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Abstract

In contemporary society, protecting the environment has become an urgent call to action.

Illegal land�ll sites not only pose immediate environmental risks, but also have long-term

impacts on ecosystems and human health. The detection of illegal waste disposal sites

could play a key role in the �ght against organised environmental crime. Our objective

is to automatically identify and segment illegal land�lls in satellite images using deep

learning methods. This work is part of the European PERIVALLON project, which aims

to prevent illegal activities such as illegal waste disposal.

We address the segmentation problem using an unsupervised anomaly detection method,

where normality is de�ned as the absence of illegal land�lls. We employ Autoencoders to

learn the normality of satellite images in order to detect any irregular instances of illegal

dumping sites. In particular, we generate error maps by computing the pixel-wise error

between the original images and the images reconstructed by the Autoencoder. We create

binary segmentation masks by applying a threshold to these error maps. Moreover, we

apply morphological image postprocessing to the segmentation masks to obtain connected

and compact segmented objects, and improve the performance evaluation. Since normal-

ity is highly varied, a model trained on the entire dataset is not e�ective. Therefore, we

cluster the land cover types to divide images into subsets, based on the land cover they

contain. This method enables us to build land cover speci�c Autoencoders, achieving su-

perior segmentation performances when compared to models trained on the entire dataset.

Keywords: deep learning, image segmentation, anomaly detection, illegal land�lls de-

tection, autoencoder, land cover clusterization





Abstract in lingua italiana

Nella società contemporanea, la tutela dell'ambiente è diventata un appello urgente ad

agire. Le discariche abusive non solo comportano rischi ambientali immediati, ma hanno

anche un impatto a lungo termine sugli ecosistemi e sulla salute umana. L'individuazione

delle discariche illegali potrebbe svolgere un ruolo chiave nella lotta contro la criminalità

ambientale organizzata. Il nostro obiettivo è identi�care e segmentare in maniera auto-

matica le discariche illegali nelle immagini satellitari utilizzando metodi di deep learning.

Questo lavoro fa parte del progetto europeo PERIVALLON, che mira a prevenire attività

illegali come lo smaltimento illegale dei ri�uti.

A�rontiamo il problema della segmentazione utilizzando un metodo di rilevamento delle

anomalie non supervisionato, in cui la normalità viene de�nita come assenza di terreni ille-

gali. Utilizziamo degli Autoencoder per apprendere la normalità delle immagini satellitari,

al �ne di rilevare eventuali casi irregolari di discariche illegali. Calcolando la di�erenza

tra l'immagine originale e quella ricostruita, generiamo le mappe di errore di ricostruzione

dell'Autoencoder. Da queste, creiamo maschere di segmentazione binarie applicando una

soglia all'errore. Sulle maschere di segmentazione applichiamo una post-elaborazione mor-

fologica dell'immagine per ottenere oggetti segmentati connessi e compatti, e migliorare

le prestazioni. Poiché la normalità è molto varia, un modello addestrato sull'intero set

di dati non è e�cace. Pertanto, raggruppando i tipi di copertura del suolo, dividiamo le

immagini in sottoinsiemi, in base alla copertura del suolo che contengono. Questo ci per-

mette di costruire Autoencoder speci�ci per la copertura del suolo, ottenendo prestazioni

di segmentazione superiori rispetto ai modelli addestrati sull'intero set di dati.

Parole chiave: deep learning, segmentazione di immagini, rilevamento di anomalie,

rilevamento di discariche abusive, autoencoder, clusterizzazione della copertura del suolo
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1| Introduction

In the last decades, we have witnessed the exponential growth in global industrial pro-

duction that has led to a rapid increase in waste generation. Waste management has

major implications for human health, environment preservation, sustainability and cir-

cular economy [32]. However, waste disposal is sometimes managed outside of the legal

framework, posing a persistent problem across all regions, particularly in developing coun-

tries [29]. Illegal waste dumping can occur as isolated illicit events or at larger-scale sites,

namely illegal land�lls. This uncontrolled waste disposal leads to contamination of the

surrounding areas, with harmful e�ects on humans, animals and plants. Indeed, soluble

pollutants are likely to be transported into groundwater by rain and spread out into the

environment. Gaseous pollutants, generated from degradation processes in illegal land-

�lls or from illegal waste combustion, are dispersed by the wind to the surrounding areas.

Limoli et al. [17] explain that land�ll leachates have major e�ects of acidi�cation, eu-

trophication and oxygen depletion. Moreover, the organoleptic qualities of groundwater

can be compromised. Gaseous emissions spread out in the atmosphere or penetrate the

ground, leading to global warming, acidi�cation, photochemical smog and the formation

of ground-level ozone. All these hazards represent a strong call to action, not to mention

the signi�cant impact on the health of humans and other living creatures. To ensure our

safety and protect the environment, it is crucial to �ght these environmental crimes.

Our goal is to create an automated model that can detect and segment illegal land�ll

sites through the analysis of satellite imagery. In this work, we address the problem of

illegal land�ll detection through satellite images as an anomaly detection and segmen-

tation problem, where land�lls represent anomalies and images without waste constitute

normality. Our work will help identify dangerous sites and prevent ecological damage.

Our research is part of the European PERIVALLON project [11], which aims to detect

organised environmental crimes such as illegal waste disposal. Using the latest technolo-

gies in the �elds of arti�cial intelligence, computer vision, geospatial intelligence, remote

sensing, and online monitoring, PERIVALLON improves investigation procedures creat-

ing an Environmental Crime Observatory that will detect and prevent the environmental
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crimes throughout Europe.

Detecting illegal land�lls in satellite images is mainly performed by human experts, which

is ine�cient and limited compared to a possible automated version. Hence, our automated

tool for land�ll detection based on deep neural networks can provide a more e�cient and

e�ective solution. Indeed, it is capable of identifying anomalies that human observation

might miss, by continuously scanning the ground with satellite images.

Traditional monitoring techniques for such tasks are supervised classi�cation and seg-

mentation, which rely on prior knowledge of the waste types for model training. Instead,

we employ an unsupervised approach to detect illegal waste, without requiring advance

information about the categories of garbage to perform the training. Supervised meth-

ods tackle the problem as an image-level classi�cation problem, while we address it as a

pixel-level segmentation problem.

The main challenge tackled by this thesis work is the great heterogeneity of land covers

without illegal waste. Indeed, in our dataset there is an extensive variety of normal images,

meaning that a huge number of land cover types are considered normal, from meadows

to rivers, from beaches to streets, from residential houses to industrial buildings. This

variability in the concept of normality can lead to the development of a model able to

well reconstruct each type of ground, even those containing anomalies. Thus, instead

of creating a general neural network for all the satellite images, our solution suggests

developing a speci�c model for each group of land covers and using it to detect illegal

land�lls only on images including those land cover types. This means that our neural

network will be specialized on the land covers on which it has been trained, managing to

identify anomalies between the normal ground.

In order to develop land cover speci�c models, we combine methodologies from the �elds

of anomaly detection and graph theory. We build a graph based on land covers, and we

use spectral clustering on the land cover types to de�ne strongly related groups of land

covers. From these groups, we split images into subsets according to the land covers they

contain. On these subsets of images, we apply Fully Convolutional Autoencoders, followed

by morphological image operations, to produce more e�cient and accurate identi�cation

of illegal land�ll sites.

We organise the thesis work in the following chapters:

� Chapter 2 formally states the formulation of our problem, how we address it, and

the characteristics of our research.

� Chapter 3 covers the theoretical background of our work. We illustrate the theory
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behind anomaly detection, Convolutional Neural Networks, which are the most com-

mon network for image analysis, Autoencoders, which are the family of models we

chose to use, Structural Similarity, two di�erent algorithms for graph clusterization,

and eventually the mathematical operations of morphological image processing.

� Chapter 4 illustrates the solution we propose to solve this anomaly detection prob-

lem, dwelling on the presentation of the dataset.

� Chapter 5 explains the implementation of our model, from the preprocessing and

postprocessing to the architecture and loss used during the training phase.

� Chapter 6 describes the �gures of merit used in the testing phase and reports the

results of the experiments performed on our model.

� In Chapter 7, we draw the conclusions of our work and suggest potential ideas for

future work.
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2| Problem formulation

In this chapter we formally state the anomaly detection problem that we address in this

thesis. We refer to images containing an illegal land�ll as anomalous, while we consider

normal all the images that do not contain any illegal waste.

In input, we can consider an RGB image as a three dimensional matrix X ∈ Rw×h×3,

where values are normalized between [0, 1]. Here w is the width and h is the height of

the image. Our goal is to locate anomalous regions in the image X de�ning as output an

anomaly mask :

ΩX(i, j) =

0 if X(i, j) is normal

1 if X(i, j) belongs to an anomaly
, (2.1)

with X(i, j) the pixel at row i and column j in X. We face this anomaly detection problem

using an unsupervised approach, which means that we employ unlabeled data. During the

training phase, we take into account only normal images X1, ..., Xn ∈ X , namely images

not containing any illegal land�ll. An unsupervised approach that considers only a known

type of data, in our case only normal images, is also known as a semisupervised approach.

Our work belongs to the PERIVALLON project [11], funded by the European Union,

which addresses the critical issue of organized environmental crime. This illicit activity

includes intentional pollution and illegal disposal of di�erent kind of waste, posing com-

plex challenges for detection and investigation. The project's primary objective is to �ght

organized environmental crime by advancing tools and solutions as long as promoting

international cooperation. Using the latest technologies in the �elds of arti�cial intelli-

gence, computer vision, geospatial intelligence, remote sensing, and online monitoring,

PERIVALLON improves investigation procedures creating an Environmental Crime Ob-

servatory that will prevent the environmental crimes throughout Europe. With a diverse

consortium of law enforcement agencies, academic institutions and industry partners,

PERIVALLON is well equipped to e�ectively address the multifaceted challenges posed

by organised environmental crime.
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Our role in this project is to develop a solution able to analyze the satellite images and

detect any illegal dumping site. We decide to address this problem using deep learning

techniques from a di�erent perspective with respect to the approaches taken by other

researchers involved in this project. Indeed, the other researchers use binary or multi-

class classi�cation, which requires knowledge of each type of waste in order to detect it.

However, we use an unsupervised anomaly detection approach that can detect any type

of waste without prior knowledge. This gives the model greater �exibility and avoids the

need for retraining the model each time the satellite image dataset is updated.

The dataset used in this study is AerialWaste [30], which collects satellite images of the

Lombardia region and labels them according to the presence of illegal land�lls. As stated

earlier, illegal dumpsites are referred to as anomalies, and images containing them are

considered anomalous. Normality, on the other hand, implies the absence of illegal waste,

and therefore normal images contain no illegal land�ll.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Example of normal images in AerialWaste dataset.

Some examples of normal images included in this dataset are presented in Figure 2.1.
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Figure 2.2 shows examples of anomalous images from the dataset, where the dumping

sites are typically captured in the central area of the image.

(a) (b) (c)

Figure 2.2: Example of anomalous images in AerialWaste dataset
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3| Background

In this chapter we present the state-of-the-art of the methods applied in this thesis. In

addition, the background topics are described to introduce the context and challenges

addressed in this work.

First of all, in Section 3.1 we introduce the �eld in which our work is developed, and the

techniques that can be applied. Afterwards, we describe in Section 3.2 the basis of deep

convolutional networks, especially of Convolutional Neural Networks, while in Section

3.3 we illustrate the Autoencoder models. In Section 3.4 the Structural Similarity Index

is introduced. In Section 3.5 we explain the theory behind graphs, clustering and two

algorithms to �nd the best graph partition. Finally, in Section 3.6 the morphological

image processing techniques are described.

3.1. Anomaly detection

Anomaly detection surrounds our lives without us noticing it, as Lukas Ru� et al. said

[25]. Indeed, anomaly detection has a key role in identifying irregularities, defects, or

unusual occurrences that could signify potential issues, fraud, or simply a novel phenom-

ena. The goal of anomaly detection is to uncover hidden insights within data that might

not be apparent through standard data analysis techniques, or that could be missed if

the detection is performed by humans [18]. Formally, we can describe an anomaly as �an

observation deviating considerably from the notion of normality �.

Let X ⊆ RT be the data space from a certain given task. The concept of normality can be

de�ned as the distribution P+ on X , namely as the ground-truth law of normal behavior

in the given task [25]. Thus, an anomaly is an observation deviating from this law,

belonging to a low probability region under P+, and the corresponding set of anomalies

can be de�ned as

A = {x ∈ X | p+(x) ≤ λ}, λ ≥ 0 (3.1)

with p+(x) the probability density function of P+, λ a certain threshold under which P+

is su�ciently small.
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There exist three main categories of anomalies[9], at which it can be added a fourth

category [25] [2]:

1. Point anomalies, where the observation deviating from the normal behavior is an

individual data point x ∈ A; it is the easiest type to be detected and the most

commonly studied.

2. Conditional or Contextual anomalies, where the instance is anomalous under speci�c

condition and in a speci�c context; for this type the normal law is a conditional

distribution P+ ≡ P+
X|C , with p+(x | c) conditional probability density function

depending on the context variable C.

3. Collective or Group anomalies, where a group of data is considered as anomalous

but not necessarily the single observations themselves; indeed only the collection

{xi ∈ X | i ∈ I} of instances together di�ers from normality, with I ⊆ N a set of

indexes implying a relation.

4. Low-level sensory anomalies and high-level semantic anomalies, where the terms

high and low refer to the level of feature hierarchy; low-level anomalies di�ers, for

instance, at pixel-level in texture and shape from the normal data, while high-level

anomalies di�er in sense, as the type of object in an image or the topic in a text.

Figure 3.1 illustrates some examples of the di�erent types of anomalies just discussed.

Moreover, it could be de�ned a distinction between anomaly, outlier and novelty, even if

all of them refer to instances belonging to a low probability region under P+: an anomaly

follows a distribution di�erent from P+, an outlier is a rare or low-probability observation

from P+, while a novelty belongs to a new region of a non-stationary P+.

Furthermore, the aim of �nding anomalies, outlier and novelties could be really di�erent.

Usually, an anomaly is a data of interest to be found, while outliers are considered as

measurement errors to be deleted. Instead, a novelty is a new instance that should be

considered, and implies that the model has to be updated to a new version.

In Figure 3.2 an example of the di�erence between anomaly, outlier and novelty in images.



3| Background 11

(a) (b)

(c) (d)

Figure 3.1: The di�erent types of anomalies: 3.1a shows examples of two point anomalies

and a group anomaly, 3.1b shows two examples of contextual point anomalies, one point

and one group, 3.1c shows a low-level anomaly in a texture image, namely a hole in the

fabric from the industrial MVTec dataset [6], 3.1d shows an example of high-level semantic

anomaly, namely an image of a dog between cat images.
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(a) Normal sample (b) Outlier

(c) Novelty (d) Anomaly

Figure 3.2: An example of di�erence between a normal sample, an outlier, an anomalous

sample, or a novelty. Here the normal image is a cat 3.2a, an outlier is a speci�c rare race

as the Canadian Sphynx 3.2b, an anomaly is a high-level semantic error like a dog 3.2d,

and a novelty is a cat but the animated �lm version 3.2c.

3.1.1. Main challenges

Conceptually, an anomaly is de�ned as a pattern not following the expected normal

behavior, therefore in a direct approach to anomaly detection is to de�ne the region of

this normal behavior and mark any observations falling outside it as anomalous. However,

there are several challenges that anomaly detection methods have to face, as stressed from

Chandola et al. [9] and Pang et al. [24]:
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� The concept of normality could evolve in time, such that what is now normal may

no longer be normal in the future.

� The notion of anomaly could totally change for di�erent task domains, as the de-

scription of anomalies is irregular.

� It could be not explicit the di�erence between anomalies and normal observations,

such that it results di�cult to de�ne the boundaries of the normal region; indeed

the distribution, behavior and data structure of anomalies is unknown.

� Often the anomalies are disguised as normal observations, especially when results

of illegal actions.

� Sometimes noise is present in the data making normal observations similar to actual

anomalies, thus it becomes di�cult to recognize and remove them.

� As anomalies are rare occurrences, there is usually a lack of labeled anomalous data

available, hence the problem can be considered as unbalanced.

Therefore, the general anomaly detection problem is though to solve, leading to the de�ni-

tion of task-speci�c problems, driven by the nature of the data and the type of application.

3.1.2. Machine learning approaches

Data instances are provided with labels indicating if that instance is normal or anomalous.

However, it is usually expensive obtaining accurate and representative labeled data, since

this collection is often manually performed by human experts. Moreover, getting labels

for anomalous data is typically more di�cult than getting the normal ones, considering

that anomalous behavior is often dynamic in nature. Besides, in certain tasks anomalies

are very rare, such as for space crashes or natural disasters. Anomaly detection methods

can operate in three manners [9], depending on the available labels.

Supervised setting

Supervised anomaly detection methods assume the availability of labels in the training

data both for anomalies and normal items. It follows two major problems: typically

anomalies are fewer than normal items, thus the classes distributions are imbalanced, and

the collection of accurate and representative labels for anomalous items is challenging.

Formally, the data available in supervised anomaly detection setting are de�ned as follows

(x1, y1), . . . , (xn, yn) ∈ X × Y (3.2)
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where X ⊆ RT , and Y = {0, 1} with y = 0 denotes a normal instance, y = 1 denotes an

anomalous instance.

Unsupervised setting

Unsupervised methods do not require labels to train the data, and for this reason they are

the techniques most commonly applied. These methods implicitly make the assumption

that normal instances are more frequent with respect to anomalous instances in test data,

but if this assumption does not occur then a high rate of false alarms are risen. The

unsupervised setting is formally de�ned as

x1, . . . xn ∈ X (3.3)

namely, only unlabeled data are available in X ⊆ RT .

Semisupervised setting

The techniques operating in a semisupervised setting assume that the training data has

labeled instances only for the normal class. These methods are more applicable than su-

pervised techniques, since we avoid the issue of labeling anomalies. Usually, the semisu-

pervised techniques build a model for the normal class behavior and use it to detect

anomalies in the test data.

Many semisupervised methods operate in an unsupervised mode during the training using

unlabeled data, knowing that they are only normal data. Formally, the semisupervised

setting is de�ned as follows

x1, . . . xk ∈ X and (xk+1, y1), . . . , (xk+m, ym) ∈ X × Y (3.4)

where, as before, X ⊆ RT and Y = {0, 1}, with y = 0, y = 1 denote normal and

anomalous instances respectively.

3.1.3. Addressing the anomaly detection problem

In order to address this problem, we can present three di�erent classes of methods used in

the literature [25][24]. The �rst are density estimation and probabilistic models, predicting

anomalies by estimating the probability distribution of normal data. These methods

include, for instance, classical statistical models.

The second category is composed of one-class classi�cation methods, trying to directly

determine a decision boundary for the desired level of the normal distribution.
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Lastly, there are the reconstruction models, the approach most commonly used in anomaly

detection neural networks. The idea is to build a model able to reconstruct well normal

items and that fails in the reconstruction of anomalies. This thesis has developed a

reconstruction model, hence this section will focus on this �eld.

First and foremost, let us de�ne the reconstruction objective. Consider a feature map

from X to itself, an encoding function E : X → Z and a decoding function D : Z → X ,

respectively the encoder and the decoder. Z is called the latent space, and E(X) = Z the

latent representation of X. Then, le the composition ϕθ ≡ (D◦E)θ be the feature function
with θ the parameters of the model. Hence the reconstruction objective is to learn ϕθ

such that

ϕθ(X) = D(E(X)) = X̄ ≈ X (3.5)

meaning to �nd an encoding and a decoding function such that the input is reconstructed

with minimal error, namely:

min
D,E,θ

∥∥X − (D ◦ E)θ(X)
∥∥ (3.6)

where ∥·∥ is the reconstruction loss.

In order to avoid the identity function as trivial solution to 3.6, it must be considered

the so called manifold assumption entailing the existence of a lower dimensional latent

space such that 3.5 has solution. In an anomaly detection ideal perspective, the resulting

reconstruction loss will be low on normal data, and high on anomalous data.

3.2. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of deep Feed Forward Neural Networks

designed to extract interesting features in the images domain. Traditional Feed Forward

Neural Networks are composed of an input layer, one or more hidden layers, an output

layer and a set of weights, that are considered the network parameters. Each layer is

composed by neurons, namely a set of nodes connected to the previous and the following

layers. Each layer has an input and an output: the inputs is multiplied by the weights of

the layer, summed and passed through an activation function, which is the output of the

neuron. This passes to the next layer, and the process is iterated for each hidden layer.

Convolutional neural networks were proposed for the �rst time by LeCun et al. [16] in 1989

and have immediately emerged as one of the most powerful tools in the �eld of arti�cial

neural networks, especially excelling in pattern recognition. Thanks to the reduction in
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terms of number of parameters, CNNs can be applied to solve complex tasks, which was

impossible with classic arti�cial neural networks.

Figure 3.3: Example of CNN to classify images.

The term convolutional refers to the mathematical operation of convolution, which is per-

formed between matrices, and will be explained in 3.2.2. Unlike classical neural networks,

CNNs succeed in capturing spatial features in data, making them particularly suitable

for image and video analysis. Indeed, their �rst application [16] was the recognition of

handwritten characters.

Figure 3.3 illustrates an example of a CNN where in output it classi�es the image received

in input.

3.2.1. Convolution operation

Convolution is an operation on two real valued functions f and g that produces another

function h which represents the e�ect of one function over the other. It is represented

with the ⊛ symbol and de�ned as[13]:

h(t) = (f ⊛ g)(t) =

∫
f(x)g(t− x)dx. (3.7)

In general, convolution is de�ned for any functions for which the above integral is de�ned.

In the context of deep learning, more speci�cally in the CNN vocabulary, the function f

is often referred to as the input, function g is the kernel and function h is the feature map.

Equation (3.7) can be used when dealing with continuous functions, but standard convo-
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lution must be replaced with discrete convolution when dealing with discrete functions.

In image processing �eld, discrete convolution is used to convolve a kernel (also known

as �lter) on an image to detect, for instance, edges. In convolutional neural networks

context, discrete convolution is applied over the input image in order to obtain a linear

combination of values in the corresponding region of the image. Discrete convolution

applied over the input volumes in CNNs is de�ned as follows:

H(i, j) =(I ⊛K)(i, j) =
∑
x

∑
y

I(x, y)K(i− x, j − y) =

=(K ⊛ I)(i, j) =
∑
x

∑
y

I(i− x, j − y)K(x, y)
(3.8)

where I is an input image, K the convolutional kernel, H the output feature map indexed

at position (i, j). The equality in (3.8) follows from the fact that convolution is a com-

mutative equation.

In Figure 3.4 we can observe a practical example of discrete convolutional operation over

image pixels, using kernel: 0 1 2

2 2 0

0 1 2

 (3.9)

3.2.2. Layer types

Convolutional Neural Networks consist of several layers, each serving a speci�c purpose

in the network's functioning. Typically, the main layers in a CNN architecture include

convolutional layers, pooling layers, activation layers (non-linear), and fully connected

layers.

Let us assume to have in input a three-dimensional object such as an image or a video.

The convolutional layer is the main component of a CNN. It applies the convolution

operation, in its discrete form (3.8), to the input data, using �lters or kernels to extract

spatial features. By sliding these �lters across width and height of the input volume,

the convolutional layer e�ectively captures local patterns and creates feature maps. In

a convolutional layer the discrete convolution is applied to the whole input volume by

shifting the kernel of a certain number of pixels called stride, namely the parameter to

control the overlapping of the �lters. As the �lter slides over the width and height of

the input volume, it produces a 2-dimensional activation map. The network will learn

�lters that activate when some types of visual features are given in input, such as edges,
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Figure 3.4: Practical example of the mathematical convolution operation.

particular shapes or patterns. Several �lters can be applied in each convolutional layer,

producing a separate 2-dimensional activation map.

One of the drawbacks [3] of the convolution step is the information loss that might happen

on the image border. Indeed, since they are only captured when the �lter slides, they

never have the chance to be observed. A very simple and e�cient method to solve this

issue is to use zero-padding, namely adding pixels with value= 0 around the image. Using

this simple strategy, the �lter is able to slide on the borders of the image without losing

any information. Another bene�t of zero-padding is the ability to manage the output

size, obtaining the output of the same exact dimension of the original input.

Figure 3.5 shows an example of convolution with kernel de�ned in Equation (3.9), where

the image is padded with a 1× 1 border of zeros [10].
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Figure 3.5: Example of convolution where the image is padded with a 1 × 1 border of

zeros.

Following the convolutional layer, an activation layer is applied to introduce non-linearities

into the model. This layer helps in capturing complex relationships and introducing non-

linear transformations to the feature maps. For many years, sigmoid and tanh were the

most popular activation functions. Sigmoid activation function squeezes the output of

a neuron between 0 and 1: σ(x) = 1
1+e−x . It is commonly used in binary classi�cation

tasks where the output needs to be interpreted as a probability. Tanh function squeezes

the output between -1 and 1: tanh(x) = 2
1+e−2x − 1. It is often used in scenarios where

negative values are more prevalent, such as sentiment analysis. In Figure 3.6 are shown

di�erent activation functions
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Figure 3.6: Di�erent activation functions.

Another more recent activation function is the Recti�ed Linear Unit (ReLU), that has

become popular for the following reasons [3]:

1. ReLU has a simple de�nition, for both the function and the gradient:

ReLU(x) = max(0, x)
d

dx
ReLU(x) = {1 if x > 0 , 0 otherwise}. (3.10)

2. Sigmoid and tanh functions cause problems due to the gradient signals that is close

to zero but in the center, called vanishing gradient problem, that a�ects deep net-

work. ReLU function helps with this issue, having a constant gradient fo positive

inputs.

3. ReLU function creates a sparser representation, since the gradient is exactly 0 for

negative inputs not all the neurons are activated.

4. ReLU function is sale invariant, namely max(0, bx) = bmax(0, x) for b ≥ 0

ReLU also have some disadvantages: it is di�erentiable everywhere except in 0, but this

can be handled in the implementation, and it causes a problem called Dying ReLU,

that causes the inactivity of some neurons for almost all inputs. The latter problem

can be alleviated by using some variations of the standard ReLU, as the Leaky ReLU

LeakyReLU(x) = max(ax, x) with a ∈ (0, 1), which have a gradient value di�erent from
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0 for negative inputs.

The pooling layer reduces the spatial dimensions of the feature maps produced by the

convolutional layer, without a�ecting the number of �lters. It is usually inserted a pool-

ing layer in-between successive convolutional layers. By aggregating information within

local regions, pooling layers help to extract the most salient features while reducing the

computational complexity of subsequent layers.

In the image processing domain, it is similar to reduce the resolution. Max pooling is

one of the most common types of pooling layers: the image is divided into sub-region

rectangles, and it returns the maximum value of the pixels inside that sub-region. It is

often used the size 2× 2 in max pooling.

Average pooling is another typical choice of pooling layer: for each sub-region it returns

their mean value.

max pooling

1

average pooling

1

1

1

2

2

2

3

3 4

4

0

5 6 7 8

6

3 4

8

3 5

2 2

Figure 3.7: Di�erent activation functions.

As we observe in Figure 3.7, when pooling is performed with �lter 2 × 2 and stride 2,

the image is split into the colored sub-regions and for each sub-region it is performed the

maximum or the mean. Pooling can be used with di�erent �lters and strides in order to

improve the e�ciency.

The fully-connected layer connects every neuron from the previous layer to the next,

mimicking the structure of traditional neural networks. Therefore, each node in a fully-

connected layer is directly connected to every node in both the previous and in the fol-

lowing layer as shown in Figure 3.8.
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Figure 3.8: Example of fully connected layer.

This layer is responsible for the �nal classi�cation or regression task and incorporates

the extracted features into the �nal prediction. The major drawback of a fully-connected

layer, is that it includes a lot of parameters that need complex computational in training

examples. Therefore, we try to remove the number of nodes and connections using the

dropout technique.

3.3. Autoencoders

One of the most popular approaches for deep anomaly detection in images are autoencoders

[25], namely feed-forward multi-layer neural networks in which the desired output is the

input itself [35]. Autoencoders belong to the reconstruction model category, de�ned in

Section 3.1.

Autoencoders were �rst introduced during the 80s [26][15] for dimensionality reduction or

feature learning, but they were then adopted for deep anomaly detection.

The main goal [4] is to learn in an unsupervised manner an informative representation of

the data that can be used for various applications.

An autoencoder (AE) is composed of two main components: an encoder and a decoder.
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The encoder E(·) takes the data X in input and maps them into a hidden layer, describing

an informative feature representation called latent representation. Then the decoder D(·)
maps the encoded data E(X) back to the original space, producing a reconstruction of

the input.

Formally, the encoding function E : X → Z and the decoding function D : Z → X
are respectively the encoder and the decoder. Hence the reconstruction map is de�ned

ϕθ(X) = D(E(X)) = X̄ ≈ X, as described in equation 3.5.

Figure 3.9: Example of autoencoder with 1 layer with n neurons in input, 1 with n neurons

in output, and 1 hidden layer with d neurons.

The basic autoencoder has encoder composed of a single layer, a hidden layer and the

decoder composed of one layer, as shown in Figure 3.9.

An autoencoder with multiple hidden layers is considered a deep autoencoder, able to rep-

resent complicated distributions over the input. From now on with the word autoencoders

we will refer to the deep version.

The objective is to train the encoder and the decoder such that the di�erence between

the original image and the reconstructed image is minimized, namely:

min
w

1

d

d∑
i=1

∥xi − (D ◦ E)w(xi)∥2 +R, (3.11)
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that is a realization of the general reconstruction objective in 3.6. The optimization is

performed over the weights w of the neural network encoder and decoder, R indicates the

regularization.

To avoid a trivial reconstruction, namely having a reconstruction function equal to the

identity map, the number of neurons of the hidden layer must be strictly smaller than the

number of neurons in input and output layers, thus n ≪ d. More in general, the latent

space where the input is mapped should have a smaller dimension with respect to the

space where our data live, creating a 'bottleneck' that enforces the data compression and

limits the dimensionality. This is considered a form of regularization.

An autoencoder whose latent dimension is smaller than the input dimension is called un-

dercomplete. Learning an undercomplete representation forces the autoencoder to capture

the most salient features of training data.

Hence the learning process could be described as the minimization of the loss function

L(X,D(E(X))), (3.12)

where the loss function L is de�ned penalizing the dissimilarity between D(E(X)) = X̄

and X.

Examples of viable losses are the Mean Squared Error and the Mean Absolute Error :

MSE(x, y) =
1

N

N∑
i=1

(xi − yi)
2 (3.13)

MAE(x, y) =
1

N

N∑
i=1

|xi − yi| . (3.14)

Convolutional Autoencoders belong to the family of convolutional neural networks and

they are used for image reconstruction. Both the encoder and the decoder are CNN,

the encoder taking in input an image and extracting its main characteristics, while the

decoder reconstruct the image. Thus, all the layers in the autoencoder are convolutional

layers or pooling layers. In the encoder the pooling layers reduce the spatial dimension

of the input, while in the decoder they increase it.

Considering convolutional autoencoders, in equations (3.13) (3.14) x and y are two images

and N is the number of pixel involved in the comparison. These point-by-point metrics

compute the l2 and l1 distances between the corresponding pixels in the two images and

average the distance.



3| Background 25

Figure 3.10 illustrates an example of convolutional autoencoder.

Figure 3.10: Example of a convolutional autoencoder that reconstructs handwritten digits.

3.4. Structural Similarity

Convolutional autoencoders, widely used in unsupervised defect segmentation, commonly

use per-pixel reconstruction errors based on an ℓp-distance. However, Bergman et al. [5]

suggest that these functions often lead to large residuals when the reconstruction includes

slight localization inaccuracies around edges, and they propose the application of a per-

ceptual loss function based on structural similarity (SSIM) [34] to autoencoders. Indeed,

SSIM can grab inter-dependencies between regions in the image, considering luminance,

contrast and structural information rather than comparing single pixel values.

The idea is to extract structural information of the entire image separating the objective

into three comparisons: Luminance, Contrast and Structure. Indeed these three compo-

nents are relatively independent, since a change in luminance or contrast will not a�ect

the structure.

Hence the similarity measure can be written as

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (3.15)

Assuming the mean intensity and the standard deviation as follows

µx =
1

N

N∑
i=1

xi (3.16)

σx =
( 1

N − 1

N∑
i=1

(xi − µx)
2
) 1

2
, (3.17)
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then the luminance comparison is a function of the mean intensities de�ned as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(3.18)

where C1 is a constant included to avoid instability when µ2
x + µ2

y tends to zero.

The contrast comparison function, instead, is a comparison between the standard devia-

tions of x abd y, de�ned as

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(3.19)

where C2 is a constant de�ned similarly to C1.

Lastly, we de�ne the structure comparison function

s(x, y) =
σxy + C3

σxσy + C3

(3.20)

with C3 a constant, and σxy can be estimated in discrete form as

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy). (3.21)

Finally, we can combine (3.18), (3.19) and (3.20) de�ning:

SSIM(x, y) =
(
l(x, y)

)α ·
(
s(x, y)

)β · (c(x, y))γ (3.22)

where α > 0, β > 0, γ > 0 parameters to tune the importance of the components.

Wang et al.[34] set α = β = γ = 1 and C3 = C2/2, obtaining the �nal version of SSIM

index:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (3.23)
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Figure 3.11: Example from [5] of SSIM with respect to ℓ2 loss for defect segmentation. (a)

checkerboard with simulated defeats, (b) the output reconstruction of the input image by

an autoencoder. Residuals (d) for luminance l, contrast c, structure s, and their pointwise

product that yields the �nal SSIM residual map.

Figure 3.11 reports an example of comparison between SSIM and ℓ2, where we notice that

SSIM gives more importance to the visually more salient disturbances than to the slight

inaccuracies around reconstructed edges [5].

3.5. Graph clustering

A directed graph G = (S,A) is determined by:

� a set S of elements called vertices or nodes,

� a set A of elements which are pairs (i, j) called arcs. The initial vertex i or an arc

is called origin and j destination.

When the de�nition of a graph does not require to distinguish between origins and des-

tinations of arcs, the graph is called undirected. In this case the elements of A will be

called edges.

An arc or edge is said to be incident to the two nodes it connects.

Two vertices connected by an arc or edge are said to be adjacent or called neighbors.

Figure 3.12 shows an example of an undirected weighted graph.

Let consider G = (V,E) an undirected weighted graph, with weights wij ≥ 0 between two

vertices i and j. The weight on each edge wij is a function of the similarity between the

two vertices i and j.
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Figure 3.12: Example of an undirected weighted graph.

3.5.1. Normalized cut and spectral clustering

Given a set of data points x1, ..., xn and a de�nition of similarity sij ≥ 0, the aim of

clustering is to split the data points into groups such that the points within the same

group are similar, whereas those in di�erent groups are dissimilar [33].

Considering the graph G previously de�ned, we desire to partition the set of nodes into

disjoint sets V1, V2, . . . , Vk, where, by measure sij, the similarity among vertices in a set

Vi is high and, across di�erent sets Vi, Vj is low.

We start partitioning the graph into two disjoint sets of vertices A and B, ie such that

A ∪B = V and A ∩B = ∅, by removing edges connecting the two sets [28]. A cut is the

sum of the weights of the removed edges, representing the degree of dissimilarity:

cut(A,B) =
∑

i∈A, j∈B

wij. (3.24)

The bipartition of the graph is optimal if the cut is minimized. In Figure 3.13 an example

of minimal cut in an undirected weighted graph. Afterwards, the current partition can

be further recursively subdivided in order to create more than two groups.
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Figure 3.13: Example of a minimal cut equal to 3 of an undirected weighted graph.

In order to avoid cutting small sets of isolated nodes in the graph, Shi and Malik [28]

introduced the normalized cut (Ncut):

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3.25)

where assoc(A, V ) =
∑

i∈A, k∈V wik is the total connection from the vertices in A to all

the vertices in the graph, and similarly de�ned for B.

The de�nition of normalized cut is also known as disassociation between the groups, and

using this de�nition there will no longer be small Ncut value for the cut that partitions out

small isolated points, since the cut value will be a large percentage of the total connection

from that small group of nodes to all other vertices.

Similarly, it can be de�ned the measure for total normalized association between groups:

Nassoc(A,B) =
assoc(A,A)

assoc(A, V )
+

assoc(B,B)

assoc(B, V )
(3.26)

where assoc(A,A), assoc(B,B) the total weights of edges connecting nodes within A and

B respectively.
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It follows the relation:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
=

=
assoc(A, V )− assoc(A,A)

assoc(A, V )
+

assoc(B, V )− assoc(B,B)

assoc(B, V )
=

= 2−
(assoc(A,A)
assoc(A, V )

+
assoc(B,B)

assoc(B, V )

)
=

= 2−Nassoc(A,B).

(3.27)

Hence, minimizing the disassociation between groups and maximizing the association

between groups is equivalent and simultaneously satis�ed.

Unfortunately, minimizing the normalized cut is an NP-complete problem, but it can be

e�ciently found an approximate discrete solution.

Indeed, relaxing the hypothesis to real values only, the problem can be rewritten as the

solution of the generalized eigenvalue system

(D−W)y = λDy (3.28)

where D is the N ×N diagonal matrix with the total connection from each node d(i) =∑
j wij in the diagonal, W is the N × N symmetrical matrix with the graph weights as

elements.

It is found in (3.28) that the second smallest eigenvector is the solution (in real values)

of the normalized cut problem, thus it could be used to bipartition the graph. Hence,

the spectral clustering can be considered as relaxation of the Normalized minimal cut

problem, and can be used as graph partitioning in real values.

Finally, the grouping algorithm proposed by Shi and Malik [28] can be summarized in the

following steps:
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Algorithm 3.1 Normalized cut algorithm

1: Given a weighted graph G = (V,E), set the weight on the edge connecting two nodes

to be a measure of the similarity between the two nodes

2: Solve (D−W)y = λDy for eigenvectors with the smallest eigenvalues

3: Use the eigenvector with the second smallest eigenvalue to bipartition the graph

4: while the current partition should be subdivided do

5: Repartition the segmented parts

6: end while

3.5.2. Louvain algorithm

Another way to approach clusterization is the Louvain algorithm, �rst introduced by

Blondel et al. [8]. It is a heuristic method that consists in decomposing a networks into

sub-units or communities, which are sets of highly interconnected vertices.

The quality of the resulting partitions is measured by the modularity of the partition,

namely a scalar value in [−1, 1] measuring the density of connections inside communities

compared to connections between di�erent communities [23].

In case of weighted networks, it is de�ned as [22]:

Q =
1

2m

∑
i,j

[
wij −

kikj
2m

]
δ(ci, cj) (3.29)

where wij represents the weight of the edge between i and j, ki =
∑

j wij is the sum of the

weights of the edges incident to vertex i, ci is the community to which node i is assigned,

δ(u, v) = 1 if u = v and δ(u, v) = 0 otherwise, and m = 1
2

∑
ij wij.

Since exact modularity optimization is a problem that is computationally hard, it is

necessary to use an approximation algorithms when dealing with large networks.

Louvain algorithm is divided into two phases that are repeated iteratively. Assume to start

with a weighted network of N nodes and consider the de�nition of gain in modularity as:

∆Q =

[
ΣIN + 2ki,IN

2m
−

(
ΣOUT + ki

2m

)2 ]
−

[
ΣIN

2m
−

(
ΣOUT

2m

)2

−

(
ki
2m

)2 ]
(3.30)

where ΣIN sum of the weights of the links inside C, ΣOUT is the sum of weights of the

links incident to vertices in C, m = 1
2

∑
ij wij, ki =

∑
j wij, ki,IN the sum of weights of

the edges from i to vertices in C.

Notice that since a node may be, and often is, considered several times, the �rst phase
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of Algorithm 3.2 stops when a local maxima of the modularity is reached, namely when

no single vertex move can improve the modularity. Blondel et al. [8] indicate that the

ordering of the nodes considered does not have a signi�cant in�uence on the modularity

obtained, but it can a�ect the computation time.

Algorithm 3.2 Louvain Algorithm

1: A di�erent community is assigned to each vertex of the graph, such that

#communities = N .

2: while there is improvement in gain do

3: for each node i do

4: consider all its neighbours j and measure the gain of modularity that we would

have removing i from its community and placing it in the community of j

5: if gain ≥ 0 then

6: node i is then placed in the community for which this gain is maximum

7: end if

8: if gain < 0 then

9: node i stays in its original community

10: end if

11: end for

12: end while

13: Build a new network whose nodes are the communities found in the previous steps.

The �nal graph built in the last step of the Louvain algorithm 3.2 has vertices composed

of communities of nodes, and edges with weights given by the sum of the weights of all

the edges between nodes in the corresponding two communities.

It is possible to reapply the algorithm multiple times restarting from step 2 of 3.2.

3.6. Morphological image processing

Mathematical morphology provides an approach based on shape to process digital im-

ages. Properly used, these operations can be helpful in the extraction of essential shape

characteristics and properties, deleting what is irrelevant.

As Haralick et al. explained [14], mathematical morphology has the same language as set

theory.

Indeed, in binary images foreground regions can be denoted as Euclidean 2-space sets,

while images with more information like color can be expressed by sets in higher dimen-

sional spaces. Mathematical morphological transformations apply to sets of any dimen-
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sions, even if in this thesis will be applied only to binary images. We will discuss about

binary morphological operations of dilation and erosion, expanding then the concepts to

opening and closing.

3.6.1. Dilation and erosion

Dilation is the morphological transformation using vector addition of set elements to

combine two sets. It was �rst proposed in 1903 by Minkowski [21] as a set theoretic

operation to characterize integral measures, but it was then studied for image shape

extraction by Serra [27] and Matheron [20]. We will follow the de�nition provided by

Haralick et al. [14].

Let A and B be sets in N-space EN , with elements a = (a1, . . . , aN) and b = (b1, . . . , bN).

Then the dilation of A by B is the set of all possible vector sums of pair of elements,

namely

A⊕B = {c ∈ EN | c = a+ b, for some a ∈ A, b ∈ B}. (3.31)

The roles of sets A and B is symmetric since the addition is commutative, hence the

dilation is commutative, namely

A⊕B = B ⊕ A.

However, in practice operands A and B are treated di�erently: the �rst is considered the

image to be treated, the latter is the structuring element, namely a shape parameter.

Structuring elements can be, for instance, a disk, a square or an ellipse, and from this

depends the transformation result.

Since addition is associative, it can be stated the property known as chain rule for dilation:

A⊕ (B ⊕ C) = (A⊕B)⊕ C

that is computationally advantageous from the complexity point of view, saving operations

if B ⊕ C is considered the structuring element.

The dilation can also be de�ned in terms of image translation. Let A ⊆ EN , x ∈ EN ,

then the translation of A by x is de�ned by

(A)x = {c ∈ EN | c = a+ x, for some a ∈ A}
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allowing the de�nition of dilation

A⊕B =
⋃
b∈B

(A)b. (3.32)

From a practical perspective, this means that the dilation is the translation of a structuring

element all over the image, from top left to bottom right [19]. In Figure 3.14 it is shown

an example of dilation operation applied to a binary image [7].

Figure 3.14: Example of dilation on a binary mask.

Erosion is the morphological dual to dilation, that combines two sets using vector subtrac-

tion of set elements. For this reason, erosion is also known as shrink or reduce operation.

Let A and B sets in EN , with elements a and b respectively. Then the erosion of A by B

is de�ned as

A⊖B = {c ∈ EN | c+ b ∈ A, ∀b ∈ B}

which can also be expressed as the set of di�erences between elements a and b, namely

A⊖B = {c ∈ EN | ∀b ∈ B ∃a ∈ A such that c = a− b}. (3.33)

Hence, the erosion of an image A by a structuring element B is the set of all elements

c ∈ EN for which B translated to c is contained in A, as de�ned in [20].

Moreover, we can state that:

A⊖B = {c ∈ EN | (B)c ⊆ A},

meaning that the structuring element B can be visualized as a probe sliding across the

image A. When B translated to c ca be contained in A, the c belongs to the erosion of A
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by B. This erosion can be rewritten as intersection of translation

A⊖B =
⋂
b∈B

(A)−b. (3.34)

Erosion is widely considered as a shrinkage of the objects in the original image, hence

the eroded set is thought as contained in the original set. This gives the anti-extensive

property to the erosion transformation, but actually erosion is necessaruly anti-extensive

only if the origin belongs to the structuring element, namely

if 0 ∈ B → A⊖B ⊆ A.

Let Ac = {x ∈ En | x /∈ A} be the complement of A, let B̂ = {x | for some b ∈ B, x =

−b} be the re�ection of B.

As mentioned before, dilation and erosion are dual operations and the duality is stated

as

(A⊖B)c = Ac ⊕ B̂.

Figure 3.15 illustrates an example of erosion on the same binary mask used in Figure 3.14.

Figure 3.15: Example of erosion on a binary mask.

3.6.2. Opening and closing

In practice, dilations and erosions are applied together: an image dilation followed by an

erosion of the dilated result, or vice versa. Alternatively, these two transformations can

be applied iteratively to delete speci�c details smaller than the structuring element.

Opening combines erosion and dilation in order to smooth the contour in an image,

eliminating peaks and protrusions.
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Instead, closing combines dilation and erosion to remove small holes, �ll gaps, but also

smooth contour areas.

Opening of image A by structuring element K is denoted by A ◦K and de�ned by

A ◦K = (A⊖K)⊕K.

Closing of image A by structuring element K is denoted by A •K and de�ned as

A •K = (A⊕K)⊖K.

This means that opening is an erosion followed by a dilation, closing is a dilation followed

by an erosion.

Image transformations applying iteratively dilations and erosions are idempotent, meaning

that their reapplication e�ects no further changes to the previous transformed results [14].

From A⊕K = (A⊕K)◦K = (A•K)⊕K, follows the idempotency of closing operation:

(A •K) •K = A •K.

Similarly, from A⊖K = (A ◦K)⊖K = (A⊖K) •K follows the idempotency of opening

transformation:

A ◦K = (A ◦K) ◦K.

In Figure 3.16 we observe the di�erence between the e�ects of opening and closing: open-

ing operation smooths the edges, while closing operation �lls the holes.

Di�erently from erosion and dilation, opening and closing are invariant to translation of

the structuring elements, namely A ◦ (B)x = A ◦B and A • (B)x = A •B.
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(a) Opening

(b) Closing

Figure 3.16: Example of opening (3.16a) and closing (3.16b) morphological operations on

a binary mask.
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4| Proposed solution

In this chapter we illustrate our solution to the anomaly detection problem discussed in

the previous chapters. More speci�cally, we introduce our �rst approach to the matter

in Section 4.1, as a general anomaly detection problem. Then, in Section 4.2 we present

the dataset on which we developed our work, with the any modi�cations we made. In

Section 4.3 we explain how to use the methods illustrated in the Background Chapter in

order to improve the segmentation and anomaly detection e�ectiveness in our problem,

by selecting the images based on the land cover types included in the images. Eventually,

in Sections 5.1 and 5.2 we describe, respectively, the preprocessing and postprocessing

phases that we apply in our method.

4.1. Autoencoders for Anomaly Detection

We address the anomaly detection problem using an Autoencoder, namely a Convolu-

tional Neural Network that is trained with the objective of reconstructing the input as

desired output [35]. As explained in Section 3.3, the encoder E maps the input into

a low-dimensional latent space, from which the decoder D reconstruct the input image

X̄ = D(E(X)).

Our idea is to train the encoder and the decoder using only normal images, namely without

illegal land�lls, such that the di�erence between the original image and the reconstructed

image is minimized. In this way, when we give in input to the model an image that is not

normal, the pixel-wise error between the original image and the reconstructed image is

high in the anomalous areas. When the reconstruction error is below a certain threshold

τ , the image pixel X(i, j) is considered normal, while above the threshold the pixel is

considered anomalous, namelyℓ(X(i, j),D(E(X(i, j)))) ≤ τ if normal

ℓ(X(i, j),D(E(X(i, j)))) > τ if anomalous
, (4.1)

with ℓ(·, ·) the reconstruction loss of the Autoencoder.
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However, since in our dataset the concept of normality is too broad, namely the normal

images are highly heterogeneous, training the model on the entire set of normal images

results in poor segmentation performances. Therefore, we want to train a model on a

limited amount of normal images, in order to have a more coherent training set. We

decide to split the images into smaller groups according to their land cover, namely what

type of activities are performed in the region captured in the images (for instance sparse

and nucleiform residential fabric, or agricultural production facilities), or what type of

ground is present (for instance medium and high density coniferous forests, or natural

water basins). Formally, we create N groups of images

X1, . . .XN ⊆ X s.t.
N⋃
i=1

Xi ≈ X ,

with Xi set of images consistent from the land cover perspective.

4.2. Dataset

In order to develop this thesis, we worked with the AerialWaste dataset [30] that collects

satellite images of Lombardia region under the control of ARPA agency [1], the envi-

ronment monitoring agency of Lombardia region. The dataset was originally created to

classify the satellite images containing illegal land�lls as legal or illegal.

The latest version of this dataset is composed by 10977 satellite images taken by three

di�erent sources: AGEA Ortophotos, WorldView-3 and GoogleEarth. Most images con-

taining illegal land�lls are characterized by metadata about the evidence, severity, and

area type of the site. Among the test set, a subset of anomalous images is annotated with

the class of the waste objects visible in the image, chosen among 22 di�erent categories.

Between these images, 169 are provided with segmentation masks in the standard COCO

format that can be used as Ground Truth (GT) labels.

Dataset images are already split into training set (75% of the total number of images)

and test set (25% of the total). We decided to follow the division provided by the dataset

authors, even though in the training we use only normal images, namely 5579 images of

the training set.

The images from di�erent sources have di�erent GSD (Ground Sampling Distance),

namely a di�erent pixel resolution based on the type of source from which the images

come from. Images from AGEA Ortophotos have GSD equal to 20 cm, images from

WorldView-3 have GSD of 30 cm, and images from GoogleEarth have GSD of 50 cm.
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(a) 3121, 31311 (b) 1121, 1122, 1221, 12111,

1112

(c) 3113, 5121

(d) 12112, 2111 (e) 12112, 2111, 11231 (f) 1123, 31111, 2311, 3241,

12112

Figure 4.1: The �rst three images are labeled as normal : (a) has categories �medium

and high density coniferous forests (3121)�, �medium and high density mixed forests gov-

erned by coppice (31311)�; (b) has �discontinuous residential fabric (1121)�, �sparse and

nucleiform residential fabric (1122)�, �road networks and ancillary spaces (1221)�, �indus-

trial, craft, commercial settlements (12111)�, �medium dense continuous residential fabric

(1112)�; (c) has �riparian formations (3113)�, �natural water basins (5121)�. Instead (d),

(e), (f) are anomalous images with their segmentation masks, the �rst one belonging to

the original dataset, the last two manually segmented by us: (d) has land cover categories

�agricultural production facilities (12112)�, �simple arable land (2111)�; (e) has the same

categories of (d) and also �farmhouses (11231)�; (f) has categories �sparse residential fabric

(1123)�, �medium and high density deciduous forests governed by coppice (31111)�, �per-

manent meadows in the absence of tree and shrub species (2311)�, �bushes with signi�cant

presence of tall shrub and tree species (3241)�, �agricultural production sites (12112)�.

DUSAF, which stands for �Destinazione d'Uso dei Suoli Agricoli e Forestali�(namely for

�Agricultural and Forest Land Cover�), is a detailed geographical database created in the
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early 2000s containing all the information about land cover in the Lombardia region. The

latest version is DUSAF 7.0 which includes orthophotos of the territories updated in 2021.

Thanks to DUSAF 7.0 dataset published in the Geoportal of Lombardia region [12], we

were able to associate each image to one or (usually) more types of land covers in the

form of numerical codes. Indeed, AerialWaste dataset have no annotations about the land

cover of each image, forcing one to consider as normal a huge variety of images. Figure

4.1 illustrates images from di�erent land cover types, (a), (b) and (c) are normal images,

while (d), (e) and (f) anomalous images with their ground truth segmentation masks.

4.3. Methods

The idea of our solution is to create N small groups of strongly related land cover types,

where the concept of normality has limited variability within the group. This means that

the land covers in the same group are highly connected, from a semantic point of view

but also from a practical perspective, namely they are frequently close on the Lombardia

territory. Thanks to these groups identifying di�erent types of land areas, we can divide

images into smaller subsets. The images in these subsets will be similar (from the land

cover perspective) to the images within the same subset, and they will be dissimilar from

the images of di�erent subsets. On the found subsets of images, we train an Autoencoder

that will be speci�c for the land covers of each group. Then, at test time, we evaluate

the performances of that speci�c Autoencoders on normal and anomalous test images

belonging to the same group.

In order to select only a subset of normal images to focus the work on, we group the

di�erent type of land cover using a clustering algorithm. To achieve this, we build an

undirected weighted graph G = (V,E) where each node i ∈ V is a di�erent type of land

cover, and each edge eij ∈ E connecting i and j has weight wij equal to the number of

images containing simultaneously i and j as land covers. We notice that the created graph

has all nodes connected, namely all land cover types occur in conjunction with other land

covers in the dataset images and never alone. The weight on each edge is a function

of similarity between the two vertices that the edge connects, namely represents the

similarity between two land cover types. Our aim is to highlight the connections between

types of land cover that are strongly related, since a high edge weight corresponds to a

high number of images where those types are co-present, meaning that those land covers

are close on Lombardia territory. In Figure 4.2 is shown the undirected weighted graph we

just described, where the land covers are the nodes and the edge weights are emphasized

by the line thickness.
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Figure 4.2: The undirected weighted graph built using land cover types as nodes. The

thickness of the edges re�ects the edge weight.

Hence the land cover types are the vertices of our graph and to group them we apply an

algorithm of minimal cut, as the normalized minimal cut algorithm provided by Shi and

Malik [28] that we discussed in Section 3.5.1. We partition the graph G into disjoint sets

of vertices A1, . . . , AK , ie such that
⋃K

i=1Ai = V and ∀i, j i ̸= j, Ai∩Aj = ∅, by removing

edges connecting the two sets. As explained in Section 3.5, the problem can be rewritten

relaxing the hypothesis to real values only, and found as the solution of the generalized

eigenvalue system

(D−W)y = λDy (4.2)

where D is the N×N diagonal matrix with the total connection d(i) =
∑

j wij from node

i to all the other vertices on its diagonal, W is the N ×N symmetrical matrix with the

graph weights as elements W(i, j) = wij. In order to catch possible relations between

land cover types in a context of normality, we perform this analysis on the training set,

where there are only normal images, namely without illegal land�lls.

In order to choose the optimal number of clusters k, we look for the value k maximizing

the eigengap, namely the di�erence between consecutive eigenvalues, that turns out to be



44 4| Proposed solution

Figure 4.3: The clustered graph found using spectral clustering: each node i is a di�erent

land cover, each edge (i, j) has weight wij equal to the number of images containing

simultaneously land covers i and j. The colour of the edges stresses the value of its

weight (lighter colour smaller weight, darker colour bigger weight). The clusterization

represents the main groups of land covers we can �nd in Lombardia territory.

k = 4. Performing the spectral clustering based on land covers, we discover 4 di�erent

groups, as shown in Figure 4.3, that can be referred to as:

0. Woods and vegetative lands

1. River areas and water basins

2. Residential areas

3. Agricultural areas.

In Tables 4.1, 4.2, 4.3 and 4.4 are illustrated the numerical codes with their description

of, respectively, Woods and vegetative lands cluster, River areas and water basins cluster,

Residential areas cluster and Agricultural areas cluster.
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Code Description

31311 Coppice-governed mixed forests of medium and high density

3121 Coniferous forests of medium and high density

31312 Medium- and high-density mixed forests managed as copses

3221 Bushes

332 Debris mounds and lithoid outcrops devoid of vegetation

333 Sparse vegetation

3211 High-altitude natural grasslands without tree and shrub species

3212 Natural high-altitude grasslands with scattered tree and shrub species

3122 Low-density coniferous forests

31321 Mixed low-density coppice-governed forests

Table 4.1: Codes and descriptions of the land covers in Woods and vegetative lands

cluster, found using Normalized cut algorithm.

Figures 4.5 and 4.6 show the distribution of di�erent land cover types in the clusters

previously found, considering only training images. Instead, in Figures 4.7 and 4.8 are

illustrated the distribution of the clustered land cover types considering the test set, where

the red bars represent the amount of anomalous images with a speci�c land cover type.

These clusters are intended as found with the normalized cut algorithm, as previously

described.

We take into consideration also another type of clusterization, splitting the vertices into

communities using the Louvain algorithm [8] explained in 3.5.2. Following the algorithm,

we group the nodes, namely the land cover types, into 3 clusters which can be summarized

as:

0. Anthropized areas

1. Wooded areas

2. Agricultural areas.

In Figure 4.4 the result of graph clusterization is shown. As before, each node is repre-

sented by a numerical code specifying the land cover.

However, we decide to use the clusters shown in Figure 4.3 found with the normalized

cut algorithm, since they are more speci�c. Indeed, using normalized cut algorithm river

areas are separated from agricultural and residential areas, resulting in a more precise
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Figure 4.4: The clustered graph found with Louvain algorithm: each node i is a di�erent

land cover, each edge (i, j) has weight wij equal to the number of images containing

simultaneously land covers i and j. The colour of the edges stresses the value of its

weight (lighter colour smaller weight, darker colour bigger weight). The clusterization

represents the main groups of land covers we can �nd in Lombardia territory.

clusterization. Our study is developed on the Agricultural areas cluster found with the

normalized cut algorithm, which contains the land cover types listed in Table 4.4.
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Code Description

3223 Vegetation of raised banks

2241 Poplar groves

12123 Technological installations

3113 Riparian formations

511 Riverbeds and arti�cial watercourses

213 Rice paddies

331 Beaches, dunes and gravel banks

3222 Vegetation of riverbanks

2242 Other agricultural woodlands

5121 Natural watersheds

1422 Campsites and tourist and accommodation facilities

5122 Arti�cial water basins

123 Port areas

131 Quarries

411 Vegetation of inland wetlands and peat bogs

5123 Reservoirs from mining activities a�ecting the water table

2313 Water meadows

Table 4.2: Codes and descriptions of the land covers in River areas and water basins

cluster, found using Normalized cut algorithm.
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Code Description

1111
Continuous dense residential fabric

(>80% - large residential buildings)

1112
Medium dense continuous residential fabric

(>80% - small residential buildings)

1121 Discontinuous residential fabric (50 - 80%)

1122 Sparse, nucleiform residential fabric (30 - 50%)

1411 Parks and gardens

12111 Industrial, craft, commercial settlements

12122 Public and private facilities

1221 Road networks and ancillary spaces

1421 Sports facilities

1412 Unplanted green areas

12121 Hospital settlements

1222 Railway networks and ancillary spaces

2115 Kitchen gardens

12124 Cemeteries

134 Unused and unvegetated degraded areas

133 Construction sites

314 Recent reforestation

1423 Amusement parks

124 Airports and heliports

12125 Obliterated military areas

Table 4.3: Codes and descriptions of the land covers in Residential areas cluster, found

using Normalized cut algorithm.
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Code Description

223 Olive groves

31111
Medium and high density deciduous

forests governed by coppice

2111 Simple arable crops

2311
Permanent meadows in the absence

of tree and shrub species

2112 Arable land trees

12112 Agricultural production sites

3241
Bushes with signi�cant presence of

tall shrub and tree species

3242 Bushes in abandoned agricultural areas

1123 Sparse residential fabric

11231 Farmhouses

221 Vineyards

2312
Permanent meadows with scattered

tree and shrub species

31122
Low density broad-leaved forests

governed by high trunk

222 Orchards and minor fruit

21141 Open �eld �oro-nursery crops

21142 Protected �oro-nursery crops

21131 Vegetable crops in open �eld

21132 Protected horticultural crops

31121
Low density deciduous forests

governed by coppice

31112
Medium and high density broad-leaved

forests governed by high stems

12126 Photovoltaic systems on the ground

3114 Chestnut groves

3111 Medium and high density hardwood forests

Table 4.4: Codes and descriptions of the land covers in Agricultural areas cluster, found

using Normalized cut algorithm.
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(a) Woods and vegetative lands cluster

(b) River areas and water basins cluster

Figure 4.5: Distribution of the �rst two spectral clusters in the training set images, found

with normalized cut algorithm.
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(a) Resident areas cluster

(b) Agricultural areas cluster

Figure 4.6: Distribution of the last two spectral clusters in the training set images, found

with normalized cut algorithm.
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(a) Woods and vegetative lands cluster

(b) River areas and water basins cluster

Figure 4.7: Distribution of the �rst two spectral clusters in the test set images, found

with normalized cut algorithm. The red bars stand for the amount of anomalous images

for each land cover type.
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(a) Resident areas cluster

(b) Agricultural areas cluster

Figure 4.8: Distribution of the last two spectral clusters in the test set images, found with

normalized cut algorithm. The red bars stand for the amount of anomalous images for

each land cover type.
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In this chapter we describe the implementation of our models, the training loss used

during the training and the model architecture. We also illustrate the preprocessing and

postprocessing we apply to our data.

5.1. Preprocessing

The images in AerialWaste dataset have di�erent GSD (Ground Sampling Distance),

namely a di�erent pixel resolution, based on the type of source from which the images

were collected. Indeed, images from AGEA Ortophotos have GSD of 20 cm per pixel, from

WorldView-3 have GSD of 30 cm per pixel, and images from GoogleEarth have GDS of

50 cm per pixel.

(a) AGEA source (b) GE source (c) WV3 source

Figure 5.1: Example of three normal images from the training set with di�erent sources

and size.

In Figure 5.1 three examples of di�erent GSD based on the source of the image. Figure

5.1a has AGEA Ortophotos as source, with size 1048 × 1054, 5.1b has source Google

Earth and size 1000×1000, while 5.1c is an image from WorldView-3 with size 697×697.

In order to have all the images coherently with the same pixel resolution, we scale them
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according to their source, choosing to set 30 cm/pixel for all of them.

The designed network is fully convolutional, meaning that it can take in input images

of all sizes. However, in order to help the learning, we create batches of patches of the

same size randomly cropped from the training images, and we give them in input to the

econder.

(a) (b) (c)

Figure 5.2: Example of three patches of size 128× 128 cropped from normal images from

the training set.

5.2. Postprocessing

During the testing phase, training losses are used to create 2-dimensional error maps,

which are the reconstruction errors of the images. Considering an input imageX ∈ Rw×h×3,

the reconstruction error map of X can be described as a matrix Z = ℓ(X, X̄) ∈ Rw×h ,

with w the width of the image in input, and h the height of the image. We note that the

values of Z are high where the image reconstruction fails, low (ideally equal to 0) where

the image is well reconstructed by our model.

In order to create a score map as de�ned in Equation 2.1 of our Problem formulation in

Chapter 2, we have to establish a criterion to discern areas predicted as anomalous from

those considered normal. We choose a threshold τ equal to the empirical quantile at 98%

and 99% of the error distribution on a subset of normal images, in order to have only the

2%, 1% of false positive in our images. Thereby, following Equation (2.1), the score map

could be created in each pixel X(i, j) as:

ΩX(i, j) =

0 if ℓ(X(i, j), X̄(i, j)) < τ

1 if ℓ(Xij, X̄ij) ≥ τ
(5.1)
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with i, j indicating the row and column locating the pixel in the image, i ∈ {0, . . . , w− 1},
j ∈ {0, . . . , h− 1}, ℓ the reconstruction loss, X̄ the reconstructed image.

Because the raw score maps computed using eq. (5.1) are characterized by scattered

positive pixels, while the ground truth masks usually display connected and compact

regions, we perform postprocessing by applying the morphological methods discussed in

Section 3.6. Our idea is to use morphological image postprocessing to smooth all the

possible false positives in the score maps.

In particular, we �rst want to close the holes that can be present in the objects of our

score maps. Then, we want to remove from the score maps all the noisy false detections

that are too small to be a real piece of garbage and the object edges that sometimes are

detected as anomalous but are too thin to be a land�ll.

The available morphological operations are erosion, which shrinks the shape of an object

in the image by removing pixels from its edge, dilation, which increases the shape by

adding pixels, or their combination. Our decision is to combine closing, which applies

�rst dilation and then erosion, followed by opening, which uses erosion before and dilation

after.

In Figure 5.3 are illustrated some examples of score maps before using postprocessing

and after postprocessing with quatile at 98% and 99%. As we can notice, the maps after

the chosen sequence of postprocessing are the more de�nite, namely the one less noisy

and with less holes in the objects predicted as anomalous, hence the more similar to the

format of our ground truth masks we have. Moreover, the edges of what could be building

that we observe having high score in the maps 5.3a and 5.3c, after the postprocessing are

correctly removed, indeed they are too thin to be a land�ll.

5.3. Neural network training

In this thesis we consider three di�erent losses to train our networks. The �rst loss is

MSE that computes the mean squared error between each pixel of the two images taken

in comparison, namely the original and the reconstructed image, and it is de�ned as

MSE(X, X̄) =
1

nm

n∑
i=1

m∑
j=1

(X(i, j)− X̄(i, j))2 (5.2)

where the di�erence between images is considered pixel-wise, (i, j) the pixel ranging in n

rows and m columns.
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(a) (b)

(c) (d)

Figure 5.3: Examples of score maps using quantile at 98% in (a) and (b), 99% in (c) and

(d). (a) and (c) are the raw versions of the score maps, while (b) and (d) are the score

maps after the application of postprocessing.

Besides, the Structural Similarity Index (SSIM ) looks for the similarity between pixels of

the two images, producing a score ∈ {−1, 1}, with 1 indicating the maximal similarity, as

explained in Section 3.4. It is de�ned as

SSIM(X, X̄) =
(2µXµX̄ + C1)(2σXX̄ + C2)

(µ2
X + µ2

X̄
+ C1)(σ2

X + σ2
X̄
+ C2)

(5.3)
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where µX , µX̄ are the mean of X and X̄, σX , σX̄ the variance of X and X̄, σXX̄ their

covariance, C1, C2 constants to avoid instability when the sum of squared means is close to

0. In order to use this metric during the training as a loss, we considered 1−SSIM(X, X̄).

Finally, we de�ned a mixed loss as

ℓmixed = wMSE ·MSE(X, X̄) +

wSSIM · (1− SSIM(X, X̄))
(5.4)

with wMSE, wSSIM weights arbitrarily chosen as hyperparameters. Indeed, in this way

we tried to combine the MSE reconstruction precision with the SSIM ability to grasp the

luminance, contrast and structure of an image.

Before performing the training, we further split the cluster of agricultural areas into fre-

quent and rare subsets. The frequent set contains only the most frequent land cover types,

namely those with at least 50 images containing them, and the rare set contains the other

more rare types, namely with less than 50 occurrences.

Code Description

31111 Medium and high density deciduous forests governed by coppice

2111 simple arable crops

2311
Permanent meadows in the absence

of tree and shrub species

12112 Agricultural production sites

3241 Bushes with signi�cant presence of tall shrub and tree species

3242 Bushes in abandoned agricultural areas

1123 Sparse residential fabric

11231 Farmhouses

221 Vineyards

2312 Permanent meadows with scattered tree and shrub species

21131 Vegetable crops in open �eld

Table 5.1: Codes and descriptions of the frequent land covers in Agricultural areas cluster

(≥ 50 occurrences).
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Code Description

223 Olive groves

2112 Arable land trees

31122 Low density broad-leaved forests governed by high trunk

222 Orchards and minor fruit

21141 Open �eld �oro-nursery crops

21142 Protected �oro-nursery crops

21132 Protected horticultural crops

31121 Low density deciduous forests governed by coppice

31112 Medium and high density broad-leaved forests governed by high stems

12126 Photovoltaic systems on the ground

3114 Chestnut groves

3111 Medium and high density hardwood forests

Table 5.2: Codes and descriptions of the rare land covers in Agricultural areas cluster

(< 50 occurrences).

Considering the Agricultural cluster, we extract from the training set those images con-

sidered as frequent, namely with land cover contained in Table 5.1, creating the frequent

training set composed by 1560 normal images. From the test set we pick normal and

anomalous images having land cover types in Table 5.1 in order to create the frequent

test set. We also add anomalous images from the original training set (created by the

authors of AerialWaste [30]) having land cover types belonging to the frequent subset. In

this way, we build a frequent test set of 787 images, of which 285 are anomalous.

Finally, we create a rare test set with normal and anomalous images from both the train-

ing and test sets, containing all the images with land cover types belonging to Table 5.2 It

consists of 307 images, of which 54 are anomalous. Our aim is to use the frequent training

set during the training phase, the frequent test set during the testing phase, and the rare

test set at the end of the testing phase in order to test the generalization ability of the

network.

5.4. Autoencoder Architecture

Since the images have varying dimensions, we have designed a fully convolutional Au-

toencoder which is capable of accepting input images of any size. Thus, even if during
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the training phase we provide in input to the model batches of patches of the same size,

in the testing phase we can give in input to our model entire images, without needing to

crop them. In this manner our model will be able to detect anomalies in the entire given

image.

Keeping in mind the size of the receptive �eld of our network, we crop the patches of

size 128× 128 pixels, namely 3840× 3840 cm, and we create batches of 128 patches each.

This way, our network is able to learn the normal ground accurately, using patches of size

128× 128 pixels during training, and then apply what it has learned to full images of any

size. This feature grants the network �exibility, as it can accept novel images of any size

as input without the need for retraining.

Two di�erent fully convolutional architectures are used. As shown in Figure 5.4, the

�rst network has 3 convolutional layers in the encoder, with ReLu as activation function,

padding = same, stride = 2 and 4, and in the decoder 3 convolutional layers with ReLu

as activation function, padding = same, alternated with upsampling layers of sizes 2× 2

and 4× 4. We train this network with MSE loss.

Figure 5.4: Architecture of the network trained with MSE loss.

A similar network is built with 4 layers instead of 3, as it can be observed in Figure 5.5.

We train this model with the mixed loss between MSE and SSIM as de�ned in Equation
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(5.4). After di�erent numerical trials over the weights to be considered when applying

the mixed loss, we decide to use weights wMSE = 0.7, wSSIM = 0.3.

Figure 5.5: Architecture of the network trained with mixed MSE-SSIM loss.
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6| Experiments and performance

evaluation

In this chapter we discuss the tests that were carried out throughout the experiments

phase of the project. More precisely, we �rst introduce the �gure of merits that we use

during our experiments evaluation phase. Afterwards, we illustrate the numerical results

obtained during our experiments and we compare them.

We perform three di�erent type of model evaluation: we test the model performance

using AUROC score, then we test the model ability to segment anomalous images into

binary masks, eventually we test the model ability to �nd a su�cient amount of waste in

anomalous images and not �nd any waste in normal images. The evaluation experiments

are conducted on the test set, containing both normal and anomalous images. The �rst

test set considered is the frequent test set, then the rare test set, both found in Sec-

tion 5.3. Since the number of segmented images in the dataset was scarce, especially if

we consider only the subset of images extracted by clustering, we manually segmented

approximately 100 other images using Odin annotator [31] provided by the authors of

AerialWaste dataset [30].

6.1. Figures of merit

We consider di�erent evaluation metrics to assess our models. Let TP, TN, FP, FN be the

True Positive, True Negative, False Positive, False Negative, namely the correct indication

of the presence of an anomaly (TP), correct indication of the absence of an anomaly

(TF), erroneous indication of the presence of an anomaly (FP), erroneous indication of

the absence of an anomaly (FN), hence we can de�ne:

Precision =
TP

FP + TP
(6.1)
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Recall =
TP

FN + TP
(6.2)

IoU =
Pred ∩GT

Pred ∪GT
=

TP

FP + FN + TP
(6.3)

Dice =
2(Pred ∩GT )

Pred+GT
=

2Precision ·Recall

Precision+Recall
=

2TP

FP + FN + 2TP
(6.4)

AUROC : area under the ROC curve (6.5)

where Pred stands for Predicted images, GT for Ground Truth, Dice coe�cient is also

known as F1 score and the ROC curve shows the performance of models at all the

thresholds, computed using the False Positive rate and the True Positive rate. These

metrics will be used to evaluate the results obtained in our experiments.

6.2. Results and comparison

The reconstruction error maps are 2-dimensional matrices where each pixel E(i, j) is the

loss computed between original pixel X(i, j) and the pixel of the reconstructed image

X̄(i, j). Examples of reconstruction error maps for model trained with MSE and mixed

loss are displayed in Figure 6.1 using heatmaps. We observe that there are higher values

where the images are poorly reconstructed, namely where anomalies are predicted to

occur.

(a) (b)

Figure 6.1: Heatmaps showing examples of reconstruction error maps.
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The ground truth masks are 2-dimensional binary matrices with pixel equal to 1 if the

pixel belongs to an anomalous region, equal to 0 if the pixel is normal. We �rst estimate

the AUROC score on the reconstruction error maps compared to the ground truth masks,

�nding the results shown in Table 6.1. We refer to the model trained with MSE loss with

ℓMSE, to the model trained with the mixed loss as ℓmixed, both trained on the frequent

training set de�ned in Section 5.3, and we consider as Baseline a model trained on the

complete dataset.

AUROC

Baseline 69.91 %

ℓMSE 70.12 %

ℓmixed 70.99 %

Table 6.1: Evaluation of the models trained on the frequent training set (Agricultural

areas cluster) with di�erent losses using AUROC score; as baseline we consider a model

trained on the complete dataset.

Then, as explained in Section 5.2, we determine the score maps for the anomalous test

images of the Agricultural cluster and we compute the IoU and Dice scores of those

predicted maps with respect to the ground truth masks. Initially we do not apply the

morphological postprocessing, but we notice that applying it on the score maps the results

improve signi�cantly. In Figure 6.2 an example of the di�erence between the predicted

masks with (c) and without (b) postprocessing is shown. The raw mask is created con-

sidering at 99% the quantile threshold cuto� de�ned in Section 5.2. We observe that the

computed raw score maps (b) and (e) contain clustered dots and scattered dots: by em-

ploying postprocessing in (c) and (f) the clustered dots are aggregated in larger connected

components, while the scattered dots, which are sparsely distributed, can be considered

as noise and are removed.

In Table 6.2 are listed the results considering quantile at 98% and 99% the threshold

cuto� de�ned in Section 5.2, with and without applying postprocessing. We can observe

that after the postprocessing the performances improve in all our models (except for the

mixed loss model with the last threshold); the mixed-loss model has best AUROC score in

Table 6.1 but it is the worst considering IoU and Dice scores in Table 6.2, where excels the

MSE-based model. The main issue with these results is the false detection of anomalies

where object edges are, for instance roof boarders, street edges, small items. We can

notice it also in Figure 6.2, especially in the raw mask (e). This matter is directly related
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Images (a) and (d) are the GT masks, (b) is the raw mask com-

puted through the model trained with MSE before postprocessing and has scores

IoU = 0.1509, Dice = 0.3017, (c) after postprocessing has scores IoUpostpr = 0.4704,

Dicepostpr = 0.9408. (e) is the raw mask computed using model trained with MSE before

postprocessing and has scores IoU = 0.1781, Dice = 0.3561, (f) is after postprocessing

with scores IoUpostpr = 0.4180, Dicepostpr = 0.8360.

to the problem type that we are addressing, that is at pixel-level, and with the type of

loss we are using, namely MSE. Figure 6.3 shows examples of the di�erence between the

segmented mask using the cuto� of quantile at 98% and at 99%.

As previously stated, we also perform the evaluation on the rare subset of the cluster in

order to know if the models were able to generalize what learnt on the frequent subset.

Performances are shown in Table 6.3 and are consistent with the results of the frequent

subset. We decide to consider the postprocessed score maps since we proved before they

improve the performances of our model. Instead, evaluating the models on the images

contained in another di�erent cluster, more speci�cally on the Residential areas cluster,

we have results shown in Table 6.4.
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Threshold Postprocessing IoU Dice

Baseline

98%
− 0.0616 0.1232

closing+opening 0.1158 0.2317

99%
− 0.0628 0.1257

closing+opening 0.1446 0.2893

ℓMSE

98%
− 0.0616 0.1233

closing+opening 0.1181 0.2362

99%
− 0.0629 0.1257

closing+opening 0.1482 0.2964

ℓmixed

98%
− 0.0464 0.0972

closing+opening 0.0986 0.1973

99%
− 0.0452 0.0903

closing+opening 0.0881 0.1762

Table 6.2: Evaluation of the models trained with di�erent losses, before and after the

application of morphological postprocessing; as baseline we considered a model trained on

the complete dataset. The threshold cuto� is computed on the score maps using heuristic

quantile at 98% and 99%.

Threshold IoU Dice AUROC

ℓMSE
postpr 98% 0.1261 0.2523

78.01 %
99% 0.1581 0.3161

ℓmixed
postpr 98% 0.0776 0.1552

77.51 %
99% 0.0676 0.1352

Table 6.3: Evaluation on the rare set of cluster Agricultural areas of the models trained

on frequent set with MSE loss and mixed loss.

The results in Table 6.3 denote that our models can broaden what learnt to land cover

types connected and a�ne to those on which the models were trained, more speci�cally if

trained on the images belonging to the frequent land cover types of the considered cluster,

they can also generalize the segmentation ability to the rare land cover types. However,

we also notice from Table 6.4 that the mixed loss model is not speci�c for Agricultural

cluster, since it has similar performances also on another di�erent cluster, more precisely

on Residential areas cluster. Therefore, we perform only on the model built with MSE
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(a) Quantile at 98% (b) Quantile at 99%

(c) Quantile at 98% (d) Quantile at 99%

Figure 6.3: Images (a) and (d) are the GT masks, (b) is the raw mask com-

puted through the model trained with MSE before postprocessing and has scores

IoU = 0.1509, Dice = 0.3017, (c) after postprocessing has scores IoUpostpr = 0.4704,

Dicepostpr = 0.9408. (e) is the raw mask computed using model trained with MSE before

postprocessing and has scores IoU = 0.1781, Dice = 0.3561, (f) is after postprocessing

with scores IoUpostpr = 0.4180, Dicepostpr = 0.8360.

loss the last evaluation in predicting a su�cient amount of waste in anomalous images of

the frequent subset.

Computing the value minimizing the distance between Precision and Recall scores, we

�nd the optimal threshold for the IoU score. Figure 6.4 shows the visual computation of

the optimal threshold for the MSE model.

We use this threshold to discriminate between images predicted as anomalous, namely

with a su�cient amount of waste detected, or normal, �nding: 59 images properly pre-
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Threshold IoU Dice AUROC

ℓMSE
postpr 98% 0.1089 0.2179

68.94 %
99% 0.1273 0.2547

ℓmixed
postpr 98% 0.0797 0.1595

68.33 %
99% 0.0757 0.1515

Table 6.4: Models trained on cluster of Agricultural areas evaluated on cluster of Resi-

dential areas.

Figure 6.4: Precision and recall curves used to �nd the optimal threshold for the IoU

score, for MSE model. The threshold found is τMSE = 0.028445369

dicted as anomalous (True Positive), 13 incorrectly predicted (simultaneously False Nega-

tive and False Positive, since the masks were misplaced). Performing the same evaluation

considering only normal images we �nd 62 True Negative and 440 False Positive.

Hence, we can complete the testing computing

Recall = 0.952 and Precision = 0.134.

Since in the real-world scenario the most important thing is not to miss any illegal land�ll,

the major result is that almost all the anomalies are correctly detected, as enhanced by

the high Recall value.
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7| Conclusion and future

developments

In this work, we approached the illegal land�ll detection problem from a di�erent perspec-

tive with respect to the previous works. Indeed, we tackled the task as an unsupervised

anomaly detection problem, while other researchers use a supervised classi�cation ap-

proach. Addressing the problem in an unsupervised pixel-level manner is less e�ective

with respect to supervised image-level approaches, but it gives us the bene�t of using the

same network with new di�erent images, without retraining it. Indeed, we can receive in

input new images to be analysed without needing prior information about the anomalies

to be detected, and we do not have to retrain the model so that it is e�ective on new data.

In a real-world scenario such as illegal land�lls detection, it is important to be �exible,

since the satellite image dataset could be in continuous update. Hence, it is essential to

have the ability to receive in input any new images, without distinction on the type of

waste contained in them.

Clustering the land cover types slightly improved the performances of our models, even

if we notice that the edges of objects in the image are likely to raise false alarms. This

issue is clearly due to the complexity of the addressed task, which is at pixel-level, and

to the use of MSE loss to train our model. Indeed, as explained in Section 3.4, MSE loss

has problems detecting the contours of objects in images. For this reason, we created a

new loss that is able to catch the structure of the image as the SSIM, and, at the same

time, it is also precise at pixel-level as the MSE. This loss is obtained as a weighted sum

of SSIM and MSE. However, the mixed loss turned out to under-perform with respect to

the classical MSE loss. As a future approach, it could be developed a mixed loss using a

di�erent type of structural similarity or a di�erent metric.

Overall, we notice that the results also depend on the quality of the ground truth masks.

Indeed, model predictions are pixel-sensitive, and sometimes their assessment is a�ected

by the quality of the masks: the more precise the mask is around the edges of the waste,

the more accurate the model prediction results.
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As explained, other researchers use di�erent methods with respect to us, but we have

shown that our unsupervised approach is feasible and viable, bringing reasonable results.

We are among the �rst to tackle the illegal land�lls identi�cation problem as an unsu-

pervised anomaly detection problem, o�ering an alternative perspective to the existing

studies. Indeed, clustering the di�erent land cover types allows us to have distinct, spe-

ci�c models for each land cover, meaning that we can receive a new dataset of images

with whichever land cover in it, and we will have the correct model to analyse them.

We underline that in our context it is more important to have a high recall with respect

to a high precision, meaning that false alarms of illegal land�lls could be risen, but almost

all of the illegal areas are detected: sending someone to investigate a suspicious area is

better than not spotting it.
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