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1. Introduction

In this thesis we deal with existence of solutions
to the nonlinear fractional Schrodinger equa-
tions

oY

o =
in case when N > 2 denotes the space dimen-
sion, £k € (0,1), A € R and with nonhomoge-
neous and L2-supercritical nonlinearity.
More precisely, we find standing waves solutions
defined by the ansatz ¥(z,t) = u(x)e " where
c € R is constant and u is a time independent
function. This leads to the stationary fractional
Schrédinger equation for the density u:

(=AW + AT — g(JU)¥  in R, (1)

(=A)*u — g(u) = Au in RY, (2)

where g(t) = g(¢)t.

It could be possible to fix A € R a priori and to
look for solutions to (2) as critical points of the
action functional; in this case then, the main
concern regards the so called least action solu-
tions, namely solutions minimizing the action
functional among all non-trivial solutions.

A different choice instead, consists in search-
ing for solutions to (2) with prescribed mass
(namely, prescribed L?-norm), keeping \ as part
of the unknown. This alternative has a profound

significance from a physical perspective. The
mass indeed, constitutes both a conserved quan-
tity for the time dependent equation (1) and a
physical meaning in the fields of applications of
nonlinear Schrédinger equations: for instance, it
represents the power supply in the study of prop-
agation of beams in nonlinear optics, or the total
number of atoms in Bose-Einstein condensation.
In addition, from a purely mathematical point
of view, studying prescribed mass solutions pro-
vides a better characterization of stationary so-
lutions to (1), e.g. in terms of their stability or
instability (see [1] and [2]).

2. Main problem
presentation

In this thesis we focus on the second alternative,
namely we aim at proving existence of prescribed
mass solutions to (2) and we formulate our prob-
lem as: to find (u,\) € (H*(RV) x R) solving
(2) together with the mass constraint

ol = [t = (3



The benchmark case we have in mind is g(u) =
[uP~2u + |u|7%u, with p,q € (0,2}), p # q and

2N
N — 2k’
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If g were homogeneous, we could adopt a rescal-
ing argument approach. To apply this argu-
ment, we should, at first, consider a weak so-
lution u to equation (2) for A = 1, whose exis-
tence is ensured by S. Dipierro in [4]; then we set
3 = Jan u? and wa q(x) = au(az) and proceed
calculating both a € R and ¢ > 0, depending on
¢, such that wq 4(2) solves our problem for some
Ae > 0.

However, asking for both (3) and a nonhomoge-
neous nonlinear term, leads us to adopt a vari-
ational approach. Solutions to our problem, in-
deed, can be obtained as critical points of the
energy functional F : H¥(RY) — R

P = Nt~ [ G,

constrained to the L? sphere

Se = {u e H*(RM), / lul? = 02}.
RN

We remark that |u|; denotes the Gagliardo
seminorm related to H¥(RN), G(t) = [J g(1)dr
and Cp x, which is the is constant appearing in
the fractional Laplacian definition, is defined by

O — / 1—cos(m1)d -1 (4)
Nk =\ Jan || N+2E x ’

where 21 = x - e; and e denotes the first direc-
tion in RV.

In particular, we continue our dissertation show-
ing how any solution to (2) satisfying (3) corre-
sponds to a critical point for F|g,, where the
parameter A € R appears as a Lagrangian mul-
tiplier.

Our strategy aims at detecting these critical
points and identifies two different scenarios. The
first one is the so called L2-subcritical case,
namely p,q € (2, % + 2) and we show that, un-
der these values of p and ¢, the energy functional
F' is bounded from below. Specifically, this case
can be handled with minimization techniques,
such us the concentration compactness methods
(see [6] and [7]). On the other side, in the L2
supercritical case, namely for p,q € (% +2,25),

F is not bounded from below and minimization
techniques cannot be applied. As a consequence,
the core part of the thesis deals with solutions to
our problem in the L?-supercritical case, which
reveals to be harder with respect to the previous
one.

2.1. Existence of a bounded
Palais-Smale sequence

Our first step consists in showing the existence of
a bounded Palais-Smale sequence for F' at some
level v(c).
In order to achieve this point, we rely on the
auxiliary functional F : (H*(RY) x R) — R,
defined by

B CN,k €2ks

F(“? 5) - 4 Lqu

—e N G(e%u(:r)) dx
RN

and on the continuous mapping H : (H*(RN) x
R) — H*(RY)

H(u,s)(z) = e%u(esx),

which, for any v € S, is a transformation from
S, to S..

At first, we shall show that F' possesses a moun-
tain pass geometrical structure on (S, x R) and,
since (S, x R) constitutes a riemannian mani-
fold, the existence of a Palais-Smale sequence
(Un, $n)n for F at some level 5(c) can be proved.
In particular, two entire sections of the thesis
focus on the presentation of a version of the
min-max theorem valid on differential manifolds
and on its adaption to our specific L?-sphere
S., considered as subset of the Hilbert space
E := (E x R) (where E := H*(R")), provided
with the scalar product

<'7 )E = <'> B+ <'7 '>R'

Finally, (vn)n = (H(up,Sn))n constitutes the
candidate bounded Palais-Smale sequence for F'.
Therefore, we just need to exploit the bounded-

ness of both F(un,sn) and of 5313'(un,sn), in
order to complete the first step.

2.2. Covergence of the Palais-Smale
sequence

Once we have inferred the existence of such
(Un)n, we are just left to deal with its conver-



gence in H*(RY), namely ending up with the
equation

lim ||v, — || gx = 0,

n

for some v € HF(RYN).

The first problem we face, regards the lack
of compactness for the continuous embedding
HFRN) — LP(RN), 2 < p < 2%, implying
that the weak limit of the Palais-Smale sequence
could leave the constraint. Thus, in order to
prove convergence, we restrict our framework
to the space E := HF(RY), which denotes the
space of radial functions in H¥(R™) and recov-
ers compactness.

At a later stage we prove a last additional char-
acterization of our problem, which reads as

(—A)kvn — AU — g(vy,) = 0 in E*, (5)

with (A\;)n C R such that A\, — A, < 0. starting
from (5) we derive the convergence for (vy,), in

E.

2.3. Ground state

The last part of the thesis goes through a sta-
bility analysis concerning the solution we have
found. In particular we prove that this solution
is a ground state, namely a function minimizing
the energy functional F' among the set of all pos-
sible solutions to our problem, denoted by W(c)
such that

W(c) :={u € S., F'|g,(u) =0}.

In this aim, we define the set

%z{ué&&hﬂﬂi:N éwﬁ,

’ k‘ RN
and we apply a fractional version of the Po-
hozaev identity in order to gather W(c) C V..
Finally, showing that v(c) = inf,cy, F(u), is the
intermediate step that leads us to

— inf F
v(c) ot (u),

which is the definition of ground state.

3. Fractional Laplacian

We remark that the results we have proved con-
stitute the fractional counterpart of the ones pre-
sented in [5], which faces the same problem in a

local framework. Furthermore, in order to prop-
erly introduce the analysis reported so far, we
decided to provide a self dependent first chapter
introduction of the fractional Laplacian, suit-
ably drawing from the contributions by E. Di
Nezza in [3] and by E. Valdinoci in [§].
Chapter 1 of the thesis indeed, is structured on
two different intents.

3.1. Theoretical characterization

In a first, purely theoretical, part, it offers
a self-contained characterization of the opera-
tor: it proposes two different definitions, via
the Cauchy principal value and via the Fourier
transform and sheds light on its connection
with the fractional Sobolev spaces. Specifically,
the Fourier definition allows us to characterize
this operator as a pseudo-differential operator
of multiplier [¢|?*) k € (0,1), as we show that

(—A)ku = F 1M - Fu),

with M(€) = |£]?*. Moreover, relying again on
the Fourier transform, we end up with an equa-
tion linking this operator to fractional Sobolev
spaces, which is

i = [ I IFuR ds

3.2. Nonlocality property

Then, the second part of the first chapter focuses
on some of the most outstanding consequences
of the fractional Laplacian’s nonlocal nature.
To be specific, we enlighten the central role it
plays in the Lévy flight process where the oper-
ator’s nonlocality is of prime importance, since it
allows long jumps along the domain, differently
from the standard random walk associated to
the Laplacian. In addition, if we pass to the limit
from the discrete to the continuous modelling,
we lead to the famous fractional heat equation

4 C(=A)*u =0,

which can be considered the analogue, in a frac-
tional framework, of the classical heat equation.
An additional non negligible effect of nonlocality
appears if we consider the wavefront evolution
speed for the following system

w4+ (—AVru=au xRN t>0
u(0) = 6(0),



where §(0) represents the Dirac delta centred in
0 and we consider both £k = 1 and k = % In
the first scenario the evolution is linear in time,
while, in the second one, the fractional Lapla-
cian plays a central role and is responsible for
the wavefront travel in space to be faster, specif-
ically exponentially in time.

The last phenomenon we analyze, then, regards
the maximum principles and of the Harnack in-
equality. To be specific we show how the classi-
cal versions of both, which are valid for sub and
superharmonic functions, fail to hold in a nonlo-
cal context. For instance, the strong maximum
principle that (—A)* satisfies, under regularity
hypotheses on u, reads us

(=A)*u(z) >0 2€Q
u(z) >0 r € RM\Q

implies
u(z) > 0in Q or u = 0.

It is immediate that in this case, the prescription
of the only boundary values on 0f) for u would
not be enough, since our operator works globally
on RY: as a consequence, 0 is replaced by the
whole RV\ Q.

Also the standard Harnack inequality suffers
from the same issues and needs to be adopted
to the fractional framework. In particular we
construct, as a counter example, a nonnegative
k-harmonic function u, k € (0, 1), defined in B
whose minimum and maximum are not compa-
rable in B,, for any r € (0,1). The function u
indeed, is such that

(—=A)*u(x) =0 for x € B,
u(z) >0 for x € B,\{0}
lu(z)| <1 for z € RY

and u(0) = 0. Therefore, the Harnack inequality
valid for harmonic functions, fails to hold for k-
harmonic functions.

Finally, for the sake of concreteness, an explicit
example of a one dimensional k-harmonic func-
tion, k € (0,1), is provided. We prove that,
setting wy(z) = max{z,0}*, k € (0,1), it holds
that

—cplz|F 2 <0
0 x>0,

(~ ) () = {

which means that, on the positive real axis, wy is
a k-harmonic function. Since this proof is pretty

technical, we decided to support the analytic
proof for this result with a more intuitive and
heuristic justification, passing through a payoff
model, in terms of expected payoff received by a
particle travelling on a bounded domain.

4. Conclusions

In this manuscript, we prove existence of nor-
malized solutions for the fractional nonlinear
Schrédinger equation

(—A)Fu — g(u) = M,

in case when N > 2, k € (0,1), A € R. Even
if this result is already present in literature,
the originality of the method we propose is not
pointless. Section 2.3, indeed, explicits how the
min-max method we rely on, allows us to de-
tect the ground state associated to our problem,
which is the solution seeked for the most appli-
cations in numerous physical fields.
Furthermore, this work can be intended as a
starting point in order to expand the research.
These kind of problems in fact, constitute nowa-
days a booming topic and the scientific attention
they attract is in great expansion. In particu-
lar, we mention the existence of standing and
travelling solitary waves and of ring vortices in
bounded and unbounded domains.

Moreover, these models’ application are not lim-
ited to single equations in euclidean context, but
have recently been studied on systems and met-
ric graphs. Since the metric and topological
properties of these structures strongly influence
the existence of the solutions, their systematic
study con constitute a valid expansion of this
thesis.
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