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Abstract 

Nowadays the semiconductor manufacturing system is claiming for more 

predictive engineering tools to give a prognostic view of the manufacturing system 

equipment’s health. In fact, degradation of a component/ system is one of the major 

factors that cause defective product output. Unfortunately, the complex process 

dynamics characterized by this sector doesn’t allow to predict some unobservable 

degradation tools. This is primarily due to a number of pressing issues, including 

the fragmented data sharing between inspection, maintenance, and operation 

control, the limited and unreliable phenomenon of semiconductor processes, the 

weak or nonexistent correlation between equipment information and quality 

results, and the general lack of historical data. This is the reason why in 

semiconductor industry is still needed traditional solution to screen out output 

quality independently from preventive equipment control conditions. An 

innovative way is to combine these two approaches in order to integrate these two 

management practices (Advanced process control (APC) and SQC) for finding the 

optimal policy to exploit the overall information of the field to minimize the 

resources employed. . This thesis maintains an emphasis on this comprehensive 

framework to comprehend how the two control policies interact exploiting different 

information feedback given from the machine controller and the quality inspection 

results. How the decision-maker would rank these two control visibilities according 

to the production system design chosen on the shop floor is the key point of interest 

of the study. This comparative analysis is built around a Discrete event simulation 

(DES) and Response Surface methodologies models  that  analyze the zero defect 

manufacturing performances of a degrading  lithography process in series with the 

overlay metrology station    

In order to comprehend how the control policy interacts in various settings.  This 

study demonstrates that there isn't a single solution for every production system 

configuration for the two control policy decision-making processes, because 



 

 

different production conditions lead to different information feedback accuracy 

from machine control and remote inspection. 

   

 

Key-words: Yield rate, Throughput effective, Throughput total, Preventive 

maintenance, predictive maintenance, condition based maintenance, Advanced 

process control 
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Sommario 

Al giorno d'oggi il sistema di produzione di semiconduttori rivendica strumenti di 

ingegneria predittiva per dare una visione prognostica dello stato di salute delle 

apparecchiature del sistema di produzione. Infatti, la degradazione di un 

componente/ sistema è uno dei principali fattori che causano la produzione di 

prodotti difettosi. Sfortunatamente, le complesse dinamiche di processo 

caratterizzate da questo settore non permettono di prevedere alcuni strumenti di 

degradazione non osservabili. Ciò è dovuto principalmente a una serie di 

questioni urgenti, tra cui la frammentazione della condivisione dei dati tra 

ispezione, manutenzione e controllo del funzionamento, il fenomeno limitato e 

inaffidabile dei processi a semiconduttori, la correlazione debole o inesistente tra 

informazioni sulle apparecchiature e risultati di qualità e la mancanza generale di 

dati storici. Questo è il motivo per cui nell'industria dei semiconduttori è ancora 

necessaria una soluzione tradizionale per schermare la qualità dell'output 

indipendentemente dalle condizioni di controllo preventivo delle apparecchiature. 

Un modo innovativo è quello di combinare questi due approcci al fine di integrare 

queste due pratiche di gestione (Advanced process control (APC) e SQC) per 

trovare la politica ottimale per sfruttare le informazioni complessive del campo 

per ridurre al minimo le risorse impiegate. . Questa tesi mantiene un'enfasi su 

questo quadro completo per comprendere come le due politiche di controllo 

interagiscono sfruttando il feedback di informazioni diverse fornite dal controller 

della macchina e dai risultati dell'ispezione di qualità. Il punto chiave di interesse 

dello studio è il modo in cui il decisore classificherebbe queste due visibilità di 

controllo in base al design del sistema di produzione scelto in officina. Questa 

analisi comparativa si basa su modelli di simulazione di eventi discreti (DES) e di 

metodologie di superficie di risposta che analizzano le prestazioni di produzione 

di difetti pari a zero di un processo di litografia degradante in serie con la stazione 

di metrologia di sovrapposizione.   

Al fine di comprendere come la politica di controllo interagisce in varie 

impostazioni.  Questo studio dimostra che non esiste un'unica soluzione per ogni 

configurazione del sistema di produzione per la decisione delle due politiche di 

controllo-processi di fabbricazione, perché le diverse condizioni di produzione 

portano ad una diversa precisione di feedback delle informazioni dal controllo della 

macchina e dall'ispezione remota. 



 

 

 

 

Parole chiave: tasso di rendimento, tasso di produzione effettiva, tasso di 

produzione totale, manutenzione preventiva, manutenzione predittiva, controllo di 

processo avanzato 
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1.1. The industrial context  

 

The manufacturing sector is one of the most important key factors for 

nation’s growth. Nowadays, companies are struggling in a highly 

competitive scenario, with mutating, fast moving and customer driven 

market. In the last decade some important global megatrends are affecting 

the future corporate strategies and more broadly the current living standards 

of modern societies.     

In the last 20 years, the economic structure and system have led to an increase 

in the level of consumption of natural resources. The emerging developing 

countries have also contributed to higher living standards for most of the 

global population. Additionally, even the population growth rates will 

decrease in future years, at the end of the 21st century the population will be 

roughly around 11 billion [1] .  This scenario will entail higher production 

capacity to achieve and higher resource and energy consumption for keeping 

the same living standard for an even larger population. For this reason, a 

decoupling of the consumption of material and energy from the rising global 

demand is required[2], [3]. Otherwise, the high consumption level will for 

sure lead to the reduced availability of virgin material and the generation of 

more and new wastes. 

An example of the problems that this might create in Europe, could be the 

increased scarcity of raw materials used in High-Tech applications and 

consequently a price increase. This could threaten Europe Energy transition 

towards renewables. The decrease in material availability would increase the 

dependency of Europe on resource-rich countries like China or other 

countries worldwide [4]. 

 

International institutions and governments in Europe have translated this 

threat into an opportunity to develop new business models with scientific 

circular approaches together with incentives aimed to change the way of 

conducting business towards more sustainable business models. The 

Sustainable Development Goals (SDGs) outlined in the United Nations 

Global Agenda for Sustainable Development in 2015 [5] aims to the 

achievement of 17 goals within 2030. Therefore, the need for sustainable 

manufacturing has become stronger than ever and tools able to find and 

correct inefficiencies in the production system are fundamental for achieving 

this goal.  



 

 

For this reason, manufacturing companies are facing the challenge of 

delivering the required production rates of high-quality products while 

minimizing the use of resources. The increasing emphasis on sustainable 

production requires maintaining the resource efficiency and effectiveness 

along the product, process, and production system life cycle.  

The deployment of increasingly complicated designs to enable the 

administration and control of production processes has improved recently 

thanks to digitalization. Particularly, the Manufacturing Execution System 

(MES) has become important to business operations as the primary software 

module for the implementation of cutting-edge Zero-Defect Manufacturing 

techniques (ZDM). The implementations of MES have enhanced the control 

of manufacturing systems for production qualityNew sensor technologies in 

particular have made it possible to collect a wide range of data in real time 

on manufacturing lines while the process is being carried out at a very fast 

collection rate. To build a manufacturing system that is adaptable and 

customer-focused, the issue will be proactive control with appropriate data 

collection and integrating solutions. These variables result in a transition 

away from inflexible mass production toward an agile process that can 

respond with a minimal amount of changeover and production gap cost 

while always meeting the volume and quality requirements. To strike a 

balance between efficiency and effectiveness, the production system's 

complexity must be improved from a global perspective and at various 

levels. Manufacturing businesses are researching Quality, Production 

Planning, and Maintenance as essential processes that must be monitored in 

manufacturing systems to prevent suboptimal improvement in order to meet 

these objectives. 

1.2. Motivations 

 

Semiconductor Manufacturing system is one of the most complex 

manufacturing  processes that consists of four basic steps: wafer fabrication, 

wafer probe, assembly (packaging), and final testing[6]-[7], [8]. The wafer 

manufacturing phase, often known as the front-end, is the most costly. 

During this phase, circuits are stacked onto the wafer using sequential 

procedures. There are numerous processing steps involved in this. The 

dynamics, performances, and characteristics of the process and the end 

output are thus determined by an unlimited number of factors. Since this 

market is subjected by fast-changing conditions, some structural 
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reconfigurations, actions of improvement, or operational modifications must 

be taken into consideration analysing all possible alternative comparisons to 

design the optimal system for all the possible scenarios.  

Generally, a number of analytical techniques have been developed to 

characterize a manufacturing system's behavior using equations that can aid 

in making precise decisions during production planning 

strategies[7],[9],[10],[11]. However, Analytical models are complex 

engineering formulations not easy to derive and not always they mirror the 

real behaviour of the system, since some restrictive hypothesis might not be 

aligned with more complex dynamics and improvement programs. 

Therefore, the introduction of Simulation tools plays an important role for 

the study of more articulated problems as it provides a closer interval of 

outcomes with respect to the real performances, even if it might be time 

consuming both for the design of the simulation of the real system and the 

extrapolation of the result.  

 

Nowadays, the increasing competitiveness of the global market has resulted 

in a constantly increasing pressure on both the quality of products and the 

productivity of the systems. Therefore, the performance of semiconductor 

fabs is constantly being evaluated. Machine utilization, work in progress 

(WIP), flow time (FT), factory throughput, on-time delivery, and overall 

equipment efficacy are just a few examples of the conventional metrics 

employed. A portion of the research also looked at how they interacted and 

what impact they had on one another. A company's philosophy and the 

product market determine the importance of factory performance 

measures. Among all the performances that need to be considered, the 

quality control system represents a relevant factor for the design of the 

manufacturing plant. As described in the previous section, Manufacturing 

Companies wants to cope continuously the required production rates of 

good quality product with minimum waste of resources. 

In the semiconductor industry, Yield is a crucial measure of manufacturing 

performance and equipment condition can have a significant impact on it. 

This performance is considered as the mean portion of die on a wafer that 

can ultimately be sold [6] . 

Research and practice have usually dealt with the scheduling of equipment 

maintenance and production dispatching issues separately during the last 

few decades, neglecting the potential effects that equipment condition may 



 

 

have on various product categories or families. The issue is based on a 

scenario that occurs during the creation of semiconductor wafers, in which 

the equipment's quality degrades with time and negatively impacts the 

production process's yield.[12]. 

Scientists and entrepreneurs have never considered an integrated framework 

that combines Quality, Process Control, Production Planning, and 

Maintenance[12]. Instead, they have always studied these four areas 

independently. Though it's possible that improving one component at the 

expense of another will result in a less-than-optimal outcome. As a result, the 

success of a corporation that is based on production quality is heavily 

influenced by these three control policies, which work in concert. 

Several empirical studies have been discussed about further interactions 

among the three-control policy. In particular,  from a survey approach[13], 

potential correlations between the application of Just in Time (JIT) and Total 

Quality Management (TQM)  lean practices in automotive and electronic 

industries are studied. These corporations have been able to better manage 

their production via higher-quality performance and reduce inventory using 

JIT strategies, producing beneficial results for their industry. The importance 

of comprehending the cause-and-effect relationships of the primary quality, 

production logistical, and maintenance factors has been underlined by this 

positive association. In [12] a Casual Loop Diagrams (CLD) has been 

delineated to consider manufacturing and shop floor related aspects. This 

aggregated representation model aims to highlight bi-directional mutual 

cause-effect relations found among quality, maintenance and production 

logistics and identify many existing trade-offs. The proposed CLD model can 

be seen as reference framework to describe the results of the work proposed 

in the following sections and to find unexplored problems that contributes 

for the improvement of effective throughput. 
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Figure 0.1: Details of Interaction model Casual loop diagram  

As shown in the figure above, typical common dynamics are already known 

about manufacturing systems. A few significant interaction trade-offs are 

shown in the diagram: Inventory is reduced, which allows the system to 

immediately detect any quality issues. It is difficult to monitor processed 

components that pass through many stages and buffers before being 

inspected, and input for quality control is delayed. The buffers' ability to 

decouple the various machine speeds and avoid operational disruptions, 

however, has a favorable impact on the system's output rate. Low WIP may 

also hinder maintenance efforts since other stations may have an impact on 

the machine. Additionally, it has been demonstrated that the operating speed 

is negatively connected to the product's quality.[14] Thus, improving the 

machine processing rate has a positive impact on the system throughput, but 

may negatively affect the system yield.  

Other interactions may be connected to the quality control architecture and 

its effects on productivity performance. These interactions must be assessed 

from the perspective of process control as well. The positioning of the 

measurement stations for the SoV-based robust control system and the 

timing of any corrective action made on the system from distant signals may 

have a considerable impact on the production flow limitations[9].The 

frequency with which resources are maintained improves part quality but 

reduces the operational time of machines, which has an impact on overall 

production. Although more inspections might be logical to better assess the 



 

 

degradation state of resources, this will increase the time it takes for the 

system to reach completion. 

These problems usually involve different companies and different 

departments within each company. The coordination and cooperation 

among them in achieving a right balance between these conflicting goals is 

seen as a key issue for success. In the literature[12], The majority of works 

only include contributions pertaining to the integration of production 

logistics and quality interaction. Little progress has been made toward the 

three control policies' combined design. Fewer submissions from prestigious 

international publications address issues within a fully integrated 

framework, with the majority focusing on the interplay between quality and 

production logistics. These factors drive more research initiatives and 

creative suggestions for the behavior of production systems as well as for 

lowering costs for businesses. 

A particular unexplored area in the semiconductor industry concerns the 

deep relation of equipment state condition and the quality result of the 

product. Manufacturing sectors such as aeronautical, railway and 

automotive, machinery, have already exploited machine learning tools, 

analytical and empirical studies to predict and infer respectively the future 

health condition of the equipment and the quality characteristic determined 

by the predicted level of degradation[15],[16],[17],[18].These tools are 

empowered by an optimal and cost-effective allocation of sensors to get real 

time information about the equipment system behaviour to proactively make 

maintenance intervention at the minimum expense, obtaining the best 

quality outcome. However, the high complexity of the semiconductor 

fabrication, characterized by hidden dynamics within different in-chamber 

chemical production stages [19]-[20], entails high efforts for the 

implementation of predictive and preventive maintenance policies (PdM , 

PM), because high investment of sensing tools is needed and the extraction 

of reliable data is still difficult[21]-[20]. Run-to-failure and periodic 

maintenance scheduling are still used in this area to determine whether 

systems are maintained well or poorly. Moreover, inspection stations like 

overlay metrology are considered the critical point for the major performance 

of the semiconductor line, since they usually deserve of the longest 

processing time to guarantee the certified quality level and lot of capital costs 

are implemented in order to not lose efficiency. In this stage SPC analysis 

and several types of intra-field and extra-field errors are examined to study 

whether the process is in control, the parts examined are not defective and if 

a correction of upstream processes must be taken in order to match some 
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process deviations[7]. Indeed, the quality control plays an important role also 

as condition-based maintenance tool (CBM) for possible corrective actions 

along the upstream line. Nevertheless, this analysis misbehaves whenever 

there are long WIP, long buffer capacity and long serial process before the 

inspection for the reason already explained above. If the processed parts 

have to cross several production stages and buffers before being inspected a 

delay in the quality control feedback is generated and its responsiveness is 

reduced. These considerations strongly motivate the need for research 

activity and give an idea of its potential impact in terms of knowledge of 

production system behaviour as well as in terms of cost reduction for 

companies. 

1.3. Objective  

 

The Objective of this thesis is devoted to the analysis of possible interactions 

between the maintenance policy enacted by estimated equipment 

degradation from partial sensing of its real condition and the information 

quality related to the metrology control for an asynchronous two-stage 

manufacturing system.  

The work fits in the framework described in 1.2 and tries answer to the 

following question: “Are both control policy useful to support synergically 

the joint consideration of quality, production logistics and resource 

maintenance” and “ When does the quality claims assumes predominant 

importance than the health estimation of the equipment?”  

To make this analysis a simulation model is designed to describe a serial line 

composed by unreliable machine subjected to unobservable deterioration 

that influence with an unknown relation the product quality characteristics. 

An in situ controller that approximately guesses the behavior of equipment 

health condition using a hidden Markov model (HMM) is considered to 

handle a hypothetical forecasting tools approach of deterioration states of the 

machine. The simulation tries to emulate the semiconductor manufacturing 

system case proposed in [7], in which simulation is developed to validate the 

Approximate Analytical model as a support for the study of robust 

multistage process control model for measurement point reduction in the 

overlay metrology.  A line's bottleneck is the inspection station, which must 

align many printed layers with subnanometric precision. 



 

 

The new simulation model formulated will consider the dynamics of the case 

study to determine an appropriate maintenance policy that can be integrated 

with the SPC quality control that monitors the quality deviation from the 

normal average. 

Furthermore, an optimization model through response surface methodology 

will be framed to conceive a production, quality and maintenance control 

policies able to minimize the long-term total cost, satisfying the production 

quality demanded by the final customer.  

The model formulated will be a tool to understand how the system, will react 

towards changing conditions like the different knowledge of degradation 

states from the monitoring sensor, the different buffer capacity, different 

machine speeds and sampling rate. 

1.4. Thesis outline  

 

The thesis is structured in the following chapter: 

• In chapter 2. A literature review of the main tools and topics treated 

in the thesis will be given. 

• In chapter 3. A briefly recap of the Response surface methodology 

• In chapter 4. The problem addressed by the thesis is formalized  

• In chapter 5. Some problematic tied to the process degradation in the 

semiconductor process fabrication is presented to justify the 

simulation model construction 

• In chapter 6. The simulation model to build is descripted  

• In chapter 7. The simulation functioning is presented in detail 

• In chapter 8. The discussion of the final result are formulated 

• In chapter 9. Conclusion about the analysis conducted are drawn 
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2 Chapter two 

2.    Literature review 

2.1. Notion and Definition of performance measures  

 

Examples of concepts and initiatives that weren't designed for such rapidly 

shifting situations include Six Sigma, Just in Time, Continuous 

Improvement, Total Quality Management, Toyota Production System, and 

World Class Manufacturing. To achieve this goal, a modern, integrated 

conception of manufacturing quality must be created. There are several 

distinct Key Performance Indicators (KPIs) that each relate to quality, 

manufacturing logistics, and maintenance in the literature and in various 

business applications.[22] 

 

The production rate, WIP, flowtime, defect rate, and other complicated non-

linear functions of a single process or stage are common in manufacturing 

systems. The total quality management as a result (TQM) and total 

productive maintenance (TPM) paradigms are used in agile businesses and 

provide integrated KPIs to assess the success of a particular improvement 

plan's execution in an industrial setting. It has been demonstrated that there 

is a strong and favourable link between TQM and TPM that enables the 

implementation of practices simultaneously enhancing production 

performances.[23]-[22]. Particularly, the effective throughput—the total 

number of conforming components that the system produces over time—is 

shared by the two techniques as the most important integrated performance. 

The TQM philosophy, which pushes businesses to create products and set 

up operations that only produce commodities that match the expectations of 

the client, is built around this performance. This would guarantee that their 

resources are used effectively and efficiently to generate just the goods and 

services that the clientele want and is prepared to pay a premium price for. 

 



 

 

 Yield is another significant performance metric in the semiconductor 

business, and the health of the equipment plays a big part in determining it. 

According to [24] is the mean portion of die( chips) on a wafer that can 

ultimately be sold. Usually, three sites on the plant are used to calculate the 

measurement: The yield is first determined at the moment where the wafer 

fabrication process is complete by comparing the number of wafers that 

completed it to the number of wafers that began it (usually called Line-Yield). 

The second point is that, following wafer sort, the yield is determined by the 

proportion of tested dies that perform properly (usually called Die Yield). 

The third point is that, once the packaging and final testing procedures have 

been completed, the yield of that part may be determined by dividing the 

number of dies that pass the final tests by the number of dies that began the 

packing process. [6] 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑦𝑖𝑒𝑙𝑑 =
𝑄𝑤𝑎𝑓𝑒𝑟𝑠 𝑜𝑢𝑡

𝑄𝑤𝑎𝑓𝑒𝑟𝑠 𝑠𝑡𝑎𝑟𝑡𝑒𝑑
×

𝑄𝑔𝑜𝑜𝑑 𝑑𝑖𝑒𝑠

𝑄𝑑𝑖𝑒𝑠 𝑜𝑛 𝑤𝑎𝑓𝑒𝑟
×

𝑄𝑑𝑖𝑒𝑠 𝑝𝑎𝑠𝑠 𝑓𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡

𝑄𝑑𝑖𝑒𝑠 𝑠𝑡𝑎𝑟𝑡 𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔
           (1) 

 

In section 4 our analysis will be done for the first contribution along the 

semiconductor fabrication. 

Another concept of yield used by practitioners that is similar to the previous 

definition is the ration between the effective and the total throughput as 

described in the equation 4.21 in [9]. 

The problem is based on the situation found in semiconductor wafer 

fabrication where the equipment condition deteriorates over time, and this 

condition affects the yield of the production process. 

 

One performance studied in literature associated with yield is the Flow Time 

(FT), which us defined as the elapsed time between the start and completion 

of a task [25] .  

FT reduction is highly valued by semiconductor makers. By simplifying the 

system and creating control mechanisms for more effective line balancing, 

dispatching, and utilization, they hope to lower FT. With shorter FTs, a 

company may be able to fulfil client orders more quickly and respond to the 

market. Additionally, when FT declines, it becomes easier to spot process 

flaws, which speeds up the creation and improvement of the process. As a 

result, the company may increase its yield more quickly. In order to maintain 

their competitiveness, semiconductor makers therefore strictly regulate cycle 
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times and work tirelessly to cut them. The procedure also shows the part's 

yield. [26]. 

 

Another important aspect that affects the quality control is related to the 

timing of the feedback about the quality condition monitored, that is 

considered in Lean manufacturing culture one of main cause of muda 

(wastes). Some common wait time is caused by processing delays, machine 

or system downtime, response time, or signature required for approval wait 

time.  

 If we break it down to its simplest form, a delayed response is a gap in time 

between when an event occurs and the response to that event. The gap in 

time is waste – waiting – and it is tied closely to the efficiency (or inefficiency) 

of your operations. [27] 

 

All these performances are accounted in the work proposed, to deep analyse 

the behaviour of the system toward the new policy introduced. 

 

2.2. Reference architecture for the industrial 

implementation of zero-defect Manufacturing 

strategies  

 

A production system known as a Multi-stage Production System (MMS) 

consists of several parts, stations, or steps that must be finished for the final 

good or service to satisfy consumers' needs. A wide range of modern 

production and service systems are included in multi-stage systems, which 

are often employed in practice. Because MMS has a waterfall characteristic, 

the product's quality is influenced by both the results of earlier stages as well 

as the present stage. This presents great challenges for quality monitoring 

because of the large amount of data and the interactive effects of many factors 

on the quality of the product. Nowadays, recent technological developments 

provide the tools needed to understand and resolve these challenges. 

Manufacturing firms have recently taken major steps toward digitizing 

software structures for managing and controlling production systems. 

Sensors, data collecting systems, and computer networks have become more 



 

 

accessible and affordable as a result of recent innovations, compelling 

industries to adopt high-tech approaches. 

ERP, an outdated kind of production management software, is no longer 

sufficient to continuously monitor, regulate, and enhance the manufacturing 

system. The ability to efficiently deliver the required quantity with the 

required quality while keeping resource usage to a minimum level 

necessitates a thorough understanding of the operating manufacturing 

system, which can be attained by continuously gathering data and 

comprehending behavior to implement the most efficient control strategies. 

In discrete manufacturing processes, total inspection at every intermediate 

step and extremely high sampling rates are already commonplace, and the 

volume of data gathered enables effective quality control system production 

execution. The large amount of Big Data has demonstrated that every 

stakeholder level must be taken into account for Multistage Manufacturing 

System (MMS) management to be effective. 

Therefore, MES has acquired relevance as central software modules for the 

application of advanced Zero-Defect Manufacturing solutions, going beyond 

traditional data mining approaches. 

In the following Figure, the proposed architecture within a manufacturing 

company in [28] is presented in detail . 
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Figure 2.1: Reference architecture and software modules for ZDM strategies, with 

information flows (dashed arrows) and actuating controls (straight arrows) 

 

The key management software that most businesses typically use is shown 

by the violet areas: Product Lifecycle Management (PLM), which contains 

basic product information such CAD files, a bill of materials (BOM), and 

production cycles (CAM); Manufacturing Execution System (MES), which 

actually manages operations at the shop-floor level, and Enterprise Resource 

Planning (ERP), which often manages information about incoming materials 

from suppliers and exiting goods to consumers. The systems of 

interconnected computational entities known as Cyber 

Physical Systems (CPS) that provide and use data-accessing and data-

processing services made available on the Internet are what make it possible 

to use all of the aforementioned software. CPS are connected to the physical 

world and its ongoing processes.  

 

Within the shop-floor area, the three main sources of data and information 

are represented by process machines, inspection machines and operators. 

These elements are markers for actual shop-floor machinery with field level 

sensors and actuators. Data Intelligence illustrates the suggested 

architecture, which is intended to relate to the existing architecture in order 

to develop and implement ZDM strategies. 

 

The [28] identifies three layer necessary to build the overall architecture: 

• The hardware layer composed by multi source and multi sensor 

network aimed to monitor machines state, inspection phase and 

operators. 

• The data management and synchronization layer connect the hardware 

to the architecture's applications using appropriate wrappers such as 

OPCUA or XMPP protocols. Data Analytics tools and Extract 

Knowledge valuable for ERP, PLM, and MES devices are used to collect 

relevant data. 

• The Engineering Platform also intends to provide a system engineering 

platform that can integrate maintenance, production logistic control 

regulations, and quality considerations into a unified framework. The 

assessment is based on information received by the preceding layer on 

process states, dynamics of material flow, and quality conditions. The 

ZDM paradigm's last phase is crucial since it calls for the development 



 

 

of three different kinds of control loops: a low-level control loop that 

examines the current condition to avoid failure or errors. a middle level 

that assesses potential compensation or rework strategies if problems 

arise. Last but not least, the high degree of control that forecasts the 

viability of the quality/logistics solutions developed at medium level, as 

well as the economic advantages of those solutions.  

To this reason, in the literature wide interest has been given to the analysis 

of production line performances from a productivity point of view and both 

analytical and simulation-based tools have been developed. However, less 

attention has been paid to the study of the relationships between quality 

performance measures, process control and productivity of the production 

systems. in [12] is highlighted  the need for joint consideration of quality, 

production planning, and maintenance and proposes production quality as 

a new paradigm that goes beyond traditional six-sigma approaches. 

2.3. Data management structure and architecture in 

the semiconductor fabrication  

Data is the fundamental basis for all other Predictive and Preventive 

maintenance functions and applicationsManufacturing semiconductors has 

always required a lot of data. But in a "just in case" situation, the data is only 

transferred into storage. Additionally, more than 90% of the processed data 

is never again accessible. The following are the primary data sources used in 

this sort of plan: [21]: 

- Fault Detection and Classification (FDC) The semiconductor industry has 

acknowledged data as a crucial element of advanced process control (APC). 

Status variable identification (SVID), which comprises equipment 

categorization with timestamp occurrence and problem detection, is 

collected during the semiconductor production process. With this 

knowledge, engineers may quickly return the machine to its initial state by 

referring to the machine fault number. 

- Equipment tracking system (ETS), collects and analyses the equipment status 

and the proceeding operation states together with initial timestamp and fish 

timestamp described by operator. 

-Metrology data, which records wafer measurement along the wafer-n in the 

lot-m. 
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Consolidation and synchronization of the three different datasets are 

required. In doing so, wafer-n and time stamps are used to combine events 

data, trace data, and metrology data. Anyway, the multidimensional 

information presented by this integrated data may be synthesized. To make 

the data more suitable for exploratory analysis, the dimensionality of the 

data has been reduced using a variety of techniques, including Principal 

component analyses (PCA). A class of such techniques often preserves the 

relationship between the data and projects it onto a low-dimensional space, 

either linearly or non-linearly. The Self organized Mapping( SOM) is a set of 

unique methods that reduce the amount of data by clustering and reduce the 

dimensionality of the data through a non-linear projection data on a small 

space [19]-[21]. Once this information are synthesized and cleaned, they are 

ready to feed the IT Architecture described in section 2.2.  in figure below is 

shown a possible structure of semiconductor information system 

architecture  

  

Figure 2.2: conceptual big data architecture[21] 

 

 

 

 



 

 

2.4. Inspection planning in a multistage system  

In multi-stage system the design of an effective and cost-efficient quality 

control strategy pass through an optimal inspection policy. Inspection 

planning entails determining the part quality checks, as well as the location 

and scope of inspection activities in the production system, as well as the 

multi-sensor system to be installed for process monitoring. This are the main 

factors discussed in [29]- [12]to assess the significant quality characteristics 

of products while maximizing the system efficiency. In order to perform a 

machine and process state diagnosis and implement corrective or preventive 

actions to restore in-control manufacturing system behavior, the resulting 

decision will require the use of data gathering systems to provide useful 

information to SQC, SPC, and Condition Based Maintenance (CBM) 

procedures. 

 Generally, inspection can be done in every production stage, and the 

measured parts can be scrapped or even remanufactured according to the 

inspection result. [12] highlights how scrap activities can waste more energy, 

time, and materials, but that the lack of defect checking along the phases 

necessitates more rework and repair procedures to restore an item. 

In literature, different analytical models as [7], [9] have studied the 

performance of the two different types of inspection stations: In a production 

line, machine can be monitored locally or remotely. 

The figure Represent a local (M2) or remote (M1) inspection  

 

                                

         Figure 2.3: description of remote and locally inspection station 

In the first scenario, if every machine is regulated locally, there is less chance 

that non-conforming products will get through the MMS, even though the 

cost of inspection may be higher than the savings realized by spotting flaws 

early on. Although there may be a non-conformance in the finished product 

corresponding to the first step, in the second scenario the cost of the 

inspection operations is decreased. This often happens because of Quality or 
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failure correlation of the upstream process which may affect the quality 

outcome or even the integrity of the downstream process [12]. Moreover, [7] 

outlines how the remote solution generates further non-conforming items 

simply due to the delay of responsiveness from when an upstream stage out 

of control occurs till when it is detected at the end of the line. In fact, during 

this time interval pieces between the inspection station and the upstream 

stages can be judged as non-conforming item to be scrapped or reworked. To 

this reason, [9] has studied an optimal allocation of a limited number of 

inspection stations in the serial manufacturing system with the objective of 

maximizing system effective throughput. It illustrates that a higher level of 

effective throughput may be obtained with fewer inspection stations that are 

widely distributed rather than more stations that are badly distributed, 

meaning better performance for less money invested, particularly when the 

quality issue is serious. 

The inspection can be performed over the entire lot or within a partial 

sampling. Researchers usually consider the inspection accuracy 100% perfect 

for sick of simplicity but not always in reality this may happen. Whenever an 

item is recognized as non-conforming product, four possible conditions can 

be applied. In fact, the item can be reworked, repaired, replaced or scrapped 

[29]. 

Manufacturers can save money and time by comparing the minimal number 

of items to be inspected to a 100% inspection. Sampling inspection also 

enables the evaluation of a large number of test items that would otherwise 

be impossible to inspect in a 100% inspection. 

However, sampling inspections do not guarantee the quality of all 

manufactured products. Therefore, sampling inspections need a system that 

cuts inspection costs while taking into consideration the manufacturers and 

consumers’ benefits, while reducing the risk of nonconformity to ensure 

consistently high quality. This means that the inspection scheme and how 

the appropriate sample size for the manufacturing process is determined are 

very important. Different joint optimization models such as [30] takes 

already into account an Average outgoing quality level(AOQL) that denotes 

in the optimization the number of defectives observed by the final customer. 

The samples are often subject to the first type error and second type error, 

which are respectively mistaken rejection or missed rejection inside a test of 

hypothesis applied over time on the samples to verify whether the process is 

in control. These two errors applied on the samples are considered 



 

 

probabilistically by most of the researchers as an important tool to manage 

the uncertainties about inspection tools and inspection operators [31], [32]. 

Usually, to optimize an inspection planning, minimization of the total 

expected cost or the expected unit cost is used as objective function [29], 

however no study has considered in minimizing total manufacturing time 

and there is a general lack of multi-objectives models [33]. Researchers have 

devised a wide range of methodologies for resolving inspection planning 

difficulties, most notably with a non-linear total cost function optimized with 

gradient-based methods [32], but also with simulations, even if this method 

only considers a small number of production scenarios [33]. It is critical to 

design multi-objective optimization frameworks that include inspection and 

maintenance tasks simultaneously. To preserve profitability and worldwide 

competitiveness, manufacturing organizations must achieve a high degree of 

quality in their services or goods [31]. 

In fact, the production capacity is impacted by the maintenance operations 

required to return the used equipment to excellent condition. If production 

is run properly, it may result in high-quality products, and if the equipment 

is kept in good condition, it can run faultlessly. When checking the quality of 

parts, maintenance procedures should be considered. It makes appropriate 

to inspect less frequently as time goes on and/or the operating stage degrades 

when inspection costs are high[34] [32]. has presented a model for integrated 

planning of the part quality inspection and preventive maintenance activities 

while production stages are deteriorating.  [30] has demonstrate a tight 

correlation between Condition Based Maintenance Policy or Preventive 

maintenance action with the various inspection strategy as inspection 

allocation and sampling inspection. [35] the quality control strategy 

proposed in this paper consist of a derivation of a continuous sampling plan 

proposed by that randomly inspects a fraction f(.) of products with 

0<=f<=1[30]. However, in contrast of assuming a constant fraction of 

inspection, a dynamic sampling is assumed to incorporate the effects of a 

degrading process with continuous deterioration of parts quality [30], [36] 

The countermeasure proposed is the increase of sampling inspection size as 

the machine wears. 
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2.5. Work in progress scrap  

Reworking defectives and managing waste or trash are significant difficulties 

in a manufacturing system that demand prompt attention in order to achieve 

the fundamental goals and conditions of a lean production system. A perfect 

lean system would be free of errors or defects at all levels, however this is 

unavoidably impossible. Therefore, scrap formation must be included when 

assessing the effectiveness of production systems because it is likely 

unavoidable. In reality, the parts produced by downstream machines until 

the issue is detected must be thrown away if a production line includes in-

line inspection and the item is determined to be faulty. The cause may be an 

OOC machine[7]. Thus, the line has to be unloaded before the failed machine 

is repaired. Another case where material need to be scrapped along the line 

during production is when dealing with goods whose physical or chemical 

characteristics fall out of specification during stoppage. The food sector, for 

example, is a good example of where specific procedures must be completed 

in a timely and carefully controlled manner, and where extended failures and 

disruptions in the manufacturing process can result in significant quality 

degradation[37].However this phenomenon is not accounted in this work, 

the pieces trapped in the buffer are not unloaded after OOC of the process 

occurs.  

Additionally, a major cause of in-line scrap is the prolonged exposure of 

material to certain conditions (such as heat, humidity, acidity, etc.). 

Numerous other production processes also include stoppages that might 

cause WIP to be damaged and ultimately need to be trashed. Neglecting the 

influence of scrap in assessing system performance might result in a 

significant approximation on the engineering side of manufacturing systems 

when long linear production lines are reviewed inside the system. In the 

literature [38] considers a two-workstation model where, in the event of a 

workstation malfunction, the part it contains is discarded. [39] The author 

examines a transfer line with geographically distributed waiting periods and 

downtimes, in which the component is discarded with certain probability if 

a workstation fails.[40] evaluates a line with two workstations and no 

intermediate buffer. One part can be stored at each workstation. When a 

workstation malfunctions, the malfunctioning component is eliminated as 

soon as the workstation is functional once more. In all of the previous 

research, it was presumed that if a workstation malfunctioned, the one 



 

 

component on the workstation would be thrown away. More recently [41] 

Create a model for a buffer-less, timed, automated transfer line where, when 

a workstation fails, it shuts down along with all the other workstations 

upstream, and the components stuck in the halted workstations are 

discarded after a predetermined length of time. In [42] The effect of quality 

on system productivity is investigated, but there is no scrap in the system, 

and the number of defective components is calculated at the end of the line. 

In [7], As soon as an OOC is detected, an online inspection machine stops the 

unit that produced the faulty item and utilizes Statistical Process Regulate 

(SPC) to control other processes. After that, without passing through the 

complete line where the yield is calculated, the material caught between the 

production and inspection equipment is scraped. 

 

 

2.6. Maintenance policy classification 

Maintenance strategy is a planned way to upkeep devices, which contains 

actions such as identification, researching and execution of many repairs, 

replace and inspect decisions[43]. 

Historically, several Authors and different country standards [43] has 

interpreted and classified maintenance techniques in different ways. [44] 

based on the strategies considered with conventional maintenance factors, a 

categorization was suggested. They present reactive and preventive 

maintenance as the two primary strategies in machinery maintenance based 

on this classification, as well as a variety of tactics related to maintenance 

concepts under the heading Proposal of Maintenance-types Classification to 

Clarify Maintenance Concepts in Production and Operations Management. 

According to Figure 2.4 and with the addition of Tables 2.1, 2.2, and 2.3. The 

authors draw the conclusion that it is clear that each of these strategies may 

be applied using various approaches, methodologies, and technology. 
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Figure 2.4: Maintenance taxonomy 

 

Table 2.1: Reactive tactics in Maintenance 

 

 

Table 2.2: Preventive tactics in Maintenance. 

 

Table 2.3: Proactive tactics in Maintenance  



 

 

 

 

More in general, all these techniques are categorized in four maintenance 

techniques: 

Instead of performing preventive maintenance, it was sometimes decided to 

run the equipment until it broke down. Corrective maintenance, also known as 

reactive maintenance, results in unscheduled downtime, higher labour costs, 

and faster asset obsolescence. On the one hand, the costs of routine 

maintenance are continuously declining, but in the long term, breakdowns 

or accidents cause protracted downtime and a fixed replacement cost. As a 

result, failure might happen suddenly or as a result of overusing the system. 

As a result, numerous pieces of equipment are updated often without being 

fully evaluated for usability or performance. All of these issues, together with 

technological advancements in the fields of computers, high-precision 

sensors, and low-cost sensors, drove the development of predictive 

maintenance forward (or condition-based maintenance). 

Preventive maintenance ((PM) is a time-based statistical technique for 

anticipating and avoiding equipment breakdowns. In order to increase an 

asset's remaining useful life (RUL) or identify an asset that has reached the 

end of its useful life and is about to fail or break down, a set of tasks are 

performed at a set of intervals that are determined by the passage of time, 

the volume of production, and the condition of the machine. A PM policy has 

also been taken into account for a degraded system with a respectable level 

of dependability. 

Despite all of its advantages, preventative maintenance comes with a number 

of difficulties, such as the requirement to create complex scheduling 

processes, extremely limited hours, as well as dangerous and expensive 

components. In addition, there is the issue of unanticipated failure outside of 

the schedule, which would render the machine or piece of equipment 

inoperable until the scheduled date. Employee safety is at stake, and 

replacing items that could have lasted longer and didn't need to be replaced 

could cost a lot of money. carrying out pricey emergency repairs or 
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subsequent upkeep. Preventive maintenance has been the focus of all of these 

challenges and issues.  

Predictive maintenance. According to a system's condition, predictive 

maintenance determines whether or not to maintain it. It is based on 

applying a number of non-destructive tests to characterize the machine's 

state and choose when maintenance is necessary. 

Condition-based maintenance (CBM). The PM service is based on a reading or 

measurement that exceeds a set limit. If a machine is unable to maintain a 

tolerance, condition-based maintenance is performed.  

Using a predictive maintenance program has several advantages. It can save 

downtime for the equipment, increase asset reliability, and prevent needless 

maintenance. Instead, it might result in a more complex system design by 

raising the fixed cost of purchasing diagnostic equipment, sensors, and 

software. A sound maintenance plan is an important and vital part of 

management in firms since it decreases failures, saves costs, and boosts 

productivity. It may be difficult for businesses to choose a workable strategy. 

As a result, many businesses employ a variety of maintenance strategies.          

Table 2.4: Maintenance characteristics 

 

 

However, Maintenance activities are traditionally considered in conflict with 

production operations [35]. [44] Preventive maintenance protects equipment 

from degradation, decreasing the need for difficult and costly corrective 

measures, yet also has a detrimental impact on equipment availability. As a 

result, the attainment of production targets is threatened. To mitigate this 

unfavourable effect, substantial effort has been put into developing rules to 

improve the synchronization of preventive maintenance and production 

processes. Nowadays the Concept of Opportunistic maintenance was 

introduced in [45], but applications in industry have been very limited, 

mainly due to the difficulty in calculating the duration of opportunistic 



 

 

windows, in predicting the effect of the specific maintenance actions on the 

system. In general, the opportunistic maintenance is a maintenance 

intervention performed during a favourable opportunity time window in 

which the preventive maintenance on the machine won’t be detrimental for 

the performance of the system.  

In [46]Passive and Active Opportunity windows are defined: 

• Passive windows exploit the idle time caused by the downtime of another 

machine in the system as happens in starvation and blocking phenomena  

• Active windows exploit the inventory stored in the buffers to absorb a 

minor intervention on the machine, without interrupting the material 

flow in the system [47], [48] 

Although the mentioned papers have contributed to the formalization of the 

problem, the definition of an optimal opportunistic maintenance policy is 

still missing.   

2.7. Joint maintenance and quality strategies  

Degradation can occasionally just mean an increased likelihood of failure. 

However, one of the main causes of faulty product production is component 

or system deterioration. As a result, implementing a preventive maintenance 

plan on the component or system to keep it in excellent condition and in 

compliance with the anticipated product quality criteria is a classic approach 

for lowering the number of faulty units. The output can also be sampled in 

order to check for damaged devices. It is revolutionary to combine these two 

methods in order to integrate these two management principles for 

determining the best course of action while reducing the total anticipated 

cost. The combined application of the combined application of SQC 

techniques and PM methods for achieving higher product quality and more 

effective use of resources has been investigated at single machine level [12], 

[49], [50] .Later [51], [52]combined the two approaches, at system level. 

EWMA charts are often used as a SQC tool in the semiconductor industry, 

with the goal of serving as a typical Run-to-run (RtR) control in the 

semiconductor manufacturing process. In [53] a Double Exponentially 

weighted moving average (dEWMA) is simulated to demonstrate the 

performance benefits in the semiconductor system. [54] describe all possible 

applications od EWMA and MEWMA charts in semiconductor processes to 

signal multivariate deviations to the upstream processes.  This tool can be 

integrated with policy maintenance proposing an optimal optimization rule. 
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In [55] an optimal adaptive control policy for machine maintenance and 

product quality control is derived. Moreover, [56] developed an optimal 

process control and maintenance procedure under general deterioration 

patterns, and [57] minimized the cost of an integrated systemic approach to 

process control and maintenance based on EWMA control charts by using 

genetic algorithm. 

 A performance measurement system for integrated SPC and CBM 

procedures is proposed in [122]. These works show that quality control based 

on product measurements can be useful for enhancing improved 

maintenance procedures. [58] developed a model for statistical quality 

control with an integrated optimization-based maintenance model for 

multicomponent series systems using an exponentially weighted moving 

average chart 

In order to provide a complete and integrated model of quality and 

equipment failure propagation dynamics at the system level, these models 

may be used in correlated multi-stage production systems. Preventive 

maintenance would be used to increase quality robustness. Only the quality 

robustness of a system with out-of-control equipment has been addressed by 

simple machine reliability models (single state model). High levels of service 

are made possible through preventive maintenance, which also affects how 

well produced components are. When properly implemented, preventive 

maintenance techniques can lower production variation and thereby 

enhance service quality. As a result, models need to take into account both 

quality robustness and preventative maintenance. 

 

2.8. Equipment deterioration Prognosis and 

Advanced control loop   

High-tech manufacturing systems are getting more and more complex 

nowadays, and data collection and generation is happening far quicker than 

data processing. Continuous data collecting necessitates data analysis that is 

both new and efficient. With better Integrated Circuit (IC) design and 

production technology, the semiconductor industry has gathered a variety 

of data sources for mining operational knowledge. To gain this knowledge, 

the manufacturer must promptly and efficiently analyse the supplied data in 

order to operate the equipment at maximum efficiency and achieve a high 

production yield. Manufacturing faults such process variations and 



 

 

unanticipated tool failures are the main causes of poor tool utilization and 

low production yield. Unexpected failures have more catastrophic 

repercussions and significantly raise investment and operating costs in the 

semiconductor sector. The average cost of a 300 mm fab for producing 25,000 

wafers per month exceeds US$ 2.0–3.0 billion [59]. Such colossal investment 

urgently necessitates the improvement of operational effectiveness. The cost 

of the equipment often makes up the largest portion of the total capital 

expenditure among all other costs. High tool utilization and top equipment 

effectiveness have therefore become essential objectives for semiconductor 

manufacturers with considerable capital investments in equipment. On the 

other side, the complex manufacturing environment has made it more 

difficult to adapt machine settings and has worsened production errors such 

process variations and unexpected tool failures. Corrective tactics such as "fix 

it when it breaks" were the oldest and most typical strategy for preventing 

such violations into in-situ control at semiconductor production[60].The 

problems with this strategy are various as the occurrence of unexpected 

breakdowns at inconvenient periods of production.  

This phenomenon leads to uncommitted friction and wears in production 

schedules that directly results in market profit loss and customer 

dissatisfaction. Instead, CBM as a paradigm in Advanced Process Control 

(APC) theory infers equipment condition and alarms required action based 

on the runtime data analysis [61]. 

For this purpose, CBM requires a prognostic module that represents the 

healthy state of the equipment’s behaviour, which enables a manufacturer to 

avoid equipment breakdown and unnecessary maintenance, and a 

diagnostic module to identify the causes of the equipment failures.  

These two prognostic and diagnostic modules aid in the development of 

sophisticated equipment degradation modeling and monitoring, which not 

only produces effective equipment condition monitoring but also aids in the 

identification of any failure causes. Minimizing scrap wafers, lowering 

unscheduled equipment malfunctions, minimizing unqualified periods of 

the equipment, and thus maintaining high process yields require such a 

model to be developed in the quickest time possible. In a nutshell, the 

fundamental motives for prognostic and diagnostic equipment deterioration 

modeling and monitoring are to reduce repair and maintenance expenses as 

well as associated operational disruptions, and to maximize tool use and 

production yield. Figure 2.5 shows the application of the prognostic and 

diagnostic results in the industry that takes place well in the current 
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Advanced Process Control (APC) system in semiconductor manufacturing 

proposed by [59].  

                        

                                           Figure 2.5: Advanced control loop 

 

• From a process perspective, equipment deterioration modeling gives 

information about the equipment's qualification level. This information 

decides whether equipment is qualified to perform production tasks and 

which equipment becomes less qualified to perform operations. As a 

result, the factory can devise a productive and proactive production 

scheduling and dispatch system. With the help of this approach, dynamic 

dispatching and scheduling will play an important role in lowering 

variability in virtually all automated and advanced production factories, 

particularly in the semiconductor industry.  

• From the equipment perspective, equipment deterioration modelling 

provides a diagnostic and prognostic maintenance plan to have a minimal 

maintenance cost and the minimum probability of unexpected equipment 

breakdown. Having fewer equipment downtime increases equipment 

utilization and production yield directly.  

• From a product quality control point of view, equipment degradation 

modeling indicates equipment health and suggests readjusting or 

resetting process parameters using Run-to-Run system control, such as 

EWMA control, to avoid product failures. This feedback method not only 

reduces product waste and total manufacturing costs, but it also 

indirectly improves customer satisfaction and market share. 

The simulation model proposed in this thesis is intended to describe this type 

of loop, highlighting the typical difficulties of making a good estimation of 

the level of degradation in the semiconductor equipment, due to the 

complexity of resuming and gathering enough feedback information about 



 

 

the health and infinite dynamics of semiconductor processes. The CBM 

performed over quality control will be integrated as tool to independently 

recognize deficiencies of the system and cover it with appropriate 

intervention unseen by the prognostic analysis and vice versa.  

2.9. Enabling technologies and compatibility of PdM 

in semiconductors process 

Since the APC approach described in the section 2.8 rely on resource 

reliability and degradation models obtained from field data, learning 

technologies and cognitive computing methods are relevant for the 

production quality scope. In the recent years, approaches for intelligent data 

analysis and classification have been presented in order to forecast machine 

and process behaviour and to give problem diagnostics based on predictor 

factors. A comprehensive review of these approaches can be found in [52]. 

There exist several recent techniques to deal with this issue. The most 

important include Decision and Regression Trees, Classification Rules, 

Fuzzy Models, Genetic Algorithms, Bayesian Networks, Artificial Neural 

Networks. Failure detection and classification are, in general, well 

established and accomplished nowadays [62]. Some strategies are already in 

use in the semiconductor industry, despite the fact that the level of 

complexities and the number of executed stages may pose a challenge to 

predictive methodologies. Various prediction algorithms are used in 

semiconductor equipment, a few of them are given below: 

• Ion Implantation Tool 

• Dry Etch 

• Photolithography  

• Chemical Vapor Deposition (CVD) Tool  

[63] has fed an Artificial Neural Network with FDC dataset to detect 

semiconductors machine outliers. [64] describe three machine learning 

methodologies to respectively predict time to failure (TTF), the health state 

of the etching machine and TFF intervals of an equipment. 

[19]] provide a predictive modelling strategy for intelligent maintenance in 

semiconductor manufacturing processes, based on machine in-situ sensor 

performance as well as product quality data. After that, they use self-

organizing maps to discretize continuous data into discrete values, greatly 

reducing the computing cost of the Bayesian network learning process, 

which can uncover stochastic dependencies between process parameters and 
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product quality. This strategy, which differs from standard methods based 

only on inspection data, allows for more proactive product quality 

prediction. 

Therefore, All the various methodologies it can be understood how PdM 

topics are so different one from each other and every new PdM problem 

should be studied separately with a customized solution. 

However, it is not always feasible to assess the status of the processes with 

complete accuracy, both for a severe data reading issue and for a historical 

deficiency of sufficient observations to create a trustworthy statistical model: 

This is because much fewer maintenance actions were made than there were 

wafers to measure[20]. 

Therefore, wafer manufacturing facilities around the world have examined 

methods and techniques for the increase the yield production of products 

supplied, the increase of machine uptime, the reducing cycle time.  

The main problems tied to data feedback are the following [19], [20]: 

• high dimensionality. hundreds of input variables are available making the 

regression problem computationally expensive and difficult to solve.  

• Fragmented data and disconnected information between maintenance 

Hundreds/thousands of products are run on the same machine, with 

different tool settings (called recipes);  

• Data not easily obtainable except by invasive diagnostic 

• Missing data due to production line efficiency constraints that do not allow 

every measurement to be taken at every step of every wafer 

• time series input data. In many semiconductor modelling scenarios, the 

estimate of a scalar output from one or more time series is necessary. Usually, 

to address such problems, a fixed number of characteristics from time series 

(such as statistical moments) are extracted, which leads to data loss and 

worse prediction models.  

• multi processes modelling. There are several sequential activities involved 

in the manufacture of semiconductors, and the quality characteristics of a 

given wafer depend on the whole processing process rather than just the final 

step before measurement. 

• Limited and reliable historical data also due to frequent parameter set up 

and reset 

• Limited information knowledge about the control of certain processes not 

yet fully perceptible such as contamination phenomenon in chamber tool 

processes  



 

 

3 Recap of response surface 

methodology (RSM) 

3.1. Performance evaluation models  

 

Multi-stage production and transfer lines are made up of a series of 

equipment that may perform specialized operations on raw materials at a set 

rate. The reliability of the process carried out by the machines has a 

significant impact on MMS performance. Given the random nature of the 

phenomena involved in the behaviour of such structures, a stochastic 

method is required to create adequate models to assist manufacturers in 

implementing the best strategy for future customer requests. [64] provide a 

classification of existing performance evaluation models as well as a review 

of them. The following are the three most important tools: Models based on 

Queuing Networks, Markov Chains, and Simulation Models 

Simulation Models as Discrete Event Simulation (DES) are widely used by 

manufacturing companies since they can reach high levels of detail during 

their design. However, as it is already explained in section 1.2, they are 

generally time consuming, and this can be a problem during the design 

phase, when large number of alternatives need to be evaluated. Furthermore, 

a simulation is an experiment, and must be repeated to have a statistically 

reliable result. Anyway, Simulation models could bring out a range of 

outcomes closest to the reality. 

Queuing Networks can give an exact solution but under the constraint of 

restrictive hypothesis. 

Analytical models based on Markov Chains can be placed in the middle 

between the approaches mentioned above and can give accurate result with 

less restrictions than Queuing Network models with more realistic 

hypothesis. These models are differentiated based on the assumption of the 

flow parts and the machine processing times. 
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                 Figure 3.1: Manufacturing system model comparison [65] 

3.2. Performance evaluation for two-machine lines 

through metamodels  

Due to a global increase in competitiveness in manufacturing, companies 

strive to increase the effectiveness of their manufacturing systems. The new 

industrial revolution, Industry 4.0, is a consequence in motion to aid in 

creating improved manufacturing systems. A common tool within Industry 

4.0 is simulation, where one could simulate changes in a virtual 

representation of a real-world system.  

Discrete Event Simulation (DES) is a tool that has been widely adopted 

within industries to test manufacturing system changes virtually before 

implementing them physically.  

 

Some of the most common simulation methods are discrete event, 

continuous and agent based [66], [67]. Systems can be categorised as discrete 

or continuous, and the agent-based approach's simulation method can be 

used to both types of systems. Because DES uses an event-driven simulation 

approach, system changes are triggered by events rather than the passage of 

time as in continuous systems. It is easy to distinguish between these two 

systems by referring to the discrete systems as a bank. The client enters the 

bank, waits for their turn, gets assisted, and then leaves. The customer 

determines this mechanism, which triggers a change when the customer's 

status in the bank changes. Water flowing from a dam can be thought of as 

moving continuously and time-dependently in a continuous system. ABS is 



 

 

precisely what it sounds like: it is based on models referred to as agents. In 

order to evaluate the rest of the system, the agents communicate with one 

another. A series of rules determines which agent to use, and they must be 

followed in that order. Nonetheless, model dynamics are unable to predict a 

certain level of autonomy. Because the agents have intelligence, awareness, 

memory, and contextual awareness, this is the case. The background study 

[67] concluded that the DES was the most suitable method for this project 

and therefore of big interest. The key features of DES simulation are stated 

below . 

• Predefined start and end points.  

• An event-driven simulation method.  

• Events occur instantaneously and therefore the time step in between 

processes are zero.  

• The sequence of events are stored in an event-queue to be executed in the 

correct order that is determined by the user. 

 

Workload balancing, resource allocation, capacity planning, layout design, 

inventory level assessment, supply chain management, and other 

operational and tactical difficulties that emerge in the manufacturing realm 

have long been resolved using discrete event simulation (DES)[68]. DES can 

be used to study the current production line, investigate prospective 

improvements, and compare different options while simulating the real 

production line with minimal assumptions. DES is particularly well suited 

for modelling manufacturing systems as DES can explicitly model the 

variation within manufacturing systems using probability distributions. SM 

has a lot of limitations, including computing time, black box properties, and 

the inability to do optimization analysis directly, while being frequently used 

to cost-effectively analyse the behaviour of complex industrial systems 

without interrupting production.  Metamodeling combines the benefits of 

SM and design of experiments by reaching optimal solutions in a short 

amount of time and the capacity to analyse complicated systems with a 

deterministic outcome in an explicit form [69].  

 

Generally, in literature a production line composed by two machines and one 

buffer is called two-machine one buffer line (2M1B) or Building Block (BB). 

Various authors have developed performance evaluation models for two-

machine lines. [70] analyses two machine lines considering multiple failure 

modes of the machines and finite buffer capacity. [71] develops an analytical 

model for deterministic asynchronous two-machine line ruled by some 

threshold-based control policy. These and other models [11] take advantage 
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of the assumption that a machine can be represented in terms of a specific 

Markov chain based on the buffer level. Regardless, there are rare 

circumstances in which an analytical model is built with such sophisticated 

dynamics that it may include Maintenance, production, and quality 

interactions in a unique thorough framework in the performance evaluation. 

Furthermore, if the Natural Extend is the analysis of longer production lines, 

no exact analytical models are accessible for such a system due to 

mathematical tractability. Thus, Discrete event simulations improved by 

Metamodels is commonly studied by researches to get right performance and 

predictions future outcomes. 

 

One of the most useful tools in modern business, optimization enables 

decision-makers to more assertively allocate their resources and deal with 

challenging industrial challenges. Additionally, the interdependence and 

high stochastic levels of production systems make the use of optimization 

and simulation tools to address challenges necessary. Although simulation 

optimization is a powerful tool, it might take a while to discover a workable 

solution, which limits its use in routine tasks. In the optimization process, 

metamodels can be utilized as an alternative to simulation models. 

It is called simulation model when the mathematical model of a system is 

studied using simulation. By running the simulation model for a 

predetermined amount of time, the behavior of the system at particular input 

variable values is assessed. An experiment or series of experiments known 

as a simulation experiment include making major changes to the input 

variables of a simulation model in order to track and pinpoint the reasons for 

changes in the output variable. The simulation experiment may become 

computationally expensive when the number of input variables is high and 

the simulation model is intricate. In addition to the high computational cost, 

choosing sub-optimal input variable values results in an even larger cost. 

Selecting the best input variable values for a simulation is the act of looking 

through all of the options without explicitly evaluating each one. Its goal is 

to spend as little money as possible while getting the most information 

possible from a simulation experiment. 

 

 

 In general, the simulation optimization problems can be stated as min θ∈Θ 

f (θ) where θ can be a single variable or a p-dimensional vector of all the 

decision variables, and Θ is the feasible region. For simulation optimization 

problems, we do not have much knowledge on the structure of f (θ) and the 

analytical expression of f (θ) cannot be obtained or may not even exist. 



 

 

Therefore, the objective function must be estimated based on the outputs of 

simulation runs, such as f (θ) = E[L(θ, ω)] [72]. There are many practical 

problems related to simulation optimization in the real world [30], [73]–[75].  

 

Unlike other optimization problems, like linear programming and mixed 

integer linear programming, there are some difficulties in solving 

optimization problems: 

• It is not present an analytical expression of the objective function. 

• The randomness of the simulation model entails different simulation 

replication run  

• In many cases simulation is time consuming  

 

In the Fig.3.2 below a classification of the main metamodels is addressed. 

According to the underlying structure of the decision variables, two cluster 

of simulation optimization are identified: 

• Continuous decision variable, dedicated for problems with continuous, 

uncountable, and infinite variables. 

• Discrete decision variables, which address optimization issues when the    

viable range of the input variables is finite or countably infinite. With this 

kind of variable, the techniques listed in the first bullet point might not work. 

 

 

 
 

Figure 3.2: Metamodel taxonomy 

3.3. Response surface methodology as metaheuristic 

tool 

Process optimization normally involves the combination of mathematical 

and statistical techniques which can be approached by distinct ways. Despite 

the fact that different methods can be found in the literature, the response 

surface methodology raised as one of the most effective ways for performing 

process optimization, by combining design and analysis of experiments, 
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modelling techniques, and optimization methods. Figure shows how RSM 

may be viewed as a combination of these components. This intersection of 

procedures implies that researchers should be very mindful in each one of 

the three steps involving RSM. Without this caution, this methodology will 

certainly fail, does not produce the expected and possible desired results. In 

Fig. 3.3  a Road map is delineated in [76] for carrying the RSM analysis. 

                      

Figure 3.3: Road map for an efficient conduction of response surface 

methodology  

 

1) The first step is to determine the variables governing the process studied, 

which are the control parameters also called factors.  

2) Explanatory experiment design is the most popular strategy for the next 

phase. To explore a big number of variables using a small number of trials, 

it includes setting up a limited number of runs, such as fractional or 

factorial. Finding out how the variables impact the process under 

examination is the aim of this phase. Since it enables identifying which 



 

 

factors are genuinely significant and their individual influences on response 

variables among the factors investigated, ANOVA (Analysis of variance) is 

the statistical method that is most frequently utilized in RSM research for 

this purpose.  

3) The third step is to plan data collections according to an experimental 

design. For this purpose, compose the design of experiments (DOE), central 

composite design (CCD), Box-Behnken design (BBD), and Taguchi designs 

are the most usual methods.  

4) The responses variables are measured and collected 

5) Determine if the experimental region is curved; if not, add axial points to the 

design and carry out fresh trials. 

Utilize the data gathered to create mathematical models that accurately 

depict the process under study in relation to its control parameter, creating a 

second-order model using the ordinary least squares method. 

6) The last step of RSM is to find the set of control parameters that improve the 

process by applying an optimization method to minimize or maximize the 

functions modelled in Step 6. 
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4 Problem statement 

4.1. Integrated framework for manufacturing systems 

with deteriorating equipment design and analysis 

Manufacturing systems in semiconductor industry involves multiple 

components, stations and operations through which the final wafer is 

produced. Therefore, it is characterized by more complexity in handling their 

parameters and dynamics to coordinate interactions among all the stages. 

In this thesis it is intended to model an equipment deterioration of Batch 

Manufacturing Process that are pervasive modes in today’s semiconductor 

fabrication. As a matter of fact, degradation of a component/system is one of 

the major factors that cause defective product output. 

Moreover, as the part advance through all the stages, product quality 

variations are introduced and propagates. The final product's quality 

attributes are calculated by summing together all mistakes committed at any 

stage. The problem with model-based process control has been examined in 

terms of how measurement data up to any given operation, the history of 

prior control actions, and the model are utilized to carefully choose 

controlled policy over process parameters, so slightly reducing outgoing 

quality defects. 

Therefore, two particular control visibility aspects of the system are meant to 

be examined with this goal in mind: The first is implemented locally to keep 

an eye on the equipment's health and guard against serious malfunctions that 

might endanger system production and, indirectly, the quality and precision 

of the final output. On the other hand, a quality control policy may be 

remotely monitored at the downstream level to identify indirect misleading 

behaviour of the process through quality deviations from the typical state of 

the product. This joint approach is considered in this work since it is still 

impossible to derive from the equipment's state condition a general rule of 

all the product quality characteristics. Because of this, even with the advent 

of predictive maintenance, inspection and metrology techniques remain 

crucial in the semiconductor production process. 

 

 



 

 

Considering the first control mentioned above, different enabling tools are 

present in literature [19], [21], [63], [64]. These tools have been taking the 

advantage of digital architectures, which enable more efficient analyses in 

equipment deterioration modelling. The semiconductor manufacturer 

benefits from such booming growth of data as an important key for APC 

solutions to prognose equipment deterioration and diagnose failure causes.  

However, there rarely exists condition-based maintenance, which utilizes 

machine conditions to schedule maintenance, and almost no truly predictive 

maintenance that assesses remaining useful lives of machines and plans 

maintenance actions proactively. Currently, the majority of maintenance 

operations in the semiconductor industry are still based on either historical 

reliability of fabrication equipment, or on diagnostic information from 

equipment performance signatures extracted from in-situ sensors. Such a 

fragmented, “diagnosis-centered” approach leads to mostly preventive 

maintenance along with reactive maintenance policies that use neither 

abundant product quality, equipment condition, equipment reliability 

information, nor the temporal dynamics inside that information in order to 

anticipate future events in the system and thus facilitate a more proactive 

maintenance policy.  

The semiconductor manufacturing industry has been unable to implement a 

more pro-active, "prediction-centered" maintenance strategy based on the 

available on-line sensing, quality control, and reliability data collected 

throughout the shopfloor due to a number of research difficulties. The 

following issues impede this step of prediction for semiconductor 

operations: 

First, due to the high system complexity, it is almost impossible to observe 

any analytical or deterministic phenomena in the fab. Inherent stochastic 

nature of a semiconductor fabrication, in which production and maintenance 

operations are constantly interacting, needs to be modelled and then used to 

predict equipment behaviour and facilitate a proactive maintenance. 

Second, it is difficult to observe always the state of the equipment. It is a key 

element in the semiconductor industry that enables CBM and PdM. 

However, due to the complexity of the process dynamics, it is difficult to 

consistently and cost-effectively examine this indication using existing 

monitoring approaches.  

Third, the complex interaction between equipment degradation, product 

quality, maintenance operations and production process is another 
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challenge. The present fragmented and individually regarded maintenance, 

production, and inspection databases must be taken into consideration at the 

same time in order to achieve fully proactive maintenance. Collaboration and 

a network connecting maintenance, manufacturing, and quality control staff 

are necessary for this. 

Finally, the batch process data collected from the equipment are commonly 

referred to the FDC data in the semiconductor fabrication industry. The 

extraction of the health index (HI) or degradation level (DL) from a huge and 

diverse data size is the first problem in the equipment deterioration 

modeling of FDC data. Another issue present and still not assessed in the 

simulation model is multiple recipe contexts in semiconductor fabrication. 

For instance, in semiconductor manufacturing process, almost all processes 

(e.g. litography etching and deposition) are carried  out with different 

process recipes [7], [19].  

 

On the quality point of view, the objective of the inspection station are both 

to identify as soon as possible the OOC through Run-to-Run process EWMA 

control chart and monitor a condition-based point of quality to monitor 

misbehaving level of defectiveness and make appropriate intervention to the 

upstream process. In this way it is possible to restore the system even if the 

health condition of the equipment is still considered good, giving the priority 

on the product specific claims rather than the operating time. However, the 

main problematic of remote measurement stations is that they only take into 

account the decrease of quality fluctuations, disregarding upstream system 

dynamics such as the delay between the production of a faulty item and its 

inspection. The number of non-conforming products manufactured during 

this time lag will decrease the system yield. Therefore, it is important to 

evaluate the quality problem both from the process and the system point of 

view.  

Consequently, the two main issues are to identify potential information 

about the behavioural changes of FDCs and to create an effective model for 

estimating equipment degradation. This model will be employed to forecast 

the state of the equipment and the underlying cause of failure. This method 

is strengthened by the inspection control quality process (SPC) in order to 

find quality deviations that the machine controller is unable to avoid on time. 

 



 

 

This joint control policy can be effective or not according to the appropriate 

Manufacturing system design which may foster the feedback advice (shown 

in Fig.4.1) of both sides with a certain tradeoff. To this reason, the quality 

perspective and machine perspective interactions must be assessed in order 

to see what kind of control policy is predominant with certain configuration 

of the system, and whether there is a trade-off between sensing cost 

implementation and system performance. Simulation models and 

metamodels plays an important role as performance evaluation tool to 

describe this possible real behaviour of the system as close as possible and 

provide an important solution for decision making. The simulation aims to 

highlight the productivity performance of the line both from the productivity 

indicators point of view (such as total throughput, delay of feedback, number 

of repair) and quality KPIs (yield, effective throughput, defective 

throughput, scrap rate). 

 

 

Figure 4.1: Scheme that summarizes the information flow as enabling tool for 

the decision making  

 

 

4.2. The outline of the method  
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This thesis takes into account the issue covered in the preceding section. So, 

simulation is specifically designed to reflect the effects of both inspection 

CBM and predictive maintenance for the upstream process. The Descrete 

Event Simulation developed will deserve as a base for a further simulation-

optimization approach, in which computer simulation are combined with 

optimization technique to solve problems that are analytically intractable. 

The solution approach combines mathematical modeling, simulation 

techniques, design of experiment and response surface methodology with 

the aim to replace the complex model with an approximated model that we 

can optimize, leading to the optimal values of the control parameters. This 

methodology imitates the stochastic and complex behaviour of the 

production system and has successfully solved many complex optimal 

control problems[36], [77], [78] .  

 

 

 

 

 

 

 

 

Figure 4.2: Road map for an efficient conduction of response surface 

methodology 



 

 

The resolution approach shown in Fig 4.1 consists of the following systematic 

steps: 

1) Mathematical modelling: This step consists in the analytical formulation of 

the production system under study as detailed section 6. This step 

provides a detailed model of the system dynamics, the objective function 

to be minimized, the definition of the decision variables and the problem 

constraint. 

2) Determination of the joint control policy:  Based on literature examples, a 

joint control policy is proposed in section 6. The control policies are 

characterized respectively by control parameters for the quality 

sampling(s) with the usage of a deviation limit of EWMA function (CBM) 

and the level of degradation limit to intervene directly on the machine 

(PM). The policy faces random events like failures, repairs and effects of 

deterioration. 

3) Simulation model: The mathematical model is transformed into a discrete-

continuous simulation model following the logic of section 6.2. 

4) Design of experiment: this step uses the outputs of the simulation model to 

conduct a factorial experimental design (3 level and 2 factors) and 

inscribed experimental design jointly. The experiment is used to 

determine with a minimum number of simulations runs the main factors, 

interactions and quadratic effects of the control parameters that 

significantly affect the simulation model outputs and must be considered 

in the optimization step. 

5) Response surface methodology: Once significant factor is identified, we 

determine second-order regression metamodels, based on the response 

surface methodology (RSM), for the expected total cost (ETC), the yield 

rate and the effective throughput. The quadratic regression function for 

both the output item are formulated as follow: 

 

𝐸𝑇𝐶(𝑃𝑀, 𝐶𝐵𝑀) = 𝛾0 + 𝛾1𝐶𝐵𝑀 + 𝛾2𝑃𝑀 + 𝛾3𝐶𝐵𝑀 𝑃𝑀 + 𝛾4𝑃𝑀
2 + 𝛾5 𝐶𝐵𝑀

2+ε                 (4.1) 

𝑇𝐻𝑒𝑓𝑓(𝑃𝑀, 𝐶𝐵𝑀) = 𝛾0 + 𝛾1𝐶𝐵𝑀 + 𝛾2𝑃𝑀 + 𝛾3𝐶𝐵𝑀 𝑃𝑀 + 𝛾4𝑃𝑀
2 + 𝛾8 𝐶𝐵𝑀

2+ε           (4.2) 

𝑌𝑖𝑒𝑙𝑑(𝑃𝑀, 𝐶𝐵𝑀) = 𝛾0 + 𝛾1𝐶𝐵𝑀 + 𝛾2𝑃𝑀 + 𝛾3𝐶𝐵𝑀 𝑃𝑀 + 𝛾4𝑃𝑀
2 + 𝛾5 𝐶𝐵𝑀

2+ε                (4.3) 

 

Where 𝛾𝑖, 𝑖𝜖(1,5)  are regression coefficient estimated for each regression and 

ε is a random error component that incorporates all other resources of 

variability. 



2.    Literature review                                                                                                      53 

 

The adequacy of the regression metamodels is checked in the region of the 

optimal solution with the adjusted coefficient of determination R-squared 

that should be close to one for these expressions. Also, a complete 

examination of residuals is performed to ensure the normality assumption 

and their homogeneity 
  

6) Parameter optimization: Once we obtained the regression models, the 

quadratic functions replace the unsolvable model with an approximated 

one. The two functions can be optimized through non-linear constrained 

optimization techniques such as Genetic algorithm. In this case the 

MATLAB software was used. 

7) Optimization models are formulated in section 8. The first decision 

making optimization is aimed to maximize the throughput effective. The 

second optimization focuses on the maximization of the yield rate. 

Finally, the minimization of an objective cost function both dependent by 

ETC and THeff functions is addressed. Upon the optimization, the 

optimal solution is cross- checked with extra solution runs to define a 

confidence interval for the expected total cost  

8) Different configurations of the manufacturing system are assessed in 

section 8. This comparative analysis is performed in order to prove that 

the initial parameter condition of the system strongly affects the quality 

and maintenance policy decision making. 

Regression metamodels have been a successful alternative to determine an 

optimal solution for complex systems. The sequential procedure of DOE, 

regression modelling and constrained optimization must be conducted in an 

appropriate range for the control parameters to fully explore the entire 

admissible control domain and determine a close approximation of the 

optimal solution. 

 

 

 

 

 

 

 

 

 



 

 

5 Case description 

5.1. Case study  

The model application to an industrial example is described in this chapter. 

First and foremost, a general overview of semiconductor manufacturing with 

a focus on wafer fabrication is provided. Secondly Problem of degradation 

and training model for APC machine process control is addressed. Finally, 

the model is applied to the specific case to demonstrate how the combined 

application of SQC techniques and PM methods for achieving higher product 

quality and more effective use of resources is affected by the design of system 

configuration.  

5.2. The fabrication of a semiconductor device 

Wafer fabrication is the process of building an integrated circuit on raw 

silicon wafers by layering complicated designs together. Every layer of the 

wafer is distinguished by the recurrence of a sequence of processes. Every 

wafer has a number of dies, each of which is an Integrated Circuit (IC). 

The manufacturing phase of an integrated circuit can be divided into two 

steps. The first, wafer fabrication, is the extremely sophisticated and intricate 

process of manufacturing the silicon chip. The second, assembly, is the highly 

precise and automated process of packaging the die. Those two phases are 

commonly known as “Front-End” and “Back-End”. They include two test 

steps: wafer probing and final test[8]. 

 

                       Figure 5.1: Manufacturing flow chart of an integrated circuit 

5.3. Front-end 

On each wafer, identical integrated circuits, or "dies," are built using a multi-

step process. On the wafer, each step either adds a new layer or modifies an 
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existing one. These layers are the building blocks of individual electrical 

circuits. The fabrication process for a semiconductor wafer is composed of 

sequential main macro-steps (Fig.5.2) but also many other intermediate 

steps, such as inspection, cleaning, and other minor operations. At various 

phases of the procedure, some of them are repeated numerous times. The 

main steps to manufacture a single wafer layer are: [[7],[8]] 

 

• Oxidation or Passivation: a thin silicon oxide layer is grown onto the 

wafer surface, working as an insulator. 

 

• Lithography: In order to create the features that control the operation 

of the microelectronic device, a wafer coated by a photoresist layer is 

subjected to a laser that transfers a pattern from a mask onto the wafer 

surface. To create a nanometric circuit on the wafer surface, a laser 

beam is first formed by a mask and then scalarly reduced by lenses. 

The photoresist is then chemically eliminated. 

 

 

• Etching: This operation removes a thin film material. There are two 

different methods: wet (using a liquid or soluble compound) or dry 

(using a gaseous compound like oxygen or chlorine). 

 

• Diffusion: During this process, dopants are incorporated into the 

material, or a thin oxide layer is grown on the wafer. Doping gazes 

penetrate or interact with silicon on wafers placed in a high-

temperature furnace (up to 1200 ° C), which causes a silicon oxide 

layer to form. 

 

• Ionic implantation: It allows to introduce a dopant at a given depth 

into the material using a high energy electron beam 

 

• Metal deposition: To enable the development of electrical 

connections between the various integrated circuit cells and the 

outside, a layer of metal is deposition onto the wafer surface. 

Evaporation or plasma sputtering might be used to carry out this 

operation. 

 

• Chemical-mechanical polishing: the surface is polished to remove 

the metal excess and the eventual remaining photoresist, and also to 

obtain a perfect plane surface to repeat all steps for the next layer  



 

 

 

• Back-lap: It’s the last step of wafer fabrication. Wafer thickness is 

reduced (for microcontroller chips, thickness is reduced from 650 to 

380 microns), and sometimes a thin gold layer is deposited on the back 

of the wafer 

 

 

 

Figure 5.2: Wafer production steps 

 

The chips are put through a series of electrical tests using specialized micro-

probes connected to the dice on the wafer, ensuring their operation and 

classifying them based on their electrical characteristics. At the start of the 

assembly step, when the dice are separated using a cutting technique, the 

defective dice are marked so that they are discarded. 

5.4. Diffusion and Ionic Implantation Process 

The silicon chip is initially a piece of a raw wafer, a slice of silicon that is very 

thin (about 650 microns). Wafers commonly have diameters of 125, 150, or 

200 mm (5, 6 or 8 inches). However, the major electrical characteristic of raw, 

pure silicon is that it is an isolating substance. As a result, some silicon 

properties must be changed using a carefully controlled technique. This is 

accomplished by "doping" the silicon. The silicon lattice is intentionally filled 

with dopants (or doping atoms), which alter the properties of the material in 

certain places. They are classified into "N" and "P" categories, which stand 

for the negative and positive ions they contain, respectively. The most widely 
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employed dopants are phosphorous, arsenic (N type), and boron (P type), 

which are all used to obtain the necessary properties. Semiconductors 

manufacturers purchase wafers predoped with N or P impurities to an 

impurity level of.1 ppm (one doping atom per ten million atoms of silicon). 

The silicon can be doped in two different methods. The wafer is initially 

placed into a furnace. The silicon surface is subsequently impregnated with 

doping gases. Diffusion is a manufacturing process that includes this step 

(the other part being the oxide growth). Ionic implantation is the name of the 

second doping method for silicon. In this instance, an electron beam is used 

to inject doping atoms into the silicon. Ionic implantation, in contrast to 

diffusion, enables the placement of atoms at a specific depth inside silicon 

and, in general, provides for a greater control of all the process' key variables. 

Ionic implantation process is simpler than diffusion process but more costly 

(ionic implanters are very expensive machines). 

 

          

                            Figure 5.3: Diffusion process and Ionic implantation[8]  

 

 

 

5.5. Photolithography 

The process is performed by a machine called stepper that passes light 

through a mask, forming an image of the reticle pattern. The image is focused 

and reduced by a lens and projected onto the surface of a silicon wafer that 

is coated with a photosensitive material called photoresist. The wafer is 

shifted below the optical system after each exposure by precisely the size of 



 

 

the image field, and completely exposed step by step hence the name “wafer 

stepper” (Fig.5.4). 

        
 

                    Figure 5.4: Diffusion process and Ionic implantation  

 

The covered wafer is developed like photographic film after exposure in the 

stepper, which causes the photoresist to dissolve in certain spots depending 

on how much light those regions got during exposure. The next step is 

etching, which involves exposing the created wafer to acids or other 

chemicals. In the areas of the wafer that are no longer covered in the 

photoresist layer, the acid dissolves the silicon and removes it. Production is 

done in lots, and the stepper's setup settings and mask patterns are often the 

same for at least one of the lots. 
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                   Figure 5.5: Real example of photomask lithography [7]  

 

 

Photolithography, which accounts for 33 % of the expenses associated with 

wafer manufacture, is crucial to IC manufacturing because to the accuracy 

requirements. Numerous similar procedures are later carried out to build a 

whole semiconductor wafer, and each pattern transfer has a highly accurate 

location on the wafer surface. Overlay refers to how each layer lines up with 

the layer that came before it. A perfect overlay is essential for the quality of 

the devices that are manufactured because it enables appropriate electric 

current flow in the integrated circuit. 

 



 

 

5.6. Metal deposition and Etching process  

Metal deposition is used to put down a metal layer on the wafer surface. 

There are two ways to do that. The process shown on the graph below is 

called sputtering. It consists first in creating a plasma with argon ions. These 

ions bump into the target surface (composed of a metal, usually aluminium) 

and rip metal atoms from the target. Then, atoms are projected in all the 

directions and most of them condense on the substrate surface. 

 

                  Figure 5.6: Metal Deposition Process[8] 

 

The circuit layout produced during the photomasking process is etched onto 

a particular layer using the etching technique. The layer that has to be etched 

is typically deposited first, then the etching process begins. For instance, 

etching the poly layer produces the poly gates of a transistor. The 

connections made from aluminium after the aluminium layer was etched 

serve as a second illustration. 

 
                              Figure 5.7: Metal Deposition Process 
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5.7. Problem Description  

 

A sophisticated manufacturing system, like a semiconductor fabrication 

plant, often entails hundreds of production processes and a wide range of 

equipment. Millions of dollars in capital expenditures may be required for 

the manufacturing of a single tool or wafer scrap. A significant loss in 

productivity and revenue might come from equipment downtime. 

Furthermore, due to the complexity of the production process, downtime 

on a single tool might result in delays and idle time on several additional 

fabrication machines[19]. Therefore, maintenance is essential to keep tools 

running at their peak performance levels. Several research challenges have 

prevented the semiconductor manufacturing industry from achieving a 

more proactive, “prediction-centered” maintenance approach based on the 

available on-line sensing, quality control[53], [79], and reliability data 

collected across a fab[20] [80] [79] [19]: It is quite challenging to first detect 

any analytical or predictable events in the fab because to the tremendous 

system complexity. It is necessary to characterize the semiconductor fab's 

intrinsic stochastic nature in order to utilize it to anticipate equipment 

behaviour and enable preventive maintenance. Production and 

maintenance activities there are continually interacting. A problem with the 

equipment is the unobservable state. The most reliable degradation 

indicator in chamber tools, like diffusion etching and metal deposition, is 

particle counts, which is the key element enabling the CBM and PdM in the 

semiconductor industry[80]. This indicator, however, is hard to be cost-

effectively and reliably observed using current monitoring techniques. On 

the other hand, the research in modelling particle counts using available 

process and product measurements did not give satisfactory results. The 

complex interactions between the production process, product quality, 

maintenance tasks, and equipment deterioration are challenging to manage. 

To properly implement proactive maintenance, the current disparate and 

separately considered production, inspection, and maintenance databases 

must be taken into account simultaneously. Collaboration and a network 

connecting maintenance, manufacturing, and quality control staff are 

necessary for this. 

All of these issues are also handled for those processes operating before the 

overlay metrology, which is the primary inspection station. Numerous 

externally hampered events that regularly influence lithography and the 

oxidation process have a long-term impact on the system's health. 



 

 

 

5.8. Organic and airborne contaminations  

In Oxidation as explained below, possible contamination of the oxidate 

layer may occur significantly affecting the reactive properties of the film 

over the wafer. Organic contamination is transferred by the environment or 

by media to surfaces. Furthermore, organic contamination from previous 

processing steps remains on the surface. Therefore, also succeeding step of 

metrology inspection (CVD, Metal Diffusion, Ion implantation) may impact 

on the quality result, since manufacturing fabrication is characterised by a 

ring loop. It is frequently unknown how organics particle affects surfaces 

on nanostructures and gadgets, as well as whether cleaning procedures can 

remove any leftover contaminants. There are many different organic 

substances and potential sources. As a result, a major metrology difficulty 

is reliable detection and categorization. [19], [81].  

As well, lithography has partial knowledgeable process misleading 

behaviours. This is crucial because the ray projection needs to be very 

precise. A small deviation could mean the difference between a working 

chip and a defect chip. Therefore, it is very important that the lenses are 

used correctly for the projection. The overlay metrology inspection 

measures how well the projection is done to adjust the lenses. This station 

is fundamental for the corrections and control of the overall quality of the 

process. More in detail, in the photolithography process where many 

printed layers need to be aligned one onto each other with sub-nanometric 

precision, the inspection station is considered the system bottleneck and the 

major capital effort is implemented here to improve the efficiency of the 

system. A new generation of lithography tools employs extreme ultraviolet 

(EUV) light with a wavelength of 13.5 nm to create silicon features of a few 

nanometres. The demand for more effective clean rooms and monitoring 

systems is growing as the semiconductor industry transitions to extreme 

ultraviolet (EUV) lithography, which increases the need to decrease 

airborne molecular contamination (AMC). [82], [83],[84] . An example of the 

deterioration and the consequent quality defect is highlighted in Fig.5.8 

This initial deteriorating state demands tighter control over humidity and 

temperature. The lithography process can develop flaws as a result of dust 

from the air landing on semiconductor wafers and lithographic masks. 

Semiconductor firms are being forced to decrease the ISO classes of their 

cleanrooms in order to comply with the increased need to eliminate 
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airborne pollution. To reach the desired particle count, use particle filters 

and air exchanges. An ISO Class 5–7 cleanroom for semiconductor 

lithography typically has temperature control set to 20 °C 0.01 °C and 

humidity set to 45 % 5 %[83]. Even with a temperature variation of 0.1 ºC 

significant errors may occur. However, by maintaining the temperature 

variation to ± 0.01 ºC, the precision of a typical lithography operation can 

improve by an order of magnitude. 

 

 

Figure 5.8: Particle dust contamination example  

5.9. Lens aberration  

The definition of a perfect lens is one that projects the incoming light waves 

as a single point on the picture plane. The focus point is where attention is 

drawn. The light waves diverge as a result of aberrations, blurring the 

image. The difference between a lens with no aberrations and one that has 

them may be noticed in Figure 5.9. There are several problems in the 

machine that causes aberrations in the lens, the main problem is lens 

heating. When the machine is producing wafers, energy from the laser heats 

the projection lenses. This changes the optical properties of the lenses. The 

lenses will reach a thermal equilibrium. At that point the optical properties 

and aberrations remain constant. When the machine stops the lenses cool 

down and the optical properties change again. To solve these kind of issues 

the lenses are controlled by a feed-forward and feedback mechanism. When 

a failure happens the system can compensate for some failure as stated in 

[7], [79]. If a part is slowly breaking it might be that at the start the systems 

can correct this defect. After some time the part completely breaks and the 

system cannot correct it anymore. From the moment it starts to fail the 

machine is not performing optimal anymore. This should be detected as 

soon as possible to prevent the machine from malfunctioning. 



 

 

 

Figure 5.9: Lens aberration on the right side compared to the normal 

behaviour on the left side 

In [79] it is studied the aberration of Wet Exchangeable Last Lens Element 

(WELLE), which is the last lens in the projection lenses. In this case study   

SPC and APC is combined. In fact lot of manipulators lens and tools are 

present in the machine, which are used to control different issues such as 

lens aberrations. However, these manipulators do not tell us if a part is 

broken or in which state of aberration has reached the lens. Therefore, to 

use the manipulators as best as possible the aberrations of the lenses need 

to be known [79]. This behaviour is described trough coefficients multiplied 

with Zernike polynomials such that the linear combination describes the 

aberrations in the lenses. However, the constant manipulator adjustments, 

as well as the periodic extraction of valuable data and translation of it to 

lower dimension eliminating extraneous disturbances, provide significant 

challenges in immediately detecting the true behavior of the process. 

Therefore, there isn’t a clear choice in how the control actions has be done.  

[79] proposes a combining SPC and APC methodology for the aberration 

control.  

 

5.10. Objectives  

Methods to find faults in a part are required to deal with all these problems 

and enhance the machine's diagnostics. Improving machine diagnostics 

requires automatically determining if a machine is healthy or unhealthy. 

When a failure's root cause is identified, it may be quickly fixed. Mutually 

identifying early failure flags depending on the output's quality would be 

much better. such that it may be resolved without being aware of the 

predictable evolution of the process failure. These failures could be caused 

by problems like organic contamination drift, calibration issues or wear. To 

detect these failures thousands of signals are being measured both from the 
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machines and the multivariate SPC control. This data could be used for 

automated monitoring to timely estimate the health of the system. 

 

The objective of this thesis is to develop and simulate a methodological 

framework in which both machine and quality control are integrated to 

predict unobservable tool degradations under variable operating conditions. 

This work analyses how the manufacturing system engineering impacts over 

the level of visibility of the in-situ process monitoring designed and the 

product quality information. To make this problem clearer we answer the 

following questions: 

 

• What feedback information has the priority to preventive 

interventions? 

• According to what condition of manufacturing design this priority 

changes? 

 

To make the goal clearer, following outcome is formulated: 

• Define a simulation model that integrates APC and SPC control 

• Define the policy control threshold on machine  

• Define the policy threshold on the quality control station  

• Analyse how the main performances of the line variates with different 

policy threshold combinations 

• Determine the trade-off of implementation of the two policy 

• Analyse how this trade-offs changes with a different manufacturing 

system configuration   

 

 

 

 

 

 

 

 



 

 

6 Simulation model description 

6.1. Description of the reference system   

The reference system deals with the analysis of a serial manufacturing 

system with an on-line remotely inspection station. The inspection station, as 

is common in semiconductor manufacture, is recognized as the system's 

bottleneck, limiting the rate of production. Upstream machines suffer from 

an increasing and partially observable degradation of their equipment over 

time, which has a direct impact on wafer manufacturing quality 

requirements.   However, the machines presented in Fig. 6.1, experiences 

random events such as failures and repairs. Given the unreliability of the 

production system, buffer stock is required to defend against backlog during 

the periods when the system is unavailable due to interruptions. In response 

to each failure event, a repair intervention can be conducted, which returns 

the machine to an as-good-as-new conditions.   

 

The proposed quality control policy implies that a sampling fraction of 

produced items is inspected before being transferred to the inventory stock. 

Once defective items are identified upon inspection, if the lot inspected 

overcomes the limit of defected items allowed, the entire lot is thrown away 

and the next lot is inspected. Depending on the proportion of defectives 

found in the inspection, the decision maker can decide to immediately 

initiate one maintenance policy (CBM). On the degrading upstream machine, 

a predictive maintenance (PdM) activity is performed jointly, estimating the 

deteriorating behaviour with stratified states of degradation forecasted from 

observable degradation signal from previous information obtained 

hypothetically from a sensor placed over the equipment. Such maintenance 

options enable us to completely mitigate the effects of deterioration on the 

machine and restore its performance to brand new conditions. The durations 

of the minimal repair and the preventive maintenance are stochastic and 

given the set of disturbances that could appear during production, shortages 

may occur. Anyway, the average preventive maintenance time window is 

assumed to be shorter that unplanned corrective maintenance. The objective 

is to determine the production rate, the fraction of production inspected and 

the optimal joint maintenance policy that minimize the total incurred cost. 

Total cost includes inventory, backlog, inspection, repair, preventive 

maintenance, and defectives costs. The optimal solution must ensure that 
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final customers are protected with a constraint on the outgoing quality of 

items that they receive. A discrete/ continuous simulation model was 

developed to reproduce the stochastic behaviour of the manufacturing 

system under analysis. The simulation software Matlab Simulink was used 

to develop such model. The choice of using a discrete simulation model was 

used to considerably accelerate the simulation execution time. 

 

 

 

6.2. Simulation model 

 

Figure 6.1: Two machine line with positive scrap rate 

                        

The model shown in Fig.6.1 considers the last station of the line as inspection 

M2. It has the role of approving the quality level of operations realized by 

upstream machines, studying the overall quality parameter requirements 

that must have the product to be accepted by the final customer. The 

specification limit is defined as follow: 

                                         𝐿𝐶𝑆 = 𝜇 + 3σ × 𝐶𝑝𝑘                                                  (6.1) 

𝜇: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

σ: standard deviation  
𝐶𝑝𝑘: 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 

The inspection station identifies a product as faulty if the parameter under 

examination exceeds the standard limit. Moreover, the inspection station 

determines also the in-control state of the upstream process, signalling from 

remote whenever an out of control (OOC) holds through SPC approach. In 

this model, the SPC control is applied over a generic parameter 

measurement of the final wafer realized by the upstream machine M1. This 

measure is assumed to have a normal distribution, whose mean is noised 



 

 

overtime by the upstream machine degradation. As stated in  [85] for the 

positive scrap rate model, whenever an out-of-control (OOC) is detected, a 

signal is sent remotely from the inspection station to the machining, which 

is stopped for an external intervention to reset the machine and restore the 

process to as-good-as new condition.  EWMA chart is adopted as R2R 

approach to highlight in time the process deviations from its starting 

nominal condition. 

The Exponentially Weighted Moving Average (EWMA) is a statistic for 

monitoring the process that averages the data in a way that gives less and 

less weight to data as they are further removed in time. For the Shewhart 

chart control technique, the decision regarding the state of control of the 

process at any time, t, depends solely on the most recent measurement from 

the process and, of course, the degree of "trueness" of the estimates of the 

control limits from historical data. For the EWMA control technique, the 

decision depends on the EWMA statistic, which is an exponentially weighted 

average of all prior data, including the most recent measurement.  

By the choice of weighting factor, λ, the EWMA control procedure can be 

made sensitive to a small or gradual drift in the process, whereas the 

Shewhart control procedure can only react when the last data point is outside 

a control limit. 

The statistic is calculated with the following equation [86] 

𝐸𝑊𝑀𝐴𝑡 = λ𝑋𝑡 + (1 − λ)𝐸𝑊𝑀𝐴𝑡−1   𝑓𝑜𝑟 𝑡 = 1,2, … . , 𝑛                 (6.2) 

 

Where: 

• 𝐸𝑊𝑀𝐴0 is the mean of historical data  

• 𝑋𝑡 is the observation at time t 

• 𝑛 is the number of observations to be monitored including 𝐸𝑊𝑀𝐴0 

• 0 < λ ≤ 1 is a constant that determines the depth of memory of the 

EWMA 

The parameter λ determines the rate at which "older" data enter into the 

calculation of the EWMA statistic. A value of λ=1 implies that only the most 

recent measurement influences the EWMA (degrades to Shewhart chart). 

Thus, a large value of λ (closer to 1) gives more weight to recent data and less 

weight to older data; a small value of λ (closer to 0) gives more weight to 

older data. 

 

The estimated variance of the EWMA statistic is approximately 

https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm
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                        𝑠𝑒𝑤𝑚𝑎
2 =

λ

2−λ
𝜎2                                                (6.3) 

when t is not small and where s is the standard deviation calculated from the 

historical data. The center line for the control chart is the target value 

or EWMA0. The control limits are: 

                            𝐿𝐶𝑈 = 𝐸𝑊𝑀𝐴0 + 𝑘𝑠𝑒𝑤𝑚𝑎                     (6.4) 

                            𝐿𝐶𝐿 = 𝐸𝑊𝑀𝐴0 + 𝑘𝑠𝑒𝑤𝑚𝑎                      (6.5) 

where the factor k is either set equal 3 or chosen using experimental tables. 

For the implementation of this chart, data are assumed to be independent 

and these tables also assume a normal population[87].   

The control chart descripted is shown in the Fig.6.2  below:     

              

  

                                Figure 6.2: EWMA control chart  

 

As highlighted in the Fig.6.2, the EWMA control limit is determined from 

training data during the warming period of the simulation. The performance 

of the designed model will be assessed afterwards. Since the increasing 

degradation state shift upwards the average of the process close to the 

superior specific limit (LCS) just the upper limit control of EWMA chart is 

accounted (LCU). Once the performance overabounds LCS the part is 

considered defective. If above the half of the sample is detected as defective, 

the entire lot is thrown away. The efficiency of the inspection is assumed to 



 

 

be 100%. Every time the measure is inspected from a piece of a lot the related 

EWMA is adjourned overtime. once the EWMA trend goes beyond the LCU 

threshold an OOC is signalled to the upstream machine to reset the process 

from the origin condition. The inspection policy adopted is the fractional 

inspection. Instead of making control quality over the entire batch, a random 

sample of the lot is examined. If the sample detects a limit threshold of 

defects within a sample the entire lot is scrapped. Intuitively, fractional 

inspection allows to be faster in the quality procedure as the performance as 

well. The full inspection, instead, is perfectly accurate to scrap all the flowing 

scrap product. On the other hand, the time required to implement this policy 

would reduce the throughput of the entire system. 

 

As previously described, upstream line processes often are subject to 

continuous deterioration of their equipment that may affect qualitatively the 

outgoing output result, sometimes with an unknown relation between the 

process condition health and the quality result.   

 

For the analysis of an integrating predictive maintenance and quality that 

aims to cope this issue , the  upstream machine is characterized by 2 failure 

mode: One failure exponentially distributed occurs frequently and is 

repaired with a minimum cost of time, with expected value respectively 

equal to 𝑀𝑇𝑇𝐹𝑀1,𝑓𝑎𝑖𝑙𝑢𝑟𝑒1 and  Time to Repair, is exponentially distributed, 

with expected value equal to 𝑀𝑇𝑇𝑅𝑀1,𝑓𝑎𝑖𝑙𝑢𝑟𝑒1. The second failure is longer, it 

is distributed as a Weibull that provides important estimation of the health 

of an equipment subject to deterioration. By using Weibull Analysis, there 

are various indicators, which help in understanding the health of an asset 

and gives the remaining life estimates. So, in case of scenario where limited 

data is related to asset life available, we can use Weibull Analysis to 

understand the Remaining Useful life of an asset. Thus, it makes the Weibull 

Analysis a good candidate where there is availability of limited data on the 

asset. Once this last failure mode occurs, the corrective repair would have a 

huge impact so that why in this model we have to argue on a proper 

maintenance policy. The hazard function of the Weibull distribution is the 

input for the degradation behaviour of the machine. This function is 

approximated with a quadratic function as follow: 

deg = 𝐾1 ∗ (𝐹(𝑡))
2
                     (6.6) 

with K1: given coefficient  

F(t): the failure rate overtime 
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To emphasize the complex, multiple-cause level of degradation a normally 

distributed random noise factor is introduced. Degradation and failure rate 

behaviour are presented in Fig.6.3 and Fig6.4. 

                       

Figure 6.3: Hazard rate 

 

Figure 6.4: degradation level 

 

As the value of degradation level indicator increases, the system 

performance is getting worse. The exponentially deteriorating trend is 

employed to imply a physical system that tends to degrade faster as its 

condition becomes worse. The degradation level is assumed to be partially 

observable from local sensors. Moreover, its real level will affect the average 

normal distribution of the outgoing quality parameter over time. the hidden 

relation is described below: 

                                                  X~𝑁(𝜇 + 𝑑𝑒𝑔; 𝜎2)        (6.7) 



 

 

      

     X=quality parameter 

𝜇 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑛 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑒𝑚𝑒𝑛𝑡 

 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑛 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛   

 

            The system presents some other characteristics: 

• Once repaired from the mode in which it failed, each machine is 

restored to  as-good-as new condition. 

• The line is asynchronous, machines can start or finish a part at any 

time instant without synchronization with other stations since M-1 

buffers decouple the production pace of the stations 

• Each machine has its own deterministic service time 

• Only one part is produced at a time  

• The buffer capacities are finite  

• Blocking After Service (BAS) is defined 

• FIFO is adopted 

In addition, other assumptions to the following model are formulated: 

General assumption 

• The presence of defective parts entering the first machine is not 

considered  

• The material stream is unique  

• The upstream machine is never starved, and downstream machine is 

never blocked  

Other assumption on the machine M1  

•  machine can have different operational states, with different service 

rate  

• Service times include the time to load unload the part  

• The machine can have several failure modes 

• A machine can fail in only one mode at a time  

• The processing rate of the inspection machines is calculated dividing the 

time to measure the m sampled parts between all the h+m products 
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The simulation model has been designed in SimEvents, the Discrete Event 

simulation tool of Simulink, which is the dynamic system simulation 

package integrated in MATLAB.   

 

 

                                     Figure 6.5: Simulink Sim Events model 

 

The model is composed by two machines, one machining station and one 

inspection station that also perform the scrap of parts.    

To analyse how the integration of the new policy can improve the 

performance of the line, some characteristics are introduced inside the 

model. Starting from the simple model 2M1B, the upstream machine will 

have two operation dependent failures. The occurrence of a failure mode-i of 

a machine-m is accounted by the Remaining Useful Life variable 𝑅𝑈𝐿𝑚,𝑖. 

Every time the machine process one part, the 𝑅𝑈𝐿𝑖,𝑚 is decreased by one 

service time. As soon as the RUL is smaller than the service time for the next 

part, the failure mode-i occurs. All 𝑅𝑈𝐿𝑚,𝑖 are randomly sampled. 

Respectively, the first failure is sampled with an exponential distribution 

with mean equal to 𝑀𝑇𝑇𝐹𝑀1,𝑓𝑎𝑖𝑙𝑢𝑟𝑒 1 . The second, instead with a Weibull 

distribution with scale factor equal to 𝑀𝑇𝑇𝐹𝑀1,𝑓𝑎𝑖𝑙𝑢𝑟𝑒 2 and shape factor α=2. 

 

Given that the manufacturing system is subject to deterioration, our model 

seeks to identify the impact of such deterioration process on product quality 

and read the effects of quality-deterioration on the EWMA control chart. 

 

 

 



 

 

 

 

 

 

Together with the quality control policy of EWMA another policy is 

implemented directly on the upstream machine. As already mentioned in 

this section not all the physics of the processes are known deterministically 

as in semiconductor industries, both for the complexity of the sequence of 

operations and the stochasticity of the event. This is why sometimes sensor 

devices are needed to have a rough estimate in the equipment condition. 

The model designed proposed a stratified level of degradation to represent 

the state of the machine condition, rather than trying to postulate the exact 

value of degradation level indicator. One way to discretize the continuous 

degradation process is evenly divide the vertical range into N regions and 

each of them corresponds to one degradation state, where N is the number 

of states used to describe the entire degradation process.  Figure 6.6 

illustrates the idea of using 5 stratified states to represent the stochastic 

degradation process shown in Figure 6.6, in which the green line represents 

the discretized state. It can be seen that as the degradation process evolves, 

the state number changes from 1 to 5. Furthermore, as we discussed earlier, 

the exponentially deteriorating trend mimics the fact that a physical system 

tends to degrade faster as its condition becomes worse. Therefore, it can be 

seen that the duration that the system stays in a preceding state is longer than 

that it stays in a succeeding state. 

 

                          
 

                                       Figure 6.6: Hidden Markov model 
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Ideally, if one can observe the degradation process shown in Figure 6.5 and 

further discretize it into stratified states, a PdM decision could be easily made 

according to the current degradation state. Unfortunately, in most of cases 

the degradation process is not directly observable, such as the situation in a 

chamber tool we mentioned in the previous section. Therefore, one will have 

to rely on the readily observable signals emitted from the deteriorating 

system to infer the underlying degradation process. In this simulation model, 

the observable signals are generated as follows. We assume that there is one 

observable variable emitting from the system. This assumption will only 

make the simulation model simple, but the HMM modelling procedure will 

remain the same if there are more observable variables, provided that an 

adjusted BaumWelch algorithm will be used in multi-sensor cases [131, 132]. 

 We denote ‘1’ to represent ‘conforming’ signal and ‘2’ to represent 

‘nonconforming’ signal. In reality, the observable signals will be continuous 

variables in most cases, such as temperature, pressure, and gas flow, which 

need to be transformed into discrete emission symbols by discretization. As 

we assume that in the early states the system is in ‘good’ condition, it tends 

to generate more ‘conforming’ signals rather than ‘nonconforming’ ones; and 

as the system degrades, more ‘nonconforming’ signals will occur. An 

emission probability matrix is provided to generate these types of signals 

overtime. An example of emission probability table is shown in Table 6.1, in 

which each row corresponds to a system degradation state, and each column 

corresponds to the probability of generating one type of emission symbols. 

For instance, when the system is in state # 1 (best state), it has 90% probability 

to generate ‘conforming’ signals denoted by ‘1’, and 10% probability to 

generate ‘nonconforming’ signals denoted by ‘2’; however, when the system 

deteriorates to the fifth state (worst state), it only has 10% probability to 

generate ‘conforming’ signals and 90% probability to generate 

‘nonconforming’ signals. 

 

Table 6.1: Emission probability 

 P(observable) P(not observable) 

state1 0.9 0.1 

state2 0.7 0.3 

state3 0.5 0.5 

state4 0.3 0.7 

State5 0.1 0.9 



 

 

Once we have established the underlying degradation states and the 

emission probability table, a series of observable emission symbols can be 

generated using the simulation model, which will be used to train a Hidden 

Markov model (HMM). This model is proposed to overcome the need for 

direct observations of degradation of the machine, postulating the assumed 

the deteriorating level progression based on available process information. 

The HMM is chosen because it is a natural extension of observable Markov 

chains in which states of the Markov chain are not directly observable and 

can only be inferred through another stochastic process that describes the 

sequence of observed states. 

 

 

                        

Figure 6.7: Hidden Markov model 

 

In the proposed HMM modelling approach as depicted in Figure 6.7, the 

directly unobservable state of the equipment will be modelled using 

observable controllers, in-situ measurement variables, such as temperature, 

pressure, gas flow, energy consumption.  

 

In Fig.6.8 the topology of the hidden Markov model is proposed to estimate 

the stratified level of degradation from observable signals 
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Figure 6.8: Illustration of 5 state hidden Markov chain 

Each circle represents a degradation state. Edges along with arrows represent 

the directions of state transitions, and then the likelihood of this transition 

happens is depicted along with each edge. For instance, P11 means the 

probability that state # 1 will stay at its current state; P12 means the 

probability that state # 1 will transit to state # 2, P13 means the probability 

that state # 1 will transit to state # 3, and so on. The transition probability 

matrix and emission are assumed give from previous experimental 

campaign. 

 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴 =

[
 
 
 
 
0.9975 0.0025 0 0 0
0 0.9956 0.0044 0 0
0 0 0.9935 0.0065 0
0 0 0 0.9920 0.0080
0 0 0 0 1 ]

 
 
 
 

(6.8) 

 

 

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐵 =

[
 
 
 
 
0.8888 0.1112
0.6917 0.3083
0.4788 0.5212
0.2801 0.7199
0.0730 0.9270]

 
 
 
 

                                                    (6.9) 

 

The trained HMM can be used along with the observable signal to estimate 

the underlying state transition, which is plotted against the original 

degradation indicator as well as the stratified states, as shown in Figure 6.9, 

in which the solid line represents the estimated states. It can be seen that the 

estimated states follow the same pattern of stratified states very well except 

the last state due to the deficiency of number of states.  



 

 

 

                         Figure 6.9: Illustration of 5 state hidden Markov chain 

In order to evaluate the performance of this model quantitatively, the sum of 

squared error (SSE) of using stratified state to represent original degradation 

indicator is calculated as a benchmark reference value. 

 

𝑆𝑆𝐸𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 = √∑ (𝐷𝑡 − 𝑆𝑡)2
𝑇
𝑡=1          (6.10) 

              𝑆𝑆𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑡𝑖𝑜𝑛 = √∑ (𝐷𝑡 − 𝐸𝑡)2
𝑇
𝑡=1         (6.11) 

t= discrete time  

𝑇 = 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛; 

𝐷 =Real degradation level;  

St= value of stratified function 

Et= value of estimated stratified function  

 

Then we calculate the error introduced in this modelling approach by 

Equation (6.12), imposing a limit of error allowed about 30%. 

 

𝑀𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =
|𝑆𝑆𝐸𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑−𝑆𝑆𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛|

𝑆𝑆𝐸𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑
× 100%      (6.12) 

 

 

During the model learning process, the state transition matrices A and 

emission probability matrices B for each HMMj need to be calculated using 

a training dataset, consisting of sequences of observable variables, such as 

temperature, pressure, gas flow, and energy consumption. In this model, 

these two structures are assumed as a given parameter from previous 



2.    Literature review                                                                                                      79 

 

learning process. Then the trained HMM along with observable signals can 

be used to estimate the states transition of the underlying degradation 

process. Finally, the estimation results and actual degradation process will 

be compared to verify the modelling accuracy. This methodology usually is 

applied a multi-dimensional HMM that has more than one observation 

symbol at each time [131, 132]. Since it can accommodate different sensor 

signals simultaneously and transfer all informations contained in the sensors 

into model parameters, the multi-dimensional HMM is preferably used in 

this research to fuse multi-sensor data together resulting in better estimation 

of the tool degradation. 

However, the original Baum-Welch or Viterbi algorithm from which matrix 

A is estimated, is designed for one-dimensional HMM, which only has one 

observable variable, and therefore needs to be modified to accommodate 

multi-dimensional sensor data. There are in literature several approaches to 

deal with this problem[19], [88], [89] but, for sick of simplicity the overall 

observable degradation is assumed to be determined from one single 

variable. 

 

Another strong assumption is the fact that machine can process just one type 

of wafer recipe (single operating condition). With this assumption the 

degradation function of the machine won’t be affected by the complexity of 

multiple recipes for the moment, since it is not the objective of this study. 

 

In speech recognition [90] and machine condition monitoring  applications, 

3-state HMMs are often used, which generally yield results that are good 

enough to represent the corresponding processes. However, since our 

modelling purpose is to facilitate maintenance decision-making, 3-state 

HMM does not give enough representation to an entire degradation process. 

For example, if state # 1 denotes the initial state of chamber performance right 

after maintenance and state # 3 denotes the state of chamber performance, 

which is no longer qualified to produce any products. Then the only choice 

for conducting maintenance is state # 2, which will lead to a trivial solution 

of maintenance decision-making. Therefore, in order to accommodate the 

maintenance decision-making representation, the degradation process using  

5-state HMM is designed in order to select the one that yields the maximum 

likelihood estimates. 

 

It Is used a MATLAB script to set the line characteristics (machines and 

buffers), and also to save the result. 

The configuration parameters are: 



 

 

1. Buffer capacity : N 

2. Service rate the upstream machine 𝜇𝑢 

3. Service rate of downstream machine 𝜇𝑑  

4. Failure rates upstream machine 𝑝1𝑢 , 𝑝2𝑢 

5. Repair rates of upstream machine 𝑟1𝑢 , 𝑟2𝑢 

6. Number of inspected parts m 

7. Lot size 𝑙 

8. Cost for unplanned intervention Cc 

9. Cost for preventive maintenance Cp 

10. Cost for a single scrapped part Csc 

11. Cost for a single inspected part Cinsp 

12. Cost for OOC intervention Cooc 

The fixed parameters for this case are reported in the Table 6.2. In this 

paradigm, the upstream production rate mimics the lithographic production 

rate. According to [7], wafers are typically made in lots of 25 pieces, and since 

a photolithography machine produces one lot every 66 minutes, it takes 2.64 

minutes to make a single wafer. Whether under control or not, this machine's 

production rate is the same for all of the up-states; as the production rate is 

determined by the quantity of pieces created in a given amount of time, its 

value is: 

𝜇𝑢 =
1

2.64
= 0.3787 

𝑝𝑎𝑟𝑡𝑠

𝑚𝑖𝑛
  (6.13) 

If all the 250 candidate points are measured, the inspection time for a single 

wafer is 1 hour. For each lot, it is inspected a number m of wafers, so the total 

inspection time for each batch is m hours. This total time is equally divided 

to all the wafers in the lot, so the inspection rate becomes[7]: 

𝜇𝑑 =
1

𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 ×(
𝑚

ℎ+𝑚
)
= 0.01667 × (

𝑙𝑜𝑡 𝑠𝑖𝑧𝑒

𝑚
) 
𝑝𝑎𝑟𝑡𝑠

𝑚𝑖𝑛
 (6.14) 
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Table 6.2: system parameters 

𝝁𝒖 lot 𝒑𝟏𝒖 𝒑𝟐𝒖 𝒓𝟏𝒖 𝒓𝟐𝒖 𝒑𝟐 𝒓𝟐 

0.3787 25 0.008 0.0004 0.05 0.002 0.01 0.1 

 

 

The simulation settings are reported in the Table 6.3 below: 

 

Table 6.3: simulation setting 

 

 value 

Runs 10 

Run length 1000000 t.u. 

Warm-up length 200000 t.u. 

Confidence level 0.025 

Preliminary runs are performed before every simulation settings to build the 

EWMA chart for the inspection policy and stratified degradation levels for 

the preventive maintenance over the machine. 

6.3. Simulation output  

The main performances assessed from the system are the following: 

• Throughput effective:  𝑇𝐻𝑒𝑓𝑓 =
𝑔𝑜𝑜𝑑 𝑝𝑎𝑟𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛
 

• Throughput total: 𝑇𝐻𝑡𝑜𝑡 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛
 

• Yield rate: 𝑌𝑖𝑒𝑙𝑑 =
𝑇𝐻𝑒𝑓𝑓

𝑇𝐻𝑡𝑜𝑡
 

• Delay feedback: time interval between the occurrence of OOC and the 

alarm of it from the inspection station 

• Number of corrective interventions (Nc): frequency of unplanned 

intervention 

• Number of preventive interventions (Np): frequency of intervention 

activated respectively by machine control and quality control policy 

• Number of OOC (Nooc) 

• Expected total cost: 𝐸𝑇𝐶 = 𝐸(𝑇𝐶) =
𝑇𝐶

𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑖𝑜𝑛
 

• Total cost: 𝑇𝐶 = 𝑁𝑐 × 𝐶𝑐 + 𝑁𝑜𝑜𝑐 × 𝐶𝑜𝑜𝑐 + 𝑁𝑝 × 𝐶𝑝 + 𝑁𝑠𝑐𝑟𝑎𝑝 × 𝐶𝑠𝑐 

 

 



 

 

 

 

 

6.4. Summary  

In MATLAB, the model is represented. Simulink creates a 2M1B line in which 

the downstream machine serves as the serial line's inspection quality and 

bottleneck. The machining operation is performed by the upstream machine, 

which is susceptible to two stochastic failure modes. With a Weibull 

distribution, one failure in particular deteriorates over time. The linked 

degradation has an effect on product quality that is not visible to the system. 

The upstream machine's deterioration is detected by indirect and discretized 

signals, which are transformed into a stratified function using HMM, which 

assesses the level of degradation attained to assess the machine's health. 

Indeed, the number of stages of degradation after which to intervene 

determines the machine controller policy. On the control quality point of 

view, a threshold limit on the exponential weighted average (EWMA) 

recorded run by run is applied. Once the function overcome the deviation 

limit a preventive intervention is applied.   

The purpose of the model is to investigate the behavior of Maintenance 

policies mandated by machine controllers and the CBM threshold applied to 

the EWMA control chart before detecting an OOC. 

The model's proposed policy will act as follows: When one of the two 

controllers triggers an alarm, the system is restored to its original state, 

resetting both the product's health and quality. 
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7 Design of Experiment  

Design of experiments (DOE) is a systematic, rigorous approach to engineering 

problem-solving that applies principles and techniques at the data collection stage 

so as to ensure the generation of valid, defensible, and supportable engineering 

conclusions. In addition, all of this is carried out under the constraint of a minimal 

expenditure of engineering runs, time, and money. 

There are four general engineering problem areas in which DOE may be 

applied[91]: 

• Comparative: The engineer wants to determine whether a change in one 

aspect has changed or improved the process as a whole. 

• Screening Characterization: In this case, the engineer is interested in 

"understanding" the process as a whole in the sense that he/she wishes (after 

design and analysis) to have in hand a ranked list of important through 

unimportant factors (most important to least important) that affect the 

process.[92] 

• The engineer wants to "understand" the process as a whole, therefore after 

design and analysis, he or she hopes to have a prioritized list of elements that 

have an impact on the process (from most important to least essential). 

 

Among the most prominently used DOE techniques are Response Surface 

Methodology with Central Composite Design, Taguchi’s method and 

Factorial Design. 

 

Factorial design is used for conducting experiments as it allows study of 

interactions between factors. Many processes are driven by interactions. 

Without a factorial experimental design, an important interface can be 

unnoticed. In a complete factorial experiment, responses are assessed at all 

combinations of the experimental factor levels. The conditions under which 

responses are measured are represented by the combinations of factor levels. 

While factorial design may be done on two-levels, three-levels, and multi-

level factorial, each experimental condition is referred to as a "run," and the 



 

 

response measurement is referred to as an "observation." The "design" is the 

full collection of runs. Full Factorial Design is a design in which all potential 

combinations of the factor levels are satisfied. Full factorial tests would 

produce more trustworthy results, but they are expensive and occasionally 

impractical to undertake. [93] 

 

Central composite designs (CCDs) [93], also known as Box-Wilson designs, 

are appropriate for calibrating the full quadratic model described in 

Response Surface Models. There are three types of CCDs, namely, 

circumscribed, inscribed and faced. The geometry of CCDs is shown in 

Fig.7.1 

 

 

 

   
 

Figure 7.1:  Total throughput reduction with sampling rate increase 

 

Each design consists of a factorial design (the corners of a cube) together with 

centre and star points that allow estimation of second order effects. For a full 

quadratic model with n factors, CCDs have enough design points to estimate 

the (n+2) * (n+1)/2 coefficients in a full quadratic model with n factors. The 

type of CCD used (the position of the factorial and star points) is determined 

by the number of factors and by the desired properties of the design. 

 

Full factorial and inscribed DOE are implemented for the extraction of 

significative data in order to get Response Surfaces related to Yield rate, the 

Throughput effective seen by the customer and Expected total cost.  

 

Simulation runs are conducted according to a complete 32(3 factor, 2 levels) 

factorial design jointly with a CCD inscribed design (16 experiment) to screen 

out a subset of the control factors: The state of degradation estimated in 
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which intervene and the quality control limit imposed to the EWMA function 

deviation, which have a significant impact on the ETC(.), THeff(i), Yield(i). 

For each combination of independent factors the experimental design is 

replicated three times implying a total of (32 + 16)*3=75 simulation runs for 

each response surface. We are interested to take significant factors and build 

a metamodel of how the simulation model transforms a particular set of 

input-factor values into the output response. Based on off-line simulation 

runs we define the minimum and maximum values of the factors as 

presented in Table 7.1. The simulation results are handled again in Matlab in 

order to obtain an analysis of variance (ANOVA). Additionally, a residual 

assessment is carried out to judge the surface fitting and choose a metamodel 

for the varied performance that is intended to be analysed. These steps are 

performed for every surface response obtained. An example of the analysis 

performed are presented in Table 7.2 and Fig.7.3-7.4. 

 

 

 

To evaluate the goodness of the approximated response. Generally, The 

adjusted R-squared coefficient of the data of Table 7.2 for every surface 

extracted for every configuration falls in a interval between 𝑅𝑎𝑑= [92.1%, 

96%], with the exception of ETC functions that oscillate between 87.3% and 

93%. From Table 7.2 it is possible to note that all the main factor and most of 

the interactions are significant with a Pvalue≤ 5%.  In Fig.7.2 an example of 

approximated yield in function of the two-threshold level is provided. 

 

Table 7.1:Range for independent variables 

Factor  Low level High level Description 

Machine state 

treshold 
1  5  

 

State of degradation 

estimated with HMM 

EWMA treshold µ LCU 

 

Treshold appliead on 

EWMA function 

    

 

 



 

 

Table 7.2: Anova analysis  

 

Number of observations: 75, Error degrees of freedom: 69 

Root Mean Squared Error: 0.0105 

R-squared: 0.937, Adjusted R-Squared: 0.933 

F-statistic vs. constant model: 206, p-value = 5.18e-40 

 

 

 

 

 Figure 7.2:  Response Surface of yield  

 

 

Coefficients Estimate          SE tStat pValue 

𝛾0 -7.229 1.9946 -3.6243 0.0005498 

𝛾1 0.2904 0.072637 3.9979     0.00015801 

𝛾2 0.31417 0.024177 12.995     3.2335× 10−20 

𝛾3 -0.0055383 0.00041648 -13.298     1.0308× 10−20 

𝛾4 -0.0025596 0.00066076 -3.8737     0.00024097 

𝛾5 -0.0031578 0.00083336 -3.7892     0.00031977 
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Figure 7.3 Residual dispersion analysis 

 

 

 

Figure 7.4  Normal distribution check of residuals 

 



 

 

8 Numerical results  

In this chapter, results from analysis conducted on the model are exposed. 

The conducted investigation begins with a sensitivity analysis connected to 

the several major configurations of the line. The trade-off between the 

machine control and quality control thresholds was then examined in 

relation to variations in a single configuration. The research comes to a close 

with the results of several policy optimizations intended to reduce total 

expenses, maximize yield, and maximize profit. 

8.1. Sensitivity analysis  

In this phase, the line's sensitivity analysis will be evaluated in order to 

determine how changes in the key configuration factors influence the line's 

performance. In order to choose the best integrated quality and maintenance 

strategy, it is essential to know the system setup in advance. 

8.1.1. Sample size variation analysis  

The proportion of inspections in a lot is the first configuration to influence 

policy decisions. In particular, as can be shown in fig.8.1, the system's total 

productivity falls as the sampling proportion rises. 

However, an higher fraction of inspection entails higher knowledge about 

the process that allows to be more reactive to anomalies. indeed, the first 

trade off of this first system configuration is about productivity against 

quality. Moreover, another element that may affect the yield of the system is 

tied to the delay of signal. In fact, the higher inspection lot increase the WIP 

along the line that will cause a huge delay before get the feedback of 

degradation of process towards the machine. Anyway the higher sampling 

rate will benefit the EWMA chart responsiveness that recognize on time the 

future deviation of the process reducing the number of OOC occurred. But 

for higher capacity of the inter operational buffer configuration, this 

behaviour may lead to worse THeff performances compared to lower size of 

the buffer. 
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Figure 8.1:  Total throughput reduction with sampling rate increase 

 

 

 

                                   Figure 8.2: Throughput effective  
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            Figure 8.3: Yield rate increase with increasing sampling rate 

 

 

Figure 8.4:    Number of Out of control detected by EWMA chart 
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Figure 8.5: Delay of quality feedback 

 

8.1.2. Buffer capacity variation  

In contrast to the previous assessment, the random sample fraction strategy 

used in the simulation has a significant impact on the sensitivity analysis 

performed over the design of the production system's buffer capacity size. 

However, it is feasible to partially deduce relevant patterns of the system 

from this enormous variability that decreases by increasing the sampling 

percentage examined. 

The buffer capacity has a significant impact on the production system's yield 

rate, as shown in Fig. 8.7 for various sample configurations. This occurs due 

to two major causes. Because the inspection station is the system's bottleneck, 

as we already mentioned, the buffer capacity significantly lengthens the 

signal delay. The number of components stuck inside WIP that need to be 

examined will increase as buffer size increases. As a result, if any lots that are 

now in the buffer have measurement discrepancies brought on by the 

degradation process, they will be detected minutes after the machine 

degrades. Without any proactive measures to stop this problem, the machine 

can enter another level of degeneration in the meantime. As a result, 

increasing buffer capacity results in a significant loss in yield. As can be 

observed in Fig. 8.13, there are several reasons why performance degrades 

more quickly with a low sample rate. The upstream equipment might 

deteriorate more quickly because of the low sample rate even if it has been 

in use for a long period. Low sampling rates are also less sensitive to 

significant product quality property deviations. 
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Figure 8.6: Throughput total varying buffer capacity 

 

 

 

Figure 8.7:  Throughput effective 
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Figure 8.8: Yield rate varying buffer capacity 

 

 

Figure 8.9 : Delay quality feedback by varying buffer capacity 
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Figure 8.10: Throughput total varying buffer capacity 

 

 

 

Figure 8.11: Throughput effective 
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Figure 8.12: Yield rate varying buffer capacity 

 

 

 

 

Figure 8.13: sensitivity differences of yield with different sample size 

configuration 
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8.1.3. Machine service rate variation  

If upstream machine speed is increased keeping the same speed of 

inspection, the performance of yield rate production will increase ass well 

(Fig.8.16) . In fact, whenever the machine speeds up, the buffer is would be 

always full. Consequently, according to how the degradation is designed in 

simulation, if the machine is kept under usage, with lower time execution for 

a single wafer it will deteriorated slowly. Therefore, it would produce 

deviated product less frequently, and generate less number of intervention 

(Fig.8.17). This phenomenon is confirmed by the comparison of same 

sensitivity analysis among two different Buffer capacity (Fig.8.18). For a 

small buffer, a higher speed tends to fulfil easily the buffer and to keep 

frequently the upstream into idle state. 

 

Figure 8.14 Throughput total by varying upstream machine speed 
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Figure 8.15  Throughput total by varying upstream speed 

 

 

 

Figure 8.16  Yield rate by varying upstream machine speed 
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Figure 8.17 number of repairs by upstream machine speed up 

 

 

 

 

Figure 8.18 Yield rate sensitivity comparison between different buffer capacity 
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8.1.4. Machine control sensitivity 

The next analysis strongly motivates the objective of this thesis for the proper 

application of APC and SPC joint control. As a matter of fact, the decision of 

Maintenance policy applied on the state equipment condition estimates is 

strongly affected by the system configurations. For example, one important 

parameter that affect the policy decision making done from in situ machine 

station is the sampling fraction inspected in the downstream machine. 

Figures, show that the decision-making of the state to intervene for 

prevention changes along with the sampling fraction. High productivity can 

be attained at the expense of yield production, if we use the lowest sampling 

configuration as an example. As a matter of fact , the low sampling boosts 

production in isolation from the inspection station, delivering the product 

waiting in the buffer more quickly. This entails  less blocking conditions and 

more frequent use of the upstream machine, which deteriorates more quickly 

with time. Furthermore, waiting until the very end of the predicted 

degradation to intervene is not advised because low inspection frequency 

increases the probability of properly detecting upstream degradation. 

Therefore, it is more effective and convenient to make decisions within the 

early stages of interventions. 

In contrast, if we examine a sampling fraction of 100%, we can see that states 

1 and 2 might no longer be the best option. This is likely because a higher 

sampling makes a more detailed analysis of the deviations, which makes it 

more practical to stop the machine later, and a lower sampling will result in 

the upstream machine being offline more frequently. 

 

 

 

 

 

 

 

 



 

 

Sample size= 25 Sample size= 5 

  

  

  

0,99

0,992

0,994

0,996

0,998

1

1,002

0 1 2 3 4 5 6

yield rate

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

0 1 2 3 4 5 6

yield rate

0,01635

0,0164

0,01645

0,0165

0,01655

0,0166

0,01665

1 2 3 4 5

p
ar

ts
/t

.u
.

state level intervention

THtot

0,074

0,075

0,076

0,077

0,078

0,079

1 2 3 4 5

p
ar

ts
/t

.u
.

state level intervention

THtot

0,074

0,075

0,076

0,077

0,078

0,079

1 2 3 4 5

p
ar

ts
/t

.u
.

state level intervention

THtot

0,055

0,06

0,065

0,07

0,075

0,08

1 2 3 4 5

p
ar

ts
/t

.u
.

state level intervention

THeff



2.    Literature review                                                                                                      101 

 

  

 

Figure 8.19 Comparative study of performances with different sample size   
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8.1.5. Quality control  

The system's design also affects how decisions under the CBM quality 

control policy are made. A threshold limit that is closer to the imposed upper 

limit control of EWMA chart results in yield losses because the policy kicks 

in while the deterioration is already well along the way, inevitably harming 

the product's final quality. This effect weighs more when a greater buffer 

design is applied, as can be shown in the Fig.8.20 below. As a result, while 

quality maintenance performed as late as possible reduces the number of 

preventive interventions, an higher number of corrective interventions might 

result in lengthy system downtimes. 

 

 

 

Figure 8.20 Yield rate comparisons among different buffer capcacity 
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Figure 8.21 number of preventive interventions dictated by the quality control 

 

 

 

 

 

Figure 8.22 number of corrective interventions 
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Figure 8.23 Expected total cost  

 

8.2. Response surface analysis  

8.2.1. Response surface subject to buffer variation 

This section explores the implementation of various policy threshold 

combinations using DOE full factorial and inscribed campaign designs. The 

polynomial regression is achieved for the relevant Yield, Throughput 

effective, and projected Total Cost.  

In order to comprehend how the trade-off between the two policy threshold 

varies with the design modification of a single manufacturing system 

configuration, a Comparative analysis of multiple response surfaces is done 

before delving further into the optimization. 

First, the configuration design's buffer capacity is examined. As can be seen, 

the isocurves behave similarly for the three configurations of the buffer 

capacity (N=25, N=50, and N=75). 

In fact, the following synergies of machine maintenance and quality control 

result in the same yield and THeff performances: Preventive intervention at 

the beginning of the predicted deterioration process by the machine 

controller with a cbm threshold set near to the top control limit might be one 

possibility. In this method, machine control takes the lead in assessing 

preventative intervention, whereas CBM quality control plays a minor role 

in delivering feedback concerning significant quality deviations that the 

machine controller has not been able to stop. 
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Otherwise, a different solution strategy is to keep the weighted exponential 

function's limit, which is traced run by run, far from the LCU so that it can 

be activated in case of small deviations or once the machine controller notices 

that the machine has reached the last estimated state of machine degradation. 

 

It is unclear whether to give the machine controller priority, when to use 

CBM control for remote detection, or even when to create a balance between 

the two in order to achieve the best "good production" due to the 

manufacturing system configuration's constant variation. The tradeoffs 

identified by the isocurve shift toward early phases and a lower CBM 

threshold for an expanding buffer capacity. It can be rationalized by the fact 

that the inter operational buffer's strong decoupling effect causes a larger 

feedback latency, making it unable to respond to controls at higher threshold 

levels. According to how the costs of preventive maintenance, corrective 

maintenance, scrap cost and production cost had been structured, the 

cheapest solution fosters the predominance of the machine control feedback 

against the quality control one. Naturally this last statement can change a lot 

if the structure of cost gives different importance to preventive interventions 

or scrap efforts. Moreover, the final optimization should take into account 

also cost related to outsourcing production and investment of sensoring 

device to apply over the control machine, which can change definitely the 

strategical policy of the firm. 

 

8.2.2. Response surface subject to service rate variation of upstream 

machine 

The design of various upstream operation execution speeds has a greater 

influence on policy decision-making. The tradeoff is the same as that outlined 

for the investigation of the variation in buffer capacity, as shown in the 

Figures. By speeding up the upstream machine in this instance as well, it is 

feasible to see how the policy choice changes. In fact, the most effective 

approach for slower machine operations appears to be to give attention to 

the first stages of degradation detected by the machine controller and to 

notify the system after significant deviations have not been avoided by 

estimates from the machine controller. This probably happens because the 

machine is free to serve the buffer with lower service rate with lower 

probability of blocking. As a result the machine usage increase as well as the 

rhythm of degradation. Since there is only one lot of buffer capacity in this 



 

 

study, a significant level of delay hinder the quality control. A rapid decline 

must therefore be detected as soon as possible. The upstream machine, 

however, tends to be kept underutilized and frequently in a blocking state 

for greater service rates. This results in a more gradual decline. As a matter 

of fact, the quality control can be connected with the machine controller to 

read slower deviations of the parameter that was measured and to achieve 

good yield and TH eff performances. Additionally, when upstream 

equipment gains speed, the cost curve's shape changes. 

8.2.3. Response surface subject to changes of sample size  

 

Finally, the response surfaces of the comparative analysis to modification in 

sample fraction are investigated. As the sample fraction rises, the decision-

making changes. The management of deviation offers great responsiveness 

in identifying deviations with high sampling. 

Additionally, a higher sample rate may result in a reduced usage of the 

upstream machine, which frequently enters an idle state. This enables the 

deterioration process to be slowed down. Therefore, compared to the 

scenario of having a low sampling control, the quality control might have a 

higher priority with a high sample rate. 
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N=25 wafers, 1 lot N=75 wafers , 3 lots 

 
 

  

  

Figure 8.24 Response surfaces comparisons between two different buffer size 

configuration 



 

 

Figure 8.25 Response surfaces comparisons between two different upstream 

machine speed 
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Figure 8.26 Response surfaces comparisons between two different sample size 

configuration 
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8.3. Final optimization result 

The first problem of optimization is formulated in model 8.1: 

 

 

{
 
 
 
 

 
 
 
 𝑀𝑎𝑥     𝑌𝑖𝑒𝑙𝑑(𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)             (8. 1a)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                 
𝑙𝑙𝑜𝑤 ≤ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑙ℎ𝑖𝑔ℎ                                                     (8. 2b)  

𝐿𝑙𝑜𝑤 ≤ 𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝐿ℎ𝑖𝑔ℎ                                                   (8. 3c)

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ 𝛮                                                                   (8. 4d)
𝐸𝑤𝑚𝑎 𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑 ∈ 𝑅                                                                       (8. 5e)

              

          

          (8. 6a) Maximization of the Yield  

(8. 7b)𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝐷𝑂𝐸 

                (𝑙𝑙𝑜𝑤, 𝑙ℎ𝑖𝑔ℎ). 

            (8. 8c)𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝐷𝑂𝐸 (𝐿ℎ𝑖𝑔ℎ , 𝐿𝑙𝑜𝑤).  

            (8. 9d) Machine threshold is a discrete variable  

            (8. 10e) Machine threshold is  a  continuous variable  

 

 
The second problem formalization aimed to maximize the Yield rate is 

similar to 8.1. It is represented in 8.2 below:  

 

{
 
 
 
 

 
 
 
 
𝑀𝑎𝑥    𝑇𝐻𝑒𝑓𝑓(𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                 
𝑙𝑙𝑜𝑤 ≤ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑙ℎ𝑖𝑔ℎ
𝐿𝑙𝑜𝑤 ≤ 𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝐿ℎ𝑖𝑔ℎ

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ 𝛮
𝐸𝑤𝑚𝑎 𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑 ∈ 𝑅

             (8.11) 
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The final optimization task involves minimizing the overall total cost 

incurred to meet a specified demand level (d) within a specified time frame 

(T). the formulation of the problem is described below (8.3). 

  

 

{
 
 
 
 
 

 
 
 
 
 𝑀𝑖𝑛     𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐸𝑇𝐶(. ) × 𝑇 + (𝑑 − 𝑇𝐻𝑒𝑓𝑓(. ) × 𝑇) × 𝐶𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  (8.3a)      

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                                       
𝑇𝐻𝑒𝑓𝑓 ∗ 𝑇 ≥ 𝑑                                                                    (8.3b)
𝐸𝑇𝐶 ≥ 0                                                                                 (8.3c)
𝑙𝑙𝑜𝑤 ≤ 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑙ℎ𝑖𝑔ℎ                                 (8.3d) 

𝐿𝑙𝑜𝑤 ≤ 𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝐿ℎ𝑖𝑔ℎ                                  (8.3𝑒)  

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ 𝛮                                                    (8.3f)   
𝐸𝑤𝑚𝑎 𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑 ∈ 𝑅                                                        (8.3g)   

   

 

            (8. 3a) Minimization of the overall cost  

            (8. 3b)the production capacity must satisfy the demand in the time horizon T 

            (8. 3c)𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

(8. 3d)𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝐷𝑂𝐸 

                (𝑙𝑙𝑜𝑤, 𝑙ℎ𝑖𝑔ℎ). 

            (8. 3e)𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝐷𝑂𝐸 (𝐿ℎ𝑖𝑔ℎ  , 𝐿𝑙𝑜𝑤).  

            (8. 3f) Machine threshold is a discrete variable  

            (8. 3g) Machine threshold is a continuous variable  

           

In this section the optimization of every response surface (RS) extracted for 

every configuration is addressed. Three optimization perspective are 

performed: maximization of effective throughput Table 8.1, minimization, 

the maximization of the yield rate Table 8.2 and the minimization of the 

expected total cost Table 8.3. 

 

 

 

 



 

 

Table 8.1: optimization result of RS by varying buffer size 

 

max (Theff) 

 Buffer size  Threshold cbm Threshold PM Throughput effective  

5 56,26 1 
0,020563961 

25 54,79 1 
0,020689713 

50 51,10 4 
0,020772578 

75 54,75 1 
0,02083459 

              min (ETC) 

Buffer size Threshold cbm Threshold PM ETC 

25 51 5 11420,76372 

50 55,87 1 6732,272652 

75 51 5 14757,33964 

5 54,7 1 6783,129975 

 

 

 

 

 

max (Yield) 

Buffer 

size 

Threshold cbm Threshold PM yield 

5 
54,5 1 1 

25 
51 5 1 

50 
55,6 1 1 

75 
51 5 1 
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Table 8.2: optimization result of RS by varying service time 

 
max (Theff) 

Speed Threshold cbm Threshold PM Throughput effective  

1 55 1 0,020766 

1,5 58 1 0,020794 

3 54,5 1 0,020707 

6 56,5 1 0,020549 

10 57,3 1 0,020461 

min (ETC) 

speed Threshold cbm Threshold PM ETC 

1 55,09 1 5682,231 

1,5 51 5 6530,036 

3 51 5 12092,4 

6 55,77 1 12387,71 

10 58 1 14975,02 

max (Yield) 

Speed Threshold cbm Threshold PM yield 

1 54,27 1 1 

1,5 51 5 1 

3 51 5 1 

6 51 5 1 

10 51 5 1 



 

 

 

Table 8.3: optimization result of RS by varying sample size 

max (Theff) 

Sample size Threshold cbm Threshold PM Throughput 

effective  

5 55,087 1 0,020766 

10 58 1 0,020794 

15 54,51 1 0,020707 

20 56,55 1 0,020549 

25 57,33 1 0,020461 

 

max (Yield) 

Sample size Threshold cbm Threshold PM yield 

5 54,27 1 1 

10 51 5 1 

15 51 5 1 

20 51 5 1 

25 51 5 1 

min (ETC) 

Sample size Threshold cbm Threshold PM ETC 

5 55,09 1 5682,231 

10 51 5 6530,036 
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9 Conclusion 

In this thesis, a discrete event simulation model is developed to explain an 

advanced control loop that is proposed for an asynchronous production line 

with two machines and one buffer. The simulation attempts to replicate the 

dynamics of a semiconductor production line where several 

wafer fabrication processes may lead to unrecognizable degradation states 

that affect the output quality. In this simulation, the upstream machine's 

degradation phenomena is tracked locally by machine control and remotely 

by SPC inspection control through an EWMA chart. The integrated control 

policies seek to find a solution to lower the output of scrap and improve the 

quality of production. The model simulates a prognostic machine 

intervention which is made possible by the placement of an in-situ machine 

controller. This controller employs an HMM model to keep track of a roughly 

stratified function of the actual state of equipment deterioration that is not 

readily observable. On inspection side, the quality SPC control is 

implemented. It provides feedback about product quality deviation through 

a run-to-run control of the EWMA control chart. The simulation replicates 

this loop and serves as a tool to comprehend the key performance indicators 

for the zero-defect manufacturing paradigm, such as throughput efficiency 

and yield rate. The objective of this thesis is to understand how machine 

controller policy and quality control policy interact and how the policy 

decision making is affected by changing structure of the manufacturing 

system. First, a sensitivity analysis has been conducted using a simulation 

model to demonstrate how the inter-operational buffer size, sample size, and 

machine speeds significantly impact yield and throughput performance as 

well as the appropriate policy thresholds. A response surface methodology 

15 51 5 12092,4 

20 55,75 1 12408,73 

25 58 1 14975,02 



 

 

is used to illustrate the trade-off between the two threshold controls and how 

this trade-off varies with large changes in the manufacturing system design. 

This strategy aims to roughly reflect how the system's performance analysis, 

in response to various policy changes, behaves given a range of 

manufacturing system setting. Afterwards, short analysis of variance and an 

evaluation of the residuals dispersion of each regression function is 

performed to confirm every response surface fitting. Finally, a comparison 

study of various outcomes with different configurations is conducted. The 

end findings show that when machine maintenance and quality control are 

considered in a single framework, system engineering prioritizes the 

visibility of the two control systems differently, resulting to a different 

optimal solution. 

 

9.1. Further Research 

The thesis fits in the research area of simulation and metamodeling 

optimization of manufacturing systems. It takes into account the necessity of 

coming up with a joint policy of quality and machine maintenance control 

within a special framework. Therefore, there are a lot of opportunities for 

new advancements in the future. Some have a tight connection to the 

suggested model: 

• Simulation model validation through the creation of an analytical tool 

or by the use of a real-world case study 

• Extension to multi stage manufacturing system remotely monitored  

• Introduction of more wafer recipes introduced in the system 
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