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Abstract

The following work aimed at the development of a maneuver optimization tool for the
Flamingo pilot satellite, considering operational constraints imposed. Minimization of the
fuel consumed for the LTAN correction maneuver will mainly be investigated. The basis
for the analysis is drawn from the Edelbaum optimum solution for low-thrust maneuvers,
along with Kechichian’s extension. The tool will be developed combining the MAT-
LAB and GMAT software, driving the different optimization techniques exploited and
the ability to implement spacecraft architectures. Eclipse events and perturbations will
be accounted for in the analysis to provide a full robust model of the low-thrust maneuver.
Two different propulsion systems will be considered, specifically electric and chemical, to
provide a basis for the selection of the propulsion system and mass budget for the mission.

Keywords: Orbital Maneuvers, Maneuver Optimization, Low-Thrust Propulsion Sys-
tems, Extended Edelbaum Method, Optimal Control Problem





Abstract in lingua italiana

Lo studio condotto riguarda la creazione di uno strumento per ottimizzazione di manovre
da condurre per un satellite, considerando dei vincoli dati da operazioni da svolgere du-
rante la missione. La discussione verte sulla minimizzazione del consumo di propellente
per la correzione della LTAN. Le basi per lo studio della manovra sono investigate dal la-
voro fatto da Edelbaum, trovando le condizioni per la soluzione ottimale, a cui si aggiunge
l’estensione con l’optimal control problem, operata da Kechichian. Una cooperazione tra
i software MATLAB e GMAT viene sfruttata, servendosi delle diverse tecniche di ottimiz-
zazione dei due. Condizioni di eclisse e perturbazioni varie sono prese in considerazione
per creare uno strumento che sia il più robusto possibile. Differenti sistemi propulsivi
saranno poi investigati, cercando di trovare una base per l’uso di uno dei due per la
missione.

Keywords: Manovre Orbitali, Ottimizzazione di Manovre, Sistemi di Propulsione a
Bassa Spinta, Metodo di Edelbaum Esteso, Controllo Ottimale





v

Contents
Abstract i

Abstract in lingua italiana iii

Contents v

List of Figures vii

List of Tables ix

Nomenclature xi

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 About Vyoma and Space Situational Awareness . . . . . . . . . . . . . . . 2

1.2.1 Space is a risky place . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Space Debris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Vyoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Scope and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Framework 9
2.1 Orbit Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Gravity Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Drag Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Eclipse Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . 21

3 State of the Art 25
3.1 Overview of Low-Thrust Spacecraft Manoeuvres . . . . . . . . . . . . . . . 25

3.1.1 Edelbaum Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Kechichian extension of the Edelbaum transfer . . . . . . . . . . . . 31
3.1.3 Low-Thrust with Earth-Shadow Eclipses . . . . . . . . . . . . . . . 33

3.2 Review of Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Non Linear Programming (NLP) . . . . . . . . . . . . . . . . . . . 39
3.2.3 Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 Penalty methods for Inequality and Equality Constraints . . . . . . 41



3.3 Low-Thrust Propulsion Systems . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Chemical Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Software Implementation 47
4.1 Spacecraft Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Propagator & Force Model . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 GMAT Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 MATLAB & GMAT Interface . . . . . . . . . . . . . . . . . . . . . 52

4.2 Split Edelbaum Strategy (SES) . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Formulation of the Transfer Problem . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Electric Propulsion System . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Chemical Propulsion System . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Station Keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Results and Analysis 61
5.1 Edelbaum Analytical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 MATLAB Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Chemical Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Optimization considerations . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Chemical Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions and Future Work 75
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77

A Appendix A 81

B Appendix B 83

C Appendix C 85



vii

List of Figures
1.1 Evolution of the total number of objects divided by class and by orbit . . . 3
1.2 Low-Earth Orbit Debris Objects . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Representation of the orbit evolution . . . . . . . . . . . . . . . . . . . . . 10
2.2 Earth’s Gravity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Westward Node Regression due to J2 Effects . . . . . . . . . . . . . . . . . 13
2.4 Variation of the semi major axis due to Gravity Gradient . . . . . . . . . . 14
2.5 Variation of the eccentricity due to Gravity Gradient . . . . . . . . . . . . 15
2.6 Variation of the inclination due to Gravity Gradient . . . . . . . . . . . . . 15
2.7 Variation of the RAAN due to Gravity Gradient . . . . . . . . . . . . . . . 16
2.8 Variation of the SMA and inclination for a spacecraft subject to drag re-

sistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Variation of the eccentricity due to drag resistance . . . . . . . . . . . . . . 17
2.10 Variation of the RAAN due to drag resistance . . . . . . . . . . . . . . . . 18
2.11 Eclipse model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Eclipse Durations difference for the different orbit . . . . . . . . . . . . . . 20
2.13 Eccentricity change due to SRP . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 Inclination variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 Variation of keplerian elements due to SRP . . . . . . . . . . . . . . . . . . 22

3.1 Frames of reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Edelbaum Transfer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Split Edelbaum Sequence representation . . . . . . . . . . . . . . . . . . . 31
3.4 Example of the weighting function change during a LEO-GPS transfer . . . 34
3.5 OCP to NLP transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Electric Propulsion Systems Overview . . . . . . . . . . . . . . . . . . . . . 43

4.1 Study workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Thrust-Coast-Thrust Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 GMAT Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Analytical Solution of the Edelbaum Transfer . . . . . . . . . . . . . . . . 62
5.2 Integrated Solution of the Edelbaum Transfer . . . . . . . . . . . . . . . . 63
5.3 MATLAB Optimized Maneuvers - Electric Propulsion . . . . . . . . . . . . 66
5.5 Converged variable evolution - 2 hours correction . . . . . . . . . . . . . . 67
5.4 MATLAB Optimized Maneuvers - Chemical Propulsion . . . . . . . . . . . 68



viii | List of Figures

5.6 Orbital parametrs evolution during transfer for a 2 hours LTAN correction
- Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Orbital parametrs evolution during transfer for a 4.5 hours LTAN correction
- Electric Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 Variation of the Optimal drift parameters and Fuel Mass consumed with
the LTAN correction - Chemical Propulsion . . . . . . . . . . . . . . . . . 72

5.9 Orbital parametrs evolution during transfer for a 4.5 hours LTAN correction
- Chemical Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1 Evolution of the total Area of objects divided by class and by orbit . . . . 81
A.2 Evolution of the total Mass of objects divided by class and by orbit . . . . 82

B.1 Jacchia Roberts Atmoshpere model (1) . . . . . . . . . . . . . . . . . . . . 83
B.2 Jacchia Roberts Atmoshpere model (2) . . . . . . . . . . . . . . . . . . . . 84

C.1 GMAT Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



ix

List of Tables
1.1 Number of objects in space with respect to their dimensions . . . . . . . . 4

2.1 Insertion Orbit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Uncertainty Ranges for insertion orbit . . . . . . . . . . . . . . . . . . . . 9
2.3 Orbital Parameters after Commissioning . . . . . . . . . . . . . . . . . . . 11

3.1 Current Electric Propulsion Technologies . . . . . . . . . . . . . . . . . . . 44
3.2 Current Chemical Propulsion Technologies . . . . . . . . . . . . . . . . . . 45

4.1 Spacecraft architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Integrator Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 GMAT Optimizer properties . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Final RAAN as function of the LTAN correction applied . . . . . . . . . . 61
5.2 Constraints on the optimization variable . . . . . . . . . . . . . . . . . . . 64
5.3 Optimization Variables vs LTAN Correction - Electric Propulsion . . . . . 65
5.4 Optimization Variables vs LTAN Correction - Chemical Propulsion . . . . 65
5.5 Burning time, Fuel mass vs LTAN - Electric propulsion . . . . . . . . . . . 69
5.6 Yaw angles vs LTAN - Electric propulsion . . . . . . . . . . . . . . . . . . 70





xi

Nomenclature
Acronyms and Abbreviations

CAM Collision Avoidance Manoeuvre

DC Duty Cycle

EEM Extended Edelbaum Method

GEO Geosynchronous Earth Orbit

GG Gravity Gradient

GUI Guide User Interface

IADC Inter-Agency Space Debris Coordination Committee

LEO Low Earth Orbit

MEO Medium Earth Orbit

NLP Non Linear Programming

OCP Optimal Control Problem

SES Split Edelbaum Sequence

SK Station Keeping

SP Short Periodic

SQP Sequential Quadratic Programming

SRP Solar Radiation Pressure

SSO Sun-Synchronous Orbit

SST Space Surveillance Tracking

Physical quantities

α In-plane angle [◦]

β Out-of-plane angle [◦]

ad Drag Acceleration [m/s2]

γ Shadow Percent [−]

λ Latitude [◦]



xii | Nomenclature

µ Gravitational parameter [km3/s2]

ν Eclipse Factor [−]

Ω RAAN [◦]

ω Argument of Periapsis [◦]

ϕ Longitude [◦]

ρ Density [Kg/m3]

θ True Anomaly [◦]

θC Eclipse Center [rad]

θSH Earth Shadow Angle [rad]

A Area [m2]

a Semi-major axis [km]

AoL Argument of Latitude [◦]

Cd Drag Coefficient [−]

Cr Reflectivity Coefficient [−]

e Eccentricity [−]

f Thrust acceleration [kg]

i Inclination [◦]

Isp Specific Impulse [s]

LTAN Local Time of the Ascending Node [h]

M Mean Anomaly [◦]

m mass [kg]

r Distance [km]

Re Earth radius [km]

T Thrust [N ]

t time [s]

U Gravitational Potential [s]



| List of Tables xiii

v Velocity [km/s]





1

1| Introduction

1.1. Background and Motivation

Space-based debris observation missions have become increasingly more important in re-
cent times due to their growing amount in Earth’s orbits. The enormous and continuous
threat caused by these object can lead to critical spacecraft damage that can compromise
the mission or even to its complete failure. It is, therefore, imperative to pose a limit to
the menaces created by space debris.
The creation of augmented debris catalogues in the most crowded regions is the first step
to make to provide an effective solution to the problematic, and that’s how debris obser-
vation missions will help to solve the problem.
In-space telescopes mounted on satellites will provide tracking of most of the objects
present in the crowded regions, leading to a significant improvement of the debris cat-
alogues. Of course to make this possible, on-board mounted technologies must operate
within a specific framework to reach the best performances achievable.
In order to do this, the spacecraft must be inserted in its nominal operational orbit, defined
by the nominal altitude, inclination and orientation which should provide the best per-
formances with respect to the mounted payload and the tracked object category (mainly
performances depend on the size of the objects tracked). In this regard, an efficient and
effective method for maneuver planning must be developed, aiming for minimum fuel
consumption and minimum transfer time.
In particular, transfer time reduction leads to a drastic reduction of the costs, since a
longer duration of the maneuver implies the involvement of a number of other operations
that have to be executed for a longer time, also in terms of fuel allocation.
The design of such methods can significantly improve the accuracy and the effectiveness
of the mission, allowing also a broader application in other areas of space exploration,
including satellite servicing and formation flying.
Lastly, the increase in flexibility gained with the optimization allows to define alternative
maneuver strategies in situations where the mission requirements change, or where unex-
pected events occur.
Of course, a lot of compromises have to be met, forcing us to privilege some aspects and
neglecting other ones. The trade-off between the perfect situations and the cost necessary



2 1| Introduction

is always the major question to which the best answer has to be provided.

1.2. About Vyoma and Space Situational Awareness

1.2.1. Space is a risky place

More satellites are being launched today than ever before, driven also by the incredible
rise of private companies in the latest period. This means that the commercial orbits in
which most of the satellite operate are becoming really overcrowded, either by currently
functioning satellites or by old ones, no more in activity.
The annual Space Environment Report published by ESA [1] puts really a figure on the
current situation of the Debris orbiting around the Earth. Based on the models developed
by ESA, it is estimated that the number of total objects larger than 1 cm in size is likely
to be over 1 million.
The figures here reported (Figure A.2a, A.2b) are extracted by this document, providing
an overview of the current space environment. The problem posed by space debris is then
a significant risk for the safety and sustainability of space activities. In the long term,
in fact, this could lead to the so called "Kessler Syndrome" [2], a scenario in which the
collision of two objects in orbit generate a large number of smaller fragments, which, in
turn, collide with other objects, creating more debris, continuing exponentially, leading
to a cascade effect.
This is particularly true in the case of common operational orbits in which most of the
spacecraft are placed, as in the GEO or LEO. The latter, in particular, has seen a huge
growth in the last period due to the launch of several constellations used by private com-
panies for internet connection, along with more common Earth observation satellites.
Thankfully, current companies have become more sensible about this issue, and a large

number of them is investing in space-debris mitigation, trying to overcome this problem-
atic.
This is possible also thanks to the restrictive guideline introduced by the IADC [3], which
establishes how the mission should be conceived from the early concept to the disposal
phase, in which the spacecraft is no more operational. As a matter of fact, over 40 years of
unruled space activities led to the current situation where we face congested orbits and a
harmful of other problematics. The design and mission profile of a spacecraft, estimation
and limitation of accidental collision with catalogue objects are then mandatory. In-space
maneuvering is also affected by this, as periodic Collision Avoidance Manoeuvre have to
be conceived in order to prevent catastrophic events.
Ultimately, accidental break-ups or subsystem malfunctioning have to be also considered,
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(a) Total number of object by class

(b) Total number of object by orbit

Figure 1.1: Evolution of the total number of objects divided by class and by orbit

as adequate measures have to be taken, otherwise disposal measures should be conducted.

1.2.2. Space Debris

The term "Space Debris" [4] indicates, by definition, any artificial material orbiting the
Earth that is no longer functional. They are mainly generated during normal operations
as a satellite is being inserted in orbit, for example by the injection of stages, the release
of mission-related objects and the eventual retirement of a satellite itself. Additional
sources of debris can be subsequent break-ups and other events that lead to the release
of material.
Of course, not only small size objects are present, but also larger objects have been cata-
logued, such as spacecraft that ended their operational time as well as rocket stages. To
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Figure 1.2: Low-Earth Orbit Debris Objects

provide the total number of objects orbiting in space, existing catalogue are not sufficient.
Statistical models have then been used to provide an estimation of the quantity of debris
present in space. The last update on the total amount of space objects orbiting the Earth
[5] divided by class is provided in Table 1.1.

Dimension Number of objects

> 10 cm 36500
1-10 cm 1000000
≤ 1 cm 130 mln

Table 1.1: Number of objects in space with respect to their dimensions

Space-related debris can be divided 1 in two categories: the ones which can be traced
back to a specific launch event with a well-defined nature and the ones untraceable. The
last ones are defined as "Unidentified", whereas the first ones as:

• Payloads, space object designed to perform a specific function in space excluding
1Class division of space-debris is purely reported from the [1]
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launch functionality. This includes operational satellites as well as calibration ob-
jects.

• Payload mission related objects, space objects released as space debris which served
a purpose for the functioning of a payload. Common examples include covers for
optical instruments or astronaut tools.

• Payload fragmentation debris, space objects fragmented or unintentionally released
from a payload as space debris for which their genesis can be traced back to a
unique event. This class includes objects created when a payload explodes or when
it collides with another object.

• Payload debris, space objects fragmented or unintentionally released from a payload
as space debris for which the genesis is unclear but orbital or physical properties
enable a correlation with a source.

• Rocket body, space object designed to perform launch related functionality; This
includes the various orbital stages of launch vehicles, but not payloads which release
smaller payloads themselves.

• Rocket mission related objects, space objects intentionally released as space debris
which served a purpose for the function of a rocket body. Common examples include
shrouds and engines.

• Rocket fragmentation debris, space objects fragmented or unintentionally released
from a rocket body as space debris for which their genesis can be traced back to a
unique event. This class includes objects created when a launch vehicle explodes.

• Rocket debris, space objects fragmented or unintentionally released from a rocket
body as space debris for which the genesis is unclear but orbital or physical prop-
erties enable a correlation with a source.

Of course, as space missions span across several orbit types, the distribution should be
very different. However, the presence natural cleaning mechanisms, such as perturbations
to the orbital motion due to the Sun and Moon, forces induced by air drag or several
other type of similar disturbances, lead to maximum debris concentrations at certain
altitudes such as 800–1000 km range and near to 1400 km. Furthermore, LEO satellites
are continuously exposed to drag resistance and, depending on the altitude, after a few
weeks, years or even centuries, it will decelerate the satellite sufficiently that it reenters
Earth’s atmosphere. This general rule is not valid at higher altitudes (above 700–800
km) where the air drag is less powerful and objects generally remain in orbit for at least
several decades.
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Secondary peaks of spatial densities in GEO (Geostationary Orbit), at 35 786 km altitude
and near the orbits of navigation satellite constellations between 19 000 and 23 000 km
altitude in MEO (Medium Earth Orbit) are smaller by two to three orders of magnitude.

1.2.3. Vyoma

Within this context, it is worth to mention the work that Vyoma is putting to limit the
entity of the problem.
Vyoma is a space company that strives to ensure safety and sustainability of space op-
erations by providing critical infrastructure. Combining satellite cameras and machine
learning automation services it enables real-time mapping of space objects and safe satel-
lite operations.
In this way, Collision avoidance maneuver and orbit determination can be provided, en-
suring the safety of any satellite operation.
Vyoma therefore aims to establish itself as a reliable provider of space surveillance and
tracking (SST) services and data for satellite operators and owners. The data collected by
the satellite constellation, along with its advanced tools and software, has the potential
to revolutionize the satellite industry.

1.3. Thesis Scope and Structure

The purpose of the work is to develop a general tool for the optimization of the maneuver
for the Flamingo Pilot satellite orbiting in a 500 km Sun Synchronus Orbit. The focus
will be on the LTAN change that has to be performed to put the satellite in the best
conditions for the payload to operate.
Two different propulsion systems will be analyzed (chemical and electric) in order to es-
tablish the best subsystem that could fit for the purpose.
Chapter 2 will frame the orbit scenario in terms of perturbations and eclipses events. The
review of the state of the art for the transfer in Chapter 3 includes the classic Edelbaum
Transfer and the Extension of the transfer made by Kechichian and Kluever, along with
the optimal control problem and an overview of the propulsion systems.
Chapter 4 will present the optimization process, illustrating how the maneuver is im-
plemented, in both the GMAT and MATLAB software, showing how the two are linked
together.
Finally, a presentation of the results achieved in terms of fuel optimal condition is carried
out, with a discussion of the impact they have on the mission.
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The work is then extended, considering the impact of the maneuver on the overall mission
lifetime (lasting approximately 5 years): in this frame Station Keeping maneuver have to
be implemented, both following guidelines for the orbit maintenance and not to compro-
mise the payload performance. The work however is still in progress, so results will not
be presented, but the outline of the maneuver required will be evaluated.
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The investigated operational orbit is a 500 km sun synchronous orbit, whose parameters
referring to the insertion coordinate 1 are reported in Table 2.1.

Starting Epoch a [km] e [-] i [◦] Ω [◦] ω [◦] θ [◦]

19 Oct 2023 23:59:00 6903 0 97.5 187.5 0 0

Table 2.1: Insertion Orbit Parameters

Orbit insertion will be provided by a carrier2, which shall provides a determined range
of uncertainty in which the insertion will be granted. As a matter of fact, uncertainty
interval considered for the analysis is:

Orbit Parameter Uncertainty Range

SMA (a) ± 25 km
Inc (i) ± 0.1 ◦

RAAN (Ω) ± 0.2 ◦

Table 2.2: Uncertainty Ranges for insertion orbit

After the deployment of the satellite from the carrier the actual LTAN correction ma-
neuver can’t take place immediately, as a certain time period for what it’s called the
"commissioning phase" [6] must be considered. In this scenario all the subsystems, in-
cluding the payload, must be switched on, establishing a communication with the ground
centre to check the functionality of the satellite, as the standard procedure requires.
The duration of this early part of the mission is still unknown (usually lasts for 1-2
months) as there may incur some problems or some subsystems malfunctioning requiring
additional operations, but, as a preliminary design, the duration is set to 60 days 3.

1Assumptions have been made on some of the parameters (e, ω, θ)
2No information is provided as the launch date and the launch carrier are still unknown, so assumptions

are made on a worst-case scenario or rather a maximum allowed range is required
3Additional requirements may arise from regulations, further considerations have to be taken into

account
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(a) Orbit Representation

(b) Ground Track Representation

Figure 2.1: Representation of the orbit evolution

During this time period, no payload operation is considered, as the spacecraft is naturally
propagating around the Earth, without any action from the propulsion subsystem. The
orbit propagation for these first two months, along with the representation of the ground-
track, is reported in Figure 2.1.
Setting the propagation time, the orbital parameters at the end of the this phase can be
retrieved (Table 2.3).
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Starting Epoch a [km] e [-] i [◦] Ω [◦]

18 Dec 2023 23:59:00 6890.417 97.396 0.00247 247.035

Table 2.3: Orbital Parameters after Commissioning

Such orbit presents a various amount of perturbations which may alter the nominal condi-
tion for the operation to occur, or, alternatively, that could allow us to exploit the change
in certain orbital parameters for the purpose of the maneuver.

2.1. Orbit Perturbations

It is now worth to spend a few words on the environment in which the satellite will
find itself during its lifetime. According to the orbit considered, the magnitude of the
disturbance given by the different perturbations vary, resulting in a different change of
the parameters considered. Not only the magnitude of the parameters can vary, but also
the rate of change of the parameters. In fact, perturbations can manifest themselves with
short-period, long-period or secular variations. The analysis of the major perturbations
must then be performed along with their accurate modeling.

2.1.1. Gravity Gradient

The first of these perturbations to be considered is the gravity gradient, a perturba-
tion caused by the non-uniformity of the Earth’s gravitational field producing significant
changes in some of the Keplerian elements.

The gravity gradient is defined in a mathematical way by means of a summation of
components which can go as high as the order of accuracy that we want to consider. We
know from the dynamics that the acceleration in an inertial frame is calculated as:

a = ∇U (2.1)

The solution of the Laplace equation (2.2) provides the potential for a non spherical body

∇2U = 0 (2.2)

The gradient of gravitational potential expressed in spherical coordinates is expressed as:

∇U =
∂U

∂r
ur +

1

r

∂U

∂ϕ
uϕ +

1

rcosϕ

∂U

∂λ
uλ (2.3)
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Figure 2.2: Earth’s Gravity field

singularities arise when (r = 0) and ϕ = ±90. The expression of the potential developed
by Pines [7] avoids those singularities:

U =
µ

r

(
1 +

∞∑
n=1

(
R⊗

r

)n n∑
m=0

Anm(u) [Cnmcos(mλ)cosmϕ+ Snmsin(mλ)cosmϕ]

)
(2.4)

This one can be then rewritten:

U =
µ

r

(
1 +

∞∑
n=1

(
R⊗

r

)n n∑
m=0

Anm(u) [Cnmrm(s, t) + Snmim(s, t)]

)
(2.5)

where Cnm and Snm are the gravitational coefficients, s, t, and u are given by

s = x/r, t = y/r, u = z/r = sin(ϕ) (2.6)

rm(s, t) and im(s, t) are then computed with the recursive relationship

r0 = 1, r1 = s, i0 = 0, i1 = t (2.7)

rm = s · rm−1 − t · im−1, im = s · im−1 − t · rm−1 (2.8)

The coefficients Anm(u) are the derived Legendre functions (further derivations of the
coeffiecients in [8]).
The trigonometric argument of the Legendre Polynomials constitutes surface Spherical
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Figure 2.3: Westward Node Regression due to J2 Effects

harmonics as they are periodic on the surface of a unit sphere. The magnitude of the
zonal-harmonic effect suggests a physical interpretation to better understand its influ-
ence. The detailed analysis of the model exploited and the physical interpretation of the
parameters, along with a further accurate derivation can be found in [9], [10]. A brief
summary of the main implications will now be introduced.
The presence of secular effects caused by zonal harmonics has a simple physical explana-
tion: the added attraction of the Earth’s equatorial bulge introduces a force component
toward the equator. Consequently, the resultant acceleration will cause the satellite to
reach the the equator short of the crossing point for a spherical Earth. This phenomenon
causes regression of the node (for direct orbits) or a counter rotation of the orbital plane
around the polar axis.

Short-Periodic Effects from Zonal Harmonics Short-periodic variations cause os-
cillations in the elements with a fundamental period equal to the Keplerian period (2π/n).
Excluding J2, amplitudes of these oscillations are usually the smallest of all periodic con-
tributions. J2 produces effects for a near-Earth satellite position of the order of 8-10
km. The effect diminishes in terms of magnitude variation as the value of the altitude
increases, reducing the effect to a km or two for GEO satellite. Other zonal harmonics
also have an effect, even though it is much smaller, usually less than 50-100 m, which is
way is often discarded or marginally considered.
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Long-Periodic/Short-Periodic Beat Period from Zonal Harmonics This com-
ponent of the motion is caused by the interaction of short-periodic and long-periodic
variations. This interaction creates a beat period characterized by a high frequency os-
cillation with an amplitude that oscillates at the long-periodic frequency. The result is
a high-frequency oscillation contained in a long periodic envelope. Magnitude of these
contributions depend on time and vary from the size of the short-periodic variations up
to the size of the long-periodic contributions. Remember that the SP variations are quite
small, except for those due to J2.

The feature that attracts us in particular is the secular change operated in the RAAN by
the J2 effects:

Ω̇ = −3

2
J2

√
µ

a3

(
Re

a

)2

cos i (2.9)

The main point here is the dependence of this RAAN variation 4 with respect to the
altitude. The more we raise the orbit, the higher the change in RAAN will be.
This is the crucial property on which the maneuver is based.

(a) Semi-major axis variation (60 days) (b) Eccentricity variation (One day)

Figure 2.4: Variation of the semi major axis due to Gravity Gradient

4Smaller variations of the RAAN due to other types of perturbations are not considered
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(a) Eccentricity variation (60 days) (b) Eccentricity variation (one day)

Figure 2.5: Variation of the eccentricity due to Gravity Gradient

(a) Inclination variation (60 days) (b) Inclination variation (One day)

Figure 2.6: Variation of the inclination due to Gravity Gradient
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Figure 2.7: Variation of the RAAN due to Gravity Gradient

This peculiar property can be exploited in what are the so called Sun Synchronous Orbits
(SSOs), aiming for a fixed orientation with respect to the Earth-Sun direction over time.
Orbits parameters can be therefore tuned to allow a natural RAAN drift such that the
satellite passes above the same point on the Earth at the same local solar hour, ensuring
constant light condition.

2.1.2. Drag Effects

Aerodynamic drag, contrary to the natural RAAN drift induced by J2, cannot be exploited
for the purpose of the maneuver, as its main effect are only on the apogee lowering.
However, since the orbit eccentricity is very low, it can be considered as an overall orbit
altitude decrease, which in fact is of particular bother, as lowering the altitude the RAAN
change will be different (and worse).
Nonetheless, given the orbit altitude, it is of major importance as it plays an important
role in the change of orbit parameters, and its presence cannot be neglected.

ad = −
1

2
ρv2rel

CdA

ms

v̂rel (2.10)

vrel = v − ω⊗ × r + vw (2.11)

and ω⊗ is the central bodies angular velocity vector, w is the local wind velocity, Cd is the
drag coefficient, A is the cross sectional area normal to vrel, ρ is the atmospheric density,
and ms is the spacecraft mass.
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The partial derivatives of the drag force with respect to position and velocity are:

∂ad

∂r
= −1

2

CdA

ms

(
vrelvrel

∂ρ

∂r
+ ρvrelv̂

T
rel

(
∂vw

∂r
− ωx

B

)
+ ρvrel

(
∂vw

∂r
− ωx

B

))
(2.12)

∂ad

∂v
= −1

2

CdA

ms

(
vrelv̂

T
rel + vrelI3

)
(2.13)

As the effect of this perturbation is based on the density, depending on the level of accuracy
required (depending on the altitude of the s/c for a start), a model of the atmosphere
shall be provided. The Jacchia Roberts model ([11]) embedded in the GMAT software

(a) SMA Decay (b) Inclination variation

Figure 2.8: Variation of the SMA and inclination for a spacecraft subject to drag
resistance

(a) Eccentricity variation (60 days) (b) Eccentricity Variation (one day)

Figure 2.9: Variation of the eccentricity due to drag resistance
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(a) RAAN variation (60 days) (b) RAAN variation (one day)

Figure 2.10: Variation of the RAAN due to drag resistance

will be used for this purpose, allowing to define densities up to 2500 km of altitude (see
Appendix B). The model also includes latitudinal, seasonal, geomagnetic, and solar effects
on the density, allowing a robust drag considerations.

2.2. Eclipse Considerations

The transit of a spacecraft through the Earth’s shadow presents an additional challenge
due to the high power demands of electric propulsion engines, which can hinder their
usage.
Nonetheless, some on-board instruments may be affected by the sun presence, which may
corrupt their functionality if not well accounted. Some considerations can be made also
from the thermal point of view, examining the sunlight period during the maneuver and
provide a correct pointing for the thermal and optic management, but that’s beyond the
scope of the work. The major implication that we’re interested in is the discontinuous
thrust effect given by these events. This can cause, even if very small, changes in the
eccentricity of the orbit, which will tend to increase, with the apogee laying in the shadow
arc. That’s why the introduction of Eclipse in our discussion is mandatory.
[12] The computation of the eclipse region is implemented through the Montebruck and
Gill [13] analysis (more detailed model on shadow geometry in [14])

r⊙/sc = r⊙ − rsc (2.14)

rB/sc = rB − rsc (2.15)
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where r⊙ indicates the sun vector, rsc indicates the spacecraft vector and rB is the ....
vector.
We can define then the following quantities:

aSR = arcsin

(
r⊙
||r⊙/sc

)
(2.16)

aBR = arcsin

(
rB
||rB/sc

)
(2.17)

aD = arccos

(
rB/scr⊙/sc

||rB/sc|| ||r⊙/sc||

)
(2.18)

aSR + aBR > aD (2.19)

The sunlight fraction is a discontinuous function of the geometry of spacecraft, Sun, and
occulting body positions

γ =


0, aSR + aBR > aD & aSR ≤ aBR

(0, 1), aSR + aBR > aD & aSR > aBR

1, aSR + aBR ≤ aD

(2.20)

where the total eclipse occurs in umbra, and in the intermediate case is itself a discontin-
uous function that depends on if the spacecraft is in penumbra or antumbra.
Additional relations from the overlapping disc geometry allow for the computation of the
sunlight fraction in each of these cases [15]. However, zero thrust constraint is enforced
in the case of both partial and total eclipse, given the model adopted. It is important, to
reduce the change in eccentricity and other possible deviations so the thrust is considered
symmetrical with respect to the orbit.
The AoL at the eclipse center (θC) is calculate at each time step of the propagation.
Thrust is therefore turned off for a symmetric fraction where

θC − 2π
1−DC

4
≤ θ ≤ θC + 2π

1−DC

4
(2.21)

the same consideration is valid for the point opposite to θC in the orbit.
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Figure 2.11: Eclipse model

(a) Eclipse events in the 10:30 A.M. orbit (b) Eclipse events in the 6 A.M. orbit

Figure 2.12: Eclipse Durations difference for the different orbit
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2.2.1. Solar Radiation Pressure

Solar radiation pressure (SRP) is a physical phenomenon that occurs when photons from
the sun collide with a spacecraft’s surface, resulting in a transfer of momentum. This
transfer of momentum can cause a small but significant force on the spacecraft, which can
affect its trajectory and orbit.
There are several approaches to modeling SRP, including empirical, analytical, and nu-
merical methods [16], [17]. Empirical models rely on experimental data and can provide
accurate results, but may not be suitable for all spacecraft configurations. Analytical
methods use mathematical models to estimate SRP and can provide quick and efficient
results, but may not be as accurate as numerical methods.

aSRP = νPsr
2
AU

CrA

m

rvs
r3vs

(2.22)

where, rvs = r−rs is the Sun-Spacecraft vector, r is the position of the spacecraft in iner-
tial coordinates, rs is the position of the Sun in inertial coordinates, rAU is the Sun-Earth
distance, m is the spacecraft mass, A is the spacecraft area, Ps is the solar flux at 1 AU
and Cr is the reflectivity coefficient.

Figure 2.13: Eccentricity change due to SRP

ν is instead the eclipse factor 5 defined as

ν =
(
1− γ

100

)
(2.23)

Solar Radiation Pressure is highly dependant on spacecraft geometry and properties, as
5The percent Shadow γ is defined in 2.20, for a complete derivation of the percent shadow partial

derivatives see [8]
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(a) Semi-major axis variation (60 days) (b) Semi-major axis variation (One day)

Figure 2.14: Inclination variation

(a) Eccentricity variation (b) Inclination variation

(c) RAAN variation

Figure 2.15: Variation of keplerian elements due to SRP
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well as its attitude. The relative orientation between high surfaces can modify the momen-
tum exchange between the solar particles and the satellite. However, as the magnitude
change is relatively small with respect to other perturbations, and due to the fact that
in this dissertation attitude considerations are disregarded, it is not necessary to have a
accurate modeling 6 of the SRP.

6Preliminary model reported is taken from [9], but more detailed analysis can be found in [13], [18]
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3.1. Overview of Low-Thrust Spacecraft Manoeuvres

Low-thrust transfer orbits have been an increasingly popular trend in the latest years
due to their high efficiency and versatility [19]. Unlike traditional chemical propulsion
systems, which require a large amount of propellant to achieve significant changes in
velocity, low-thrust propulsion systems can generate continuous thrust over long periods
of time to produce the required velocity change. This enables spacecraft to reach their
target destinations with less propellant, lower launch costs, and a greater degree of mission
flexibility. In this context, some analyses1 have been carried out to exploit the best
analytical and numerically integrated solution to the low-thrust transfer problem.

3.1.1. Edelbaum Transfer

The classic guideline used to compute the optimal condition for the transfer between two
co-planar circular orbits has been proposed by Edelbaum in his paper [21], providing a
very reliable tool to compute the transfer cost and its parameters.
The base of his work has been adopted in many analysis to improve the efficiency of the
maneuver, but mostly to provide a tool to be used in a wide range of applications, which
may consider a lot of particular conditions depending on the mission.
Edelbaum’s seminal work, in fact, is mainly to be considered as a preliminary evaluation,
having to be refined and specialized for the application.
The analysis deals with a wide range of maneuvers, spanning from high to low thrust
and considering different magnitude changes in the orbital parameters. In particular,
the variation of the latter can be expressed as a function of the α angle, formed by the
velocity vector and the in-plane thrust vector component, and the β angle, formed by
the velocity vector and the out-of-plane thrust vector component. Some considerations,
in fact, regarding the properties of the orbit were made, simplifying the problem of the
optimal solution search. Its original analysis consider small changes in orbital elements
allowing a linear model for the equations. The linearized set of Gauss Planetary equations

1General analysis of Low-Thrust Orbital Maneuvers in [20]
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Figure 3.1: Frames of reference

is here reported:

da

dt
=

2a

V0

FT

m
(3.1)

de

dt
=

2cosθ

V0

FT

m
+

2sinθ

V0

FN

m
(3.2)

di

dt
=

cos (ω + θ)

V0

Fz

m
(3.3)

dΩ

dt
=

sin (ω + θ)

iV0

Fz

m
(3.4)

dω

dt
=

2sinθ

eV0

FT

m
+

cosθ

eV0

FN

m
− sin (ω + θ)

iV0

Fz

m
(3.5)

where:

Ft = Fcos(β)cos(α) (3.6)

Fn = Fcos(β)sin(α) (3.7)

Fh = Fsin(β) (3.8)

The optimum steering analysis carried out by Edelbaum implied the following assump-
tions:
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• Averaging of the orbital dynamics over one period.

• Orbits remain circular during transfer.

• Thrust yaw angle is kept constant during each revolution, but it changes from one
revolution to another

• The sign switch of the yaw angle is performed at the nodes of the transfer orbit.

Another important condition, given the consideration about the low-thrust maneuver,
is that the acceleration in any of the three direction shall be much smaller than the
gravitational acceleration (a << µ/r2).
Given this simplified model, the equations of motion above reduce to:

ȧ =
2aft
V

(3.9)

i̇ =
fhcosα

V
(3.10)

Ω̇ =
fhsinα

V sin(i)
(3.11)

α̇ = n− fhsinα

V tan(i)
(3.12)

(3.13)

The transfer exploiting the yaw switch steering at the antinodes [22] can be visualized in
Figure 3.2
As the angle β is held piece-wise constant during revolutions some contributions can be
eliminated in the equations above, leaving us with a set of differential equations:

ȧ =
2aft
V

(3.14)

i̇ =
fhcosθ

V
(3.15)

θ̇ = n (3.16)

(3.17)

Angular position can be now averaged out, integrating with respect to θ, holding β, V ,
and f constant ∫ 2π

0

di

dt
dθ =

2fsin(β)

V

∫ pi/2

−π/2

cos(θ)dθ (3.18)
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Figure 3.2: Edelbaum Transfer Design

Computing the integral and rearranging the equation, the velocity variation over time can
be expressed as:

di

dt
=

2

π

fsin(β)

V
(3.19)

From 3.1, combining the relation of the semi major axis with the velocity, variation of the
velocity with time can be obtained:

dV

dt
= −fcos(β) (3.20)

The analysis of the optimal condition in terms of the steering angle β will now be con-
ducted. In particular, the functional to maximize I is computed:

I =

∫ Vf

V0

di

dV
dV (3.21)

Let us now then represent the variation of the inclination with the velocity

di

dt
=

di

dV

dV

dt
=

2

π

fsin(β)

V
(3.22)

holding, respectively:

di

dV
(−fcos(β)) = 2fsen(β)

πV
−→ di

dV
= −2tan(β)

πV
(3.23)
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Let us now adjoin the functional I with the constraint integral J defined as:

J =

∫ Vf

V0

(
dt

dV

)
dV = const (3.24)

The augmented Integral can now be written as:

K = I + λJ =

∫ Vf

V0

(
− 2

πV
tan(β)− −λ

fcos(β)

)
dV (3.25)

The necessary condition for the stationary solution

∂

∂β

(
− 2

πV
tan(β)− −λ

fcos(β)

)
= 0 (3.26)

The optimal steering law is then retrieved:

V sinβ = V0sinβ0 (3.27)

As the thrust acceleration is assumed to be constant, the minimization of the ∆V trans-
lates to the minimization of the transfer time t:

∆V = ft (3.28)

The functional I and the integral constraint J can be mutually interchanged to yield

∂

∂β

(
1

fcos(β)
λi

2

πV
tan(β)

)
= 0 (3.29)

λ then is computed:

λ = − 2f

πV0sin(β0)
(3.30)

The variation of the velocity with the time utilizing the expression of the of the optimal
steering law β is then retrieved:

dV

dt
= −fcos(β) −→ fdt = − dV

cos(β)
(3.31)

Integrating the last equation and rearranging we find

∆V = V0cos(β0)− V cos(β) −→ V 2 = V 2
0 +∆V 2 − 2∆V V0cos(β0) (3.32)
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In the same way the inclination variation is computed:

di

dV
= − 2

πV
tan(β) −→ di = − 2

πV
tan(β) (3.33)

where V is retrieved from V sin(β) = V0sin(β0). The final formulation is

∆i = − 2

π
β0 +

2

π
sin−1

(
V0sin(β0)

V

)
(3.34)

However, the inverse sine term yields a double-value in the (0, 2π), so a differentiation is
necessary to distinguish the values. In particular:

If sin−1

(
V0sin(β0)

V

)
<

π

2
−→ sin−1

(
V0sin(β0)

V

)
(3.35)

If sin−1

(
V0sin(β0)

V

)
>

π

2
−→ π − sin−1

(
V0sin(β0)

V

)
(3.36)

The inclination variation can be now defined2 as a function of the β angle value:

If β <
π

2
−→ ∆i =

2

π
(β − β0) (3.37)

If β >
π

2
−→ ∆i = 2− 2

π
(β + β0) (3.38)

As the transfer considered is based on the use of a low thrust propulsion system, many
revolutions will be needed to achieve the final target orbit. This kind of approach has
been widely used from LEO to GEO transfers [23]to purely changes in inclination or
eccentricity. The transfer has been also combined with other approaches such as gravity
assists and multiple gravity assists to further reduce the propellant consumption and
increase the mission flexibility.
However, despite its many advantages, the Edelbaum transfer is not free from limitations.
One of the major ones is its sensitivity to perturbations, such as variations in the gravity
field, atmospheric drag, and solar radiation pressure, meaning that not considering such
kind of perturbations implies a not so accurate analysis as the additional change of the
parameters brought by the modified dynamics. As a result, accurate modeling of these
perturbations is essential for achieving the desired trajectory and possibly reducing the
propellant consumption.
In addition, the assumption of circularity of the orbits, requires sometimes to be relaxed
(as the thrust phase can modify the eccentricity value during the maneuver), so the
necessity to construct a robust tool is needed to define as precisely as we can the problem

2The value 2 in Equation 3.38 is the value in radians (114.6 ◦)
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that has to be faced. Representation of the maneuver sequence [24]is in Figure 3.3.

Figure 3.3: Split Edelbaum Sequence representation

3.1.2. Kechichian extension of the Edelbaum transfer

As above stated, the Edelbaum work providing the optimal steering law for transfers be-
tween inclined circular orbits is very reliable, and it has been widely used as a preliminary
analysis for low-thrust maneuvers. But some integration to provide a better and robust
formulation have been introduced.
The extension introduced by Kechichian [25] consists in the reformulation of the Edelbaum
low thrust transfer problem using Optimal Control theory (different formulation with a
direct approach found in [26]). The considered time-optimal problem involves a series of
low-thrust velocity changes that are applied over a period of time to gradually adjust the
spacecraft’s trajectory from the elliptical orbit to the circular orbit. The transfer problem
is now formulated in a slightly different way, recasted as a time minimum problem, given
initial (V0, i0) and final parameters (Vf , if ).
Let the performance index be defined in the way:

J =

∫ tf

t0

Ldt (3.39)
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L, in the case of the time minimum problem is equal to 1.
We consider the variational Hamiltonian H3

H = 1 + λi

(
2f

πV
sin(β)

)
+ λV (−fcos(β)) (3.40)

and the Euler-Lagrange equations:

λ̇V = −∂H
∂V

=
2fsin(β)

πV 2
λi (3.41)

λ̇i = −
∂H
∂i

= 0 (3.42)

Of course, optimality condition is reached with the stationarity of the Hamiltionian, given
by:

∂H
∂β

= λi
2f

πV
cos(β) + fλV sin(β) = 0 (3.43)

which yields:

tan(β) = − 2λi

πV λV

(3.44)

thus:

H = 0 = 1 +
2f

πV
sin(β)λi − fcos(β)λV (3.45)

∂H
∂β

= 0 =
2f

πV
sin(β)λi + fsin(β)λV (3.46)

Resulting in

λi = −
πsin(β)V

2f
= const (3.47)

λV =
cos(β)

f
(3.48)

Integrating:

fdt = − dV

cos(β)
=

−dV
± (1− sin2(β))1/2

(3.49)

f

∫ t

0

dt = −
∫ V

V0

V dV

± (V 2 − V 2
0 sin

2(β0))
1/2

(3.50)

3Further Analysis in [27], [28]
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An expression of tan(β) has to be derived. Starting from the differentiation of Equa-
tion 3.44 using Equation 3.41, Equation 3.42, we arrive at the formulation of the control
law, wirtten in the form of the tan(β):

tan(β) =
V0sin(β0)

V0cos(β0)− ft
(3.51)

Combining this with 3.50

V =
(
V 2
0 + f 2t2 − 2V0cos(β0ft)

)1/2 (3.52)

Time history and total inclination change can be retrieved:

∆i =
2

π

[
tan−1

(
ft− V0cos(β0)

V0sin(β0)

)
+

π

2
− β0

]
(3.53)

3.1.3. Low-Thrust with Earth-Shadow Eclipses

A further extension of the analysis is provided by Kluever, in his paper, considering also
Earth shadow eclipses causing mainly discontinuous thrust in the case of solar electric
propulsion, accounting therefore for an accurate modeling of the transfer.
In this case, since the thrust time will be clearly less than the continuous thrust analysis,
we do not expect a better performance in terms of transfer time4. But, as he demonstrates,
the continuous and discontinuous thrust case hold very similar profiles in terms of state
trajectories.
Starting from the equation of the velocity ∆V = ft, we can rewrite it as a discrete
component of the analysis:

∆Vk+1 = ∆Vk + f∆t; k = 0, 1, 2, ..., N (3.54)

where
tk+1 = tk +

(∆Vk+1 −∆Vk)

f
; k = 0, 1, 2, ..., N (3.55)

The two major constraints introduced are now:

• Spacecraft mass decrease

• Discontinuous thrust profile
4Formulation of a minimum-time optimization in [29], [30]
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Therefore the changing term in the equation above is the thrust acceleration f (T/m),
which has to be rewritten as:

tk+1 = tk +
(∆Vk+1 −∆Vk)

f̄kwk

(3.56)

The weighting wk is function of the Earth shadow angle ∆θSH :

w = 1− ∆θSH
2π

(3.57)

In particular, a value of w = 1 implies a continuous thrust profile, meaning that the space-
craft is entirely in sunlight during the whole revolution, whereas 0 < w < 1 indicates a
penumbra condition.

Figure 3.4: Example of the weighting function change during a LEO-GPS transfer

To summarize the procedure exploited, given the initial and target circular orbit radii,
inclination change, and initial thrust acceleration f0, computation of the total ∆V and
transfer time tf of the Edelbaum’s solution for the continuous-thrust case.
The continuous-transfer time tf is then divided into N segments, where the discrete his-
tories for Vk, ak, and ik can be retrieved.
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along with the knowledge of the departure date and initial orbital elements, the position
of the Sun with respect to the spacecraft can be computed, and with it the Earth shadow
arc can be computed, by employing the average thrust acceleration and assigning the
correspondent weight in the three different possibilities.
Finally, propagate the ascending node angle ahead in time using equations computing the
natural RAAN drift and the simple first order expansion to compute the RAAN value of
the next segments. The recursive equations are repeated until all N segments of Edel-
baum’s solution have been processed.
As the simplification of the transfer still implies the fact that the orbits remain circular
during each revolution, this may result in non accurate solution, but as the numerical
solutions of the equations provided by the Kluver analysis states that the eccentricity
doesn’t exceed the 0.1 value, the preliminary analysis conducted is reliable.
But ultimately, the solution provided by Edelbaum integrated with the Kechichian opti-
mal control theory and considering eclipse events, is not to be intended as an accurate
solution, but as a fast algorithm not requiring a numerical integration.
More accurate solutions will consider various thrust profile changes or either various thrust
magnitude changes. Eccentricity constraints should also be relaxed, as difference in apogee
and perigee may play an important role [31].

3.2. Review of Optimization Techniques

3.2.1. Optimal Control Problem

Consider a dynamical system of n first-order differential equations

ẋ(t) = f(x(t),u(t), t) (3.58)

where x(t) = [x1(t), x2(t), ..., xn(t)]
T is the state vector and u(t) = [u1(t), u2(t), ..., xr(t)]

T

is the control variables vector.
The formulation of the optimal control problem is to find the r control function such that
they minimize a certain objective function ([32], [33]) defined as

J = ϕ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (3.59)

The scalar J is called a functional as it maps functions, specifically the path x and the
control u, into a scalar number. However, generally, we refer to it as the cost index, the
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performance index, or rather the cost function.

Example: Typical use of the cost index could be the propellant used to launch a space-
craft into orbit, rather than the time of flight between orbital points, or the energy required
[34] (other applications highlited in [35], [36]).

L is referred to as the path cost [37], whereas ϕ is referred to as the terminal cost.
Generalizing the problem, the n state variables could be subjected to various number of
constraints. Let us impose then algebraic path constraints of the form

g[x(t),u(t), t] = 0 (3.60)

g[x(t),u(t), t] < 0 (3.61)

referred to as Equality (Equation 3.60)and Inequality (Equation 3.61) Constraints. Nonethe-
less, path constraints can also be categorized based on whether the correlation with the
function defining the constraints refers only to the control variable or rather the state
variable ([38]). Let us define then:

Pure Control Constraints :−→ g[u(t), t] ≤ 0 (3.62)

Pure State Constraints :−→ g[x(t), t] ≤ 0 (3.63)

Expression given in Equation 3.59 refers to the Bolza formulation of the problem, as it
accounts for final cost into the performance index. Equivalent forms of the optimization
problem have been provided by Lagrange and Mayer.

Lagrange : J =

∫ tf

t0

L(x(t),u(t), t)dt (3.64)

Mayer : J = ϕ(x(tf ), tf ) (3.65)

Proof of their equivalence can be shown in [38].

Fuel Optimal Problem Let us consider now the situation in which we want to specify
the cost function in terms of the parameter we want to optimize [39]. The statement
of the problem doesn’t change in its general form, obviously, but more specifically we
might be asked to specify some constraints depending on the optimization required. The
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performance index considered for the fuel-optimal problem reads:

J =

∫ tf

t0

udt (3.66)

Time Optimal Problem The performance index associated with the time optimal
problem is then given by:

J =

∫ tf

t0

1dt (3.67)

Furthermore, let us introduce a set of m Lagrange multipliers [40], [41], [42], allowing
the n state variables to be treated as independent. The performance index introduced
above is then modified, adjoining the constrained dynamics through costates variable λ

(Lagrange multipliers).

J̄ = ϕ [x(tf ), tf ] +

∫ tf

t0

{
L(x,u, t) + λT {f(x,u, t)− ẋ}

}
dt (3.68)

It can be proved that the optimality condition applied to J also applies to J̄ [43]. The in-
troduction of the Lagrange multipliers [44], therefore, allows to reduce a variation problem
with auxiliary conditions to a free variation problem without auxiliary conditions. The
integrand L of the given variational problem is, in fact, modified adding the left-hand
sides of the auxiliary conditions, each one multiplied by an undetermined factor λ.
For convenience, now, let us introduce the Hamiltonian function, defined as

H [x(t),u(t),λ(t), t] = L [x(t),u(t), t] + λT (t) [x(t),u(t), t] (3.69)

Integrating by parts the last term of Equation 3.68, the modified cost index can be written
in the form:

J̄ = ϕ [x(tf ), tf ]− λT (tf )x(tf ) + λT (t0)x(t0) +

∫ tf

t0

{
H [x(t),u(t), t] + λ̇T (t)x(t)

}
dt

(3.70)
Let us know consider the variation of the performance index due to the variations of the
input control vector u

δJ̄ =

[(
∂ϕ

∂x
− λT

)
δx

]
t=tf

+
[
λT δx

]
t=t0

+

∫ tf

t0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂x
δu

]
dt (3.71)

The choice of the Lagrange Multipliers can allow us to make the coefficients of the δx

vanish. The resulting formulation of the costate dynamics along with the control equation
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define the so-called Euler Lagrange Equations
ẋ = ∂H

∂λ

λ̇ = −∂H
∂x

0 = ∂H
u

(3.72)

with boundary conditions: 

x0 = x∗
0

t0 = t∗0

λf =

(
∂ϕ

∂x

)T

Hf = −∂ϕf

∂tf

(3.73)

Moreover, let the functions L and f be time-independent (not explicit function of t),
therefore, the hamiltonian H will not be dependant on time explicitely, and let u(t) be
an optimal program, meaning ∂H/∂u = 0. We then have:

Ḣ = 0, or H = constant on the optimal trajectory (3.74)

Stationarity of the problem, and the local minimum necessary condition for J is found
also by holding ẋ− f = 0 and requiring that the second-order expression for δJ must be
non-negative:

δJ =
1

2

[
δxT ∂

2ϕ

∂x2
δx

]
t=tf

+
1

2

∫ tf

t0

[
δxT , δuT

] 
∂2H
∂x2

,
∂2H
∂x∂u

∂2H
∂u∂x

,
∂2H
∂u2


[
δx

δu

]
dt ≥ 0 (3.75)

Pontryagin’s Minimum Principle

The Pontryagin’s Minimum Principle [45] outlines the condition where the control law
u(t) should minimize the Hamiltonian, on the condition that u∗ is part of the allowable
controls in set u∗ ∈ U ⊂ Rm.

u∗ = argmin {H(x, u, λ, t)} (3.76)

The control equation’s validity for the Optimal Control Problem (OCP) is contingent upon
the inclusion of path constraints within the Hamiltonian definition, and it is confirmed
only when control constraints are inactive. However, if the Hamiltonian stationary point
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regarding controls is not a member of U , then the condition fails. Pontryagin’s Minimum
Principle serves as a broader version of the Hamiltonian control equation and remains
applicable even if the Hamiltonian formulation overlooks pure control path constraints
for simplicity.

3.2.2. Non Linear Programming (NLP)

To summarize the discussion, it is important to highlight the connection between optimal
control and nonlinear programming problems. The key challenge with this process is en-
abling human modelers (i.e., users) to easily formulate complex problems while producing
an NLP that can be quickly solved by an external NLP solver [46]. The obvious step to
transcript the problem is to translate the problem from a continuous-time formulation
into a discrete-time one. In this way, methods such Sequential Quadratic Programming,
Interior-Based or Gradient-based one aim to minimize the objective function acting on a
set of variables subject to constraints.
Let us now formulate the problem in terms of NLP variables, defined as

y = [x1,u1, ...,xM ,uM ] (3.77)

The Optimal Control Problem above-formulated led to the minimization of the objective
function J subjected to constraints.Substituting the discretized set of variables the new
statement of the problem in terms of NLP variables can now be formulated. In particular
the transcription of the objective function reads

J = ϕ(x(tf ), tf )+

∫ tf

t0

L(x(t),u(t), t)dt (3.78)

⇓

J̄ = ϕ(xM , tM) +
M∑
i=1

L(xi,ui, ti) (3.79)

Constraints imposed can be transcripted in a set of equality and inequality constraints,
having:

minJ̄(y) s. t.

h(y) = 0

g(y) ≤ 0
(3.80)
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Optimal Control Problem
J = ϕ(x(tf), tf) +

∫ tf
t0

L(x(t),u(t), t)dt

ẋ(t) = f(x(t),u(t), t)

g[x(t),u(t), t] = 0

g[x(t),u(t), t] < 0

Discretization
t = (t1, t2, ..., tM)

y = [x1,u1, ...,xM ,uM ]

J̃ = ϕ(xM , tM) +
∑M

i=1 L(xi,ui, ti)

Non Linear Programming

minJ̃(y) s. t.

h(y) = 0

g(y) ≤ 0

Figure 3.5: OCP to NLP transcription

3.2.3. Penalty Functions

Typically, a "one-off" nonlinear program of a certain form is expected to be feasible in
normal circumstances, as infeasibility usually indicates a coding or formulation error.
Nonetheless, detecting infeasibility may be crucial in specific cases, such as mixed integer
nonlinear programming where it is likely to occur during branch and bound fathoming
criteria. To address this, a related regularized problem can be defined, which always has
feasible points. This involves formulating an alternative problem that is always well-posed
and has a solution (x∗) when it exists [47], [48]. By relaxing the constraints enough to
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allow for feasibility, the problem can be solved while gradually reducing the amount of
relaxation. Thus, the question of solution existence revolves around whether the con-
straints can be made feasible. This reduces to the formulation of the elastic problem [49]
introducing the elastic variable u ∈ Rn and v ∈ Rm:

minimize
x∈Rn;u,v∈Rm

f(x) + ρeTu+ ρeTv

subject to c(x)− u+ v = 0, x ≥ 0 u ≥ 0, v ≥ 0
(3.81)

where ρ is defined as the elastic weight, equivalent to a “penalty” on the elasticity.

minimize
x∈Rn

f(x) + ρ

m∑
i=1

|ci(x)| subject to x ≥ 0 (3.82)

If ρ is sufficiently large and (x∗) is optimal for (1.2), then it is also optimal for the elastic
problem with u = v = 0, therefore the elastic problem is called an exact regularization.
Two basic types of penalty functions exist:

• Exterior Penalty functions which penalizes infeasible solutions

• Interior Penalty function which penalizes feasible solutions

An optimal solution requires that a constraint is active, so that this optimal solutions lies
on the boundary between feasibility and infeasibility.
Three degrees of exterior penalty functions exist:

• barrier methods, where no feasible solution is considered

• Partial penalty functions, in which a penalty is applied near the feasibility boundary

• global penalty functions, that are applied throughout the infeasible region

3.2.4. Penalty methods for Inequality and Equality Constraints

Section 3.2.3 highlights the penalty methods used with the assumption of no equality
constraints, or either that have been converted to inequality constraints. In particular this
conversion can bring unnecessary complication to the problem analyzed, causing possible
violation of linear independence. Let us then formulate the constrained optimization
problem P :

P : minimize f(x) such that

g(x) ≤ 0

h(x) = 0
x ∈ Rn (3.83)
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g(x) ∈ Rm and h(x) ∈ Rk are defined as follow:

g(x) := [g1(x), ..., gm(x)]
T h(x) := [h1(x), ..., hk(x)]

T (3.84)

Penalty function definition Given the problem in the form stated above, the defini-
tion of the penalty function can now be provided.
p(x) is called a penalty function [50] for P if it satisfies:

p(x) = 0 if g(x) ≤ 0 & h(x) = 0 (3.85)

p(x) > 0 if g(x) > 0 or h(x) ̸= 0 (3.86)

The general penalty functions adopted are defined:

p(x) =
m∑
i=1

[max{0, gi(x)}]q +
k∑

i=1

[hi(x)]
q , where q ≥ 1 (3.87)

3.3. Low-Thrust Propulsion Systems

Low-thrust propulsion systems are characterized by their high specific impulse, typically
exceeding 1000 seconds, and relatively low thrust output compared to conventional Earth
launch vehicles. The key advantage of low-thrust propulsion is the ability to provide
continuous thrust over a longer period of time, allowing for significant changes in a space-
craft’s velocity [51].
In addition to their ability to provide continuous thrust, certain low-thrust propulsion
systems offer high levels of thrusting precision. This is due to their ability to provide low-
thrust over an extended period of time, combined with high levels of thrust control. This
level of precision is especially useful for missions that require precise orbital adjustments.
Another advantage of low-thrust propulsion is the relatively small amount of propel-
lant that is expelled over time, which is beneficial for spacecraft with limited propellant
capacity. In some cases, low-thrust propulsion can be considered as providing constant ac-
celeration because the thrust component and the relative mass component do not change
significantly over the duration of the thrusting period.

3.3.1. Electric Propulsion

Electric propulsion is the latest trend in space environment, as it proved to be over the
years the most efficient propulsion system of them all, developing more and more innova-
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Electric Propulsion
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Figure 3.6: Electric Propulsion Systems Overview

tion and a wider range of applicability. Indeed, it offers several advantages, starting with
safety. It is also more efficient than its chemical counterpart, as they require a much lower
propellant quantity in order to have the same overall effect, as it is ejected at a much
higher velocity, so obtaining a direct proportional effect in terms of propelling force. Not
only in terms of consumption or safety, but rather also in terms of thrust management
during the mission profile: electrical thrusters are in fact able to provide a very accurate
thrust management, making it possible to perform position or attitude control along its
orbit with high precision [52].
On the other hand, despite the thrust that can be applied could last for months or years,
without any problem created, that is also its major limitation. Thrust level in electric
propulsion are several orders of magnitudes lower with respect to chemical propulsion, so
its "strength" can be considered also its major "drawback", as a thermochemical thruster
can achieve the same maneuver in relatively small amounts of time. The dependence of
the mission on the time, with respect to the maneuver that has to be applied, becomes
then a major design "point", for which the choice of the propulsion system has to be
operated with knowledge. Several electric propulsion technologies, including the Xenon
ion-thruster, electron bombardment thruster, Hall effect thruster, arcjet, and resistojet,
have reached technological maturity and can be utilized on spacecraft. However, mag-
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netoplasmadynamic thrusters, contact ion thrusters, and pulsed induction thrusters have
only been studied theoretically or in laboratory settings and are not yet advanced enough
for practical use [53].

Electric Propulsion Technologies

Technology Thrust Range
Specific Impulse

Range [sec]
Electrothermal 0.5 - 100 mN 50 - 185
Electrosprays 10 µN - 1 mN 225 - 5,000
Gridded Ion 0.1 - 20 mN 1000 - 3500
Hall-Effect 1 - 60 mN 800 - 1950

Pulsed Plasma and Vacuum Arc Thrusters 1 - 600 µN 500 - 2400
Ambipolar 0.25 - 10 mN 400 - 1400

Table 3.1: Current Electric Propulsion Technologies

3.3.2. Chemical Propulsion

On the other hand, the continuously operated propulsion subsystem using chemical propel-
lant may not be discarded, as they have long heritage in the space environment, together
with their reliability. The majority of the propulsion subsystems adopted, in fact, are
mostly of this type, as the range of mission that they can be used for is very wide, from
space launch systems to in-space maneuvering or attitude control. The big problem with
it, though, is that the subsystem design still remains quite complex, as tanks, pipes and
valves have to be designed carefully, not to forget highly inflammable propellant.
Depending on the mission profile, a variety of thrusters can be adopted.
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Chemical Propulsion Technologies

Technology Thrust Range
Specific Impulse

Range [sec]
Hydrazine Monopropellant 0.25 - 25 N 200 - 285

Alternative Mono- and Bipropellants 10 mN - 120 N 160-310
Hybrids 1 - 230 N 215 - 300

Cold / Warm Gas 10 µN - 3 N 30 - 110
Solid Motors 0.3 - 260 N 180 - 280

Propellant Management Devices N/A N/A

Table 3.2: Current Chemical Propulsion Technologies
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The focus is now shifted on the actual development of the maneuver optimization tool.
The key to a robust and reliable implementation is to incorporate low-thrust propulsion
models along with optimization techniques.
It is for this reason, that the existing preliminary tool for design of transfer orbits is
integrated now in a wider tool, which include an accurate architecture model and the
physical implementation of the performed maneuver.

4.1. Spacecraft Architecture

One of the key advantages of GMAT is its ability to simulate the behavior of a spacecraft
in a wide range of environments and mission scenarios. It allows users to model the
motion of a spacecraft in various gravitational fields, atmospheric drag, solar radiation
pressure, and other environmental factors. This enables users to predict the trajectory
and behavior of a spacecraft in different mission scenarios.
Another important aspect of spacecraft architecture in GMAT is the ability to model
different types of propulsion systems. The software includes models for both chemical and
electric propulsion systems, as well as solar sails and other novel propulsion technologies.
The advantage of the GMAT software in mission trajectory design is the simplicity of
implementation of spacecraft hardware components. The details of the spacecraft model
implemented represented are given in Table 4.1

Spacecraft Architecture

Dry Mass [kg] 70
Drag Coefficient [−] 2.2

Reflectivity Coefficient [−] 1.8
Drag Area [m2] 1.13

Table 4.1: Spacecraft architecture

In particular considering the two propulsion system used, the tanks and the thruster have
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to be differentiated obviously. The properties1 attributed to the different architecture are:

Chemical Propulsion

Fuel Mass [kg] 15
Fuel Density [kg/m2] 1260

Temperature [◦C] 20
Pressure [kPa] 1500

Tank Volume [m3] 0.75

Electric Propulsion

Fuel Mass [kg] 5

The solar electric propulsion requires a further component, identified as the solar power
system, considering eclipse period in which the spacecraft is in the Earth’s shadow. As
there are no current considerations of a realistic electric propulsion system, the only
feature considered is the starting epoch of the mission, in this way the software computes
the eclipse events during the maneuver.
With more accurate details the analysis can be refined considering Annual Decay Rate
and margins to be applied.
When considering shadows in a solar power system model, it’s important to note that
there may be discontinuities in the force model when the available power for propulsion
drops below a thruster’s minimum usable power setting. As a spacecraft transitions
from penumbra to umbra and the power available for thrusting reaches zero, the thrust
acceleration can abruptly terminate, creating issues when using adaptive step integrators.
In such cases, there are a few options available. For instance, fixed step integration can
be used with no error control or configure the integrator to continue propagating even if
a bad step (such as a small discontinuity) occurs.

4.1.1. Propagator & Force Model

The GMAT Propagator object allows us to choose among a suite of numerical integrators
implementing Runge-Kutta and predictor corrector methods. An overview of the different
propagator available and their integration in the GMAT Base can be found in Appendix
C.
The selected one is the embedded RungeKutta89 propagator, an adaptive step, ninth
order Runge-Kutta integrator with eighth order error control.

dri

dt
= f(t, r) (4.1)

1Properties attributed are assumed since no actual propulsion system has been evaluated for the
analysis
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The method takes an integration step, h, by separating the interval into several stages
(usually of smaller size) and calculating estimates of the integration result at each stage.
At each stage, the results that are being used are the ones coming from the earlier stage.
The cumulative effect of the integration is an approximate total step δt, accurate to a
given order in the series expansion of the differential equation, for the state variables
ri (t+ δt) given the state ri(t).
The time increment for a given stage is given as a multiple ai of the total time step desired;
thus for the i − th stage the interval used for the calculation is aiδt; the estimate of the
integrated state at this stage is given by

k
(n)
i = δtf

(
t+ aiδt, r

(n)(t) +
i−1∑
j=1

bijk
(n)
j

)
(4.2)

where bij contains a set of coefficients specific to the Runge-Kutta instance being cal-
culated. Given the results of the stage calculations, the total integration step can be
calculated using another set of coefficients, cj and the equation

r(n) (t+ δt) = rn (t) +

stages∑
j=1

cjk
(n)
j (4.3)

The error control for these propagators is implemented by comparing the results of two
different orders of integration. The difference between the two steps provides an estimate
of the accuracy of the step; a second set of coefficients corresponding to this second
integration scheme can be used to obtain a solution

r′(n) (t+ δt) = rn (t) +

stages∑
j=1

c∗jk
∗(n)
j (4.4)

Stage estimates kj and k∗
j can be selected so that they are the same; in that case, the

estimate of the error in the integration ∆(n) can be written

∆(n) = |
stages∑
j=1

(
cj − c∗j

)
k
(n)
j | (4.5)

(the difference between the coefficients cj − c∗j is the array of error estimate coefficients.)
Once the estimated error has been calculated, the size of the integration step can be
adapted to a size more appropriate to the desired accuracy of the integration. If the step
results in a solution that is not accurate enough, the step needs to be recalculated with a
smaller step size. Labeling the desired accuracy α and the obtained accuracy (calculated,
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for instance, as the largest element of the array ∆), the new step used by the Runge-Kutta
integrator is

δtnew = σδt
(α
ϵ

)1/(m−1)

(4.6)

where m is the order of truncation of the series expansion of the differential equations
being solved. The factor σ is a safety factor incorporated into the calculation to avoid
unnecessary iteration over attempted steps. Common practice is to set this factor to 0.9;
that is the default value used in this implementation.
Similarly, if the step taken does not result in the desired accuracy, you may want to
increase the step size parameter for the next integration step. The new estimate for the
desired step-size is given by

δtnew = σδt
(α
ϵ

)1/(m)

(4.7)

The properties of the integrator have been set from the GUI. Table 4.2 reports its prop-
erties.

Runge Kutta 89 properties

Initial Step Size 60
Accuracy 10−8

Minimum Step Size 0.001
Maximum Step Size 100

Maximum Step Attempts 50

Table 4.2: Integrator Properties

GMAT provides a variety of Force Models such as point mass and spherical harmonic
gravity models, atmospheric drag, solar radiation pressure, tide models, and relativistic
corrections.
These contribute to have a very refined model of the orbital environment as the level of
accuracy of the software is very high.

4.1.2. GMAT Optimizer

As not only the target parameters, but the maneuver itself must be optimized, the selec-
tion of an optimizer must be operated. One of the embedded solver in the GMAT software
is the Yukon, a SQP-based Non-Linear Programming solver that uses an active-set line
search algorithm method and a modified BFGS update to approximate the Hessian ma-
trix.
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The solver is particularly efficient handling large-scale problems with a large number of
variables and nonlinear constraints.
The configuration of the solver involves the choice of different parameters including in-
cluding convergence criteria, maximum iterations, and gradient computation method.
The chosen parameters are reported in the table here:

Yukon Solver Properties

Maximum Iterations 100
Maximum Function Evals 100

Feasibility Tolerance 0.01
Optimality Tolerance 0.0001
Fucntion Tolerance 0.001

Maximum Elastic Weight 10000
Hessian Update Method Self-Scaled BFGS

Table 4.3: GMAT Optimizer properties

Some changes will be applied with respect to the maneuver that has to be considered.
This applies, in particular, when defining the properties of the control variable attached
to the optimizer. These parameters, as a matter of fact, play an important role for the
convergence of the optimization, as their value can determine correct numerical properties
of the solver.

• Initial Guess: the initial guess is the starting value attributed to the optimization
variable

• MaxStep: indicates the maximum allowed difference during one iteration to the
optimal control variable

• Perturbation: the step size used to calculate difference derivative

• Lower and Upper Bound: The bound in which the control variable can vary
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Implement Spacecraft Architecture,
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Figure 4.1: Study workflow

4.1.3. MATLAB & GMAT Interface

Once the general architecture of the spacecraft and the numerical integrators used have
been created, we need to establish how to exploit the MATLAB solution of the optimal
control problem.
The overall optimization that finds the initial state variable of the burn legs for the maneu-
ver, in fact, are retrieved through the MATLAB code developed by Auckland University,
developed for a RAAN matching maneuver for an active debris removal mission [54]. The
two software must be therefore linked so that the propagation during the commission is
operated with the accuracy of the GMAT propagator, feeding the initial orbital parame-
ters into the MATLAB code.
The GMAT GUI (Graphical User Interface) provides the command to allow the software
to communicate with the other software through some user-defined functions, providing
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just the inputs and outputs necessary.

In particular, as mentioned, the analysis conducted by Edelbaum verged on inclination
and velocity as independent variables. Together with the burn duration, the β angle of
the thrust phase and the drift time, they are the output parameters of the MATLAB
optimization in which we are interested in.
This software communication proved to be a very strong interaction, combining the best
properties of both programs: the choice of using GMAT has the main software to imple-
ment the maneuver has to do, in fact, with the high accuracy of the orbit propagation
due to the complexity of the perturbation models, nonetheless with the physical imple-
mentation of the spacecraft architecture; the computational ability of the Optimization
Toolbox combined with the parallel toolbox in the MATLAB software, on the other hand,
where exploited to provide the solution of the optimal control problem.

4.2. Split Edelbaum Strategy (SES)

The analysis conducted shows that the optimal transfer approach consists in a three-phase
maneuver, that is a Thrust-Coast-Thrust strategy.
Given the starting orbital parameters (a0, i0,Ω0) of the orbit and the target one we want
to achieve (af , if ,Ωf ) to put the satellite in its nominal orbit, we derive from the OCP the
parameters of the drift orbit necessary for the minimum-fuel problem or the minimum-
time problem.
As the parameter of the orbit will be modified the RAAN change will be modified as well.
In this way the drift time can be optimized to achieve a RAAN matching. The RAAN,
in fact, is not modified through some direct maneuver operated with the thrusters, but
only varies with the Natural J2 Drift.
Therefore, during the drift period, no thrusting procedure is considered. With a further
analysis, considering drag acceleration, some in-plane maneuver may be considered in
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order to counteract its effect.

Figure 4.2: Thrust-Coast-Thrust Sequence

4.3. Formulation of the Transfer Problem

Once the general architecture and the Interface is set up, the maneuver is implemented.
The solution of the optimal control problem through the MATLAB engine provided the
variable we need to set up the necessary parameters for the maneuver.
As the guideline from Edelbaum establishes, the maneuver consists in a multi revolution
transfer with a thruster yaw angle switch at the antinodes of the orbit. The overall maneu-
ver is then inserted in a GMAT Optimization process which takes different optimization
variable from the optimal control problem.
The choice of the low-thrust propulsion system does not allow to consider the maneuver as
a quasi-impulsive maneuver, as the level of thrust obliges us to have a continuous thrust
during the coast phases.
The GMAT command that enables the continuous burn for a finite period of time is the
’BeginFiniteBurn’. The amount of time of the burn is set as an optimization variable so
that the amount of the thrust period is chosen as optimal. Along with the burning time,
the thruster direction during the burn phase is also optimized.
As the switch of the thruster direction is performed at the node of the orbit, the thrust
period will form two arcs around these points. Therefore, to optimize the burning time
of the maneuver we exploit the GMAT backpropagation integrator property.
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Start

Inputs provided

(Starting Orbit, Target Orbit,

Thrust leg parameters )

Optimization Loop

Vary Optimization Variables

(tburn, β)

Perform Maneuver

Compute the constraints

([aach. = atarg., iach. = itarg.])

Are the constraints satisfied?

(|xach. − xtarg.| < tol)

End Optimization

Iter = Max Iter?

Unfeasible problem

No

Yes

No

Yes

Figure 4.3: GMAT Optimization

Once the spacecraft is placed at one of the nodes, we perform the backpropagation: as the
burning time is an optimization variable, we simply propagate backwards for an amount
of time corresponding to the half of this value, such that the nodes of the orbit will be
the points around which the thruster perform the burn.
Once the target parameters are reached the drift period begins. Here the spacecraft
is naturally propagating under the effect of the perturbation for the amount of time
coming from the MATLAB Optimization. Several constraints on the maximum drift
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height and inclination have to be put, in order to be compliant with the permission or
the technological limit of the spacecraft. This period is mostly exploited for the higher
RAAN change due to the its relation with the semi major axis. So, the longer the time,
the higher the variation will be.
Once the LTAN variation reaches the desired value the nominal orbit has to be reached
again, so the maneuver that will put the spacecraft in its operational orbit will take place.
The actual scheme of the maneuver doesn’t change, so that both SMA and Inclination
will be changed at the same time.
This algorithm works in the general way, but the choice of the propulsion system plays a
major role in the maneuver we have to carry out.

4.3.1. Electric Propulsion System

Considering a low-thrust, 2 mN , electric propulsion system, the maneuver implemented
works accordingly to the algorithm reported above. In this way, we can vary the incli-
nation and the semi major axis at the same time, imposing the thruster yaw angle as an
optimization variable. The switch of the yaw angle is performed at the antinodes, accord-
ing to the Edelbaum guideline. In such way, the maneuver is performed in a unique way
(maneuver algorithm reported in 4.1).

Remark: Classic guideline imposes a piecewise constant yaw angle, variable from one
revolution to another. The optimization implemented however, even though it allows the
optimization of the variable per revolution, considers the change in the yaw angle value
in a rather poorly discretized sense, due to the increase in the problem size as we increase
the number of optimization variables. In this way, the "absolute" yaw steering can only
be performed few times. This computational limitation however, does not private us from
finding a suitable sub-optimal solution to our problem. In this case the absolute yaw
change is performed at half of the burn phase, therefore considering two β variations.

4.3.2. Chemical Propulsion System

The chemical thruster yields a different approach to the maneuver. As it stands, a 1 N
thruster is a powerful type of propulsion for the purpose of the mission, so it has to be
treated differently.
Numerical problems have been encountered when the variation of the semi-major axis and
inclination are performed together, so the procedure taken is different.
The maneuver is divided in such a way that the thruster will perform an in-plane burn
phase where only the raise in the semi major axis is made. Subsequently, a pure out-of-
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Algorithm 4.1 Maneuver Implementation - Electric Propulsion
1: Vary TBurn, β
2: for i← 1, NRev do
3: Propagate to Node (Z = 0)
4: if AOP + TA = 360 then
5: Switch Thruster Direction (+β)
6: else if AOP + TA = 180 then
7: Switch Thruster Direction (−β)
8: end if
9: BackPropagation t = Tburn/2
9: procedure BeginFiniteBurn

Propagate Tburn

9: end procedure
10: Propagate to Node (Z = 0)
11: if AOP + TA = 360 then
12: Switch Thruster Direction (+β)
13: else if AOP + TA = 180 then
14: Switch Thruster Direction (−β)
15: end if
16: BackPropagation t = Tburn/2
16: procedure BeginFiniteBurn

Propagate Tburn

16: end procedure
17: end for=0

plane maneuver will take place where the inclination is changed. In this way the only
parameter influencing the maneuver will be the burn duration of the thrusting time and
the number of revolutions for which we perform this operation. The modified algorithm
used is reported in 4.2.
This type of solution presents an issue: as the propulsion system yields a 1 N thrust, the
semi major axis change in the thrust phases lasts for a very short amount of time. As it
stands, the eccentricity of the orbit will be certainly modified. Some corrections therefore
have to be applied to the maneuver in order to reach the target value of the parameters.
The second leg of the maneuver, where the spacecraft transfers from the Drift Orbit to the

target orbit where the nominal operations will be performed, should, in principle, follow
the same flow in the algorithm stated above. However, the optimization shows convergence
problem when both the optimization variables are varied in the same loop. Due to this
problematic the two loops consisting in the in-plane and out-of-plane maneuvers will be
separated, so that they will be individually optimized (4.3, 4.4).
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Algorithm 4.2 Maneuver Implementation - Chemical Propulsion (1stLeg)
1: Vary TBurn SMA, TBurn Inc

2: Switch Thruster Direction (In-Plane Maneuver)
3: for i← 1, NRev do
4: Propagate to Periapsis
4: procedure BeginFiniteBurn

Propagate for Tburn SMA

4: end procedure
5: end for
6: Propagate to Node
7: Switch Thruster Direction (Out-of-Plane Maneuver)
8: for i← 1, NRev do
9: Propagate to Periapsis
9: procedure BeginFiniteBurn

Propagate for Tburn Inc

9: end procedure
10: end for=0

Algorithm 4.3 Maneuver Implementation - Chemical Propulsion (2nd Leg), SMA
1: Vary TBurn SMA

2: Switch Thruster Direction (In-Plane Maneuver)
3: for i← 1, NRev do
4: Propagate to Periapsis
4: procedure BeginFiniteBurn

Propagate for Tburn SMA

4: end procedure
5: end for=0

4.4. Station Keeping

As the maneuver serves to insert the spacecraft in its nominal orbit, so that the payload
can perform its operation at the best possible condition, it must be kept as close as
possible in this orbit. But, as stated repeatedly, due to the effect of perturbations (mainly
aerodynamic resistance as it lowers the perigee altitude, lowering therefore the altitude
and altering the eccentricity), the orbit is expected to change during the operation lifetime.
Some station keeping maneuvers will be definitely required (Algorithm 4.5). In order to
account for this, simulating the whole mission orbit could lead to different considerations
in terms of target parameters of the orbit. If, in fact, the change in the parameters (mainly
RAAN), during the operations is seen to be over the performance limits of the payload,
the preliminary target parameters may be altered slightly in order to compensate for this
variations and guarantee a "safe" orbit maintenance.
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Algorithm 4.4 Maneuver Implementation - Chemical Propulsion (2nd Leg), Inc
1: Vary TBurn Inc

2: Switch Thruster Direction (Out-of-Plane Maneuver)
3: for i← 1, NRev do
4: Propagate to Node
4: procedure BeginFiniteBurn

Propagate for Tburn Inc

4: end procedure
5: end for=0

Algorithm 4.5 Station Keeping
1: while Elapsed Years < 5 do
1: Propagate One Step
1: if Altitude < Threshold then
1: Propagate to Periapsis
1: procedure Optimize(loop)
1: Vary Tburn (SMA), Tburn (ecc)

1: BackPropagation t = −Tburn raise SMA/2

1: procedure BeginFiniteBurn

1: Propagate for Tburn raise SMA

1: end procedure
1: Propagate to Apoapsis
1: Switch Thruster Direction
1: BackPropagation t = −Tburn raise SMA/2

1: procedure BeginFiniteBurn

1: Propagate for Tburn raise ecc

1: end procedure
1: Propagate to Periapsis
1: Switch Thruster Direction
1: BackPropagation t = −Tburn raise SMA/2

1: procedure BeginFiniteBurn

1: Propagate for Tburn raise ecc

1: end procedure
1: end procedure
1: end if
2: end while=0
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The most relevant results obtained by both propulsion systems are here highlighted, in
terms of the parameters coming out of the MATLAB optimization and the actual maneu-
ver performed in GMAT. Differences between different final target orbit will be pointed
out as intended to different final LTAN achieved and different altitude and inclination.
The amount of LTAN correction investigated 1 corresponding to the actual RAAN achieved
is reported in Table 5.1

LTAN Correction Final RAAN Achieved

2 216.34
2.5 208.84
3 201.34

3.5 193.84
4 186.34

4.5 178.84

Table 5.1: Final RAAN as function of the LTAN correction applied

5.1. Edelbaum Analytical Analysis

An auxiliary analysis has been conducted, performing the maneuver just considering the
Extended Edelbaum method, just exploiting the analytical solution of the transfer, along
with the integrated one, assuming constant thrust acceleration during the transfer.
Both are represented in Figure5.1 and 5.2. The results of this auxiliary analysis yield dif-
ferent values from the one performed in this work, mainly because of the many assumptions
made for the Edelbaum transfer, and that result in different value of the burning time
necessary to get to the target orbit or either the constant value of the Right Ascension
(RAAN), which does not take into account the major effects of the natural drift caused by
the gravity gradient. The approximations introduced therefore do not allow to consider
this a high accurate solution.

1The analysis can be obviously generalized on any amount of correction desirable, but just to highlight
how the variable change according to the target imposed, discrete values reported have been investigated
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An interesting consideration can be made about the yaw angle, which proves to be consis-
tent with our analysis. Integrated solution provided in Figure 5.2a also shows the actual
change applied for every revolution, where the flip of the yaw angle is applied.
Moreover, the change in the yaw angle during the thrust (Figure 5.1a) is linear throughout
the whole maneuver, however, the absolute values of the starting and final time differ of
just 1◦, and that’s why can it be considered constant.

(a) Yaw Angle (β) [◦] - Analytical (b) inc [◦] - Analytical

(c) Velocity [m/s] - Analytical (d) SMA [km] - Analytical

Figure 5.1: Analytical Solution of the Edelbaum Transfer

The actual rather simple inclination change can be noted, not influenced by short-period
or secular variation effects due to J2. Semi-major axis change is also rather straight-
forward as the drag is not taken into account.
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(a) Yaw Angle (β) [◦] - Integrated (b) SMA [km] - Integrated

(c) Ecc [-] - Integrated (d) inc [◦] - Integrated

(e) RAAN (Ω) [◦] - Integrated

Figure 5.2: Integrated Solution of the Edelbaum Transfer
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5.2. MATLAB Optimization

Let us now move the discussion to the actual MATLAB optimization, exploiting the
RAAN matching. In particular, a detailed analysis of the constraint imposed on the op-
timization variables and other further parameters will be carried out, considering several
correction on the LTAN.
Fixing the starting parameters and giving as input the optimal problem scenario the fit-
ness function changes accordingly. As above-stated, some constraints on the optimization
variable have been fixed to perform the maneuver. No detailed information for orbit trans-
fer permission have been provided yet, but some preliminary analysis indicate a maximum
altitude reachable of approximately 1000 km, due to thermal problematic arising at higher
altitudes. However, as the altitude of the drift orbit implies different values of the RAAN
drift (Ω̇), a minimum altitude has been imposed.
Further analysis concerning orbit availability shall be performed, according to possible
rules or even to possible maneuver performed for collision avoidance. No specific incli-
nation constraint are needed, as the preliminary orbit analysis did not highlight specific
needs. However, some optimizations highlighted strange behaviours when raising the in-
clination to get to the drift orbit, yielding a very high ∆V .
To overcome this issue the inclination has been constrained in such a way that the drift
value shall be lower than the target one.

Drift Constraints

Drift Inclination [◦] ≤ 97.37
Drift SMA [km] ≥ Start SMA + 100

Table 5.2: Constraints on the optimization variable

Given this linear inequality constraints provided to the optimization, the simulation is
performed. The actual optimization variable couple is not defined as (a, i) but rather the
velocity is used as the first variable. The formulation is however equivalent due to the
relation between the two.

v =

√
µ

a
(5.1)

Differentiating now the analysis for the specific propulsion systems, results dependant on
the LTAN correction applied can be provided.
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5.2.1. Electric Propulsion

In particular, considering the main propulsion system examined the following drift vari-
ables (Table 5.3) come from the MATLAB optimization

LTAN Correction Drift Semi-Major Axis [km] Drift Inclination [◦]

2 6979.597 97.258
2.5 6970.075 97.061
3 6998.815 97.012

3.5 - -
4 - -

4.5 7131.645 96.895

Table 5.3: Optimization Variables vs LTAN Correction - Electric Propulsion

Unfortunately, applied correction of 3.5 and 4 hours, lead to an unfeasible problem, which
therefore cannot be used as a benchmark to see the evolution of the parameters with the
different maneuvers. Graphical representation of the maneuver is reported in Figure 5.3.
Implementation in the GMAT software, however, is considered more accurate, due to the
very high model representation of the disturbances.

5.2.2. Chemical Propulsion

Results dependant on the LTAN correction applied for the chemical propulsion are then
below reported (Table 5.4)

LTAN Correction Drift Semi-Major Axis [km] Drift Inclination [◦]

2 6990.412 97.331
2.5 6990.514 97.216
3 6990.412 97.095

3.5 7026.103 97.111
4 7051.918 97.085

4.5 7090.412 97.085

Table 5.4: Optimization Variables vs LTAN Correction - Chemical Propulsion

Drift Variables change is quite different varying the amount of correction applied. Con-
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(a) 2 Hours Correction Maneuver

(b) 4.5 Hours Correction Maneuver

Figure 5.3: MATLAB Optimized Maneuvers - Electric Propulsion
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sistently with the drift variation, higher values of the SMA and lower inclination value
are observed (Figure 5.4). Both systems exploit this combination, even though the way it
is exploited is quite different. We remark, in fact, that the natural RAAN drift changes
during the thrust phase maneuver for the Electric Propulsion, which allows to a optimized
time, meaning that the drift time in percentage is much smaller with respect to higher
thrust values.
Considering, in fact, higher thrust values thrust phase, maneuver time gets radically low,
allowing to exploit the maximum Drift for the higher time possible. Due to this consid-
erations, the maneuver is "optimized", yielding a higher drift time and a lower change in
the orbital parameters with the same net effect on the final result.

5.2.3. Optimization considerations

The behaviour presented by optimization parameter during the simulation is reported in
Figure 5.5

Figure 5.5: Converged variable evolution - 2 hours correction

Variation in the last iterations is very little, considering optimality and feasibility toler-
ances given to the solver.

Remark: Due to an extremely various number of factors (e.g: minor perturbations not
considered, inaccurate modeling of perturbations, sensors and actuators accuracy) the
target required is not achieved at the level of accuracy desired. Further evaluation and
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(a) 2 Hours Correction Maneuver

(b) 4.5 Hours Correction Maneuver

Figure 5.4: MATLAB Optimized Maneuvers - Chemical Propulsion
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considerations about tolerances due to this factors have to be taken into account as the
computational effort can be reduced significantly, despite having to perform the same
maneuver in terms of achievable performances.

5.3. Maneuver

Once the actual parameter of the drift orbit are retrieved the GMAT simulation can be
performed. Not only drift variables, but also the parameters characteristic of the thrust
legs have been considered, mainly the burning time and the beta angle. These ones have
been set as optimization variables for the GMAT optimization with the initial guesses set
by the MATLAB output. The variation of the orbital parameters during the maneuver is
reported.
Of course, varying the amount of correction imposed, the drift parameters vary accord-
ingly, as the RAAN drift varies with the SMA and Inclination value.
As these values differs from one maneuver to the other, the amount of time that the
thrusters will be turned on differs as well, and that translates into different fuel necessary
to perform the maneuver.
Differentiating in the same way as it’s been made for the MATLAB optimization results
of the maneuver carried out for the two different propulsion systems are presented.

5.3.1. Electric Propulsion

Considering the electric propulsion2, Table 5.5 reports the overall burning time required
along with the fuel mass required.

LTAN Correction Total Burning Time (Days) Fuel mass consumed

2 66.612 0.663
4.5 215.229 2.221

Table 5.5: Burning time, Fuel mass vs LTAN - Electric propulsion

The time of flight sensibly change from the lowest to the highest correction imposed,
according to the drift parameters change. The higher the RAAN to correct, the higher will

2Due to high computational effort, the analysis performed with the electric propulsion is limited only
to the lowest and the highest LTAN interval considered. Nonetheless, this does not necessary imply
a limitation of the tool, as the amount of correction imposed is chosen with regard to technology and
operational constraints. It’s not the case for the chemical propulsion, however, where the analysis can be
extended for a chosen set, to see the maneuver trend
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be the change in the drift variables, and, as the propulsion system can yield a maximum
thrust of only 2 mN the time of flight increases significantly.

LTAN Correction β 1st Leg β 2nd Leg

2 28.644 157.082
4.5 37.338 143.872

Table 5.6: Yaw angles vs LTAN - Electric propulsion

Fuel mass consumption, however, despite the high thrust time, is well below the starting
amount imposed.

(a) Semi-major axis (b) Eccentricity

(c) Inclination (d) RAAN

Figure 5.6: Orbital parametrs evolution during transfer for a 2 hours LTAN correction -
Electric Propulsion
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(a) Semi-major axis (b) Eccentricity

(c) Inclination (d) RAAN

Figure 5.7: Orbital parametrs evolution during transfer for a 4.5 hours LTAN correction
- Electric Propulsion

5.3.2. Chemical Propulsion

Optimal analysis performed, provided us with the values of Yaw steering angle for both
thrust legs also in the chemical propulsion. However, the maneuver is performed in a
way that doesn’t account for a simultaneous change in both the semi-major axis and
inclination. For this reasons, the main concern is on the actual drift orbit, as we highlight
the change in the parameters along with the fuel mass used for the transfer.
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(a) Drift Parameters vs LTAN

(b) Fuel Mass vs LTAN

Figure 5.8: Variation of the Optimal drift parameters and Fuel Mass consumed with the
LTAN correction - Chemical Propulsion
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(a) Semi-major axis (b) Eccentricity

(c) Inclination (d) RAAN

Figure 5.9: Orbital parametrs evolution during transfer for a 4.5 hours LTAN correction
- Chemical Propulsion

Noticeable changes can be seen concerning the thrust phases. Particularly as the thrust
level is very different, the necessary time for the maneuver differs as well, in the order of
months for the electric propulsion, whereas in days for the chemical propulsion.
In particular, the eccentricity change is quite visible, as the maneuver considered for
the 1 N thrust option is performed around the periapsis rather than performing a Yaw
Switch steering every half orbit. This results, therefore, in a "highly" eccentric drift
orbit. However, the opposite maneuver is performed to lower the SMA in the 2nd leg, so
no apparent correction has to be made.
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6.1. Conclusions

The work carried out proved the reliability of the tool developed, unifying previously
numerically integrated analysis, with a more robust application in the GMAT software,
exploiting both advantages. Of course, many differences are present with respect to the
purely numerically integrated solution, mainly concerning perturbations, eclipses events
and thrust legs maneuver. However some considerations can be made given the results
presented.
For instance, the two propulsion systems worked accordingly to the expected behaviour,
both in terms of transfer time required and fuel mass needed for the maneuver. For the
given amount of time imposed to perform the maneuver, in fact, a good percentage of the
total time is spent in the thrust phase for the propulsion system, as the low-thrust doesn’t
allow for "impulsive-like" maneuver as opposed to the chemical one. This, however does
not represent a disadvantage, since, when maneuvering, the spacecraft is moving into
orbits which allow at the same time a gainful RAAN drift change, allowing the spacecraft
to spend a lower time frame in the drift orbit. Completely opposite behaviour is shown
for the chemical propulsion, as we expected.
Fuel mass consumption proves also to be plenty in the considered budget for the two
different subsystems, even for the higher amount of correction imposed to the orbit. This,
mainly, will come into hand with the analysis of the whole spacecraft lifetime, including
station keeping maneuver to keep the satellite in its operational orbit. As the overall
mission duration is of about 5 years (for the baseline), station keeping maneuver will be
certainly needed, and a fraction of the propellant will then be necessary to perform them.
There are, however some things to be considered from the physical point of view: the
maneuver implemented in the case of the electric propulsion, as you may recall, relies
on the switch of the yaw angle at the antinodes, allowing the effective thruster direction
to change dynamically every half orbit. The assumption is, mainly, that the steering
switch can be performed from the satellite point of view, meaning that there are not
any impediment coming from this maneuver. There is the possibility, however, that
the payload may suffer from incorrect pointing, or worse, that the payload will be in a
sun-pointing situation, which is not acceptable for technological point-of-view, therefore
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accurate attitude determination has to provide informations on whether or not the switch
can be allowed, and in such cases, the satellite will only have to exploit half of the burning
time previously accounted for.
Furthermore, considerations about the duty cycle have to be analyzed: the duty cycle
analysis, in this work, is mainly weighted on the eclipse events, meaning that numerically
integrated solutions do not account for a thrust period in case of umbra or penumbra.
The technological point of view is then discarded, considering that the propulsion system
is capable of performing the maneuver required, obviously. Further implementation needs
to consider more accurate hardware modeling, in terms of thrust duration capabilities,
and power decay during the subsystem lifetime.
Summarizing, both propulsion system are able to perform the maneuver in the desired
way, with a relatively small amount of propellant, in the time considered. The problem,
however, looks quite sensitive to the initial condition, so a fine tuning of these parameter
is required (e.g.:choice of the commissioning days).
Ultimately,tools update will be then necessary to comply with mission requirements and
operational constraints, still ongoing, but the preliminary analysis carried out pointed
out that both propulsion systems are perfectly capable of carrying out the maneuver
requested.



77

Bibliography
[1] ESA Space Debris Office. Esa’s annual space environment report. Technical report,

European Space Agency, Robert-Bosch-Strasse 5, Darmstadt, Germany, 2022.

[2] Donald J. Kessler, Nicholas L Johnson, J. c. Liou, and Mark Matney. The kessler
syndrome: Implications to future space operations. 2010.

[3] IADC Space Debris Mitigation Guidelines.

[4] ESA. About Space Debris. https://www.esa.int/Space_Safety/Space_Debris/

About_space_debris. [Online].

[5] eoPortal. About Space Debris. https://www.eoportal.org/

other-space-activities/orbital-debris#our-past-is-explosive. [Online].

[6] G. Levrini and Attema E. The commissioning phase and the calibration/validation
activities. bulletin 106, 2001.

[7] Samuel Pines. Uniform representation of the gravitational potential and its deriva-
tives. AIAA Journal, 11, November 1973.

[8] NASA Goddard Space Flight Center. GMAT Mathematical Specification. 2020a
edition, 2020.

[9] David A. Vallado. Fundamental of Astrodynamics and Applications. McGraw-Hill, 1
edition, May 1997.

[10] Velez C.E. Cappellari, J.O. and A.J. Fuchs. Mathematical Theory of the GODDARD
Trajectory Determination System. 1 edition, 1976.

[11] L. G. Jacchia. Revised Static Models of the Thermosphere and Exosphere with
Empirical Temperature Profiles. SAO Special Report, 332, May 1971.

[12] John T. Betts. Optimal low-thrust orbit transfers with eclipsing. Optimal Control
Applications and Methods, 36(2):218–240, March 2015.

[13] O. Montenbruck and E. Gill. Satellite Orbits: Models, Methods, and Applications.
Physics and astronomy online library. Springer Berlin Heidelberg, 2000.

[14] Beny Neta and David Vallado. On Satellite Umbra/Penumbra Entry and Exit Posi-
tions. The Journal of the Astronautical Sciences, 46(1):91–103, March 1998.

[15] Jonathan Aziz, Daniel Scheeres, Jeffrey Parker, and Jacob Englander. A smoothed

https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
https://www.esa.int/Space_Safety/Space_Debris/About_space_debris
https://www.eoportal.org/other-space-activities/orbital-debris#our-past-is-explosive
https://www.eoportal.org/other-space-activities/orbital-debris#our-past-is-explosive


78 | Bibliography

eclipse model for solar electric propulsion trajectory optimization. Transactions of
the Japan Society for Aeronautical and Space Sciences, 17(2):181–188, 2019.

[16] Rodolpho Vilhena de Moraes. Combined solar radiation pressure and drag effects on
the orbits of artificial satellites. Celestial mechanics, 25:281–292, 1981.

[17] D. Vokrouhlicky, P. Farinella, and F. Mignard. Solar radiation pressure perturba-
tions for Earth satellites. 1: A complete theory including penumbra transitions. ,
280(1):295–312, December 1993.

[18] V.A. Chobotov. Orbital Mechanics. AIAA education series. American Institute of
Aeronautics and Astronautics, 1991.

[19] A. Ruggiero, Pierpaolo Pergola, Salvo Marcuccio, and Mariano Andrenucci. Low-
thrust maneuvers for the efficient correction of orbital elements. Proceedings of the
32nd International Electric Propulsion Conference, IEPC Paper, pages 1–13, 01 2011.

[20] J. E. Pollard. Simplified Analysis of Low-Thrust Orbital Maneuvers:. Technical
report, Defense Technical Information Center, Fort Belvoir, VA, August 2000.

[21] Theodore N. Edelbaum. Propulsion Requirements for Controllable Satellites. ARS
Journal, 31(8):1079–1089, August 1961.

[22] Changxuan Wen, Chen Zhang, Yu Cheng, and Dong Qiao. Low-Thrust Transfer
Between Circular Orbits Using Natural Precession and Yaw Switch Steering. Journal
of Guidance, Control, and Dynamics, 44(7):1371–1378, July 2021.

[23] Lorenzo Casalino and Guido Colasurdo. Improved Edelbaum’s Approach to Opti-
mize Low Earth/Geostationary Orbits Low-Thrust Transfers. Journal of Guidance,
Control, and Dynamics, 30(5):1504–1511, September 2007.

[24] Max Cerf. Low-Thrust Transfer Between Circular Orbits Using Natural Precession.
Journal of Guidance, Control, and Dynamics, 39(10):2232–2239, October 2016.

[25] Jean Albert Kechichian. Reformulation of Edelbaum’s Low-Thrust Transfer Prob-
lem Using Optimal Control Theory. Journal of Guidance, Control, and Dynamics,
20(5):988–994, September 1997.

[26] Mirko Leomanni, Gianni Bianchini, Andrea Garulli, and Renato Quartullo. Optimal
Low-Thrust Orbit Transfers Made Easy: A Direct Approach. Journal of Spacecraft
and Rockets, 58(6):1904–1914, November 2021. arXiv:2101.08160 [math].

[27] Jean A. Kéchichian. Analysis of optimal and near-optimal continuous-thrust transfer



| Bibliography 79

problems in general circular orbit. Acta Astronautica, 65(5-6):879–891, September
2009.

[28] Jean A Kechichian. Optimal Low-Thrust Transfer in General Circular Orbit Using
Analytic Averaging of the System Oynamics.

[29] Kathryn F. Graham and Anil V. Rao. Minimum-Time Trajectory Optimization of
Low-Thrust Earth-Orbit Transfers with Eclipsing. Journal of Spacecraft and Rockets,
53(2):289–303, March 2016.

[30] Max Cerf. Fast solution of minimum-time low-thrust transfer with eclipses. Pro-
ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, 233(7):2699–2714, June 2019.

[31] Vyacheslav Petukhov. Otimal MultiRevolutional Transfers Between Non-Coplanar
Elliptical Orbits.

[32] Anil V Rao. A Survey of Numerical Methods for Optimal Control.

[33] John T. Betts. Survey of numerical methods for trajectory optimization. Journal of
Guidance Control and Dynamics, 21:193–207, 1998.

[34] Haider Ali Biswas, Azmol Huda, Munnujahan Ara, and Ashikur Rahman. Optimal
Control Theory and its Applications in Aerospace Engineering. International Journal
of Academic Research, 3(2), 2011.

[35] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlin-
ear Programming. Society for Industrial and Applied Mathematics, second edition,
January 2010.

[36] Md. Haider Ali Biswas, M. Huda, Munnujahan Ara, and Motahera Rahman. Optimal
control theory and it’s applications in aerospace engineering. International Journal
of Academic Research, Vol. 3, No. 2, Part II, pp. 349-357, 2011., 01 2011.

[37] Guzmán J.J. Longuski J.M. and Prussing J.E. Optimal Control with Aerospace Ap-
plications. Space Technology Library. Springer New York, 2013.

[38] Arthur E. Bryson and Walter F. Denham. Optimal programming problems with
inequality constraints. ii - solution by steepest-ascent. AIAA Journal, 2:25–34, 1964.

[39] Tarunraj Singh. Fuel/time optimal control of the benchmark problem. Journal of
Guidance, Control, and Dynamics, 18(6):1225–1231, November 1995.

[40] Michael P. Friedlander and Paul Tseng. Exact Regularization of Convex Programs.
SIAM Journal on Optimization, 18(4):1326–1350, January 2008.



80 6| BIBLIOGRAPHY

[41] Henri P. Gavin and Jeffrey T. Scruggs. Constrained optimization using lagrange
multipliers. CEE 201L, Uncertainty, Design and Optimization, 2020.

[42] D. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods (Optimiza-
tion and Neural Computation Series). Athena Scientific, 1996.

[43] CORNELIUS LANCZOS. The Variational Principles of Mechanics. University of
Toronto Press, 1962.

[44] R. Tyrrell Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–
238, 1993.

[45] L.S. Pontryagin. Mathematical Theory of Optimal Processes. Routledge, 1 edition,
May 2018.

[46] C. Hargraves and Stephen Paris. Direct trajectory optimization using nonlinear
programming and collocation. AIAA J. Guidance, 10:338–342, 07 1987.

[47] Alice E. Smith and David W. Coit. Penalty Functions. 1996.

[48] Thomas Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computa-
tion. Number v. 1 in Computational intelligence library. Institute of Physics Pub.,
1997.

[49] Robert M Freund. Penalty and Barrier Methods for Constrained Optimization.

[50] Edwin K P Chong. An Introduction to Optimization.

[51] NASA. In-Space Propulsion. https://www.nasa.gov/smallsat-institute/sst-soa/in-
space-propulsion. [Online].

[52] Saccoccia G. Sabbadini M. and Buoso M. Electric propulsion technology programmes.
ESA Publications Division, 2002.

[53] Sashikanth Rapeti. In-Space Electric Propulsion Systems - The Future of Spacecraft
Propulsion Technologies. working paper or preprint, August 2021.

[54] Minduli C. Wijayatunga, Roberto Armellin, Harry Holt, Laura Pirovano, and Alek-
sander A. Lidtke. Design and guidance of a multi-active debris removal mission.
Astrodynamics, February 2023.



81

A| Appendix A

Graphs report here are the one extracted from ESA’s annual space environment report,
carrying out an analysis of the current state of objects present in orbit classified in terms
of object, mass and area.

(a) Total number of object by class

(b) Total number of object by orbit

Figure A.1: Evolution of the total Area of objects divided by class and by orbit
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(a) Total number of object by class

(b) Total number of object by orbit

Figure A.2: Evolution of the total Mass of objects divided by class and by orbit
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Embedded Jacchia model for the computation of the atmospheric density. The model is
used by default in the GMAT software.

Figure B.1: Jacchia Roberts Atmoshpere model (1)
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Figure B.2: Jacchia Roberts Atmoshpere model (2)



85

C| Appendix C

Figure C.1: GMAT Integrators
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