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Abstract

In contemporary society, protecting the environment has become an urgent call to action.
Mlegal landfill sites not only pose immediate environmental risks, but also have long-term
impacts on ecosystems and human health. The detection of illegal waste disposal sites
could play a key role in the fight against organised environmental crime. Our objective
is to automatically identify and segment illegal landfills in satellite images using deep
learning methods. This work is part of the European PERIVALLON project, which aims

to prevent illegal activities such as illegal waste disposal.

We address the segmentation problem using an unsupervised anomaly detection method,
where normality is defined as the absence of illegal landfills. We employ Autoencoders to
learn the normality of satellite images in order to detect any irregular instances of illegal
dumping sites. In particular, we generate error maps by computing the pixel-wise error
between the original images and the images reconstructed by the Autoencoder. We create
binary segmentation masks by applying a threshold to these error maps. Moreover, we
apply morphological image postprocessing to the segmentation masks to obtain connected
and compact segmented objects, and improve the performance evaluation. Since normal-
ity is highly varied, a model trained on the entire dataset is not effective. Therefore, we
cluster the land cover types to divide images into subsets, based on the land cover they
contain. This method enables us to build land cover specific Autoencoders, achieving su-

perior segmentation performances when compared to models trained on the entire dataset.

Keywords: deep learning, image segmentation, anomaly detection, illegal landfills de-

tection, autoencoder, land cover clusterization
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Abstract in lingua italiana

Nella societa contemporanea, la tutela dell’ambiente é diventata un appello urgente ad
agire. Le discariche abusive non solo comportano rischi ambientali immediati, ma hanno
anche un impatto a lungo termine sugli ecosistemi e sulla salute umana. L’individuazione
delle discariche illegali potrebbe svolgere un ruolo chiave nella lotta contro la criminalita
ambientale organizzata. Il nostro obiettivo ¢ identificare e segmentare in maniera auto-
matica le discariche illegali nelle immagini satellitari utilizzando metodi di deep learning.
Questo lavoro fa parte del progetto europeo PERIVALLON, che mira a prevenire attivita

illegali come lo smaltimento illegale dei rifiuti.

Affrontiamo il problema della segmentazione utilizzando un metodo di rilevamento delle
anomalie non supervisionato, in cui la normalita viene definita come assenza di terreni ille-
gali. Utilizziamo degli Autoencoder per apprendere la normalita delle immagini satellitari,
al fine di rilevare eventuali casi irregolari di discariche illegali. Calcolando la differenza
tra 'immagine originale e quella ricostruita, generiamo le mappe di errore di ricostruzione
dell’Autoencoder. Da queste, creiamo maschere di segmentazione binarie applicando una
soglia all’errore. Sulle maschere di segmentazione applichiamo una post-elaborazione mor-
fologica dell'immagine per ottenere oggetti segmentati connessi e compatti, e migliorare
le prestazioni. Poiché la normalita é molto varia, un modello addestrato sull’intero set
di dati non é efficace. Pertanto, raggruppando i tipi di copertura del suolo, dividiamo le
immagini in sottoinsiemi, in base alla copertura del suolo che contengono. Questo ci per-
mette di costruire Autoencoder specifici per la copertura del suolo, ottenendo prestazioni

di segmentazione superiori rispetto ai modelli addestrati sull’intero set di dati.

Parole chiave: deep learning, segmentazione di immagini, rilevamento di anomalie,

rilevamento di discariche abusive, autoencoder, clusterizzazione della copertura del suolo
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]_ ‘ Introduction

In the last decades, we have witnessed the exponential growth in global industrial pro-
duction that has led to a rapid increase in waste generation. Waste management has
major implications for human health, environment preservation, sustainability and cir-
cular economy [32]. However, waste disposal is sometimes managed outside of the legal
framework, posing a persistent problem across all regions, particularly in developing coun-
tries [29]. Illegal waste dumping can occur as isolated illicit events or at larger-scale sites,
namely illegal landfills. This uncontrolled waste disposal leads to contamination of the
surrounding areas, with harmful effects on humans, animals and plants. Indeed, soluble
pollutants are likely to be transported into groundwater by rain and spread out into the
environment. Gaseous pollutants, generated from degradation processes in illegal land-
fills or from illegal waste combustion, are dispersed by the wind to the surrounding areas.
Limoli et al. [17] explain that landfill leachates have major effects of acidification, eu-
trophication and oxygen depletion. Moreover, the organoleptic qualities of groundwater
can be compromised. (Gaseous emissions spread out in the atmosphere or penetrate the
ground, leading to global warming, acidification, photochemical smog and the formation
of ground-level ozone. All these hazards represent a strong call to action, not to mention
the significant impact on the health of humans and other living creatures. To ensure our

safety and protect the environment, it is crucial to fight these environmental crimes.

Our goal is to create an automated model that can detect and segment illegal landfill
sites through the analysis of satellite imagery. In this work, we address the problem of
illegal landfill detection through satellite images as an anomaly detection and segmen-
tation problem, where landfills represent anomalies and images without waste constitute

normality. Our work will help identify dangerous sites and prevent ecological damage.

Our research is part of the European PERIVALLON project [11], which aims to detect
organised environmental crimes such as illegal waste disposal. Using the latest technolo-
gies in the fields of artificial intelligence, computer vision, geospatial intelligence, remote
sensing, and online monitoring, PERIVALLON improves investigation procedures creat-

ing an Environmental Crime Observatory that will detect and prevent the environmental
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crimes throughout Europe.

Detecting illegal landfills in satellite images is mainly performed by human experts, which
is inefficient and limited compared to a possible automated version. Hence, our automated
tool for landfill detection based on deep neural networks can provide a more efficient and
effective solution. Indeed, it is capable of identifying anomalies that human observation

might miss, by continuously scanning the ground with satellite images.

Traditional monitoring techniques for such tasks are supervised classification and seg-
mentation, which rely on prior knowledge of the waste types for model training. Instead,
we employ an unsupervised approach to detect illegal waste, without requiring advance
information about the categories of garbage to perform the training. Supervised meth-
ods tackle the problem as an image-level classification problem, while we address it as a

pixel-level segmentation problem.

The main challenge tackled by this thesis work is the great heterogeneity of land covers
without illegal waste. Indeed, in our dataset there is an extensive variety of normal images,
meaning that a huge number of land cover types are considered normal, from meadows
to rivers, from beaches to streets, from residential houses to industrial buildings. This
variability in the concept of normality can lead to the development of a model able to
well reconstruct each type of ground, even those containing anomalies. Thus, instead
of creating a general neural network for all the satellite images, our solution suggests
developing a specific model for each group of land covers and using it to detect illegal
landfills only on images including those land cover types. This means that our neural
network will be specialized on the land covers on which it has been trained, managing to

identify anomalies between the normal ground.

In order to develop land cover specific models, we combine methodologies from the fields
of anomaly detection and graph theory. We build a graph based on land covers, and we
use spectral clustering on the land cover types to define strongly related groups of land
covers. From these groups, we split images into subsets according to the land covers they
contain. On these subsets of images, we apply Fully Convolutional Autoencoders, followed
by morphological image operations, to produce more efficient and accurate identification
of illegal landfill sites.

We organise the thesis work in the following chapters:

e Chapter 2 formally states the formulation of our problem, how we address it, and

the characteristics of our research.

e Chapter 3 covers the theoretical background of our work. We illustrate the theory
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behind anomaly detection, Convolutional Neural Networks, which are the most com-
mon network for image analysis, Autoencoders, which are the family of models we
chose to use, Structural Similarity, two different algorithms for graph clusterization,

and eventually the mathematical operations of morphological image processing.

e Chapter 4 illustrates the solution we propose to solve this anomaly detection prob-

lem, dwelling on the presentation of the dataset.

e Chapter 5 explains the implementation of our model, from the preprocessing and

postprocessing to the architecture and loss used during the training phase.

e Chapter 6 describes the figures of merit used in the testing phase and reports the

results of the experiments performed on our model.

e In Chapter 7, we draw the conclusions of our work and suggest potential ideas for

future work.



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



2 ‘ Problem formulation

In this chapter we formally state the anomaly detection problem that we address in this
thesis. We refer to images containing an illegal landfill as anomalous, while we consider

normal all the images that do not contain any illegal waste.

In input, we can consider an RGB image as a three dimensional matrix X € Rw*"*x3,

where values are normalized between [0,1]. Here w is the width and A is the height of
the image. Our goal is to locate anomalous regions in the image X defining as output an

anomaly mask:

o 0 if X(¢,7) is normal
Qx (i, j) = ’ (2.1)
1 if X(4,7) belongs to an anomaly

with X (7, j) the pixel at row i and column j in X. We face this anomaly detection problem
using an unsupervised approach, which means that we employ unlabeled data. During the
training phase, we take into account only normal images X1, ..., X,, € X', namely images
not containing any illegal landfill. An unsupervised approach that considers only a known

type of data, in our case only normal images, is also known as a semisupervised approach.

Our work belongs to the PERIVALLON project [11], funded by the European Union,
which addresses the critical issue of organized environmental crime. This illicit activity
includes intentional pollution and illegal disposal of different kind of waste, posing com-
plex challenges for detection and investigation. The project’s primary objective is to fight
organized environmental crime by advancing tools and solutions as long as promoting
international cooperation. Using the latest technologies in the fields of artificial intelli-
gence, computer vision, geospatial intelligence, remote sensing, and online monitoring,
PERIVALLON improves investigation procedures creating an Environmental Crime Ob-
servatory that will prevent the environmental crimes throughout Europe. With a diverse
consortium of law enforcement agencies, academic institutions and industry partners,
PERIVALLON is well equipped to effectively address the multifaceted challenges posed

by organised environmental crime.
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Our role in this project is to develop a solution able to analyze the satellite images and
detect any illegal dumping site. We decide to address this problem using deep learning
techniques from a different perspective with respect to the approaches taken by other
researchers involved in this project. Indeed, the other researchers use binary or multi-
class classification, which requires knowledge of each type of waste in order to detect it.
However, we use an unsupervised anomaly detection approach that can detect any type
of waste without prior knowledge. This gives the model greater flexibility and avoids the

need for retraining the model each time the satellite image dataset is updated.

The dataset used in this study is AerialWaste [30], which collects satellite images of the
Lombardia region and labels them according to the presence of illegal landfills. As stated
earlier, illegal dumpsites are referred to as anomalies, and images containing them are
considered anomalous. Normality, on the other hand, implies the absence of illegal waste,

and therefore normal images contain no illegal landfill.

©) )

Figure 2.1: Example of normal images in AerialWaste dataset.

Some examples of normal images included in this dataset are presented in Figure 2.1.
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Figure 2.2 shows examples of anomalous images from the dataset, where the dumping

sites are typically captured in the central area of the image.

(b)

Figure 2.2: Example of anomalous images in AerialWaste dataset
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3 ‘ Background

In this chapter we present the state-of-the-art of the methods applied in this thesis. In
addition, the background topics are described to introduce the context and challenges

addressed in this work.

First of all, in Section 3.1 we introduce the field in which our work is developed, and the
techniques that can be applied. Afterwards, we describe in Section 3.2 the basis of deep
convolutional networks, especially of Convolutional Neural Networks, while in Section
3.3 we illustrate the Autoencoder models. In Section 3.4 the Structural Similarity Index
is introduced. In Section 3.5 we explain the theory behind graphs, clustering and two
algorithms to find the best graph partition. Finally, in Section 3.6 the morphological

image processing techniques are described.

3.1. Anomaly detection

Anomaly detection surrounds our lives without us noticing it, as Lukas Ruff et al. said
[25]. Indeed, anomaly detection has a key role in identifying irregularities, defects, or
unusual occurrences that could signify potential issues, fraud, or simply a novel phenom-
ena. The goal of anomaly detection is to uncover hidden insights within data that might
not be apparent through standard data analysis techniques, or that could be missed if
the detection is performed by humans [18]. Formally, we can describe an anomaly as “an

observation deviating considerably from the notion of normality ”.

Let X C RT be the data space from a certain given task. The concept of normality can be
defined as the distribution P™ on X, namely as the ground-truth law of normal behavior
in the given task [25]. Thus, an anomaly is an observation deviating from this law,
belonging to a low probability region under P*, and the corresponding set of anomalies
can be defined as

A={zeX|pt(x) <A}, A>0 (3.1)

with p™(x) the probability density function of P, A a certain threshold under which P*

is sufficiently small.
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There exist three main categories of anomalies|[9], at which it can be added a fourth
category [25] [2]:

1. Point anomalies, where the observation deviating from the normal behavior is an
individual data point x € A; it is the easiest type to be detected and the most

commonly studied.

2. Conditional or Contextual anomalies, where the instance is anomalous under specific
condition and in a specific context; for this type the normal law is a conditional

distribution PT = P;rﬂc ;

depending on the context variable C.

with pT(x | ¢) conditional probability density function

3. Collective or Group anomalies, where a group of data is considered as anomalous
but not necessarily the single observations themselves; indeed only the collection
{z; € X | 1 € I} of instances together differs from normality, with I C N a set of

indexes implying a relation.

4. Low-level sensory anomalies and high-level semantic anomalies, where the terms
high and low refer to the level of feature hierarchy; low-level anomalies differs, for
instance, at pixel-level in texture and shape from the normal data, while high-level

anomalies differ in sense, as the type of object in an image or the topic in a text.
Figure 3.1 illustrates some examples of the different types of anomalies just discussed.

Moreover, it could be defined a distinction between anomaly, outlier and nowelty, even if
all of them refer to instances belonging to a low probability region under P*: an anomaly
follows a distribution different from P*, an outlier is a rare or low-probability observation
from P*, while a novelty belongs to a new region of a non-stationary P*.

Furthermore, the aim of finding anomalies, outlier and novelties could be really different.
Usually, an anomaly is a data of interest to be found, while outliers are considered as
measurement errors to be deleted. Instead, a novelty is a new instance that should be
considered, and implies that the model has to be updated to a new version.

In Figure 3.2 an example of the difference between anomaly, outlier and novelty in images.
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~_ Point Anomaly Contextual Point Anomaly

\
\
\'

Contextual Group Anomaly

(a) (b)

High-level, Semantic Anomaly

Figure 3.1: The different types of anomalies: 3.1a shows examples of two point anomalies
and a group anomaly, 3.1b shows two examples of contextual point anomalies, one point
and one group, 3.1c shows a low-level anomaly in a texture image, namely a hole in the
fabric from the industrial MV Tec dataset [6], 3.1d shows an example of high-level semantic

anomaly, namely an image of a dog between cat images.
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(a) Normal sample (b) Outlier

(¢) Novelty (d) Anomaly

Figure 3.2: An example of difference between a normal sample, an outlier, an anomalous
sample, or a novelty. Here the normal image is a cat 3.2a, an outlier is a specific rare race
as the Canadian Sphynx 3.2b, an anomaly is a high-level semantic error like a dog 3.2d,

and a novelty is a cat but the animated film version 3.2c.

3.1.1. Main challenges

Conceptually, an anomaly is defined as a pattern not following the expected normal
behavior, therefore in a direct approach to anomaly detection is to define the region of
this normal behavior and mark any observations falling outside it as anomalous. However,
there are several challenges that anomaly detection methods have to face, as stressed from
Chandola et al. [9] and Pang et al. [24]:
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e The concept of normality could evolve in time, such that what is now normal may

no longer be normal in the future.

e The notion of anomaly could totally change for different task domains, as the de-

scription of anomalies is irregular.

e It could be not explicit the difference between anomalies and normal observations,
such that it results difficult to define the boundaries of the normal region; indeed

the distribution, behavior and data structure of anomalies is unknown.

e Often the anomalies are disguised as normal observations, especially when results

of illegal actions.

e Sometimes noise is present in the data making normal observations similar to actual

anomalies, thus it becomes difficult to recognize and remove them.

e As anomalies are rare occurrences, there is usually a lack of labeled anomalous data

available, hence the problem can be considered as unbalanced.

Therefore, the general anomaly detection problem is though to solve, leading to the defini-

tion of task-specific problems, driven by the nature of the data and the type of application.

3.1.2. Machine learning approaches

Data instances are provided with labels indicating if that instance is normal or anomalous.
However, it is usually expensive obtaining accurate and representative labeled data, since
this collection is often manually performed by human experts. Moreover, getting labels
for anomalous data is typically more difficult than getting the normal ones, considering
that anomalous behavior is often dynamic in nature. Besides, in certain tasks anomalies
are very rare, such as for space crashes or natural disasters. Anomaly detection methods

can operate in three manners [9], depending on the available labels.

Supervised setting

Supervised anomaly detection methods assume the availability of labels in the training
data both for anomalies and normal items. It follows two major problems: typically
anomalies are fewer than normal items, thus the classes distributions are imbalanced, and
the collection of accurate and representative labels for anomalous items is challenging.

Formally, the data available in supervised anomaly detection setting are defined as follows

<x17y1>7 ceey (xnayn) € X x y (32)
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where X C R”T, and ) = {0,1} with y = 0 denotes a normal instance, y = 1 denotes an

anomalous instance.

Unsupervised setting

Unsupervised methods do not require labels to train the data, and for this reason they are
the techniques most commonly applied. These methods implicitly make the assumption
that normal instances are more frequent with respect to anomalous instances in test data,
but if this assumption does not occur then a high rate of false alarms are risen. The

unsupervised setting is formally defined as

T1y... Ty €X (3.3)

namely, only unlabeled data are available in X C R”.

Semisupervised setting

The techniques operating in a semisupervised setting assume that the training data has
labeled instances only for the normal class. These methods are more applicable than su-
pervised techniques, since we avoid the issue of labeling anomalies. Usually, the semisu-
pervised techniques build a model for the normal class behavior and use it to detect
anomalies in the test data.

Many semisupervised methods operate in an unsupervised mode during the training using
unlabeled data, knowing that they are only normal data. Formally, the semisupervised

setting is defined as follows

x1,...x € X and (Tpy1,91), - (Thom, Ym) € X X Y (3.4)

where, as before, X C RT and Y = {0,1}, with y = 0, y = 1 denote normal and

anomalous instances respectively.

3.1.3. Addressing the anomaly detection problem

In order to address this problem, we can present three different classes of methods used in
the literature [25]|24|. The first are density estimation and probabilistic models, predicting
anomalies by estimating the probability distribution of normal data. These methods
include, for instance, classical statistical models.

The second category is composed of one-class classification methods, trying to directly

determine a decision boundary for the desired level of the normal distribution.
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Lastly, there are the reconstruction models, the approach most commonly used in anomaly
detection neural networks. The idea is to build a model able to reconstruct well normal
items and that fails in the reconstruction of anomalies. This thesis has developed a

reconstruction model, hence this section will focus on this field.

First and foremost, let us define the reconstruction objective. Consider a feature map
from X to itself, an encoding function £ : X — Z and a decoding function D : Z — X,
respectively the encoder and the decoder. Z is called the latent space, and E(X) = Z the
latent representation of X. Then, le the composition ¢y = (Do &)y be the feature function
with 6 the parameters of the model. Hence the reconstruction objective is to learn ¢y
such that

do(X) = D(E(X)) = X ~ X (3.5)

meaning to find an encoding and a decoding function such that the input is reconstructed

with minimal error, namely:

min | X — (Do &)p(X)] (3.6)

where ||-|| is the reconstruction loss.

In order to avoid the identity function as trivial solution to 3.6, it must be considered
the so called manifold assumption entailing the existence of a lower dimensional latent
space such that 3.5 has solution. In an anomaly detection ideal perspective, the resulting

reconstruction loss will be low on normal data, and high on anomalous data.

3.2. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of deep Feed Forward Neural Networks
designed to extract interesting features in the images domain. Traditional Feed Forward
Neural Networks are composed of an input layer, one or more hidden layers, an output
layer and a set of weights, that are considered the network parameters. Each layer is
composed by neurons, namely a set of nodes connected to the previous and the following
layers. Each layer has an input and an output: the inputs is multiplied by the weights of
the layer, summed and passed through an activation function, which is the output of the

neuron. This passes to the next layer, and the process is iterated for each hidden layer.

Convolutional neural networks were proposed for the first time by LeCun et al. [16] in 1989
and have immediately emerged as one of the most powerful tools in the field of artificial

neural networks, especially excelling in pattern recognition. Thanks to the reduction in
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terms of number of parameters, CNNs can be applied to solve complex tasks, which was

impossible with classic artificial neural networks.

Convolution Neural Network (CNN)

Input

— Output
Pooling Pooling Pooling m
) L
I — : Horse
i = N Zebra
- i Dog
u
|| SoftMax
Convolution Convolution  Convolution L P}éf}rl\?itgn
+ + +
Kernel RelU RelU RelU Flatten
Layer
Feature Maps Connected
Layer
| | | |
Feature Extraction Classification Probabilistic

Distribution

Figure 3.3: Example of CNN to classify images.

The term convolutional refers to the mathematical operation of convolution, which is per-
formed between matrices, and will be explained in 3.2.2. Unlike classical neural networks,
CNNs succeed in capturing spatial features in data, making them particularly suitable
for image and video analysis. Indeed, their first application |[16] was the recognition of
handwritten characters.

Figure 3.3 illustrates an example of a CNN where in output it classifies the image received

in input.

3.2.1. Convolution operation

Convolution is an operation on two real valued functions f and g that produces another
function A which represents the effect of one function over the other. It is represented
with the ® symbol and defined as|13]:

h(t) = (f @ g)(t /f g(t —x)d (3.7)

In general, convolution is defined for any functions for which the above integral is defined.
In the context of deep learning, more specifically in the CNN vocabulary, the function f

is often referred to as the input, function g is the kernel and function A is the feature map.

Equation (3.7) can be used when dealing with continuous functions, but standard convo-
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lution must be replaced with discrete convolution when dealing with discrete functions.
In image processing field, discrete convolution is used to convolve a kernel (also known
as filter) on an image to detect, for instance, edges. In convolutional neural networks
context, discrete convolution is applied over the input image in order to obtain a linear
combination of values in the corresponding region of the image. Discrete convolution

applied over the input volumes in CNNs is defined as follows:

(3.8)

where [ is an input image, K the convolutional kernel, H the output feature map indexed
at position (7,j). The equality in (3.8) follows from the fact that convolution is a com-
mutative equation.

In Figure 3.4 we can observe a practical example of discrete convolutional operation over

image pixels, using kernel:

(3.9)

S N O
— N
N O N

3.2.2. Layer types

Convolutional Neural Networks consist of several layers, each serving a specific purpose
in the network’s functioning. Typically, the main layers in a CNN architecture include
convolutional layers, pooling layers, activation layers (non-linear), and fully connected

layers.

Let us assume to have in input a three-dimensional object such as an image or a video.
The convolutional layer is the main component of a CNN. It applies the convolution
operation, in its discrete form (3.8), to the input data, using filters or kernels to extract
spatial features. By sliding these filters across width and height of the input volume,
the convolutional layer effectively captures local patterns and creates feature maps. In
a convolutional layer the discrete convolution is applied to the whole input volume by
shifting the kernel of a certain number of pixels called stride, namely the parameter to
control the overlapping of the filters. As the filter slides over the width and height of
the input volume, it produces a 2-dimensional activation map. The network will learn

filters that activate when some types of visual features are given in input, such as edges,
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Figure 3.4: Practical example of the mathematical convolution operation.

particular shapes or patterns. Several filters can be applied in each convolutional layer,

producing a separate 2-dimensional activation map.

One of the drawbacks [3] of the convolution step is the information loss that might happen
on the image border. Indeed, since they are only captured when the filter slides, they
never have the chance to be observed. A very simple and efficient method to solve this
issue is to use zero-padding, namely adding pixels with value= 0 around the image. Using
this simple strategy, the filter is able to slide on the borders of the image without losing
any information. Another benefit of zero-padding is the ability to manage the output
size, obtaining the output of the same exact dimension of the original input.

Figure 3.5 shows an example of convolution with kernel defined in Equation (3.9), where

the image is padded with a 1 x 1 border of zeros [10].
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Figure 3.5: Example of convolution where the image is padded with a 1 x 1 border of

7eros.

Following the convolutional layer, an activation layer is applied to introduce non-linearities
into the model. This layer helps in capturing complex relationships and introducing non-
linear transformations to the feature maps. For many years, sigmoid and tanh were the
most popular activation functions. Sigmoid activation function squeezes the output of
H%. It is commonly used in binary classification
tasks where the output needs to be interpreted as a probability. Tanh function squeezes

a neuron between 0 and 1: o(x) =

the output between -1 and 1: tanh(z) = — 1. It is often used in scenarios where

_2
14e—22
negative values are more prevalent, such as sentiment analysis. In Figure 3.6 are shown

different activation functions
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— sigmoid (1.0)

— sigmoid (2.5)

— tanh

— relu

— softplus
gaussian

Activation functions

)
T

=
T

-4 -3 -2 -1 0 1 2 3 4
Figure 3.6: Different activation functions.

Another more recent activation function is the Rectified Linear Unit (ReLU), that has

become popular for the following reasons [3]:

1. ReLlU has a simple definition, for both the function and the gradient:

d
ReLU(z) = max(0, z) d—ReLU(x) ={lif z >0, 0 otherwise}. (3.10)

x
2. Sigmoid and tanh functions cause problems due to the gradient signals that is close
to zero but in the center, called vanishing gradient problem, that affects deep net-
work. ReLU function helps with this issue, having a constant gradient fo positive

inputs.

3. ReLLU function creates a sparser representation, since the gradient is exactly 0 for

negative inputs not all the neurons are activated.
4. ReLU function is sale invariant, namely max(0, bx) = bmax(0, z) for b > 0

ReLU also have some disadvantages: it is differentiable everywhere except in 0, but this
can be handled in the implementation, and it causes a problem called Dying ReLU,
that causes the inactivity of some neurons for almost all inputs. The latter problem
can be alleviated by using some variations of the standard ReLU, as the Leaky ReLU
LeakyReLU (z) = maz(ax,x) with a € (0, 1), which have a gradient value different from
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0 for negative inputs.

The pooling layer reduces the spatial dimensions of the feature maps produced by the
convolutional layer, without affecting the number of filters. It is usually inserted a pool-
ing layer in-between successive convolutional layers. By aggregating information within
local regions, pooling layers help to extract the most salient features while reducing the

computational complexity of subsequent layers.

In the image processing domain, it is similar to reduce the resolution. Max pooling is
one of the most common types of pooling layers: the image is divided into sub-region
rectangles, and it returns the maximum value of the pixels inside that sub-region. It is
often used the size 2 x 2 in max pooling.

Average pooling is another typical choice of pooling layer: for each sub-region it returns

their mean value.

max pooling

6 8
1 1 2 4 3 4
5 6 7 8
3 2 1 0 .
average pooling
1 2 3 4 3 5

Figure 3.7: Different activation functions.

As we observe in Figure 3.7, when pooling is performed with filter 2 x 2 and stride 2,
the image is split into the colored sub-regions and for each sub-region it is performed the
maximum or the mean. Pooling can be used with different filters and strides in order to

improve the efficiency.

The fully-connected layer connects every neuron from the previous layer to the next,
mimicking the structure of traditional neural networks. Therefore, each node in a fully-
connected layer is directly connected to every node in both the previous and in the fol-

lowing layer as shown in Figure 3.8.
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Figure 3.8: Example of fully connected layer.

This layer is responsible for the final classification or regression task and incorporates
the extracted features into the final prediction. The major drawback of a fully-connected
layer, is that it includes a lot of parameters that need complex computational in training
examples. Therefore, we try to remove the number of nodes and connections using the

dropout technique.

3.3. Autoencoders

One of the most popular approaches for deep anomaly detection in images are autoencoders
[25], namely feed-forward multi-layer neural networks in which the desired output is the
input itself [35]. Autoencoders belong to the reconstruction model category, defined in
Section 3.1.

Autoencoders were first introduced during the 80s [26][15] for dimensionality reduction or
feature learning, but they were then adopted for deep anomaly detection.
The main goal [4] is to learn in an unsupervised manner an informative representation of

the data that can be used for various applications.

An autoencoder (AE) is composed of two main components: an encoder and a decoder.
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The encoder £(+) takes the data X in input and maps them into a hidden layer, describing
an informative feature representation called latent representation. Then the decoder D(+)
maps the encoded data £(X) back to the original space, producing a reconstruction of
the input.

Formally, the encoding function £ : X — Z and the decoding function D : Z — X
are respectively the encoder and the decoder. Hence the reconstruction map is defined
$9(X) = D(E(X)) = X = X, as described in equation 3.5.

Encoder Decoder

X1 71
Y1

X2 72
Y2

X3 73
Yd

hidden layer
Xn n
d<<n

Figure 3.9: Example of autoencoder with 1 layer with n neurons in input, 1 with n neurons

in output, and 1 hidden layer with d neurons.

The basic autoencoder has encoder composed of a single layer, a hidden layer and the
decoder composed of one layer, as shown in Figure 3.9.

An autoencoder with multiple hidden layers is considered a deep autoencoder, able to rep-
resent complicated distributions over the input. From now on with the word autoencoders

we will refer to the deep version.

The objective is to train the encoder and the decoder such that the difference between

the original image and the reconstructed image is minimized, namely:

d
1
mui)nEZHxi — (Do &)ylz)|* + R, (3.11)
=1
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that is a realization of the general reconstruction objective in 3.6. The optimization is
performed over the weights w of the neural network encoder and decoder, R indicates the

regularization.

To avoid a trivial reconstruction, namely having a reconstruction function equal to the
identity map, the number of neurons of the hidden layer must be strictly smaller than the
number of neurons in input and output layers, thus n < d. More in general, the latent
space where the input is mapped should have a smaller dimension with respect to the
space where our data live, creating a ’bottleneck’ that enforces the data compression and
limits the dimensionality. This is considered a form of regularization.

An autoencoder whose latent dimension is smaller than the input dimension is called un-
dercomplete. Learning an undercomplete representation forces the autoencoder to capture

the most salient features of training data.

Hence the learning process could be described as the minimization of the loss function

L(X,D(E(X))), (3.12)

where the loss function £ is defined penalizing the dissimilarity between D(£(X)) = X
and X.

Examples of viable losses are the Mean Squared Error and the Mean Absolute Error:

N
1
MSE(z,y) = < D (@i — ) (3.13)
=1
1 N
MAE(xz,y) = N Z |z — vil (3.14)
i=1

Convolutional Autoencoders belong to the family of convolutional neural networks and
they are used for image reconstruction. Both the encoder and the decoder are CNN,
the encoder taking in input an image and extracting its main characteristics, while the
decoder reconstruct the image. Thus, all the layers in the autoencoder are convolutional
layers or pooling layers. In the encoder the pooling layers reduce the spatial dimension

of the input, while in the decoder they increase it.

Considering convolutional autoencoders, in equations (3.13) (3.14) x and y are two images
and N is the number of pixel involved in the comparison. These point-by-point metrics
compute the [? and [! distances between the corresponding pixels in the two images and

average the distance.
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Figure 3.10 illustrates an example of convolutional autoencoder.

14x14x32 14x14x32

1152 1152

DeConv2
stride=2

DeConvl
stride=2

Figure 3.10: Example of a convolutional autoencoder that reconstructs handwritten digits.

3.4. Structural Similarity

Convolutional autoencoders, widely used in unsupervised defect segmentation, commonly
use per-pixel reconstruction errors based on an ¢P-distance. However, Bergman et al. [5]
suggest that these functions often lead to large residuals when the reconstruction includes
slight localization inaccuracies around edges, and they propose the application of a per-
ceptual loss function based on structural similarity (SSIM) [34] to autoencoders. Indeed,
SSIM can grab inter-dependencies between regions in the image, considering luminance,

contrast and structural information rather than comparing single pixel values.

The idea is to extract structural information of the entire image separating the objective
into three comparisons: Luminance, Contrast and Structure. Indeed these three compo-
nents are relatively independent, since a change in luminance or contrast will not affect
the structure.

Hence the similarity measure can be written as
S(x,y) = fl(z,y), c(x,y), s(z,y)) (3.15)

Assuming the mean intensity and the standard deviation as follows
|

o, = (# iu - m?f , (3.17)
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then the luminance comparison is a function of the mean intensities defined as

2;“90[1'1/ + CYl

zry T 3.18
M§+M§+Cl ( )

lz,y) =
where C] is a constant included to avoid instability when p2 + /%3 tends to zero.
The contrast comparison function, instead, is a comparison between the standard devia-

tions of x abd y, defined as

20,0, 4+ Cy
— cy T2 3.19
c(z,y) 2+ 071 G (3.19)
where () is a constant defined similarly to Cf.
Lastly, we define the structure comparison function
Ozy + 03
=% —° 3.20
s(z,y) pp—eA (3.20)
with C5 a constant, and o0,, can be estimated in discrete form as
1 N
Oey = 77 7 Z(Iz — o) (Yi — fy)- (3.21)
N -1
Finally, we can combine (3.18), (3.19) and (3.20) defining:
a B
SSIM(z,y) = (l(z,y))" - (s(z,y))" - (c(z,y))” (3.22)

where o > 0, 5 > 0, v > 0 parameters to tune the importance of the components.
Wang et al.[34] set « = 8 = v =1 and C3 = C5/2, obtaining the final version of SSIM

index:
(2papty + C1)(204y + Co)

(12 +p2 +Cr)(o2 + 02+ Cy)

SSIM(z,y) = (3.23)
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v

I(x, X) E c(x,X) E s(x, %) E

SSIM (x,%)

Input x Reconstruction X

(a) (b) © (d)

Figure 3.11: Example from [5] of SSIM with respect to % loss for defect segmentation. (a)
checkerboard with simulated defeats, (b) the output reconstruction of the input image by
an autoencoder. Residuals (d) for luminance [, contrast ¢, structure s, and their pointwise
product that yields the final SSIM residual map.

Figure 3.11 reports an example of comparison between SSIM and ¢2, where we notice that
SSIM gives more importance to the visually more salient disturbances than to the slight

inaccuracies around reconstructed edges [5].

3.5. Graph clustering
A directed graph G = (S, A) is determined by:
e a set S of elements called vertices or nodes,

e a set A of elements which are pairs (7, j) called arcs. The initial vertex ¢ or an arc

is called origin and j destination.

When the definition of a graph does not require to distinguish between origins and des-
tinations of arcs, the graph is called undirected. In this case the elements of A will be
called edges.

An arc or edge is said to be incident to the two nodes it connects.

Two vertices connected by an arc or edge are said to be adjacent or called neighbors.

Figure 3.12 shows an example of an undirected weighted graph.

Let consider G = (V, ) an undirected weighted graph, with weights w;; > 0 between two
vertices ¢ and j. The weight on each edge w;; is a function of the similarity between the

two vertices 7 and j.
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Figure 3.12: Example of an undirected weighted graph.

3.5.1. Normalized cut and spectral clustering

Given a set of data points z4,...,x, and a definition of similarity s;; > 0, the aim of
clustering is to split the data points into groups such that the points within the same
group are similar, whereas those in different groups are dissimilar |33].

Considering the graph G previously defined, we desire to partition the set of nodes into
disjoint sets Vi, Vs, ..., Vi, where, by measure s;;, the similarity among vertices in a set

Vi is high and, across different sets V;, V; is low.

We start partitioning the graph into two disjoint sets of vertices A and B, ie such that
AUB =V and AN B = (), by removing edges connecting the two sets [28]. A cut is the

sum of the weights of the removed edges, representing the degree of dissimilarity:

cut(A,B) = Y wj. (3.24)

The bipartition of the graph is optimal if the cuf is minimized. In Figure 3.13 an example
of minimal cut in an undirected weighted graph. Afterwards, the current partition can

be further recursively subdivided in order to create more than two groups.
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Figure 3.13: Example of a minimal cut equal to 3 of an undirected weighted graph.

In order to avoid cutting small sets of isolated nodes in the graph, Shi and Malik [28|

introduced the normalized cut (Neut):

cut(A, B) cut(A, B)

Ncut(A,B) =
cut(4, B) assoc(A, V) ~ assoc(B,V)

(3.25)

where assoc(A,V) = 3 .4 ey Wik is the total connection from the vertices in A to all
the vertices in the graph, and similarly defined for B.

The definition of normalized cut is also known as disassociation between the groups, and
using this definition there will no longer be small Ncut value for the cut that partitions out
small isolated points, since the cut value will be a large percentage of the total connection

from that small group of nodes to all other vertices.

Similarly, it can be defined the measure for total normalized association between groups:

assoc(A, A) N assoc(B, B)
assoc(A, V)  assoc(B,V)

Nassoc(A, B) = (3.26)

where assoc(A, A), assoc(B, B) the total weights of edges connecting nodes within A and
B respectively.
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It follows the relation:

cut(A, B cut(A, B
Neut(4, B) = assoi(A, &) * assoi(B, 1>/) -

_assoc(A,V) —assoc(A, A)

N assoc(A, V)
assoc(B,V) —assoc(B,B) (3.27)

assoc(B, V)
_g_ <assoc(A,A) assoc(B,B))
assoc(A, V)  assoc(B,V)

=2 — Nassoc(A, B).

Hence, minimizing the disassociation between groups and maximizing the association

between groups is equivalent and simultaneously satisfied.

Unfortunately, minimizing the normalized cut is an NP-complete problem, but it can be
efficiently found an approximate discrete solution.
Indeed, relaxing the hypothesis to real values only, the problem can be rewritten as the

solution of the generalized eigenvalue system
(D — W)y = ADy (3.28)

where D is the N x N diagonal matrix with the total connection from each node d(i) =
Zj w;; in the diagonal, W is the NV x N symmetrical matrix with the graph weights as
elements.

It is found in (3.28) that the second smallest eigenvector is the solution (in real values)
of the normalized cut problem, thus it could be used to bipartition the graph. Hence,
the spect