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Abstract

The current study aims to investigate the prognostic value in heart failure (HF) patients of
the V-index, a new metric that has recently been proposed as an ECG marker quantifying
spatial heterogeneity of ventricular repolarization. The population taken into consider-
ation is composed of 380 sinus rhythm HF patients enrolled in the GISSI-HF Holter
substudy [82% males, age 65 ± 10 years, non-sustained ventricular tachycardia (NSVT)
incidence 44%, New York Heart Association (NYHA) functional class III–IV 20%, left
ventricular ejection fraction (LVEF) 33 ± 8%]. After a follow-up of 43.1 ± 13.2 months,
55 patients died of cardiovascular causes, mainly associated with worsening HF or sud-
den cardiac death. In comparison to non-survivor, survivors had a reduced daily median
V-index value (median 29.65 ms [interquartile range (IQR) 22.51-37.42] vs. median 33.31
ms [IQR 25.68-46.02], Wilcoxon test, p = 0.04). In univariate Cox proportional-hazards
analysis, a median V-index value greater than 40 ms was associated with an increased risk
of mortality [hazard ratio (HR): 2.23, 95% confidence interval (CI) 1.28-3.87, p < 0.005],
also confirmed when adjuster for age [HR: 2.03, 95% CI 1.17-3.53, p = 0.01]. V-index
improved predictive performances, as quantified by the C-index, when added to clinical
variables [age ≥ 70 years, serum creatinine ≥ 1.2mg/dL, LVEF, presence of NSVT]. The
best model was obtained when combining the clinical model with a new signature [signa-
ture ≥ 15.25 ms, HR: 2.56, 95% CI 1.14-5.72, p = 0.02], derived from parameters obtained
fitting the 24h V-index data-points with a cosine function, obtaining a C-index of 0.78.

Keywords: heart failure, V-index, cardiovascular mortality, Cox, survival analysis





Abstract in lingua italiana

Il presente studio ha lo scopo di indagare le capacità prognostiche nei pazienti con insuf-
ficienza cardiaca del V-index, una nuova metrica che è stata recentemente proposta come
marker ECG che quantifica l’eterogeneità spaziale della ripolarizzazione ventricolare. La
popolazione presa in considerazione è composta da 380 pazienti con insufficienza cardiaca
in ritmo sinusale arruolati nel sottostudio Holter del GISSI-HF [82% maschi, età 65 ± 10
anni, tachicardia ventricolare non sostenuta (NSVT) 44%, classe III-IV della New York
Heart Association (NYHA) 20%, frazione di eiezione ventricolare sinistra (LVEF) 33 ±
8%]. Dopo un follow-up di 43.1 ± 13.2 mesi, 55 pazienti sono deceduti per cause cardiovas-
colari, principalmente associate al peggioramento dell’insufficienza cardiaca o alla morte
cardiaca improvvisa. Rispetto ai partecipanti non sopravvissuti per cause cardiovascolari,
i sopravvissuti presentano un minore valore mediano del V-index giornaliero (mediana
29.65 ms [range interquartile (IQR) 22.51-37.42] vs. mediana 33.31 ms [IQR 25.68-46.02],
Wilcoxon test, p = 0.04). Nell’analisi univariata di Cox, un valore mediano del V-index
superiore a 40 ms è associato a un aumento del rischio di mortalità [hazard ratio (HR):
2.23, intervallo di confidenza (IC) 95% 1.28-3.87, p < 0.005], così come quando combinato
con l’età [HR: 2.03, IC 95% 1.17-3.53, p = 0.01]. Il V-index ha migliorato le performance
predittive, come quantificato dal C-index, quando è stato aggiunto alle variabili cliniche
[età ≥ 70 anni, creatinina ≥ 1,2 mg/dL, LVEF, presenza di NSVT]. Il modello migliore è
stato ottenuto quando si è combinato il modello clinico con una nuova signature [signa-
ture ≥ 15.25 ms, HR: 2,56, IC 95% 1,14-5,72, p = 0, 02], derivata da parametri ottenuti
fittando i valori dei V-index registrati nelle 24h con una funzione coseno, ottenendo un
C-index di 0,78.

Parole chiave: insufficienza cardiaca, V-index, mortalità cardiovascolare, Cox, analisi di
sopravvivenza
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Introduction

Motivation

Worldwide, an estimated 64.3 million people suffer from heart failure. One percent to two
percent of the overall adult population in developed countries is estimated to have diag-
nosticated heart failure (HF). According to a meta-analysis of echocardiographic screening
studies [1] in the general population, which included instances that had not yet been di-
agnosed, the prevalence of heart failure in industrialized nations is around 11.8% among
those 65 and older. With this consideration, the estimated frequency in the general pop-
ulation would be 4.2%, which is about twice as high as other stated prevalence estimates
based on registries with only confirmed cases. The difference between 4.2% and the 2%
previously mentioned illustrates that even a prognostically severe syndrome such as heart
failure may remain undetected in over half of the cases [2].

Goal

HF continues to be a leading cause of mortality globally, despite significant advancements
in cardiovascular care throughout the late 20th century. Even while acute cardiovascular
disease therapy has improved, efforts to stop the unavoidable decline are largely ineffective.
Because there is currently no treatment for HF, the current clinical strategy focuses on
managing the condition rather than finding a cure [3]. The main objective of the current
study is to assess if the V-index, a new metric that has recently been proposed as an
ECG marker quantifying spatial heterogeneity of ventricular repolarization, can have a
predictive value for cardiovascular mortality in HF patients, alone and when adjusted for
clinical covariates such as age, left ventricular ejection fraction and serum creatinine level.
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Outline

The contents of this thesis are organized as in the following.

In Chapter 1 HF is introduced, along with past studies which tried to identify what are
the main predictors of mortality and morbidity in HF patients. Then, the V-index and
its applications in past researches are presented.

In Chapter 2, the dataset that has been used for the analysis is described. Then, the
main algorithms that have been used in this thesis are presented. In section 2.2 the noise
issue in ECG analysis and the CEEMD algorithm, which has been used to classify ECG
segments as noisy or not, are described. Section 2.3 presents the mathematical steps to
compute the V-index. In section 2.4 the Cox model and the steps needed to find the best
set of parameters β describing the hazard for the patients are reported, while in section
2.5 the cosinor analysis and its applications are delineated.

In chapter 3, the main results are collected. At first, a description of the distributions of
the V-index in the population is reported. Then, the results of the application of the Cox
models are illustrated.

In Chapter 4 a final discussion on the V-index predictive capabilities for cardiovascular
mortality in HF patients is presented and compared with other indexes on the same
population as well as with other studies analyzing HF patients.
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1| Preliminaries and Related

Work

1.1. Heart Failure

HF is brought on by structural and functional myocardial abnormalities that limit ven-
tricular filling or blood ejection. Possible causes of HF include dysfunction of the peri-
cardium, myocardium, endocardium, heart valves, or great vessels alone or in combination.
Increased hemodynamic overload, ischemia-related dysfunction, ventricular remodelling,
excessive neuro-humoral stimulation, abnormal myocyte calcium cycling, excessive or in-
sufficient extracellular matrix proliferation, accelerated apoptosis, and genetic mutations
are a few of the main pathogenic mechanisms causing HF [3, 4].

Based on the location of the deficiency, HF can be categorized as predominantly left
ventricular (LV), right ventricular, or biventricular. HF can be acute or chronic depending
on the time of onset. Based on the heart’s functional state, it is often divided clinically
into two main types: HF with preserved ejection fraction (HFpEF) and HF with reduced
ejection fraction (HFrEF). Ejection fraction (EF), which represents the amount (expressed
as a percentage) of blood the left ventricle pumps out with each contraction, is frequently
greater than 50% in patients with HFpEF, who are primarily female and older individuals.
The LV cavity capacity is typically normal, but the LV wall is thickened and rigid, thus
the ratio of LV mass/end-diastolic volume is high [5]. If the EF remains between 41%
and 49%, HFpEF is further classified as borderline HF [3]. In contrast, the LV cavity is
frequently dilated in individuals with HFrEF, and the ratio of LV mass to end-diastolic
volume is either normal or decreased [4].

Four functional classifications of HF are identified by the New York Heart Association
(NYHA) as follows:

• Class I: HF has no effects on physical activity restrictions, and typical physical
activity has no symptoms.
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• Class II: slight physical activity restrictions are brought on by HF; individuals are
comfortable when at rest, but routine exercise brings on HF symptoms.

• Class III: HF significantly restricts physical activity; individuals are comfortable at
rest, but symptoms of HF are brought on by less-than-normal exercise.

• Class IV: patients with HF have symptoms while at rest or are unable to engage in
any physical activity without experiencing HF symptoms.

Exercise intolerance, defined as a decrease in peak V O2/V O2max capacity (V O2max is
the greatest amount of oxygen a person can take in when exercising), has been identified
as the main predictor of mortality and morbidity in HF patients. Additional factors that
have been identified as independent predictors of mortality include older age, higher blood
urea nitrogen, creatinine and heart rate, lower systolic pressure and serum sodium, the
presence of dyspnea at rest, absence of long-term beta-blocker (BBL) treatment, male
gender and lower body mass index and haemoglobin levels.

Other predictors that have been reported in [4] and demonstrated in [6–8] to be associated
with bad outcomes for HF patients are:

• High NYHA functional class

• Reduced left ventricular ejection fraction (LVEF)

• Third heart sound

• Increased pulmonary artery capillary wedge pressure

• Reduced cardiac index

• Diabetes mellitus

• Reduced sodium concentration

• Raised plasma catecholamine and natriuretic peptide concentrations

In particular, critical thresholds that have been shown to predict increased mortality in
[9–12] are reported:

• Serum urea >15 mmol/L

• Systolic blood pressure <115 mmHg

• Serum creatinine >2.72 mg/dL (or 240 µmol/L)

• N-terminal pro-brain natriuretic peptide (NT-pro-BNP) >986 pg/mL

• LVEF <45%
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Several studies have been conducted in order to find relevant variables to identify HF
patients with a greater risk of death. Ahmad et al. [13] investigated a population of
299 heart failure patients (105 women and 194 men), aged 40 years or above, having left
ventricular systolic dysfunction, belonging to NYHA classes III and IV. After a follow-up
of 4–285 days, with an average of 130 days, 96 (32%) patients died due to cardiovascular
heart disease (CHD). Age, ejection fraction, serum creatinine, serum sodium, anaemia,
platelets, creatinine phosphokinase (CPK), blood pressure, gender, diabetes, and smoking
status were all taken into account when modelling mortality using Cox regression. Ana-
lyzing the Cox regression coefficient, authors found out that chances of death due to CHD
increase with growing age, with an increment of 4% risk of dying every additional year
of age. Another important aspect was EF; having an EF ≤ 30 % corresponds to hazard
rates that were 67% and 59% greater than those with 30%<EF≤45% and EF ≥45%,
respectively. Serum creatinine and serum sodium assume relevant significance, resulting
in an increase of the risk of mortality by more than twice for every unit rise in serum
creatinine, while one unit (meq/L) increase in serum sodium decreases the hazard by 6%.
While anaemia was a significant variable (anaemic patients had 76% higher mortality
rates compared to non-anaemic patients), gender, smoking, diabetes, CPK, and platelets
were not significant.

Similar results except for the significance of gender and diabetes can be found in [14],
where Barlera et al. examined 6975 patients with chronic heart failure enrolled in the
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Heart Failure
(GISSI-HF) trial. During a median follow-up of 3.9 years, 1969 patients died. Age was the
most effective predictor of mortality when taking into account all of the factors statistically
significant in the univariate analysis (p < 0.05), with a linear rise in risk of 4% for each
year. Other important predictors that authors found were estimated glomerular filtration
rate (eGFR), showing an increase of 1.6% in hazard for every unit decrease in eFGR
(when eGFR≤60), LVEF (every unit decrease in EF<40% brought to a 2.5% increase
in hazard), the presence of chronic obstructive pulmonary disease and a severe NYHA
class (III+IV) strongly increased the hazard, by 33% and 28%, respectively. Diabetes
mellitus, male sex, aortic stenosis, ischemic aetiology, peripheral edema, and >1 previous
hospitalization for HF were independent, highly significant predictors of death.

La Rovere et al. [15] analyzed 388 patients (of the 6975 patients of the GISSI-HF trial) in
sinus rhythm who carried out a 24 h digital Holter recording at the time of enrolment. The
authors analyzed differences between alive and dead (for cardiovascular reasons) patients,
finding out that patients who passed away were older, had a more advanced NYHA class,
lower left ventricular function, a greater frequency of NSVT, worsened renal function, and
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had less BBL treatment. Considering a multivariate Cox regression model, they identified
the following clinical variables as those that carried the highest joint predictive value in
the examined population: age ≥70 years [hazard ratio (HR) 3.09, 95% confidence interval
(CI) 1.80–5.30, p < 0.001], LVEF (HR 0.96, 95% CI 0.93–0.99, p = 0.025), presence of
NSVT (HR 2.17, 95% CI 1.24–3.81, p = 0.007), and serum creatinine level (HR 1.72,
95% CI 1.37–2.15, p < 0.0001), obtaining a C-index of 0.753. Then, they investigated
the effect of adding to the clinical model autonomic markers of the ECG. In particular,
they computed the standard deviation of all normal-to-normal RR intervals (SDNN), the
power in the very low-frequency bands (VLFP, 0.01–0.04 Hz) and in low-frequency bands
(LFP, 0.04–0.15 Hz) that were then both log-transformed, the short-term fractal scaling
exponent measured by the detrended fluctuation analysis method (DFA), the turbulence
onset (TO), the turbulence slope (TS) and the deceleration capacity (DC). Combining
independently these markers with the clinical model, they obtained a C-index of 0.763,
0.790, 0.788, 0.763 and 0.755, for SDNN, Ln VLFP, Ln LFP, DFA and TS, respectively.

1.2. V-index

In the last years, a novel index has been proposed by Sassi and Mainardi [16]. The V-
index is an ECG-based estimator of the standard deviation (sθ) of ventricular myocytes’
repolarization times (ρm) across the entire myocardium, obtained from multi-leads sur-
face ECG. The spatial heterogeneity of ventricular repolarization (SHVR) gives rise to
the T-wave in the human heart. However, amplification of this dispersion is a perpetrator
of ventricular arrhythmias. As a result, it would be clinically useful to determine repo-
larization heterogeneity from the ECG to predict life-threatening ventricular arrhythmias
and pharmacological adverse effects on the cardiovascular system.

Several research studies have been conducted on the V-index. Abächerli et al. [17] have
assessed the abilities of the V-index by performing a large observational cohort study to
examine the diagnostic and prognostic values of the V-index in 767 unselected patients
presenting to the emergency department with symptoms suggestive of non-ST-elevation
myocardial infarction (NSTEMI), and a narrow QRS complex. They found out that, when
compared to patients with other types of chest pain, individuals with acute myocardial
infarction (AMI) had higher V-index values (median 23 ms vs. 18 ms, p = 0.001). In
addition to the traditional ECG criteria, the introduction of the V-index increased the
sensitivity of the ECG for AMI from 41% to 86% and the diagnostic accuracy for the
diagnosis of NSTEMI as measured by the area under the ROC curve from 0.66 to 0.73
(p = 0.001). Also, while evaluating the prognostic value of the V-index for the prediction
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of mortality during follow-up, they found that median V-index levels in deceased patients
were significantly higher as compared to those in survivors (28ms (IQR 22–38) vs. 18 ms
(IQR 15-24), p < 0.001). Assessing the prognostic value for the prediction of death by
ROC curve analysis showed an AUC for the V-index of 0.83 (95% CI 0.73–0.92) resulting
in significantly better with respect to the score of conventional ECG criteria (AUC 0.63,
95% CI 0.47–0.78, p = 0.002 for comparison).

In [18], V-index performance to assess changes of the SHVR was evaluated after moxi-
floxacin and sotalol administration and compared with the corrected QT interval (QTc).
These two drugs are known to change the QT interval duration in distinct ways, varying
from subtle (moxifloxacin) to clearly perceptible (sotalol). Comparing the effects of these
drugs on two populations, both V-index and QTc increased along with the drugs’ serum
concentration. With sotalol the two metrics displayed evident changes (V-index: 27.79
ms ± 4.89 ms versus 60.13 ms ± 18.52 ms; QT corrected: 387.07 ms ± 19.84 ms versus
437.76 ± 32.05 ms; p < 0.05) while regarding moxifloxacin, values slightly changed for
V-index (30.70 ms ± 8.32 ms versus 40.48 ms ± 7.61 ms; p < 0.05), and for QTc (404.29
ms ± 29.05 ms versus 426.77 ± 36.67 ms; p < 0.05). With both drugs, the maximal
percentage variation after administration was higher for V-index than QTc (moxifloxacin:
34.56% ± 24.60% versus 5.56% ± 2.98%; sotalol: 114.77% ± 33.15% versus 12.13% ±
2.85% ; p < 0.05). In conclusion, the authors claimed that the standard deviation of the
ventricular repolarization times, as quantified by the V-index, might be an effective mea-
sure of spatial heterogeneity and also showed evidence in the applicability for assessing
drug-induced pro-arrhythmic effects.

Corino et al. [19] aimed to assess the effect of four drugs blocking the human ether-à-go-go-
related gene (hERG) potassium channel, alone or in combination with other ionic channel
blocks, on SHVR, as estimated by the V-index on short triplicate 10s ECG. Twenty-
two healthy subjects received a pure hERG potassium channel blocker (dofetilide) and
3 other drugs with additional varying degrees of sodium and calcium (L-type) channel
block (quinidine, ranolazine, and verapamil), as well as placebo. Indeed, it is generally
recognized that several drugs, whether anti-arrhythmic or not, can have harmful cardio-
vascular effects and have been linked to drug-induced arrhythmias. Some, such as class
III antiarrhythmic drugs, may extend repolarization and cardiac refractoriness while also
increasing the spatial heterogeneity of ventricular repolarization. Determining if they
block important ion channels can be crucial to identify pro-arrhythmic drugs. Among
the many, a relevant pro-arrhythmic block is the one that occurs to the hERG potassium
channel (outward current). Drugs that block the hERG potassium channel may also si-
multaneously block calcium and/or sodium channels (inward currents), which might have
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a "compensatory" impact, therefore not all of them are necessarily linked with a signifi-
cant pro-arrhythmic risk. Therefore, the interest of the authors has been focused on those
drugs having a compensatory effect, seeming to be safer to use. Results of the study
showed that, after administering either dofetilide or quinidine, the V-index experiences
significant growth. On the other hand, neither the administration of verapamil nor ra-
nolazine was related to a substantial change in the V-index. Thus, the V-index was found
to increase only with drugs associated with torsade risk, encouraging its use in detecting
the risk of torsade of antiarrhythmic drugs.

Rivolta et al. [20] investigated whether or not cardiac SHVR in people with chronic Chagas
disease could be linked to a higher chance of dying. Utilizing the V-index, repolarization
heterogeneity was evaluated. Between 1998 and 1999, 113 patients (aged 21 to 67) who
had known serological statuses indicating positive responses to Trypanosoma cruzi were
recruited. Over the course of a 10-year follow-up period, 14 participants passed away. In
comparison to non-survivor participants, survivors had a substantially reduced V-index
(31.2 ± 13.3 vs. 41.2 ± 18.6 ms; single-tail t-test, p = 0.009; single-tail Wilcoxon rank
sum test, p = 0.029). In a univariate Cox proportional-hazards analysis, a V-index
greater than 36.3 ms was associated with a substantially increased risk of mortality (HR
= 5.34, p = 0.0046). Additionally, even with shrinkage, a statistical technique that guards
against over-fitting because of the small sample size, V-index > 36.3 ms maintained its
prognostic value in a multivariate Cox proportional-hazards analysis after adjustment
for the other three clinical variables (left ventricular ejection factor<0.50, QRS duration
> 133 ms, ventricular tachycardia during stress testing or 24 hours Holter), as well as
for T-wave amplitude. The results of the study demonstrated a significant correlation
between the risk of mortality in univariate survival analysis and a higher dispersion of
repolarization times in Chagas disease patients, as assessed by the V-index. The V-index
collects prognostic data that are not readily accessible through the examination of other
recognized risk variables.

Rivolta et al. in [21] aimed to assess SHVR as a predictor of cardiovascular (CV) death
and/or other CV events in patients with atrial fibrillation (AF). 1711 patients were in-
cluded in the study, from the multicenter prospective Swiss-AF Cohort Study who were
in sinus rhythm (995) or AF (716). At baseline, 5-min long resting ECG recordings were
acquired. Four parameters measuring ventricular repolarization were computed (QTc,
Tpeak-Tend, J-Tpeak and V-index). The V-index was shown to be reproducible during
AF (no differences when computed over the whole recording, on the first 2.5-min and
on the last 2.5-min segments). 90 patients passed away from CV causes throughout the
course of a mean follow-up period of 2.6 ± 1.0 years. The V-index and QTc were linked to
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an elevated risk of CV mortality in multivariate analysis adjusted for clinical risk variables
and medications (QTc: [HR: 2.78, 95% CI 1.79-4.32, p < 0.001;] V-index: [HR 1.73, 95%
CI 1.12-2.69, p = 0.014]). The study demonstrated that in a cohort of patients with AF,
QTc and V-index, evaluated in a single 5-min ECG recording, were independent predic-
tors of CV mortality and HF hospitalization and they may be useful for additional risk
classification to help with patient treatment.
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2| Material and Methods

2.1. Population

The dataset that has been used for the analysis is part of the GISSI (Gruppo Italiano per
lo Studio della Sopravvivenza nell’Infarto miocardico) dataset.

The goal of the GISSI-HF [22] study, which was a randomized placebo-controlled trial, was
to determine the effects of n-3 polyunsaturated fatty acids and rosuvastatin on mortality
and morbidity in patients with clinical indications of stable chronic HF, regardless of the
underlying causes, levels of LVEF, or age. All patients provided informed permission, and
the study was authorized by the institutional review boards at each participating facil-
ity. Between August 2002 and February 2005, 325 cardiology and 31 internal medicine
facilities in Italy enrolled a total of 6,975 ambulatory patients with chronic HF. At study
enrollment, at 1-, 3-, 6-, and 12-month follow-up visits, and then every 6 months until
the end of the trial, comprehensive clinical data including patient characteristics, medical
history, physical examination, 12-lead electrocardiogram, laboratory results, and medica-
tion use were collected. Within three months of enrolment, patients were required to have
their LVEF evaluated. The patient had to have had at least one hospital admission for
HF in the year prior if LVEF was >40%. Congestive heart failure medications that were
optimized for each patient were also strongly advised [23].

The study included a Holter sub-study to assess Holter-derived autonomic variables. For
the purpose of the sub-study, 390 sinus rhythm patients out of the 6975 research partici-
pants completed a 24-hour digital Holter recording at the time of enrollment in 41 enrolling
centers. Men and women who were 18 years of age or older, had clinical evidence of HF
from any cause and had any LVEF, were eligible patients.

A 12-lead digital Holter monitoring system with high resolution (1000 Hz) was used for
the recordings (model H12 +, Mortara Instruments, Milwaukee, WI, USA). The Holter
analysis program initially classified each beat as normal or aberrant before being meticu-
lously confirmed by a professional analyst. Annotated RR time series were transmitted to
a computer using specialized software (SuperECG, Mortara Instruments). The research
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only accepted recordings that could be analyzed for at least 12 hours [15].

In the present study, 380 patients have been considered as participants in the first visit. 8
of the 388 patients (two of the 390 patients were excluded having less than 12h analysable
ECG recordings) enrolled in the previous study [15] were excluded due to the fact that
ECG recordings were not available. Table 2.1 summarizes the characteristics of the entire
population that has been involved in the current study. After a follow-up of 43.1 ± 13.2
months, 55 patients died of CV causes, mainly associated with worsening HF or sudden
cardiac death.

Variable Entire population

Age (years), mean ± std 64.76 ± 10.39

Gender (M) 313 (82%)

LVEF (%), mean ± std 32.36 ± 8.38

NSVT 166 (44%)

Creatinine (mg/dL), mean ± std 1.17 ± 0.48

Sodium (mEq/L), mean ± std 140.1 ± 3.9

Potassium (mEq/L), mean ± std 4.47 ± 0.49

Bilirubin (mg/dL), mean ± std 0.76 ± 0.36

NYHA class III-IV 77 (20%)

ACE 357 (94%)

Beta-blockers 263 (69%)

Diuretics 320 (84%)

Digitalis 86 (23%)

Nitrates 125 (33%)

Amiodarone 60 (16%)

Ischaemic cardiomyopathy 192 (51%)

Table 2.1: Demographic and clinical characteristics in the entire population. M: male;
ACE: angiotensin-converting enzyme.
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2.2. Noise Detection

2.2.1. Noise issue in ECG analysis

The creation of an automatic and reliable ECG analysis system for screening or monitoring
heart diseases can greatly benefit from the classification and automatic detection of noise.
The analysis of the ECG can be severely impacted by noise, in some situations making
it impossible to make a clear differentiation of the major ECG complexes (P-wave, QRS,
T-wave). This could lead to erroneous beat identification, poor measurements of crucial
ECG parameters as the RR interval, and ultimately prevent accurate analysis. Noise
could potentially cause normal heartbeats to be mistaken for arrhythmias, which would
intensify the alarm fatigue issue [24].

In particular, ECG signals are typically corrupted by different types of noise or artefacts:

• Powerline interference (PLI)

• Baseline wander (BW) and motion artefacts

• Muscle artefacts (MA)

The PLI is a narrowband noise with an amplitude up to 50% of the peak-to-peak ECG
amplitude, centered at 50/60 Hz, and a bandwidth less than 1 Hz [25]. The detached
electrode, which produces an extremely potent and distressing signal, is the most frequent
source of this interference. Contacts on the patient’s cable and unclean electrodes can
also cause PLI [26]. The low-amplitude local waves of the ECG signal can have their
shape, duration, and morphological characteristics distorted by severely structured noises.
Particularly, P-wave distortions can cause atrial arrhythmias like atrial enlargement and
fibrillation to be misdiagnosed [27].

Respiration, changes in electrode impedance, and body movement can all contribute to
baseline drift. BW can hide significant ECG information, and if it is not correctly elimi-
nated, the ECG’s vital diagnostic data will be lost or damaged [28]. The BW frequency
spectrum spans from 0.05 to 1 Hz. At frequencies between 0.15 and 0.3 Hz, the res-
piration baseline wander’s amplitude varies by about 15% of the peak-to-peak ECG’s
amplitude. The motion artefact, which is a rapid drift brought on by variations in the
electrode-skin impedance due to the motion, has an amplitude 500 percent larger than
the peak-to-peak ECG and lasts between 300 and 500 milliseconds. The ST segment and
other low-frequency (LF) components of the ECG signal can be distorted by severe BW
or motion artefacts.
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The electrical activity of muscles during periods of contraction or as a result of a sudden
body movement is what causes muscle artefacts (or EMG). An EMG noise typically has
a bandwidth between 20 and 1000 Hz and an amplitude that is about 10% of the ECG
amplitude. According to some studies, the frequency range has an average amplitude of
10% level and ranges from dc to 10,000 Hz [25]. Since the frequency of EMG noise and the
frequency of the ECG signals, which is in the range of 0.01-100 Hz, significantly overlap,
previous studies have shown that the MA can significantly alter the shapes of local waves
of the ECG signal [29].

To deal with all these problems, several approaches have been used to address the issue
of the high false alarm rate caused by noises and artefacts:

• ECG denoising-based strategy to suppress the noises and artefacts in the ECG
recordings.

• Signal quality index (SQI)-based strategy to judge the clinical acceptability of the
recorded ECG signals.

ECG denoising-based strategy consists of several methods, including moving average and
median filters, frequency-selective filters, adaptive filters, Wiener filters, polynomial fil-
ters, singular value decomposition, discrete cosine transform, discrete wavelet transform,
empirical mode decomposition (EMD), nonlinear Bayesian filter, mathematical morpho-
logical operators, independent component analysis, nonlocal means method, variational
mode decomposition and EMD-wavelet method for removal of single and combined ECG
noise sources [27].

In addition to the noise reduction approach, the signal quality assessment (SQA) strategy
has been used to classify the recorded ECG signals as acceptable or undesirable. According
to Satija et al. [27], the SQA methods can be grouped into five categories:

• Fiducial points and heuristic rules-based (FP-HR) SQA methods;

• Fiducial points and machine learning-based (FP-ML) SQA methods;

• Nonfiducial points and heuristic rules-based (NP-HR) SQA methods;

• Nonfiducial points and machine learning-based (NP-ML) SQA methods;

• Filtering-based SQA methods

A set of morphological and interval features, such as the duration and amplitude of P-
waves, QRS complexes, T-waves, PR and ST segment intervals, and QT and RR intervals
are extracted from single or multi-lead ECG signals and combined with heuristic rules
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with predefined decision thresholds in FP-HR-based SQA methods.

FP-ML SQA methods calculate sets of interval and morphological characteristics from
the ECG signals initially and then train a classifier to recognize various noise patterns
and ECG signal types.

From the ECG signals, NP-HR SQA algorithms frequently extract sets of the time-domain,
frequency-domain, time-frequency domain, statistical, and information-theoretic features,
while in NP-ML SQA methods different SQIs are computed and then feed to a classifier.

Filtering-based SQA methods include filtering techniques which were applied for the as-
sessment of noise corruption levels, such as SQI-Modified Kalman Filter (KF) [30] and
multichannel adaptive filtering [31].

2.2.2. Modified CEEMD Algorithm

In this study, the algorithm used in order to detect noise and get the SQA index of the
ECG is the one proposed by Satija et al. in [32]. Even if the proposed algorithm allows
not only the identification but also the classification of different types of ECG noises, for
the purpose of this study the algorithm was only used to detect the noise presence.

The modified complete ensemble empirical mode decomposition (CEEMD) method is
used to first break down ECG signals to distinguish the ECG components from noise
and artefacts. Then, using the recovered high-frequency and LF signals, the short-term
temporal properties of the autocorrelation function are calculated, including its maximum
absolute amplitude (MAA) and the number of zero-crossings (NZC). In the end, a decision
rule-based approach is described for identifying the existence of noise and classifying it
into six signal groups: noise-free ECG, ECG+BW, ECG+MA, and ECG+PLI.

The EMD is frequently used to break down complicated multi-component signals into
a number of fast and slow oscillations known as intrinsic mode functions (IMFs). The
CEEMD technique has been proposed to address the limitations of the basic EMD and
ensemble EMD (EEMD), as the mode mixing issue, where different oscillations exist in
the same IMF or similar oscillations exist in different IMFs producing a variable number
of IMFs, and reconstructed signals contain residual noise after decomposition when the
signal to noise ratio is low. The CEEMD algorithm was proposed by Torres et al. [33],
in which they add different realizations of gaussian noise to the residual signal after
extracting subsequent IMFs. A signal is decomposed using the CEEMD algorithm into
a finite set of IMFs (or oscillation modes) and a residue. Until the resulting residue is
no longer decomposable, or until a predefined threshold is achieved, the decomposition
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procedure is continued. Lower-order IMFs generally capture rapid oscillation patterns of
high-frequency noises produced by MA, PLI, and recording devices, whereas higher-order
IMFs frequently capture slow oscillation modes of BW.

The modified CEEMD algorithm, proposed to reduce the computational load of the con-
ventional CEEMD algorithm, stops when the magnitude of the current residue is less than
the predefined threshold or when the number of zero-crossings of the current residue is
less than the predefined NZC value.

The steps followed by the algorithm for a given ECG signal x[n] are:

1. Obtain different realizations of signal plus white Gaussian noise wk[n] of standard
deviation ϵ, i.e., xk[n] = x[n] + wk[n], with k = 1....K, where K denotes the total
number of realizations.

2. Decompose the signal plus noise realizations x[n] + ϵ0w
k[n] using EMD to get their

first IMFs and then compute the first IMF as

IMF1 [n] =
1

K

K∑
k=1

IMF k
1 [n]

3. Compute first residue as r1 [n] = x [n]− IMF1

4. Decompose realizations r1[n] = x[n] + ϵ1w
k[n] to get their first EMD mode and ob-

tain the second mode:

IMF2 [n] =
1

K

K∑
k=1

E1(r1[n] + ϵ1w
k[n])

where E1 denotes first mode from EMD decomposition.

5. For finding the ith mode, decompose realizations of the ith residue, r1[n] = x[n] + ϵ1w
k[n]

to get their first EMD mode and obtain the (i+ 1)th mode as

IMF(i+1) [n] =
1

K

K∑
k=1

E1(ri[n] + ϵiw
k[n])

i = 1, 2, ....I

where I denotes the total number of modes and ri[n] = r(i−1)[n]− IMFi[n]

6. Compute the NZC and the MAA for the IMFi[n].
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7. Continue step 5 for the next mode until the obtained residue does not satisfy the
proposed stopping criteria: if(NZC > 10||MAA > 0.1) is true.

An example of the IMFs obtained by the CEEMD decomposition is illustrated in Figure
2.1. Higher-order IMFs catch extremely LF components of the local waves for the noise-
free ECG signals, whereas lower-order IMFs capture rapidly changing components of
QRS complexes. For the noisy ECG signals instead, lower-order IMFs capture the high-
frequency components of the MA, PLI noises, and QRS complexes. In both situations,
the BW components are included in the final residue.

In order to solve the noise classification problem, they built three signals, as illustrated
in Figure 2.2:

• h[n]: it is the high-frequency signal, obtained by summing the first tree IMfs.

• b[n]: it is the LF signal, so the final residue, representing the baseline wander.

• c[n]: it is the ECG signal, obtained by adding remaining IMFs, which include the
major components of P-wave, QRS-complex and T-wave.

Peak-to-peak amplitudes of the extracted h[n] and b[n] can be used to investigate the
presence and severity of the noises and artefacts. For detecting the presence of BW noises,
the MAA feature is extracted from the final residual signal b[n]. Based on the amplitude
ranges of the local waves such as P-wave, Q-wave, QRS-complex, and T-wave, the MAA
threshold of 0.1mV is chosen in [34]. The MAA of the high-frequency signal h[n] is instead
used to investigate the severity of the high-frequency noises. The MAA threshold of
0.05mV is chosen for detecting the presence of MA and PLI noises. Noise-specific features
such as short-term zero-crossing and autocorrelation features are used for the detection
and classification of high-frequency noises. The extracted high-frequency signal h[n] is first
divided into overlapping frames with a frameshift of one sample. The overlapping process
is implemented as hk[n] = h[k + n], n = 0, 1, 2, ...N − 1 where k = 0, 1...L−M − 1. hk[n]

is the kth frame and M denotes the frame size. Then, the NZC is computed for frames of
h[n]. The NZC feature envelope is computed as

f(n) =

Compute NZC, if max(|hk[n]|) >0.05

0, otherwise
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Figure 2.1: An example of the decomposition process of the CEEMD algorithm.

For detecting the presence of high-frequency noises, the gate signal is computed as

g(n) =

1, if NZC[n] >1

0, otherwise

Temporal characteristics like MAA and NZC are used to identify baseline drift. The BW
noise detection rule is defined as

BW =

Y es, if max(|b[n]|) > 0.1 & (NZC < 10)

No, otherwise

The severity of the high-frequency noises is defined based on the MAA of h[n]. If the
MAA of h[n] is greater than a predefined threshold of 0.05mV , h[n] is further processed
to obtain g[n] from the NZC envelope. Otherwise, the ECG signal is detected as a
high-frequency noise-free ECG signal. The local pulse widths corresponding to the QRS
complex components generally range between 50 and 300 ms, according to gate signals
derived on noise-free ECG. ECG signals corrupted with MA and PLI noises appear in
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Figure 2.2: An example of the ECG split in the 3 signals obtained from the IMFs.

the gate signals with local pulses of extremely short duration and longer duration. To
distinguish QRS complex pulses from noise frames in h[n], the pulse width thresholding
rule is used with the QRS width duration (50-200 ms) and refractory period (200-300 ms)
parameters. To detect the presence of high-frequency noise, as represented in Figure 2.3,
the duration of each of the local pulses is compared with the predefined lower and upper
duration thresholds. The high-frequency noise detection rule is defined as

high-frequency Noise =

No, if 50 ms < all widths < 300 ms

Y es, otherwise
(2.1)

In order to obtain similar results to the ones obtained in [32], in this study the same ECG
window of 10s has been considered, such as the same thresholds have been considered to
classify the ECG segment as noisy or not. Furthermore, each ECG recording is split into a
series of 10-second segments without overlapping, and each segment is then labelled with
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the corresponding percentage of noise in that particular segment, by simply computing:

Percentage of Noisei =
#Noisy samplesi · 100

#Signal lenght

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-1

-0.5

0

0.5

ECG signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

5

10

NZC envelope

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

g(n): gate signal

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-1

-0.5

0

0.5

Noisy segments, percentage of noise: 14.68%

Clean

Noise

Figure 2.3: Detecting the presence of the noise from the gate signal g[n]. In the first row
there is the original ECG signal. In the second row the NZC envelope is plotted. From
the NZC envelope the gate signal (third row) is obtained. If the width of the gate signal
is less than 50 ms or bigger than 300ms, the portion of the ECG signal is labelled as noise
(represented in red in the fourth row).

A complete example of the application of the CEEMD algorithm for a 10-second ECG
segment is the following:

• The original signal is decomposed in its IMFs, as represented in Figure 2.4

• h[n], c[n], b[n] are derived from the IMFs, as shown in Figure 2.5

• Starting from h[n], the NZC envelope and the gate signal are computed (Figure 2.6)

• At that point, when Equation 2.1 is verified, the noise is detected, as shown in
Figure 2.7
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Figure 2.4: Decomposition of the original signal in its IMFs.
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Figure 2.5: Decomposition of the original signal in its IMFs.
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Figure 2.6: NZC envelope and gate signal are derived from the h[n] function.

Figure 2.7: The noisy part of the segments detected by the CEEMD algorithm are high-
lighted in red.
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2.3. V-index

The V-index is an ECG-based estimator of the standard deviation of ventricular myocytes’
repolarization times across the entire myocardium, obtained from multi-leads surface ECG
[16]. It is estimated by considering multiple beats under a stable heart rate.

The electrophysiological model of the surface ECG put forward by van Oosterom [35] and a
statistical model of the myocytes’ repolarization timings [16] are combined to create the V-
index. Van Oosterom demonstrated how a weighted sum of the myocytes’ transmembrane
potentials can be used to model the structure of the T-wave on the surface ECG in a
single beat. A weighted sum of a single function Td(t) (the so-called dominant T-wave
[36]) and its derivatives can be used to approximate the multi-lead surface ECG in a first
approximation since the repolarization phase of the action potential is comparable across
myocytes at a particular heart rate, as follows:

Ψ(t) ≈ −A∆ρTd(t) +
1

2
A∆ρ2Ṫd(t)

where Ψ is the [L× 1] ECG, with L being the number of leads, the terms w1, w2 are [L× 1]

vectors of lead factors, A is a patient-dependent [L×M ] transfer matrix accounting for
the contribution of each node to the L-leads electrocardiographic recording in Ψ(t) and
∆ρ = [∆ρ1(k),∆ρ2(k), ...,∆ρM(k)]T is a vector of repolarization delays.

Sassi and Mainardi [16] proposed a model for the repolarization delay ∆ρm for each cell
m, obtained by dividing the myocardium in M cells, as follows:

∆ρm(k) = ρm(k)− ρ(k) = θm + φm(k)

where ρ(k) is the average repolarization time ρ(k) = 1
M

∑M
m=1 ρm(k) in the single beat k

over the set of M cells; θm models the spatial variability of the repolarization times for
a given subject at a given heart rate; φm(k) describes differences in repolarization times
which are observable among successive beats (the temporal variability of the repolarization
times). An estimate Vi, where i represents the ith lead, of the standard deviation of θm is
given by

Vi =
std[w2(i)]

std[w1(i)]
≈

(
M∑

m=1

θ2m
M

)1/2

= sθ (2.2)
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In order to compute the V-index the following steps, similar to the ones used in [19], were
followed:

• The CEEMD algorithm illustrated in 2.2.2 was used to scan the entire 24h ECG
recording in lead I, II and V2.

• 10-minute clean segments were extracted from the 24h ECG. The segments were
considered clean if respecting the following criteria:

– At least 20% of the 10-minute segment, split into portions of 10-second sub-
segments, is labelled as clean by the CEEMD algorithm

– The 10-minute segment is considered clean in all three leads.

• By subtracting a horizontal line estimated as [18] (obtained by averaging the ECG
samples contained in the TP segments, roughly identified as the mode of the ECG’s
amplitude distribution), the isoelectric line for each lead individually was roughly
set to 0mV .

• On lead II, beats were identified using an ad-hoc Pan-Tompkins detector imple-
mentation, and then, using a cross-correlation-based technique, fiducial points were
retrieved using a QRS template to align the beats.

• The average cross-correlation between the aligned QRS complexes and the QRS
template was used to evaluate the lead quality. Leads were deemed to be of sufficient
quality and subjected to additional analysis if their average cross-correlation was
higher than 0.8.

• Values for Td(t), w1 and w2 are estimated for each T-wave of each normal beat, using
the numerical approach described in [16].

• The sample standard deviations for the values of w1(i) and w2(i) acquired on suc-
cessive beats are computed for each high-quality lead i.

• The VHL-index, on each high-quality lead (HL), is computed using Equation (2.2)

• The consistency of the V-index is increased by averaging the V-index computed in
every single high-quality lead:
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2.4. Cox proportional-hazards model

By far, the most used method for modelling the connection between variables and survival
or other censored outcome is the Cox proportional hazards model [37]. The following steps
are illustrated by Therneau and Grambsch in detail in [38].

Considering Xij as the jth covariate of the ith person, with i = 1...n and j = 1...p and
thinking about the set of covariates as forming a n× p matrix, each row Xi of the matrix
is the vector of covariate for the ith person.

The hazard for the individual i is specified by the Cox model as follows:

λi(t) = λ0(t)e
Xiβ

where λ0 represents the baseline hazard, an undefined nonnegative function of time, and
β is a p× 1 column vector of coefficients. The model specifies how the baseline hazard of
patient i changes with the variables Xi.

The hazard ratio for two subjects with fixed covariate vectors Xi and Xj, computed as:

λi(t)

λj(t)
=

λ0(t)e
Xiβ

λ0(t)eXjβ
=

eXiβ

eXjβ

is constant over time, and for this reason, the model is also known as the proportional
hazards model.

The partial likelihood (PL) function introduced by Cox [37], can be used to estimate the
set of coefficients β. For untied failure time data it has the form

PL(β) =
n∏

i=1

∏
t≥0

{
Yi(t)ri(β, t)∑
j Yj(t)rj(β, t)

}dNi(t)

where ri(β, t) is the risk score for subject i, Yi(t) is the indicator function that subject i

is still under observation at time t (1 in this case, 0 otherwise) and Ni(t) is the number
of observed events in [0, t] for subject i. The log PL can be written as a sum:

l(β) =
n∑

i=1

∫ ∞

0

[
Yi(t)Xi(t)β − log

(∑
j

Yj(t)rj(t)

)]
dNi(t)

The PL can be regarded as a likelihood for purposes of asymptotic inference even if it is
not, in general, a likelihood in the sense of being proportional to the probability of an
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observed dataset. By differentiating the log PL with respect to β, the score vector U(β)

is obtained, in the form of a p× 1 vector:

U(β) =
n∑

i=1

∫ ∞

0

[Xi(s)− x̄(β, s)] dNi(s)

where x̄(β, s) is simply a weighted mean of X, over those observations still at risk at time
s,

x̄(β, s) =

∑
Yi(s)ri(s)Xi(s)∑

Yi(s)ri(s)

with Yi(s)ri(s) as the weights.

Once the score vector U(β) is obtained, the maximum PL estimator is found by solving
the PL equation:

U(β̂) = 0

obtaining a solution β̂ which is consistent and asymptotically normally distributed.
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2.5. Cosinor Analysis

In order to investigate if the V-index follows a cyclic rhythm, a further investigation using
the cosinor model [39] has been conducted. The cosinor model, which is a technique for
modelling cyclical variation, fits a cosine curve to data using a regression model. The
Least Squares process is used to fit data, which is a technique helpful in curve-fitting
issues when it is desired to find a functional form that best matches a given collection of
measurements. It is possible to write the regression model for a single-component cosinor
as

y(t) = M + A cos

(
2πt

τ
+ ϕ

)
+ e(t)

where M is the mesor, A is the amplitude, ϕ is the acrophase (a measure of the time of
peak reoccurring in each cycle), e(t) is the error term and τ is the period, which has been
imposed to be of 24 hours.

The least squares method’s guiding concept is to minimize the residual sum of squares
(RSS), which is the total of the squared differences between measurements Yi (obtained at
times ti, i = 1, 2, ..., N) and the values estimated from the model at corresponding times
Ŷi:

RSS =
N∑
i=1

(Yi − Ŷi)
2,

where Ŷi can be rewritten as:

Ŷi = M̂ + β̂x+ γ̂z + e(t)

where
x = cos

(
2πt

τ

)
z = sin

(
2πt

τ

)
Computing the first-order derivative with respect to each parameter and imposing them
equal to zero, the normal equations are obtained and used to estimate M , β, and γ. Start-
ing from these estimations, estimates of the amplitude and acrophase can be computed
using:
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Â = (β̂2 + γ̂2)
1
2 ,

ϕ̂ = arctan(− γ̂

β̂
) +Kπ

where K is an integer value. The null hypothesis H0 (no rhythm is present) is rejected,
and so the model is statistically significant, when

F > F1−α(2, N − 3)

where N is the number of samples and F is the result of the F -test, computed as

F =
MSS
2

RSS
N−3

being α the specified probability threshold, 2 and N−3 the numbers of degrees of freedom
of the model (k = 3 parameters − 1) and of the error term (N − k − 1) and MSS the
Model Sum of Squares, computed as

MSS =
N∑
i=1

(Yi − Yi)
2

where Yi is the mean of the observations.
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3.1. Population

Table 3.1 shows differences in the characteristics of the patients, divided into two groups:
alive and CV dead patients.

Variable Alive CV Dead p-value

Number of patients 325 55

Age (years), mean ± std 63.82 ± 10.27 70.36 ± 9.37 <0.0001

Gender (M) 267 (82%) 46 (84%) 0.78

LVEF (%), mean ± std 32.81 ± 8.42 29.67 ± 7.7 <0.01

NSVT 130 (40%) 36 (65%) <0.0001

Creatinine (mg/dL), mean ± std 1.11 ± 0.32 1.54 ± 0.93 <0.0001

Sodium (mEq/L), mean ± std 140.1 ± 3.93 140.11 ± 3.8 0.98

Potassium (mEq/L), mean ± std 4.45 ± 0.48 4.57 ± 0.54 0.09

Bilirubin (mg/dL), mean ± std 0.76 ± 0.37 0.75 ± 0.3 0.38

NYHA class III-IV 59 (18%) 18 (33%) 0.02

ACE 305 (94%) 52 (94%) 0.84

Beta-blockers 235 (72%) 28 (51%) <0.01

Diuretics 266 (82%) 54 (98%) <0.01

Digitalis 68 (21%) 18 (33%) 0.05

Nitrates 99 (30%) 26 (47%) 0.01

Amiodarone 44 (14%) 16 (29%) <0.01

Ischaemic cardiomyopathy 157 (43%) 35 (64%) 0.03

Table 3.1: Demographic and clinical characteristics in the entire population.

The two groups were compared for each variable, using the t-test or Wilcoxon test for
numerical variables and χ2 for categorical variables.
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CV dead patients were older (see Figure 3.1), with higher values in creatinine, and smaller
values in LVEF. Also, they have a higher incidence of NSVT, a more advanced NYHA
class and had less BBL treatment. No significant difference is related to the gender of the
patients.

Figure 3.1: Age distribution for survived and dead patients. The two distributions are
statistically different (p < 0.05).

In Figure 3.2 are illustrated the boxplots of the age, in relation to the status (dead or not)
and the gender. The distribution of the age for dead males is statistically different (p <

0.001) with respect to survived males, such as the distribution of the age for dead females
is statistically different (p < 0.05) with respect to survived females. Differences between
the age distribution for dead females and dead males are not statistically significant
(p > 0.05).
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Figure 3.2: On the left, the boxplots of the age distribution of mixed status and gender.
On the right, is a comparison of the age distribution for dead males and dead females.

3.2. Noise Detection

Final demonstrations of the CEEMD algorithm, described in Section 2.2.2, are shown in
Figure 3.3 for noise-free ECG segments (on the left) and for noisy ECG segments (on the
right). The algorithm is able to identify sudden swings in the signal and discern them from
the regular ECG, localizing with sufficient precision the noisy part of the segment. The
CEEMD algorithm was used to scan the entire 24h ECG recordings to obtain the noise-
free 10-minute segments, such that V-index could be robustly computed. The distribution
of the number of 10-minute segments available for each patient in each visit is illustrated
in Figure 3.4. In visit 2 the number of available clean segments ranged between 0 and
140, with 65 ± 38 segments for patient, in visit 4 63 ± 38 segments in a range of 0-133,
while in visit 6 66 ± 38 segments from the minimum of 0 to the maximum of 140.
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Figure 3.3: Examples of application of the CEEMD algorithm. Performances of the
algorithm are shown on the left for clean segments, while on the right for progressively
noisier segments. Red lines represent the portion of the segment labelled as noise by the
algorithm.
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Figure 3.4: Number of 10-minute noise-free segments in which V-index has been computed,
for each visit.

Further analyses have been made in order to check if the number of segments taken into
consideration for the alive patients was different from the ones computed for CV dead
patients, so introducing a bias in the models. Fig 3.5 shows the distributions for CV dead
and alive patients in each visit. A comparison between the two groups for each visit has
been made using the Wilcoxon test, resulting in non-significant differences for each visit
(Visit 2: p = 0.86, Visit 4: p = 0.08, Visit 6: p = 0.18).
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Figure 3.5: Distributions and boxplots of the number of segments on which V-index was
computed for CV dead and alive patients, for each visit.
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3.3. V-index

The number of patients for which the V-index was computed in at least one segment, is
illustrated in Table 3.2, resulting in 365 patients with at least one V-index value in visit 2,
while 307 and 301 patients in visit 4 and 6, respectively. The number of available patients
and available ECG recordings, and consequently the number of patients on which has
been possible to compute at least one V-index value, changed during the follow-up: of the
380 (308 survivors, 72 non-survivors of which 55 CV dead) patients present in the first
visit, 5 of them died for CV reasons between visits 2 and 4. Of the 375 (308 survivors,
67 non-survivors) patients that were still alive, 326 underwent the visit 4 (270 survivors
patients, while 56 non-survivors, of which 41 died for CV reasons). During visit 4 and
visit 6, 14 patients died for CV reasons and 1 patient for other reasons. Of the 360 (308
survivors, 52 non-survivors) patients alive at the time of the last visit, 320 were ECG
recorded (278 survivors, 42 the non-survivors, of which 29 died for CV reasons).

Visit 2 (S-NS(CV)) Visit 4 (S-NS(CV)) Visit 6 (S-NS(CV))

Patients 380 (308 - 72 (55)) 375 (308 - 67 (50)) 360 (308 - 52 (36))

Recordings 380 (308 - 72 (55)) 326 (270 - 56 (41)) 320 (278 - 42 (29))

V-index 365 (295 - 70 (53)) 307 (253 - 54 (39)) 301 (261 - 40 (27))

Table 3.2: The first row represents the number of survivor patients at the time of each visit.
The second row represents the number of patients who underwent the ECG recording.
The last row represents the number of patients for which V-index was computed in at
least one segment, for each visit.

The cosine function has been fitted for each patient for each visit. The number N of
data points used to fit the cosine function is different for each patient, depending on the
number of segments in which has been possible to compute the V-index, as illustrated in
Figure 3.4. Patients with less than 5 available V-index have not been considered for the
cosinor analysis. Examples of the behaviour of the V-index during the day, along with
cosinor fittings, are illustrated in Figure 3.6 for two patients. Computing the F -test to
investigate if the circadian rhythm is present, in visit 2 247 (214 alive, 33 CV dead) out
of 342 patients (293 alive, 49 CV dead), in visit 4 201 (172 alive, 29 CV dead) out of 292
patients (257 alive, 35 CV dead) and in visit 6 202 (185 alive, 17 CV dead) out of 287
patients (263 alive, 24 CV dead) follows a circadian rhythm.
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Examples of the Cosine Function fitting

0 50 100 150

Time

0

50

100

150

V
-I

n
d
e
x

0 50 100 150

Time

0

50

100

150

V
-I

n
d
e
x

Figure 3.6: On the X-axis, the 24 hours are divided into 144 ten minutes segments. Each
blue dot represents a segment in which V-index has been computed. The red line is the
estimated cosine function.

The summary statistics for V-index mesor and V-index amplitude, computed through the
steps illustrated in Section 2.5, are illustrated in Table 3.3. Figure 3.7 shows (on the left)
the distribution of V-index mesor of CV dead and alive patients in the three visits, while V-
index amplitude distributions are illustrated on the right. Additional investigations have
been made to analyze if there were any differences between alive and CV dead patients.
Distributions of V-index mesor have been compared using the single tail Wilcoxon test,
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showing significant differences in visit 2 (p = 0.04) while not in the other visits (p = 0.18,
0.31 respectively). The comparison among V-index amplitude distributions, also in this
case made with the single tail Wilcoxon test, does not show any significant differences in
all three visits (p = 0.36, 0.10, 0.23 respectively).

Variable Entire population Alive CV dead

V-index mesor, v2 31.56 (23.68-41.55) 30.89 (23.07-40.90) 34.82 (27.60-43.79)*

V-index mesor, v4 31.29 (24.27-41.30) 31.10 (24.18-39.39) 35.03 (24.98-48.36)

V-index mesor, v6 33.05 (26.41-42.23) 32.90 (26.19-42.23) 36.22 (30.48-42.34)

V-index ampl., v2 6.09 (3.06-10.88) 5.84 (3.09-10.89) 6.97 (3.01-10.43)

V-index ampl., v4 5.94 (3.20-10.78) 5.79 (3.17-10.07) 7.66 (3.75-11.87)

V-index ampl., v6 6.49 (3.41-11.28) 6.34 (3.40-11.28) 7.14 (3.78-11.72)

Table 3.3: Median and 25th-75th percentile of V-index mesor and V-index amplitude, for
each visit. ampl: amplitude; the symbol * represents a p < 0.05.
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Figure 3.7: Mesor (on the left) and amplitude (on the right) distribution for dead and
alive patients, for each visit.

An analysis of V-index mean and V-index median have been made in order to check if there
were any differences between visits 2, 4 and 6, which distributions are represented in Fig
3.8, while the boxplots in Fig 3.9. Both for V-index mean and V-index median, comparison
between visit 2 and 4, visit 2 and 6, and visit 4 and 6 have been made using the Wilcoxon
test, showing no significant differences in any of the visits. An additional experiment has
been made to compare the distribution of CV dead patients in the three visits, whose
boxplots are represented in Figure 3.10 for V-index mean and V-index median in relation
to the status. Also in this case, no significant differences have been found (p > 0.1).
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Figure 3.8: Comparison of the V-index means (on the left) and medians (on the right)
among the visits.
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Figure 3.9: Boxplot for V-index mean (on the left) and V-index median (on the right),
for each visit.

Figure 3.10: Distribution for the V-index mean (on the left) and V-index median (on the
right), for each visit.

In order to have a statistic that summarizes V-index values for each patient, mean, median,
standard deviation (std), V-index on the first available segment (all reported in Table 3.4)
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and mesor and amplitude, have been used. The distributions of the V-index values for
CV dead and alive patients have been compared in each visit, trying to identify if the
V-index alone is able to separate the two groups. The distributions of the means of the
V-index values, represented in Fig. 3.11 (on the left), show significant differences between
alive and CV dead patients in the first visit, while no differences are found in visit 4 and
6. Using the single tail Wilcoxon test for each visit the p-value was, respectively, 0.02,
0.07, and 0.29 for the 3 visits.

Variable Entire population Alive CV dead

V-index mean, v2 31.61 (24.43-41.21) 30.83 (23.88-39.81) 35.47 (27.53-46.90)*

V-index mean, v4 32.57 (25.33-42.31) 31.99 (24.39-42.22) 34.97 (26.76-42.44)

V-index mean, v6 33.77 (26.75-43.34) 33.46 (26.75-43.25) 37.25 (27.60-42.99)

V-index median, v2 30.06 (22.86-38.67) 29.65 (22.51-37.42) 33.31 (25.68-46.02)*

V-index median, v4 30.10 (23.41-39.93) 30.03 (23.36-39.21) 34.93 (25.39-41.75)

V-index median, v6 31.77 (24.23-40.30) 31.38 (24.14-40.97) 34.75 (26.07-37.82)

V-index std, v2 9.20 (6.40-14.03) 9.17 (6.14-13.94) 11.56 (7.03-14.26)

V-index std, v4 9.60 (6.61-15.25) 9.48 (6.63-15.55) 9.76 (6.54-13.41)

V-index std, v6 10.63 (7.05-16.40) 10.74 (7.30-16.04) 10.54 (6.38-17.08)

V-index FS, v2 28.87 (20.49-39.55) 28.07 (20.34-38.26) 35.02 (26.47-50.03)*

V-index FS, v4 28.64 (22.09-40.85) 28.17 (22.10-39.66) 35.27 (21.94-45.82)

V-index FS, v6 29.15 (22.98-41.60) 28.75 (22.48-40.33) 34.67 (26.12-45.50)*

Table 3.4: Median and 25th-75th percentile of V-index statistics, for each visit. v: visit;
the symbol * represents a p < 0.05.
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Figure 3.11: Distribution of the V-index means (on the left) and medians (on the right),
for each visit.

Considering the median as the summary statistic, whose distributions are shown in Fig.
3.11 (on the right), in the first visit there is a significant difference between the two
groups, while differences in the other visits are not statistically significant, with a p-
value of 0.02, 0.06 and 0.32 respectively. Distributions of V-index standard deviation
are shown in Figure 3.12 (on the right), with no significant differences in all the visits
(p = 0.07, 0.55, 0.54). Considering the V-index computed on the first noise-free segment
of the day (shown in Figure 3.12 on the left), a statistical difference for the two groups is
highlighted in visit 2 (p < 0.01) and visit 6 (p = 0.02) but not in visit 4 (p = 0.06).
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Figure 3.12: Distribution of the V-index computed on the first available segment (on the
left) and distributions of V-index standard deviations (on the right), for each visit.

In addition to the statistics previously mentioned, a new signature has been computed
starting from the cosinor analysis results. After computing a bivariate Cox model using
mesor and amplitude, the coefficients (0.55 and 0.22 respectively) have been used in order
to create this new variable, computed as follows:

Signaturecosinor = 0.55 ·Mesorcosinor + 0.22 · Amplitudecosinor

The distributions of the V-index signature are shown in Fig. 3.13. Distributions for alive
and CV dead patients in visit 2 are statistically different (median 18.18 IQR (14.11-24.34)
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vs median 21.48 IQR (15.88-26.64), p = 0.04) according to the single tail Wilcoxon test,
while no differences are highlighted in visit 4 (median 18.35 IQR (14.44-24.35) vs median
21.66 IQR (14.84-29.07, p = 0.08) and visit 6 (median 19.66 IQR (15.82-25.43) vs median
21.30 IQR (18.06-25.64), p = 0.15).

Figure 3.13: Distribution of the V-index signature. Each row represents a visit.

Before fitting the data with the Cox model, different thresholds were found to dichotomize
the numerical variables. To find these thresholds, the receiver operating characteristic
(ROC) curve was used. The idea of a "separator" (or choice) variable is the base for the
idea of a ROC curve. If the "criterion" or "cut-off" for positivity on the decision axis is
altered, the frequency of positive and negative diagnostic test outcomes will change [40].
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A ROC curve is produced by plotting TPR (true positive rate, sensitivity) versus FPR
(false positive rate, 1-specificity) across various cut-offs. While sensitivity is computed
as TP

TP+FN
, specificity is computed as TN

TN+FP
. When plotting the ROC curve, the most

the curve is closer to the upper left corner (0 FPR, 1 TPR) the better the discriminant
capabilities of the test. The performance of a diagnostic test that is no better than chance
level, so a test that produces positive or negative results unrelated to the true status, is
represented by a ROC curve that is on the diagonal line. The area under the curve
(AUC) describes the intrinsic validity of diagnostic tests and it is a useful combination of
sensitivity and specificity metrics.

The steps followed in order to find the best separating thresholds, related to the ability
of the selected variable to discriminate between alive and CV dead patients, are the
following:

• The numerical variable that needs to be binarized is selected

• An interval for the threshold is fixed between the minimum and the maximum value
of the selected variable, along with a step

• For each threshold, the predicted outcome ŷ is computed: if the value of the pa-
tient for the selected variable is greater than the threshold, the patient outcome is
predicted as 1 (CV dead), 0 otherwise.

• TPR and FPR are computed comparing the true outcome y and the predicted
outcome ŷ

• The threshold associated with the best FPR,TPR combination is selected.

In Figure 3.14 examples of the application of the previous steps are shown while finding the
best threshold value for V-index mean and V-index median. In Table 3.5 are represented
the thresholds values that have been selected for each of the variables. Threshold values
for V-index mean, V-index median and V-index value on the FS are similar to thresholds
found in [20], where a V-index greater than 36 ms appears to be associated with dead
patients. The creatinine selected threshold value of 1.2 mg/dL is in accordance with [41],
where they stated that for the adult male a normal range is from 0.6 to 1.2 mg/dL, while
for the adult female a normal range between 0.5 and 1.1 mg/dL.
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Figure 3.14: The ROC curve for the V-index mean (on the left) and V-index median
(on the right). The red dot represents the best FPR-TPR combination. The dashed line
represents the random classifier.

Variable Threshold

V-index mean, visit 2 33.24 ms

V-index median, visit 2 40.35 ms

V-index standard deviation, visit 2 11.54 ms

V-index mesor, visit 2 26.6 ms

V-index amplitude, visit 2 6.64 ms

V-index signature, visit 2 15.25 ms

V-index on first segment, visit 2 32.81 ms

Creatinine 1.2 mg/dL

Table 3.5: The selected thresholds for each variable that has been binarized.
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3.4. Survival analysis

After binarizing the variables, a first step has been made by using the Kaplan-Meier
method [42], to assess if the variable alone can separate the starting population into two
groups with different survival probabilities.

Three factors are used to describe each subject while conducting the Kaplan-Meier survival
analysis:

• Their serial time

• Their status (event occurrence or censored) at the conclusion of their serial period

• The group they are in

The serial times for individual participants are organized from the shortest to the longest,
regardless of when they entered the research, to develop survival time probabilities and
curves. Using this technique, every subject in the group starts the analysis at the same
point and continues to survive until one of them experiences an event. One of two things
may occur: either the subject would experience the relevant event or, if the event does not
have occurred at the end of the follow-up period, they would be considered as censored.
In this case, there is no information on whether such a patient would experience the event
of interest.

While the Y-axis displays the total likelihood of surviving over a certain period of time,
the survival duration for each interval is shown as the lengths of the horizontal lines along
the X-axis of serial periods. The interval is terminated when the event of interest occurs.
The significance of the vertical lines between the horizontals is that they show how the
cumulative probability changes as the curve move forward [43]. The K-M curves of V-
index mean and V-index median are plotted in Fig. 3.15, the ones of V-index computed
on the first segment and of V-index standard deviation are represented in Fig. 3.17.
V-index amplitude and V-index mesor curves are illustrated in Fig. 3.16, while the V-
index signature in Fig. 3.18. In each plot the p-value is reported, computed through the
nonparametric log-rank test, considering the CV death as endpoint event. For example,
considering the V-index mean in visit 2, the survival curves for the group of patients
with V-index mean ≥ 33.24 ms and for patients < 33.24 ms are statistically different
(p = 0.019).
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Figure 3.15: Kaplan-Meier curves for V-index meas (on the left) and for V-index median
(on the right) are shown for each visit.

Figure 3.18: Kaplan-Meier curves for the V-index signature are shown for each visit.
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Figure 3.16: Kaplan-Meier curves for V-index mesor (on the left) and for V-index ampli-
tude (on the right) are shown for each visit.

3.4.1. Visit 2

To evaluate the prognostic capabilities of the V-index, in addition to the K-M method,
a first univariate Cox model was used. Then, the V-index was adjusted for age. In the
end, V-index was combined with a clinical model, similar to [15], to assess whether its
prognostic information was supplementary to conventional prognostic criteria.

Values of the hazard ratio (HR), along with the p-value and concordance index (C-index,
also called Harrell’s C) of the univariate Cox model computed at the time of visit 2, are
represented in Table 3.6. While the HR is the probability of an event in a treatment
group relative to the control group probability over a unit of time, the C-index may be
seen as the likelihood that, over the course of the same follow-up period, a subject from
the event group would have a higher risk score than a subject from the non-event group.
Considering a pair of patients (i, j), higher risk should result in a shorter survival time
(ST) to the adverse event. So, when the model predicts a higher risk score for patients i,
STi < STj is expected. Defining all the pairs of patients i,j which respects the previous
rule as concordant pair, as opposite to discordant pair, the C-index is defined as follows:
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Figure 3.17: Kaplan-Meier curves for V-index standard deviation (on the left) and for the
V-index computed on the first segment (on the right) are shown for each visit.

Cindex =
Number of concordant pair
Number of comparable pair

The pair is excluded, and so considered non-comparable, if neither patient has encountered
an event. Also, when just one patient is censored, a pair is only taken into account if the
second patient observed the event before the censoring period. Otherwise, it would be
impossible to determine which patient may have initially encountered the event, thus the
pair is rejected.

At first, a univariate Cox model has been computed for the age, binarized as age ≥ 70
and age<70 years, obtaining an HR=3.66 (95% CI 2.11-6.34), p < 0.005 and a C-index
of 0.65, considering visit 2. It can be seen in Table 3.6 that greater values of V-index
median, mesor, signature and V-index on the FS, all binarized as previously described,
are associated with statistical significance (p < 0.05) with a higher risk of death. For
example, patients with a V-index median value greater than 40.35 ms have double risk of
death with respect to patients with V-index median value less than 40.35 ms, in the same
follow-up period. The results obtained by adjusting the V-index for age are illustrated in
Table 3.7. Overall, considering the variables with p < 0.05, joining the V-index brings to
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an improvement of the C-index, ranging from the lowest improvement of 4% obtained by
using the V-index mean, to the highest improvement of 6% by considering the V-index
signature.

HR (95% CI) p-value C-index

V-index mean 1.91 (1.10-3.32) 0.02 0.57

V-index median 2.23 (1.28-3.87) <0.005 0.58

V-index mesor 2.29 (1.11-4.72) 0.02 0.57

V-index amplitude 1.48 (0.84-2.60) 0.17 0.55

V-index signature 2.64 (1.18-5.87) 0.02 0.58

V-index std 1.69 (0.99-2.90) 0.06 0.56

V-index FS 2.40 (1.39-4.15) <0.005 0.59

Table 3.6: Results of the univariate Cox models, applied at the time of visit 2.

HR (95% CI) p-value C-index

V-index mean 1.76 (1.02-3.06) 0.04 0.68

V-index median 2.03 (1.17-3.53) 0.01 0.68

V-index mesor 2.05 (0.99-4.23) 0.05 0.69

V-index amplitude 1.43 (0.82-2.52) 0.21 0.69

V-index signature 2.40 (1.08-5.34) 0.03 0.69

V-index std 1.59 (0.93-2.72) 0.09 0.67

V-index FS 2.26 (1.31-3.91) <0.005 0.69

Table 3.7: Each row represents a multivariate Cox model, composed of the written statistic
adjusted for age, applied on the dataset at time visit 2.

When selecting the best multivariate Cox model, for comparison reasons, the same clinical
variables in [15] were considered as candidate predictors: age ≥ 70 years, sex, ischaemic
cardiomyopathy, NYHA class III–IV, LVEF, heart rate, systolic arterial pressure, presence
of NSVT, the number of premature ventricular contractions/h, creatinine, sodium, and
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presence of beta-blocker (BBL) treatment. In order to prevent overfitting the maximum
number of candidate clinical predictors, to combine with one of the V-index metrics, was
chosen equal to 4, such that the rule of having maximum z/10 variables is respected, being
z the numbers of events (55 CV death events in this case).

The best model selection computed at the time of visit 2 and according to the C-index
is composed of age ≥ 70 years, creatinine ≥ 1.2 mg/dL, presence of NSVT, LVEF and
signature ≥ 15.25 ms, in detail reported in Table 3.8, obtaining a C-index of 0.78. This rep-
resents an improvement with respect to a C-index of 0.76 obtained by the best-performing
clinical model, composed of age, creatinine, NSVT and LVEF. Additional results of the
best models are shown in Appendix A.4.1.

HR (95% CI) p-value

Age ≥ 70 years 3.06 (1.69-5.54) <0.005

Creatinine ≥ 1.2 mg/dL 2.78 (1.54-5.02) <0.005

NSVT 2.12 (1.18-3.82) <0.005

LVEF 0.96 (0.93-0.99) 0.02

V-signature ≥ 15.25 ms 2.56 (1.14-5.72) 0.02

Table 3.8: Results of the best multivariate Cox models, applied at the time of visit 2.

3.4.2. Visit 4 and visit 6

The same experiments were repeated in visit 4 and visit 6, using the same threshold values
found in visit 2. In Appendix (A.2 and A.3) can be found additional results of the models
computed using the optimal threshold values (shown in A.1) found for each visit.

The patients (5) who died between visit 2 and 4 were removed, and the starting point
of the follow-up was moved at the time of visit 4, so obtaining 375 observations and 50
cardiovascular death events. Then, patients who did not undergo the ECG recording in
visit 4 and the ones for which it was not possible to compute V-index in at least one
segment were removed, so the number of observations at the time of visit 4 decreased to
292, with 39 CV death events.

The univariate Cox models computed using the V-index obtained in visit 4 are shown in
Table 3.9, while in Table 3.10 are presented the multivariate Cox models of the statistics
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adjusted for age. The V-index computed on the FS preserves its significance (p = 0.01)
and values higher than 32.81 ms are associated with higher risk of death.

HR (95% CI) p-value C-index

V-index mean 1.52 (0.81-2.86) 0.20 0.54

V-index median 1.20 (0.60-2.41) 0.61 0.51

V-index std 0.29 (0.35-1.36) 0.29 0.55

V-index mesor 1.02 (0.51-2.04) 0.96 0.49

V-index amplitude 1.89 (0.96-3.72) 0.06 0.59

V-index signature 1.03 (0.49-2.14) 0.94 0.50

V-index FS 2.46 (1.30-4.65) 0.01 0.60

Table 3.9: Results of the univariate Cox models, applied at the time of visit 4.

HR (95% CI) p-value C-index

V-index mean 1.49 (0.79-2.80) 0.22 0.68

V-index median 1.24 (0.62-2.50) 0.54 0.66

V-index std 0.76 (0.38-1.50) 0.43 0.69

V-index mesor 0.98 (0.49-1.97) 0.95 0.67

V-index amplitude 2.19 (1.11-4.33) 0.02 0.71

V-index signature 0.98 (0.47-2.04) 0.95 0.68

V-index FS 2.26 (1.19-4.28) 0.01 0.70

Table 3.10: Each row represents a multivariate Cox model, composed of the written
statistic adjusted for age, applied at time visit 4.

The best model selection (reported in Table 3.11), computed at the time of visit 4 and
considering only the V-index statistics computed in the ECG recordings registered at visit
4, is the following: age ≥ 70 years, NSVT presence, BBL treatment, LVEF, V-index on
the FS ≥ 32.81 ms, obtaining a C-index of 0.78. The same result (C-index=0.78), is
obtained by using age ≥ 70 years, creatinine ≥ 1.2 mg/dL, BBL treatment, LVEF and
V-index amplitude ≥ 6.64 ms (HR=2.00, 95% CI 1.01-3.96, p = 0.05).
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HR (95% CI) p-value

Age ≥ 70 years 3.04 (1.54-6.03) <0.005

NSVT 2.02 (1.04-3.92) 0.04

BBL 0.44 (0.23-0.85) 0.01

LVEF 0.96 (0.92-1.00) 0.06

V-index on the FS ≥ 32.81 ms 2.19 (1.15-4.18) 0.02

Table 3.11: Results of the best multivariate Cox models, applied at the time of visit 4.

After removing the other 15 patients who died between visit 4 and visit 6, a dataset com-
posed of 360 observations, of which 36 CV death events, is obtained. Removing patients
without at least one value of V-index, the dataset obtained is composed of 301 observa-
tions, of which 27 CV death events. The univariate Cox models results are presented in
Table 3.12, while results for the multivariate Cox models adjusted for age are illustrated
in Table 3.13.

Considering only the V-index statistics computed in visit 6, the best model (presented in
Table 3.14) is composed by: age ≥ 70 years, creatinine ≥ 1.2 mg/dL, BBL treatment,
NSVT presence and V-index on the FS ≥ 32.81 ms, obtaining a C-index of 0.81.

HR (95% CI) p-value C-index

V-index mean 1.60 (0.73-3.50) 0.24 0.53

V-index median 0.71 (0.27-1.87) 0.49 0.53

V-index std 1.11 (0.52-2.36) 0.79 0.49

V-index mesor 1.76 (0.60-5.16) 0.30 0.53

V-index amplitude 1.41 (0.63-3.17) 0.41 0.53

V-index signature 2.00 (0.60-6.70) 0.26 0.54

V-index FS 2.42 (1.11-5.30) 0.03 0.58

Table 3.12: Results of the univariate Cox models, applied at the time of visit 6.
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HR (95% CI) p-value C-index

V-index mean 1.56 (0.71-3.41) 0.26 0.70

V-index median 0.68 (0.26-1.80) 0.44 0.70

V-index std 1.15 (0.54-2.45) 0.72 0.68

V-index mesor 1.81 (0.62-5.31) 0.28 0.71

V-index amplitude 1.33 (0.59-2.99) 0.49 0.68

V-index signature 1.94 (0.58-6.50) 0.28 0.71

V-index FS 2.13 (0.97-4.67) 0.06 0.72

Table 3.13: Each row represents a multivariate Cox model, composed of the written
statistic adjusted for age, applied on the dataset at time visit 6.

HR (95% CI) p-value

Age ≥ 70 years 3.04 (1.30-7.12) 0.01

Creatinine ≥ 1.2 mg/dL 3.15 (1.36-7.28) 0.01

NSVT 1.94 (0.87-4.33) 0.10

BBL 0.54 (0.25-1.18) 0.12

V-index on the FS ≥ 31.82 ms 1.86 (0.84-4.12) 0.13

Table 3.14: Results of the best multivariate Cox models, applied at the time of visit 6.
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4| Discussion

This study shows the potential of using the V-index as a predictor of cardiovascular
mortality in heart failure patients. The use of V-index statistics combined with clinical
variables increases performances in risk stratification in HF patients. The clinical variables
which were found to obtain the best discrimination capabilities are age, serum creatinine,
the incidence of NSVT, LVEF, NYHA class and BBL treatment, as confirmed in previous
studies which investigated the best set of clinical variables to discriminate among patients
at higher risk of death in HF patients [4, 13–15]. Greater values of V-index are associated
with a higher risk of death in HF patients, as confirmed in previous study [20, 21] for
different conditioned patients.

Considering the V-index statistics analyzed in this study, the median value of the 24h ECG
recording appears to be a more robust and reliable parameter with respect to the mean
to summarize the V-index behaviour in a day. The application of the cosinor analysis
to derive mesor and amplitude provides additional and important information about the
daily behaviour of the V-index. The new signature, computed starting from mesor and
amplitude, is able to summarize the V-index daily behaviour in a single parameter and
gets good performance in discriminating patients that are at higher risk of death. Also
considering the V-index computed only on the first segment, the V-index preserves its
significance and its prognostic value.

Threshold values found in visit 2 identify at higher risk patients with V-index mean and
median value greater than 33.24 ms and 40.35 ms, respectively. Also, values of the V-
index signature greater than 15.25 ms are associated with a higher risk of CV death,
such as values of the V-index on the first segment greater than 32.81 ms. However, the
use of the same thresholds found in visit 2 applied in visit 4 and visit 6 appears to be
non-optimal. This can be due to the smaller populations present at the time of visit 4 and
visit 6. Indeed, while available observations of V-index in visit 2 were 365, this number
has decreased to 307 (-16%) in visit 4 and to 301 in visit 6 (-18%).

In [15] La Rovere et al. investigated the predictive capabilities of Cox models obtained by
combining clinical variables (age, creatinine, LVEF and NSVT) and autonomic markers
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of the ECG on the (slightly) same population. In particular, they computed the following
autonomic markers: SDNN, VLFP, LFP, DFA, TS. Comparing the V-index with these
autonomic markers, considering the C-index as the metric to evaluate performances of the
Cox model, the results obtained in this study exploit the relevance of V-index in predicting
cardiovascular mortality. The best results obtained in this study in visit 2, resulting from
multivariate Cox models achieved by combining a clinical model with, respectively, the V-
index signature (C-index=0.78), the V-index mesor (C-index=0.78) and V-index median
(C-index=0.76), are in line with results obtained in [15] with SDNN (0.76), the logarithm
of VLFP (0.79), the logarithm of LFP (0.79), DFA (0.76) and TS (0.75).

In conclusion, this study shows that the use of V-index has a relevant prognostic value in
HF patients and its use should be further investigated.
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A| Appendix A

A.1. Thresholds

The optimezed threshold values that have been found for V-index statistics in visit 4 and
visit 6 are represented in Table A.1.

Threshold

V-index means, visit 4 39.36 ms

V-index means, visit 6 35.11 ms

V-index medians, visit 4 36.43 ms

V-index medians, visit 6 33.31 ms

V-index std, visit 4 9.3 ms

V-index std, visit 6 14.3 ms

V-index mesor, visit 4 39.50 ms

V-index mesor, visit 6 34.45 ms

V-index amplitude, visit 4 7.30 ms

V-index amplitude, visit 6 6.80 ms

V-index signature, visit 4 21.62 ms

V-index signature, visit 6 19.95 ms

V-index first segment, visit 4 34.16 ms

V-index first segment, visit 6 33.47 ms

Table A.1: The selected thresholds for each variable that has been binarized.

In the following chapters are presented the models that have been computed in visit 4
and 6 by using the optimized thresholds.
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A.2. Visit 4

In Table A.2 the univariate Cox models computed with the V-index obtained in visit 4
are shown, while in Table A.3 the multivariate Cox models of the statistics are adjusted
for age. Also in this case, with different thresholds, the V-index statistics preserve their
significance and higher values are associated with a higher risk of death.

HR (95% CI) p-value C-index

V-index mean 1.88 (1.00-3.55) 0.05 0.56

V-index median 2.15 (1.15-4.03) 0.02 0.58

V-index mesor 2.06 (1.06-4.03) 0.03 0.58

V-index amplitude 2.00 (1.02-3.91) 0.04 0.59

V-index signature 2.02 (1.04-3.93) 0.04 0.58

V-index std 1.45 (0.76-2.76) 0.26 0.54

V-index FS 2.78 (1.47-5.26) <0.005 0.61

Table A.2: Results of the univariate Cox models, applied at the time of visit 4.

HR (95% CI) p-value C-index

V-index mean 1.97 (1.05-3.71) 0.04 0.69

V-index median 2.14 (1.14-4.01) 0.02 0.69

V-index mesor 2.09 (1.07-4.08) 0.03 0.69

V-index amplitude 2.34 (1.19-4.59) 0.01 0.71

V-index signature 2.06 (1.06-3.99) 0.03 0.70

V-index std 0.44 (0.81-2.97) 0.18 0.68

V-index FS 2.62 (1.38-4.96) <0.005 0.71

Table A.3: Each row represents a multivariate Cox model, composed of the written statis-
tic adjusted for age, applied at time visit 4.

The best model selection (reported in Table A.4), computed at the time of visit 4 and
considering only the V-index statistics computed in the ECG recordings registered at visit
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4, is the following: age ≥ 70 years, NSVT presence, BBL treatment, LVEF, V-index on
the FS ≥ 34.16 ms, obtaining a C-index of 0.787. A similar result (C-index=0.776), is
obtained by using age ≥ 70 years, creatinine ≥ 1.2 mg/dL, BBL treatment, LVEF and
amplitude ≥ 7.30 ms (HR=2.04, 95% CI 1.03-4.02, p = 0.04). Additional results can be
found in Section A.4.2.

HR (95% CI) p-value

Age ≥ 70 years 3.07 (1.55-6.07) <0.005

NSVT 1.99 (1.02-3.87) 0.04

BBL 0.45 (0.23-0.86) 0.02

LVEF 0.96 (0.92-1.00) 0.06

V-index on the FS ≥ 34.16 ms 2.54 (1.34-4.83) <0.005

Table A.4: Results of the best multivariate Cox models, applied at the time of visit 4.

A.3. Visit 6

The univariate Cox models have been computed as previously described, and results are
presented in Table A.5. Results for the multivariate Cox models adjusted for age are
illustrated in Table A.6.

Considering only the V-index variables computed in visit 6, the best model (Table A.7)
is composed by: age ≥ 70 years, creatinine ≥ 1.2 mg/dL, LVEF, NSVT presence and V-
index cosinor (computed in visit 6) ≥ 19.95 ms, obtaining a C-index of 0.82. Additional
results can be found in Section A.4.2.
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HR (95% CI) p-value C-index

V-index mean 2.11 (0.96-4.61) 0.06 0.56

V-index median 2.28 (1.04-4.98) 0.04 0.57

V-index mesor 2.21 (0.96-5.05) 0.06 0.57

V-index amplitude 1.44 (0.64-3.24) 0.38 0.53

V-index signature 2.63 (1.09-6.34) 0.03 0.59

V-index std 1.39 (0.65-3.00) 0.40 0.51

V-index FS 2.73 (1.25-5.97) 0.01 0.59

Table A.5: Results of the univariate Cox models, applied at the time of visit 6.

HR (95% CI) p-value C-index

V-index mean 1.97 (0.90-4.32) 0.09 0.71

V-index median 2.17 (0.99-4.75) 0.05 0.72

V-index mesor 2.21 (0.97-5.06) 0.06 0.72

V-index amplitude 1.34 (0.59-3.02) 0.48 0.68

V-index signature 2.83 (1.17-6.82) 0.02 0.73

V-index std 1.68 (0.78-3.64) 0.19 0.69

V-index FS 2.40 (1.09-5.25) 0.03 0.73

Table A.6: Each row represents a multivariate Cox model, composed of the written statis-
tic adjusted for age, applied on the dataset at time visit 6.
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HR (95% CI) p-value

Age ≥ 70 years 3.59 (1.46-8.80) 0.01

Creatinine ≥ 1.2 mg/dL 3.83 (1.48-9.90) 0.01

NSVT 2.07 (0.89-4.80) 0.09

LVEF 0.99 (0.95-1.03) 0.61

V-index signature ≥ 19.95 ms 2.13 (0.87-5.21) 0.10

Table A.7: Results of the best multivariate Cox models, applied at the time of visit 6.
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A.4. Best models

A.4.1. Same thresholds

In the following are represented the best models obtained in visit 2 (Table A.8), visit 4
(Table A.9) and visit 6 (Table A.10), obtained using the thresholds found in visit 2.

Variables C-index

age, creatinine, NSVT, LVEF, V-index signature 0.78

age, creatinine, NSVT, LVEF, V-index mesor 0.78

age, creatinine, NYHA class, LVEF, Signature 0.78

age, creatinine, NYHA class, LVEF, V-index on the FS 0.77

age, creatinine, NSVT, LVEF, V-index median 0.76

Table A.8: Best models that have been found at time visit 2.

Variables C-index

age, NSVT, BBL, LVEF, V-index on the first segment (v4) 0.78

age, creatinine, BBL, LVEF, V-index amplitude (v4) 0.78

age, NYHA class, BBL, LVEF, V-index amplitude (v4) 0.78

age, NSVT, BBL, LVEF, V-index amplitude (v4) 0.77

age, creatinine, NYHA class, LVEF, V-index amplitude (v4) 0.77

Table A.9: Best models that have been found at time visit 4.
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Variables C-index

age, creatinine, NSVT, LVEF, V-index signature (v6) 0.82

age, creatinine, NSVT, SEX (M), TVNS, V-index amplitude (v6) 0.82

age, creatinine, NSVT, BBL, V-index median (v6) 0.81

age, creatinine, NSVT, BBL, V-index mean (v6) 0.81

age, creatinine, NSVT, BBL, V-index on FS (v6) 0.80

Table A.10: Best models that have been found at time visit 6.
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A.4.2. Optimized thresholds

In the following are represented the best models obtained in visit 4 (Table A.11) and visit
6 (Table A.12), obtained using the optimized threshold found in each visit.

Variables C-index

age, NSVT, BBL, LVEF, V-index on the first segment (v4) 0.79

age, creatinine, BBL, LVEF, V-index amplitude (v4) 0.78

age, NYHA class, NSVT, LVEF, V-index median (v4) 0.77

age, NYHA class, NSVT, LVEF, signature (v4) 0.77

age, LVEF, BBL, NSVT, V-index median (v4) 0.77

Table A.11: Best models that have been found at time visit 4.

Variables C-index

age, creatinine, NSVT, LVEF, V-index signature (v6) 0.82

age, creatinine, NSVT, SEX (M), TVNS, V-index amplitude (v6) 0.82

age, creatinine, NSVT, BBL, V-index median (v6) 0.81

age, creatinine, NSVT, BBL, V-index mean (v6) 0.81

age, creatinine, NSVT, BBL, V-index on FS (v6) 0.80

Table A.12: Best models that have been found at time visit 6.
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