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Abstract

With the advent of digital technologies in the music industry, the modeling of analog
equipment such as guitar amplifiers, distortion pedals and other effects has assumed a
central role. As a matter of fact, this makes expensive analog technologies more affordable,

as well as guaranteeing a sound quality comparable with the original one.

In the last years, the use of deep neural network was heavily introduced in sound modeling
as a valid alternative to more classic DSP (Digital Signal Processing). Specifically, neural
networks such as RNN (Recurrent Neural Network) and WaveNet have been adopted to
reach the best results. Furthermore, these architectures are mainly employed in modeling

analog devices related to electric guitar sounds.

This thesis work is aimed at black-box modeling acoustic guitar pick-up - microphone
sound using a RNN neural network with an LSTM (Long-Short Term Memory) unit. For
this purpose, we create a training dataset composed by pairs of microphone and pick-up
acoustic guitar recordings. Furthermore, we studied a loss function that could fit our task.
Finally, we evaluate the results in terms of ESR (Error to Signal Ratio) and give also a

perceptual evaluation from the author perspective.

We conclude that the model has shown its ability of following the trend of the target
microphone signal in time domain, given as input the pick-up one. However, the model
is not able to capture properly the high frequencies components of the spectrum, which
are attenuated for frequencies greater than 3 kHz. In order to overcome this issue, we
proposed a solution based on the sum of two different models output. This new audio

present more energy in the upper frequencies components.

Within said, the final output is not good enough to have the same tone of the target one.
We hope this thesis could be a starting point in this research area, which would bring

new tools in music field.

Keywords: deep learning, recurrent neural network, black-box sound modeling, acoustic

guitar
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Abstract in lingua italiana

Con l'avvento del digitale nell’industria musicale, la modellazione virtuale di strumenti
analogici come amplificatori, pedali di distorsione e altra effettistica ha assunto un ruolo
centrale. Questo ha permesso di rendere le costose attrezzature analogiche piu facilmente

accessibili, garantendo una qualita sonora comparabile con 'originale.

Negli ultimi anni, nella modellazione virtuale si & sempre pitu affermato 1'utilizzo del deep
learning come valida alternativa ai classici metodi DSP (Digital Signal Processing). Nello
specifico i risultati migliori sono stati ottenuti da reti neurali quali RNN (Recurrent Neural
Network) e Wavenet. La modellazione in questo campo si concentra prevalentemente su

suoni legati alla chitarra elettrica.

Il lavoro di questa tesi punta a modellizare con un approccio scatola-nera la relazione tra il
suono registrato dal pick-up di una chitarra acustica e quello di un microfono professionale,
utilizzando una RNN con un’unitd LSTM (Long-Short Term Memory). Abbiamo quindi
creato un dataset composto da coppie di audio ottenute registrando simultaneamente la
chitarra acustica dal pick-up e dal microfono. Inoltre e stata studiata una funzione di
perdita che fosse consona al nostro scopo. Infine, abbiamo valutato i risultati ottenuti in

termini di ESR (Error to Signal Ratio), fornendone una valutazione percettiva personale.

Abbiamo concluso che il modello proposto ¢ in grado di seguire ’andamento del segnale del
microfono (target) nel dominio temporale usando come input il segnale del pick-up. Dal
punto di vista spettrale la rete neurale proposta non ¢ in grado di catturare le componenti
ad alta frequenza del segnale, che risultano attenuate per frequenze maggiori di 3 kHz.
Abbiamo quindi proposto una soluzione basata sulla somma di due audio ottenuti da due

modelli differenti, in questo modo I'output finale presenta pitt energia nelle alte frequenze.

Con questo detto, il timbro ottenuto nell’audio finale non puo essere considerato indistin-
guibile da quello del microfono. Ci auspichiamo questa tesi possa essere un primo passo

in questa nuova area di ricerca, portando innovazione in ambito musicale.

Parole chiave: deep learning, rete neurale ricorrente, modellazione scatola-nera del

suono, chitarra acustica
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Introduction

Nowadays digital techniques in music industry and production are becoming more and
more popular alongside the classic analog ones or in some cases directly replacing them.
One of the most innovative research area in this sense is represented by the analog audio
effect modeling, which exploits DSP (Digital Signal Processing) or modern deep learning
techniques to create digital models of analog amplifiers, pedals and other effects. VST
(Virtual Studio Technology) plugins are an example of direct implementation of these
studies and they consist of software emulations of various sound recording equipment
and instruments. In addition VST plugins make use of DSP in order to simulate specific
equipment. Furthermore, their minimum required computational power permits to run

them on a common laptop.

In analog audio effect modeling, one of the main non deep learning based methodologies
relies on WDFs (Wave Digital Filters), which are a particular kind of digital filters based
on physical modeling principles. WDFs are specially well-suited for modeling block-based
networks such as electrical circuits due to their modular characteristic, as a matter of
fact some implementations are the real-time simulation of tube amplifier stage [1] and
distortion pedal modeling [2]. An alternative non deep learning based approach is built
on block-oriented Wiener-Hammerstein model, which is a parametric model adaptable to
many distortion effects [3]. Both methods present difficulty in handling multiple nonlin-

earities and they are often demanding from a computational point of view.

In order to overcome these issues, deep learning based models are introduced in analog
audio effect modeling. Deep learning is part of a broader family of machine learning
methods based on artificial networks, whose aim consist in learning the relation between
what is given as an input and the target data through a large amount of data. As a
consequence this technique allows to learn the nonlinear relationship of analog audio ef-
fects, such as distortion pedal and guitar amplifiers. As an example of this methodology,
in Wright’s work [4] two neural network models which emulate two different guitar am-
plifiers are presented. The paper shows how good results can be achievable with these
new models, explaining also the possibility in terms of real-time applications. Another

interesting research in this field is brought by Steinmetz and Reiss [5], which carries on
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Wright’s work applying a new model based on TCNs (Tempoal Convolutional Networks)
on a more complex audio effects (dynamic range compressor). It is shown how this new
architecture is more efficient from a computational effort making the model particularly

suitable for real-time implementations.

A new research area close to analog audio effect modeling is distortion removal, which
is introduced by Imort and Fabbro [6]. Their aim consists in removing distortion and
clipping applied to guitar tracks for music production. The innovation is represented by
the implementation of different models with respect to traditional ones (such as Recurren
Neural Network and WaveNet). The best performing architecture is the Demucs which is
an autoencoder with a BLSTM (Bidirectional Long Short Term Memory) used in music
source separation. Obtained results achieve a great step forward in the state of the art,

leading to a new approach in this field of study.

All these researches lead to new digital implementations of analog devices, opening new
possibilities for musicians and more in general in the music studio production. Even if
some of the models can not reach the sound quality of the physical analog devices, the
research makes great strides forward bringing more affordable and more easily usable

tools.

In this thesis work we apply deep learning to acoustic guitar pickup - microphone black-
box sound modeling. Since this is a new field of research, we selected one of the most used
deep neural network in black-box sound modeling, a RNN (Recurrent Neural Network)
with an LSTM (Long Short Term Memory) unit [4]. In order to test this model, we had

to record a new dataset, which is used in the loss evaluation and in the training process.

The dataset was made using a single acoustic guitar, which was recorded simultaneously
from its piezo-pickup and a professional SM57 microphone placed in front of the instru-
ment. In this way, we obtained a pair of signal for each recording: the first correspond to
the input of the network and the other recorded with the microphone to the target. We
tried to collect the majority of guitar playing style to have the greatest possible variability.

Before feeding the network with the recorded signals, we studied the loss function imple-
mented by A. Wright [4] to see if it could fit our task. In order to reach our aim, we built
a fake signal which tried to emulate what the network should do with the original one,
performing a comparison of the loss function values between the "fake signal" and the

raw one.

Once the model was tested, we trained it feeding the network with the recorded data.

Since one single training can even last a day, a large part of this thesis work consisted of
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tuning all network parameters to reach the best possible output results.

We studied the best performing model in terms of ESR (Error to Signal Ratio) both in
time and frequency domain. Furthermore, we presented a comparison between different

models based on the ESR values taking into account also the author perceptual evaluation.

Our thesis work can be considered as an addition to black-box sound modeling application
in the current state of the art, which is mainly focused on modeling guitar amplifier and
effects pedals [1, 4, 5, 7, 8|. Our research has sufficient characteristics to open new
possibilities in the acoustic guitar field, bringing new techniques in studio recordings and
live music. For example, a possible application could be the creation of a VST plugin

which exploits the studied model.

This thesis is organized as follows. In Chapter 1 we introduce a general description of
deep learning and neural networks. Moreover, we also show the theory behind the most
used model in the audio field. Furthermore, since no previous work on our thesis task
has been made, we describe most advanced studies in similar fields for completeness. In
particular a comparison between non deep learning model and neural network based ones
is made. In Chapter 2 we present the used neural network model, the data acquisition
procedure and the applied pre-processing. Moreover, a description of the obtained signals
and the loss function implemented is given. In Chapter 3 we show the network output
results both in time and frequency domain, doing a comparison between different models.
Finally, Chapter 4 contains the thesis work conclusions and further suggestions for future

developments.
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]_ ‘ State of the art

In this chapter we are going to introduce the state of the art. Deep learning is part of
machine learning family methods based on artificial neural networks with representation
learning. Unfortunately no previous research on deep learning applied to acoustic guitar
pickup - microphone black-box sound modeling can be found to the best of our knowledge.
As a consequence in Section 1.1 we firstly describe the general theoretical background
of deep learning, focusing on the neural network architecture used in our thesis work.
Furthermore, we present most advanced studies in the similar fields in Section 1.2 and
Section 1.3.

1.1. Deep Learning

Input layer | Hidden layers i Output layer
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Figure 1.1: From [9] - General illustration of a deep neural network. It is formed by the

input layer ¢, two or more hidden layers h; and an output layer o.

Machine-learning technology powers many aspects of modern society: from web searches
to content filtering on social networks to recommendations on e-commerce websites, and it
is increasingly present in consumer products such as cameras and smartphones. Machine-

learning systems are used to identify objects in images, transcribe speech into text, match
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news items, posts or products with users’ interests, and select relevant results of search.

Increasingly, these applications make use of a class of techniques called deep learning.

Deep learning is a branch of machine learning which allows computational models to learn
representations of data with multiple levels of abstraction [10]. Conventional machine-
learning techniques were limited in their ability to process natural data in their raw form.
They required careful engineering to design a feature extractor that transformed the raw
data into a suitable internal representation or feature vector from which the learning
subsystem, often a classifier, could detect or classify patterns in the input. Differently
from shallow machine learning, deep learning uses a cascade of layers of nonlinear pro-
cessing units for feature extraction and transformation. The complete set of these layers
is called deep neural network. This process allows computers to learn from a hierarchical
data representation where higher level features are derived from lower level features ones,
where the word feature means an individual measurable property or characteristic of a

phenomenon.

It has been shown that deep learning is very good at discovering intricate structures in
high-dimensional data, in fact some fields of application include: computer vision, speech

recognition, natural language processing, machine translation and medical image analysis.

In general a deep neural network (Fig 1.1) is composed by multiple layers. The first
one is the input layer, which receives the data under study themself or with modified
dimensions. In addition, the input layer is followed by two or more hidden layers which
are the core of the network, since the relationship between the input and target data is
learnt. This structure of layers is called the architecture. In order to better understand,
a brief example is introduced: if we consider an image as the input of the neural network
(specifically the image consists of a collection of pixels), then edges can be identified
in the first hidden layer, corners and contours in the second and collection of them in
a third layer. The output layer is the final layer in the neural network where desired
predictions are obtained. Its length varies in relation to the task the network is developed

for (prediction, classification, etc...).

Each layer is composed by a fundamental unit called neuron. A neuron' (Fig 1.2a) has
inputs x1, xs, .., , that can take continuous values between 0 and 1. For each input the
neuron has weights wy, ws, ..., w, and an overall bias b. The output is given by o(w-z+b),

where o is called sigmoid function(Fig 1.2b) defined as:

B 1
C14e2

o(z) (1.1)

lwith the term neuron we are referring to a sigmoid neuron [11]
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The output of a sigmoid neuron with inputs x1, zs, ..., x,,, weights wy, ws, ..., w, and bias

b is given by the following formula:

1
a = 1.2
1+ exp(— >, wjx; +b) (1.2)
z1
wy
2 k 0= o=
X3 w3—> Z g a gu,s_..
Tb 0.0
W, -8 Z6 Za ~2 0 2 ] 3 F
Tp 1
(a) Sigmoid neuron. (b) Sigmoid function.

Figure 1.2: Complete structure of a neuron (a): the inputs z; are multiplied by the weights
w; and summed with a bias b. A sigmoid function o (b) is applied to the result to obtain

the output a.

Two main different ways of learning are defined in the literature: the supervised [12] and
the unsupervised learning [13]. On the one hand, given the input and the target data,
the aim of supervised learning consists in predicting the target from new data. Once the
target has been labelled, an objective function is introduced so as to label the network
output of new input data. This function is called loss function and it measures the error
between the output and desired target. According to it, weights of the entire network
are updated with a process called backpropagation [14]. This type of learning is usually

adopted for regression problems [15].

On the other hand in unsupervised learning a large amount of unlabelled data are given
to the network which needs to find a good representation of the input. This technique is

often used in data clustering [16] and encoding [17].

Multiple deep neural network architectures are present in the literature (CNNs, RNNs,
DBNG, etc...), each one aiming to resolve different tasks. In the next sections we present

only the structures which will be treated in our thesis work.
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1.1.1. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are an example of artificial neural network which in-
volves sequential inputs or time series data. These deep learning algorithms are commonly
used for ordinal or temporal problems such as speech, language and music. They are dis-
tinguished by their “memory” as they take information from prior inputs to influence the
current input and output. Figure 1.3 shows on the left the general structure of the model.
Specifically, this architecture consists of an input sequence which feeds the neural network
one element at a time. The presence of recurrent connections implies hidden units which
maintain a state vector containing information about the history of all the past elements
of the sequence. Moreover, this process allows the network to learn patterns in which the

output is strongly related to prior elements within the sequence.

In order to better understand the internal process, a RNN can be unfolded into an acyclic
NN as shown in the right side of Fig 1.3, in order to better understand the internal process.
In the reference figure we denote x as the input and o as the output of the network, while
t represents the number of steps. The network state at step ¢ h; can be calculated using
the input of the same step x; and the output of the hidden layer in the previous step h; 1
by:

hy = f(U xx; +W % hy_q) (1.3)

where f is normally a nonlinear activation function. h; can also be viewed as the memory

]v[ 3 ]v[ = ]v

@@@

Unfold

(S

Figure 1.3: From [18] - Illustration of an unfolded recurrent neural network. The param-
eters V,U and W are shared between all the layers. ¢ refers to the current step of the
network. x; and o; are respectively the input and the output at step ¢. h; in the hidden
state of the network at step t.

unit in hidden layers, which can be used to store information from previous steps. The
novelty of RNN relies on the share of parameters U,V and W among layers since it

greatly reduces the requirement to learn the parameters of the network. The parameters
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are updated through the computation of the loss function gradient that is backpropagated
trough all the network.

RNN may lose the ability to learn connections among input data when their dependencies
are very long. In fact, training this type of network has been shown to be problematic
because at each time step the backpropagated gradients either grown or shrunk, so over

many time steps they typically explode or vanish [19].

LSTM unit

To overcome the problem, long short-term memory (LSTM) network has been introduced
[14]. In this architecture neurons are replaced by blocks (Fig 1.4) with a memory cell
(long-term memory ¢;_1), in addition to the hidden state of the classic RNN. In this way,

this cell allows to remember long term dependencies.

Introducing respectively W, and U,* the matrices of input and recurrent connections’
weights, it is possible to write the compact forms of the equations for the forward pass of
the LSTM cell:

fi=0,Wsxy + Ushy_1 + by) (
i = og(Wizy + Uihe—y + b;) (
og(Woxy + Ushy—1 + b,) (1.4c
(
(

Ot
¢ = oc(Wexy + Uchy—q + b.)
= froc_1 4106

hy = oy 0 op(¢y) (1.4f

Where the initial values are ¢g = 0 and hy = 0. The operator o denotes the element-wise
product and the subscript ¢ indexes the time step. In addition, o, is the sigmoid function
while o. and o, are hyperbolic tangent function, while f; refers to the forget gate which
controls what information should be forgotten. As a consequence, the sigmoid function
ranges between 0 and 1 and it sets which values in the cell state should be discarded
(multiplied by 0), remembered (multiplied by 1), or partially remembered (multiplied by
some value between 0 and 1). Furthermore, 7, is the input gate, whose role is to identify
important elements which need to be added to the cell state ¢;. o, and ¢; are respectively

the output gate’s and the cell input activation functions.

2¢ can either be: the input gate %, the output gate o, the forget gate f or the memory cell ¢, depending
on the activation being calculated.
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Updated cell state to
help determine new
hidden state

Cell state

Hidden state

h,_y
g e PR = senge
Xy
Candidate
for cell state
i update
Forget Input Output
gate gate gate

h,_, - hidden state at previous timestep t-1 (short-term memory)
¢,_ - cell state at previous timestep t-1 (long-term memory)

X, - input vector at current timestep 1

h, - hidden state at current timestep t

¢, - cell state at current timestep t

- vector pointwise multiplication - vector pointwise addition

@ - tanh activation function £77y - states
o - sigmoid activation function (.. - gates
- updates

T - concatenation of vectors

Figure 1.4: From [20] - Ilustration of a LSTM recurrent unit.

1.1.2. Auto-encoders (AEs)

An auto-encoder is a specific type of a neural network, which is mainly designed to encode
the input into a compressed and meaningful representation, and then it decodes the input
back in such a way that the reconstructed input is as similar as possible to the original

one [21].

Figure 1.5 provides an example of the auto-encoder model. Autoencoders are first in-
troduced in [14], their purpose is to learn in an unsupervised manner an informative
representation of the data, which can be used for various implications such as clustering.

In particular, the main problem formally defined in [22], is to find functions A : R" — R?
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(encoder) and B : R? — R™ (decoder) which satisfy:

argmin 4 g E[A(x, B o A(x))] (1.5)
where F is the expectation over the distribution of z, and A is the reconstruction loss

function, which measures the distance between the output of the decoder and the input.

The latter is usually set to be the f5-norm.

—» Encoder |—» Decoder — 2_

Original
input

Reconstructed
input

Compressed
representation

Figure 1.5: From [23] - An auto-encoder example. The input image is encoded to a

compressed representation and then decoded.

In the most popular form of auto-encoders, A and B are neural networks [24], whose
basic structure is formed by fully connected layers. AEs may be trained end-to-end or
gradually layer by layer. In the latter case, they are "stacked” together, which leads to a

deeper encoder [25]. Some examples of auto-encoders applications can be found in [26].

Convolutional auto-encoders (CAEs)

A convolutional autoencoder extends the basic structure of the simple autoencoder by
changing the fully connected layers to convolution layers. CAEs differ from conventional
AEs as their weights are shared among all locations in the input, preserving spatial locality.
Their structure is described in [27]. For a mono-channel input x, the latent representation

of the k-th feature map is given by:

h* = o (x * WF + %) (1.6)
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where the bias b is broadcasted to the whole map, o is an activation function (like ReLu

or sigmoid) and * denotes the 2D convolution. The reconstruction is obtained using:

y:a<2hk*ﬁ/k+c> (1.7)
keH
where one bias ¢ per input channel is present. Moreover H identifies the group of latent

feature maps, while 1V identifies the flip operation over both dimensions of the weights.

The cost function to minimize is the mean squared error (MSE):

n

BO) = 5o >0 — ) (15)

Than the backpropagation algorithm is applied to compute the gradient of the error

function with respect to parameters.

This type of auto-encoder is broadly used in image analysis field. Some implementation

of CAEs are described in [28-30).

1.2. Analog audio effects modeling

One of the main research area which resembles the task of our thesis is the modeling of
analog audio effects using deep neural networks. In fact, in multiple applications we are
feeding an AT algorithm with clean guitar sound as input and the effected guitar sound as
a target. In particular, the network models the non-linear behaviour between two sounds,

both in the frequency (the spectral content) and time domain.

1.2.1. Non deep learning based models

Before the introduction of deep learning in audio effects modeling, different methodologies
were proposed which are still a good alternative to neural networks. One of the main
method of virtual analog modeling is based on WDFs (Wave Digital Filters). WDFs
are a particular kind of digital filters based on physical modeling principles. They are
modular, a peculiar characteristic which yields them especially well-suited for modeling
block-based networks such as electrical circuits. Historically WDFs are able to manage just
one non-linear electronic component in the system, for example an inductor or a capacitor.
Fortunately, further studies overcome this limitation opening the possibility to model
more complex circuits with a higher number of non-linearities, such as audio circuits.

In particular, possible implementations vary from real-time simulation of tube amplifier
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stages [1, 31], to distortion pedal modeling [2]. The primary advantage of the Wave
Digital Filters approach is its modularity, namely the ability to construct a circuit model
with each circuit component treated completely independently in the digital domain.
Additionally, this modularity allows each circuit component to be discretized separately,
which can improve the model behavior for certain classes of circuits. On the contrary, the
main disadvantage of WDFs consist of their difficulty in handling circuits with complex
topologies or multiple nonlinearities. While the recent addition of R-type adaptors to the
Wave Digital formalism [7] begin to make these circuits tractable, the WDF models of
these circuits type are significantly more computationally complex. A good comparison

between this approach and a deep neural network based one is done in [8|.

A different approach to digitally recreating an analog device is found in [3|. The archi-
tecture is composed by a block-oriented Wiener-Hammerstein model. The basic idea is
to have a parametric model which is flexible enough to be adaptable to many distortion
effects, but still simple enough to be computationally efficient. The architecture consists
of lineartime-invariant (LTI) blocks and a nonlinear block. Blocks are ordered in series
where the nonlinear block is lined by two LTI blocks. The LTT blocks are filters, and the
nonlinear block is a mapping function, mapping the level of the input signal to an out-
put level, which simulates the nonlinear behavior of the distortion effect. Block-oriented
Wiener-Hammerstein models are successfully used in commercial products due to their
flexibility and expandability. Although this approach is more computationally demand-
ing than other methods, it also suffers from local minimum convergence instead of global

minimum convergence.

1.2.2. Deep learning based models

Trying to overcome the difficulty in modeling multiple nonlinearities, a deep learning
based method is introduced by Zhang et al.[32] work. They proposed a long short-term
memory (LSTM) model with many layers but a small hidden size in each layer, although
the authors reported clearly audible differences between the resulting model and the
target device. An improvement on perceptual results is brought by Wright [4]. The paper
presents a comparison between two deep learning based methods applied to black-box
modeling of two valve amplifiers. The first is a feed forward variation of the WaveNet
convolutional autoregressive model [33], while the second is one of the most widespread
method in this research area, since it is based on RNN (Recurrent neural network). In
particular, this method exploits the LSTM unit cell described in Section 1.1.1, which
allows the neural network architecture to have better output predictions. Both methods

show an interesting result, however the RNN model performs better than the Wavenet
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from a computational load and ESR point of view, make it more suitable for real-time
implementations on a consumer-grade desktop computer. Moreover, the paper shows that
only three minutes of audio data are necessary for both models’ training part. Finally, the
authors conduct a perceptual evaluation of the two proposed architecture results based
on MUSHRA method [34]. The RNN model shows a better score than WaveNet, but in

general they both achieve great results in the listening test.

A different approach for audio effects modeling based on TCNs (Temporal Convolutional
Networks), is presented by Steinmetz and Reiss [5]. They do a comparison between a 32
hidden size LSTM (LSTM-32) and TCN architecture applied to dynamic range compres-
sors modeling [35], which turns out challenging due to their time-dependant nonlinearities.
Figure 1.6 shows the structure of the TCN model, which consists of residual blocks com-
posed by 1-dimensional convolutions with increasing dilation factors, followed by batch
normalization, a conditional affine transformation (FiLLM) [36], and a PReLU [37| nonlin-

earity.
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Figure 1.6: From [35] - General TCN architecture featuring a global conditioning module
(3 layer MLP) that generates embeddings for each FiLM operation in the TCN processing
pipeline as a function of the limit and peak reduction controls. The contents of the TCN
block are shown in the dashed block on the right.

The study shows interesting results both in dataset training length and computational
efficiency. In fact, it demonstrates that optimal outcome can be achieved also with a

training subset of 11 minutes of the total 20 hours of training data audio. Moreover, the
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TCN model succeeds in a better performance in terms of real-time implementation than
the LSTM-32 one which is not able to reach real-time operation. On the other hand,
the real-time factor for the TCN model is proportional to the frame size, moreover larger

frame sizes turn out greater real-time factors as a result of parallelization, both on CPU
and GPU.

A final comparison based on objective results and listening test is discussed. It is shown
that the LSTM-32 model performs better that TCN in terms of the objective metric

parameters such as LUFS error and STFT metric. The first metric is calculated as:

lrurs(9,y) = |G(9) — G(y)|

where ¢ and y are respectively the model prediction output and the target output. More-
over G(-) refers to the ITU-R BS.1770 loudness algorithm [38|. First introduced by Arik
et al [39], STFT metric (1.11) is composed of two terms, the spectral convergence {gc
(1.9), and spectral log-magnitude ¢gys, where || - | is the Frobenius norm, || - ||; is the L1

norm, and N is the number of STFT frames.

_HSTFT(y)| = [STFT@)| |~

facliny) [ISTFTG) T ()
sn3,9) = el Tog(|STFT)) — log(ISTET(3)) (1.10)
gSTFT(Z)vy) = gSC(Z)ﬂU) +€SM(gay) (111)

Although in the listening test performed using the MUSHRA method, both models per-
formed in a good manner, appearing slightly below the reference sound. Moreover, it
seems that some listeners struggled to differentiate between the reference and the tested

models.

1.3. Distortion removal in music

Another research area close to our thesis work is distortion removal, which was introduced
by Johannes Imort and Giorgio Fabbro in [6]. Their aim consist in removing distortion
and clipping applied to guitar tracks for music production while presenting a comparative

investigation of different deep neural network (DNN) architectures applied to the task.

The discussed models are CRAFx [40],Wave-U-Net [41], Open-Unmix [42] and Demucs

[43]. In order to assess the quality of all models, four different metrics are used: the scale-
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invariant source-to-distortion ratio (SI-SDR), the perceptual evaluation of audio quality
(PEAQ), the Rnonlin metric, and the Fréchet audio distance (FAD). The first one is

calculated as:
| £ |2
%) (1.12)

Iszs — 5l

SI-SDR = 101log,, (

where s denote the clean signal and § is its reconstruction. Since the SI-SDR does not take
into account the human perception, paper’s authors introduced the other three metrics
to evaluate the models. The PEAQ measures the amount of degradation between two
generic audio signals using a fast Fourier transform (FFT) based on peripheral ear model
for the calculus of MOVs (Model Output Values), and ODG (Overall Difference Grade)
for the final score. Moreover, the R, ouin (Perceived Quality of Non-linearly Distorted
Music and Speech Signals) was developed specifically for non-linear distortions. This
metric is based on multiple filters which tries to model the human ones (such as the 1-
ERBy-wide gammatone filters), and on the short-term cross-correlation which measures
the difference between the reference and the test signal. Furthermore, R, .., is defined
between 0 (high distortion) and 1 (no distortion). The last used metric is the FFAD
(Fréchet Audio Distance) which is based on the calculus of the Fréchet distance between
two multivariate Gaussian models of the reference and test signal. In order to obtain the
embedding statistics for the calculus of the Gaussian, VGGish model [44] is employed.

For each sample it uses mel spectrograms as its input.

Once the main four metrics have been briefly described, we can dare to say that the
Demucs model is the best in comparison to all the other models independently from the
used metric. Demucs architecture was initially designed to be an end-to-end model for
music source separation in time domain. It comprises a convolutional encoder, a BLSTM
structure and a convolutional decoder and Figure 1.7 shows its complete structure. Each
of the encoder’s L levels consists of a 1-D convolution, while the initial number of output
channels doubles with each level. Each level uses ReLU activations and passes its output
to an additional 1-D convolution with kernel size and stride equal to 1 which doubles the
output channels. Then, a gated linear unit halves the output channels. After the last level,
the output is fed to a 2-layer BLSTM structure in order to capture long-term dependencies.
The decoder is defined as the inverse of the encoder and it reduces the output channels
with each layer. Skip-connections allow a direct access to the input signal’s phase while
they facilitate gradient exchange between each encoder and decoder. Papers’ authors
reduced the learnable parameters from 66 million to 1 million by decreasing the number

of layers.

Johannes Imort and Giorgio Fabbro’s work introduces Demucs model to a new application
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Figure 1.7: From [43] - Demucs architecture with the mixture waveform as input and the

four sources estimates as output. Arrows represents U-Net connections.

field, opening new possibilities in music and audio modeling.
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2 Model and methods

In this chapter we present the model and methods for black-box modeling of the nonlinear
relation between a piezoelectric pick-up and a cardioid microphone recordings. In Section
2.1, we describe the model of the neural network. We describe the overall data acquisi-
tion process and the description of the obtained signals in Section 2.2. Furthermore, an
analytical assessment of the model’s loss function is explained in Section 2.3. Finally, the

pre-processing and training are presented in Section 2.4.

2.1. RNN Model

In order to accomplish our task, a deep learning based approach is adopted. First imple-
mented in [4], the chosen neural network model is the RNN (Recurrent Neural Network).
This network receives the piezo-electric pickup recording as input and the cardiod micro-

phone ones as target.

LSTM
x[n] it Fully (l:onnected gln]
Input ayer Predicted
sample output

Figure 2.1: RNN model. The input z,, goes first to the LSTM unit and then into a fully
connected layer. The output of the latter is summed with the initial x,, to obtain the

predicted output ¥,

Fig 2.1 shows the entire architecture. The RNN network is composed by an LSTM (Long-
Short Term Memory) unit, followed by a Fully Connected layer. At each time step n a
single input sample z[n] is fed into the LSTM unit. The output of the latter goes into
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the Fully Connected layer to produce a single output which is summed with the initial
input z[n| to obtain the final predicted output g[n|. Doing so, the network just learns to

predict the difference between input and output samples.

The state of the LSTM unit is made of two vectors: the hidden state h and the cell state c.
For each time step n, x[n], h[n — 1] and ¢[n — 1] are used to calculate the LSTM’s output
hin] and ¢[n|. Equations (1.4) show how each value of the LSTM unit is computed. The
hidden layer h[n] is input to the fully connected layer. As the fully connected layer is not
followed by an activation function, the output of the fully connected layer is simply an
affine transformation of the LSTM hidden state. This output is summed with the input
sample, x[n], to produce the RNN’s predicted output:

Q[n] = chh[n] + bfc + fL‘[TL] (2'1)

Where Wy, and by, are respectively the fully connected layer’s weights matrix and bias
vector. The fully connected layer consists of a single neuron that will output a single

value at each time step n.

The size of both the hidden and cell states is equal to the LSTM’s hyperparameter hid-
den size. Increasing the hidden size generally results in the model being more accurate.
However it increases the number of learnable parameters in the network, as well as the
processing power required to run it. The PyTorch machine learning library [45] was used

to implement the whole RNN model.

2.2. Data acquisition

The diagram of the data acquisition process is shown in Figure 2.2. An acoustic guitar
is simultaneously recorded from its piezo-electric pickup and a professional microphone
placed in front of it. In order to do that, an audio interface is used. A jack cable connects
the guitar pickup to the first channel, while an XLR cable carries the microphone signal
to the second channel. The audio interface is connected to a laptop using an USB cable.
To record the multi-track we relied on Ableton Live®. This software allow us to record
and edit multiple audio tracks at the same time. Finally, all the recorded tracks (pickup
and microphone version) have been exported in mono audio files. The instrument has

been recorded in a small room with no particular acoustic treatments.
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Acoustic Guitar Laptop

llI= Ableton

Audio Interface

Mic in  Guitar in 1
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Figure 2.2: Data acquisition process. The signal is recorded simultaneously from the
acoustic guitar pick-up and a microphone using an audio interface. Its output is connected

via USB to a laptop. Ableton Live® was used to record and export the audio.

2.2.1. Equipment

For the recording process we use the ovatz'on@-celebrz’ty—6324-4—g[46] acoustic guitar.
Which has flamed maple top, the body is made in Lyrachord®, the neck is made in
NATO wood and the fretboard and bridge are in Ovangkol. Furthermore, we use the
low-impedance cardioid dynamic microphone Shure® SM57 [47]. Which is typically used
in contexts like recording studio or live music concert. Finally, we adopt Roland® duo-
capture-ex as audio interface[48|. It has two input channels and two preamplifiers Roland
VS. The signal from the guitar to the audio interface is carried by a Fender® jack cable

California series, while for the microphone one a Cordial® XRL is used.

2.2.2. Acquisition parameters and signals description

The guitar and microphone signals are acquired at 44.1kHz. We obtain two mono audio

tracks for each recording. All the audio lengths are between 1 and 2 minutes.

Figure 2.3 shows the time domain representation of the two obtained signals. The curves
exhibit a different trend. The blue one referring to the pick-up acquired signal is richer
in high frequencies components than the orange one referring to the SM57. This charac-
teristic is reflected in time domain by the abrupt changes of the the blue curve. We can

observe it also in the spectrograms of the two signals (Fig.2.4).
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Figure 2.3: Time domain representation of the recorded signals. The image shows 0.05

second of audio. The blue curve refers to the signal recorded by the acoustic guitar’s

pick-up, while the orange indicates the one obtained using a SM57 microphone.
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Figure 2.4: Spectrograms of the pick-up and microphone signals. The image refers to

1 second of audio. For both images we have the guitar pick-up signal on the left and

microphone signal on the right. (a) refers to the entire audio bandwidth, (b) refers to a

low-mids frequency band (0 Hz - 2 kHz).
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As a matter of fact, we can see that the energy of the microphone one is concentrated
more on frequencies lower than 1 kHz. The pick-up spectrograms instead present a lot of
energy also in the mid-high frequencies. These differences can be heard clearly in the two
recordings. The microphone audio is characterized by a darker tone with respect to the

piezo pick-up one.

2.2.3. Dataset definition

One of the key aspect for a proper learning of the network is the definition of a good
dataset [49, 50]. We aim to collect as many styles of acoustic guitar playing as possible.
Some example are: strumming, single note, arpeggio and open chords playing. For each
one of these styles at least two audios are recorded. The single duration of each piece
of music is around 1-2 minutes, for a total duration of 29 minutes and 5 seconds. The

Python Pandas [51] and csv libraries are used for the management of the dataset.

hame ext n_segm length

8 A _blues input 0 1367100
9 A _blues input 1 1367100
10 A_blues target 0 1367100
11 A _blues target 1 1367100
12 chords input 0 2469600
13 chords input 1 2469600
14 chords target 0 2469600
15 chords target 1 2469600

Figure 2.5: Example of some elements of the dataframe. Starting from the left, for each
audio we have: the number of the audio, the name, the extension, the segment number

and the length in samples.

2.3. Loss function

A key element for a proper learning of the network is the loss function. In this section
we give the definition of the loss function used in [4]. We analyze it in relation to our
problem and we present the final function we use. Furthermore, we describe the method

adopted to assess whether it is suitable for our task.
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2.3.1. Definition

For a signal of length N the loss function ¢ is the result of the sum of two contributions:

€ =€Epsr t€pc (22)

The first component is the error to signal ratio (ESR) with respect to the training data,

calculated as:

N-1 .

S k] = Gyl ’s

EESR — N—1 5 ( : )

2n—o [Yp[n]

Where y,[n] and g,[n] are respectively the target signal and the output of the neural
network at sample n. For both signals a low-passed A-Weighting filter (Fig. 2.6) has been
applied. Its purpose is to emphasise the frequencies in the loss function, based on their
perceived loudness. The denominator in the ESR normalises the loss with regards to the
target signal energy. As a matter of fact it prevents the loss function to be dominated by

the segments of signal with higher energy.

The second additional member pe of the equation (2.2) represents the difference in DC

offset between the target and neural network output:

Iy o (yln] = gln])P?

e S TP o

The target y[n] and the network’s output y[n] have not been filtered.

10 ; ,

Magnitude (dB)

| L R | L L R | 1
300 1k : 10k 20k
Frequency (Hz)

Figure 2.6: From [4] - Frequency response of the low-passed A-weighting pre-emphasis
filter.
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2.3.2. Evaluation

Firstly, the signal is divided into segments and for each one we calculate the egsr (2.3)

and epc (2.4) components of the loss function. Figure 2.7 shows their values on the y
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“--e
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n° segment

Figure 2.7: Comparison between loss results. Each dot represent a value of the loss
function calculated in a specific segment. The red and blue curve refers respectively to
the DC and ESR components of the loss.

axis for 9 consecutive segments. Each chunk corresponds to 0.1s of audio. We tried to
select a group of segments in which a guitar’s chord is played. The red curve refers to DC
component. Moreover, we can notice that it is always close to 0, on average in the order
of 107*. We can conclude that the ESR factor (the blue one) carries the information we
are interested in, therefore we decide to neglect the DC component and use only the ESR

for the loss evaluation. The final function used in the network model is:

E = E€ESR (25)

Looking now at the spectrograms of input and target signals, Figure 2.4 shows that the
input has more energy in the middle-high frequencies with respect to the target one. In
order to get more similar signals, a smoothing algorithm is applied to the pick-up audio
in the pre-processing stage. The smoothing consists of a convolution between the signal
and a Blackman window. The result of this process is shown in Figure 2.8. In order to
see if the smoothing process improves the loss values, we calculate the ESR component
for the 10 segments previously defined. As a result, we can observe in Figure 2.10, that
the relative orange curve has lower values than the blue one referring to the raw input

signal.

Another aim is to understand if the network is able to learn using the ESR loss function.

As a consequence we build a fake signal which tries to emulate what the network should
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Figure 2.8: Spectrogram of the input signal (on the left) feeded to the network and the
target signal (on the right). The input signal has been smoothed to be more similar to
the target one. The difference between the recorded signal and the smoothed one could

be seen doing the comparison with Fig 2.4a.

do with the original signal. The fake signal is obtained as a sum of the smoothed input
signal Sgmeetn, With 4 sinusoids at different frequencies (fig 2.9): 127-200-350-583 Hz:

4
S = Ssmooth T Z S; (26)
=1

We choose the frequencies starting from the target and input signal spectrograms by look-
ing at which frequencies the input lacks/exceeds in terms of energy. The single sinusoid
is obtained as:

s; = sin(2m - f; - t) * rms, (2.7)

0.04 -

0.02 A

0.00

Amplitude

—0.02 A

—0.04 A

—0.06 -

10.00 10.02 10.04 10.06 10.08 10.10
time [s]

Figure 2.9: Time domain representation of the sinusoidal signal. It is obtained as a sum

of multiple sinusoids at low frequencies.



2| Model and methods 27

Where f; is one of the selected frequencies. t correspond to the vectors of all time steps.

rms, is the root mean square values for each segment of audio.
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Figure 2.10: ESR loss values for different type of input signals. Fach dot represent a value
of the loss function calculated in a specific segment. The blue one is the ESR of the raw
input signal. The orange one is obtained using a smoothed version of the input signal.

The green one uses the latter, at which a sinusoidal signal (Fig 2.9) is summed.

Fig.2.10 shows that the fake signal (green curve) has lower values of the ESR loss than
the smoothed one (curve in orange). This result suggests that the loss function we choose

could perform well on the task we aim to.

2.4. Pre-processing and Training

— input
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0.2 === low pass input
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Figure 2.11: Time domain representation of the input, target and low pass input. The

last two are the signals feed into the network.
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Before entering in the network loop, the training data are pre-processed. Since the major-
ity of the energy of the target is concentrated around lower frequencies, a low pass filter
(Fig 2.12) is applied to the input training signal. We use Butterworth digital low pass
filter [52]. Figure 2.11 shows the input and target signals fed into the network.

In order to have balance between training and validation data, each audio is split into
2 parts. Doing so we increase the number and variability in the selection process. 70%
of these segments are assigned to the training data and 20% to the validation. Once
the splitting is defined, the training and validation arrays are obtained concatenating the
respective audio segments. Furthermore, for the test data we used an audio which is a

mixture of guitar playing styles.

—100 A

—200 +

Amplitude [dB]

—300 A

—400

102 103 104
Frequency [Hz]

Figure 2.12: Low pass digital filter with cut-off frequency 2kHz.

In order to be processed by the neural network, the dimensions of the three data arrays
are modified and they are converted into tensors. A tensor is a generic n-dimensional
array to be used for arbitrary numeric computation, that can be run either on CPU
or GPU. Using this element, we can take advantage of the GPU computing power for
accelerate the training process. The training array is split into overlapping batches of
segment _length = 7 second. Furthermore, we use an overlap parameter to control the
percentage of overlapping between two consecutive segments. Doing so, we obtain a tensor
with dimension [segment length x n_batches x n_ channels|, where n_ channels is the

number of channels of the recording (mono or stereo).

The model is trained using Adam optimizer [53]. The RNN is trained for 1000 epochs.
For each epoch, the training data are shuffled in group of 7 consecutive batches. The
validation loss is calculated every three epochs. If the validation loss does not improve
within 200 epochs, the training stops. The starting learning rate value LR; = 0.01 is
decreased dynamically by a multiplicative factor & = 0.7 every 3 epochs the validation

loss is not improving. Furthermore, to avoid local minima it is also reset to 0.8LR; at
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epoch 500 and 0.1LR; at epoch 700. Figure 2.13 shows an example of the learning rate

trend for a complete training cycle.
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Figure 2.13: Example of the learning rate curve for a complete training cycle.

Once training is completed, the test loss is calculated using the model parameters from
the epoch in which the lowest validation loss was achieved. For the training process, a
machine with the following characteristics has been used: Intel® Core i7-6700K, 8 Cores
with 4 GHz processor, 31 Gb RAM and one NVIDIA® GTX 1080 Ti graphic card [54].
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3 ‘ Results

In this chapter we are going to present and analyse the network results. In the first
section we describe the steps made in order to obtain the model’s output. Moreover,
we would like to describe the clicking noise generated by the network and our proposed
solution. Furthermore, we compare model outputs with the target signal, both in time
and frequency domain, so as to have a general view of the model performance. Finally, a
comparison based on ESR (Error to Signal Ratio) between different guitar playing style
is presented. In the second section we are going to analyse multiple network’s models,
highlighting their scores in terms of ESR. In addition, a perceptual analysis conducted
by the Author is presented, which underlines the fact that a low ESR value does not

necessarily correspond to a better perceptual audio result.

3.1. Anudio results

In this paragraph we present the best performing model in terms of obtained ESR value
in the test phase. However, as we will discuss in Section 3.2, this good performance does

not necessarily mean a better perceptual result.

Recalling Section 2.1 we are going to describe the model performance, in particular the
chosen one has an hidden size of 96 . Once the model is trained, as already presented in
Section 2.4, the output data are obtained feeding the RNN network with raw input data.
The input audio is segmented in overlapping chunks of 7 seconds each with an overlapping
factor of 0.75. Each segment is processed by the network and then the entire output is
reconstructed with an overlap and add approach. However the network processing has a
significant problem: discontinuities between two consecutive segments cause a click noise
in the final audio. The reason of this issue regards the time step ¢ as t = (1 — overlap) *
segment _len which has a jump. Figure 3.1a shows the difference in terms of amplitude
between two adjacent chunks. In order to solve this problem, we applied triangular
windowing where each segment is multiplied by a triangular window (Figure 3.1b) during
the overlap and add process. Each triangular window has a unitary amplitude and it

share the same length and overlapping factor of the audio chunks.
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(a) Signal discontinuity. (b) Triangular windowing. (c) Windowing result.

Figure 3.1: (a): Discontinuity between two consecutive audio segments which creates the
click noise in the final output audio. (b): chunk of triangular windows array. (c): we
can see how the triangular windowing process removes the discontinuity between adjacent

segments.
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Figure 3.2: Comparison between recorded signals and the network output in time domain.
The image shows 0.05 seconds of audio. The blue one refers to the signal recorded with
the pick-up, the orange is obtained using the SM57 microphone and the green one is the
RNN output. (a) refers to a guitar strumming audio, (b) is a recording of single notes of

an "A blues" scale. All signals are normalized between -1 and 1.
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The analysis of the network’s audio output is carried out both in time and frequency
domain. Figure 3.2 shows results in time domain of two different guitar playing styles.
The first image refers to an audio characterized by strumming chords. As it can be
seen the RNN signal follows quite well the microphone one, however it struggles during
abrupt changes (which correspond to high frequency components), even if the overall
trend is respected. For what concerns a single note, in Figure 3.2b we can notice a similar
situation; in fact the model is able to follow the target but it is smoother, remarking once

again the inability of the model to capture higher frequencies. To sum up, these results
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Figure 3.3: Spectrograms of microphone and network output signals. The image refers
to 1 second of audio. For both images we have the microphone signal on the left and the
network’s output on the right. (a) refers to the entire audio bandwidth, (b) refers to a
low-mids frequency band (0 Hz - 2 kHz).

suggest that the network performs in a correct way on the low frequency component and
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it has a difficulty in reproducing the higher part of the spectrum.

Another aspect we want to deal with concerns some comments about Figure 3.3 which
shows the spectrograms of the network’s output, both the complete audio bandwidth and
a limited lower part between 0 and 2 kHz. On the one hand, Figure 3.3a demonstrates
the fact that those frequencies higher than 3kHz are attenuated in the RNN output with
respect to the target, reflecting the results obtained in the time domain. The main reasons
of this problem correspond to the fact that the model is not complex enough to capture
all the high frequencies characteristics of the target signal, or we do not have enough data
for the training. On the other hand, Figure 3.3b shows the network performance in terms
of low and mid range frequencies ( 80Hz - 2kHz). It is appreciable how these components

are well represented in the model output.

These statements are justified also by the learning curve of the analysed models’ major-
ity; in fact Figure 3.4 presents a comparison between learning rate (LR), training and
validation curve of three different models. Specifically Figure 3.4a describes the adopted
learning rate (LR) for each model by changing the initial learning rate value (LR;) in the
training process. At the beginning LRi is equal to an initial value of 0.01 for all models.
Moreover in order to avoid possible local minima of the loss, in epoch 500 and 700 the
learning rate corresponds respectively to LR = 0.8LR: and LR = 0.1LR:. Figure 3.4b
and Figure 3.4c show training and validation curves respectively, in particular all models’
training curves reach a plateau value around 0.25 at epoch 200 and even the learning
rate’s change in epochs 500 and 700 is not able to improve the loss value. A similar trend
is observable in the validation graph, a minimum value is reached for all the models at
epochs 400 and changes in the learning rate value doesn’t improve the validation results.
We are reporting only three examples over the complete set of tested models, but we have

not manage to go under the plateau value both in training and validation.

In order to overcome high frequencies limitations of the model previously described, we
want to propose a solution based on the consideration of two different network’s outputs
instead of relying just on a single model. The two summed components are respectively
the output of the best performing model in terms of ESR loss and the output of a simpler
model (hidden size of 16 instead of 96), which slightly performs in a worse manner in
terms of loss but it presents a bigger number of higher frequency components. Once the
model is decided, in order to obtain the final audio, we apply a high pass filter with
cutoff frequency of 3 kHz to the worst model output. Then we scale it by a constant
factor and sum it to the output obtained from the best model. As a result, Figure 3.5
demonstrates the new gained complete spectrum, which now has more energy in the upper

range of frequencies with respect to the best performing model one. This change in the
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Figure 3.4: Comparison of learning rate, training and validation losses between three

models with different segment length and hidden size. (a) Learning rate values in a model

training process. (b) Training loss curve. (¢) Validation loss curve.

frequency domain is appreciable also from a perceptual point of view; as a matter of fact

the addition of the high frequencies makes audible all the overtones of the acoustic steel

strings '. Moreover, we can hear the characteristic percussive sound of the pick plucking

'https://github.com/EmanueleVoltolini/AI-Powered-Pickup/tree/main/Audio%20Example


https://github.com/EmanueleVoltolini/AI-Powered-Pickup/tree/main/Audio%20Example
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Figure 3.5: Spectrogram of the audio obtained summing the outputs of two different

models. We have the target signal on the left and the sum output signal on the right.

the strings. We would like to emphasize that this perceptual analysis is conducted by the

author.

Finally, we evaluate the best model’s performance in terms of ESR applied to different
guitar playing styles. Firstly we segmented the input and target signal in 7 second long
chunks; secondly we load the best model and we process the audio; finally we apply the
formula 2.3 between the network output and the target so as to obtain the final score.
Figure 3.6 shows the overall result where the best ESR is referring to the "single note"
audio, which is an A blues scale, probably due to the fact that a note is a simpler signal

to model than a full chord.
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Figure 3.6: ESR comparison between different guitar playing style

In support of this hypothesis, in Figure 3.6 we can see that a lower value of ESR is
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reach for "chord strumming" and "open chords" types of guitar playing than a single
note, meaning that the network achieves slightly worse. Furthermore we can notice the
less significative performance for the "arpeggio" with respect to the other techniques. A
possible reason could be a smaller number of minutes of this style than the others in the
training set. Moreover, the use of fingers instead of the pick to pluck the strings makes

the difference from the majority of the other audios.

3.2. Model comparison

In this paragraph we compare multiple models in terms of ESR and perceptual results.

The perceptual evaluation presented is conducted by the author of this thesis.

Table 3.1 shows ESR values obtained by different models in the test process (3.1a) and
using "chords" audio (3.1b), one of many signals fed into the network during the training.
Therefore, the best overall performing network is the one characterized by a hidden size of
96 and a segment length of 7 seconds (as previously described in this chapter), which has
great results both in the test and with the chords audio. Moreover, another remarkable
model is the one with 32 hidden size and 5 seconds of segment length, which is really
close to the best one. In general, good results can be found in all networks which have 5

or more seconds of segment length and more than 8 hidden size.

hidden size 8 16 32 96
3 second 0.4824 0.3136 0.3097 0.4878
5 second 0.2928 0.2780 0.2614 0.2714
7 second 0.3244 0.2718 0.2749 0.2604

(a) ESR values test.

hidden size 8 16 32 96
3 second 0.4087 0.3055 0.3210 0.4827
5 second 0.2757 0.2634 0.2440 0.2540
7 second 0.3241 0.2634 0.2649 0.2463

(b) ESR values training chords.

Table 3.1: Error to Signal Ratio (ESR) of the test data (a) and training chords data (b)
for each neural network model. In the first raw of both tables we have the dimension
of the model hidden size. On the left we have the length of the segment into which the

signal is divided.
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Until now we analysed networks output only in terms of quantitative scores (ESR), but
it is interesting to notice that the best value in the ESR score does not correspond to the
best perceptual result. In addition, we would like to point out that all the perceptual
analysis and relative comments come from the author of this thesis, but we try to motivate

our statements with signals’ spectrograms we discuss about.

Since the aim of this section is the comparison among different models, for sake of sim-
plicity we denote model A the network with the 7 seconds segment length and hidden size
of 96, model B the 5 seconds segment length and hidden size of 32 and finally model C
the 3 seconds segment length and hidden size of 32.
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(a) Spectrograms 7 sec 96 hidden model - test audio.
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(b) Spectrograms 3 sec 32 hidden model - test audio.

Figure 3.7: Comparison between the spectrograms of two different model for the test
audio. In both images the target signal is shown on the left. On the right we have the
spectrogram relative to the 7 seconds 96 hidden model (a), and to the 3 seconds 32 hidden
model (b).
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At first glimpse we can notice from previous tables that models with 3 seconds of seg-
ments’ length have the worst performance due to their big ESR score. However, from the
perceptual point of view, model C seems to be more similar to the target signal of the
other two models’ audio results. Figure 3.7 and Figure 3.8 show spectrograms of model
A and model B outputs respectively in comparison to the model C one. At first sight

we can observe that in both the best performing models’ spectrograms higher frequencies

are attenuated with respect to model C, which has more energy in the upper frequency

bands.
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(a) Spectrograms 5 sec 32 hidden model - "chords" audio.
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(b) Spectrograms 3 sec 32 hidden model - "chords" audio.

Figure 3.8: Comparison between the spectrograms of two different model for the "chords"
audio. In both images the target signal is shown on the left. On the right we have the
spectrogram relative to the 7 seconds 96 hidden model (a), and to the 3 seconds 32 hidden
model (b).

This characteristic is reflected in model C audio timbre because the output appears more
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similar to the target microphone recorded signal, in fact we can appreciate the played
chords’ overtones and the sound of the pick plucking the strings. On the other hand,
the other two models’ outputs have a darker tone and they lose all characteristic acoustic
sound’s brightness of metal strings. Furthermore, model A and B present some distortions

which are not present in the output of model C.

These results are comprehensible since this thesis work is based on researches concerning
sounds deriving from distortion amplifiers and pedals which are really different from

acoustic guitar ones.
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4: ‘ Conclusions and future

developments

This thesis aimed to black-box modeling acoustic guitar pickup - microphone sound using
deep leaning model based on a recurrent neural network (RNN) with a long-short term
memory (LSTM) unit. The network has shown its ability of following the trend of the
target microphone signal in time domain, given as input the pick-up one. However, the
model is not able to capture properly the high frequencies components of the spectrum,

which are attenuated for frequencies greater than 3 kHz.

To the best of our knowledge, no previous researches are done on this thesis’ task. There-
fore, our main contribution to the state of the art is given by the demonstration that
the acoustic guitar pickup - microphone sound modeling can be done using deep neural
networks. Although the results of the single LSTM model are not good enough compared
to the microphone recordings, we managed to show that the network is able to follow the
target signal in the time domain. Moreover, the proposed solution based on the combi-
nation of two different models seems to produce appreciable auditory results, comparable

with the original microphone recordings.

As we describe in section 3.2, a possible problem we can highlight corresponds to the fact
that the best model output does not correspond to the best perceptual audio results. Since
the perceptual analysis is conducted by the author of this thesis, we suggest as a future
development to verify the perceptual analysis with a proper test such as webMUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor) [34].

We also know there is room for improvements regarding the used data acquisition process,
which has been done in a small room with no special acoustic treatment. A possible
solution we suggest is to redo the data acquisition process in a controlled environment such
as an anechoic chamber. As a consequence all room’s spectral components contributions
are eliminated. Moreover, we found that all the proposed models reach a plateau in the
training process. Because the complexity of the task, a possible cause could be the lack

of data. Therefore we propose as a future development to expand the dataset with a new
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set of acoustic guitar recordings using the same equipment. In this sense, a further step
could be to try modeling different type of microphones, defining different training dataset

for each one of them.

As previously mentioned, the model is not able to capture high frequencies. As a con-
sequence, we suggest to investigate new neural network approaches, which may combine
the time domain approach and the spectral one. A possible solution could be found in
TCNs (Temporal Convolutional Networks) [5] presented by Christian J. Steinmetz and
Joshua D. Reiss, in which this new model shows promising results in comparison with the
classic RNN one. Another interesting investigation in this sense could be a comparison
among different loss functions, finding the best fit for the task we aim to. Some examples
in addition to the loss function used in our thesis are found in [55]: log hyperbolic cosine,
short-time Fourier transform and multi-resolution STFT. Moreover, would be better to
implement some metrics that takes into account also the perceptual aspects in addition

to the mathematical parameters.

Following A. Wright [4] and J. Steinmetz’s works [5|, we suggest to do a real-time im-
plementation of the model to see its computational effort, which could be compared with

two or more other neural network models as a further step.

To conclude, we believe this work represents a first step in the black-box modeling of
acoustic guitar pickup-microphone sound and we hope that our contribution can help
deep neural networks to establish themselves as solid approach to this newer field of

research.
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Appendix A

All the code relative to this thesis work can be found at:

https://github.com/EmanueleVoltolini/AI-Powered-Pickup
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