will never leave the
safe set; from a more practical viewpoint, this means that, for ex-
ample, the state will be kept away from a certain set of undesired
values of the position and velocity, hence evolving in a constraint-
admissible region. It is however clear that, while wewant to enforce
a constraint-admissible state evolution, the system should also be
driven towards its control objectives, which in our framework are
specified through the use of a control Lyapunov function (CLF) (see
Eqs. (3.75) and (3.92)).

In order topursue control objectives (representedbyCLFs)which
must be achieved through a state evolution inside a desired set (as
stated by CBFs), as suggested by a number of previous applications
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[47, 48, 56], we advocate the use of a single controller built upon the
combination of CLFs and CBFs through quadratic programming
(QP). Hence the controller can be synthesized in the form

u∗(x) = argmin

u=

u
δ

∈Rm+1

1
2u

TH(x)u + FT (x)u

s.t. ψ0(x) +ψ
T

1 (x)u 6 δ,

L
f
B(x) + L

g
B(x)u 6

γ

B(x) ,

(4.19)

whereψ0(x) = L
f
B(x)+W(x),ψ1(x) = L

g
V(x)T , andW(x) is a contin-

uouspositivedefinite functiononRn. H(x) ∈ Rm+1×m+1, F(x) ∈ Rm+1

are arbitrarily smooth cost functions that can be chosen to assign a
different (state-based) cost to each control input. As it will become
clear in the following, depending on the choice of H, F, the objec-
tive function can be defined either to give a simple condition on the
controller (e.g. to yield a minimum-norm controller), or to provide
a parameter whose minimization drives the system closer to the
control objective.

The scalar δ, known as relaxation factor, plays a key role in the
formulation of theproblem; by relaxing the conditiondictatedby the
CLF, it allows the optimization in Eq. (4.19) (CLF-CBF-QP) to always
have a solution. Thismeans that whenever the conditions expressed
by the CLF and the CBFs are in conflict, the system will enforce
respect of the constraints expressed by the CBFs, while temporarily
losing sight of the control objective; when instead the two conditions
do not conflict, they will be achieved simultaneously.
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4.3 CBF application to singularity

avoidance

4.3.1 Singular configurations

In order to design the robot controller, it is required to know which
are the specific singular configurations of the manipulator of inter-
est, as these may lead to dangerous arm behaviors. This is of utmost
importance when the control is formulated in the task space (as it
is in our case), and therefore no explicit inversion of the kinematics
is carried out; an expression of the error in the task space is directly
mapped to a force input, as in Eq. (3.106), hence resulting in pos-
sibly uncontrolled and large force inputs, which may damage the
actuators and pose a threat to human operators.

When dealing with our case study, we rely on an already avail-
able description of the kinematic singularities for the Universal
Robot 6R arms, which is discussed in detail in [57]. The UR10e has
three types of kinematic singularities, corresponding to the different
configurations in which det (J (q, ζ)) = 0. Exploiting the Denavit-

Joint θ [rad] a [m] d [m] α [rad]
Joint 1 0 0 0.1807 −π/2
Joint 2 0 -0.6127 0 0
Joint 3 0 -0.5716 0 0
Joint 4 0 0 0.17415 π/2
Joint 5 0 0 0.11985 −π/2
Joint 6 0 0 0.1165 0

Table 4.1: DH parameters of the UR10e.

Hartenberg parameters of the UR10e (see [58] and Table 4.1), we
can first perform the Weierstrass substitution in order to write the

92



angles as algebraic values, as in

sin θ
i
=

2v
i

1 + v2
i

, cos θ
i
=
1− v2

i

1 + v2
i

,

sinα
i
=

2t
i

1 + t2
i

, cosα
i
=
1− t2

i

1 + t2
i

,

(4.20)

where
v
i
= tan

θ
i

2 , t
i
= tan

α
i

2 . (4.21)

Exploiting Eqs. (4.20) and (4.21), det (J (q, ζ)) = 0 can be rearranged
as

det (J (q, ζ)) = v3v5
[
(v24 + 1)(v23 + 1)(v2 − 1)(v2 + 1)a2+

− (v24 + 1)(v2v3 + v2 + v3 − 1)(v2v3 − v2 − v3 − 1)a3+

−2(v2v3 + v2v4 + v3v4 − 1)(v2v3v4 − v2 − v3 − v4)d5
]
= 0. (4.22)

From inspection of Eq. (4.22) it is possible to reconstruct the three
different types of singularities. The first is characterized by v3 = 0
(elbow singularity) and takes place when the arm is stretched out;
the second, known as wrist singularity, corresponds to v5 = 0, the
condition in which the fourth and the sixth axis are coplanar. The
third expression describes the shoulder singularity, and only con-
tains v2, v3 and v4; when two of these parameters are set, the third
can be recovered with the remaining quadratic equation. Rather
than focusing on the exact algebraic conditions of this last singu-
larity, whose definition can be pretty cumbersome, we accept the
operative definition which states that the shoulder singularity oc-
curs whenever the intersection point of the axes of joints 5 and 6 lies
in one plane with the axes of joints 1 and 2; this definition will allow
a simple way to avoid its occurrence, as it will become clear in the
following.

Wrist and elbow singularities can be avoided if the conditions on
the correspondent v

i
6= 0 are turned into constraints on the admissi-
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ble values of the joint coordinates θ3 and θ5; this will be the starting
point for the creation of the CBFs.

4.3.2 Numerical benchmark

Before going forward with the discussion regarding the application
of CBFs to the problem of avoiding kinematic singularities, we find
it useful to briefly introduce a numerical technique for singularity
avoidance, which will be tested against our CBFs-based method, in
order to get some insights regarding the pros and cons of each of
them. This method, first suggested in [59] and whose efficiency has
been repeatedly proven (see for example [40]), was developed to
overcome problems deriving from close-to-singular configurations
of clusters of single-gimbal control moment gyros (SGCMGs).

We recall that the steering equation for a set of SGCMGs can be
cast in the form

Aγ̇ = b, (4.23)

where the unknown γ̇ ∈ Rn is the gimbal rate, A ∈ R3×n, b ∈ R3 is
the torque thatmust be generatedby theCMGs, and the contribution
Jγ̈ associated to the inertia of the wheels has been dropped, as often
done in the literature. In order to compute the gimbal rates, keeping
in mind that usually n > 3, Eq. (4.23) can be solved as

γ̇ = AT (AAT )−1b, (4.24)

which is known as the Moore-Penrose (MP) solution. However,
when rank(A) < 3, matrix AAT is not invertible, and therefore
Eq. (4.24) fails to retrieve a solution. Besides, it can be proven [60]
that Eq. (4.24) causes the gimbal angles to move towards singular
configuration, hence the necessity of adding an additional steering
logic to the MP solution. As anticipated, we exploit one of these
steering logic, known as Singular Direction Avoidance (SDA), to set
a benchmark to test the validity of our novel CBFs-based approach.
From a practical standpoint, we adapt the SDA method to the solu-
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tion of equation Eq. (3.106), which if rewritten as

Eũ = b, (4.25)

with

b =

 −
(
Φ̃(x)

)
2 + ω̇

B

S/I
+ K̃−1

B

[
−k

B
E15ω

B

B/S
+

−
(
Φ̃(x)

)
8 + ω̇

8

E/I
+ K̃−1

8

[
−k

8
E15ω

8

8/E
+

−p
B
E15

(
q
∗
B/S

(q
B/S

− 1)S
)S]

−p
8
E15

(
q
∗
8/E

(q
8/E

− 1)S
)S]

 , (4.26)

closely resembles Eq. (4.23).
The SDA method, applied to our case Eũ = b, starts from the

singular value decomposition (SVD) of matrix E ∈ Rm×n, wherem,
n depend on the type of control strategy we want to realize (see
Chapter 3); we will consider the scenario described in Eq. (3.106), in
which we want to actuate all the seven joints, hence E ∈ R12×7. The
SVD yields

E = USVT , (4.27)

with U ∈ R12×12, S ∈ R12×7 and V ∈ R7×7. Recall that the only
nonzero elements of S are the S

ii
, i = 1, . . . , 7; these are known as the

singular valuesofE. From linear algebra theory [61],weknowthat the
S
ii
are arranged in descending order such that S11 > S22 > . . . > S77;

hence, when the manipulator is close to a singular configuration,
S77 → 0. The method developed in [59] exploits this property by
suitably modifying the smallest singular value, in order to recover a
full rank modified version of E; when matrix E is rank-deficient, its
pseudoinverse is computed as

E+SDA = VS+SDAU
T , (4.28)
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where

S+SDA =


1
S11

0 · · · 0
0 1

S22
· · · 0

...
...

. . .
...

0 0 · · · S77
S277+α

07×5

. (4.29)

The scalar α is known as the singularity avoidance parameter, and
it increases as the system approaches to a singularity; following the
considerations on its choice in [59], we define it as

α = α0e
−kσσ

2
, (4.30)

where α0, kσ may be selected as desired, while σ =
√
n
m
S77, m,n

being the dimensions of E. Note also that when the manipulator is
far from a singular configuration S77 becomes larger, hence

S77

S
2
77 + α

→ 1
S77
, (4.31)

thus retrieving the original expression of E+.

4.3.3 CBF-based singularity avoidance

Combining the ideas introduced in the previous sections, we are in-
terested in implementing a singularity avoidancemethod, by adding
some constraints on the admissible value of the trajectory of the
state x(t). Of the three possible types of singularity illustrated in
Sec. 4.3.1 we will encode wrist and elbow singularity avoidance into
the CBFs formulation, while the shoulder singularity will be pre-
vented through the regulation of the position of the base of the arm
with respect to the intersection of axes 5 and 6. More details on this
are reported in Chapter 5.

Specifically, the constraints will define a set of admissible values
for θ3 and θ5; in order to have det (J) 6= 0, a necessary condition is
that v3, v5 6= 0. Moreover, we suggest an additional condition on the
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value of θ3 in order to avoid self-collision of the arm. Translating
this in terms of joint coordinates yields{

θ3 6= 0 + kπ,
θ5 6= 0 + 2kπ, k ∈ Z.

(4.32)

Remembering Eq. (4.1), the safe sets associated with the conditions
on the elbow and on wrist are defined as

C
e
= {θ3 ∈ R : θ3 6= 0 + kπ},

C
w
= {θ5 ∈ R : θ5 6= 0 + 2kπ}.

(4.33)

We now wish to define two smooth (continuously differentiable)
functions,whichassumepositivenonzerovaluesonly in the constraint-
admissible region of the state, and become zero on ∂C

e
, ∂C

w
. Hence,

h
e
(θ3) = sin2 θ3,

h
w
(θ5) = sin2(θ5/2).

(4.34)

The functions inEq. (4.34) provide the foundation for the creation
of the actual barrier functions; the constraints on the values of θ3, θ5
represent configuration constraints, and it is easy to verify that they
have relative degree ρ = 2. Knowing this and using Eq. (4.13) as a
driver for our choice, we suggest a general form for both the barrier
functions,

B2(x) = B1(x) + E(ḣ(x)). (4.35)

The first element B1(x) must be compliant with what introduced in
Eq. (4.7); exploiting the result of Lemma 4.1, a valid candidate is

B1(x) = − log
(

h(x)
1 + h(x)

)
. (4.36)

The term E(ḣ(x)) on its turn must fulfill the conditions in Eq. (4.15);
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(a) he function in (−2π : 2π). Note that he(0± kπ) = 0

(b) hw function in (−2π : 2π). Note that hw(0± 2kπ) = 0

Figure 4.1: Functions he(θ3), hw(θ5)98



we choose

E(ḣ(x)) = a bḣ
2(x)

1 + bḣ2(x)
, (4.37)

where a, b are tunable positive scalars. Using Eqs. (4.35) to (4.37) as
suggested in Eq. (4.13),

B2(x) = − log
(

h(x)
1 + h(x)

)
+ a bḣ

2(x)
1 + bḣ2(x)

(4.38)

Note that the presence of the square elements and of the logarithm in
Eq. (4.38) justifies the overall choice as per Eq. (4.6). Once the general
formulation is laid out, it can be specialized for the two different
cases using h

e
and h

w
; this yields the two specific expressions of

the barrier functions, respectively

B
e
(θ3, θ̇3) = − log

(
sin2

θ3

1 + sin2
θ3

)
+a

e

b
e
(2 sin θ3 cos θ3θ̇3)

2

1 + b
e
(2 sin θ3 cos θ3θ̇3)

2 (4.39)

and

B
w
(θ5, θ̇5) = − log

(
sin2(θ5/2)

1 + sin2(θ5/2)

)
+a
w

b
w

(
sin(θ5/2) cos(θ5/2)θ̇5

)2
1 + b

w

(
sin(θ5/2) cos(θ5/2)θ̇5

)2 .
(4.40)

It is straightforward to check that

inf
θ3∈Int(Ce)

B
e
(θ3, θ̇3) > 0, lim

θ3→∂Ce
B
e
(θ3, θ̇3) =∞ (4.41)

and

inf
θ5∈Int(Cw)

B
w
(θ5, θ̇5) > 0, lim

θ5→∂Cw
B
w
(θ5, θ̇5) =∞. (4.42)

Once the two CBFs are defined, they both must be differentiated
in order to make the control input u appear; exploiting the Lie
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derivatives, this step leads to

Ḃ
e
(θ3, θ̇3, u) = L

fe
B
e
(θ3, θ̇3) + L

ge
B
e
(θ3, θ̇3)u,

Ḃ
w
(θ5, θ̇5, u) = L

fw
B
w
(θ5, θ̇5) + L

gw
B
w
(θ5, θ̇5)u.

(4.43)

The expressions of Ḃ
e
(θ3, θ̇3, u) and Ḃe(θ5, θ̇5, u) will not be explic-

itly reported for the sake of brevity; their computation is however
straightforward taking Eqs. (4.39) and (4.40) as a starting point, and
then using Eq. (3.49) to express θ̈3, θ̈5 as a nonlinear function of the
input.

The next step is to specialize the constraint in Eq. (4.8) for the
case under study, to obtain two constraints on the admissible value
of u; this yields

L
ge
B
e
(θ3, θ̇3)u <

γ
e

B
e
(θ3)

− L
fe
B
e
(θ3, θ̇3),

L
gw
B
w
(θ5, θ̇5)u <

γ
w

B
w
(θ5)

− L
fw
B
w
(θ5, θ̇5).

(4.44)

Enforcing respect of Eq. (4.44)willmake the state controlled forward
invariant in C

e
and C

w
.

Once the formulation of the CBFs is available, these must be
plugged into the CLF-CBF-QP described in Eq. (4.19) to enable a
unified resolution of the nonlinear constrained control problem.
The control objective (expressed through a CLF) provides a soft con-
straint, while the CBFs add hard constraints; the concept of different
tasks which must be achieved according to a well defined hierarchy
is clearly borrowed from safety applications. If we consider the ref-
erence tracking problem formulated in Chapter 3, we can rearrange
the condition on V̇ to obtain a scalar inequality; the terms L

f
V(x)

and L
g
V(x)u can be retrieved by suitably rearranging Eq. (3.97),

while we define

W(x) = −k
B
(ω B

B/S
)S ◦ (ω B

B/S
)S − k

8
(ω 8

8/E
)S ◦ (ω 8

8/E
)S. (4.45)
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Therefore, the inequality

V̇(x) 6 −W(x) (4.46)

becomes
ψ0(x) +ψ

T

1 (x)u 6 0, (4.47)

where ψ0(x) = L
f
V(x) +W(x) and ψ1(x) = L

g
V(x)T . The CLF-CBF-

QP inEq. (4.19) can be specialized for the problemat hand, assuming
the form

u∗(x) = argmin

u=

ũ
δ

∈R8

1
2u

TH(x)u + FT (x)u

s.t. ψ0(x) +ψ
T

1 (x)ũ 6 δ,

L
fe
B
e
(θ3, θ̇3) + L

ge
B
e
(θ3, θ̇3)ũ 6

γ
e

B
e
(θ3, θ̇3)

,

L
fw
B
w
(θ5, θ̇5) + L

gw
B
w
(θ5, θ̇5)ũ 6

γ
w

B
w
(θ5, θ̇5)

.

(4.48)

MatricesH(x) and F(x) define themeaning of the quadratic objective
cost function; among the many possibilities we choose to minimize
the quantity Eu−b, which describes the deviation from the nominal
control law. Thus

J = 1
2
(Eũ− b)

T (Eũ− b)

= 1
2 ũ

T
(
ETE

)︸ ︷︷ ︸
H1

ũ−bTE︸ ︷︷ ︸
FT1

ũ.
(4.49)

Note that H1 ∈ Rm×m and F1 ∈ Rm; these must be augmented to
match the size ofu ∈ Rm+1, which also includes the relaxation factor
δ. Hence,

H =
[
H1 0

m×1
01×m p

δ

]
and F =

[
F
T

1 0
]T
, (4.50)
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where p
δ
is the weight associated with the relaxation factor.

The three constraint equations can be rearranged in a unique
vector inequality in the form

Au 6 b, (4.51)

with A, b defined as

A =

 ψ
T

1 −1
L
ge
B
e

0
L
gw
B
w

0

 ∈ R3×8,

b =

 −ψ0
γ
e
/B
e
− L

fe
B
e

γ
w
/B
w
− L

fw
B
w

 ∈ R3×1.

(4.52)

Eq. (4.48) can therefore be rewritten in the compact familiar form

u∗(x) = argmin

u=

ũ
δ

∈R8

1
2u

THu + FTu

s.t. Au 6 b;

(4.53)

which represents a quadratic optimization problemwith linear con-
straints. Using one of the many dedicated algorithms (see [62] for
some hints), Eq. (4.53) can be easily solved.

102



Chapter5

Simulations and results

5.1 Introduction

Different simulations have been developed to reproduce the exper-
imental platform recently installed at the Dynamics and Control Sys-
tem Laboratory (DCSL) of the Georgia Institute of Technology, whose
testbed consists in a 6R universal robotic manipulator (UR10e) at-
tached to the wall via a prismatic joint. Matlab and Simulink have
been used to create a simulation environment able to reproduce
accurately the experimental platform, with the aim of testing and
evaluating the feasibility, validity and suitability of the control algo-
rithm, before actually performing the real tests in the lab environ-
ment.
This chapter analyzes in detail the physical properties of the Uni-
versal Robot manipulator; technical details such as masses, inertial
properties, geometrical description and orientation of the different
frames are described in Sec. 5.2, while Sec. 5.3 presents the different
techniques used to verify the model and collect the results, proving
the validity and accuracy of the model. Once the correctness of the
model is verified, Sec. 5.4 describes the different reference trajec-
tories and their numeric generation; these will be used in Sec. 5.5,
where three different approaches are discussed to perform pose
tracking. A comparison of the results obtained using the algorithm
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which appeared to be the best choice is reported in Sec. 5.6; its effec-
tiveness and performances are assessed in the context of the overall
solution strategy.

5.2 UR10e: robot configuration and features

The UR10e installed in the DCSL features six revolute joints, whose
base is linked via a prismatic joint to a guide fixed on a wall, which
provides an additional translational degree of freedom to the whole
platform. The key feature of the UR10e is its ability to perform
a 360° rotation around all the wrist joints, and an infinite rotation
about the end effector axis; with a radius reach of up to 1300 mm,
the UR10 is effective for tasks that are performed across a large area.
The addition of the prismatic DOF to the base of the arm allows the
platform to move and extend both the reachability and the radius
reach in the direction of the first joint axis.
The physical description of the UR10e is based on the original CAD
files provided by the manufacturing company and, as described in
Sec. 2.3, some assumptions are made in the transition from the real
system to the physical one. Assuming constant density, the masses
of the different component lumped in the link masses are stated in
Table 5.1.
As shown in Table 5.1, the lab wall is modeled as a free floating
base, with high mass and moments of inertia, in order to keep it
practically fixed in the inertial space, but at the same time to retain
the mathematical description explained in Sec. 2.4.2; in this way
the UR10e is treated as a manipulator mounted on a spacecraft of
elevate dimensions, as it could be for a robot on the International
Space Station.
In order to describe the different bodies within the DQ framework,
we have developed a system of reference frames adopting some
conventions to make the process more intuitive. As a first consider-
ation, the axis describing the degree of freedom of each joint must
be along its local Z direction; moreover, the reference frame of each
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child body is always oriented as the one of the parent joint, as illus-
trated in Sec. 2.3.2.
Quaternion rotations are referred to using q

n̄
(θ):

q
n̄
(θ) = [cos(θ/2), n̄ sin(θ/2)]T , (5.1)

where n̄ is the Euler axis and θ is the Euler angle.

Body Mass [kg]

Base 102180.978 · 107

Link 1 2.611
Link 2 7.369
Link 3 13.051
Link 4 3.989
Link 5 2.100
Link 6 1.980
Link 7 0.615

Table 5.1: Masses of the different bodies composing the UR10e

The inertial reference frame, which is the starting point for the
orientation of every other frame, is centered in the center of mass
(CoM) of the guide, and has its Y axis pointed outwardswith respect
to the wall; the Z axis is in the upward direction and X descends
from the first two, as shown in Fig. 5.1. Hence, the orientation of
every other frame can be expressed with respect to the inertial one
using the property of consecutive rotation presented in Eq. (2.26).
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Quaternion rotations

q
1/I

[1, 0, 0, 0]T

q1/ 1
q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
2/1

[1, 0, 0, 0]T

q2/ 2
q
z

(
−π2
)
q
y

(
−π2
)

[0.5,−0.5,−0.5,−0.5]T

q
3/2

[1, 0, 0, 0]T

q3/ 3
q
z

(
π
2

)
q
x

(
π
2

)
[0.5, 0.5, 0.5, 0.5]T

q
4/3

[1, 0, 0, 0]T

q4/ 4
q
y
(π) [0, 0, 1, 0]T

q
5/4

[1, 0, 0, 0]T

q5/ 5
q
y
(−π) [0, 0,−1, 0]T

q
6/5

[1, 0, 0, 0]T

q6/ 6
q
x

(
−π2
)
q
z

(
−π2
)

[0.5,−0.5,−0.5,−0.5]T

q
7/6

[1, 0, 0, 0]T

q7/ 7
q
z

(
−π2
)
q
x

(
π
2

)
[0.5, 0.5,−0.5,−0.5]T

q
8/7

[1, 0, 0, 0]T

Table 5.2: Relative orientations of the frames of each child body with
respect to its parent joint (q

i+1/i) and between each joint and its proximal
body (qi/ i

).
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Figure 5.1: Inertial reference frame centered in the center of mass of the
guide
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Quaternion rotations

q1/I q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
2/I

q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q2/I q
x

(
−π2
)

[0.7071,−0.7071, 0, 0]T

q
3/I

q
x

(
−π2
)

[0.7071,−0.7071, 0, 0]T

q3/I q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
4/I

q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q4/I q
y

(3π
2

)
[−0.7071, 0, 0.7071, 0]T

q
5/I

q
y

(3π
2

)
[−0.7071, 0, 0.7071, 0]T

q5/I q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
6/I

q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q6/I q
x

(
−π2
)

[0.7071,−0.7071, 0, 0]T

q
7/I

q
x

(
−π2
)

[0.7071,−0.7071, 0, 0]T

q7/I q
y

(
−π2
)

[0.7071, 0,−0.7071, 0]T

q
8/I

q
y

(
−π2
)

[0.7071, 0,−0.7071, 0]T

Table 5.3: Orientation of joint and body frames with respect to the inertial
reference frame I

It is important to underline that only the choice of each local Z
axis is constrained, while the definition of X and Y is made on a
convenience basis. With regard to the inertia matrices of the UR10e,
the values presented in Tables 5.6 and 5.7 are expressed in the body
frames defined within the CAD files. Once the reference frames of
the robotic arm have been stated, the relation between them and the
CAD frames is used in order to rotate the inertiamatrix of each body
from CAD coordinates to the actual body ones, that have been used
all throughout the study.
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Quaternion rotations

q
1/CAD

q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
2/CAD

q
y

(
π
2

)
[0.7071, 0, 0.7071, 0]T

q
3/CAD

q
z

(
−π2
)
q
y

(
−π2
)

[0.5,−0.5,−0.5,−0.5]T

q
4/CAD

[1, 0, 0, 0]T

q
5/CAD

q
y
(π) [0, 0, 1, 0]T

q
6/CAD

q
x

(
−π2
)
q
z

(
π
2

)
[0.5,−0.5, 0.5, 0.5]T

q
7/CAD

q
y

(
−π2
)
q
z

(
−π2
)

[0.5, 0.5,−0.5,−0.5]T

q
8/CAD

q
x

(
−π2
)
q
z
(π) [0, 0, 0.7071, 0.7071]T

Table 5.4: Orientationof thebody frameswith respect to theCADreference
frames

Initial value [◦]
Γ0,1 0

Γ0,2 90

Γ0,3 100

Γ0,4 120

Γ0,5 0

Γ0,6 90

Γ0,7 0

Table 5.5: Initial condition for the joint generalized coordinates
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Inertia matrices [kg ·m2]

Base213135784.988 −186942.766 −80579.944
−186942.766 1.51998373290580e + 11 −1506.148
−80579.944 −1506.148 1.51990880260658e + 11

 · 101
Link 16850773.395 −5462.497 −1695.059

−5462.497 10529508.773 −175150.623
−1695.059 −175150.623 7676083.313

 · 10−9

Link 230386820.773 69.517 −47.448
69.517 25285600.458 375162.314
−47.448 375162.314 27005662.240

 · 10−9

Link 340965189.356 −1080.604 −2059799.950
−1080.604 940590466.152 −52.740

−2059799.950 −52.740 934098437.783

 · 10−9

Table 5.6: Inertia of the first four bodies composing the UR10e, expressed
in CAD axes
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Inertia matrices [kg ·m2]

Link 4 7158190.253 230.383 −8608217.225
230.383 261520871.736 25.134

−8608217.225 25.134 260278725.126

 · 10−9

Link 53319148.978 14.130 102938.858
14.130 4013926.432 8.261

102938.858 8.261 2922878.203

 · 10−9

Link 62840676.432 3.155 −86420.121
3.155 3336079.265 3.738

−86420.121 3.738 2606249.760

 · 10−9

Link 7463145.925 0 0
0 465712.590 −15.021
0 −15.021 609165.320

 · 10−9

Table 5.7: Inertia of the last four bodies composing the UR10e, expressed
in CAD axes
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The rotation expressed in quaternion in Table 5.4 is converted
into a matrix representation with the following formula:

A
i/CAD

= I3 − 2q0,i · [q̄i]
× + 2[q̄

i
]×[q̄

i
]× (5.2)

where q0,i is the scalar part of q i/CAD
and q̄

i
the vector part.

Hence, the inertia matrices express in body frame can be found
using Eq. (5.3),

I = AT
/CAD

I
CAD

A
/CAD

. (5.3)

The initial conditions (see Table 5.5) are selected in order to avoid
proximity to singularity in the initial configuration; this can be
proved by a sufficiently high value of the manipulability index,
which is defined as

w =
√

det
(

J̃J̃T
)
, (5.4)

where J̃ is the Jacobian introduced in Eq. (2.53) whose first and fifth
rows have been eliminated as they are always associated with the
zero entries of vector DQ velocities. In this way, we assure that the
initial condition is coherent with the idea of safe set as illustrated in
Chapter 4, and that the robotic arm is placed in an optimal starting
position to perform the pose tracking maneuver. Moreover, the
initial joint angles result in a folded position of the arm (see Fig. 5.2),
which is meant to occupy less space in the DCSL facility.
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Figure 5.2: Initial condition for the UR10e

Using the initial values of the joint coordinates and the product
of consecutive rotation for quaternions, it is possible to evaluate
the initial q

i/I
for each joint; once this is done, by exploiting the

measurements in inertial reference frame taken from the CAD, we
can obtain the same dimensions but expressed in body frame.
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Quaternion distances

Symbol Value [m]

r
I

1/ 1
[0, 190.045, 59.235, 45.001]T · 10−3

r
I

2/1
[0,−180.079, 104.3,−51.592]T · 10−3

r
I

2/ 2
[0, 0.079, 39.947, 1.592]T · 10−3

r
I

3/2
[0, 0, 83.39,−12.894]T · 10−3

r
I

3/ 3
[0, 0,−1.99,−81.706]T · 10−3

r
I

4/3
[0, 208.04,−36.683,−82.392]T · 10−3

r
I

4/ 4
[0, 395.327,−69.896, 65.975]T · 10−3

r
I

5/4
[0,−83.06, 228.206, 62.011]T · 10−3

r
I

5/ 5
[0,−112.421, 308.875,−46.494]T · 10−3

r
I

6/5
[0,−0.542, 1.487,−62.698]T · 10−3

r
I

6/ 6
[0,−19.097, 52.47,−15.952]T · 10−3

r
I

7/6
[0,−16.398, 50.235, 0]T · 10−3

r
I

7/ 7
[0, 49.002, 28.069, 0]T · 10−3

r
I

8/7
[0, 25.602, 9.318, 0.111]T · 10−3

Table 5.8: Quaternion expressions of the distances from parent body to
child joint, and viceversa, expressed in inertial frame

Using the quantities expressed in inertial frame, which are ob-
tained from the CAD files (see Table 5.8), all the measurements are
subsequently rotated in body frames according to Eq. (2.11),

r i+1
i+1/i

= q∗
i+1/I

rI
i+1/i

q
i+1/I

,

r k

i/ k
= q∗

k/I
rI
i/ k
q

k/I
.

(5.5)
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The last necessary step to fully characterize theUR10e is the creation
of the mapping matrices described in Sec. 2.3.4. In the end, all the
parameters necessary to start the simulation are collected in a data
struct, whose content can be summed up as:

• The dual pose of each node of the system, i.e. all the joint
and body frames, which is found using Eq. (2.40) in order to
characterize the initial forward kinematics.

• The mapping matrices according to each joint type (see Ta-
ble 5.9).

Joint type V Λ V
act

L

P E
T

145 E158 E
T

1235678 [0, 0, 0, 0, 0, 0, 0, 1]

R E
T

158 E145 E
T

1234567 [0, 0, 0, 1, 0, 0, 0, 0]

Table 5.9: Mapping matrices.

• The dual mass and inertia matrices expressed in Sec. 2.4.2.

• The initial state vector as described in Eq. (2.97).

5.3 Model simulation and verification

It is vital to ensure the proper functioning of the simulated dynam-
ics of the UR10e, before starting with more complex simulations
involving the control laws; this process, also known as model veri-
fication, is defined as "ensuring that the computer program of the
computerized model and its implementation are correct" [63].
In order to ensure the correct implementation, two simulations are
performed with different initial velocities and no external wrenches
or disturbances applied; hence, the system is isolated and the re-
sults can be checked in terms of conservation of dual momentum
and kinetic energy.
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5.3.1 Initial conditions

As per Eq. (2.97), the initial dual velocities in the state vector are
expressed in body reference frames, with respect to a steady inertial
frame. Therefore, to help the creation of consistent initial conditions
that satisfy the constraints given by each joint, a computer routine
has been used to retrieve the initial conditions from the general-
ized joint velocities, which were written with respect to the parent
bodies, in the form ω

i

i/ k
. Note that the ωi

i/ k
must be defined in

compliance with the constraints exerted by the joints; for example,
a revolute joint shall have its unique nonzero entry in the position
corresponding with an angular velocity on its local Z axis (see Ta-
ble 5.10). After defining the relative joint velocities, the forward
kinematics express in Sec. 2.3.4 is used to find the joint velocities in
the inertial reference frame, by rearranging Eq. (2.76) in the form

ω i+1
i+1/I

= q∗
i+1/i

(ωi

i/ k
+ q∗

i/ k
ω k

k/I
q
i/ k

)q
i+1/i

, k = N[C(i, :)],

i = {1, . . . , J}. (5.6)

Starting from the initial velocity of the first body, which is always
null, and from the relative velocity of each joint, it is possible to
convert the initial conditions into the ones needed by the state vector.

5.3.2 Free response of the system

Once the initial conditions are stated, an analysis on the physi-
cal quantities which must be conserved is carried out, in order to
check consistency of the model. The system, in absence of applied
wrenches and dissipation, can be considered isolated; therefore, its
kinetic energy E

k
, dual momentum H

I

S
(O
I
) and overall center of

mass remain constant. Table 5.10 reports the set of initial conditions
which have been used in the first case of the system free response,
while Table 5.11 describes the second set.
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First case

Initial relative velocity [m · s−1] or [rad · s−1]
ω

1
1/ 1

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
2
2/ 2

[0, 0, 0, 0.3, 0, 0, 0, 0]T

ω
3
3/ 3

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
4
4/ 4

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
5
5/ 5

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
6
6/ 6

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
7
7/ 7

[0, 0, 0, 0, 0, 0, 0, 0]T

Table 5.10: First set of initial joint relative velocities expressed in the parent
body’s reference frame

As it is shown in Figs. 5.3 to 5.6, the conserved quantities do not
display significant variations; the data in Figs. 5.4 and 5.5 have been
extracted from the overall dual momentum vector. The variation in
the value of the kinetic energy in Fig. 5.3, in the order of 10−5, is due
to the limits in the accuracy of the numerical solution.
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Figure 5.3: Overall system kinetic energy, first case

Figure 5.4: Overall system linear momentum, first case
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Figure 5.5: Overall system angular momentum, first case

Figure 5.6: Overall system center of mass expressed in inertial reference
frame, first case

When analyzing the overall motion of the robotic manipulator,
it is important to underline that, due to momentum conservation,
the rotations around the six revolute joints also cause a motion of
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the prismatic joint, as shown in Fig. 5.7. In order to increase the
performance of the control, it will be critical to keep this motion at
a minimum. Fig. 5.9 describes the reaction wrenches generated by
the first joint on its parent body, which are due to the rotation of the
UR10e around the second joint; looking at the values ofW1

B2/B1
it is

possible to have an initial estimate of the order of magnitude of the
actuation which will be needed to move the robotic arm.

Figure 5.7: Prismatic joint displacement, first case
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Figure 5.8: Prismatic joint velocity, first case

Figure 5.9: Reaction wrench exerted by the prismatic joint on its adjacent
bodies, first case
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Second case

A second set of initial conditions is hereby used in order to further
verify the model; this set is more demanding as it implies more
nonzero entries with respect to the case in Table 5.11. Nonetheless,
invariance of the mechanical constants is still preserved.

Initial relative velocity [m · s−1] or [rad · s−1]
ω

1
1/ 1

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
2
2/ 2

[0, 0, 0, 0.3, 0, 0, 0, 0]T

ω
3
3/ 3

[0, 0, 0, 0, 0, 0, 0, 0]T

ω
4
4/ 4

[0, 0, 0, 0.3, 0, 0, 0, 0]T

ω
5
5/ 5

[0, 0, 0,−0.1, 0, 0, 0, 0]T

ω
6
6/ 6

[0, 0, 0,−0.2, 0, 0, 0, 0]T

ω
7
7/ 7

[0, 0, 0, 0, 0, 0, 0, 0]T

Table 5.11: Second set of initial joint relative velocities expressed in the
parent body’s reference frame
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Figure 5.10: Overall system kinetic energy, second case

Figure 5.11: Overall system linear momentum, second case
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Figure 5.12: Overall system angular momentum, second case

Figure 5.13: Overall system center of mass expressed in inertial reference
frame, second case
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Figure 5.14: Prismatic joint displacement, second case

Figure 5.15: Prismatic joint velocity, second case
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Figure 5.16: Reaction wrench exerted by the prismatic joint on its adjacent
bodies, secind case

Figure 5.17: Manipulability index for the UR10e, second example.

The relative motion of the links around the different joint axes
may lead the UR10e close to singularity, so w → 0, as shown in
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Fig. 5.17; this introduces a problem that will be discussed in depth
in Sec. 5.5

5.4 DQ reference pose generation

Aunique reference trajectory has been chosen to simulate pose track-
ing; this was done to better compare the performances of the differ-
ent types of controller. The position trajectory is given by a circular
motion in the XY inertial plane, while the reference attitude of the
end effector is constant and equal to the orientation of inertial frame.
The circle in the XY plane is expressed in Cartesian coordinate and
is defined by three different quantities; r̄0 is the vector that defines
the position of the center of the circle in the inertial reference frame,
r is the radius of the circle andω is its angular frequency expressed
in [rad · s−1]. These values are combined to obtain the path, which
is parametrized with respect to time t, as in

r̄I
E/I,x

= r̄0,x + r cos(ωt),

r̄I
E/I,y

= r̄0,y + r sin(ωt),

r̄I
EI,z

= r̄0,z,

(5.7)

where the quaternion position vector has been defined as: rI
E/I

=
[0, r̄

E/I
]T . The desired attitude is oriented as the inertial reference

frame, hence q
E/I

= [1, 0, 0, 0]T ; the reference dual pose trajectory is
therefore obtained as in Eq. (2.25):

q
E/I

= q
E/I

+ ε
(
1
2r
I

E/I
q
E/I

)
. (5.8)

The desired end effector orientation does not change in time - it
remains fixed in the inertial reference frame - so q

E/I
is constant. In

this way both ωI
E/I

and ω̇I
E/I

are equal to 0. On the contrary, the
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reference linear velocity and acceleration are

v̄I
E/I,x

= −rω sin(ωt),

v̄I
E/I,y

= rω cos(ωt),

v̄I
E/I,z

= 0

(5.9)

and

˙̄vI
E/I,x

= −rω2 sin(ωt),
˙̄vI
E/I,y

= −rω2 cos(ωt),
˙̄vI
E/I,z

= 0.

(5.10)

Eqs. (5.9) and (5.10) are used to create the quaternion form of the
velocities and accelerations, vI

E/I
= [0, v̄I

E/I
] and v̇I

E/I
= [0, ˙̄vI

E/I
]; this

leads to the reference dual velocity and acceleration, which evolve
as

ωI

E/I
= ωI

E/I
+ ε(vI

E/I
+ rI

E/I
×ωI

E/I
),

ω̇I

E/I
= ω̇I

E/I
+ ε(v̇I

E/I
+ rI

E/I
× ω̇I

E/I
−ωI

E/I
× vI

E/I
).

(5.11)

These dual reference quantities will be used to compute the error
between the actual and the desired state, following the procedure
outlined in Chapter 3.

5.5 Reference pose tracking: 3 different

approaches

There are different ways to tackle Eq. (3.106); three different meth-
ods (see details in Secs. 5.5.1 to 5.5.3) are proposed in the following
as a way to construct the control input. All the initial inertial ve-
locities are null for every simulation; moreover, in order to compare
the results, a unique pose trajectory is used, whose parameters are
reported in Table 5.12.
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Parameter Value Measurement unit

r̄0 [0.5, 1,−0.08]T [m]
ω 0.2 [rad · s−1]
r 0.2 [m]

Table 5.12: Reference pose parameters

The control proposed is the one illustrated in detail in Sec. 3.4.2,
which is used to simultaneously stabilize the position of the base and
follow the prescribedposition and attitudewith the end-effector. All
the scalar and matrix gain of Eq. (3.106) are reported in Table 5.13:

Control gains

Base End effector

K̃
B

1 0 0
0 1 0
0 0 1

 K̃
8

1 0 0
0 1 0
0 0 1


k
B

1 k
8

3
p

B
1 p

8
3

Table 5.13: Control parameter for base and end effector pose tracking.

5.5.1 Pseudoinverse-based solution

The first way to find the nonlinear control input is the straight so-
lution of equation ũ = E(x)+b, whose result is shown in Fig. 5.18.
From t = 5 to t = 10, two different spikes can be detected. These are
causedby a close-to-singular configuration, as describedbyFig. 5.19:
as expected, in correspondence with the spikes the manipulability
index w approaches 0, give the close-to-singular value Γ6 = 0.0107
[rad] (see Fig. 5.20).
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Figure 5.18: Control input

Figure 5.19: Manipulability index
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Figure 5.20: Evolution of the sixth joint angle

The pose tracking result is presented in Fig. 5.21, where it is
possible to compare the reference trajectory to the one achieved by
the control. The error in the pose tracking for this first method is
also reported; dual quaternion pose and velocity error are plotted
in Figs. 5.22 and 5.23, while position and attitude error are depicted
Figs. 5.24 and 5.25.
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Figure 5.21: Pose tracking result

Figure 5.22: Dual pose error

132



Figure 5.23: Dual velocity error

Figure 5.24: Position Error
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Figure 5.25: Attitude error

This first solution strategy features some problems when ap-
proaching to singularity, which result in an unsatisfactory profile
of the input ũ. This happens when the joint angle Γ6 moves from
the initial folded position to the one needed to follow the reference
input; on the other hand, Γ4 is far from the singular condition Γ4 = 0
and its evolution does not influence the quality of the solution.

5.5.2 Singular Direction Avoidance (SDA)

In order to better deal with singularities, a second way of solving
the control equation is presented; this method is known as Singular
Direction Avoidance (SDA).
As specified in Sec. 4.3.1, the SDAmethod is principally used to deal
with near singular configurations of control moment gyros, and has
therefore been adapted to our case; in order to solve Eq. (4.28) some
parameters must be defined:
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SDA parameters

α0 0.001
k
σ

10

Table 5.14: Parameter for singular direction avoidance control

The solution obtained using the SDA method is displayed in
Fig. 5.26. Between t = 8.6 and t = 9.2 a single spike can be observed,
in correspondence of the end of the singular zone of the pure pseu-
doinverse solution. The differences with respect to the previous
solution can be found in comparison with Figs. 5.27 and 5.28. This
time, the value of Γ6 crosses the singular condition at 0° and the joint
angle reaches negative values, as shown in Fig. 5.28. The condition
Γ6 = 0 and the subsequent trend, which consists in the repeated ap-
proach to 0° from the negative half-plane, brings the manipulability
index close to 0 (Fig. 5.27) and yields an increase in the value of the
joints actuation.

Figure 5.26: Control input with SDA
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Figure 5.27: Manipulability index with SDA

Figure 5.28: Evolution of the sixth joint angle with SDA

The pose tracking result can be observed in Fig. 5.29, while the
dual quaternion error is described in Figs. 5.30 and 5.31. Fig. 5.32
shows a less satisfactory behavior of the position error obtained by
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the SDA, in relation to the first method. An increase in the deviation
from the reference trajectory is observed when there is a reduction
in the manipulability index; this happens because, in order to pass
through the singularity, the algorithm performs a variation of the
singular values inmatrixE, hencedecreasing trackingaccuracy. This
mainly happens for the position, as it is can be observed comparing
Fig. 5.32 and Fig. 5.33.

Figure 5.29: Pose tracking with SDA
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Figure 5.30: Dual pose error with SDA

Figure 5.31: Dual velocity error with SDA
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Figure 5.32: Position error with SDA

Figure 5.33: Attitude error with SDA

In conclusion, the solution achieved by the SDA method is able
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to cross singular configurations, but in doing so it loses tracking
accuracy, hence resulting in a larger errors.

5.5.3 Control Barrier Functions (CBFs)

The last solution, which has been explained in Sec. 4.3.3, is focused
on singularity avoidance through the use of control barrier func-
tions. In this way it is possible to prevent the spikes in Figs. 5.18
and 5.26 by avoiding singular conditions; the parameters present
in the CBFs formulation are described in Table 5.15, while the re-
sults coming from the solution of the CLF-CBF-QP are expressed in
Fig. 5.34.

Figure 5.34: Control input with CBFs
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CBF parameters

Wrist Elbow

H
δ
= 10−5

a
w

150 a
e

1
b
w

50 b
e

1
c
w

10 c
e

1

Table 5.15: Control barrier function parameters

As we can see from Fig. 5.34, no spikes are present in the profile
of the control input. In the first part of the simulation, when the
manipulator moves from the initial folded position, higher values
of the input torques are needed in order to reach the desired angle
Γ6 without crossing the singular condition. This variation in the
overall movement of the arm can be observed in the path of the end
effector in Fig. 5.35, and it clearly has a counterpart in the evolution
of Γ2 in Fig. 5.36. This leads to a slower variation of Γ6 in Fig. 5.38,
and to a minimum value of the manipulability index that is higher
(Fig. 5.42) than the ones in the previous examples.
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Figure 5.35: Pose tracking with CBFs

Figure 5.36: Joints coordinates with CBFs
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Figure 5.37: Joints coordinates with CBFs
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Figure 5.38: Joints coordinates with CBFs

Figure 5.39: Joint velocities with CBFs
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Figure 5.40: Joint velocities with CBFs
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Figure 5.41: Joint velocities with CBFs

Figure 5.42: Manipulabity index with CBFs

The error is hereby reported in dual form (Figs. 5.43 and 5.44);
for the sake of clarity, it can be also decomposed in attitude and
position error (Figs. 5.45 and 5.46).
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Figure 5.43: Dual pose error with CBFs

Figure 5.44: Dual velocity error with CBFs
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Figure 5.45: Attitude error with CBFs

Figure 5.46: Position error with CBFs

It is possible to compare the motion generated by the nonlin-
ear controller with the CBFs based method to the other simulations
in Fig. 5.47; as explained before, the manipulator exploits a larger
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variation of Γ2 to obtain the same orientation of the end effector, as
shown in Figs. 5.48 and 5.49. A significant variation of Γ2 can be
noticed, along with a slower decrease of Γ6. This coordinated move-
ment prevents the manipulabitity index from reaching the value of
the first two simulations (Fig. 5.50), thus proving to be effective in
avoiding the singular condition. In order to compare the different
strategies in terms of accuracy, the norm of the different position
errors are reported in Fig. 5.54; a clear discrepancy between SDA
and the other simulations can be noticed.

Figure 5.47: Comparison of the pose tracking results
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Figure 5.48: Comparison of the evolution of the second joint coordinate

Figure 5.49: Comparison of the evolution of the sixth joint coordinate
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Figure 5.50: Comparison of the manipulability indices

It can be concluded that the control input does not fall into the
initial singularity, which was always present when using the previ-
ous methods; the control effort is featured by higher initial values
that are necessary to create the different path of the end-effector. It is
important to notice that the solution originated by ũ = E(x)+b differs
from the CBFs solution only in the first part of the simulation; after
the singular condition is passed, the two solutions become equal.
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Figure 5.51: Comparison of the control inputs for the first two joints

Figure 5.52: Comparison of the control inputs for the third and fourth
joints
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Figure 5.53: Comparison of the control inputs for the fifth and sixth joints

Figure 5.54: Comparison of the norm of the position error
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5.6 CLF-CBF-QP: a comparison between

different cases

The addition of control barrier functions to the nonlinear controller
leads to a solution that keeps the evolution of the state in a safe
set, thus avoiding singularities. For this reason, we will exploit the
benefits illustrated in Sec. 5.5 by applying this type of control to
different cases; in the last part we will introduce a disturbance to
prove robustness of the proposed approach. In order to add com-
plexity to the simulation, the circular reference trajectory is moved
out of the reachability of the UR10e; therefore, in order to preserve
tracking capability, a new logic for themanipulator control has been
developed.

Parameter Value Measurement unit

r̄0 [2, 1,−0.08]T [m]
ω 0.2 [rad · s−1]
r 0.2 [m]

Table 5.16: Reference pose parameters

The main idea is that the control related to the end effector pose
tracking should be enabled when the base of the arm is at a distance
δ
2 from the center of the desired path; thus, at the beginning of the
simulation, themodel evaluates the distancewhich themanipulator
has to cover along the X-axis. The quantity ∆x is defined in order to
reach the desired X coordinate, which corresponds to a δ

2 distance
of the base from the center of the target trajectory. Hence,

∆x = −

(∥∥∥rI
2/I,x

− r̄0,x

∥∥∥− δ

2

)
sign(rI

2/I,x
− r̄0,x), (5.12)

where
∥∥∥rI

2/I,x
− r̄0,x

∥∥∥ = ‖∆x‖+ δ2 ; by adding ∆x to rI
2/I

, a new value
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of q
S/I

is obtained and can be plugged into Eq. (3.106), as in

rI
S/I

= rI
2/I

+ [0, ∆x, 0, 0]T ,

q
S/I

= q
S/I

+ ε
(
1
2r
I

s/i
q
S/I

)
.

(5.13)

Using these quantities in the Lyapunov function, we obtain that
the new position of the base is a stable equilibrium solution of the
controlled system. When the base is moving, the arm is actively
kept in the initial configuration described in Table 5.5, through the
control illustrated in Sec. 3.4.1. In thisway even if the base ismoving,
the initial folded configuration of the manipulator is conserved.

If the base of the arm is further than δ
2 plus a tunable tolerance

factor from the desired position, it will start moving to the afore-
mentioned optimal position; the rationale behind the margin factor
is to allow a minimal motion of the base during the tracking phase.
In order to initialize the end effector pose tracking when the ma-
nipulator is in a rest condition, a check on the velocity of the joints
coordinates is added; when Γ̇ · Γ̇ < 10−5, the controller start moving
the end effector to track the desired trajectory.

Adding a constraint on the residual velocities means also being
sure that the initial position is exactly the one desired (rI

2/I
= rI

S/I
);

this happens because the condition on the velocities is more conser-
vative, while the term δ/2 +margin allows the base to move during
the pose tracking phase. The parameters describing the control in
Sec. 3.4.1 are:
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Arm stabilization parameters

K
v

5
K
s

5
K
p

5

k
B

1
p

B
0.3

Table 5.17: Parameters of the arm/base stabilization control

k
B
and p

B
have been modified with respect to the values re-

ported in Table 5.13 in order to reduce the force acting on the pris-
matic joint, even when its position error is large; as a side effect, also
the torques needed to stabilize the arm are lower.

Afirst example is hereby displayed using theCBFs based control.
The discontinuity at t = 25 shows the switch between the control in
charge ofmoving theUR10e to the desired rI

S/I
and the pose tracking

control (Fig. 5.56). As in the example in Sec. 5.5, the manipulabity
index shows no singularity even if Γ6 tends to 0° (see Fig. 5.60); the
end effector follows a path which, thanks to the variation of Γ2, is
able to avoid the singularity (Fig. 5.58).
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Figure 5.55: Pose tracking with CBFs

Figure 5.56: Joints actuation with CBFs
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Figure 5.57: Manipulability index with CBFs

Figure 5.58: Joints generalized coordinates with CBFs
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Figure 5.59: Joints generalized coordinates with CBFs
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Figure 5.60: Joints generalized coordinates with CBFs

Figure 5.61: Joints velocities with CBFs
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Figure 5.62: Joints velocities with CBFs
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Figure 5.63: Joints velocities with CBFs

Figure 5.64: Dual pose error with CBFs

With regards to the error in the pose tracking, after the initial part
in which the base is being moved to its target position, it converges
to the prescribed path as shown in Fig. 5.64
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Figure 5.65: Dual velocity error with CBFs

Once again, the dual pose error is divided into attitude and posi-
tion error to better understand the convergence of the two different
quantities.

Figure 5.66: Attitude error with CBFs
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Figure 5.67: Position error with CBFs

5.6.1 Disturbances

In order to prove the robustness of the control algorithm, a distur-
bance is applied on the base of the UR10e. The disturbance force
acts on the second body, which is the child body of the prismatic
joint. The disturbance is modeled as a sinusoidal force acting in
the X inertial direction; the amplitude of the disturbance and the
frequency of the excitation are reported in Table 5.18.

W 2
2,x

= A sin(ωdist) (5.14)

Disturbance characterization

ωdis 10 [rad · s−1]
A 0.25 [N]

Table 5.18: Parameters characterizing the disturbance force

The disturbance applied to the second body leads to a higher
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control effort on the prismatic joint (Fig. 5.69), which is in charge of
counteracting the external solicitation; the control is however able
to avoid singularity and track the trajectory, with an evolution of the
joint coordinates which is similar to the one already shown.

Figure 5.68: Disturbed pose tracking with CBFs
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Figure 5.69: Joint actuation with CBFs in the disturbed case

The pose tracking accuracy is not influenced by the disturbance;
the errors in terms of pose and velocity are also reported.

Figure 5.70: Dual pose error with CBFs and disturbance
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Figure 5.71: Dual velocity error with CBFs and disturbance

If the same pose tracking is required and no control barrier func-
tion are used, the joints actuation profile features the presence of
spikes during in first part of the trajectory, when the UR10e has to
move from the folded position to the reference one Fig. 5.73.
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Figure 5.72: Disturbed pose tracking without CBFs

Figure 5.73: Disturbed joints actuation without CBFs

Even if the singularity occurs, it does not influence the pose
tracking capability in terms of pose and velocities.
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Figure 5.74: Dual pose error without CBFs, with disturbance

Figure 5.75: Dual velocity error without CBFs, with disturbance
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Chapter6

Conclusion

6.1 Final remarks

A dual quaternion (DQ) framework has been developed in the body
of the work to provide a comprehensive description of the kinemat-
ics and dynamics of a spacecraft mounted manipulator. Exploiting
the unified translational-rotational nature of the equations arising
from this mathematical framework, a unique nonlinear controller
has been developed to enable coordinated control of both the posi-
tion and the attitude (i.e. pose) of the satellite base and of the end
effector. In order to grant robustness and accuracy to the solution, a
novel control barrier functions (CBFs) based singularity avoidance
strategy has been suggested; this allowed to save the results coming
from the Lyapunov stability analysis and to make them applicable
in a wider range of cases, thanks to the achievement of controlled
forward invariance of the solution with respect to a singularity-free
state subset. The validity of the aforementioned ideas has been
proved by the numerical results reported in Chapter 5, which also
features a comparisonwith amore traditional singularity avoidance
method.

Although more complex from the algebraic point of view, the
DQ formulationwas able to provide a physically sound formulation
to describe both the satellite and robot dynamics; in fact, more than
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highlighting the differences between the fields of space engineering
and robotics, the mathematical framework was able to grasp the
common concepts which stand at the basis of the multibody kine-
matics and dynamics, hence allowing a straightforward physical in-
terpretation of the equations. On the other hand, it has been proved
[64] that traditional point-based spatial transformations, such as the
homogeneous transform, are still more effective from the compu-
tational point of view; no evidence of the contrary has been found
within this study. To the authors’ view, a DQ based approach is
therefore to be preferred whenever a unitary algebraic description
is required for the coupled satellite-manipulator problem; for exam-
ple, thismay be the casewhen it comes to the design of a coordinated
controller for a free-flying spacecraft mounted manipulator system.

As an evidence to support this last consideration, the imple-
mentation of a coordinated base-manipulator pose-tracking strat-
egy revealed to be a good match for the dual form of the equations
of motion. In fact, the form of the controller was derived in a
natural way from an attitude-only quaternion law, but it extended
its results achieving also satisfactory results in terms of position-
tracking. However, as the controller has been formulated in the task
space, its feasibility is tightly related to the absence of kinematic
singularities, and this constitutes a limit in the types of trajectory
that can be tracked. This became evident when dealing with the
numerical solution of the nominal control equation, which was ex-
tremely unstable and highly dependent from the definition of the
reference trajectory; therefore, the only nominal control lawwas not
considered sufficient to our purposes. As the work did not focus
on the generation of a priori singularity-free trajectories, the choice
was made to recover safety a posteriori, exploiting the CBFs as a
way to impose constraints on the values of the state and therefore
avoid known singular configuration. This choice, although being
a quite unusual one in the context of singularity avoidance meth-
ods literature, turned out to be effective; rearranging the controller
as a constrained optimization problem allowed to fully exploit the
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results of the original Lyapunov-based approach, otherwise weak;
on the other hand, the computational burden became significant, as
each integration step involves the solution of a quadratic program-
ming problem. The computational aspect, although not strictly of
interest to the extent of this thesis, would necessary need further in-
vestigation if amethod like the proposed one had to be implemented
for a real application.

6.2 Further developments

As already stated, some assumptions were made during the model-
ing phase of the work; as a consequence, possible further develop-
ments would imply more accurate treatment of some aspects that
have been voluntarily neglected. Among them, it would be inter-
esting to exploit the simulation environment to model a real manip-
ulation problem, hence involving contact forces, additional bodies
with unknown inertia, . . . This would provide a deeper insight into
the coupled manipulator-base dynamics and would probably make
the DQ framework even more worthwhile. Moreover, the actuator
dynamics (both the base and the arm ones) has not been examined,
hence not taking into account possible limits in the control action
due to saturations, fuel consumption, accuracy thresholds, etc.; this
analysis is necessary to predict the behavior of any experimental
platform in a faithful way.

When it comes to experimental activity, it would be crucial to
study the interaction of the model with the information coming
from the sensors; thesewouldallowdealingwithuncertainties in the
definition of the physical properties of the model, hence providing
enhanced performances to the real system. Besides, the control
system could use inertial and vision sensors to simulate a realistic
operational scenario.

As a last remark, the introduction ofCBFs into the problem leaves
the door open to a number of additional applications; in particular,
these could be used to increase autonomy of the system and exploit
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the platform in a deeper way; the same maneuver could be given a
set of tasks with different priorities, for example to maximize sun
exposure, while also following a reference trajectory and respecting
a line of sight constraint.
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