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Sommario

Nel corso dell’ultimo decennio il volume annuale degli investimenti in cam-

pagne pubblicitarie online è quintuplicato. Nel solo mercato USA durante

il 2020 si stima che tale volume superi i 135 miliardi di dollari, attestandosi

come principale mezzo pubblicitario. Il fondamentale vantaggio di questo

mezzo è la capacità di controllo che gli inserzionisti hanno in termini sia

di personalizzazione delle campagne sia di valutazione sull’impatto che esse

sortiscono. La mole di dati sulle performance e l’ampio ventaglio di tipolo-

gie di annunci rendono l’ottimizzazione di queste campagne non percorribile

manualmente. Lo sviluppo di algoritmi per problemi di ottimizzazione in

processi decisionali iterati è ben noto nel campo del Reinforcement Learn-

ing. In questo lavoro ci focalizziamo sul framework Stochastic Bandit con

l’obiettivo di proporre soluzioni che tengano in conto vincoli di business

reali, quali vincoli di budget e vincoli di ritorno sull’investimento (ROI).

Nell’elaborato presentiamo due algoritmi rispettivamente per il framework

Stochastic Multi-Armed Bandit con vincoli di budget e Stochastic Multi-

Armed Bandit con vincoli di ROI. Analizziamo le prestazioni teoriche degli

algoritmi mostrando che ammettono bound sublineari per il regret. Con-

dizione necessaria per ottenere i suddetti bound è ammettere una violazione

dei vincoli entro una certa soglia di tollerabilità. Dunque, indaghiamo il

rapporto tra numero atteso di violazioni intollerabili dei vincoli e tale soglia

di intollerabilità, aspetto ancora inesplorato a livello teorico. Estendiamo

infine gli algoritmi, e l’analisi degli stessi, al contesto combinatorio con feed-

back Semi-Bandit. Questo permette l’uso di tali algoritmi nello scenario,

più realistico, in cui le campagne degli inserzionisti si compongano di più

sotto-campagne, diversificate ad esempio per canale, target o contesto.





Abstract

Over the past decade, the annual volume of investments in online advertis-

ing campaigns has quintupled. In the US market alone, during 2020, it is

estimated that this volume exceeds 135 billion dollars, making it the pri-

mary advertising medium. The fundamental advantage of this medium is

the control capacity that advertisers have in terms of both personalization of

campaigns and evaluation of their impact. The amount of performance data

and the wide range of ad types make the optimization of these campaigns

not addressable by hand. The development of algorithms for optimization

in sequential decision-making problems is well known in the field of Rein-

forcement Learning. In this work, we focus on the Stochastic Bandit frame-

work to propose solutions that take into account real business constraints,

such as budget constraints and return on investment (ROI) constraints. In

the dissertation, we present two algorithms respectively for the Stochas-

tic Multi-Armed Bandit framework with budget constraints and Stochastic

Multi-Armed Bandit with ROI constraints. We analyze the theoretical per-

formance of the algorithms by showing sublinear bounds for the regret. A

necessary condition to find sublinear bounds is to allow a violation of the con-

straints up to a selected threshold. Thus, we also investigate the relationship

between the expected number of intolerable violations of the constraints and

the threshold of intolerability, which is an aspect that results unexplored at

a theoretical level. Finally, we will extend the algorithms, and their analysis,

to the combinatorial context with Semi-Bandit feedback. This allows the

use of these algorithms in the more realistic scenario in which advertisers’

campaigns are composed by several sub-campaigns diversified, for example,

by target, channel or context.
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Chapter 1

Introduction

In this chapter, we first present an overview of the context and motivations

of our work. Then we show the main points of our contribution. Finally, we

summarize the structure of the dissertation.

1.1 Overview

Thanks to rising internet penetration rates and the ever-expanding popu-

larity of digital platforms, digital advertising has become one of the most

influential advertising mediums. Nearly 137 billion U.S. dollars were spent

on digital advertising in 2020 only in the United States1. This figure is

forecast to increase in the upcoming years2. Choosing digital platforms

for ads brings two advantages: it allows accurate control of the advertising

campaigns’ parameters and permits a rigorous evaluation of the publicity

strategy’s performances.

By contrast, this opportunity comes with the need to choose an effective

way to optimize those campaigns. Doing this is not a trivial task. The most

influential advertising platforms provide a massive amount of data and a

vast spectrum of parameters to be tuned. This fact leads to the necessity

of learning algorithms that can calibrate those parameters incrementally,

basing on the collected data.

We focus on pay-per-click advertising, in which the advertiser pays only

if her ads are clicked. Advertising platforms generally make auctions for

1Statista, Digital advertising spending in selected countries worldwide in 2020

(in million U.S. dollars) Statista, https://www.statista.com/statistics/459632/digital-

advertising-revenue-countries-digital-market-outlook/
2Zenith, Internet advertising spending in North America from 2000 to 2022 (in million

U.S. dollars) Statista, https://www.statista.com/statistics/882027/internet-advertising-

expenditure-in-north-america/

1
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the prices-per-click of different sets of options. The advertiser makes a bid,

which is the maximum amount of money she is willing to pay for a click. The

goal is to adjust the bids sequentially, trying to maximize the expected rev-

enue cumulated over time. This can be seen as a sequential decision-making

problem: the advertiser sets a bid, receives the feedback about how effective

her choice has been, and based on this feedback, she resets her bid, trying to

improve her results. The problem of balancing the need to gather new infor-

mation about which are the best bids and using that information is known

in Reinforcement Learning [20] as the exploration-exploitation dilemma.

A framework in which this dilemma has been addressed reaching strong

theoretical guarantees is the Multi-Armed Bandit framework, introduced

in [21]. The name bandit refers to the informal term for a slot machine

(one-armed bandit). When a gambler faces many slot machines at once (a

multi-armed bandit), she repeatedly chooses where to insert the next coin.

This leads to a sequential decision problem: the objective of the gambler

is to find the slot machine with the best expected return, without losing

too much money in the learning process. Bandit problems are sequential

decision-making with limited information and naturally address the funda-

mental trade-off between exploration and exploitation in sequential exper-

iments. The player must weigh the exploitation of actions that performed

well in the past and the exploration of actions that could be a source of

even better performances. The advertising optimization problem naturally

fits this framework.

Nevertheless, there is a further business aspect to address in the ad-

vertising scenario: the advertiser has to deal with the cost of her choices.

A crucial point in building a publicity campaign is balancing the need to

reach high volumes of revenues and the necessity to maximize the Return-

on-Investment (ROI). In [10] the authors combine theory and empirics based

on Google’s Ads Exchange data to show that a significant set of buyers in

online advertising markets are financially constrained. Moreover, they show

that this behavior can be explained if we assume that they have a minimum

ROI requirement.

From a modeling perspective, this leads to a constrained formulation of

the bandit problem: the decision-maker wishes to maximize the cumulative

revenue while respecting constraints on cost and ROI at each procedure’s

iteration. In literature are studied algorithms for bid optimization that take

into account budget constraint. In [7] authors propose a Multi-Armed Ban-

dit framework in the case of a finite number of possible bids. In [22] results

are extended to a continuous space of bids. These works do not consider a

daily budget limitation, but they respect a cumulative cost constraint over
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time. More recent works study an extension of the framework in which

multiple advertising campaigns are managed simultaneously. This exten-

sion is much closer to real advertising campaigns in which the advertiser

can compose many sub-campaigns. The sub-campaigns differ in platforms

(e.g. Google, Bing, Facebook), targets (e.g. keywords, interests, language,

geographic area), and formats (e.g. text, images, video). In [17, 18] this

problem is addressed with an algorithm that combines Combinatorial Multi-

Armed Bandits and Gaussian Processes to perform bid/budget allocation

each round. There is still a vast literature that focuses on bid optimization

in online advertising (e.g. [11, 9, 18]), however none of the above works

deals directly with the idea of ROI constraint. In the unpublished work [5],

a constrained Combinatorial Bandit problem with stochastic revenues and

costs is considered. In this case, both cost and ROI constraints are part of

the model. Authors show a critical result: no algorithm can guarantee a

sublinear total regret while ensuring that the expected number of constraint

violations is sublinear in the number of rounds. This result is the starting

point of the following dissertation.

1.2 Contributions

This thesis expands the Bandit framework to deal with daily budget and

ROI constraints. First, we focus on the Stochastic Multi-Armed Bandit

framework with cost feedback (CostMAB). We start from the previously

mentioned impossibility result from [5] and elaborate algorithms that can

achieve sublinear regret while maintaining a sublinear expected number of

constraint violations assuming a threshold of tolerance in these constraints.

We call an algorithm that satisfies this property about the expected num-

ber of violations quasi-safe algorithm. We propose two algorithms for the

CostMAB setting. First, we propose an algorithm to deal with budget con-

straints; we show theoretical results on performances and we show that is a

quasi-safe algorithm. Second, we propose a more sophisticated algorithm to

deal with the case of ROI constraint. Even in this case, we show theoret-

ical results in terms of both performances and quasi-safety. We show how

to derive from these algorithms a third policy that deals with both budget

and ROI constraints. The proposed algorithms are based on the well-known

principle of optimism in the face of uncertainty proposed in the seminal pa-

per [14] and largely exploited in UCB-like algorithms in bandit contexts (see

[2]). Finally, we expand the framework to deal with multiple sub-campaigns

proposing algorithms for Combinatorial Bandit problems with Semi-Bandit

feedback. We focus on the framework of Multi-Task Stochastic Semi-Bandit
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with cost feedback (CostMTSSB). This framework can model the scenario

in which the advertiser has to deal with M sub-campaigns to be optimized

simultaneously. Again, our focus will be on proving theoretical guarantees

about the quasi-safety of the proposed algorithms.

1.3 Structure of the thesis

In Chapter 2 we introduce an overview of the Multi-Armed Bandit frame-

work, and its combinatorial extension. We present the main algorithms

proposed in the literature with their theoretical guarantees. Particular im-

portance will be given to the principle of optimism in the face of uncertainty

(OFU) that will drive the construction of our algorithms.

In Chapter 3 we formalize the problem introducing two settings. The

former is the Multi-Armed Bandit setting with cost feedback (CostMAB),

the latter is the Multi-Task Stochastic Semi-Bandit setting with cost feed-

back (CostMTSSB). We introduce the concept of safe-learning and quasi-safe

learning with respect to both budget and ROI constraints. Finally we show

how to frame the advertising bid optimization problem into the aforemen-

tioned settings.

In Chapter 4 we focus on the CostMAB setting. We propose and analyze

two algorithms. The first deals with budget constraints, the second with

ROI constraints. We evaluate theoretical bound for their performances and

analyze their safety guarantees.

In Chapter 5 we focus on the CostMTSSB setting. Also in this case,

we propose two algorithms to deal with budget and ROI constraints respec-

tively. We also show how these two algorithms can be assembled to obtain

a policy that takes in account both budget and ROI constraints.

Finally, Chapter 6 summarizes the main results of this dissertation and

details possible future developments.



Chapter 2

Literature review

In this chapter, we present an overview of the main tools we will use through-

out the thesis.

In the first section, we study the Stochastic Multi-Armed Bandit (MAB)

framework. We introduce the fundamental assumptions, the learning objec-

tives, and the concept of regret. Then we present the main algorithms

that have been proposed in the literature and their theoretical results. We

conclude the first section with theoretical lower bounds for the regret and

examples of applications.

In the second section, we extend the previous context to Combinatorial

Stochastic Bandits and Semi-Bandit feedback, focusing on the subclass of

Multi-Task Stochastic Semi-Bandit (MTSSB). Again, we present the funda-

mental assumptions. We elaborate on the difference between Bandit feed-

back and Semi-Bandit feedback. We present the main algorithms with re-

sults on their theoretical performance. We conclude the chapter with exam-

ples of applications. For a more in-depth analysis of the themes introduced,

we refer to [19, 3, 15].

2.1 Stochastic Bandits

The bandit problem has a history now almost 100 years old. It was intro-

duced in 1933 by Thompson in [21], where the problem was presented in the

context of medical trials. Thompson addressed the problem of minimizing

the health impact on trial participants by adapting treatments iteratively

based on the drugs’ effects.

In the 1950s, Robert Bush and Frederick Mosteller developed a stochastic

model study with applications in learning [4]. They devised an experiment

in which participants interfaced with a two-armed slot machine called a two-

5
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armed bandit (the name comes from the American slang used to refer to slot

machines). The simplest example of a Multi-Armed Bandit problem is thus

presented.

Example 1. Imagine being faced with the above-mentioned two-armed ban-

dit device. Both levers have been already sampled five times each, obtaining

the following results.

Round 1 2 3 4 5 6 7 8 9 10

Right lever reward 0 - 1 - 0 - 1 - - 0

Left lever reward - 0 - 1 - 1 - 1 0 -

How should the strategy be adjusted, given these results? The left lever

seems to be the one with the higher expected payoff, based on the data

collected so far, but it may have been just a lucky event. How many more

times should one test both levers to be confident enough about which one

is the best?

This simple example captures the essence of the Multi-Armed Bandit

problem: finding a way to balance exploration of the environment and ex-

ploiting the information gathered.

2.1.1 Problem description

A Stochastic Bandit problem is a sequential game between a player (usually

referred to as learner or decision-maker) and the environment. The game

lasts for T ∈ N round. At each round t the player chooses an action At to be

played from a set of available actions A. These actions are also called arms

for the aforementioned historical reasons. We call Multi-Armed Bandit any

bandit problem in which the cardinality of A is a natural number #A =

K ∈ N. This framework is also known as K-Armed Bandit. More general

cases have been studied in the literature; in these works, A can have infinite

or even continuous cardinality. Once the player performs the action At, the

environment provides a reward Xt. In the case of Stochastic Bandit, this

reward is stochastic. The so-called adversary case is also extensively studied

in the literature; in this case, the environment reacts in an arbitrary (and

generally hostile) way to the decision-maker’s actions. Although of great

interest, this case is not explored in this dissertation; in fact, in advertising

is a common assumption that users would react stochastically to displayed

ads, clicking or not on them, rather than adversarially.
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The action At that the player selects in round t can only depend on the

history of the game up to that moment, that is, on the sequence Ht−1 :=

{A1, X1, A2, X2, . . . , At−1, Xt−1} which consist of actions performed and re-

wards obtained in the past. We define policy U as map from the space of

possible histories H to the set of possible actions A. In general, this map

may not be deterministic.

The learner’s goal is generally to maximize the cumulative reward over

the T round,
∑T

t=1Xt. We will formalize this goal in the next paragraphs,

introducing the concept of regret.

The fundamental problem in this context is that the environment’s reac-

tions are not only stochastic, but their probability distribution is unknown

to the learner. We will shortly reduce this indecision space by introducing

the concept of environment-class, namely classes of probability distributions

admissible for the environment’s feedback.

2.1.2 Assumptions, environment-classes, concentration in-

equalities

To detail the Stochastic MAB problem is necessary to detail the assumptions

on which it is based. Assumptions.

We define an instance of a Stochastic MAB problem as a set of distribu-

tions Ψ := {Pa : a ∈ A}. Each distribution Pa of Ψ is defined on the space

of possible rewards obtainable by the decision-maker by selecting the arm

a ∈ A. It follows that if in round t the player selects the action At, the

environment will sample the reward Xt from the distribution Pt. Observe

that the interaction between agent and environment induces a probability

measure on the sequence of actions-feedback {A1, X1, A2, X2, . . . , AT , XT }.
We assume that the sequence of action-feedback satisfies the following hy-

potheses:

• the conditional distribution of the reward Xt given the sequence of

feedback actions up to round t, {A1, X1, . . . , At−1, Xt−1, At}, is PAt .

• the distribution of At given the sequence {A1, X1, . . . , At−1, Xt−1} is

πt(·|A1, X1, . . . , At−1, Xt−1). The sequence U := {πt}Tt=1 is called pol-

icy and characterizes the decision-maker.

The first hypothesis summarizes the idea that the environment samples

the value of Xt from PAt . The second assumption requires that the player’s

actions be selected on and only based on the history before round t.

This description of the problem may seem mathematically incomplete.

In fact, the question arises about what is (if it exists!) the probability space
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in which the measures introduced above are defined. We refer to [15] for a

deeper analysis of the mathematical assumptions.

We summarize below the sequential game that describes the framework.

Framework protocol 1 Stochastic Multi-Armed Bandit (MAB)

Input: T time horizon, K number arms, A = [K] set of arms

for: t = 1, ..., T

1. Select an arm At ∈ A
2. Collect the reward Xt sampled from PAt .

Environment-classes. The problem with building algorithms for this

framework is that the instance Ψ := {Pa : a ∈ A} is not known to the player.

In principle, a policy that performs very well on one instance Ψ could arbi-

trarily perform badly on a second instance Ψ′. Nevertheless, it is common

to assume that the decision-maker has partial knowledge of the instance.

More precisely, we define with Ξ the domain of the possible instances that

can be presented to the learner. We call the set Ξ environment-class. This

set is known to the decision-maker and allows to find algorithms that ensure

good performance for any instance belonging to Ξ.

An environment-class can be defined as

Ξ := {Ψ = {Pa : a ∈ A} : Pa ∈Ma∀a ∈ A}

where Ma is a set of possible distributions associated with the reward of

arm a ∈ A.

Example 2. Some examples of environment-class in the Stochastic MAB

framework are:

• Bernoulli environment: ΞB := {{B(pa)}a∈A : pa ∈ [0, 1] ∀a ∈ A}},
where B(p) is the Bernoulli distribution of mean p.

• Uniform environment: ΞU := {{U(la, ua)}a∈A : la, ua ∈ R ∀a ∈ A},
where U(l, u) is the uniform distribution on the real interval [l, u].

• σ-sub-Gaussian environment: ΞSG(σ) := {{Pa}a∈A : Pa is a σ-sub-

Gaussian distribution ∀a ∈ A}. Recall that a real random variable X

has σ-sub-Gaussian distribution if ∀ λ ∈ R, E
[
eλX

]
≤ exp(λ2σ2/2) .

• Bounded support environment: ΞBS(l,u) := {{Pa}a∈A : Pa has support

contained in [l, u] ∀a ∈ A}. Recall that a real random variable X has

distribution with support in [l, u] if holds that P (X ∈ [l, u]c)) = 0.
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In the rest of this thesis, we will focus on the class-environment ΞBS(0,1). All

the results we will obtain are trivially extendable to the class-environment

case ΞBS(l,u) for any real interval [l, u] via a rescaling.

Concentration inequalities. Choosing specific class-environments allows

us to obtain general bounds on the distribution of rewards. These bounds

will be the main tool to build algorithms capable of ensuring good theoret-

ical performance on any instance of the environment-class that the learner

may be presented with. We focus on sub-Gaussian distributions, of which

limited support distributions are a subclass. Concentration inequalities are

inequalities that limit how much the sample mean of a sequence of inde-

pendent and identically distributed random variables (IIDs) {Xi}ni=1 can

deviate from its mean value µ = E [Xi].

Theorem 2.1.1. Let n ∈ N. Let {Xi}ni=1 be a set of IID random variable

of expected value µ := E [Xi], such that Xi − µ is σ-sub-gaussian. Fixing

ε ≥ 0,

P (µ̂ ≥ µ+ ε) ≤ exp

(
nε2

2σ2

)
P (µ̂ ≤ µ− ε) ≤ exp

(
nε2

2σ2

)
(2.1)

Where µ̂ := 1
n

∑n
i=1Xi the sample mean of the random sample.

See [15] for the proof. Observe that if a random variable X has zero mean

and bounded support in [l, u], then it is (u− l)/2-sub-Gaussian. From this

observation, combined with the previous theorem, we obtain the following

lemma, to which we will make constant reliance throughout the dissertation.

Lemma 2.1.1 (Chernoff-Hoeffding Bound). Let {Xi}ni=1 be a random sam-

ple of IID random variables such that P (Xi ∈ [0, 1]c) = 0. Fix ε ≥ 0. Then,

P (µ− µ̂ ≥ ε) ≤ e−2εn2
P (µ̂− µ ≥ ε) ≤ e−2εn2

. (2.2)

Where µ̂ := 1
n

∑n
i=1Xi the sample mean of the random sample and µ :=

E [X].

Note that many other concentration inequalities have been proposed in

the literature and are exploited to obtain different algorithms for the Multi-

Armed Bandit problem. However, in the rest of the thesis, we will rely only

on Chernoff-Hoeffding Bound for our results.

2.1.3 Optimality and regret

Once we have introduced the concept of class-environment and the concen-

tration inequality tool, we would like to find a way to verify that a policy
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ensures good performance on all possible instances of the class-environment.

To do this, we need to define a performance measure formally.

As we mentioned, the learner’s goal is to maximize the cumulative reward

over the time horizon T . We introduce the following notation to indicate

the mean of reward distributions. Given an instance Ψ := {Pa : a ∈ A} and

an arm a ∈ A:

µa(Ψ) :=

∫
R
xPa(dx). (2.3)

We denote by µ?(Ψ) := maxa∈A µa(Ψ), the largest of the averages of the

arm rewards.

Remark. Where clear from the context, we will drop the explicit dependence

from Ψ to enlighten the notation.

The idea in order to evaluate the performances of a policy is to mea-

sure how much the choices imposed by the policy deviate from the optimal

choices. The measure we introduce for this evaluation is called regret.

Definition 2.1.1 (Regret). Given an instance Ψ of the Stochastic Bandit

problem and a policy U, we define the regret of U at round n ∈ [T ]:

Rn(U,Ψ) := nµ? −
n∑
t=1

E [Xt] (2.4)

Where the expectation is with respect to the probability measure induced

by the interaction between policy U and the environment.

Remark. Where clear from the context, we will drop the explicit dependence

from Ψ and U to enlighten the notation.

Note that regret of U measures the cumulative difference of the expected

reward between an optimal policy, i.e. a policy capable of selecting arms

with a mean reward equal to µ?, and U.

It is worth remarking that the measure is in expectation with respect to

the probability induced by the interaction between policy and environment.

This is justified by the fact that rewards are drawn independently at each

round. So, for the asymptotic evaluation of the performance, using the mean

is legitimated by the law of large numbers. This approach in studying the

theoretical performance of algorithms in the Bandits setting was pioneered

by the seminal paper [14].

Remark 1. Defining a measure of deviation from optimality is not trivial, and

there is no one-size-fits-all solution. There are several definitions of regret in

the literature that capture different aspects of the problem. The definition
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of regret that we have given removes randomness from the measurement. It

is possible to define stochastic regret measures in which this randomness is

not eliminated. We cite two other formulations:

• Rn := nµ? −
∑n

t=1Xt, is called random regret.

• R̂n := nµ? −
∑n

t=1 µAt , is called pseudo-regret.

Random regret is the closest measure to the concept of cumulative stochastic

reward. Minimizing Rn is exactly equivalent to maximizing
∑n

t=1Xt. On

the other hand, it suffers from stochasticity due to noise Xt − µAt .
The pseudo-regret filters out this noise and coincides with the expecta-

tion of random regret conditional to At. Since it is a conditional expectation,

it is stochastic.

A natural question arises: what bounds for regret can be considered

synonymous with policy’s good performance under analysis?

First, consider the class environment ΞBS(0,1). It’s easy to state that

the worst possible regret of any policy on any instance over T round, is T .

Indeed, at each round t ∈ [T ], µ? − E [Xt] ≤ 1 a.s. for any instance and for

any policy.

Thus, a minimum requirement is that the policy ensures sublinear regret

for every instance in the environment class, i.e.

∀Ψ ∈ Ξ, lim
T→0

RT (U,Ψ)

T
= 0. (2.5)

Observe this implies that the policy is able to learn which is the optimal

choice, eventually. Namely, if we consider T → +∞, ∃n ∈ N such that

∀t ≥ n, At = a?.

In practice, we can hope to satisfy more stringent conditions. We will

see how many algorithms manage to guarantee sublinear regret over a finite

time horizon, i.e.:

∀T ∈ N, ∀Ψ ∈ Ξ, RT (U,Ψ) ≤ C(Ψ)f(T ), (2.6)

where C : Ξ→ R+ is a positive function of the instance, and f : N→ R+ is

a sublinear function of the number of rounds.

Remark 2. Usually, when we look for regret bounds of the form of Inequality

(2.6), we can encounter two types of bounds. The first is called instance-

dependent regret bound. In this case, the function C is dependent on the

instance Ψ and, in particular on the set of distribution {Pa}a∈A. The second

case is known as instance independent regret bound. In this case, fixed the
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size of the problem K and the time horizon T , the regret bound holds in

the same exact form for every instance of the environment-class Ξ, namely

the value of C is the same for every instance in the environment-class. In

the thesis, we will focus on instance independent bound.

Regret decomposition. We now introduce another viewpoint about pol-

icy regret. We define for each arm a ∈ A the gap from optimality, or instant

regret, as

∆a = µ? − µa (2.7)

Therefore, the following Lemma applies:

Lemma 2.1.2 (Regret Decomposition). Let U be a policy over the envi-

ronment class Ξ. The regret on time horizon T ∈ N of the policy can be

decomposed as

RT =
∑
a∈A+

∆aE [NT (a)] (2.8)

Where we denote with A+ := {a ∈ A : µa < µ?} the set of sub-optimal arms

and with NT (a) the random variable that counts the number of times arm a

is pulled during the whole horizon T .

See [15] for the proof.

This Lemma provides both a different insight into regret and a practical

tool used extensively throughout the thesis. Intuitively, we describe regret

by summing the times a suboptimal arm is prescribed to be played, weighted

by the relative optimality gap.

Regret lower bounds. On the other hand, one should wonder what is the

best regret that a policy can ensure? This is a much harder question. The

following theorem by [14] provides an asymptotic instance dependent lower

bound:

Theorem 2.1.2 (MAB lower bound, Lai&Robbins, 1985). Given an in-

stance Ψ = {Pa : a ∈ A} of the Stochastic MAB problem, any policy U

satisfies:

lim
T→+∞

RT
log(T )

≥
∑
a∈A+

∆a

KL (Pa, P?)
(2.9)

Where KL (Pa, P?) is the Kullback-Leiber1 divergence between the distribution

of arm a and the distribution of the optimal arm, and A+ := {a ∈ A : µa <

µ?} is the set of sub-optimal arms.

1See [16] for a formal introduction.
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This powerful result tells us that we can not find an algorithm that

ensures a regret asymptotically lower than a logarithm function of T on

every instance of the Stochastic MAB problem.

However, since we focus on finite time analysis and instance independent

bounds, the following theorem by [8] give us a more practical result to

understand what we can hope to achieve.

Theorem 2.1.3 (MAB instance independent lower bound). Consider the

environment-class ΞBS(0,1). Fix a time horizon T . For any policy U there

exist a problem instance Ψ ∈ ΞBS(0,1) such that

RT ≥
1

20
min

{√
KT, T

}
(2.10)

Where K ∈ {2, 3, . . . } is the cardinality of A.

As we will shortly see, we are able to find algorithms that reach, at least

as order of magnitude, the theoretical bounds.

2.1.4 Bandit algorithms

Having the tools to evaluate the algorithms’ performance, we present some

algorithms known from the literature. The results presented apply to our

interest’s environment-class ΞBS(0,1). Among these particularly important

is the UCB1 algorithm, based on the principle of Optimism in the Face of

Uncertainty: the same principle inspires the algorithms that we will propose

in the thesis.

Explore-first The idea beyond this algorithm is to separate the exploration

and exploitation parts. The algorithm is given as input a natural number

n, representing the algorithm’s number of times it must sample each arm.

So the algorithm explores for nK rounds, chooses the best arm with respect

to the collected data, and plays the selected arm for the remaining T − nK
rounds. We denote by µ̂a(t) the average reward obtained by the arm a in

round t.

µ̂a(t) =
1

Na(t)

t∑
j=1

Xj1 {At = a} (2.11)
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Algorithm 1 Explore-first

Input: T, A = [K], n

for t=1,...,nK do
Play action:

At = (t mod K) + 1

Set ā := argmaxa∈A µ̂a(nK)

for t=nK+1,...,T do
Play action ā

For this simple algorithm, we manage to obtain an instance independent

regret bound, sublinear in the number of rounds T .

Theorem 2.1.4 (Explore-first instance independent regret upper bound).

Given any instance of the K-Armed Stochastic Bandit problem, running Al-

gorithm (1) ensures to obtain a total regret over the T rounds bounded by

RT ≤ T 2/3O (K log(T ))1/3 (2.12)

Choosing n = (T/K)2/3 log(T )1/3.

We refer to [19] for the proof. Note that, even if Algorithm (1) ensures

sublinear regret, it is far from the order of magnitude of the lower bound

introduced with Theorem (2.1.3).

Optimism in the Face of Uncertainty and UCB1. To motivate the

idea of Optimism in the Face of Uncertainty (OFU), we need to take a step

back to the exploration-exploitation dilemma. Any Reinforcement Learning

algorithm has to explore the set of possible choices while taking advantage of

the knowledge collected. But, how to balance these two aspects? The idea

of OFU is: despite our lack of knowledge about which are the best actions,

we will construct an optimistic guess on their expected payoff. Then we

choose the action a with the highest guess among all the possible arms. If

the resulting realization of the reward is bad, then the value of our future

optimistic guesses on the reward of a will quickly decrease, and we will be

compelled to switch to a different action. On the other hand, if we pick well,

we will be able to exploit that action and incur little regret. In this way, we

balance exploration and exploitation.

We want now to translate the idea of OFU into a policy available to the

decision-maker. The main point is how to construct the optimistic guess.

To do this, we will rely on confidence intervals: we construct a confidence

interval on the mean reward for every arm. The optimistic guess will be the
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upper bound of this interval. Each time an arm is played, and a new sample

of its reward is observed, we update the confidence interval according to

the incoming information. To construct the confidence interval on mean re-

ward, we will rely on the previously introduced Chernoff-Hoeffding’s Bound,

Lemma (2.1.1). If we have a random sample {Xt}nt=1 and a fixed probability

level p ∈ [0, 1], then applying Lemma (2.1.1)

P

(
|µ− µ̂| ≥

√
2 log(1/p)

n

)
≤ 2p (2.13)

where µ̂ := 1
n

∑n
i=1Xi and µ = E [Xi]. Now, the main idea is to exploit this

fact on the independently sampled rewards and let p decrease as a function

of number of rounds. Based on this idea we define for every t ∈ [T ], a ∈ A:

UCBa(t− 1) :=

+∞ if Na(t− 1) = 0

µ̂a(t− 1) +
√

2 log(t)
Na(t−1) otherwise

(2.14)

Where µ̂a(t) is defined in Equation (2.11) and Na(t) is the number of times

a has been sampled up to round t. This quantity is called upper-confidence

bound of arm a at round t.

Given the Definition (2.14), we are ready to formulate the algorithm

called UCB1.

Algorithm 2 UCB1

Input: A = [K] arms set, T ≥ K time horizon

for t= 1,...,T do
Choose action At = argmaxa∈A UCBa(t− 1)

Observe reward Xt and update upper confidence bounds.

Observe that the upper confidence bound (2.14) shrinks with the num-

ber of times the arm is sampled. This accounts for the principle of being

optimistic in the face of uncertainty.

We now present a performance analysis of the UCB1 algorithm. In [2],

regret bounds are presented in the case of finite time horizon analysis. The

following theorem provides an instance-dependent regret bound.

Theorem 2.1.5 (Instance dependent regret bound for UCB1). Fix a time

horizon T ∈ N. Given any instance Ψ of the K-Armed Stochastic Ban-

dit problem in the class-environment ΞBS(0,1), running Algorithm (2) on Ψ

implies a regret that is bounded by:

RT ≤

8 log(T )
∑
a∈A+

1

∆a

+

(
1 +

π2

3

)∑
a∈A+

∆a

 (2.15)
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where A+ := {a ∈ A : ∆a > 0}, and ∆a is the optimality gap of arm a.

We observe how, despite the simplicity of the UCB1 algorithm, we are

able to obtain an instance-dependent upperbound that reaches a logarithmic

order of magnitude in the number of rounds T . This order of magnitude

coincides with that of the theoretical lower bound presented in Theorem

(2.1.2). Improvements have been proposed in the literature to lower bound

multiplicative constants. Then, we provide an instance independent regret

bound for the UCB1 algorithm, derivable from the previous theorem.

Lemma 2.1.3 (Instance independent regret bound for UCB1). Fix a time

horizon T ∈ N. Given any instance Ψ of the K-Armed Stochastic Ban-

dit problem in the class-environment ΞBS(0,1), running Algorithm (2) on Ψ

implies a regret that is bounded by:

RT ≤ 5
√
KT log(T ) + 8K (2.16)

In this case, we observe that the theoretical performance limit provided

by the Theorem (2.1.3) is reached, as an order of magnitude, by the Al-

gorithm (2 ) up to a factor
√

log(T ). These results legitimize the use of

techniques that mimic the OFU principle in the algorithms that we will

propose in the next chapters.

Bayesian approach. Finally, we mention the existence of algorithms that

are based on a Bayesian approach. Among these, the best known is Thomp-

son Sampling, introduced in [21]. Giving bounds on the regret of algorithms

like Thompson Sampling is technical and out of the dissertation’s objectives.

However, in many empirical applications, it is worth mentioning that the use

of a Bayesian algorithm like Thompson Sampling can outperform frequentist

algorithms like UCB1. We refer to [6] for some experimental comparisons

between the two types of algorithm.

2.1.5 Applications

The Stochastic MAB framework is widely applied to all contexts where the

exploration-exploitation dilemma plays a crucial role. We present a non-

exhaustive list of application examples known in the literature. We will give

special attention to the case of advertising, presented last in this list. We

delegate further discussion to [15].

Clinical trials. Testing and refining a clinical treatment implies being able

to balance the effectiveness of the treatment on the patients involved and
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collecting information that can improve the performance for future patients.

From a modeling point of view, we can put the problem in the MAB context

as follows. Each new patient is considered a new round of the sequential

decision problem. In each round, the decision-maker must administer a

treatment from an available A set of treatments. We assume that the pa-

tient’s reaction to the treatment is numerically quantifiable in the range

[0, 1]. Each treatment is thus an arm of the Multi-Armed Stochastic Bandit

problem, and the patient’s response to the treatment is the learner’s reward.

Dynamic pricing. Many online retailers (e.g. airlines, online learning

platforms) use the dynamic pricing technique. This consists of selecting the

price of their products in real-time, trying to collect information about the

demand for their products in order to maximize profits in the long run. We

insert as follows the problem in the Bandit context. Fix a product to be

priced. Each new user on the product page is considered a new round of the

sequential decision problem. The retailer can choose in an A which price to

show to the customer. The customer may or may not buy the product: the

reward coincides with the customer’s expense. Considering a discrete and

finite range of possible prices for the product, the problem can be framed

in the Multi-Armed Bandit context with class-environment ΞBS(l,u) where l

and u are respectively the minimum and maximum applicable prices for the

product.

Advertising. The problem addressed in this dissertation is that of adver-

tising campaign selection. In its simplest form, the problem can be reduced

as follows to the Multi-Armed Bandit framework. The advertiser is pre-

sented with a set of possible campaigns A that differ, for example, in target,

content or price-per-click. In each round, the decision-maker has to select

one of the campaigns. We assume that each ad campaign is associated with

a stochastic profit of fixed mean and bounded support distribution. We

thus obtain a Multi-Armed Bandit problem in the class-environment ΞBS.

It is important to underline that this formulation neglects many aspects of

the real problem. First, we assume that the decision-maker has no budget

constraints at each round. This means that the algorithm will search for

solutions with the highest expected profit even in the face of very high risk-

exposure due to costs. The second problem was presented in [10]: one of

the major business constraints found in campaign allocation is to keep the

Return on Investment above a given threshold at each round. We will ad-

dress these issues by extending the Multi-Armed Bandit framework in later

chapters. Finally, there is a problem with Bandit feedback. Usually, an ad-
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vertiser is not tasked with selecting a single ad campaign each round: an ad

campaign is composed of many sub-campaigns. The combination of these

must be optimally allocated. We will address this problem by introducing

the framework of Multi-Task Stochastic Semi-Bandit.

2.2 Multi-Task Stochastic Semi-Bandit

This section aims to present the extension of the MAB framework known

as Multi-Task Stochastic Semi-Bandit. This will be the starting point for

extending the MAB problem’s results with cost and ROI constraints to the

case where multiple sub-campaigns are present in the advertising problem.

We will constructively introduce this framework. First, we will present the

Multi-Task Bandit framework as a particular case of the more general Com-

binatorial Multi-Armed Bandit (CMAB) framework. As done for the MAB

case, we will introduce the framework by describing it as a sequential game

between the decision-maker and the environment. Second, we introduce the

idea of Semi-Bandit feedback, emphasizing its difference from Bandit feed-

back. Then, we examine the algorithm CombUCB to deal with Combinato-

rial Bandits, providing related results regarding its theoretical performances.

We conclude the section with two examples of practical applications.

2.2.1 Combinatorial MAB and Multi-Task Bandits

Combinatorial MAB. As we did for the MAB case, we describe the com-

binatorial Multi-Armed Bandit problem as a sequential game between a

player (i.e., learner or decision-maker) and the environment. The game con-

sists of T ∈ N rounds. In each round, the player selects an element, called a

superarm, from the set

S ⊂

{
a ∈ {0, 1}d :

d∑
i=1

ai ≤ L

}
(2.17)

Namely a superarm is a binary vector of length d with at most L entries

equal to 1. As a result of his choice, the decision-maker receives a stochastic

reward Xt, which is linear in the selected superarm, i.e.:

Xt = 〈At,µAt + ηt〉 (2.18)

The unknown vector µAt ∈ Rd is the vector of expected rewards relative to

the superarm At. The vector ηt is the source of the reward’s randomness.

It is a white noise that we assume to have unknown distribution of support
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bounded in [0, 1]d. The learner’s goal is to maximize the cumulative reward

over the time horizon T .

Framework protocol 2 Combinatorial Multi-Armed Bandit (CMAB)

Input: T time horizon, d number arms, S ⊂ {0, 1}d set of superarms

for: t = 1, ..., T

1. Select a superarm At ∈ S
2. Collect the reward Xt = 〈At,µAt + ηt〉

We observe that the problem can be seen as a particular case of the K-

Armed Bandit problem. It is sufficient to consider every possible superarm

of the combinatorial problem as an arm of a K-Armed Bandit problem. The

class-environment of this problem is given by the assumptions made on the

distribution of white noise {ηt}Tt=1. However, doing this, the number of arms

K grows exponentially in d.

Multi-Task Bandits. To study the advertising problem, we focus on a spe-

cial case of CMAB known in the literature as Multi-Task Bandits (see [15]).

We also describe this as a sequential game over T ∈ N rounds. We imag-

ine playing M ∈ N different problems K-Armed Stochastic Bandit games

simultaneously. We call each of the M problems task. In each round, the

decision-maker selects a superarm At ∈ [K]M . The mth component of the

superarm Atindicates which of the K actions is selected in the mth task.

After making a choice, the player receives a reward:

Xt =

M∑
m=1

X
(m)
t (2.19)

where we denote by X
(m)
t the partial reward of the mth task. We emphasize

that in the case of Bandit feedback, the player does not observe directly

X
(m)
t , but only receives the value of the total reward of the M tasks.

Framework protocol 3 Multi-Task Stochastic Bandit (MTSB)

Input: T time horizon, K number arms for each task, M number of tasks,

S = [K]M set of superarms

for: t = 1, ..., T

1. Select a superarm At ∈ S
2. Collect the reward Xt =

∑M
m=1X

(m)
t where X

(m)
t is the unknown

partial reward of the mth task.

It is worth underlining that the Multi-Task Bandit case can be framed as

a special case of the CMAB problem. Taking in fact d = MK it is sufficient
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to define the set in Formula (2.17) as

S :=

{
a ∈ {0, 1}d :

K∑
i=1

ai+jK = 1 for all 0 ≤ j < M

}
(2.20)

Namely, we partition the d components into M disjoint sets of cardinality

K and impose that the player must choose one and only one element from

each set. This observation legitimizes proposing CMAB algorithms to solve

Multi-Task Bandit problems.

2.2.2 Semi-Bandit feedback

We introduce in the Multi-Task Bandit problem the idea of Semi-Bandit

feedback, We describe the sequential game associated with the Multi-Task

Stochastic Semi-Bandit (MTSSB) setting. At each round, a superarm At is

selected. The mth component of At is the selected arm of the mth task. For

each task, the associated reward X
(m)
t is revealed. The reward collected in

round t is the sum of the individual rewards of each task.

Framework protocol 4 Multi-Task Stochastic Semi-Bandit (MTSSB)

Input: T time horizon, K number arms for each task, M number of tasks,

S = [K]M set of superarms

for: t = 1, ..., T

1. Select a superarm At ∈ S
2. Observe a partial reward X

(m)
t for every task m ∈ [M ]

3. Collect the reward Xt =
∑M

m=1X
(m)
t

The Semi-Bandit feedback arises in the revelation not only of superarm’s

reward but of all its components. Note that, in this case, it is no longer

possible to trace the problem back to a single MAB: the Bandit feedback is

characterized by the fact that the learner does not receive any information

other than the total reward of the just-completed round.

2.2.3 Assumptions, regret, correlation

We now extend the concepts and assumptions introduced in the MAB frame-

work to the Multi-Task Stochastic Semi-Bandit (MTSSB) case.

Notation.

• X
(m)
t , partial reward of the mth task at round t.

• Xt :=
[
X

(1)
t , X

(2)
t , . . . , X

(M)
t

]
, vector of partial rewards at round t.
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• Xt :=
∑M

m=1X
(m)
t , reward at round t.

• µa, of distribution Pa

• A
(m)
t , mth component of superarm At.

Instance of a MTSSB problem. We call instance of a Multi-Task

Stochastic Semi-Bandit problem a set of distributions Ψ = {Pa : a ∈ S}. We

assume that the distribution of the vector of partial rewards Xt, conditional

on the sequence of actions-feedbacks {A1,X1, . . . ,At−1,Xt−1,At}, is PAt .

Environment-class. We denote the environment-class of a MTSSB prob-

lem a collection of instances

Ξ := {Ψ = {Pa : a ∈ S} : Pa ∈Ma, ∀a ∈ S}

where Ma is a set of possible distributions of the vector of partial rewards

associated with the superarm a ∈ S.

The examples of environment-classes presented in the previous section

for the MAB problem extend naturally to the multivariate case. In particu-

lar, in the course of the thesis, we focus on the environment-class ΞBS([0,1]M ),

whose distributions have limited support contained in the hypercube [0, 1]M .

Policy. The distribution of At given the sequence {A1,X1, . . . ,At−1,Xt−1}
is πt(·|A1,X1, . . . ,At−1,Xt−1). The sequence U := {πt}Tt=1 is called policy

and characterizes the decision-maker.

Regret. Given an instance Ψ of the MTSSB problem and a policy U, we

define the regret of U at round n ∈ [T ]:

RT (U,Ψ) := nµ? −
n∑
t=1

E [Xt] (2.21)

Where Xt :=
∑M

m=1X
(m)
t and µ? := argmaxa∈S µa. The expectation with

respect to the probability measure induced by the interaction between U and

environment.

We emphasize how, even if we have information about the partial rewards

X
(m)
t , the regret is evaluated on the total reward of each round Xt.

Correlation. An important assumption to discuss is the one about correla-

tion between the tasks in the problem. For each m ∈ [M ], a ∈ S, we denote

by P
(m)
a the marginal distribution of the mth component of the vector of
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partial rewards associated with the superarm a ∈ S, which has distribution

Pa.

It is well known from probability theory that from the knowledge of

the joint distribution Pa, one can obtain the marginal distribution of the

components P
(m)
a . However, it is not possible in general from

{
P

(m)
a

}M
m=1

to trace back to Pa. Nevertheless, when we assume independence between

the components, the joint measure coincides with the product measure. So

if we assume independence between the M tasks of the problem, we could

characterize each instance as Ψ = {P (m)
i : i ∈ [K], m ∈ [M ]}, i.e., indicating

the marginal distributions of the components of each possible superarm.

Still, because of the way the MTSSB framework is defined, assuming

independence between superarm components is equivalent to considering

M separate K-Armed Bandit problems. In this case, the best that can be

done is to use in parallel M times a policy for the MAB problem, each tak-

ing into into account only the partial reward X
(m)
t . Independence between

components, in fact, implies that the optimal superarm is the one whose

components are optimal arms for the individual tasks considered separately.

However, if we add constraints to the problem, this statement no is no

longer verified. We will see how in a constrained context, e.g., with budget

or ROI constraints, a superarm that is optimal in terms of reward can have

components that turn out to be suboptimal when considering individual

unconstrained tasks separately.

2.2.4 Combinatorial UCB algorithm

Several algorithms for the CMAB problem with Semi-Bandit feedback, of

which MTSSB is a particular case, have been explored in the literature. We

propose below an algorithm inspired by UCB1, studied in the paper [13]

and known as CombUCB. We refer to the notation used for the CMAB

framework recalling that we can apply it to the MTSSB framework as a

particular case.

The algorithm follows the upper confidence bound idea introduced with

the UCB1 algorithm. For each of the arms i ∈ [d] , we construct an upper

confidence bound UCBi defined as follows.

UCBi(t− 1) :=

+∞ if Ni(t− 1) = 0

µ̂i(t− 1) +
√

2 log(t)
Ni(t−1) otherwise

(2.22)

Where Ni(t− 1) is the random variable that counts the number of times

arm i has played an active role in one of the arms selected up to round
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t − 1, namely Ni(t − 1) := #{s ∈ [t − 1] : A
(i)
s = 1 }. We denote with

µ̂i(t− 1) := 1
Ni(t−1)

∑t−1
s=1X

(i)
s A

(i)
s the sample mean of the partial reward ith

based on the samples collected up to round t− 1.

The algorithm’s idea is to select the superarm At optimistically. From

the set of superarms S, we select the one whose sum of UCBs associated to

active components is maximal.

Algorithm 3 CombUCB

Input: d number of arms, S ⊂ {0, 1}d set of superarms, T time horizon

for t= 1,...,T do

Choose superarm At = argmaxa∈S
∑d

j=1 a
(j)UCBa(j)(t− 1)

Observe partial rewards X
(j)
t for each j ∈ {j ∈ [d] : A

(j)
t = 1} and

update upper confidence bounds of each arm i ∈ [d].

The algorithm turns out to be a simple extension of UCB1, but, like

UCB1, it manages to guarantee excellent theoretical bounds on total regret.

Theorem 2.2.1 (Instance dependent regret bound for CombUCB). Fix a

time horizon T ∈ N, a number of arms d ∈ N and a superarm set S = {a ∈
{0, 1}d : ‖a‖1 ≤ L} for some L ∈ [d]. For any instance of the stochastic

Combinatorial Semi-Bandit problem, the regret of Algorithm (3) is bounded

as:

RT ≤
∑
i:∆i>0

d
534

∆i,min
log(T ) +

(
π2

3
+ 1

)
Ld

Where ∆i,min is minimum gap between a suboptimal superarm that contains

arm i and the optimal superarm.

We refer to [13] for the proof and further discussion. In addition, [13]

provides the following instance independent bound for regret:

Theorem 2.2.2 (Instance independent regret bound for CombUCB). Fix a

time horizon T ∈ N, a number of arms d ∈ N and a superarm set S = {a ∈
{0, 1}d : ‖a‖1 ≤ L} for some L ∈ [d]. For any instance of the stochastic

combinatorial Semi-Bandit problem, the regret of Algorithm (3) is bounded

as:

RT ≤ 47
√
T log(T )Ld+

(
π2

3
+ 1

)
Ld

We will use an extension of this algorithm, with constraints added, for

the advertising problem with multiple sub-campaigns.
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2.2.5 Applications

The Multi-Armed Combinatorial Bandit problem is reflected in several ap-

plication examples of sequential decisions. We present two of them below,

placing particular attention to the advertising case that we will extend in

the thesis.

Social influence maximization. In a social influence maximization prob-

lem [12], is given a directed graph G = (V,E), with a finite set of vertices

V and set of edges E ⊂ V × V . Each edge (i, j) is associated with an un-

known probability of influence propagation. At the beginning of each round,

a subset S ⊂ V is selected and the nodes in S are activated. The subset S is

called seed of round t. Starting from the seed, starts a propagation process,

which lasts n iterations. At each iteration an active node i has a probability

pi,j of activating an inactive node j connected to i via the edge (i, j). At the

end of the propagation process, the round reward is equal to the number of

active nodes on the graph. The problem is to find the set S, formed by at

most L nodes, that maximizes the expected reward. The problem can be

put in the CMAB framework: we do not know the probability of influence

propagation of each edge, and we want to learn them by iteratively setting

a subset of the vertices as seed. At the same time, we try to maximize the

cumulative reward in T rounds. We can denote each edge as an arm of the

CMAB problem. A superarm coincides with a set of edges exiting from at

most L nodes.

Advertising problem. The Multi-Task Stochastic Semi-Bandit framework

allows us to model the advertising problem in the case where the advertiser

has to choose at each round an advertising campaign consisting of multiple

subcampaigns. We denote by M the number of subcampaigns. In each of the

M sub-campaigns, the advertiser must choose between K ads that differ, for

example, in the target audience, keywords, or price-per-click. A stochastic

profit is associated with each of the ads. The learner selects at each round

one and only one ad for each of the M sub-campaigns, observes the profit

derived from each and collects the total profit, namely the sum of each

subcampaign’s profit. The learner’s goal is to maximize the cumulative profit

over the T rounds of the sequential game. Although this is an extension of

the MAB case model, it is not without limitations. The main and already

mentioned ones are the lack of constraints on cost and ROI. In Chapter (5),

we will propose algorithms that take in account these constraints.



Chapter 3

Problem formulation

This chapter formally introduces the constrained problems that allow us to

model the advertising problem with daily requirements on budget and ROI

constraints. First, we present the Multi-Armed Bandit framework with cost

feedback (CostMAB), which extends the MAB problem by introducing a

feedback on the cost separate from feedback on the reward. Then, we define

in the CostMAB framework the idea of safe policy. Selecting algorithms in

the safe class aims to ensure that constraints are violated, in expectation,

a sublinear number of times. Unfortunately, the impossibility theorem pre-

sented in [5] states that if an algorithm belongs to the safe class, it cannot

ensure sublinear bounds on the regret.

This tradeoff theorem motivates the entire dissertation: to overcome the

limitation of safe policies, we introduce the concept of quasi-safe policies.

These are algorithms that admit sublinear bounds for regret while main-

taining sublinear the expected number of times the constraints are violated

no more than a certain tolerance threshold.

We will focus on budget and ROI constraints, presenting them separately

to have a more understandable analysis of the algorithms in the following

chapters.

We extend the problem formulation to the Multi-Task Stochastic Semi-

Bandit framework with cost feedback (CostMTSSB). Again, we will define

the idea of quasi-safe learning, both for daily budget constraints and daily

ROI constraints.

Finally, we show how we can frame the advertising bid optimization

problem into the CostMAB framework –in the case of a single advertising

campaign– and into the CostMTSSB framework –in the case of multiple

advertising sub-campaigns–.

25
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3.1 Cost Multi-Armed Bandit (CostMAB)

We extend the stochastic K-Armed Bandit framework by introducing cost

feedback on selected arms. We describe the problem as a sequential game

between the decision-maker and the environment, played over T ∈ N rounds.

At each round t ∈ [T ], the player selects an arm At from the set A = [K].

The environment then returns as feedback the pair (Xt, Yt). Xt repre-

sents the reward obtained by the decision-maker, Yt the cost incurred by

the player. Both are stochastic quantities extracted from distributions not

known to the learner.

Basic assumptions. We introduce the basics assumptions of the model.

We define instance of a stochastic cost MAB problem, a set

Ψ := {(Pa, Qa) : a ∈ A}

Where, for any arm a ∈ A, Pa represents the distribution of arm’s reward,

while Qa represents the distribution of arm’s cost. Namely, if in round t the

player selects the action At, the environment will sample the reward Xt from

the distribution PAt and the cost Yt from the distribution QAt . Observe that

the interaction between agent and environment induces a probability mea-

sure on the sequence of actions-feedback {A1, (X1, Y1), . . . , AT , (XT , YT )}.
We assume that the sequence of action-feedback satisfies the following hy-

potheses:

• the conditional distribution of the reward Xt given the sequence of

feedback actions up to round t, {A1, (X1, Y1), . . . , (Xt−1, Yt−1), At}, is

PAt .

• the conditional distribution of the reward Yt given the sequence of

feedback actions up to round t, {A1, (X1, Y1), . . . , (Xt−1, Yt−1), At}, is

QAt .

• the distribution of At given the sequence {A1, (X1, Y1), . . . , At−1,

(Xt−1, Yt−1)} is πt(·|A1, (X1, Y1), . . . , At−1, (Xt−1, Yt−1)).

The sequence U := {πt}Tt=1 is called policy and characterizes the

decision-maker.

The first two hypothesis summarize the idea that the environment sam-

ples the value of Xt from PAt and the value of Yt from QAt . The last

assumption requires that the player’s actions to be selected on and only

based on the history before round t.
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Framework protocol 5 Cost Multi-Armed Bandit (CostMAB)

Input: T time horizon, K number arms, A = [K] set of arms

for: t = 1, ..., T

1. Select an arm At ∈ A
2. Collect the reward Xt sampled from PAt .

3. Suffer a cost Yt sampled from QAt

Notation. Fix a ∈ A, we define the following quantities:

• µa, mean of the distribution Pa.

• νa, mean of the distribution Qa.

Throughout this thesis, we focus on the environment-class ΞBS(0,1), i.e.,

the class of instances for which the reward and cost distributions have limited

support in the real interval [0, 1].

3.1.1 Safe learning: daily budget constraints

To find performant algorithms that account for daily budget constraints, we

need to define two elements. The first is an optimal solution against which

evaluate a proposed algorithm, leveraging the idea of regret. The second

element is a class of algorithms considered safe, among which we will look

for those with good performances in terms of regret.

Optimal constrained solution. Let b ∈ (0, 1] the daily budget required

by the problem. We say that the sequential game defined by Protocol (5) is

subject to budget constraints if the policy U? considered optimal prescribes

at each round t ∈ T the arm a? ∈ A solution of the optimization problem:

argmax
a∈A

µa (3.1)

s.t. νa ≤ b (3.2)

Namely, it selects the arm with the highest expected reward among those

whose expected cost is lower than the budget.

Regret. Once defined the optimal constrained policy, we can define the

regret to measure the performances in terms of cumulative reward.
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Definition 3.1.1. Let Ψ := {(Pa, Qa) : a ∈ A} be an instance of the budget

constrained CostMAB problem. Given the policy U, we call regret of U over

the time horizon T the quantity:

RU(T ) = Tµ? −
T∑
t=1

E [Xt] (3.3)

Where µ? is the mean reward of the arm prescribed by the optimal policy U?
defined in Equation (3.1), and the expectation is with respect to the probabil-

ity measure induced by the interaction between policy U and the environment.

Observe that this definition of regret is not substantially different from

the one of MAB framework. The only difference, in which the budget con-

straint appears, is the definition of the optimal policy. This fact implies pros

and cons. On the one hand, this suggests that we should try to apply tech-

niques similar to those proposed in the MAB literature to find algorithms

with theoretical bounds on the regret. On the other hand, minimizing the

regret is clearly not enough to find a satisfying solution to the problem:

a policy can in general achieve an arbitrarily small regret by violating the

constraints many times. Violating the constraint makes it possible to out-

perform the reward of optimal policy in terms of regret.

On the other side, the stochasticity of costs makes impossible to ensure

a priori that a policy will never violate Constraint (3.2). Thus, it arises the

need of shrinking the class of possible algorithms, adding some conditions

that account for the objective of not violating Constraint (3.2) too often.

Budget safe policies. We now formalize the concept of not violating the

budget constraint too often. The metric to address this problem is the

expected number of constraint violations.

Definition 3.1.2 (Expected number of budget constraint violations). Let

Ψ be an instance CostMAB problem with daily budget b. Fix policy U and a

time horizon T . We define the expected number of constraint violations of

U over T rounds:

E [JT ] := E [#{t ∈ [T ] : νAt > b}] (3.4)

Where At is the action selected at round t by policy U, and νa is the mean

of the distribution Qa.

Leveraging this definition we can now specify the class of η-safe policy
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Definition 3.1.3 (Budget η-safe policy). Fix η ∈ (0, 1). The policy U is

said to be η-safe if

E [JT ] ≤ ηT (3.5)

Namely, the expected number of violations of Constraint (3.2) is upper-

bounded by ηT .

Note that any η-safe policy ensures that, with probability at least 1− η,

the policy does not violate the constraint of the optimization problem. A

satisfying policy for the problem would combine the request of sublinear

growth of the regret and a requirement of η-safety.

Unfortunately, in the next section we will illustrate the result by [5] that

proves the impossibility of building such a policy. So we’ll need to relax our

requests.

3.1.2 Safe learning: daily ROI constraint

Similar to what we have done in the case of daily budget constraints, we

define a constrained optimization problem the that allows us to take into

account daily demands on the Return on Investment. Then, we define a

class of ROI safe algorithms.

Remark 3. We recall shortly the definition and the role played by the ROI

index in Economics. The Return on Investment (ROI) is a performance

measure used to evaluate the efficiency or profitability of an investment. ROI

tries to directly measure the amount of return on a particular investment,

relative to the investment’s cost. For an investment of return R and cost C

we define the ROI index as:

ROI :=
R

C
(3.6)

As explained in Chapter (1), in [10] authors show how the control of this

index significantly impacts how advertisers select their campaigns.

While in the case of budget constraints, the goal was to keep costs below

a daily budget b, in the case of ROI constraint, we would like to be able to

keep at each round the reward/cost ratio above a threshold λ ≥ 1.

Optimal constrained solution. We say that the CostMAB sequential

game defined by the Protocol (5) is subject to ROI constraints if the policy

U? considered optimal prescribes each round to play the arm a? ∈ A solution

of the constrained optimization problem:
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argmax
a∈A

µa (3.7)

s.t.
µa
νa
≥ λ (3.8)

Note that, unlike the budget case, we consider the threshold λ fixed for

all rounds.

Regret. Once defined the optimal constrained policy, we can define the

regret to measure the performances in terms of cumulative reward.

Definition 3.1.4. Let Ψ := {(Pa, Qa) : a ∈ A} be an instance of the

CostMAB problem with daily ROI requirement λ ≥ 1. Given the policy U,

we call regret of U over the time horizon T the quantity:

RU(T ) = Tµ? −
T∑
t=1

E [Xt] (3.9)

Where µ? is the mean reward of the optimal arm, and the expectation is with

respect to the probability measure induced by the interaction between policy

U and the environment.

The definition is substantially unchanged from the case with budget

constraints. Again, what is important is to define a class of safe algorithms.

ROI safe policies. Also in the ROI constrained problem, the measure of

safety is the expected number of constraint violations.

Definition 3.1.5 (Expected number of ROI constraint violations). Let Ψ

be an instance ROI CostMAB problem, with threshold λ > 1. Fix a policy U

and a time horizon T . We define the expected number of constraint violations

of U over T rounds:

E [JT ] := E
[
#

{
t ∈ [T ] :

µAt
νAt

< λ

}]
(3.10)

where At is the action selected at round t by policy U, Where At is the action

selected at round t by policy U, µa and νa are respectively the mean of the

distribution Pa and Qa, ∀a ∈ A.

Thus specify the class of ROI η-safe policy

Definition 3.1.6 ( ROI η-safe policy ). Fix η ∈ (0, 1). The policy U is said

to be η−safe if

E [JT ] ≤ ηT (3.11)

Namely, with probability at least 1−η the policy U does not violate Constraint

(3.8).
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3.2 Impossibility theorem and quasi-safe policies

In this section, we present the impossibility theorem proved in [5]. The theo-

rem was formulated for the CostMAB budget case but is trivially extensible

to the case with ROI constraints. In [5] the authors prove the impossibility

of finding a policy that on each instance of the problem admits sublinear

bounds on the total regret and, at the same time, is η-safe for some η ∈ (0, 1).

Theorem 3.2.1 (Regret–safety trade-off). Fix ε ∈ (0, 0.5) and a time hori-

zon T ∈ N. There is no policy U such that for any instance Ψ of CostMAB

problem with daily budget constraints both the following conditions hold:

• U is (1
2 − ε)-safe

• RT (U,Ψ) ≤ (1
2 − ε)T

Where the definition of η-safe policy is given in Definition (3.1.3).

This theorem imposes us to relax the conditions that define the class of

safe algorithms. What we will do is to introduce a tolerance threshold ε > 0

in the violation of the constraints. We formalize this idea below.

Budget quasi-safe policies. Let us be given a budget constrained

CostMAB problem. We fix a threshold of tolerance ε > 0.

Definition 3.2.1 (Expected number of intolerable budget constraint viola-

tions). Let Ψ be an instance budget CostMAB problem, with daily budget b.

Let ε > 0 be a given tolerance threshold. Fix a policy U and a time horizon

T . We define the expected number of intolerable constraint violations of U

over T rounds:

E [JεT ] := E [# {t ∈ [T ] : νAt ≥ b+ ε}] (3.12)

Where At is the action selected at round t by policy U, and νa is the mean

of the distribution Qa, ∀a ∈ A

Definition 3.2.2 (Budget η-quasi-safe policy ). Fix η ∈ (0, 1). The policy

U is said to be η-quasi-safe with respect the tolerance threshold ε > 0 if

E [JεT ] ≤ ηT (3.13)

Namely, the expected number of intolerable violations of Constraint (3.2) is

upper-bounded by ηT .
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ROI quasi-safe policies. In a completely analogous way we give the

definitions for the ROI constrained CostMAB case. We set a tolerance

threshold ε > 0.

Definition 3.2.3 (ROI quasi-safe policy). Let Ψ be an instance ROI

CostMAB problem, with ROI threshold λ. Let ε > 0 be a given tolerance

threshold. Fix a policy U and a time horizon T . We define the expected

number of intolerable constraint violations of U over T rounds:

E [JεT ] := E
[
#

{
t ∈ [T ] :

µAt
νAt
≤ λ− ε

}]
(3.14)

Where At is the action selected at round t by policy U, µa and νa are respec-

tively the mean of the distribution Pa and Qa, ∀a ∈ A.

Fix η ∈ (0, 1). The policy U is said to be η-quasi-safe if

E [JεT ] ≤ ηT (3.15)

In the following of the dissertation, we will propose quasi-safe algorithms

that admit sublinear bounds in the regret. It is important to note that the

level η of quasi-safety will, in general, depend on the selected ε tolerance

threshold. We will focus our analysis on the relationship between the level

of safety η and the tolerance threshold ε. We will show that it is possible

to achieve sublinear regret and sublinear expected number of intolerable

violations with a small tolerance.

3.3 Cost Multi-Task Stochastic Semi-Bandit

We extend the Multi-Task Stochastic Semi-Bandit framework described in

Protocol (4) by introducing feedback on the cost of arms. The formalization

of the following concepts is similar to what we have done for the CostMAB

case. We briefly describe the problem as a sequential game between the

decision-maker and the environment. The game environment has M ∈ N
tasks composed by K ∈ N arms. At each turn t ∈ [T ] the player must select

a superarm At ∈ S. The component A
(m)
t ∈ [K] of the superarm represents

the arm selected by the player in the mth task. The environment then re-

turns a feedback
(
X

(m)
t , Y

(m)
t

)
for each task m ∈ [M ]. X

(m)
t is the partial

reward of the mth task in round t, Y
(m)
t the partial cost. We call the vector

Xt :=
[
X

(m)
t

]M
m=1

vector of partial rewards of round t, Yt :=
[
Y

(m)
t

]M
m=1

vector of partial costs. The player then collects a reward Xt :=
∑M

m=1X
(m)
t

and suffers a cost Yt :=
∑M

m=1 Y
(m)
t . We assume that the distribution of the
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vector of partial rewards Xt, conditional to the sequence of actions-feedbacks

{A1, (X1,Y1) , . . . ,At−1, (Xt−1,Yt−1) ,At}, is PAt . Analogously, the distri-

bution of the vector of partial rewards Yt, conditional to the sequence of

actions-feedbacks, is QAt .

Framework protocol 6 Cost Multi-Task Stochastic Semi-Bandit

(CostMTSSB)

Input: T time horizon, K number arms, M number of tasks, S = [K]M set

of superarms

for: t = 1, ..., T

1. Select a superarm At ∈ S
2. Observe the vector of partial rewards

[
X

(m)
t

]
m∈[M ]

sampled from PAt .

3. Observe the vector of partial costs
[
Y

(m)
t

]
m∈[M ]

sampled from QAt .

4. Collect a reward Xt :=
∑

m∈[M ]X
(m)
t

5. Suffer a cost Yt :=
∑

m∈[M ] Y
(m)
t

Notation. Fix a ∈ S, we define the following quantities:

• µa, vector mean of the distribution Pa.

• µ
(m)
a , mth component of vector µa.

• νa, vector mean of the distribution Qa.

• ν
(m)
a , mth component of vector νa.

3.3.1 Safe learning: budget constrained CostMTSSB

As we did for the CostMAB framework, we define an optimal solution against

which to measure the algorithms’ performance. Then, we define the class of

quasi-safe algorithms to account for budget constraints.

Optimal constrained solution. Let b ∈ (0,M ] be the daily budget im-

posed by the problem. We say that the sequential game defined by Protocol

(6) is subject to budget constraints if the policy U? considered optimal pre-

scribes at each round t ∈ T the superarm a? ∈ A solution of the optimization

problem:



34 Chapter 3. Problem formulation

argmax
a∈S

M∑
m=1

µ
(m)
a (3.16)

s.t.
M∑
m=1

ν
(m)
a ≤ b (3.17)

We observe that in the MTSSB case, the daily budget constraint to which the

optimal solution is subject is imposed on the overall reward of the M tasks.

This implies a combinatorial problem even when the tasks are independent of

each other: it is possible that in the optimal solution, there are components

with very high partial reward and cost, which are balanced by components

with meager partial reward and cost.

Regret. Once defined the optimal constrained policy, we can define the

regret.

Definition 3.3.1. Let Ψ := {(Pa, Qa) : a ∈ S} be an instance of the budget

constrained CostMTSSB problem. Given the policy U, we call regret of U

over the time horizon T the quantity:

RU(T ) = T

M∑
m=1

µ
(m)
? −

T∑
t=1

M∑
m=1

E
[
X

(m)
t

]
(3.18)

Where µ? is the mean vector of rewards relative to the optimal superarm,

and the expectation is with respect to the probability measure induced by the

interaction between policy U and the environment.

The regret evaluation coincides with the definition in the context MTSSB

without cost. Therefore, to find good policies in terms of cost constraint

violations, we will need to define a class of safe policies from which we select

our algorithms.

First, we observe that trade-off Theorem (3.2.1) also holds in the

CostMTSSB case. Indeed, if by contradiction there exists a policy that ad-

mits sublinear regret and expected number of sublinear constraint violations,

this should also hold for instances with M=1. However, CostMTSSB prob-

lems with M=1 coincide with CostMAB problems. This would contradict

Theorem (3.2.1). It follows that it only makes sense to look for algorithms

in the quasi-safe class.

Budget quasi-safe policies. Consider a budget-constrained CostMTSSB

problem and fix a threshold ε > 0.
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Definition 3.3.2 (Expected number of intolerable budget constraint viola-

tions). Let Ψ be an instance budget CostMTSSB problem, with daily budget

b. Let ε > 0 be a given tolerance threshold. Fix a policy U and a time hori-

zon T . We define the expected number of intolerable constraint violations of

U over T rounds:

E [JεT ] := E

[
#

{
t ∈ [T ] :

M∑
m=1

ν
(m)
At
≥ b+ ε

}]
(3.19)

Where At is the superarm selected at round t by policy U.

Definition 3.3.3 (Budget quasi-safe policy). Fix η ∈ (0, 1). The policy U

is said to be η-quasi-safe with respect to the tolerance threshold ε > 0 if

E [JεT ] ≤ ηT (3.20)

3.3.2 Safe learning: ROI constrained CostMTSSB

Finally, we formalize the player’s goal in CostMTSSB when she wants to deal

with ROI constraints. As we have done for the previous cases, we define an

optimal constrained solution and a class of quasi-safe algorithms that does

not violate the constraints intolerably too many times in expectation.

Optimal constrained solution. Let λ ≥ 1. We say that the sequential

game defined by Protocol (6) is subject to ROI constraints if the policy U?
considered optimal prescribes at each round t ∈ [T ] the superarm a? ∈ A
solution of the optimization problem:

argmax
a∈S

m∑
m=1

µa (3.21)

s.t.

∑M
m=1 µ

(m)
a∑M

m=1 ν
(m)
a

≥ λ ∀t ∈ [T ] (3.22)

ROI quasi-safe policies. Consider a CostMTSSB problem with daily ROI

requirement λ ≥ 1 and fix a threshold ε > 0.

Definition 3.3.4 (Expected number of intolerable budget constraint viola-

tions). Let Ψ be an instance budget CostMTSSB problem, with ROI thresh-

old requirement λ ≥ 1. Let ε > 0 be a given tolerance threshold. Fix a

policy U and a time horizon T . We define the expected number of intolerable
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constraint violations of U over T rounds:

E [JεT ] := E

[
#

{
t ∈ [T ] :

∑M
m=1 µ

(m)
At∑M

m=1 ν
(m)
At

≤ λ− ε

}]
(3.23)

Where At is the superarm selected at round t by policy U.

Definition 3.3.5 (ROI quasi-safe policy). Fix η ∈ (0, 1). The policy U is

said to be η-quasi-safe with respect to the ROI constraint with respect to the

tolerance threshold ε > 0 if

E [JεT ] ≤ ηT (3.24)

3.4 Bid optimization modeling

After introducing the CostMAB and CostMTSSB frameworks, we show how

they can model the bid optimization problem in advertising.

We divide two cases. The first, simpler, is the case of a single campaign

that we model with the CostMAB framework. The second is the case of

multiple sub-campaigns, which we model with the CostMTSSB framework.

3.4.1 Single campaign

The bid advertising problem with a single campaign can be modeled as

follows. The advertiser has a set I := {i1, . . . , iN} of possible advertisements

that differ in several parameters such as placement on the page, format

(images, text, video) or associated keywords. In each fixed period of time,

hereinafter round, the advertiser participates in an auction. Let us assume

finite the set B := {β1, ..., βB} of possible bids that the player can place.

In each round, the advertiser chooses one among the pairs (i, β) ∈ I × B.

Each pair (i, β) ∈ I × B is associated with a stochastic cost that depends

on the number of clicks the advertisement receives in the period until the

next round. Each ad generates a return for the advertiser, which is also

stochastic. We assume that the costs and returns of each pair have a fixed

distribution independent of the round considered.

The advertiser’s goal is to maximize the expected cumulative return over

T rounds.

The problem can be framed in the CostMAB framework with set of arms

A := I × B. The possible K := N ×B pairs (i, β) represent the arms from

which the player can choose.

The use of the CostMAB framework allows us to model the case where

the advertiser has daily business constraints, such as:
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• Budget Constraints. The advertiser has a daily budget b. The goal is

to adopt a policy that is able to maintain the cumulative regret below

a bound sublinear in T while picking arms that exceed in expectation

the daily budget b only a number of times sublinear in T .

• ROI Constraints. The advertiser has a minimum threshold λ ≥ 1

of ROI. The goal is to adopt a policy that is able to maintain the

cumulative regret below a bound sublinear in T while picking arms that

in expectation is below the daily ROI requirement λ only a number of

times sublinear in T .

In the CostMAB model, algorithms that satisfy these requirements are

modeled as budget safe and ROI safe algorithms. Since Theorem (3.2.1)

shows the impossibility of constructing such algorithms, we relax the de-

mands by granting that the constraints are satisfied unless there is a tol-

erance ε > 0 on the size of the violation. This relaxation coincides with

looking for algorithms belonging to quasi-safe classes.

3.4.2 Multiple sub-campaigns

Let us model the advertiser’s case to compose a campaign formed by M sub-

campaigns. The sub-campaigns may differ from each other, for instance, by

platform (social network, search engine) or format (video, image, text). Each

of the M campaigns has a set I := {i, . . . , iN} of possible advertisements.

In each round, the advertiser participates in M auctions. For each of the M

auctions, we assume the set B := {β1, ..., βB} of possible bets that the player

can place to be finite. Each round the player chooses a pair (i, β) ∈ I × B
for each sub-campaign m ∈ [M ].

Each choice corresponds to a stochastic cost that depends on the number

of clicks generated by the ad and a stochastic reward. The advertiser is able

to observe costs and rewards of each of the M choices. Then, she incurs

a cost equal to the sum of the costs and a reward equal to the sum of

the rewards. We assume costs and rewards to have unknown but fixed

distributions independent across sub-campaigns.

The problem can be framed in the CostMTSSB context with set of su-

perarms S := (I × B)M .

The goal is to maximize the expected cumulative reward over T rounds

while satisfying daily business constraints. As in the single campaign case,

we consider as possible constraints:

• Budget constraints. The advertiser has a daily budget b. The goal

is to adopt a policy that is able to maintain the cumulative regret
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below a bound sublinear in T while picking superarms that exceed in

expectation the daily budget b only a number of times sublinear in T .

• ROI Constraints. The advertiser has a minimum threshold λ ≥ 1 of

ROI. The goal is to adopt a policy that is able to maintain the cumula-

tive regret below a bound sublinear in T while picking superarms that

in expectation is below the daily ROI requirement λ only a number of

times sublinear in T .

As in the CostMAB case, we relax these requirements by granting that

the constraints are satisfied up to a tolerance ε > 0 on the size of the

violation. At a modeling level, this coincides with looking for algorithms

belonging to the budget quasi-safe and ROI quasi-safe classes, respectively.
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CostMAB algorithms

In this chapter, we focus on the CostMAB framework introduced in the pre-

vious chapter. We propose two algorithms: the first belongs to the budget

quasi-safe class, the second to the ROI quasi-safe class. Both are inspired by

the UCB1 algorithm presented in Chapter (2). Clearly, it is necessary to use

particular expedients to take into account the cost feedback and restrict the

policies to the quasi-safe class. For both policies, the analysis is developed

as follows. First, we present the algorithm and the main ideas used to ac-

count for the constraints. Then, we show that the algorithm under analysis

belongs to the class of quasi-safe policies, emphasizing the relationship be-

tween the expected number of intolerable violations of the constraints and

the tolerability threshold. Finally, we show that the proposed algorithm

admits a bound for the regret that is sublinear in the number of rounds T .

4.1 BudgetLUCB algorithm

In this section we propose an algorithm for the CostMAB problem with daily

budget constraints. The algorithm is based on the principle of Optimism in

the Face of Uncertainty: at each round we elaborate an optimistic estimate

on the expected reward and the expected cost of each arm. Such an esti-

mate will be an upper confidence bound for the expected reward, a lower

confidence bound for the expected cost. Therefore, we call our algorithm

BudgetLUCB (Budget Lower/Upper Confidence Bounds).

39
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4.1.1 Algorithm description

The algorithm uses at each round optimistic guests on the expected cost

and the expected reward. These estimations are defined as:

UCBa(t− 1) :=

+∞ if Na(t− 1) = 0

µ̂a(t− 1) +
√

2 log(T )
Na(t−1) otherwise

(4.1)

LCBa(t− 1) :=

−∞ if Na(t− 1) = 0

max
{
ν̂a(t− 1)−

√
2 log(T )
Na(t−1) , 0

}
otherwise

(4.2)

Where Na(t) is the number of times the arm a has been sampled up to

round t. µ̂a(t) = 1
Na(t)

∑t
s=1Xs1 {As = a} is the average of rewards of arm

a collected up to round t. ν̂a(t) = 1
Na(t)

∑t
s=1 Ys1 {As = a} is the average of

costs of arm a, suffered up to round t.

At each round the algorithm computes UCB and LCB for each arm a ∈ A
and solves the optimistic optimization problem:

argmax
a∈A

UCBa(t− 1) (4.3)

s.t LCBa(t− 1) ≤ b (4.4)

We assume the existence of a null arm, that has zero cost and reward

almost surely. So, we can ensure the set of feasible arms to be non-empty.

We summarize here the algorithm.

Algorithm 4 BudgetLUCB

Input: A = [K] arms set, T ≥ K time horizon, b daily budget

for t= 1,...,T do
Choose action At solution of the constrained optimization problem:

argmax
a∈A

UCBa(t− 1) (4.5)

s.t LCBa(t− 1) ≤ b (4.6)

Observe reward Xt and cost Yt and update confidence bounds.

The idea is to be optimistic both on how high the reward of unexplored

arms could be, and on how low the cost these arms could be.
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It is worth summarizing the notation used in the following.

Notation.

Fix a ∈ A, t ∈ [T ], j ∈ [T ].

• µa, mean of distribution Pa

• νa, mean of distribution Qa

• Na(t), number of times arm a has been sampled up to round t

• µ̂a(t) :=
∑t

s=1Xt1 {At = a}, sample mean of rewards sampled up to

round t from arm a

• ν̂a(t) :=
∑t

s=1 Yt1 {At = a}, sample mean of costs sampled up to round

t from arm a

• µ̂a,j, average of the first j values sampled independently from distribu-

tion Pa

• ν̂a,j, average of the first j values sampled independently from distribu-

tion Qa

4.1.2 Safety analysis

We show that Algorithm (4) belongs to the class of budget quasi-safe policies.

The crucial point in the analysis of the proposed algorithms will be

the concept of Clean Event. Intuitively, the Clean Event is an event that

happens with high probability and under which the algorithm has access to

good estimations of the expected arm feedback1. We formalize this concept

below.

Definition 4.1.1 (Clean Event). Let Ψ := {(Pa, Qa) : a ∈ A} be an instance
of the CostMAB problem. We define Clean Event (E) the event:

E :=

{
∀a ∈ A ∀t ∈ [T ], |µa − µ̂a(t)| <

√
2 log(T )

Na(t)
∧ |νa − ν̂a(t)| <

√
2 log(T )

Na(t)

}

It is important to emphasize the meaning of the Clean Event. The goal

of the decision-maker is to choose the arm with the maximum expected

reward that satisfies the Constraint (3.1.1). Under the Clean Event, the

player knows an interval around value of the expected reward and the value

1We say that and event A happens (almost surely) under the event B, if P (A|B) = 1.
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of the expected cost. This means that, at each round t ∈ [T ], the player

knows ∀a ∈ A that:

µa ∈

[
µ̂a −

√
2 log(T )

Na(t)
, µ̂a +

√
2 log(T )

Na(t)

]
(4.7)

νa ∈

[
ν̂a −

√
2 log(T )

Na(t)
, ν̂a +

√
2 log(T )

Na(t)

]
(4.8)

Note that the intervals shrink as the number of times the arm is played

Na(t) increases: intuitively, this allows us to learn which arms respect the

constraints in a tolerable way. We will show that we can learn this perform-

ing number of sampling Na(t) sublinear in T.

In particular the following Lemma holds.

Lemma 4.1.1. Let Ψ be an instance of the CostMAB problem with daily

budget b. Let {At}Tt=1 be the arms selected by Algorithm (4) when applied to

instance Ψ. Fix a tolerance threshold ε > 0. For every t ∈ [T ], the event

{νAt > b+ ε} (4.9)

is impossible, under the Clean Event E, if NAt(t− 1) > 8 log(T )
ε2

.

Proof. First, notice that

NAt(t− 1) >
8 log(T )

ε2
⇐⇒ ε > 2

√
2 log(T )

NAt(t− 1)
(4.10)

Second, according to Algorithm (4) At can be chosen only if

LCBAt(t− 1) ≤ b (4.11)

Moreover, under E , must hold:

LCBAt(t− 1) = ν̂At(t− 1)−

√
2 log(T )

NAt(t− 1)
≥ νAt − 2

√
2 log(T )

NAt(t− 1)
(4.12)

Suppose by contradiction νAt > b+ ε, then

νAt > b+ ε (4.13)

> b+ 2

√
2 log(T )

NAt(t− 1)
(4.14)

> LCBAt(t− 1) + 2

√
2 log(T )

NAt(t− 1)
(4.15)

> νAt (4.16)
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where in Line (4.14) we use Inequality (4.10), in Line (4.15) we use In-

equality (4.11), in Line (4.16) we use Inequality (4.12). Hence, we reach a

contradiction.

This Lemma assures us that, under the Clean Event, if Algorithm (4)

selects an arm that has already been played at least 8 log(T )
ε2

times, no ε-

intolerable violation of the budget constraint can be committed. So if the

Clean Event holds, we can commit at most a logarithmic number of viola-

tions per arm.

We now show that the Clean Event happens with high probability.

Lemma 4.1.2 (Probability of Clean Event). Let Ψ ∈ ΞBS(0,1) be an instance

of the CostMAB problem. Then, the probability of the event E in Definition

(4.1.1) is at least 1− 4
T 2 .

Proof. Observe that:

E :=

{
∀a ∈ A ∀t ∈ [T ], |µa − µ̂a(t)| <

√
2 log(T )

Na(t)
∧ |νa − ν̂a(t)| <

√
2 log(T )

Na(t)

}

⊃

{
∀i ∈ [K] ∀j ∈ [T ], |µi − µ̂i,j | <

√
2 log(T )

j
∧ |νi − ν̂i,j | <

√
2 log(T )

j

}
=: Ẽ (4.17)

Moreover, ∀i ∈ [K], ∀j ∈ [T ]:

P

(
|µi − µ̂i,j | >

√
2 log(T )

j
∨ |νi − ν̂i,j | >

√
2 log(T )

j

)

≤ P

(
|µi − µ̂i,j | >

√
2 log(T )

j

)
+ P

(
|νi − ν̂i,j | >

√
2 log(T )

j

)
≤ 4T−4 (4.18)

where we used Union Bound and Chernoff-Hoeffding Bound (2.1.1).

Thus, assuming T ≥ K, we can conclude:

P (E) ≥P
(
Ẽ
)

(4.19)

≥1− 4T−4KT ≥ 1− 4T−2. (4.20)

Where, in Line (4.19) we used Equation (4.17) and in Line (4.20) we used

Inequality (4.18) and the Union Bound.
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Exploiting the previous two Lemmas, we can show that Algorithm (4)

belongs to the budget quasi-safe class.

Theorem 4.1.1 (BudgetLUCB budget quasi-safety). Let Ψ ∈ ΞBS(0,1) be

an instance of the CostMAB problem with daily budget b. Fix a tolerance

threshold ε > 0. Let {At}Tt=1 be the arms selected by Algorithm (4) when ap-

plied to the Ψ. Then the expected number of intolerable constraint violations

is bounded as:

E [JT ] := E

[
T∑
t=1

1 {νAt > b+ ε}

]
≤ O

(
K log(T )

ε2

)
(4.21)

Proof. The proof is based on the two previous Lemmas.

E [JT ] :=
T∑
t=1

E [1 {νAt > b+ ε}] (4.22)

=
T∑
t=1

E [1 {νAt > b+ ε}|E ]P (E) +

+
T∑
t=1

E [1 {νAt > b+ ε}|Ec]P (Ec) (4.23)

≤
T∑
t=1

E [1 {νAt > b+ ε}|E ] + 4TT−2 (4.24)

≤8 log(T )

ε2
K +

4

T
= O

(
K log(T )

ε2

)
(4.25)

where in Line (4.23) we used the Law of Total Expectation, in Line (4.24) we

used Lemma (4.1.2), in Line (4.25) we used Lemma (4.1.1) to state that each

selected arm can commit an ε-intolerable violation at most 8 log(T )
ε2

times.

Remark 4. We underline two aspects of this result.

1. Fix a safety level η ∈ (0, 1). From Theorem (4.1.1) is trivial to find a

threshold ε such that Algorithm (4) is η-quasi-safe with respect to bud-

get constraint with a tolerance ε. It suffices to select ε ≥
√

8K log(T )
Tη .

Observe that for small values of η, the tolerability threshold ε can even

become greater than 1. Such an high tolerability threshold does not

make sense, since b ∈ [0, 1]. We have to manage the trade-off between

the level of safety η and the threshold ε.

2. In particular, observe that to ensure a sublinear expected number of

intolerable constraint violations, we have only to require ε = O
(

1
Tα

)
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with α < 0.5. Thus the larger is T , the smaller the tolerance level can

be to maintain sublinear number expected of intolerable constraint

violation.

4.1.3 Regret analysis

In this section, we want to show that Algorithm (4) admits a instance inde-

pendent bound on the total regret that is sublinear in the time horizon T .

The idea of the proof is to show that the optimal arm is never considered

infeasible in the Optimization Problem (4.4). Ensured this, we can trace

our proof back to arguments similar to the ones used in [19] to prove UCB1

regret bounds.

We first give the following definitions.

Definition 4.1.2 (Budget feasible arm). Fix an instance Ψ of the CostMAB

problem with daily budget b. An arm a ∈ A is said to be feasible at round t

if

νa ≤ b. (4.26)

We call Af := {a ∈ A : νa ≤ b ∀t ∈ [T ]} the set of feasible arms.

Remark 5. Trivially, an optimal arm a? solution of the Optimization Prob-

lem (3.1) belongs to Af .

Definition 4.1.3 (Budget empirically feasible arm). Fix an instance Ψ of

the CostMAB problem with daily budget b. Fix a tolerance threshold ε > 0.

Algorithm (4) considers an arm a ∈ A empirically feasible at round t ∈ [T ]

if

LCBa(t− 1) ≤ b (4.27)

To find a bound for the regret, we exploit again the idea of Clean Event

of Definition (4.1.1).

Lemma 4.1.3. Fix t ∈ [T ]. Under the Clean Event, for any arm a ∈ Af ,

it holds:

LCBa(t− 1) ≤ b (4.28)

Proof. Under the Clean Event,

LCBa(t− 1) = ν̂a(t− 1)−

√
2 log(T )

Na(t− 1)
≤ νa (4.29)

Therefore,

LCBa(t− 1) ≤ b (4.30)

using the fact that arm a is feasible.



46 Chapter 4. CostMAB algorithms

This Lemma states that, under the Clean Event, every feasible arm is

considered empirically feasible by Algorithm (4). Follows,

Corollary 4.1.1. Consider an instance Ψ of the CostMAB algorithm with

daily budget b. Let {At}Tt=1 be the sequence of arm selected by the algorithm

BudgetLUCB when applied to Ψ. The event

{UCBAt(t− 1) < UCB?(t− 1)} (4.31)

is impossible under the Clean Event.

Proof. Because of the definition of Algorithm (4), at round t ∈ [T ] arm At
is selected only if

UCBAt(t− 1) ≥ UCBa(t− 1)

for all a ∈ A such that LCBa(t− 1) ≤ b

Applying Lemma (4.1.3) and Remark (5), follows the thesis.

In other words, under the Clean Event, a suboptimal arm is never pre-

ferred to the optimal one because of the budget constraint: if a suboptimal

arm is chosen is because we still have a large uncertainty about its mean

reward.

This fact is extremely important: in UCB-like algorithm, when the con-

dition of Corollary (4.1.1) holds, we are able to bound the optimality gaps.

Furthermore, these bounds decrease with the number of times that an arm

is sampled. We formalize this fact in the following Lemma, that will be the

pillar in finding a bound for the regret.

Lemma 4.1.4 (Optimality gap bound). Consider an instance Ψ of the

CostMAB algorithm with daily budget b. Let {At}Tt=1 be the sequence of arm

selected by the algorithm BudgetLUCB applied to Ψ. For every arm a ∈ A,

let us indicate with ∆a := µ? − µa its optimality gap. Then, the for any

a ∈ A, the event

Na :=

{
∆a >

√
8 log(T )

Na(T )

}
(4.32)

is impossible under the Clean Event.
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Proof. For any a ∈ A, for any t ∈ [T ] consider the event:

Na(t) :=

{
At = a,∆At > 2

√
2 log(T )

NAt(t− 1)

}
(4.33)

⊂

{
At = a, µ? > µ̂At +

√
2 log(T )

NAt(t− 1)

}
(4.34)

≡{At = a, µ? > UCBAt(t− 1)} (4.35)

⊂{µ? > UCB?(t− 1)} (4.36)

where in Line (4.34) we used the fact that we assume the Clean Event to be

true, in Line (4.35) we use the definition of UCB and in Line (4.36) we use

Corollary (4.1.1). Thus Na(t) is impossible under E , since the event in Line

(4.36) is impossible under E .

The thesis follows from the observation that

Na =

{
Aτa = a,∆a >

√
8 log(T )

Na(T )

}
⊂

T⋃
t=1

Na(t) (4.37)

where we denote with τa := max{t ∈ [T ] : At = a}, so that Na(τa) = Na(T ).

Note that ∀a ∈ A, τa ≥ 1. Finally, the event in Line (4.37) is impossible

being countable union of impossible events, thus the thesis.

Finally, we are able to prove that Algorithm (4) admits a sublinear regret

bound.

Theorem 4.1.2 (Instance independent regret bound for BudgetLUCB).

For any instance Ψ ∈ ΞBS(0,1) of the CostMAB problem with daily budget b,

the regret of Algorithm (4) on Ψ is bounded as:

RT ≤ O
(√

KT log(T )
)

(4.38)

Where K is the cardinality of the arms’ set A and T ∈ N the time horizon.

Proof. To prove the statement we will exploit the regret decomposition pre-

sented in Lemma (2.1.2).
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RT =
K∑
a=1

E [Na(T )∆a] (4.39)

=
K∑
a=1

E [Na(T )∆a|E ]P (E) +
K∑
a=1

E [Na(T )∆a|Ec]P (Ec) (4.40)

≤
K∑
a=1

E
[√

8 log(T )Na(T )
∣∣∣E]+O

(
1

T

)
(4.41)

≤E


√√√√8 log(T )K

K∑
a=1

Na(T )

∣∣∣∣∣∣E
+O

(
1

T

)
(4.42)

≤O
(√

KT log(T )
)

(4.43)

Where in Line (4.40) we use the law of total expectation. In Line (4.41) we

use the fact that P (E) ≤ 1, P (Ec) ≤ 4T−2 for Lemma (4.1.2) and K ≤ T .

In Line (4.42) we use the linearity of the operator E [·] and Jensen inequality

on the concave map x 7→
√
x. Finally, in Line (4.43) we use the fact that∑K

a=1Na(T ) = T .

4.2 ROI-LUCB algorithm

In this section, we propose an algorithm for the CostMAB problem with

daily ROI constraints. Again, the algorithm is inspired by the idea of Opti-

mism in the Face of Uncertainty. At each round we elaborate an optimistic

guess on both expected reward and expected costs and, based on these

guess, we elaborate a guess on the ROI of each arm. Is important to un-

derline that in this case we don’t assume to base our choices directly on

noisy observations of the ROI: in the CostMAB setting we have access only

to noisy observations of µa and νa for each sampled arm a ∈ A. The fact

that ROIa := µa
νa

is non linear in (µa, νa) will lead to the need of a more

sophisticated algorithm to ensure quasi-safety.

4.2.1 Algorithm description

The algorithm computes at each round the optimistic estimates of expected

reward and expected cost for every arm, respectively UCB and LCB already

defined in Equations (4.1, 4.2). In the case of ROI constraint, we would

like to solve an optimistic version of the Optimization Problem (3.7). Issues

arise when the estimates of expected reward and expected cost are close to
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zero. Suppose we are able to estimate an interval with high confidence level

for µAt and νAt : this in general would not help us in estimating µAt/νAt for

small costs. If, for example, we are able to assure with high probability that,

for some α, β > 0, µAt ∈ [α, α+ε] and νAt ∈ [β, β+ε], the only thing we can

assure about µAt/νAt is that it belongs to [α/(β + ε), (α+ ε)/β]. To require

a confidence interval on the µAt/νAt of length O(ε) , we need ε to have

a equal or lower order of magnitude of α and β2. The problem is that for

very small values of µAt and νAt , achieving such a precise confidence interval

requires a large number of sampling. The algorithm we propose circumvents

this problem by requiring that the selected arms have a sufficiently large

estimate on the expected reward. We formalize this idea below.

At each round t ∈ [T ] the algorithm chooses the arm solution of the

optimistic constrained problem:

argmax
a∈A

UCBa(t− 1) (4.44)

s.t.
UCBa(t− 1)

LCBa(t− 1)
≥ λ (4.45)

UCBa(t− 1) > T−1/3 (4.46)

Algorithm 5 ROI-LUCB

Input: T time horizon, A = {1, ...,K} arms set, λ minimum ROI require-

ment

for t=1,...,T do
Choose arm At solution of:

argmax
a∈A

UCBa(t− 1)

s.t.
UCBa(t− 1)

LCBa(t− 1)
≥ λ

UCBa(t− 1) > T−1/3

Observe reward Xt and cost Yt and update confidence bounds

Observe that the Constraint (4.46) ensures that the selected arm has a

significant upper confidence bound on the ROI. The price of this constraint

is that the algorithm may not asymptotically play the optimal arm if it has a

low expected reward. As we will see in the regret analysis, the choice of the

2For instance suppose α = β = T−5 and ε = T−4. The length of confidence intervals

on µAt and νAt is O
(
T−4

)
, while the length of the confidence interval on µAt/νAt is O (T )

that is too large to be meaningful.
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threshold T−1/3 allows us to ensure sublinear regret even in this eventuality.

We assume the existence of a null arm, that has zero cost and reward and

is always considered feasible.

4.2.2 Safety analysis

We show that Algorithm (5) belongs to the ROI quasi-safe class of policies.

Like in the case of BudgetLUCB, the safety analysis relies on the concept

of Clean Event.

First observe that Definition (4.1.1) of Clean Event and Lemma (4.1.2)

are properties of the CostMAB framework and hold also with daily ROI

requirements.

We want to show that, under the Clean Event, Algorithm (5) can commit

no more than a sublinear number of intolerable violations per arm.

Lemma 4.2.1. Let Ψ be an instance of the CostMAB problem with daily

ROI requirement λ ≥ 1. Let {At}Tt=1 be the arms selected by Algorithm (5)

when applied to instance Ψ. Fix a tolerance threshold ε > 0. There exist

h = h(T ; ε, λ) such that, for every t ∈ [T ], the event{
µAt
νAt

< λ− ε
}

(4.47)

is impossible, under the Clean Event E, if NAt(t− 1) > h. In particular

this holds for:

h(T ; ε, λ) = 8T 2/3 log(T )

(
λ(λ+ 1)

ε

)2

Proof. Let’s first remark that At is selected only if the following hold:

UCBAt(t− 1)

LCBAt(t− 1)
> λ (4.48)

UCBAt(t− 1) > T−1/3 (4.49)

We want to show that exists h(T ; ε, λ) such that if NAt(t − 1) ≥ h(T ; ε, λ)

then (4.48) implies µAt/νAt ≥ λ− ε.
For sake of clearness in the computations, let us define the following vari-

ables:

N̂At(t− 1) := T−2/3NAt(t− 1) η :=

√
2 log(T )

N̂At(t− 1)

From these definitions and under the E holds:

rAt(t− 1) :=

√
2 log(T )

NAt(t− 1)
= T−1/3η (4.50)
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Moreover:

µAt > UCBAt(t− 1)− 2rAt(t− 1) ≥ T−1/3(1− 2η) (4.51)

where the first inequality comes from the assumption that E holds and the

last from (4.50).

Hence:

rAt(t− 1) ≤ T−1/3η =
η

1− 2η
(1− 2η)T−1/3 ≤ η

1− 2η
µAt (4.52)

using (4.50) and (4.51).

So we can find an upper-bound for UCBAt(t− 1) as follows:

UCBAt(t− 1) ≤ µAt + 2rAt(t− 1) ≤ µAt
(

1 + 2
η

1− 2η

)
(4.53)

exploiting again that the event E holds in the first inequality and using

(4.52) in the second. For what concerns the costs we can divide the analysis

in two cases.

Case 1:

νAt ≤ T−1/3/λ (4.54)

In this case:

µAt
νAt
≥ T−1/3(1− 2η)

T−1/3/λ
= (1− 2η)λ ≥ λ− ε (4.55)

where we used (4.51) and (4.54) in the first inequality and the last holds if

NAt(t− 1) ≥ 8λ2T 2/3 log(T )

ε2
(4.56)

Case 2:

νAt > T−1/3/λ (4.57)

In this case we have to lower-bound LCBAt(t− 1) to confirm the thesis.

Let’s first notice that:

rAt(t− 1) < T−1/3η =
T−1/3

λ
λη ≤ νAtλη (4.58)

using respectively (4.50) and (4.57).

It follows:

LCBAt(t− 1) ≥ νAt − 2rAt(t− 1) ≥ νAt(1− 2ηλ) (4.59)

Finally:

λ ≤ UCBAt(t− 1)

LCBAt(t− 1)
≤ µAt
νAt

1

(1− 2η)(1− 2ηλ)
(4.60)
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where the first inequality raises from (4.48) and the second from (4.53) and

(4.59).

To conclude the proof we have to find h(T ; ε;λ) such that nAt(t − 1) ≤
h(T ; ε, λ) implies:

λ(1− 2η)(1− 2ηλ) ≥ λ− ε (4.61)

and such that the condition (4.56) holds.

It’s easy to check that:

h(T ; ε, λ) = 8T 2/3 log(T )

(
λ(λ+ 1)

ε

)2

(4.62)

leads to that conclusion.

In fact in this case NAt(t− 1) ≥ h(T ; ε, λ) implies:

N̂At(t− 1) ≥ 8 log(T )

(
λ(λ+ 1)

ε

)2

(4.63)

=⇒

√
2 log(T )

N̂At(t− 1)
≤ ε

2λ(λ+ 1)
(4.64)

=⇒ η ≤ ε

2λ(λ+ 1)
(4.65)

=⇒ 1− 2η(1 + λ) ≥ λ− ε
λ

(4.66)

=⇒ 1− 2η − 2ηλ+ 4η2λ ≥ λ− ε
λ

(4.67)

=⇒ λ(1− 2η)(1− 2ηλ) ≥ λ− ε (4.68)

Note that (4.56) is implied by NAt(t− 1) ≥ h(T ; ε, λ), concluding the proof.

This result leads us to conclude that each arm, under the E , can commit

at most h(T ; ε;λ) ε-intolerable violations. From follows this argument the

ROI quasi-safety property of Algorithm (5).

Theorem 4.2.1 (ROI-LUCB quasi-safety). Let Ψ ∈ ΞBS(0,1) be an instance

of the CostMAB problem with daily ROI requirement λ ≥ 1. Fix ε > 0, tol-

erance threshold. Let {At}Tt=1 be the arms selected by Algorithm (5) applied

to the Ψ. Then the expected number of intolerable constraint violations is

bounded as:

E [JεT ] := E
[
#

{
t ∈ [T ] :

µAt
νAt

< λ− ε
}]
≤ O (Kh(T ; ε, λ))

with h(T ; ε, λ) := 8T 2/3 log(T )
(
λ(λ+1)

ε

)2
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Proof.

E [JεT ] :=

T∑
t=1

E
[
1

{
µAt
νAt

< λ− ε
}]

(4.69)

=

T∑
t=1

E
[
1

{
µAt
νAt

< λ− ε
}∣∣∣∣E]P (E) +

+

T∑
t=1

E
[
1

{
µAt
νAt

< λ− ε
}∣∣∣∣Ec]P (Ec) (4.70)

≤
T∑
t=1

E
[
1

{
µAt
νAt

< λ− ε
}∣∣∣∣E]+ 4TT−2 (4.71)

≤h(T ; ε, λ)K +
4

T
= O (h(T ; ε, λ)K) (4.72)

where in Line (4.70) we used the Law of Total Expectation, in Line (4.71) we

used Lemma (4.1.2) and in Line (4.72) we used Lemma (4.2.1) to state that

each selected arm can commit an ε-intolerable violation at most h(T ; ε, λ)

times, with h(T ; ε, λ) := 8T 2/3 log(T )
(
λ(λ+1)

ε

)2
.

Remark 6. We underline two aspects of this result.

1. Fix a safety level η ∈ (0, 1). From Theorem (4.2.1) is trivial to find a

threshold ε such that Algorithm (5) is η-quasi-safe with respect to ROI

constraint with a tolerance ε. It suffices to select ε ≥ 2λ(λ+1)
√

2K log(T )

T 1/6√η .

Observe that for small values of η, the tolerability threshold ε can even

become greater than λ − 1. Such an high tolerability threshold does

not make sense, since in this case we are not considering the constraint

anymore. We have to manage the trade-off between the level of safety

η and the threshold ε.

2. In particular, observe that to ensure a sublinear expected number of

intolerable constraint violations, we have only to require ε = O
(

1
Tα

)
with α < 1

6 . Thus, to maintain sublinear expected number of intolera-

ble constraint violation, the larger is T the smaller the tolerance level

can be.

4.2.3 Regret analysis

To find a bound to the cumulative regret of Algorithm (5), we exploit again

the idea of Clean Event in Definition (4.1.1).
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Definition 4.2.1 (ROI feasible arm). Fix an instance Ψ of the CostMAB

problem with daily ROI requirement λ > 0. An arm a ∈ A is said to be

feasible at round t if
µa
νa
≥ λ (4.73)

We call Af :=
{
a ∈ A : µaνa ≥ λ ∀t ∈ [T ]

}
set of feasible arms.

Definition 4.2.2 (ROI empirically feasible arm). Fix an instance Ψ of the

CostMAB problem with daily ROI requirement λ ≥ 1. An arm a ∈ A is said

to be empirically feasible at round t if

UCBa(t− 1)

LCBa(t− 1)
≥ λ (4.74)

UCBa(t− 1) ≥ T−1/3 (4.75)

We now would like to show that the optimal arm is always considered

empirically feasible, as we have done for the BudgetLUCB algorithm in

Corollary (4.1.1). This would lead us to bound the optimality gaps and

then the regret. Unfortunately, this is not the case. In fact because of

Constraint (4.75), if the optimal arm has an expected reward lower than

T−1/3, it could be considered empirically unfeasible, eventually. However

we show that if this happens, choosing any suboptimal arm every round

still leads to a sublinear regret. We formalize this idea in the following

Lemma.

Lemma 4.2.2. Let Ψ be an instance of the CostMAB problem with daily

ROI requirement λ ≥ 1. Under the Clean Event, the event{∑
a∈A

∆aNa(T ) ≤
√

8KT log(T ) + T 2/3

}
(4.76)

holds true. Where Na(T ) is the number of time arm a ∈ A is chosen,

running Algorithm (5) on the instance Ψ.

Proof. We split the proof in two cases: µ? < T−1/3 and µ? ≥ T−1/3.

Case 1 µ? < T−1/3 :

In this case the analysis is trivial: the optimality gap ∆a := µ?−µa ≤ T−1/3

for any arm a ∈ A, thus∑
a∈A

∆aNa(T ) ≤ T−1/3
∑
a∈A

Na(T ) = T 2/3 (4.77)

Case 2 µ? ≥ T−1/3 :
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First, we underline that the optimal arm cannot be considered empiri-

cally unfeasible under the clean event.

Constraint (4.74) is always satisfied by the optimal arm observing that

under the Clean Event, for any t ∈ [T ], UCB?(t − 1) ≥ µ? and LCB?(t −
1) ≤ ν?. Constraint (4.75) is satisfied under E by the optimal arm because

UCB?(t− 1) ≥ µ? ≥ T−1/3.

This observation leads to the analogous result of Corollary (4.1.1): for

any t ∈ [T ] the event

{UCBAt(t− 1) < UCB?(t− 1)} (4.78)

is impossible under E .

Thus we are able to replicate the exact same argument of Lemma (4.1.4)

and conclude that ∀a ∈ A under the Clean Event:

∆a ≤

√
8 log(T )

NAt(T )
(4.79)

almost surely.

We can conclude:∑
a∈A

∆aNa(T ) ≤
∑
a∈A

√
8 log(T )Na(T ) (4.80)

≤
√

8 log(T )K
∑
a∈A

Na(T ) =
√

8KT log(T ) (4.81)

Where in the first inequality we used Inequality (4.79), and in the second

Jensen’s Inequality.

We now combine the result of Lemma (4.2.2) and the high probability

of Clean Event given by Lemma (4.1.2), to obtain an instance independent

regret bound for Algorithm (5).

Theorem 4.2.2 (Instance independent regret bound for ROI-LUCB). For

any instance Ψ ∈ ΞBS(0,1) of the CostMAB problem with daily ROI require-

ment λ ≥ 1, the regret of Algorithm (5) on Ψ is bounded as:

RT ≤ O
(
T 2/3

)
(4.82)

Where K is the cardinality of the arms’ set A and T ∈ N the time horizon.

Proof. To prove the statement we will exploit the regret decomposition pre-

sented in Lemma (2.1.2).
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RT =
K∑
a=1

E [Na(T )∆a] (4.83)

=
K∑
a=1

E [Na(T )∆a|E ]P (E) +
K∑
a=1

E [Na(T )∆a|Ec]P (Ec) (4.84)

≤
√

8KT log(T ) + T 2/3 + T−1 ≤ O
(
T 2/3

)
(4.85)

Where in Line (4.84) we use the law of total expectation. In Line (4.84) we

use the fact that P (E) ≤ 1, P (Ec) ≤ 4T−2 for Lemma (4.1.2), the fact that∑K
a=1Na(T ) = T and the result from Lemma (4.2.2).



Chapter 5

CostMTSSB algorithms

In this chapter, we focus on the CostMTSSB framework introduced in Chap-

ter (3). We again propose two algorithms: the first one belonging to the

budget quasi-safe class, the second one belonging to the ROI quasi-safe class.

It is worth summarizing the idea behind the construction of the algorithms

proposed in Chapter (4), as the same ideas will drive the construction of the

algorithms in this chapter.

We start from a UCB-like algorithm that admits sublinear regret (in the

CostMAB case it was UCB1, in the CostMTSSB case is CombUCB). This

algorithm does not consider cost constraints and thus does not belongs to

the quasi-safe class. Therefore, we modify the policy by adding constraints.

These constraints must satisfy with high probability, i.e., under the Clean

Event, two objectives:

• Make the algorithm quasi-safe

• Not lose the sublinearity property of the regret.

For the first objective, it is necessary to accurately choose optimistic

constraints and verify that they make the algorithm quasi-safe. For the

second goal, it is essential to verify that the selected constraints never elimi-

nate the optimal arm (superarm in the CostMTSSB case): if this is verified,

the analysis focuses on the rewards and we can use arguments similar to

the unconstrained case, obtaining sublinear regret bounds. If the algorithm

considers empirically non-feasible the optimal choice, we must ensure that

playing a suboptimal action does not significantly impact the total regret.

We will therefore focus the analysis of the algorithms in this direction:

verify that they are quasi-safe and that the optimal action is never considered

empirically infeasible under the Clean Event, unless this results in a low

impact on regret.

57
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It is important to underline that we assume independence among the

M tasks of the CostMTSSB problem. This is a strong assumption but,

as explained in Chapter (3), because of the safety constraints the resulting

problem is not trivial. The algorithm has to solve a combinatorial problem

to select the best superarm that, in general, does not coincide with the

superarm with the highest expected partial reward for each task.

5.1 CombBudgetLUCB algorithm

In this section we propose an algorithm for the CostMTSSB problem with

daily budget b.

5.1.1 Algorithm description

The algorithm uses at each round the following optimistic guesses for the

expected reward and expected cost of each of the K ×M arms.

UCB(m)
a (t− 1) :=


+∞ if N

(m)
a (t− 1) = 0

µ̂
(m)
a (t− 1) +

√
2 log(T )

N
(m)
a (t−1)

otherwise
(5.1)

LCB(m)
a (t− 1) :=


−∞ if N

(m)
a (t− 1) = 0

max

{
ν̂

(m)
a (t− 1)−

√
2 log(T )

N
(m)
a (t−1)

, 0

}
otherwise

(5.2)

Where µ̂
(m)
a (t), ν̂

(m)
a (t) are respectively the sample mean of partial rewards

and partial costs based on the observations up to round t. Observe that,

assuming independence between tasks, we will update these statistics every

time the arm a is the mth component of the selected superarm. At each

round t ∈ [T ] the superarm is selected solving the optimistic optimization

problem:

argmax
a∈S

M∑
m=1

UCB
(m)
a (t− 1) (5.3)

s.t.

M∑
m=1

LCB
(m)
a (t− 1) ≤ b (5.4)
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Algorithm 6 CombBudgetLUCB

Input: A = [K] arms set, T ≥ K time horizon, b daily budget

for t= 1,...,T do
Choose superarm Atsolution of the constrained optimization problem:

argmax
a∈S

M∑
m=1

UCB
(m)
a (t− 1) (5.5)

s.t

M∑
m=1

LCB
(m)
a (t− 1) ≤ b (5.6)

Observe partial rewards X
(m)
t and partial costs Y

(m)
t for each task m ∈

[M ] and update confidence bounds.

5.1.2 Safety analysis

We prove that Algorithm (6) belongs to the class of budget quasi-safe algo-

rithms defined in Definition (3.3.3).

Similarly to the CostMAB case, in the analysis of the proposed algo-

rithms will be crucial the concept of Clean Event. We reformulate the

definition of Clean Event to deal with the CostMTSSB case.

Definition 5.1.1 (Clean Event). Let Ψ := {(Pa, Qa) : a ∈ S} be an instance

of the CostMTSSB problem. We define Clean Event (E) the event:

E :=

{
∀(m, a, t) ∈ [M ]× [K]× [T ]

∣∣∣µ(m)
a − µ̂(m)

a (t)
∣∣∣ <√2 log(T )

N
(m)
a (t)

∧

∧
∣∣∣ν(m)
a − ν̂(m)

a (t)
∣∣∣ <√2 log(T )

N
(m)
a (t)

}
(5.7)

Intuitively, under the Clean Event, we can ensure for each arm of each

task that the relative expected partial reward and expected partial cost are

distant from their sample mean at most

√
2 log(T )

N
(m)
a

We now show that the Clean Event happens with high probability.

Lemma 5.1.1 (Probability of Clean Event). Let Ψ be an instance of the

CostMTSSB problem. Then, the probability of the event E is at least 1− 4M
T 2
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Proof. To be concise we define

r(m)
a (t) =

√
2 log(T )

N
(m)
a (t)

(5.8)

rj =

√
2 log(T )

j
, ∀j ∈ [T ] (5.9)

Observe that:

E :=

{
∀m ∈ [M ] ∀a ∈ [K] ∀t ∈ [T ],

∣∣∣µ(m)
a − µ̂(m)

a (t)
∣∣∣ < r(m)

a (t)∧

∧
∣∣∣ν(m)
a − ν̂(m)

a (t)
∣∣∣ < r(m)

a (t)

}
(5.10)

⊃
{
∀m ∈ [M ] ∀i ∈ [K] ∀j ∈ [T ],

∣∣∣µ(m)
i − µ̂(m)

i,j

∣∣∣ < rj∧

∧
∣∣∣ν(m)
i − ν̂(m)

i,j

∣∣∣ < rj

}
(5.11)

=: Ẽ (5.12)

Moreover, ∀(i, j,m) ∈ [K]× [T ]× [M ]:

P
(∣∣∣µ(m)

i − µ̂(m)
i,j

∣∣∣ > rj ∨
∣∣∣ν(m)
i − ν̂(m)

i,j

∣∣∣ > rj

)
≤ P

(∣∣∣µ(m)
i − µ̂(m)

i,j

∣∣∣ > rj

)
+ P

(∣∣∣ν(m)
i − ν̂(m)

i,j

∣∣∣ > rj

)
≤ 4T−4 (5.13)

where we used the Union Bound and the Chernoff-Hoeffding Bound (2.1.1).

Thus we can conclude,

P (E) ≥P
(
Ẽ
)

(5.14)

≥1− 4T−4MKT ≥ 1− 4MT−2 (5.15)

where, in Line (5.14) we used Equation (5.12) and in Line (5.15) we used

Inequality (5.13) and the Union Bound.

We now show that, under the Clean Event, Algorithm (6) cannot commit

too many intolerable constraint violations.
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Lemma 5.1.2. Let Ψ be an instance of the CostMTSSB problem with daily

budget b. Let {At}Tt=1 be the set of superarms selected by Algorithm (6) when

applied to instance Ψ. Fix a tolerance threshold ε > 0. For every t ∈ [T ],

the event {
M∑
m=1

ν
(m)
At

> b+ ε

}
(5.16)

is impossible, under the Clean Event E, if ∀m ∈ [M ], N
(m)
At

(t − 1) >
8M2 log(T )

ε2

Proof. First observe that:{
∀m ∈ [M ], N

(m)
At

(t− 1) >
8M2 log(T )

ε2

}
≡

{
∀m ∈ [M ]

ε

M
> 2

√
2 log(T )

N
(m)
At

(t− 1)

}
(5.17)

Moreover, At is selected only if:

M∑
m=1

LCB
(m)
At

(t− 1) ≤ b (5.18)

Suppose now by contradiction that
∑M

m=1 ν
(m)
At

> b+ ε.

M∑
m=1

ν
(m)
At

> b+ ε (5.19)

=⇒
M∑
m=1

[
ν

(m)
At
− LCB

(m)
At

(t− 1)
]
> ε (5.20)

=⇒ ∃m ∈ [M ] : ν
(m)
At
− LCB

(m)
At

(t− 1) > ε/M (5.21)

=⇒ ∃m ∈ [M ] : ν
(m)
At
− ν̂(m)

At
>

√
2 log(T )

N
(m)
At

(t− 1)
(5.22)

where Line (5.20) is implied by Inequality (5.18), Line (5.21) can be trivially

proved by contradiction, Line (5.22) follows by the definition of LCB and

Hypothesis (5.17).

We conclude the proof observing that the event in Line (5.22) contradicts

the assumption of Clean Event.

In other words Lemma (5.1.2) ensures that Algorithm (6) can commit

at most 8M2 log(T )
ε2

intolerable violations for each of the MK arms.

We can conclude that CombBudgetLUCB is quasi-safe, as stated in the

following theorem.
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Theorem 5.1.1 (CombBudgetLUCB quasi-safety). Let Ψ be an instance of

the CostMTSSB problem with daily budget b. Fix a tolerance threshold ε. Let

{At}Tt=1 be the sequence of arms selected by Algorithm (6) when applied to

Ψ. Then the expected number of intolerable constraint violations is bounded

as:

E [JT ε] = E

[
#

{
t ∈ [T ] :

M∑
m=1

ν
(m)
At

> b+ ε

}]
≤ O

(
M3K log(T )

ε2

)
(5.23)

Proof.

E [JεT ] =

T∑
t=1

M∑
m=1

E
[
1

{
ν

(m)
At

> b+ ε
}]

(5.24)

=

T∑
t=1

M∑
m=1

E
[
1

{
ν

(m)
At

> b+ ε
}∣∣∣E]P (E) +

+

T∑
t=1

M∑
m=1

E
[
1

{
ν

(m)
At

> b+ ε
}∣∣∣Ec]P (Ec) (5.25)

≤8M3 log(T )

ε2
+ 4MT−1 (5.26)

≤O
(
M3K log(T )

ε2

)
(5.27)

where in Line (5.60) we used the Law of Total Expectation, in Line (5.61)

we used Lemma (5.1.2) and Lemma (5.1.1).

5.1.3 Regret analysis

We shortly discuss the regret analysis showing that, under the Clean Event,

Algorithm (6) never considers empirically infeasible the optimal superarm.

This property, exactly as in the analysis of BudgetLUCB algorithm for the

CostMAB case, leads to bounds that are the same as the unconstrained

algorithm CombUCB (3).

Lemma 5.1.3. Let Ψ be an instance of the CostMTSSB problem with daily

budget b. Let {At}Tt=1 be the sequence of superarms selected by Algorithm

(6) when applied to Ψ. Then, for every round t ∈ [T ]:

M∑
m=1

UCB
(m)
At

(t− 1) ≥
M∑
m=1

UCB
(m)
? (t− 1) (5.28)

where we indicate with UCB?(t− 1) the vector of upper confidence bounds of

partial rewards of the optimal superarm.
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Proof. By contradiction, if exists t ∈ [T ]:

M∑
m=1

UCB
(m)
At

(t− 1) <
M∑
m=1

UCB
(m)
? (t− 1) (5.29)

then,
M∑
m=1

UCB
(m)
? (t− 1) > b (5.30)

but under the Clean Event this implies:

M∑
m=1

µ
(m)
? > b (5.31)

that is in contradiction with the definition of optimal superarm.

Exploiting this fact and Lemma (5.1.1), we can conclude:

Theorem 5.1.2. Let Ψ be an instance of the CostMTSSB with daily budget

b. Then Algorithm (6) applied to Ψ ensures a regret bounded as:

RT ≤ O
(

47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2

)
Proof (Sketch). First, we observe that in absence of constraints (i.e. for

b > M) the CombBudgetLUCB algorithm is a particular case of CombUCB,

Algorithm (3).

Consider now the constrained case and focus on the event in which E
holds true. The algorithm CombBudgetLUCB eliminates due to constraints

only suboptimal arms, as proved in Lemma(5.1.3). Thus, we can analyze

the regret conditional to E miming the proof of Theorem(2.2.2). The idea is

that at each round the algorithm selects a superarm from a subset in which

there’s the optimal one, thus the same reasoning of the proof of Theorem

(2.2.2) holds. We thus obtain

E [RT |E ]P (E) ≤ 47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2, (5.32)

where we indicate with RT the stochastic regret cumulated up to T .

Recalling that E has probability at least 1 −MT−2 thanks to Lemma

(5.1.1) and using the trivial bound E [RT |Ec] ≤ T , we obtain the thesis using

the Law of Total Expectation:

RT =E [RT |E ]P (E) + E [RT |Ec]P (E)

≤47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2 + 4MT−1
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5.2 CombROI-LUCB

In this section we propose an algorithm for the CostMTSSB problem with

daily ROI requirements.

5.2.1 Algorithm description

The algorithm uses at each round the optimist guesses for the expected

reward and expected cost of each of the K ×M arms, that we have defined

in Equations (5.1, 5.2). At each round t ∈ [T ] the superarm is selected

solving the optimistic optimization problem:

argmax
a∈S

M∑
m=1

UCB
(m)
a (t− 1) (5.33)

s.t.
M∑
m=1

UCB
(m)
a (t− 1)

LCB
(m)
a (t− 1)

≥ λ (5.34)

M∑
m=1

UCB
(m)
a > T−1/3 (5.35)

Algorithm 7 CombROI-LUCB

Input: T time horizon, S = [K]M superarm set, λ daily ROI requirement

for t=1,...,T do
Choose the superarm At solution of:

argmax
a∈S

M∑
m=1

UCB
(m)
a (t− 1)

s.t.

∑M
m=1 UCB

(m)
a (t− 1)∑M

m=1 LCB
(m)
a (t− 1)

≥ λ

M∑
m=1

UCB
(m)
a (t− 1) > T−1/3

Observe ∀m ∈ [M ] the rewards X
(m)
t and the costs Y

(m)
t and update

confidence bounds

The idea of the algorithm is the same of the ROI-LUCB, Algorithm (5):

the policy excludes those superarms which reward is estimated to be too low.

Doing this we can show that the algorithm belongs to the ROI quasi-safe

class. The price of this choice is a looser regret bound.
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5.2.2 Safety analysis

We prove that Algorithm (7) belongs to the class of ROI quasi-safe al-

gorithms defined in Definition (3.3.5). Again we exploit the idea of Clean

Event, that is the same of Definition (5.1.1). Note that the Definition (5.1.1)

and Lemma (5.1.1) are properties of the CostMTSSB framework indepen-

dently from the constraints we apply. Thus, it’s enough to show that, under

the Clean Event, Algorithm (7) cannot commit too many intolerable con-

straint violations.

Lemma 5.2.1. Let Ψ be an instance of the CostMTSSB problem with daily

ROI requirement λ ≥ 1. Let {At}Tt=1 be the set of superarms selected by

Algorithm (7) when applied to instance Ψ. Fix a tolerance threshold ε > 0.

For every t ∈ [T ], the event{
M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε

}
(5.36)

is impossible, under the Clean Event E if ∀m ∈ [M ], N
(m)
At

(t − 1) >

h(T ;λ, ε) with

h(T ; ε, λ) = 8T 2/3 log(T )

(
λ(λ+ 1)M

ε

)2

Proof. Let’s first remark that At can be selected only if the following hold:

∑M
m=1 UCB

(m)
At

(t)∑M
m=1 LCB

(m)
At

(t)
> λ (5.37)

M∑
m=1

UCB
(m)
At

(t) > T−1/3 (5.38)

We want to show that exists h(T ; ε, λ) such that if NAt(t) ≥ h(T ; ε, λ) then

(5.37) implies µAt/νAt ≥ λ− ε.
For sake of clearness in the computations, let us define the following vari-

ables:

N̂
(m)
At

(t) := T−2/3N
(m)
At

(t) η(m) :=

√
2 log(T )

N̂
(m)
At

(t)
η :=

M∑
m=1

η(m)

It follows:

r
(m)
At

(t) :=

√
2 log(T )

N
(m)
At

(t)
= T−1/3η(m) (5.39)
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From these definitions and under the E holds:

M∑
m=1

µ
(m)
At
≥

M∑
m=1

UCB
(m)
At

(t)− 2r
(m)
At

(t) ≥ T−1/3(1− 2η) (5.40)

where the first inequality comes from E assumption and the last from (5.39)

summing over m ∈ [M ].

Hence:

M∑
m=1

r
(m)
At

(t) ≤ T−1/3η =
η

1− 2η
(1− 2η)T−1/3 ≤ η

1− 2η

M∑
m=1

µ
(m)
At

(5.41)

using (5.39) and (5.40).

So we can find an upper-bound for
∑M

m=1 UCB
(m)
At

(t) as follows:

M∑
m=1

UCB
(m)
At

(t) ≤
M∑
m=1

[
µAt + 2r

(m)
At

(t)
]
≤
(

1 + 2
η

1− 2η

) M∑
m=1

µ
(m)
At

(5.42)

exploiting again the E in the first inequality and using (5.41) in the second.

For what concerns the costs we can divide the analysis in two cases.

Case 1:
M∑
m=1

ν
(m)
At
≤ T−1/3/λ (5.43)

In this case the thesis is valid under an hypothesis we’ll later check to be

true: ∑M
m=1 µ

(m)
At∑M

m=1 ν
(m)
At

≥ T−1/3(1− 2η)

T−1/3/λ
= (1− 2η)λ ≥ λ− ε (5.44)

where we used (5.40) and (5.43) in the first inequality and the last holds if

∀m ∈ [M ], NAt(t− 1) ≥ 8λ2M2T 2/3 log(T )

ε2
(5.45)

Case 2:
M∑
m=1

ν
(m)
At

> T−1/3/λ (5.46)

In this case we have to lower-bound
∑M

m=1 LCB
(m)
At

(t) to confirm the thesis.

Let’s first notice that:

M∑
m=1

r
(m)
At

(t) = T−1/3η =
T−1/3

λ
λη ≤ λη

M∑
m=1

νAt (5.47)
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using respectively (5.39) and (5.46).

It follows:

M∑
m=1

LCB
(m)
At

(t) ≥
M∑
m=1

ν
(m)
At
− 2

M∑
m=1

r
(m)
At

(t) ≥ (1− 2ηλ)

M∑
m=1

ν
(m)
At

(5.48)

Finally:

λ ≤
∑M

m=1 UCB
(m)
At

(t)∑M
m=1 LCB

(m)
At

(t)
≤
∑M

m=1 µ
(m)
At∑M

m=1 ν
(m)
At

1

(1− 2η)(1− 2ηλ)
(5.49)

where the first inequality raises from (5.37) and the second from (5.42) and

(5.48).

To conclude the proof we have to find h(T ; ε;λ) such that

∀m ∈ [M ] N
(m)
At

(t) ≥ h(T ; ε, λ)

implies:

λ(1− 2η)(1− 2ηλ) ≥ λ− ε (5.50)

and such that the condition (5.45) holds.

It’s easy to check that:

h(T ; ε, λ) = 8T 2/3 log(T )

(
λ(λ+ 1)M

ε

)2

(5.51)

leads to that conclusion.

In fact in this case ∀m ∈ [M ] N
(m)
At

(t) ≥ h(T ; ε, λ) implies:

∀m ∈ [M ] N
(m)
At

(t) ≥ 8 log(T )

(
λ(λ+ 1)M

ε

)2

(5.52)

=⇒ ∀m ∈ [M ]

√
2 log(T )

N̂
(m)
At

(t)
≤ ε/M

2λ(λ+ 1)
(5.53)

=⇒ η ≤ ε

2λ(λ+ 1)
(5.54)

=⇒ 1− 2η(1 + λ) ≥ λ− ε
λ

(5.55)

=⇒ 1− 2η − 2ηλ+ 4η2λ ≥ λ− ε
λ

(5.56)

=⇒ λ(1− 2η)(1− 2ηλ) ≥ λ− ε (5.57)

Note that (5.45) is implied by (5.52), concluding the proof.
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This result leads us to conclude that each arm, under the E , can commit

at most h(T ; ε;λ) intolerable violations of the constraint.

We can conclude that CombROI-LUCB is quasi-safe, as stated in the

following theorem

Theorem 5.2.1 (CombROI-LUCB quasi-safety). Let Ψ be an instance of

the CostMTSSB problem with daily ROI minimum requirement λ ≥ 1. Fix

a tolerance threshold ε. Let {At}Tt=1 be the sequence of arms selected by

Algorithm (7) when applied to Ψ. Then the expected number of intolerable

constraint violations is bounded as:

E [JεT ] = E

[
#

{
t ∈ [T ] :

M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε

}]
≤ O (MKh(T ;λ, ε)) (5.58)

with h(T ; ε, λ) := 8T 2/3 log(T )
(
λ(λ+1)

ε

)2

Proof.

E [JεT ] =
T∑
t=1

M∑
m=1

E

[
1

{
µ

(m)
At

ν
(m)
At

< λ− ε

}]
(5.59)

=
T∑
t=1

M∑
m=1

E

[
1

{
µ

(m)
At

ν
(m)
At

< λ− ε

}∣∣∣∣∣E
]
P (E) +

+

T∑
t=1

M∑
m=1

E

[
1

{
µ

(m)
At

ν
(m)
At

< λ− ε

}∣∣∣∣∣Ec
]
P (Ec) (5.60)

≤MKh(T ;λ, ε) + 4MT−1 (5.61)

≤O (MKh(T ;λ, ε)) (5.62)

where in Line (5.60) we used the Law of Total Expectation and in Line

(5.61) we used Lemma (5.2.1) and Lemma (5.1.1).

5.2.3 Regret analysis

We shortly discuss the regret analysis showing that, under the Clean Event,

Algorithm (7) cannot consider empirically infeasible the optimal superarm,

unless its expected reward is lower than T−1/3. This property, exactly as in

the analysis of ROI-LUCB algorithm for the CostMAB case, leads sublinear

regret bounds. In particular, if the expected reward of the optimal arm is

greater than T−1/3, under the Clean Event, the analysis coincides with the

one of Theorem (2.2.2). If the expected reward of the optimal arm is lower
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than T−1/3, we obtain the trivial bound T 2/3, since the maximum optimality

gap is T−1/3.

Lemma 5.2.2. Let Ψ be an instance of the CostMTSSB problem with daily

ROI requirement λ ≥ 1. Let {At}Tt=1 be the sequence of superarms selected

by Algorithm (7) when applied to Ψ. Then, for every round t ∈ [T ] if∑M
m=1 UCB

(m)
? > T−1/3:

M∑
m=1

UCB
(m)
At

(t− 1) ≥
M∑
m=1

UCB
(m)
? (t− 1) (5.63)

where we indicate with UCB?(t− 1) the vector of upper confidence bounds of

partial rewards of the optimal superarm.

Proof. By contradiction, if exists t ∈ [T ]:

M∑
m=1

UCB
(m)
At

(t− 1) <
M∑
m=1

UCB
(m)
? (t− 1) (5.64)

then,
M∑
m=1

UCB
(m)
? (t− 1)

UCB
(m)
? (t− 1)

< λ (5.65)

but under the Clean Event this implies:

M∑
m=1

µ
(m)
?

ν
(m)
?

< λ (5.66)

that is in contradiction with the definition of optimal arm.

We can conclude that the worst case regret bound is O
(
T 2/3

)
, obtained

if
∑M

m=1 µ
(m)
? < T−1/3, as stated in the following theorem.

Theorem 5.2.2. Let Ψ be an instance of the CostMTSSB with daily ROI re-

quirement λ ≥ 1. Then Algorithm (7) applied to Ψ ensures a regret bounded

as:

RT ≤ O
(
T 2/3

)
Proof (Sketch). We divide the analysis in two cases:

∑M
m=1 µ

(m)
? < T−1/3

and
∑M

m=1 µ
(m)
? ≥ T−1/3 .

Case 1: If
∑M

m=1 µ
(m)
? < T−1/3 we can trivially bound the regret. In fact

∀a ∈ S
∑M

m=1 µ
(m)
? −

∑M
m=1 µ

(m)
a < T−1/3. Thus,

RT ≤
T∑
t=1

T−1/3 = T 2/3.
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Case 2: We observe that in absence of constraints the CombROI-LUCB al-

gorithm is a particular case of CombUCB, Algorithm (3). Consider now

the constrained case and focus on the event in which E holds. Under E∑M
m=1 µ

(m)
? ≥ T−1/3 implies that Constraint (5.35) is always satisfied.

Thus, for Lemma (5.2.2), the algorithm never eliminates optimal arms.

Thus, we can analyze the regret conditional to E miming the proof of The-

orem(2.2.2) obtaining

E [RT |E ]P (E) ≤ 47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2, (5.67)

where we indicate with RT the stochastic regret cumulated up to T .

Recalling that E has probability at least 1 −MT−2 thanks to Lemma

(5.1.1) and using the trivial bound E [RT |Ec] ≤ T , we obtain the thesis using

the Law of Total Expectation:

RT =E [RT |E ]P (E) + E [RT |Ec]P (Ec)

≤47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2 + 4MT−1

We consider as bound the worst between Case 1 and Case 2.

5.3 A ROI-budget quasi-safe algorithm

We conclude the discussion by showing how the proposed CombBudgetLUCB

and CombROI-LUCB algorithms can be combined to obtain a quasi-safe al-

gorithm with respect to both budget and ROI constraints.

Given daily budget b and the minimum ROI threshold λ ≥ 1, we define

the following algorithm
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Algorithm 8 ROI-BudgetCLUCB

Input: T time horizon, S = [K]M superarm set, λ daily ROI requirement,

b daily budget

for t=1,...,T do
Choose the superarm At solution of:

argmax
a∈S

M∑
m=1

UCB
(m)
a (t− 1)

s.t.

∑M
m=1 UCB

(m)
a (t− 1)∑M

m=1 LCB
(m)
a (t− 1)

≥ λ

M∑
m=1

UCB
(m)
a (t− 1) > T−1/3

M∑
m=1

LCB
(m)
a (t− 1) ≤ b

Observe ∀m ∈ [M ] the rewards X
(m)
t and the costs Y

(m)
t and update

confidence bounds

Once analyzed the quasi-safety of algorithm CombBudgetLUCB and

CombROI-LUCB is trivial to extend the results to the ROI-BudgetCLUCB

to conclude that it is quasi-safe with respect to both budget and ROI con-

straints. Indeed, we can reproduce the proofs of Lemma (5.1.2) and Lemma

(5.2.1) to state:

Lemma 5.3.1. Let Ψ be an instance of the CostMTSSB problem with daily

budget b ∈ (0,M ] and ROI requirement λ ≥ 1. Let {At}Tt=1 be the set of

superarms selected by ROI-BudgetCLUCB when applied to instance Ψ. Fix

a tolerance threshold ε > 0. For every t ∈ [T ], the event{
M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε ∨
M∑
m=1

ν
(m)
At

> b+ ε

}
(5.68)

is impossible, under the Clean Event E, if

∀m ∈ [M ], N
(m)
At

(t− 1) > max

{
h(T ;λ, ε),

8M2 log(T )

ε2

}
with

h(T ; ε, λ) = 8T 2/3 log(T )

(
λ(λ+ 1)M

ε

)2
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Combining this lemma with the high probability of the Clean Event, we

can prove the budget and ROI quasi-safety of Algorithm (8).

Theorem 5.3.1 (ROI-BudgetCLUCB quasi-safety). Let Ψ be an instance

of the CostMTSSB problem with daily ROI minimum requirement λ and

daily budget b. Fix a tolerance threshold ε. Let {At}Tt=1 be the sequence of

superarms selected by the ROI-BudgetCLUCB algorithm when applied to Ψ.

Then the expected number of intolerable constraint violations is bounded as:

E

[
#

{
t ∈ [T ] :

M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε ∨
M∑
m=1

ν
(m)
At

> b+ ε

}]

≤ O
(
MK max

{
h(T ;λ, ε),

8M2 log(T )

ε2

})
with h(T ; ε, λ) := 8T 2/3 log(T )

(
λ(λ+1)

ε

)2

Proof (Sketch). If E holds true we state that the events{
M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε

}
and

{
M∑
m=1

ν
(m)
At

> b+ ε

}

are impossible if ∀m ∈ [M ] N
(m)
At

(t) ≥ max
{
h(T ;λ, ε), 8M2 log(T )

ε2

}
. This

can be proved reproducing the proofs of Lemma (5.2.1) and Lemma (5.1.2),

respectively. Thus, using the Union Bound the event{
M∑
m=1

µ
(m)
At

ν
(m)
At

< λ− ε ∨
M∑
m=1

ν
(m)
At

> b+ ε

}

is impossible, under E , if ∀m ∈ [M ] N
(m)
At

(t) ≥ max
{
h(T ;λ, ε), 8M2 log(T )

ε2

}
.

This means that any of the MK arms can be part of a superarm that

commits an intolerable violation at most max
{
h(T ;λ, ε), 8M2 log(T )

ε2

}
times.

We can conclude the proof combining this fact and the high probability

of the Clean Event with the Law of Total Expectation, exactly as we have

done in the proof of Theorem (5.2.1)

Finally, we show that the regret admits a sublinear bound.

Theorem 5.3.2. Let Ψ be an instance of the CostMTSSB with daily ROI

requirement λ and daily budget b. Then Algorithm (8) applied to Ψ ensures

a regret bounded as:

RT ≤ O
(
T 2/3

)
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Proof (Sketch). The idea of the proof is the same of the one of Theorem

(5.2.2). We divide two cases.

Case 1:
∑M

m=1 µ
(m)
? < T−1/3

In this case ∀a ∈ S
∑M

m=1 µ
(m)
? −

∑M
m=1 µ

(m)
a < T−1/3. Thus,

RT ≤
T∑
t=1

T−1/3 = T 2/3.

Case 2:
∑M

m=1 µ
(m)
? ≥ T−1/3

We observe that in absence of constraints the ROI-BudgetCLUB algorithm is

a particular case of CombUCB, Algorithm (3). Consider now the constrained

case and focus on the event in which E holds true. Under E the algorithm

never eliminates optimal arms. This can be proven mimic proofs of Lemma

(5.1.3) and Lemma(5.2.2). Thus, we can analyze the regret conditional to E
as we have done in the proof of Theorem(2.2.2) obtaining

E [RT |E ]P (E) ≤ 47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2, (5.69)

where we indicate with RT the stochastic regret cumulated up to T .

Recalling that E has probability at least 1 −MT−2 thanks to Lemma

(5.1.1) and using the trivial bound E [RT |Ec] ≤ T , we obtain the thesis using

the Law of Total Expectation:

RT =E [RT |E ]P (E) + E [RT |Ec]P (Ec)

≤47
√
T log(T )KM2 +

(
π2

3
+ 1

)
KM2 + 4MT−1

We consider as bound the worst between Case 1 and Case 2.
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Chapter 6

Conclusions and future works

6.1 Conclusions

We analyzed the bid optimization problem with daily budget and daily ROI

constraints. We introduced the Multi-Armed Bandit framework with cost

feedback (CostMAB) and the Multi-Task Stochastic Semi-Bandit framework

with cost feedback (CostMTSSB) to model the case of single and multiple

campaigns, respectively. The main goal of the thesis was to overcome the

limitations imposed by the impossibility to propose safe algorithms that ad-

mit sublinear regret. We studied budget constraints and ROI constraints

separately. We introduced the class of budget (resp. ROI) quasi-safe al-

gorithms, i.e., algorithms that admit a sublinear bound on the expected

number of budget (resp. ROI) constraints violations, provided a thresh-

old of tolerability ε > 0 in the size of those violations. We exploited the

idea of Optimism in the Face of Uncertainty to propose four algorithms be-

longing to the quasi-safe class and with sublinear regret bounds. The first

two apply to the CostMAB context and are BudgetLUCB and ROI-LUCB.

The former admits a regret bound that is O(
√
KT log(T )). It belongs to

the budget quasi-safe class admitting a bound on the expected number of

intolerable constraint violations that is logarithmic in T and proportional

to 1/ε2. The latter admits a regret bound that is O
(
T 2/3

)
. It belongs to

the ROI quasi-safe class admitting a bound on the expected number of in-

tolerable constraint violation that is O
(
T 2/3 log(T )

)
with respect to T and

proportional to 1/ε2.

The second two policies apply to the CostMTSSB context and are Comb-

BudgetLUCB and CombROI-LUCB. The former admits a regret bound that

is O(
√
M2KT log(T )). It belongs to the budget quasi-safe class admitting

a bound on the expected number of intolerable constraint violations that

75
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is logarithmic in T and proportional to 1/ε2. The latter admits a regret

bound that is O
(
T 2/3

)
. It belongs to the ROI quasi-safe class admitting

a bound on the expected number of intolerable constraint violation that is

O
(
T 2/3 log(T )

)
with respect to T and proportional to 1/ε2.

Finally, we showed how CombBudgetLUCB and CombROI-LUCB can

be combined to obtain ROI-BudgetCLUCB algorithm that is quasi-safe with

respect to both the budget and ROI constraints.

6.2 Future works

There are several possible developments of this work, both from a modeling

and theoretical point of view.

In order to have a more realistic model of the bid optimization problem,

one could extend the idea of a quasi-safe ROI algorithm to the Combina-

torial Multi-Armed Bandit context with cost feedback in which correlation

between arms is assumed. Another development line could be to propose a

different definition of regret that explicitly includes cost feedback, penalizing

high-cost arms. In this way one should develop algorithms that are safe and

offer strong theoretical guarantees on the so defined regret. Finally, from a

theoretical perspective, one could extend the problem to a continuous space

of actions by studying a constrained Stochastic Bandit problem. This prob-

lem has recently been studied in [1] in the case of linear constraints. An

interesting line of work is to extend the analysis to the case of nonlinear

convex constraints.
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