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Abstract

Nowadays, researchers strive to design systems that can operate autonom-
ously in safety-critical applications, such as, e.g., unmanned aerial vehi-
cles and space systems. To ensure a predictable system response and safe
operation, reliable control of these systems needs not only to meet perfor-
mance specifications under nominal conditions, but also to accommodate
graceful performance degradation when underlying assumptions are vio-
lated. This work mainly aims to design control algorithms for aerospace
systems that integrate the experience gathered (data-driven knowledge)
into a classical (model-based) control framework in a systematic way.
The thesis is structured so that the problem statements and proposed con-
trol solutions are addressed from a methodological and general point of
view. Indeed, these solutions are specialized in the light of the partic-
ular case study only at the end. Firstly, novel adaptive control archi-
tectures with stability, performance, and robustness guarantees are pro-
posed. Then, harmonic control algorithms for disturbance attenuation are
presented, focusing on aerospace applications that experience periodic
disturbances with a known source and period, but whose amplitude is un-
certain. Finally, the dissertation covers learning-based methods that do
not assume any periodicity of the disturbance, but rely on the repetition
of a particular task to improve performance from one trial to the next.
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3.1 Architecture for indirect switching adaptive control . . . . 47
3.2 Graphical illustration of the role of Θ0 , `θ , ∆θ , and δ∆θ . 50
3.3 Time-varying parameter evolution. . . . . . . . . . . . . . 64

IX



3.4 Time evolution of the error. . . . . . . . . . . . . . . . . . 65
3.5 Time evolution of the input. . . . . . . . . . . . . . . . . 66
3.6 Single-sided amplitude spectrum of the input. . . . . . . . 67

4.1 Angular velocity for a motion-to-rest manoeuvrer. . . . . . 85
4.2 Control torque for a motion-to-rest manoeuvrer. . . . . . . 85
4.3 Time evolution of the error 2-norm with different controllers. 87
4.4 Control torque for a motion-to-motion manoeuvrer. . . . . 88
4.5 Single-sided amplitude spectrum of u1. . . . . . . . . . . 89

5.1 Mixed time-frequency domain representation. . . . . . . . 94
5.2 Schematic overview of the HC architecture. . . . . . . . . 100
5.3 General block diagram of discrete T -matrix algorithm. . . 102
5.4 Trade-off Robustness/Performance - LQ-based HC. . . . . 107

6.1 CIMR spacecraft. . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Multibody spacecraft configuration. . . . . . . . . . . . . 114
6.3 Multibody model of the breadboard. . . . . . . . . . . . . 130
6.4 Operative range of the breadboard. . . . . . . . . . . . . . 133
6.5 Unbalances suppression with different α . . . . . . . . . . 134
6.6 Torque suppression - Nominal case. . . . . . . . . . . . . 136
6.7 Force suppression - Nominal case. . . . . . . . . . . . . . 136
6.8 Torque suppression - Monte Carlo analysis. . . . . . . . . 138
6.9 Force suppression - Monte Carlo analysis. . . . . . . . . . 138
6.10 Breadboard used in the experiments. . . . . . . . . . . . . 139
6.11 Test setup scheme. . . . . . . . . . . . . . . . . . . . . . 140

7.1 HC architectures classification. . . . . . . . . . . . . . . . 148
7.2 AW139 MVA assembly. . . . . . . . . . . . . . . . . . . 150
7.3 Block diagram of input-matched disturbance model. . . . 152
7.4 Block diagram of input-matched disturbance model. . . . 152
7.5 Case study sensors location. . . . . . . . . . . . . . . . . 159
7.6 Case study actuators location. . . . . . . . . . . . . . . . 160
7.7 Closed-loop MVA eigenvalues with the standard HC. . . . 161
7.8 Closed-loop MVA eigenvalues with the proposed D-HC. . 161
7.9 HC algorithm: steady-state input norm varying w. . . . . . 163



7.10 PD-HC algorithm: steady-state input norm varying w2. . . 163
7.11 Steady-state output norm varying LQ-weight. . . . . . . . 164
7.12 Closed-loop response of the ACSR. . . . . . . . . . . . . 166
7.13 Closed-loop response of the ACSR: cosine components. . 167
7.14 Closed-loop response of the ACSR: sine components. . . . 167

8.1 General block diagram of ILC system . . . . . . . . . . . 175
8.2 General ILC architecture. . . . . . . . . . . . . . . . . . . 176
8.3 ILC in serial arrangement. . . . . . . . . . . . . . . . . . 179
8.4 ILC in parallel arrangement. . . . . . . . . . . . . . . . . 179
8.5 Representation of the ILC algorithm. . . . . . . . . . . . . 182
8.6 H∞-synthesis of ILC scheme. . . . . . . . . . . . . . . . . 189
8.7 Q-ILC block diagram in lifted form. . . . . . . . . . . . . 190

9.1 Scheme of the energy production for AWE system. . . . . 195
9.2 Estimator-based ILC block diagram in the iteration domain. 197
9.3 Error 2-norm evolution in the iteration domain. . . . . . . 204
9.4 Block diagram of the proposed architecture. . . . . . . . . 205
9.5 ANT-X drone. . . . . . . . . . . . . . . . . . . . . . . . . 207
9.6 Validation of the identified model. . . . . . . . . . . . . . 208
9.7 Eight-shape trajectory. . . . . . . . . . . . . . . . . . . . 209
9.8 8-shape trajectories for the iterations 0, 1 and 2. . . . . . . 211
9.9 UAV North-position for iterations 0, 1 and 2. . . . . . . . 211

10.1 Model matching problem. . . . . . . . . . . . . . . . . . 215
10.2 Standard form for H∞ synthesis. . . . . . . . . . . . . . . 216
10.3 Standard form of the model matching problem. . . . . . . 217
10.4 Transfer learning problem. . . . . . . . . . . . . . . . . . 218
10.5 Standard form of the transfer learning problem. . . . . . . 219
10.6 Bode plot of the uncertain target model. . . . . . . . . . . 222
10.7 Mean error 2-norm evolution in the iteration domain. . . . 224
10.8 Block diagram of the proposed TL architecture. . . . . . . 225
10.9 The two different quadrotors used in the experiments. . . . 226
10.10 UAV North position with and without TL. . . . . . . . . 229
10.11 UAV East position with and without TL. . . . . . . . . . 229
10.12 8-shape trajectories with and without TL. . . . . . . . . . 230



A.1 The FlyART facility. . . . . . . . . . . . . . . . . . . . . 268
A.2 Motion Capture System components. . . . . . . . . . . . 269
A.3 Pixhawk Mini FCU. . . . . . . . . . . . . . . . . . . . . 270
A.4 NanoPi NEO Air. . . . . . . . . . . . . . . . . . . . . . . 271
A.5 ANT-X quadcopter. . . . . . . . . . . . . . . . . . . . . . 272
A.6 ADAM-0 quadcopter. . . . . . . . . . . . . . . . . . . . . 273



List of Tables

2.1 Simulation results: performance metrics. . . . . . . . . . 39
2.2 Experiment performance metrics. . . . . . . . . . . . . . 42

3.1 Error norms with the different controllers. . . . . . . . . . 64

4.1 Error norms during a motion-to-motion manoeuvrer. . . . 86

6.1 Ideal case results. . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Statistical properties Monte Carlo simulations. . . . . . . 137
6.3 Static unbalance compensation test. . . . . . . . . . . . . 142
6.4 Dynamic unbalance compensation test. . . . . . . . . . . 142
6.5 Combined unbalance compensation test. . . . . . . . . . . 143

9.1 Parameters used in the simulations. . . . . . . . . . . . . 203
9.2 Error 2-norm with 5% level of uncertainty. . . . . . . . . 204
9.3 Error 2-norm with different levels of uncertainty. . . . . . 205
9.4 Learning performance results for 8-shape trajectory. . . . . 210

10.1 Parameters used in the simulations. . . . . . . . . . . . . 222
10.2 Relevant statistics of the first iteration error with/without TL. 223
10.3 S-ILC results on the source system. . . . . . . . . . . . . 228

XIII



10.4 TL results on the target system. . . . . . . . . . . . . . . 228



Introduction

In recent years, researchers have strived to design systems that can oper-
ate autonomously in safety-critical applications. Examples include Un-
manned Aerial Vehicles (UAVs) [1], self-driving cars [2], and space sys-
tems [3]. To ensure a predictable system response and safe operation, re-
liable control of these systems needs not only to meet performance spec-
ifications under nominal conditions, but also to accommodate ”graceful
performance degradation” when underlying assumptions are violated [4].

State of the art

Control theory has traditionally involved a model-based approach: it lever-
ages a given model of the system dynamics and provides guarantees con-
cerning known operating conditions. Typically, model simplifications of
the dynamical system are made during the controller design. This may
include making idealized assumptions, linearising a highly nonlinear dy-
namical system, and neglecting external disturbances and/or unmodelled
dynamics. Indeed, a highly complex model could lead to controllers that
are too difficult or costly to design, use and maintain. Model identifica-
tion can be adopted to obtain the system model leveraging measured data
from experimental tests on the actual system. However, even if the most

1



advanced identification method is employed, the model always approxi-
mates the actual system, i.e., some errors are inevitable. In addition, sev-
eral unpredictable conditions could introduce uncertainty in a real system,
e.g., an aircraft suffering structural damage or a spacecraft grasping an
unknown object. As a result, system uncertainties unavoidably exist be-
tween the control model and the actual dynamical system. Robust control
theory was born to deal with these problems, assuming bounds on noise
and/or model uncertainties [5]. Robust control design techniques, such as
robust H∞ and H2 control design, yield suitable controllers for the mod-
elled disturbances/uncertainties and keep the controller unchanged after
the initial design. However, being designed to operate under the worst-
case condition, a robust controller may use excessive actions to regulate
the process and fail to achieve satisfactory performance over the entire
range in which system characteristics may vary. To overcome all these
limitations, learning-based (or data-driven) control approaches represent
a viable solution. In recent years, these approaches have also gained pop-
ularity due to the success of machine learning in other fields, such as
computer vision [6] and natural language processing [7]. Learning-based
algorithms (almost) completely omit the modelling part and can quickly
adapt to new situations by leveraging the experience collected during
the operation. However, these methods typically do not provide stabil-
ity or robustness guarantees. As a consequence, despite a large number
of ongoing research projects, the application of learning-based methods
in safety-critical applications is very limited. In conclusion, the ”best”
control solution should involve not only model- or learning-based meth-
ods, but a combination of both approaches that works best in maintaining
closed-loop stability, enforcing robustness to uncertainties, and delivering
the desired performance in the presence of unexpected events [8].

Approach

This dissertation has the main purpose of designing control algorithms
for aerospace systems that integrate in a systematic way the experience
gathered (data-driven knowledge) into a classical (model-based) control
framework to have safety guarantees. The control design problem is tack-
led in three different domains: time-, frequency- and trial-domain.
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• Time-domain: Some innovative adaptive control architectures are
proposed. These controllers are tuned to the physical system in real-
time, not the worst-case scenario. Thus, adaptive controllers have
the natural capability to estimate and suppress the effect of system
uncertainties, without sacrificing performance [9]. This advantage is
obtained learning during the operation, i.e., measurements are lever-
aged to adjust online the control parameters.

• Frequency-domain: Several modifications of the harmonic control
algorithms are presented considering the disturbance acting on the
system being tonal or multi-tonal with a known spectrum. Since
the harmonic controller is designed to deal only with the harmonics
of output and control input components, it is considered to actually
operate in the frequency-domain [10].

• Trial-domain: Iterative Learning Control (ILC) methods are consid-
ered that take advantage of the repetition of a specific task to im-
prove performance from one trial to the next [11]. The learning
phase occurs offline, i.e., data collected from each experiment/trial
are recorded and used in a batch fashion between closed-loop oper-
ation trials. The proposed algorithms are computationally efficient,
allowing a fast re-tuning of the controller when the system perfor-
mance is reduced (e.g., components degradation) or when the op-
erating conditions change (e.g., different payloads). Furthermore,
the proposed methods guarantee safe operation not only for the op-
timized controller, but also during the learning phase to avoid costly
hardware failures.

Structure and contributions

The dissertation is structured into three main Parts and ten Chapters. Part I
is dedicated to presenting novel adaptive control architectures with stabil-
ity, performance, and robustness guarantees, with the goal of developing
a methodological approach to design adaptive control systems in various
aerospace applications. Part II is instead devoted to presenting and dis-
cussing harmonic control algorithms for disturbance attenuation to over-
come some of the issues and limitations of classical control laws. This
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study area is relevant to many aerospace applications that experience pe-
riodic disturbances with a known source and period, but whose amplitude
is uncertain. On the other hand, Part III describes ILC methods that do not
assume any periodicity of the disturbance or reference signals, but rely on
the repetition of a particular task to improve performance from one iter-
ation to the next. The thesis is structured so that the problem statements
and proposed control solutions are addressed from a methodological and
general point of view. Indeed, these solutions are specialized in the light
of the particular case study only at the end. As for each Chapter, the
contributions are summarized in the following.

• Chapter 1 presents a historical overview of adaptive control while
describing the basic concepts and features of adaptive algorithms in
view of the methodological approaches discussed in the following.

• The design and stability analysis of an adaptive position controller
for UAVs are presented in Chapter 2. The novel aspect of this work
is the definition of a systematic design process for a position con-
troller based on Model Reference Adaptive Control, taking into ac-
count not-fast closed-loop attitude dynamics in a hierarchical con-
trol scheme. After having reformulated the problem considering the
attitude dynamics as a pseudo-actuator, an existing Linear Matrix
Inequality-based hedging framework has been designed such that
the presence of actuator dynamics has no effects on the performance
of the adaptation. Simulation and experimental results are provided
to illustrate the performance of the proposed control scheme.

• In the previous Chapters, different approaches to designing an adap-
tive controller with constant unknown parameters have been pre-
sented. Unfortunately, these controllers cannot handle time-varying
dynamics that is common for aerospace systems to exhibit. Chap-
ter 3 addresses this issue by developing a continuous adaptive con-
troller for nonlinear dynamical systems with linearly parametrizable
uncertainty involving time-varying uncertain parameters. Specifi-
cally, a modification of congelation of variable method is designed
to achieve trajectory tracking of a scalar nonlinear system.
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• Chapter 4 focuses on the attitude control problem of a spacecraft af-
fected by time-varying inertia variation. Although adaptive control
schemes for spacecraft attitude control are numerous in the litera-
ture, few have been designed to ensure consistent performance for a
spacecraft with both rigid and non-rigid (time-varying) inertia com-
ponents. In view of this, novel adaptive attitude control schemes
are proposed that take advantage of the approach presented in Chap-
ter 3. Detailed derivations of the control laws are provided, along
with a thorough analysis of the associated stability and error conver-
gence properties. In addition, numerical simulations are presented to
highlight the performance benefits compared with classical control
schemes that do not account for inertia time variations1.

• Chapter 5 gives a brief overview of the harmonic control algorithms
starting from the definition of the T -matrix for linear systems which
can be used as basis for the control methodologies developed in the
following Chapters.

• Chapter 6 presents the design of an active balancing system for ro-
tating orbital devices, motivated by recent space applications for
spacecraft endowed with rotating payloads. After having formu-
lated the problem as compensating for a periodic disturbance of a
known frequency, a harmonic control algorithm has been designed
to command the positions of the actuated masses so that the effects
of rotor unbalance are significantly reduced. After extensive numer-
ical simulations, a dedicated breadboard has been developed, and
experimental validation of the control law has been carried out.

• Chapter 7 describes a second application of harmonic control, fo-
cused on a slightly different paradigm. In particular, the harmonic
control framework is specialized in the helicopter rotor-induced vi-
bration problem. Several techniques have been developed to solve
this problem, broadly divided into passive and active vibration con-
trol techniques. Despite the large amount of research produced in

1This work, along with the theory developed in Chapter 3, has been carried out by the Author under the
supervision of Prof. Maruthi Akella at the University of Texas in Austin (Texas), USA.
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the last decades, the interaction between active and passive vibra-
tion control techniques has not been analysed yet. The main con-
tribution of Chapter 7 is the analysis of the interaction between the
active control of structural response and a mast vibration absorber.
Specifically, it is shown that an ad hoc design of the control algo-
rithm is needed to avoid instabilities and/or degraded performance
caused by the interaction between the two devices.

• The fundamental ideas and aspects regarding ILC algorithms are dis-
cussed in Chapter 8, focusing on the optimization-based framework
used in the following Chapters.

• Chapter 9 describes the novel Smoother-based ILC algorithm, high-
lighting common points and differences concerning the state of the
art described in the previous Chapter. The novelty of this work
is the introduction of a smoother to estimate the repetitive distur-
bance to improve learning performance. Furthermore, the algorithm
has been specialized to achieve high-performance trajectory track-
ing with UAVs, and an experimental campaign involving a small
quadrotor has been carried out.

• The ILC approach presented in the previous Chapter has been ca-
pable of reaching exceptional tracking performance. However, the
learning phase needed to apply such a technique is related to each
specific system, thus making the application of ILC poorly scal-
able. To overcome this limitation, Chapter 10 presents a novel H∞-
optimization-based definition of a transfer map that allows trans-
forming the input signal learnt on a source system to the input signal
needed for a target system to execute the same task. Experimen-
tal results demonstrate the effectiveness of the proposed approach in
improving the tracking performance of a UAV transferring knowl-
edge between different-scale UAVs.
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Notation

This is a brief collection of the most used notations throughout the disser-
tation. R(R>0) denotes the set of (positive) real numbers, Z≥0 denotes
the set of non-negative integers, Rn denotes the n-dimensional Euclidean
space, and Rm×n the set of m× n real matrices. Given A ∈ Rn×n, we
use the compact notation A ∈Rn×n

>0 to represent a positive definite matrix.
The i-th vector of the canonical basis in Rn , i.e., the vector with a 1 in the
i-th coordinate and 0 elsewhere, is denoted as ei and the identity matrix
in Rn×n is denoted as In := [e1 · · ·ei · · ·en]. Given vectors x,y ∈ Rn, the
standard inner product is defined as 〈x,y〉 := x>y. The Euclidean norm of
a vector x ∈Rn is ‖x‖ :=

√
〈x,x〉. For A and B ∈Rn×n, the standard inner

product is given by 〈A,B〉 := tr
(
AT B

)
= vec(A)T vec(B), where vec(A)

is the column obtained by staking the columns of A one after the other.
The norm induced by this inner product is the Frobenius norm, which is
defined as ‖A‖F :=

√
tr(AT A). The minimum and maximum eigenvalues

are denoted as λm(A) and λM(A), respectively, and skew (A) := A−AT

2 is
the skew-symmetric part of A. The n-dimensional unit sphere is denoted
as Sn :=

{
x ∈ Rn+1 : ‖x‖= 1

}
. The set SO(3) := {R ∈ R3×3 : R>R =

I3,det(R) = 1} denotes the three-dimensional Special Orthogonal group.
Given ω ∈ R3, the map S(·) : R3→ so(3) := {Ω ∈ R3×3 : Ω =−Ω>} is
such that S(ω)y = ω× y, ∀y ∈ R3, where × represents the cross product
in R3. The inverse of the map S is denoted as S(·)−1 : so(3)→ R3.
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CHAPTER1
Adaptive control preliminaries

Adaptive control has been the subject of extensive research over the last
decades. As a popular control methodology of increasing interest for ap-
plications in engineering and science fields, adaptive control has unique
capabilities to accommodate system parametric, structural, and environ-
mental uncertainties caused by, e.g., payload variations, component fail-
ures, and external disturbances. Indeed, adaptive control, under some
generic design conditions, can tolerate significant uncertainties to en-
sure desired system asymptotic tracking performance and system stabil-
ity. These characteristics are crucial for resilient control systems whose
performance is required to be recoverable under system uncertainties and
faults, such as aircraft control. This Chapter provides a historical overview
while describing the basic concepts and features of adaptive algorithms.
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Chapter 1. Adaptive control preliminaries

1.1 Introduction

The control designer rarely has a precise knowledge of the plant parame-
ters when controlling a real plant. Additionally, the environment in which
the system operates may undergo unanticipated changes, and the charac-
teristics of the plant may alter over time as a result of numerous factors. It
may be difficult to achieve satisfactory performance over the full range in
which system characteristics may vary using conventional control theory
tools with fixed parameters. A sophisticated feedback controller should be
able to learn changes in parameters through processing and use appropri-
ate gains to adapt them because the output response contains information
about the state and parameters of the system [12]. This debate produced a
feedback control structure that serves as the foundation for adaptive con-
trol. The controller structure consists of a feedback loop and a controller
with real-time adjustable gains, as shown in Figure 1.1. The way con-
troller gains are updated in response to changes in system dynamics and
disturbances distinguishes one adaptive scheme from another [9].

Figure 1.1: General structure of an adaptive controller [9].

The definition of an adaptive control system continues to be multifaceted,
making it impossible to define them in a single and concise sentence [9].
The term adaptation is defined in biology as “an advantageous confor-
mation of an organism to changes in its environment.” Inspired by this
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1.2. Historical background

definition, Drenick and Shahbender introduced the term adaptive system
in control theory to represent “control systems that monitor their own
performance and adjust their parameters in the direction of better perfor-
mance” [13]. Another popular definition of an adaptive control system
has been given in [14], which describes it as “a feedback control system
intelligent enough to adjust its characteristics in a changing environment
to operate in an optimum manner according to some specified criterion.”

Remark 1. In addition to their adaptive properties, adaptive controllers
can be designed to learn [15]. Learning is the process of identifying pat-
terns and taking action based on memory. A simple example of a learning
controller is a tracking error integrator in the feedback loop. It accumu-
lates and integrates errors based on previous and current data. Adaptive
controllers can be seen as nonlinear extensions of feedback integrators
[16]. Compared to a standard learning process that is primarily con-
cerned with maximizing parameters knowledge, adaptive control is a type
of learning that minimizes the error with respect to a specific target out-
put. Although the objective may differ, standard learning algorithms and
adaptive control share common research interests [17].

1.2 Historical background

Since the idea of adaptation and feedback are so closely related, the his-
tory of adaptive control systems is almost as long as the entire field of
control systems. As a result, adaptive control has been investigated since
the 1950s and is still an area of intense research activity. As in [17],
we categorize various developments in this area into three periods (1950-
1965, 1965-1980, and 1980-2000) that are outlined below.

1.2.1 1950-1965: Early research

Since the early 1950s, the design of autopilots for high-performance air-
craft has motivated intensive research on adaptive control [18, 19]. In-
deed, constant-gain feedback control methods cannot handle effectively
when the aircraft flies from one operational point to another and their dy-
namics changes dramatically. An advanced controller, such as an adaptive
controller, that can learn and adapt to changes in aircraft dynamics was
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Chapter 1. Adaptive control preliminaries

needed. Whitaker et al. in [20] proposed the Model Reference Adaptive
Control (MRAC) to solve the autopilot control problem. The design of
adaptive laws for the various proposed control schemes involved the use
of the sensitivity method [21] and the MIT rule [22]. Kalman proposed
in [23] an adaptive pole placement scheme based on an optimal linear
quadratic problem. This period is called the brave era because “there
was a very short path from idea to flight test with very little analysis in
between” [24]. The tragic flight test of the X-15 confirms this view [25].

1.2.2 1965-1980: Stability framework

It was soon realized that the MIT rule could lead to instability, especially
when there is a sufficient phase lag between the error measurement and
the parameters update [26]. Several authors contributed to the formulation
of a stability framework for analysing and synthesizing adaptive systems
[27, 28, 29]. Instead of using a gradient descent approach as in [22],
Lyapunov’s method was proposed, ultimately becoming the basis for the
stability of adaptive systems. The work done over these 15 years set the
foundations for stable adaptation in dynamic systems, both stochastic and
deterministic, focusing mainly on parametric uncertainties. The overall
goal was to ensure a well-behaved closed-loop system that asymptotically
met control goals such as tracking and regulation. Furthermore, condi-
tions under which learning, i.e., accurate parameter estimation, can take
place were formalized, deriving both necessary and sufficient conditions
[30]. Finally, the concurrent advancement of computers and electronics,
which has made possible the implementation of complex controllers, such
as adaptive ones, increased interest in adaptive control applications [9].

1.2.3 1980-2000: Robust adaptive control

The debates concerning the practicality of adaptive control immediately
followed the accomplishments of the 1970s. It was noted in [31] that
the classical adaptive strategies could become unstable in the presence of
small disturbances. Other examples of instability were later published,
demonstrating a lack of robustness in the presence of unmodelled dynam-
ics or bounded disturbances [32]. Several approaches have been devel-
oped to ensure that adaptive control systems provide adequate robustness
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to withstand non-parametric uncertainties, such as external disturbances,
time-varying parameters, and unmodelled dynamics [33, 34, 35]. As a
result, a body of research called robust adaptive control was produced. In
particular, an adaptive controller is defined as robust if it guarantees sig-
nal boundedness in the presence of “reasonable” classes of unmodelled
dynamics and bounded disturbances [9].

1.3 Adaptive control problem formulation

We consider the dynamics of a plant process P(θ) given by

ẋ = f (x,θ ,u, t) (1.1)
y = g(x,θ ,u, t) (1.2)

where x(t)∈Rn represents the system state, y(t)∈Rp represents all mea-
surable system outputs. θ ∈ Rs represents the system parameters, and
f (·) and g(·) describe the system dynamics. The plant P(θ) is subject to
various perturbations and modelling errors due to environmental changes,
complexities in the underlying mechanisms, and anomalies. Hence both
f and g are not fully known. Most adaptive control schemes have adopted
a parametric approach to distinguish known from unknown parts. Specif-
ically, it is assumed that f and g are known functions parametrized with
respect to the parameter θ , which is unknown.

Remark 2. It is an idealization to assume that the only unknown in equa-
tions (1.1)-(1.2) is the parameter θ and that the functions, f and g, are
exactly known. Several departures from this assumption can take place
in the form of unmodelled dynamics, time-varying parameters, and dis-
turbances. In these cases, robust modifications need to be designed to
ensure that the underlying signals remain bounded, with errors that are
proportional to the size of these perturbations. These modifications either
rely on properties of persistent excitation (PE) of the exogenous command
signals [36] or on appropriately modifying the adaptive law [9].

1.3.1 Adaptive control objective

The adaptive control objective is to design the input signal u(t) so that the
system output y(t) tracks a desired command signal yc(t) by including
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an adaptive component that attempts to estimate the parameters online1.
Typically, the control objective is to ensure that limt→∞ e(t) = 0 , where
e(t) = y(t)− yc(t). Furthermore, the control input must lead to a closed-
loop dynamic system that has bounded solutions at all time t [12].

1.3.2 Adaptive control solutions

Most of the existing adaptive control solutions are built upon the con-
ventional certainty equivalence (CE) principle [9]. Precisely, CE-based
solutions determine a controller structure that leads to an optimal solution
when the parameters are known, and then replace the parameters in the
controller with their estimates. A typical solution of the adaptive con-
troller takes the form

u = Fu (θc,φ , t) (1.3)
θc = Fθ (θc,φ , t) , (1.4)

where θc(t) is an estimate of a control parameter that is intentionally var-
ied as a function of time, and φ(t) represents all available data at time t.
The non-autonomous nature of Fu and Fθ is due to the presence of ex-
ogenous signals, e.g., set-points and command signals. The functions Fu
and Fθ are deterministic constructions, and make the overall closed-loop
system nonlinear and non-autonomous. The adaptive control solutions in-
volve suitable functions Fu and Fθ to learn the unknown parameter θ ∗c (t),
and achieve the control objective described in the previous Section.

Remark 3. Since adaptive controllers synthesized through the CE princi-
ple are designed to guarantee the elimination of tracking error rather than
accurate parameter estimation, their performance can generally only at
most equal the performance of corresponding controllers for determinis-
tic cases. Moreover, unless the reference signals satisfy specific PE con-
ditions, CE-based adaptive controllers cannot guarantee convergence of
parameter estimation errors to zero [9]. These facts lead to potential
performance degradation of CE-based adaptive controllers in many ap-
plications compared to the underlying deterministic controllers [38, 39].
Therefore, research efforts in the field of adaptive control have begun to

1For details, the readers are referred to the survey papers [17, 37] and references therein.
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explore deviations from the CE philosophy. The Immersion and Invari-
ance (I&I) formulation is a notable example of such efforts [40].

1.3.3 Adaptive control architecture

An adaptive controller includes an online parameter estimator (1.4), also
known as adaptation law, and a control law (1.3). In this Section, we de-
scribe the different approaches classified according to how the parameter
estimator is combined with the control law [9].

Indirect adaptive control

The first approach, known as indirect adaptive control, estimates the sys-
tem parameters online and modifies the control parameters in accordance
with these estimates. This architecture has also been referred to as explicit
identification in the literature [12]. In particular, the system model P(θ ∗)
is parametrized with respect to an unknown parameter vector θ ∗ and, by
analysing the system input u(t) and output y(t), an online parameter es-
timator provides an estimate θ(t) of θ ∗(t) at each time instant. Then,
the controller parameters are computed by solving an algebraic equation
θc(t) = F(θ(t)) using the parameter vector estimate θ(t). The block dia-
gram of the indirect adaptive control scheme is shown in Figure 1.2.

Direct adaptive control

On the other hand, in the direct adaptive control architecture, no effort is
made to identify the system parameters. As a result, control parameters
are adjusted directly to improve a certain performance index. This archi-
tecture is also referred to as implicit identification [12]. Specifically, the
system model P(θ ∗) is parametrized in terms of the unknown controller
parameter θ ∗c (t), for which the controller Fu (θ ∗c ) meets the performance
requirements to obtain the system model with the same input/output char-
acteristics as Pc (θ ∗). The adaptation law provides an estimate θc(t) at
each time instant, which is then used to update the controller without in-
termediate calculations. The block diagram of the direct adaptive control
scheme is shown in Figure 1.3.
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Figure 1.2: Indirect adaptive control architecture. [9]

Figure 1.3: Direct adaptive control architecture. [9]
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1.3.4 Model Reference Adaptive Control

A well-known procedure for determining the structure of the functions Fu
and Fθ is denoted as Model Reference Adaptive Control (MRAC), origi-
nally proposed in 1958 by Whitaker et al. at MIT [20]. The main idea
behind this concept is to specify the desired command-to-output perfor-
mance of a servo-tracking system using a differential equation (the ref-
erence model) that defines the ideal response ym(t) of the system due to
external commands. MRAC was derived from the Model Reference Con-
trol (MRC) problem [16]. The objective of MRC is to find a feedback
control law that modifies the system dynamics, so that its input/output
properties are exactly the same as those of the reference model. In the
same way, MRAC designs the controller structure Fu (θ ∗c ,φ , t) to ensure
limt→∞ y(t)− ym(t) = 0 assuming known the ideal (unknown) parameter
θ ∗c (t) such that θc(t) = θ ∗c (t) in equation (1.3).

Being θ ∗c (t) unknown, the obtained controller cannot be implemented.
One way of dealing with the unknown parameter case is to use the CE-
based approach to replace the unknown θ ∗c (t) in the control law with its
estimate θc(t) obtained using the direct or indirect approach [9]. Indeed,
after having determined the controller Fu, MRAC approach focuses on
finding the adaptive law Fθ such that output following takes place with
the closed-loop system trajectories remaining bounded. A block diagram
of a system operating under MRAC controller is shown in Figure 1.4.

Figure 1.4: MRAC closed-loop block diagram [16].
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1.3.5 L1 Adaptive Control

In adaptive control, the nature of the adaptation process plays a central
role in both robustness and performance. Ideally, one would like the adap-
tation to respond correctly to all variations in initial conditions, reference
inputs and uncertainties by quickly identifying a set of control parameters
that provide a satisfactory response to the system. This goal, of course,
requires fast estimation schemes with high adaptation rates and, conse-
quently, leads to the fundamental question of determining the upper limit
of the adaptation rate that does not result in poor robustness characteris-
tics [4]. The lack of analytical quantification of the relationship between
the rate of adaptation, the transient response, and the robustness margins
led to gain-scheduled designs of adaptive controllers, examples of which
are the successful flight tests of the late 1990s by the Air Force and Boe-
ing [16]. These flight tests relied on intensive Monte Carlo analysis to
determine the best rate of adaptation for various flight conditions. It was
evident that fast adaptation led to high frequencies in the control signals
and increased sensitivity to time delays. The fundamental issue there-
fore came down to determining an architecture that would allow rapid
adaptation without losing robustness. It was clear that such an architec-
ture could reduce the amount of gain scheduling and possibly eliminate
it, since rapid adaptation in the presence of guaranteed robustness should
be able to compensate for the detrimental effects of rapidly varying un-
certainties on system response. The L1 adaptive control theory precisely
addressed this issue by setting an architecture for which adaptation is de-
coupled from robustness, which enables arbitrarily fast adaptation without
sacrificing robustness. [41]. In fact, in L1 adaptive control architectures,
the rate of the adaptation loop can be set arbitrarily high, subject only
to hardware limitations (computational power and high-frequency sensor
noise), while the trade-off between performance and robustness can be ad-
dressed through conventional methods from classical and robust control.
This separation between adaptation and robustness is achieved by explic-
itly building the robustness specification into the problem formulation,
with the understanding that the uncertainties in any feedback loop can be
compensated for only within the bandwidth of the control channel. From
an architectural perspective, this modification of the problem formulation
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leads to the inclusion of a bandwidth-limited filter in the feedback path,
which ensures that the control signal remains in the desired frequency
range (see Figure 1.5). With L1 adaptive controller in the feedback loop,
the response of the closed-loop system can be predicted a priori, thus sig-
nificantly reducing the amount of Monte Carlo analysis required for the
verification and validation of such systems. These features of L1 adaptive
control theory were verified, consistently with the theory, in many flight
tests and high-fidelity simulation environments [4].

Figure 1.5: L1 Adaptive control closed-loop block diagram [41].
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CHAPTER2
The role of closed-loop attitude dynamics

in adaptive UAV position control

This Chapter presents the design and the stability analysis of an adaptive
position controller for Unmanned Aerial Vehicles (UAVs). Considering
a hierarchical control scheme, the novelty of this work is the definition
of a systematic approach to design a position controller based on Model
Reference Adaptive Control (MRAC) theory taking into account not-fast
closed-loop attitude dynamics. After having reformulated the problem
considering the attitude dynamics as a pseudo-actuator, we exploit an ex-
isting Linear Matrix Inequality (LMI) based hedging framework designed
such that the adaptation performance is not affected by the presence of
actuator dynamics. Results from simulations and from experiments on a
platform designed to replicate the longitudinal motion of quadrotors are
provided to illustrate the performance of the proposed control scheme.
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Chapter 2. The role of attitude dynamics in adaptive UAV position control

2.1 Introduction

In recent years, the study of UAVs has received increasing attention thanks
to their wide range of applications. In particular, quadrotor UAVs have at-
tracted commercial and research interest thanks to their high level of ma-
noeuvrability and simple mechanical structure. Various controllers have
been proposed to track a predefined trajectory or a path for quadrotors.
Fixed-gain linear or nonlinear controllers often serve to address the prob-
lem satisfactorily when dealing with nominal operation (see, e.g., [42] for
a comprehensive survey). Specifically, several control systems have been
developed based on robust control [43], backstepping [44], sliding mode
controller [45], or hybrid control architecture [46]. In [47] and [48], It-
erative Learning Control (ILC) was used to update the reference signal
to multirotor systems subject to repetitive disturbances to achieve high-
performance tracking. However, repetitive operational conditions and
controlled environments are essential for these data-based control algo-
rithms. If more challenging scenarios such as, e.g., actuator degradation
and faults, severe external disturbances, and parameter uncertainties have
to be considered, then approaches capable of learning whilst operating
are needed. Adaptive control is an attractive candidate for dealing dis-
turbances and uncertainties for fault-tolerant or reconfigurable unmanned
flight [16]. One well-known architecture is the MRAC architecture which
has been used multiple times in multirotor control achieving impressive
results. The interested reader is referred to [49] as an example of nu-
merous references on adaptive multirotor control. In particular, in re-
cent years the L1 adaptive control approach has been successfully applied
across various UAV applications [41, 4].

Considering a hierarchical control scheme, the contribution of this
Chapter is the design and stability analysis of a position controller based
on MRAC theory taking systematically into account non-fast closed-loop
attitude dynamics. In fact, actuator dynamics pose a significant obstacle
to the design and implementation of standard adaptive controllers [16].
In particular, if the actuator dynamics have sufficiently wide bandwidth,
then they can be neglected in the design of MRAC [50]. However, if the
actuator dynamics do not have sufficiently wide bandwidth or the control
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system is used for safety-critical applications, a systematic approach must
be followed to determine if the actuator bandwidth is large enough to not
affect the adaptation performance maintaining the closed-loop dynami-
cal system stable. After having reformulated the problem considering
the closed-loop attitude dynamics as pseudo-actuator, the effects of these
dynamics on the adaptation performance are analysed by exploiting the
LMI-based hedging framework presented in [51]. To the best knowledge
of the authors, no theoretical analysis of the attitude dynamics effects on
the MRAC position controller has been performed so far for a hierarchical
control scheme of multirotor UAVs. This Chapter contributes by evaluat-
ing these effects in such an application.

2.2 Problem statement

In this Section, we first show the dynamical model of vectored-thrust1

UAV and present a hierarchical control law capable of stabilizing simul-
taneously the UAV position and heading direction. Then, the interactions
between attitude and position loops are analysed. Finally, the UAV model
is linearised in near hover conditions to fit the MRAC architecture.

2.2.1 Mathematical model

The configuration of a rigid UAV can be identified with the motion of
a body-fixed frame FB := (OB,{b1,b2,b3}) with respect to a reference
frame FI := (OI,{i1, i2, i3}), where b j and i j for j ∈ {1,2,3} are unit vec-
tors forming right-handed orthogonal triads and OB,OI are the origins of
the body and reference frame, respectively (see Figure 2.1). In the fol-
lowing, the position vector from OI to OB, resolved in FI , is denoted as
p = [ px py pz ]> ∈ R3 while the rotation matrix describing the attitude of
the UAV is denoted as R = [b1 b2 b3 ] ∈ SO(3), where bi is the i-th body
axis resolved in FI . The UAV dynamical model can be described by [52]:

Ṙ = RS(ω) Jω̇ =−S(ω)Jω + τe + τc (2.1)
ṗ = v mv̇ =−mgi3 +TcRi3 + fe, (2.2)

1Multirotor UAVs with coplanar propellers are known as vectored-thrust UAVs, because their propulsive
system can deliver a control force only along a fixed direction within the airframe [42].
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where J = J> ∈ R3×3
>0 is the UAV inertia matrix with respect to OB, m ∈

R>0 is the UAV mass, g = 9.81m/s2 is the gravitational acceleration,
ω ∈ R3 is the body angular velocity, v ∈ R3 is the inertial translational
velocity, Tc ∈R>0 and τc ∈R3 are the overall thrust and the torque applied
by the propellers, respectively, and ( fe,τe)∈R6 is the disturbance wrench
including, e.g., aerodynamic effects. S(·) is the matrix representation of
linear cross-product operation such that for any a,b ∈ R3 S(a)b = a×b.

i2

i1

i3

OI

b1

b2

b3

OB

Figure 2.1: Reference frames.

2.2.2 Cascade control design for position-yaw stabilization

By relying on the differential flatness property of the dynamics (2.1)-(2.2)
with respect to the position vector p and to the rotation about the b3 axis
[53], several control strategies have been proposed in the literature to deal
with the nonlinear and underactuated nature of the quadrotor dynamics.
In this work, the objective of the control design is to stabilize the UAV at a
constant position set-point pd = [ pd

x pd
y pd

z ]
> ∈R3 with a desired yaw angle

ψd ∈ R. To tackle the underactuated nature of vectored-thrust UAVs, we
follow a hierarchical control strategy in which the attitude dynamics (in-
ner loop) is used to stabilize the translational one (outer loop). Each loop
considers the translation and rotation dynamics of the multirotor system
separately, hence, reducing the complexity of the control design problem
[54]. Specifically, the control architecture involves an adaptive position
controller, an attitude extraction block, and a cascade P/PID attitude con-
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troller similar to the one implemented in the PX4 autopilot [55]. The
overall architecture (see Figure 2.2) is described in the following.

Adaptive Extraction P PID
pd

pv

fd

yd

Rp

R

wd

w

tc1

tc2

tc3

Tc

Position Controller Attitude Controller

Figure 2.2: Block diagram of the proposed controller architecture.

Position Controller

Since the control force in the inertial frame (TcRi3) cannot be delivered
instantaneously in a desired direction, a widely adopted strategy is to in-
troduce a virtual control variable fd = [ fdx fdy fdz ]

> ∈R3 in equation (2.2)

mv̇ =−mgi3 + fe + fd− ( fd−TcRi3), (2.3)

where fd should be selected so that the desired set-point (p = pd , v =
0) defines an asymptotically stable equilibrium point of the translational
dynamics. In this work, we consider for the altitude stabilization a linear
cascade controller as:

fdz := PIz(s)
(

kz
p(pd

z − pz)− v
)
−Dz(s)vz +mgi3 , (2.4)

where PIz(s) := kz/i
p +

kz/i
i
s and Dz(s) := kz/i

d
sT z

s+T z are continuous trans-
fer functions defining, respectively, a proportional-integral and (filtered)
output-derivative actions , while kz

p, kz/i
p , kz/i

i and kz/i
d ∈ R>0 are scalar

gain and T z ∈ R>0 is the filter time constant. Instead, we consider an
adaptive controller for the xy-plane control (described in the following
Section) counteracting the unmodelled forces (whose effect in the z-axis
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is considered negligible in this work) to ensure that the UAV tracks a user-
specified command with desired transient performance requirements.

Attitude extraction

The idea behind the hierarchical approach is to find a reference attitude
Rp and a control thrust T d

c such that

fd−T d
c Rpi3 = 0. (2.5)

Then, by exploiting the full actuation of the rotational dynamics (2.1), the
control torque τc is designed so that the reference attitude Rp is asymptot-
ically tracked. In this way, the mismatch term fd−TcRi3 will converge to
zero. To solve equation (2.5), the reference attitude Rp is selected with the
third axis aligned with the force required for position stabilization fd and
the rotation about this axis is assigned as a function of a desired yaw angle
ψd through the unit vector bp1 := [ cos(ψd) sin(ψd) 0 ]>, which represents the
heading direction. Thus, a solution to equation (2.5) is T d

c = || fd|| and

Rp :=
[

bp3×bp1
‖bp3×bp1‖

×bp3

bp3×bp1
‖bp3×bp1‖

bp3

]
, bp3 := fd

‖ fd‖ . (2.6)

Attitude controller

In this Chapter, we consider the following nonlinear cascade controller for
attitude stabilization (similar to the one implemented in the commercial
PX4 autopilot [55]):

τd
c := PIR(s)

(
γR(KR

p R>p R)−ω
)
−DR(s)ω , (2.7)

where PIR(s) := Ki
p + Ki

1
s and DR(s) := Kd

sT
s+T are continuous trans-

fer functions defining, respectively, a proportional-integral and (filtered)
output-derivative actions, while KR

p , Ki
p, Ki and Kd ∈ R3×3

>0 are diago-
nal gain matrices and T ∈ R>0 is the filter time constant. The term
γR(KR

p R>p R) := −1
2S−1(KR

p R>p R− R>RpKR
p ) is a nonlinear proportional

stabilizer computing the reference angular velocity that must be tracked
by the inner loop through a PID controller.
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2.2.3 Interactions between loops

The classical way to design control laws for multirotor UAVs consists in
assuming that the controllers will be tuned such that the attitude dynamics
would converge faster than translational dynamics. This time-scale sep-
aration allows one to neglect the perturbation acting on the translational
(outer) loop due to the dynamics of attitude (inner) loop. Namely, if the
perturbation term (defined as σ := 1

mTc(R−Rp)i3) vanishes rapidly2, the
complete closed-loop system will be stable in practice [42].

In the literature, different authors quantify how much faster the attitude
control loop should be to ensure the closed-loop stability of the whole
system (see, e.g., [56] where the stability analysis has been addressed by
singular perturbation theory). On the other hand, a hierarchical controller
robust to perturbation σ is proposed in [46], where the closed-loop stabil-
ity of the whole system is ensured combining the Input-to-State Stability
(ISS) properties of the position error system with the global asymptotic
stability of the attitude error subsystem. Similarly, in [57] the stability
of the interconnection between the attitude and position loops is studied
within the framework of differential inclusions.

Another way to ensure the stability of the whole system is to use
standard tools considering the linearised system and to determine when
the closed-loop attitude bandwidth (that can be seen as an actuator of
the translational dynamics) is too narrow and instability may occur [58].
However, for adaptive control of uncertain dynamical systems, these tools
can no longer be used to determine how wide the actuator (closed-loop at-
titude) bandwidth needs to be to ensure stability.

One way to address this issue is to reduce the aggressiveness of the
adaptive controller (degrading the tracking performance) by trial-and-
error. In contrast, we propose a systematic approach that exploits the
hedging-based MRAC architecture, initially presented in [59], that allows
the adaptation performance to not be affected by the presence of actuator
dynamics and exploits a LMI-method proposed in [51] to determine if the
actuator bandwidth is large enough.

2It is assumed that motor dynamics is negligible with respect to the rigid body dynamics of the UAV, the
desired values T d

c and τd
c are considered to be instantaneously reached by Tc = T d

c and τc = τd
c .
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2.2.4 Linearised system

To implement the proposed adaptive architecture, the UAV model in (2.1)-
(2.2) must be linearised. Assuming near hovering conditions (i.e., p≈ p̄,
v ≈ 0, R ≈ I3 + S(∆α) with ∆α := [φ θ ψ ]> being small rotation angles,
ω ≈ 0) we obtain:

∆α̇ = ∆ω, ∆ṗ = ∆v (2.8)
J∆ω̇ = ∆τc, m∆v̇ = mgS(∆α)i3 +∆Tci3, (2.9)

where ∆Tc := Tc−mg, ∆τc := τc, and ∆(·) represent deviation variables.
Similarly, the control law can be linearized by recognizing that in near
hovering conditions ‖ fd‖≈mg and γR(KR

p R>p R)≈KR
p [φp−φ θp−θ ψd−ψ ]>,

so as to obtain:

∆Tc := PIz(s)
(

kz
p(pd

z − pz)− v
)
−Dz(s)vz, (2.10)

∆τc := PIR(s)(KR
p [φp−φ θp−θ ψd−ψ ]>−ω)−DR(s)ω, (2.11)

where the virtual roll and pitch angles are

φp :=+ 1
mg fdx = MRAC(pd

y , py,vy,φ), (2.12)

θp :=− 1
mg fdy = MRAC(pd

x , px,vx,θ), (2.13)

while ψd is the desired yaw angle. Consider only the dynamics in the
xy-plane, the corresponding system state-space form can be written as:

ẋ =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


x+




0 0
−g 0
0 0
0 g


w (2.14)

where x = [ px vx py vy ]> ∈R4 w := [θ φ ]> ∈R2 is the output of the closed-
loop attitude dynamics given by3

w(s) =
[

Gθ (s) 0
0 Gφ (s)

]
u(s) (2.15)

3For the sake of simplicity, we interchangeably use time-domain and frequency-domain representations of
signals (e.g., x(t) and x(s) denote the function of time and its Laplace transform, respectively).
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2.3. MRAC with actuator dynamics

where u := [θp φp ]> ∈ R2 is the control input given by the adaptive con-
troller, and Gθ (s) and Gφ (s) are the continuous transfer functions defining
the closed-loop pitch and roll dynamics respectively. These transfer func-
tions can be either retrieved analytically or identified from experimental
data. In this Chapter, we focus on the position controller design with an
assumption that a well-designed attitude controller has been applied. For
the sake of simplicity, in this work Gθ (s) and Gφ (s) are approximated
by first order dynamical systems4. In the following Sections, we refer to
closed-loop attitude dynamics as actuator dynamics.

2.3 MRAC with actuator dynamics

This Section provides a concise overview of [51] and [60]. In particular,
we consider the uncertain dynamical system subject to actuator dynamics

ẋ = Ax+Bw, x(0) = x0, (2.16)

where x ∈ Rn is the state vector available for feedback, A ∈ Rn×n is an
unknown system matrix, B ∈ Rn×m is a known input matrix, and the pair
(A,B) is controllable. w ∈ Rm is the actuator output of the actuator dy-
namics given by

ẋc =−Mxc +u, xc(0) = xc0, (2.17)
w = Mxc,

where xc ∈Rm is the actuator state vector, M ∈ Rm×m
>0 is a diagonal matrix

with diagonal entries representing the actuator bandwidth of each control
channel, and u ∈ Rm is the control input restricted to the class of admis-
sible controls consisting of measurable functions. Next, we consider the
ideal reference system capturing a desired closed-loop dynamical system
performance given by

ẋi = Arxi +Brc, xi(0) = xi0 , (2.18)

where xi ∈ Rn is the ideal reference state vector, c ∈ Rm is a given uni-
formly continuous bounded command, Ar ∈Rn×n is the Hurwitz reference

4The proposed architecture can be extended to higher-order dynamics following the approach in [60].
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system matrix, and Br ∈ Rn×m is the command input matrix. We now
make the following assumption that is standard in the MRAC literature
and is known as the matching condition (see, e.g., [16, 9]).

Assumption 1. There exist an unknown matrix Wx ∈ Rm×n and a known
matrix Kr ∈ Rm×m such that Ar = A−BW>x and Br = BKr hold.

The objective of the MRAC problem is to construct an adaptive feedback
control law u(t) such that the state vector x(t) asymptotically follows the
reference state vector xi(t). The standard MRAC formulation can sup-
press the effect of any model uncertainty to achieve desirable tracking
performance requirements in the absence of actuator dynamics [16]. In
the presence of actuator dynamics, the standard MRAC formulation based
on the (pre-chosen) ideal reference model given by equation (2.18) does
not allow the uncertain dynamical system to track the reference model
trajectories asymptotically.

A remedy to this problem is given by the hedging method (see [59]
and [61] for more details). This method alters the trajectories of the refer-
ence model to allow adaptive controllers to be developed so that actuator
dynamics have no effect on their stability. Namely, we consider the fol-
lowing modified reference model

ẋr = Arxr +Brc+B(w−u), xr(0) = xr0 , (2.19)

where the deficit term B(w−u) is introduced. Let the adaptive feedback
control law be given by

u =−Ŵ T
x x+Krc , (2.20)

where Ŵx ∈ Rn×m is the estimate of Wx, which is obtained with the adap-
tation law

˙̂Wx = γ Proj
[
Ŵx,xeTPB

]
, Ŵx(0) = Ŵx0 , (2.21)

where Proj[·, ·] is the projection operator [16], γ ∈R>0 being the learning
rate, e , x− xr being the system error state vector, and P ∈ Rn×n

>0 being
the solution of the Lyapunov equation

0 = AT
r P+PAr +Q (2.22)
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with Q = Q> ∈Rn×n
+ . In addition, the projection bounds are defined such

that
∣∣∣
[
Ŵx
]

i j

∣∣∣ ≤ Ŵx,max,i+( j−1)n for i = 1, . . . ,n and j = 1, . . . ,m, where
[
Ŵx
]

i j denotes the i j-th entry of the matrix Ŵx and Ŵx,max,i+( j−1)n ∈ R>0

are symmetric5 element-wise projection bounds. In [51], Gruenwald et
al. proved that the solutions

(
e,Ŵx,xr,w

)
of the closed-loop system are

bounded and limt→∞ e = 0 if the following condition is satisfied.

Assumption 2. Let W̄xi1,...,il
∈ Rn×m be defined as where il ∈ {1,2}, l ∈

{1, . . . ,mn}, such that W̄xi1,...,il
represents the corners of the hypercube

defining the maximum variation of Ŵx(t) ensured by the projection oper-
ator. The matrix

Ai1,...,il =

[
Ar +BW̄ T

xi1,...,il
BM

−W̄ T
xi1,...,il

−M

]
(2.23)

satisfies the matrix inequality

AT
i1,...,ilP+PAi1,...,il < 0, P = PT > 0, (2.24)

for all permutations of W̄xi1,...,il
.

Remark 4. Since Assumption 2 is satisfied for large values of M [51],
we can cast (2.24) as a convex optimisation problem whose solution M is
the minimum actuator bandwidth that satisfies Assumption 2 for the given
level of system uncertainty. From a practical standpoint, there should
be a basic tradeoff between the permitted system uncertainties and the
actuator dynamics, as remarked in [60].

2.4 Adaptive UAV position control

In this Section, we compare in simulation the proposed control architec-
ture (with hedged reference model) with the standard MRAC. The task is
to track a stair sequence in the xy-plane maintaining ψd = 0. In particular,
we use a high-fidelity simulator of quadrotor dynamics in which the alti-
tude and attitude controllers are the ones described in Section 2.2.2 (which

5Note that the results of this Section can be extended to the case when asymmetric projection bounds are
considered, as in [50].
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behave for small errors as Section 2.2.4). The UAV mass is m = 0.250kg
and the attitude loops are tuned such that their closed-loop dynamics can
be well approximated by first-order systems with Mφ = 9rad/s and Mθ =

5.5rad/s as roll and pitch bandwidth, respectively6. Furthermore, we
consider the body-drag force using the simplified model fe := −cD‖v‖v
with cD = 0.1 being the body drag coefficient. The adaptive controller
synthesis has been carried out by using the linear system (2.14) with
zero initial conditions designing independently the x− and y−axis. For
both the standard MRAC and the hedged-one, we set Q = I2 from (2.22)
and select a second-order reference system with zero initial conditions,
a natural frequency of ωn = 4rad/s, and a damping ratio ζ = 0.7. Us-
ing the rectangular projection operator, the bounds on the uncertainty
(considered equal for the x− and y−axis) are set element-wise such that
|
[
Ŵx
]

1,1 | < ω2
n/g ≤ 1.8 and |

[
Ŵx
]

2,1 | < 2ζ ωn/g ≤ 0.65. Using these
bounds and considering the system dynamics (2.14), we ensure that the
uncertain parameters belong to the convex set delimited by the projection
operator centred on the origin. Then, using the projection bounds in the
LMI optimization problem highlighted in Remark 4, the minimum allow-
able actuator bandwidth is computed as Mmin

(·) = 5.5rad/s. The adaptation
rate is selected as γH = 300 for the proposed architecture and as γM = 100
for the standard MRAC. This choice is dictated by the fact that using a
larger adaptation rate γM > 100 for the standard MRAC architecture leads
to instability. Figure 2.3 and Figure 2.4 show the results obtained with
the standard MRAC controller in the presence of fast (roll dynamics) and
not-fast (pitch dynamics). We can notice that, especially in x-direction
(with not-fast pitch dynamics), the standard MRAC controller introduces
unwanted oscillations and deteriorates the tracking performance. On the
other hand, Figure 2.5 and Figure 2.6 show the performance of the pro-
posed adaptive architecture. After the learning transient, the system re-
sponse becomes almost identical to the modified reference one. Finally,
we define the following metric to compare the performance achieved by
the two controllers:

eP(t) :=
√

(px(t)− pi
x(t))2 +(py(t)− pi

y(t))2 , (2.25)

6For the sake of conciseness, only the parameters related to translational dynamics are reported.
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Figure 2.3: Standard MRAC performance in x-direction.
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Figure 2.4: Standard MRAC performance in y-direction.
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Figure 2.5: Proposed architecture performance in x-direction.
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Figure 2.6: Proposed architecture performance in y-direction.
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where pi
x(t) and pi

y(t) are the x- and y-position given by the ideal ref-
erence system, respectively. We report in Table 10.2 the peak (eP

PK =
maxt eP(t)) and the root mean square (eP

RMS) of the signal eP(t).

Table 2.1: Simulation results: performance metrics.

Hedging-based Standard MRAC
Peak eP

PK [m] 0.0805 0.1110
RMS eP

RMS [m] 0.0136 0.0314

We can state that the proposed architecture is effective in improving the
UAV tracking performance providing a systematic way to take into ac-
count the closed-loop attitude dynamics.

2.5 Experimental results

The experimental tests performed on the ANT-X 2DoF drone (see Figure
2.7) are presented and discussed in this Section. The tests are intended
to show and compare the behaviour of the proposed control architecture
with the standard MRAC scheme in a realistic scenario. The ANT-X

Figure 2.7: The ANT-X 2DoF drone.
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2DoF drone setup consists of a small quadrotor UAV constrained to oper-
ate along two linear guides, allowing only pitch rotation and longitudinal
motion [62]. It has been designed to replicate the longitudinal motion of
quadrotors, which is described by the following equations:

θ̇ = q, Jθ q̇ = Mcx +Mex (2.26)
ṗx = vx, mv̇x =−Tc sinθ + fex (2.27)

where θ , q ∈ R are the pitch angle and rate, respectively, px, vx ∈ R
are the position and velocity along the x-axis, respectively, m ∈ R>0 is
the quadrotor mass, Jθ ∈R>0 is the pitch inertia moment, Tc ∈R>0 is the
control thrust (imposed constant during the experiments Tc =mg), τcx ∈R
is the control torque, while Mex , fex ∈R are torque and force disturbances
along the x-axis. Being able to study the longitudinal dynamics is impor-
tant since it captures all the most relevant challenges associated with the
underactuated nature of co-planar multirotors. In fact, the conceptual de-
sign behind the ANT-X 2DoF drone was the development of a platform
suitable for the testing and validation of flight control concepts for mul-
tirotor UAVs (e.g., position and attitude controllers design) in a safe and
controlled environment and in a repeatable manner [63]. The task of the
experimental campaign is to track a stair sequence in the x-direction. To
implement the proposed adaptive architecture the model (2.26)-(2.27) is
linearised assuming small rotation angle (sinθ ≈ θ ). Similarly to the pre-
vious Section, for both the standard MRAC and the hedged-one, we set
Q = I2 from (2.22) and select a second-order reference system with zero
initial conditions, a natural frequency of ωn = 2.3rad/s, and a damping
ratio ζ = 0.7. Using the rectangular projection operator, the bounds on the
uncertainty are set element-wise such that |

[
Ŵx
]

1,1 | < ω2
n/g ≤ 0.55 and

|
[
Ŵx
]

2,1 |< 2ζ ωn/g≤ 0.35. Then, using the bounds on Ŵx in the LMI op-
timization problem, the minimum allowable pitch closed-loop bandwidth
is computed as Mmin

θ = 2.9rad/s. The attitude loop is tuned such that
the closed-loop pitch dynamics can be well approximated by a first-order
system with Mθ = 3rad/s as bandwidth that is close to the allowable limit
Mmin

θ . Figure 2.8 and Figure 2.9 show the position response of the stan-
dard MRAC architecture and of the proposed one using γH = γM = 100.
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Figure 2.8: Drone position with the standard MRAC architecture.
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Figure 2.9: Drone position with the proposed architecture.
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Similarly to the previous Section, we define the following metric to com-
pare the performance achieved by the two controllers:

ex(t) := |(px(t)− pi
x(t))| , (2.28)

where pi
x(t) is the x-position given by the ideal reference system. We re-

port in Table 2.2 the peak (ex
PK = maxt ex(t)) and the root mean square

(ex
RMS) of the signal ex(t). A remarkable performance improvement is

Table 2.2: Experiment performance metrics.

Hedging-based Standard MRAC
Peak ex

PK [m] 0.0860 0.1211
RMS ex

RMS [m] 0.0275 0.0428

obtained with the proposed approach. Furthermore, the LMI-based fea-
sible limit Mmin

θ provides a (conservative) lower bound on the allowable
closed-loop attitude bandwidth such that the overall closed-loop system
remains bounded, avoiding trial-and-error tuning procedure. For the sake
of completeness, we show the difference between commanded attitude
and the current one in Figure 2.10, and the time evolution of the adaptive
parameters Ŵx in Figure 2.11 with the corresponding projection bounds.

2.6 Concluding remarks

In this Chapter, we defined a systematic approach to design a position
controller based on MRAC theory for a multirotor UAV taking into ac-
count the closed-loop attitude dynamics. In particular, after having re-
formulated the problem considering attitude dynamics as an actuator for
the translational dynamics, we exploited the LMI-based hedging MRAC
controller (initially proposed in [51]) to achieve desirable tracking per-
formance specifications despite uncertainties. Finally, results from simu-
lation and experiments on the ANT-X 2DoF drone showed the effective-
ness of the proposed strategy. Future research can extend the proposed
approach by leveraging the command governor architecture presented in
[50], where asymptotic convergence to the ideal trajectories of the refer-
ence model is guaranteed. This modification could potentially recover the
goal of standard MRAC, considering the effects of actuator dynamics.
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Figure 2.10: Commanded attitude vs attitude response.
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Figure 2.11: Time evolution of the adaptation parameters Ŵx.
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CHAPTER3
Adaptive control for time-varying systems

In the previous Chapters, different approaches to designing an adaptive
controller with constant unknown parameters have been presented. Un-
fortunately, these controllers cannot handle time-varying (potentially non-
linear) dynamics that is common for aerospace systems to exhibit. This
Chapter addresses this issue by developing a continuous adaptive con-
troller for nonlinear dynamical systems with linearly parametrizable un-
certainty involving time-varying uncertain parameters. In the first part of
the Chapter, we present a brief overview of the various adaptive control
solutions proposed in the literature to handle uncertain time-varying sys-
tems, highlighting common points and differences between the different
approaches developed over the years. Then, we propose a modification of
congelation of variable method to achieve trajectory tracking for a scalar
nonlinear system. In the last part of the Chapter, numerical results are
provided to illustrate the performance of the proposed scheme.
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3.1 Historical background

Since the 1950s, adaptive control has undergone extensive research (see
e.g., [12, 64, 9]) being an effective way to cope with system uncertainties.
In most cases, adaptive control is designed to handle uncertain systems
with unknown constant parameters and unknown external disturbances
[65, 66]. However, there are relatively few results for adaptive control
of uncertain systems with unknown time-varying parameters. Some pi-
oneering works on adaptive control for time-varying systems (see e.g.,
[67]) required the PE condition to guarantee closed-loop stability ensur-
ing that parameter estimates converge to the actual parameters. Then,
Goodwin et al. in [68] avoided the PE condition, but assumed that the
parameter variations and their derivatives are bounded in the average (in-
tegral) sense. According to [69], most recent works can be divided into
two categories:

• Robust adaptive law or switching σ -modification: This type of al-
gorithms uses a mechanism that adds leakage to the parameter up-
date law if the parameter estimates drift out of a pre-specified rea-
sonable region to guarantee boundedness of the parameter estimates
(see, e.g., [9] for more details). These techniques guarantee asymp-
totic tracking only when the parameters are constant. Otherwise, the
tracking error converges to a bounded set whose dimension is related
to the rates of the parameter variations [70].

• Filtered transformation with projection operator: This category of
algorithms involves an adaptive observer described via a change of
coordinates with a projection operator, which confines the parameter
estimates within a pre-specified compact set to guarantee the bound-
edness of the parameter estimates (see, e.g., [71]). These techniques
guarantee asymptotic tracking only if the parameters are bounded in
a compact set, their derivatives are L1 [72].

These methods based on using a single identification model are found to
be inadequate to cope with large uncertainties or rapidly time-varying pa-
rameters. During the past 25 years, efforts have been made to extend the
general methodology of adaptive control by the use of multiple identifi-
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cation models [73, 74, 75]. Initially, the idea was limited to switching
between multiple fixed controllers in a deterministic sequence. However,
the result was not feasible for most applications, as it is challenging to
decide on a meaningful controller sequence for different plants. Later,
Narendra et al. proposed a novel switching architecture, known as indi-
rect switching in [76]. In this architecture, the system selects the model by
utilizing the properties of the system parameter space. Instead of directly
screening the system states or outputs, the switching systems switch the
models of the parameters in a predefined parameter space. The indirect
switching control architecture is schematized in Figure 3.1.

Figure 3.1: Architecture for indirect switching adaptive control [76].

Among numerous modifications of the aforementioned approach that have
been proposed, the second level adaptation approach has emerged over
the years as the most successful one [77]. Specifically, it uses the infor-
mation generated by a finite number of conventional adaptive identifiers
(referred to as first level) to re-parameterize and identify rapidly the un-
known plant (at a second level). The accepted philosophy in the multiple
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identification models approaches has been that if an adaptive system is
fast and accurate in a time-invariant environment, it will perform satisfac-
torily in a time-varying environment [78, 79].

Over the past decade, researchers have focused on improving the track-
ing performance of the MRAC approach by proposing novel architectures
to handle time-varying parameters. In [80, 81], Gaudio et al. presented
a novel parameter estimation algorithm for a class of time-varying plants.
This algorithm involves a matrix of time-varying adaptation gains, which
enables exponentially fast trajectories of parameter estimation errors to-
wards a compact set whenever a finite excitation condition is satisfied. It
is shown that even in the presence of time-varying parameters, this algo-
rithm guarantees global boundedness of the state and parameter errors of
the system. In [82], Arabi et al. proposed a set-theoretic control archi-
tecture to limit the tracking error within a prescribed performance bound,
while rejecting the effects of parameter variation.

All the above methods may improve the transient response, but they do
not achieve asymptotic convergence of the tracking error to zero. Indeed,
the time-derivative of the parameter behaves as an unknown exogenous
disturbance in the parameter estimation dynamics, which is difficult to
cancel with a conventional adaptive update law in a Lyapunov-based sta-
bility analysis. Iterative learning control approaches (see, e.g., [83]) pro-
duce asymptotic tracking for nonlinear systems involving periodic time-
varying uncertain parameters. However, repetitive operational conditions
and controlled environments are essential for these data-based control al-
gorithms. In [84], Patil et al. addressed this technical challenge by omit-
ting the terms related to the uncertain parameter estimation error in the
Lyapunov function, and including a P-function as in [85]. The resulting
architecture yields asymptotic tracking error convergence and bounded-
ness of the closed-loop signals for Euler-Lagrange systems. Similarly,
to avoid involving the time derivative of the parameter in the stability
analysis, Lin et al. did not use a time-varying parameter controller that
would directly cancel the time-varying perturbation in [86]. Instead, Lin
et al. designed a constant parameter controller through dominance design,
whose constant parameter was estimated online. Specifically, using a pa-
rameter separation technique and the tool of adding a power integrator
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(see [87] for more details), the authors developed a feedback domina-
tion design approach for the explicit construction of a smooth adaptive
controller that solves the problem of global state regulation without im-
posing any extra conditions on the unknown parameters [86]. Another
architecture that guarantees asymptotic regulation was proposed by Chen
et al. in [88]. Namely, the proposed method, called congelation of vari-
ables, treats each unknown time-varying parameter as a nominal constant
unknown parameter perturbed by a time-varying perturbation. The re-
sulting control input involves an adaptive term to eliminate effects due to
the nominal constant parameters and a robust term to dominate the time-
varying perturbation.

To the best knowledge of the author, the congelation of variables ap-
proach has not been applied to achieve trajectory tracking. Indeed, no
theoretical analysis of the effects of a regression matrix non-vanishing
with the state has been performed so far for this approach. This Chapter
contributes by evaluating these effects in such an application and propos-
ing a modification to extend the congelation of variables method to the
trajectory tracking problem.

3.2 Notation

For an n-dimensional time-varying signal s : R→Rn, the image of which
is contained in a compact set S,∆s : R→ Rn denotes the deviation of
s from a constant value `s (∆s(t) = s(t)− `s), and δs ∈ R denotes the
supremum of the 2-norm of s (δs = supt≥0 |s(t)| ≥ 0). In this Chapter, we
consider that the unknown time-varying system parameters θ(t) :R→Rq

verify the following assumption.

Assumption 3. The unknown parameter θ is piecewise continuous and
θ(t) ∈ Θ0, for all t ≥ 0, where Θ0 is a compact set. The “radius” δ∆θ of
Θ0 is assumed to be known, while Θ0 can be unknown (see Figure 3.2).

3.3 Congelation of variable method: State regulation

The congelation of variables method has been initially proposed in [88] to
achieve asymptotic state regulation for linear systems with time-varying
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Figure 3.2: Graphical illustration of the role of Θ0 , `θ , ∆θ , and δ∆θ [69].

parameters. Then, the theory is extended to deal with non-linear systems
both with state and output feedback considering matched and a special
case of unmatched uncertainties (non-linear system in the so-called para-
metric strict-feedback form, where the unknown parameters are separated
from the input by integrators) [69, 89]. Since the method does not alter
the classical parameter update law created for time-invariant systems, it is
compatible with the majority of adaptive control schemes using parameter
estimates. Indeed, the congelation of variables method has been devel-
oped, for instance, in combination with adaptive backstepping [90], the
immersion and invariance approach [91, 92], and others techniques [93].

This method treats each unknown time-varying parameter as a com-
bination of a nominal unknown constant parameter and a time-varying
perturbation term due to the difference between the actual parameter and
the nominal one. Taking advantage of this formulation, the controller de-
sign is divided into a classical adaptive control design with constant un-
known parameters and a damping design via dominance to accommodate
the time-varying perturbation terms.
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3.3.1 Motivating example

This Section provides a motivating example to highlight the advantages
of the congelation of variables method. Namely, we present the steps
for the derivation of the control law following the approach in [69] and
compare them to the classical approach (see, e.g., [9]). We consider a
scalar nonlinear system defined as:

ẋ = θx2 +u (3.1)

where x ∈ R is the state, u ∈ R is the input, and θ ∈ R is an unknown
time-varying parameter satisfying Assumption 3.

Classical approach

A standard procedure to deal with the unknown parameter θ is to consider
a quadratic Lyapunov function candidate of the form

V (x, θ̂ ,θ) =
1
2

x2 +
1

2γθ
(θ − θ̂)2 , (3.2)

where θ̂ ∈ R is an estimate of the parameter θ . Assuming θ is differen-
tiable with respect to time and taking the Lie derivative of V along the
solutions of (3.1) yields

V̇ = θ̂x3 +ux+(θ − θ̂)x3− (θ − θ̂)
˙̂θ

γθ
+(θ − θ̂)

θ̇
γθ

. (3.3)

The effect of the unknown (θ − θ̂)x3 term can be cancelled selecting the
parameter update law as

˙̂θ = γθ x3 , (3.4)

where the constant γθ ∈R>0 is the adaptation gain. The classical adaptive
control approach, assuming θ is constant, involves the control law [9]

u =−kx− θ̂x2 (3.5)

with k ∈R>0, which yields V̇ =−kx2 ≤ 0. Hence, the closed-loop trajec-
tories are bounded, and x converges to 0 by invoking Barbalat’s lemma1.

1Barbalat’s lemma: Let f : R → R be a uniformly continuous function on [0,∞). Suppose that
limt→∞

∫ t
0 f (τ)dτ exists and is finite. Then, limt→∞ f (t) = 0.
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On the other hand, the sign-indefinite term “(θ − θ̂)θ̇/γθ ” must be
considered when θ̇ 6= 0. The projection operator [94], which confines the
estimated parameter θ̂ inside a convex compact set and, as a result, en-
sures the boundedness of (θ − θ̂), is one way to accommodate the sign-
indefinite term by modifying the adaptation law (3.4). Consequently, the
boundedness of θ̇ guarantees the boundedness of x (either exact bound-
edness, as in [95], or boundedness in an average sense, as in [68]). Fur-
thermore, the asymptotic convergence of x to 0 is guaranteed if θ̇ ∈ L1
[96]. Using the switching σ -modification (also referred to as soft projec-
tion) is another way to ensure the boundedness [97]. Namely, employing
this modification, leakage is added to the adaptation law (3.4) when the
parameter estimate drifts outside of a predefined region.

Remark 5. The aforementioned adaptive schemes share the similarity of
treating θ̇ as a disturbance. Hence, these approaches cannot guarantee
zero-error regulation when the unknown parameter is persistently time-
varying, i.e., θ̇ is non-vanishing [93].

Novel approach

Chen and Astolfi presented in [88] an approach to achieve stabilization
under parameter variations that relies on eliminating the effects of varying
parameters from the Lyapunov function. This approach is based on the
fact that, since θ̇ appears in V̇ because of the parameter estimation error
term “1/(2γθ )(θ − θ̂)2” in V , removing θ from the parameter estimation
error term also results in removing θ̇ from V̇ . In the classical approach,
this term is included not to guarantee the convergence of the estimation
error, but only to ensure the boundedness of θ̂ . Thus, congealing θ , i.e.,
replacing θ with a constant `θ to be determined, can guarantee the same
properties. Following this reason, we consider the modified Lyapunov
function candidate

V`

(
x, θ̂ , `θ

)
=

1
2

x2 +
1

2γθ

(
`θ − θ̂

)2
. (3.6)

Taking the Lie derivative of V` along the trajectories of (3.1) yields

V̇` = θ̂x3 +ux+
(
`θ − θ̂

)
x3−

(
`θ − θ̂

) ˙̂θ
γθ

+∆θ x3 (3.7)
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where ∆θ = θ − `θ . Note that the congelation approach removes the θ̇
term from V̇`, but adds a perturbation term ∆θ x3 due to the difference be-
tween θ and `θ . Considering the same adaptation law (3.4) of the classical
approach and the following control law

u =−
(

k+
1

2ε
δ∆θ

)
x− 1

2
εδ∆θ x3− θ̂x2 (3.8)

where k ∈R>0 and ε ∈R>0 is a constant balancing the linear and nonlin-
ear damping terms, we obtain

V̇` =−
(

k+
1

2ε
δ∆θ

)
x2− 1

2
εδ∆θ x4 +∆θ x3

≤−kx2 ≤ 0 (3.9)

Hence, using the same argument of the classical approach, the closed-
loop trajectories are bounded, and invoking Barbalat’s lemma leads to
limt→∞ x = 0 without any assumptions about θ̇ . The method of sub-
stituting the constant `θ for the time-varying θ is called congelation of
variables [69]. The controllers based on the congelation of variables ap-
proach can be applied to systems with fast-varying parameters, because
the design is independent of any θ̇ properties.

Remark 6. As noted in [69], the control law (3.8) and the adaptation law
(3.4) are independent of `θ , just as conventional adaptive controllers are
independent of θ , thus showing the adaptiveness of the proposed mecha-
nism. The resulting controller can be seen as a combination of an adap-
tive controller, to cope with the unknown (constant) parameter `θ , and a
robust controller, to cope with the time-varying perturbation ∆θ . More-
over, when θ is a constant, the control law (3.8) is reduced to the classical
control law (3.5) selecting `θ = θ and δ∆θ = 0.

Remark 7. The congealed parameter `θ can be chosen according to the
specific application [98]. Namely, it can be a nominal value for robust
design or an extreme value to ensure sign definiteness, given that the re-
sulting perturbation ∆θ is considered consistently. Furthermore, `θ can
be selected as a time-varying parameter satisfying typical assumptions
used in the literature (e.g., ˙̀θ ∈ L∞ [68] or ˙̀θ ∈ L1 [96]), and the conge-
lation of variables method can be used to relax these assumptions [93].
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Remark 8. The control law (3.8) depends on δ∆θ , which is assumed to be
known by Assumption 3. This assumption can be avoided by developing
an online estimate for δ∆θ . Indeed, since δ∆θ is a constant and the control
law is linearly parametrized, an estimate for δ∆θ can be obtained using
conventional adaptive control techniques. For instance, we can substitute
the estimate δ̂ for δ∆θ in equation (3.8) using the adaptation law

˙̂δ = γδ
(
x2 + x4) (3.10)

with γδ ∈ R>0.

Proof. We consider the modified Lyapunov function candidate

V`

(
x, θ̂ , `θ , δ̂ ,δ∆θ

)
=

1
2

x2 +
1

2γθ

(
`θ − θ̂

)2
+

1
2γδ

(
δ∆θ − δ̂

)2
. (3.11)

Taking the Lie derivative of V` along the trajectories of (3.1) yields

V̇` =θ̂x3 +ux+
(
`θ − θ̂

)
x3−

(
`θ − θ̂

) ˙̂θ
γθ
−
(

δ∆θ − δ̂
) ˙̂δ

γδ
+∆θ x3

≤θ̂x3 +ux−
(

δ∆θ − δ̂
) ˙̂δ

γδ
+

1
2ε

δ∆θ x2 +
1
2

εδ∆θ x4 (3.12)

Considering the following control law

u =−
(

k+
1

2ε
δ̂
)

x− 1
2

εδ̂x3− θ̂x2 (3.13)

we obtain (assuming without loss of generality ε = 1)

V̇` ≤− kx2 +
1
2

(
δ∆θ − δ̂

)
(x2 + x4)−

(
δ∆θ − δ̂

) ˙̂δ
γδ

. (3.14)

Finally, substituting the adaptation law (3.10) we obtain:

V̇` ≤−kx2 . (3.15)

Therefore, the closed-loop system trajectories are bounded, and invoking
Barbalat’s lemma leads to limt→∞ x = 0.
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3.4 Congelation of variable extension: Trajectory tracking

In this Section, we extend the congelation of variable method to the
trajectory tracking problem leveraging the Lyapunov redesign approach
[99][100, Section 14.2]. We consider the same scalar nonlinear system of
the previous Section:

ẋ = θx2 +u . (3.16)

The control objective is now to track the desired trajectory xr ∈C1. Defin-
ing the tracking error as

e = x− xr , (3.17)

we can write the error dynamics as

ė = ẋ− ẋr

= θx2 +u− ẋr

= θ(e+ xr)
2 +u− ẋr

= θe2 +u− ẋr +θx2
r +2θexr . (3.18)

After congealing θ , we consider the Lyapunov function candidate

V`

(
e, θ̂ , `θ

)
=

1
2

e2 +
1

2γθ

(
`θ − θ̂

)2
. (3.19)

Taking the Lie derivative of V` along the trajectories of (3.18) yields

V̇` = e
(
θe2 +u− ẋr +θx2

r +2θexr
)
−
(
`θ − θ̂

) ˙̂θ
γθ

(3.20)

Considering the parameter update law
˙̂θ = γθ ex2 , (3.21)

and the control law

u =−ke− θ̂x2 +urob + ẋr , (3.22)

with urob ∈ R being the robust control part, we obtain

V̇` ≤−ke2 + e
(
urob +∆θ x2)

≤−ke2 + eurob + |e|δ∆θ x2 . (3.23)
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Defining urob =−sign(e)δ∆θ x2, we obtain:

V̇` ≤−ke2 . (3.24)

Remark 9. The control part urob is designed to dominate the term ∆θ x2

which does not vanish asymptotically . Consequently, unlike the control
design of the previous Section, adding a nonlinear damping term is not
sufficient to guarantee asymptotic tracking.

Remark 10. The control part urob is a discontinuous function of the error
e. This discontinuity generates both theoretical and practical concerns.
Theoretically, we need to examine more carefully the question of existence
and uniqueness of solutions, since the feedback function is not locally Lip-
schitz in e [101]. Practically, the implementation of such discontinuous
controllers is characterized by the chattering phenomena that could excite
the high-frequency dynamics of the system [102].

Instead of trying to work out all the problems highlighted in Remark 10,
we will choose the simpler and more practical way of approximating the
discontinuous control law with a continuous law. The development of
such approximation is reported in the next Section following an approach
similar to that presented in [103].

3.4.1 Smooth modification

Considering the following smooth control law

urob =−δ∆θ tanh(λe)x2 +uadd (3.25)

with λ ∈ R>0 and uadd being an additional control term defined in the
following, and substituting (3.25) into (3.23), we obtain

V̇` ≤−ke2 + e(sign(e)− tanh(λe))δ∆θ x2 + euadd

≤−ke2 +δ∆θ |e|sign(e)(sign(e)− tanh(λe))x2 + euadd

≤−ke2 +δ∆θ |e|(1− tanh(λ |e|))x2 + euadd . (3.26)

By isolating the second term of this inequality and using algebraic fea-
tures of the hyperbolic tangent function, one can introduce an upper bound
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that depends only on the parameter λ (see [103] for more details). Specifi-
cally, for all real scalars x∈R and all non-zero real scalars y∈R we have:

0≤ |x|(1− tanh |x/y|)≤ α|y| (3.27)

where α ∈ R>0 is a constant with minimum value α∗ = x∗ (1− tanhx∗)
for x∗ satisfying e−2x∗+1−2x∗= 0. In [103], it was shown that α∗< 1

elog
,

where elog is the base of the natural logarithm. The property (3.27) yields:

V̇` ≤−ke2 +

(
δ∆θ

1
λelog

x2
)
+ euadd (3.28)

≤−ke2 +

(
δ∆θ

1
λelog

)
(e2 +2exr + x2

r )+ euadd . (3.29)

Exploiting the Young’s inequality2, we obtain that

V̇` ≤−ke2 +

(
δ∆θ

1
λelog

)
(e2 +(e2 + x2

r )+ x2
r )+ euadd (3.30)

≤−ke2 +

(
δ∆θ

2
λelog

)
(e2 + x2

r )+ euadd . (3.31)

Defining the additional control term as

uadd =−δ∆θ

2
λelog

e , (3.32)

we obtain

V̇` ≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r . (3.33)

From this bound it is clear that V̇` < 0 for all

|e|>
√

2δ∆θ

λelogk
x2

r . (3.34)

2Young’s inequality: If a ≥ 0 and b ≥ 0 are nonnegative real numbers and if p > 1 and q > 1 are real
numbers such that 1

p +
1
q = 1, then ab≤ ap

p + bq

q . Equality holds if and only if ap = bq.
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Whenever |e| becomes large, the negative term “−ke2 ” in equation (3.31)
dominates the remaining term, making V̇` < 0 and drawing the error to-
ward the origin. When |e| reaches sufficiently small values (determined
by the parameter λ ), the sign of V` is indefinite, and progress toward the
origin cannot be guaranteed. This critical size represents the boundary of
a residual error set to which all the closed-loop trajectories will eventually
converge. Therefore, the error e is globally bounded.

Remark 11. The asymptotic tracking is no more achieved using the smooth
control law (3.25). However, it is important to underline that the bound-
ary of the residual set (3.34) can be made smaller by increasing the λ pa-
rameter (for the limit case λ → ∞ the asymptotic tracking is recovered).
In practical terms, the λ parameter regulates the bandwidth in which
we want to attenuate the perturbation introduced by the time-varying pa-
rameter. Furthermore, although the scheme has the capacity for infinite
control input rates (in the limit as λ → ∞), the control signal is only as
sharp as it needs to be to counteract the time-varying perturbation ∆θ x2.
Specifically, to offset perturbations with high-frequency components, the
control input must be able to change at least as rapidly as the perturba-
tion does, and the controller presented here (when properly tuned) does
not introduce high-frequency signals unless they are already acting on the
system through ∆θ x2. Finally, note that at no point in the stability proof
is it assumed that the time-varying parameter θ has bounded derivative.

3.4.2 Robustness modifications

The adaptation law (3.21) suffers from the drawback that the parameter
θ̂ may depart arbitrarily away from its true value. To solve this issue, we
describe in this Section two different robustness modifications of the pa-
rameter update law: a projection operator and a σ -modification scheme.

Projection modification:

If the true parameter is bounded by a known scalar constant, then the
estimate can also be constrained to evolve within a bounded convex set
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with known bound [16]. To this end, we define two convex sets:

Ω`θ ,
{
`θ ∈ R1 | ‖`θ‖2 < ε1

}
, (3.35)

Ωθ̂ ,
{

θ̂ ∈ R1 | ‖θ̂‖2 < ε1 +δ1
}

(3.36)

with known ε1 ∈ R>0 and δ1 ∈ R>0. Consider the following smooth pro-
jection scheme for θ̂ :

˙̂θ = Proj(θ̂ ,Φ); with Φ , ex2 (3.37)

where

Proj(θ̂ ,Φ),





γθ Φ if C1) ‖θ̂‖2 < ε1 or
if C2) ‖θ̂‖2 ≥ ε1 ∧ ΦT θ̂ ≤ 0

γθ

(
Φ− (‖θ̂‖2−ε1)ΦT θ̂

δ1‖θ̂‖2 θ̂
)

if C3) ‖θ̂‖2 ≥ ε1∧ ΦT θ̂ > 0

Note that this adaptation law is exactly equal to equation (3.21) in cases
C1 and C2. The projection operator Proj(θ̂ ,Φ) is locally Lipschitz in
(θ̂ ,Φ) and switches smoothly between cases C1-C3. Furthermore, it can
be shown that Proj(θ̂ ,Φ) satisfies

θ̂(0) ∈Ωθ̂ ⇒ θ̂(t) ∈Ωθ̂ (3.38)

for all t ≥ 0 [16, Chapter 11]. Namely:

• In case C1, (3.38) readily holds because θ̂ ∈Ω`θ and Ω`θ ⊂Ωθ̂ .

• In case C2, ‖θ̂‖2 evolves according to

d
dt
‖θ̂‖2 = 2θ̂ T ˙̂θ = 2γθ θ̂ T

Φ (3.39)

which is negative semidefinite by the conditions stated in case C2.
Consequently, the estimate approaches the origin.

• Finally, for case C3,

d
dt
‖θ̂‖2 = 2θ̂ T ˙̂θ = 2

γθ
δ1

θ̂ T
Φ
(
δ1 + ε1−‖θ̂‖2) (3.40)
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which decreases when ‖θ̂‖2 > ε1 + δ1, increases if ‖θ̂‖2 < ε1 +
δ1, and is exactly zero when ‖θ̂‖2 = ε1 + δ1. Thus, the projection
scheme ensures that θ̂ remains in the set Ωθ̂ .

Proof. Consider the Lyapunov function defined previously in (3.19). Tak-
ing the Lie derivative of V` along the closed-loop system trajectories yields:

V̇` ≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r −
1
γ
(`θ − θ̂)

(
˙̂θ − γΦ

)
(3.41)

≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r +V̇2 (3.42)

which has the same properties of (3.33) if

V̇2 =
1
γθ

(θ̂ − `θ )
(

˙̂θ − γθ Φ

)
≤ 0 (3.43)

If ˙̂θ is prescribed according to the projection scheme (3.37), V̇2 ≤ 0 is
trivially satisfied for cases C1 and C2. For case C3,

(θ̂ − `θ )
(

˙̂θ − γθ Φ

)
= (θ̂ − `θ )

(
γθ

(
Φ−

(
‖θ̂‖2− ε1

)
ΦT θ̂

δ1‖θ̂‖2
θ̂

)
− γθ Φ

)

=−γθ

((
‖θ̂‖2− ε1

)
ΦT θ̂

δ1‖θ̂‖2
θ̂

)
≤ 0 (3.44)

which is true, because (θ̂ − `θ )θ̂ = ‖θ̂‖2− `θ θ̂ ≥ 0 when ‖θ̂‖2 ≥ ε1.
Therefore,

V̇2 =





0 in case 1 and case C2

−γθ

(
(‖θ̂‖2−ε1)ΦT θ̂

δ1‖θ̂‖2 θ̃ T θ̂
)
≤ 0 in case C3 (3.45)

from which it follows that V̇2 ≤ 0.

σ -modification:

In the previous Section, a prior knowledge of the convex set Ω`θ is as-
sumed. In [104], Ioannou and Kokotovic developed the σ -modification
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3.4. Congelation of variable extension: Trajectory tracking

scheme that does not require any prior information on the system uncer-
tainty domain. The adaptive law with the σ -modification is defined as:

˙̂θ = γθ ex2−σθ̂ (3.46)

where σ ∈ R>0 is a strictly positive constant. In essence, this modifica-
tion adds damping to the ideal adaptive law (3.21). Consider again the
Lyapunov function V` defined previously in (3.19). Evaluating the Lie
derivative along the closed-loop system trajectories (3.18) yields:

V̇` ≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r −
1
γθ

(`θ − θ̂)
(

˙̂θ − γθ Φ

)
(3.47)

≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r −
1
γθ

(`θ − θ̂)
(
−σθ̂

)
(3.48)

Defining θ̃ = `θ − θ̂ and using θ̂ = `θ − θ̃ , we obtain:

V̇` ≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r +
σ
γθ

(
θ̃`θ − θ̃ 2) (3.49)

Using 2ab≤ a2 +b2 for any a and b, we obtain:

V̇` ≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r +
σ
γθ

(
1
2
(
θ̃ 2 + `2

θ
)
− θ̃ 2

)
(3.50)

≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r +
σ

2γθ

(
`2

θ − θ̃ 2) (3.51)

≤−ke2 +

(
δ∆θ

2
λelog

)
x2

r +
σ

2γθ
`2

θ . (3.52)

Hence, V̇` < 0 for all

e >

√
2δ∆θ

λelog
x2

r +
σ

2γθ
`2

θ .

As expected, the σ -modification enlarges the residual set that is now de-
pendent also on the “size” of the uncertain parameter `θ .
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Chapter 3. Adaptive control for time-varying systems

Remark 12. The σ -modification has drawbacks in terms of performance
[9, 16]. The adaptation law (3.46) can be approximated as ˙̂θ ≈ −σθ̂
when the tracking error is near the origin (e ≈ 0). Therefore, for small
tracking errors, the adaptive parameter θ tends to the origin, i.e., the al-
gorithm unlearns the gains. The e-modification was introduced by Naren-
dra and Annaswamy to combat these negative effects [34] substituting a
term proportional to the tracking error for the constant damping gain σ
in (3.46). The justification for using an error-dependent damping is that
as the tracking error decreases, the damping term tends to zero [16].

3.4.3 Adaptive modification

The control law (3.25) depends on δ∆θ , which was assumed to be known.
Even if δ∆θ is unknown, we can substitute an online estimate δ̂ for δ∆θ .
Namely, being the bound δ∆θ constant and the control law (3.25) linearly
parametrized, we can use the following adaptation law:

˙̂δ = γδ e
(

2
λelog

e+ x2 tanh(λe)
)

with γδ ∈ R>0 . (3.53)

Proof. We consider the modified Lyapunov function candidate

V`

(
e, θ̂ , `θ , δ̂ ,δ∆θ

)
=

1
2

e2 +
1

2γθ

(
`θ − θ̂

)2
+

1
2γδ

(
δ∆θ − δ̂

)2
. (3.54)

Taking the Lie derivative of V` along the trajectories of (3.54) and substi-
tuting the adaptation law (3.21) and the following control law

u =−ke− θ̂x2− δ̂ tanh(λe)x2− δ̂
2

λelog
+ ẋr , (3.55)

we obtain

V̇` ≤−ke2 + eurob−
(

δ∆θ − δ̂
) ˙̂δ

γδ
+ |e|δ∆θ x2

≤−ke2 + e
(

δ∆θ sign(e)− δ̂ tanh(λe)
)

x2− eδ̂
2

λelog
+

−
(

δ∆θ − δ̂
) ˙̂δ

γδ
± e
(

δ∆θ tanh(λe)x2 +δ∆θ

2
λelog

)
. (3.56)
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Using the adaptation law (3.53) we obtain again V̇` as in (3.26). Therefore
we can conclude boundedness of all trajectories of the closed-loop system
using the same argument as Section 3.4.1.

Remark 13. The parameter update law in (3.53) suffers from the draw-
back that the parameter δ̂ can drift arbitrarily away from its respective
true value. To solve this issue, we can use the robustness modifications
explained in the previous Section with similar considerations.

3.5 Simulation results

In this Section, we compare in simulation the proposed approach with
the standard adaptive control scheme (without robustness term) with two
different robustness modifications: the projection operator and the σ -
modification. Specifically, we compare three state feedback controllers:

• Controller A is the proposed controller with the control law (3.55),
and the update law (3.37) for θ̂ and (3.53) for δ̂ with the projection
operator modification;

• Controller B uses the control law (3.22) with urob = 0 and the update
law for θ̂ (3.37) with the projection operator modification;

• Controller C is identical to Controller B but also includes the σ -
modification in the update law (3.21) .

We consider the same scalar nonlinear system of the previous Sections:

ẋ = θx2 +u , (3.57)

and the control objective is to track a given reference trajectory xr(t) =
sin(0.1t) + 0.1sin(t). To consider an open-loop unstable plant we set
`θ = 2, i.e., the mean of θ equal to 2. Namely, the time-varying parameter
θ evolves as shown in Figure 3.3. As in [88], to show that the proposed
approach does not require any restriction on θ , the parameter variation
intentionally includes a fast varying component (repeating sequence stair
with sampling time equal to 0.1s) to remove the restriction on |θ̇ |, and
a slowly but persistently varying components (two harmonics) to remove
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Figure 3.3: Time-varying parameter evolution.

the restrictions on the integral of |θ̇ |. The parameters used in the simula-
tion are x(0)= 0, θ̂(0)= 0, k = 0.01 and γθ = 100 for all the adaptive con-
trollers, δ̂ (0) = 0, λ = 10 and γδ = 100 for the Controller A, and σ = 0.1
for the Controller C. Simulating the three closed-loop systems yields the
results listed in Table 3.1 in terms of error norms. The time evolutions of
the error and input are shown in Figure 3.4 and Figure 3.5, respectively.
We can state that the proposed controller shows better performance in
terms of smaller overshoot at the beginning, smoother response, faster
rate of convergence, and smaller steady-state error. These effects are due
to the robustness term urob defined in equation (3.55) which dominates
the perturbation introduced by the time-varying parameter ∆θ .

Table 3.1: Error norms with the different controllers.

Error 2-norm ‖e‖2 Error ∞-norm ‖e‖∞

Controller A 1.58 0.17

Controller B 15.79 0.25

Controller C 7.30 0.23
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Figure 3.4: Time evolution of the error.
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Figure 3.5: Time evolution of the input.

66



3.5. Simulation results

The smooth modification proposed in Section 3.4.1 limits the input band-
width resulting in a smoother input for Controller A. This effect can be
seen in Figure 3.6, where the amplitude of the input spectrum is shown.
In fact, the proposed controller does not excite high-frequency dynamics.

Remark 14. The standard adaptive schemes (Controller B and C) need
a large adaptation rate to “follow” the evolution of θ , and introducing
the σ -modification improves the performance by acting as a forgetting
factor that accelerates the parameter learning. On the other hand, the
proposed controller can run with a lower adaptation rate obtaining a sim-
ilar steady-state response and reducing the oscillations introduced by the
adaptive feedforward term. In this numerical example, we use γθ = 100
in all the adaptive schemes to compare fairly the performance achieved.
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Figure 3.6: Single-sided amplitude spectrum of the input.
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CHAPTER4
Attitude control with uncertain

time-varying inertia parameters

There are many interesting aerospace systems that exhibit time-varying
(potentially nonlinear) characteristics [105]. Examples of such systems
are a UAV that has delivered or received a payload [106], a spacecraft
with variable mass distribution due to on-orbit refuelling [107], and an
aircraft that has deployed munitions [108]. This Chapter focuses on the
attitude control problem of a spacecraft affected by time-varying inertia
variation. Although adaptive control schemes for spacecraft attitude con-
trol are numerous in the literature, few have been designed to ensure con-
sistent performance for a spacecraft with both rigid and non-rigid (time-
varying) inertia components. Because inertia variations are common due
to phenomena like fuel depletion or mass displacement in a deployable
spacecraft, an adaptive control algorithm that takes explicit account of
such information is of significant interest. In view of this, we propose
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Chapter 4. Attitude control with time-varying inertia parameters

novel adaptive attitude control schemes based on the congelation of vari-
ables method presented in the previous Chapter. Detailed derivations of
the control laws are provided, along with a thorough analysis of the asso-
ciated stability and error convergence properties. In addition, numerical
simulations are presented to highlight the performance benefits compared
with classical control schemes that do not account for inertia variations.

4.1 Introduction

Spacecraft attitude control remains a nonlinear control problem of great
practical and intellectual importance [109, 110]. Despite the wide range
of techniques available, developing an attitude control system is a labor-
intensive and time-consuming process [111]. For applications where space-
craft must be launched at short notice, it is attractive to employ control
algorithms that are robust to uncertainty, such as inaccurate knowledge
of spacecraft mass distribution, errors in sensor and actuator alignment,
and measurement errors. This Chapter addresses an additional compli-
cation in spacecraft attitude control: the spacecraft mass distribution is
not only uncertain but also time-varying. Indeed, the increasing require-
ments of satellite functions result in appreciable changes in inertia during
on-orbit operation. For example, an expanding solar array or appendage
movements [112] cause noticeable changes in inertia, especially for small
satellites [113]. A spacecraft may also have rotating components, such
as a reflector or antenna that rotates relative to the spacecraft bus (see
Chapter 6 as an example). In addition, a capture or docking mission can
significantly and abruptly increase the mass of the satellite [114]. There-
fore, it is relevant to study the attitude control of satellites by taking into
account significant and fast changes in inertia.

Different control strategies for satellite attitude control with inertia un-
certainties have been proposed in the literature. For instance, in the last
decade, several adaptive control [115, 116, 117, 118, 119] and sliding
mode control [120] techniques have been developed. To improve perfor-
mance in repetitive tasks, iterative learning control has been developed in
[121]. Utilizing a minimal kinematics approach, robust optimal attitude
control with uncertain inertia was proposed in [122]. Studies on fault-
tolerant controllers that take into account also external disturbance have
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4.1. Introduction

been conducted in [123]. These works assume the unknown parameter
constant and rely on robustness modification techniques and high-gain
learning rates, because they do not explicitly account for time variations
arising in the unknown parameters. As a consequence, the aforemen-
tioned controllers can be appropriate if the inertia changes slowly. On
the other hand, if the inertia varies rapidly over a wide range, the system
performance will be deteriorated and instability can occur. Therefore,
some researchers have considered time-varying inertia explicitly during
the controller design. Jin et al. developed a gain-scheduled controller
to guarantee the steady-state and transient performance of the system in
[124]. Weiss et al. presented a solution approach in [125] assuming that
changes in the inertia matrix occur as a result of a known purely time-
dependent dynamic phenomenon. Similarly, Thakur et al. proposed a
control method capable of handling not only time-dependent but also a
combination of time- and state-dependent inertial parameters in [126].
The contributions of this Chapter are summarized in the following:

• An extension of the controller for motion-to-rest manoeuvres pre-
sented in [125] that does not require knowledge of the bound of in-
ertia time derivative.

• A development of a novel adaptive controller for motion-to-motion
manoeuvres based on the congelation of variables method that does
not assume that the time-variation of the time-varying component of
the inertia is known as in [125, 126]

Remark 15. We design different controllers for motion-to-rest and motion-
to-motion manoeuvres exploiting the considerations done in [115]. In
particular, Sanyal et al. demonstrated that for motion-to-rest manoeu-
vrers, e.g., detumbling tasks, in the absence of disturbance torques, no
knowledge of the inertia matrix is needed, hence no estimates of the in-
ertia matrix have to be constructed. On the other hand, for motion-to-
motion manoeuvrers, e.g., spinning tasks, the control law needs an esti-
mate of the inertia matrix. However, this estimate need not converge to
the actual inertia matrix to achieve the control objective.
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4.2 Model formulation

As a spacecraft model, we consider a fully actuated non-rigid body with-
out onboard momentum storage. We examine only the rotational motion
and not the translational motion of the spacecraft center of mass. There-
fore, we take into account only the torque applied by the force or torque
actuators. We assume that a body-fixed frame is defined for the spacecraft,
whose origin is chosen to be the center of mass, and that an inertial frame
is specified for determining the attitude of the spacecraft. The attitude
dynamics of the non-rigid body are governed by the following rotational
equations of motion [126]:

J(t)ω̇(t) =−J̇(t)ω(t)−S(ω(t))J(t)ω(t)+u(t) (4.1)

where ω(t) ∈ R3 is the angular velocity of the spacecraft frame with re-
spect to the inertial frame resolved in the spacecraft frame, J(t) ∈R3×3

>0 is
the time-varying inertia matrix of the spacecraft, u(t) ∈R3 is the external
control torque, and S(·) is the matrix representation of the linear cross-
product operation such that for any a,b∈R3 S(a)b = a×b. Note that, for
notational convenience, the time argument t is hereafter left out, unless
specifically stated for clarification or emphasis.

Remark 16. For the sake of conciseness, we neglect the disturbance ef-
fects, i.e., all internal and external torques acting on the spacecraft aside
from control torques, which may be caused by, e.g., onboard components,
gravity gradients, solar pressure, atmospheric drag, or magnetic field
[111]. This approximation is made without loss of generality. Indeed,
the proposed control scheme, for instance, can be extended to counteract
disturbances that are linear combinations of constant and harmonic sig-
nals for which the frequencies are known, but their amplitudes and phases
are unknown (see [115] for more details).

Remark 17. Compared to the rigid body case [111], the time-varying
inertia complicates the dynamic equations due to the term “−J̇ω” added
to equation (4.1). Note that this term affects only the attitude dynamics
when the spacecraft has a non-zero angular velocity [125].
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4.3 Detumbling control (motion-to-rest)

In this Section, we consider the problem of designing a feedback law to
detumble a fully actuated non-rigid body controlled by force or torque ac-
tuators, such as thrusters or magnetic torque devices, and without onboard
momentum storage. The objective of the proposed control law is to reduce
the angular rate of the spacecraft from the initial value ω(0) = ω0 ∈ R3

to zero. It can be formalized as follows.

Problem 1. Considering the dynamics in (4.1), design a state-feedback
controller delivering a control torque u ∈R3 such that the angular veloc-
ity ω(t) converges asymptotically to the origin (ω = 0).

In the following, we describe the derivation of the controller presented in
[125] (referred to as fixed-gain controller). Then, we propose an adaptive
modification that overcomes the limitations of the previous controller.

4.3.1 Fixed-gain controller

We define the quadratic Lyapunov function candidate:

V (ω) =
1
2

ωTJω. (4.2)

Taking the Lie derivative along the trajectories of (4.1) yields

V̇ (ω) = ωTJω̇ +
1
2

ωTJ̇ω (4.3)

= ωT
(

Jω×ω +u− J̇ω +
1
2

J̇ω
)

(4.4)

Let the control input given by a proportional controller:

u =−Kvω , (4.5)

where Kv ∈ R3×3
>0 is the proportional gain. We obtain

V̇ (ω) = ωT
(
−Kvω− 1

2
J̇ω
)

(4.6)

= −ωT
(

Kv +
1
2

J̇
)

ω. (4.7)

73



Chapter 4. Attitude control with time-varying inertia parameters

Selecting Kv > −1
2 J̇ + εI for some ε ∈ R>0 ensures that Lyapunov can-

didate function decays, i.e., V̇ (ω) < 0. Hence, the stabilization of the
angular velocity is achieved. The control law (4.5) achieves zero steady-
state error without integral action and knowledge of the inertia matrix J.

Remark 18. As highlighted in [125], beside the constraint Kv > −1
2 J̇ +

εI, the controller presented in [115] with fixed parameters requires no
modification for the case of time-varying inertia. This condition is auto-
matically satisfied when the inertia matrix is increasing, i.e., J (t1)≤ J (t2)
for all t1 ≤ t2, which implies that J̇ ≥ 0. Thus, for every positive-definite
choice of Kv, it follows that Kv >−1

2 J̇+εI for some ε ∈R>0. Conversely,
when the inertia matrix is decreasing, e.g. during the retraction of a solar
panel, a bound on J̇ must be known to properly select the gain Kv [125].

Advantages:

• Fixed-gain controller with simple structure (only proportional term).

Disadvantages:

• A bound on the time derivative J̇ must be known to ensure stability
during retraction manoeuvrer;

• The tuning of the proportional controller gain Kv depends on the
worst-case scenario (maxt>0 |J̇|). Hence the controller could exhibit
the problems arising with high-gain controllers [127].

4.3.2 Proposed adaptive controller

The controller gain Kv of the control law (4.5) depends on maxt>0 |J̇|,
which is assumed to be known. Even if maxt>0 |J̇| is unknown, one
can easily overcome this by building an estimate via classical adaptive
control techniques, since maxt>0 |J̇| is a constant and the control law
is linearly parameterized. Specifically, let σ̂ ∈ R denote an estimate of

σ = maxt>0

√
λmax

(
J̇∗J̇
)

that is the largest singular value of J̇, where J̇∗

denotes the conjugate transpose of J̇. We define the Lyapunov candidate

V (ω,σ , σ̂) =
1
2

ωTJω +
1
2γ

σ̃2 , (4.8)
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where γ ∈ R>0 is the adaptation rate, and σ̃ := (σ − σ̂) is the estimation
error. Taking the Lie derivative of (4.8) along the trajectories (4.1) yields

V̇ (ω) = ωTJω̇ +
1
2

ωTJ̇ω− 1
γ

˙̂σσ̃

= ωT
(

Jω×ω +u− J̇ω +
1
2

J̇ω
)
− 1

γ
˙̂σσ̃

= ωT
(

Jω×ω +u− 1
2

J̇ω
)
− 1

γ
˙̂σσ̃

≤ ωT
(

Jω×ω +u+
1
2

σω
)
− 1

γ
˙̂σσ̃ (4.9)

Considering the control input given by

u =−Kvω− σ̂
2

ω , (4.10)

where Kv ∈ R3×3
>0 is the proportional gain, we obtain

V̇ (ω)≤ −ωTKvω +
1
2
(σ − σ̂)ωT ω− 1

γ
˙̂σσ̃

≤ −ωTKvω +
1
2

σ̃ωT ω− 1
γ

˙̂σσ̃ . (4.11)

Considering the following adaptation law1

˙̂σ = γωT ω , (4.12)

we obtain
V̇ (ω)≤−ωTKvω , (4.13)

hence V̇ is negative semi-definite. Since V ≥ 0 and V̇ ≤ 0,V is a mono-
tonic function indicating that V (t)≤V (0). Consequently, all closed-loop
signals are bounded. Furthermore,

∫ t
0 V̇ (t)dt exists and is finite, which

implies that ω ∈ L2∩L∞ and, consequently, it follows that ω̇ ∈ L∞ from
equation (4.1). Invoking Barbalat’s lemma leads to limt→∞ ω = 0.

1The estimated parameter σ̂ increases over time ( ˙̂σ ≥ 0 ∀ t). A robustness modification should be intro-
duced in real-world applications (acting as forgetting factor).
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Remark 19. The proposed control scheme can be modified to counteract
disturbances that are linear combinations of constant and harmonic sig-
nals for which the frequencies are known, but their amplitudes and phases
are unknown (see [115] for more details). Furthermore, the control law
can be modified (as in [125]) to achieve almost global stabilization of a
constant desired attitude configuration.

Advantages:

• No bound on the inertia time derivative J̇ must be known;

• The tuning of the proportional gain Kv does not depend on J̇. Indeed,
the perturbation term J̇ω is dominated by the adaptive part of the
controller (− σ̂

2 ω) that acts as a nonlinear damping term.

Disadvantages:

• The proposed controller involves an additional state σ̂ .

4.4 Angular velocity tracking (motion-to-motion)

The objective of this Section is to introduce an adaptive controller guaran-
teeing angular velocity tracking for a fully actuated non-rigid body with
an unknown time-varying inertia matrix. For such a problem, we assume
the following standard assumption for the desired attitude trajectory that
should be tracked.

Assumption 4. Smoothness and boundedness of the desired trajectory:
The desired trajectory t 7→ ωd(t) ∈ R3 is continuously differentiable and
uniformly bounded.

The state feedback dynamic angular velocity tracking problem for a fully
actuated non-rigid body can be then formalized as follows.

Problem 2. Considering the dynamics in (4.1) and given a desired trajec-
tory t 7→ ωd(t) satisfying Assumption 4, design a state-feedback dynamic
controller delivering a control torque u ∈ R3 such that the closed-loop
trajectories (ω−ωd) are uniformly ultimately bounded.
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4.4.1 Error dynamics

Defining the tracking error as

e(t) = ω−ωd , (4.14)

we can express the error dynamics as

ė = ω̇− ω̇d

= J−1 (u+S(Jω) ω− J ω̇d− J̇ω
)
. (4.15)

In this work, we consider that the uncertainty is due only to uncertain
inertia parameters J and their derivatives J̇. Exploiting the symmetry of
inertia matrix, the uncertain inertial terms can be parametrized by θ =
[J11,J12,J13,J22,J23,J33]

T ∈R6 that contains the six unique parameters of
J. Specifically, a regressor matrix is defined through the following affine
representation:

W (ω, ω̇d) θ = S(Jω) ω− J ω̇d . (4.16)

Benefiting by this property, W can be obtained by taking Jacobian for the
right-hand side of equation (4.16) with respect to θ . Exploiting the affine
representation, we can rewrite equation (4.15) as2

ė = J−1 (u+W (ω, ω̇d) θ − J̇ω
)
. (4.17)

4.4.2 Adaptive control law design

After congealing θ , we consider the Lyapunov function candidate:

V`

(
e, θ̂ , `θ

)
=

1
2

e>Je+
1
2
(
`θ − θ̂

)>
Γ
−1
θ
(
`θ − θ̂

)
, (4.18)

where the definite positive matrix Γθ ∈R6×6
>0 is the adaptation rate. Taking

the Lie derivative of (4.18) along the trajectories given by (4.15) yields

V̇` = e>
(

u+W θ +
1
2

J̇ω
)
−
(
`θ − θ̂

)>
Γ
−1
θ

˙̂θ . (4.19)

2Note that the (ω, ω̇d) argument is hereafter left out for notational convenience.
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We consider the control input u ∈ R3 given by

u = up +uad +urob (4.20)

where up =−ke ∈ R3 regulates the desired error dynamics with k ∈ R>0
being the proportional gain, uad ∈ R3 is the adaptive part, and urob ∈ R3

is the robust part that dominates the perturbation generated by the time-
varying inertia. Because the term involving `θ is unknown and cannot
be directly cancelled by uad , the adaptive control part is designed using
parameter estimate θ̂ . Hence, we consider the adaptive control part as

uad =−W θ̂ . (4.21)

Substituting (4.20) into (4.19) yields

V̇` ≤ e>
(
−ke+urob +W (θ − θ̂)+

1
2

J̇ω
)
−
(
`θ − θ̂

)>
Γ
−1
θ

˙̂θ

≤ e>
(
−ke+urob +W (`θ +∆θ − θ̂)+

1
2

J̇ω
)
+ (4.22)

−
(
`θ − θ̂

)>
Γ
−1
θ

˙̂θ .

Considering the parameter update law

˙̂θ = ΓθW e , (4.23)

we obtain

V̇` ≤ e>
(
−ke+urob +W ∆θ +

1
2

J̇ω
)

. (4.24)

Remark 20. In this work, we do not estimate the inertia derivative pa-
rameters J̇ to reduce the dimensions of the adaptation law. Indeed, assum-
ing that the mean of J̇ with respect time is almost zero, adding a feedfor-
ward adaptive term (based on the congealed J̇) that cancels out the term
J̇ω is pointless. This choice is done without loss of generality, indeed the
proposed controller can estimate also the inertia derivative parameters J̇
considering θ = [J11,J12,J13,J22,J23,J33, J̇11, J̇12, J̇13, J̇22, J̇23, J̇33]

T ∈R12.

Remark 21. The closed-loop dynamics is perturbed not only by the time-
varying term due to the parameters change ∆θ (as in Section 3.3.1), but
also by the term J̇ω that can prevent V̇` to be semi-definite negative.
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4.4. Angular velocity tracking (motion-to-motion)

To design the robustness term urob, we expand the term W∆θ by exploiting
the “physics” of the problem and recalling J = `J +∆J:

V̇` ≤ e>
(
−ke+urob +S(∆J ω) ω−∆J ω̇d +

1
2

J̇ω
)

≤−ke>e+ e>
(

urob +S(∆J (ωd + e)) (ωd + e)−∆J ω̇d +
1
2

J̇ω
)

≤−ke>e+ e>
(

urob +S(∆J (ωd + e)) ωd−∆J ω̇d +
1
2

J̇ω
)

(4.25)

Now we introduce the following definitions to find an upper bound of V̇`.

Definition. Absolute value of vector and matrix. Given x ∈ Rn and A ∈
Rm×n, the absolute value is defined as

|x|=




|x0|
|x1|

...
|xn−1|


 and |A|=




∣∣A0,0
∣∣ ∣∣A0,1

∣∣ . . .
∣∣A0,n−1

∣∣∣∣A1,0
∣∣ ∣∣A1,1

∣∣ . . .
∣∣A1,n−1

∣∣
...

... . . . ...∣∣Am−1,0
∣∣ ∣∣Am−1,1

∣∣ . . .
∣∣Am−1,n−1

∣∣


 .

Definition. Let ∆ ∈ {<,≤,=,≥,>} and x,y ∈ Rn. Then

|x|∆|y| iff |χi|∆ |ψi| ,
for all i = 0, . . . ,n−1. Similarly, given A and B ∈ Rm×n,

|A|∆|B| iff
∣∣αi j
∣∣∆
∣∣βi j
∣∣ ,

for all i = 0, . . . ,m−1 and j = 0, . . . ,n−1.

Lemma 1. Let A ∈ Rm×k and B ∈ Rk×n. Then |AB| ≤ |A||B|.
Proof. Let C = AB. Then the (i, j) entry in |C| is given by

∣∣γi, j
∣∣=
∣∣∣∣∣

k−1

∑
p=0

αi,pβp, j

∣∣∣∣∣≤
k−1

∑
p=0

∣∣αi,pβp, j
∣∣=

k−1

∑
p=0

∣∣αi,p
∣∣ ∣∣βp, j

∣∣

which equals the (i, j) entry of |A||B|. Thus |AB| ≤ |A||B|.
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Chapter 4. Attitude control with time-varying inertia parameters

These bounds can be converted into bounds involving norms exploiting
the following theorem, where || · ||F indicates the Frobenius matrix norm.

Theorem 1. Let A,B ∈ Rm×n. If |A| ≤ |B| then ‖A‖F ≤ ‖B‖F , ‖A‖1 ≤
‖B‖1, and ‖A‖∞ ≤ ‖B‖∞.

Proof.

• Show that if |A| ≤ |B| then ‖A‖F ≤ ‖B‖F .

‖A‖2
F =

m−1

∑
i=0

n−1

∑
j=0

∣∣αi, j
∣∣2 ≤

m−1

∑
i=0

n−1

∑
j=0

∣∣βi, j
∣∣2 = ‖B‖2

F (4.26)

Hence ‖A‖F ≤ ‖B‖F .

• Show that if |A| ≤ |B| then ‖A‖1 ≤ ‖B‖1. Let

A =
[
a0 · · · an−1

]
and B =

[
b0 · · · bn−1

]
(4.27)

Then

‖A‖1 = max
0≤ j<n

∥∥a j
∥∥

1 = max
0≤ j<n

(
m−1

∑
i=0

∣∣αi, j
∣∣
)

=

(
m−1

∑
i=0

∣∣αi,k
∣∣
)

(4.28)

with k being the index that maximizes (4.28). Then

‖A‖1 =≤
(

m−1

∑
i=0

∣∣βi,k
∣∣
)
≤ ‖bk‖1 ≤ max

0≤ j<n

∥∥b j
∥∥

1 ≤ ‖B‖1 . (4.29)

• Show that if |A| ≤ |B| then ‖A‖∞ ≤ ‖B‖∞. Note that: ‖A‖∞ =
∥∥AT

∥∥
1

and ‖B‖∞ =
∥∥BT

∥∥
1 . Furthermore, if |A| ≤ |B| then, clearly,

∣∣AT
∣∣ ≤∣∣BT

∣∣. Hence

‖A‖∞ =
∥∥AT∥∥

1 ≤
∥∥BT∥∥

1 = ‖B‖∞ . (4.30)

Remark 22. The previous theorem shows that the bound |AB| < |A||B|
can be converted into bounds involving norms. As a consequence, we can
use the absolute value function to upper bound V̇` and design a robustness
term component-wise, potentially avoiding useless conservativism.
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4.4. Angular velocity tracking (motion-to-motion)

Exploiting these properties, we obtain

V̇` ≤−ke>e+ e>urob + e>
(
−S(ωd) ∆J ωd +∆J ω̇d +

1
2

J̇ω
)

≤−ke>e+ e>urob + e>
(

S(ωd) ∆J +
1
2

J̇
)

e +

+ |e|>
(
|S(ωd)| |∆J| |ωd|+ |∆J| |ω̇d|+

1
2
|J̇||ωd|

)
. (4.31)

Defining |∆J|max and |J̇|max with the (i, j) entry given respectively by
|∆J|max

i, j = supt>0 |∆Ji, j | ≥ 0 and |J̇|max
i, j = supt>0 |J̇i, j| ≥ 0 yields

V̇` ≤−ke>e+ e>urob + e>
(

S(ωd) ∆J +
1
2

J̇
)

e +

+ |e|>
(
|S(ωd)| |∆J|max |ωd|+ |∆J|max |ω̇d|+

1
2
|J̇|max|ωd|

)
(4.32)

To avoid urob being not differentiable with respect the reference trajectory
(ωd, ω̇d), we exploit the following lemma.

Lemma 2. Let A ∈ Rm×k, then |A| ≤ A+ with the (i, j) entry given by:

A+
i, j =

1
2
(A2

i, j +1) . (4.33)

Hence, we can upper bound (4.32) with

V̇` ≤−ke>e+ e>urob + e>
(

S(ωd) ∆J +
1
2

J̇
)

e + (4.34)

+ |e|>
(

S(ωd)
+ |∆J|max ω+

d + |∆J|max ω̇+
d +

1
2
|J̇|maxω+

d

)

Defining the element-by-element hyperbolic tangent function as

Tanh(x) := [tanh(x1), tanh(x2), tanh(x3)]
T ,

the element-by-element sign function as

Sign(x) := [sign(x1),sign(x2),sign(x3)]
T ,
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Chapter 4. Attitude control with time-varying inertia parameters

and the operator

diag(x) :=




x1 0 0
0 x2 0
0 0 x3


 ,

we consider the following smooth control law3:

urob =−
(

S(ωd)
+ |∆J|max +

1
2
|J̇|max

)
e + (4.35)

−diag(tanh(λe))
(
(S(ωd)

+ |∆J|max +
1
2
|J̇|max) ω+

d + |∆J|max ω̇+
d

)

with λ ∈ R>0. Substituting (4.35) into (4.34), we obtain

V̇` ≤ e>diag(Sign(e)−Tanh(λe))
(
(S(ωd)

+ |∆J|max +
1
2
|J̇|max) ω+

d +

1
2
|∆J|max ω̇+

d

)
− ke>e (4.36)

≤ |e|T diag(Sign(e)) diag(Sign(e)−Tanh(λe))
(
|∆J|max ω̇+

d +
1
2

(S(ωd)
+ |∆J|max +

1
2
|J̇|max) ω+

d

)
− ke>e (4.37)

≤ |e|T diag
([

1 1 1
]
−Tanh(λ |e|)

)(
|∆J|max ω̇+

d +
1
2

(S(ωd)
+ |∆J|max +

1
2
|J̇|max) ω+

d

)
− ke>e (4.38)

Using algebraic features of the hyperbolic tangent function yields:

V̇` ≤ diag
(

1
λelog

)(
(S(ωd)

+ |∆J|max +
1
2
|J̇|max) ω+

d + |∆J|max ω̇+
d

)
+

− ke>e . (4.39)

3If a bound on ωd and ω̇d is known during the entire trajectory, the robustness term urob can be determined
using these bounds and avoiding time-varying parameters, such as S(ωd)

+.
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From this bound it is clear that V̇` < 0 for all

‖e‖2
2 >

∥∥∥∥diag
(

1
λelogk

)(
(S(ωd)

+ |∆J|max +
1
2
|J̇|max) ω+

d +

1
2
+ |∆J|max ω̇+

d

)∥∥∥∥
2
. (4.40)

Whenever ‖e‖2 becomes large, the negative term “−ke>e” in equation
(4.39) dominates the remaining terms, making V̇` < 0 and drawing the
error toward the origin. When ‖e‖2 reaches sufficiently small values (de-
termined by λ ), the sign of V` is indefinite, and progress toward the ori-
gin cannot be guaranteed. This critical size represents the boundary of a
residual error set to which all trajectories will eventually converge. This
set can be made smaller by increasing the λ parameter (for the limit case
λ → ∞ the asymptotic tracking is achieved). As a result, the closed-loop
trajectories and the error e are globally bounded.

Remark 23. As in Chapter 3, the adaptation law in (4.23) suffers from
the drawback that the parameter θ̂ may depart arbitrarily away from
its actual value. However, we can solve this issue by using the robust-
ness modifications described in Section 3.4.2 with similar considerations.
Furthermore, if the matrices |∆J|max and |J̇|max are unknown, an adaptive
modification can be designed as in Section 3.4.3.

4.5 Simulation results

To show the performance characteristics of the proposed adaptive control
schemes, numerical simulations are conducted in this Section. Specif-
ically, the results related to two different manoeuvres are presented: a
motion-to-rest manoeuvre, i.e. angular rate stabilization, and a motion-to-
motion manoeuvre, i.e. angular velocity tracking. As in [126], we assume
that the inertia of the spacecraft takes the form

J(t) = J0 + J1(t) , (4.41)

where J0 is constant and represents the rigid part of the spacecraft, and
J1(t) is time-varying and represents a moving part of the spacecraft. The
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Chapter 4. Attitude control with time-varying inertia parameters

true value of the inertia constant component J0 is taken as:

J0 =




20 1.2 0.9
1.2 17 1.45
0.9 1.4 15


Kgm2 . (4.42)

Concerning the time-varying part J1(t), a sinusoidal mass displacement
profile is used to represent a persistent mass movement of an articulated
appendage (see [126, Section V.A] for more details on the modeling part).

4.5.1 Motion-to-rest manoeuvre

We use the controller proposed in Section 4.3.2 with the control law (4.10)
and adaptation law (4.12) to bring the spacecraft from initial angular ve-
locity ω(0) = [20 − 5 15]T rad/sec to rest ω = [0 0 0]T rad/sec. The
parameters used in the simulation are γ = 10, σ̂(0) = 0, and the propor-
tional gain Kv = diag([0.1 0.1 0.1]). Namely, we select Kv that does not
satisfy the constraint mentioned in Remark 18 (Kv > −1

2 J̇) to show the
effectiveness of the proposed adaptive control scheme. Simulating the
closed-loop system yields the time evolutions of the angular rate and con-
trol input shown in Figure 4.1 and Figure 4.2, respectively.

We can state that the proposed controller achieves asymptotic stabi-
lization of the angular rate despite the time-varying nature of the inertia
without any a priori knowledge of the spacecraft characteristics.

4.5.2 Motion-to-motion manoeuvre

As in the previous Chapter, we compare in simulation the proposed ap-
proach with the standard adaptive control scheme (without robustness
term) with two different robustness modifications. Specifically, we com-
pare three state feedback adaptive controllers:

• Controller A is the proposed controller with the control law (4.35),
and the update law (4.23) for θ̂ with the projection modification;

• Controller B uses the control law (4.35) with urob = 0 and the update
law for θ̂ (4.23) with a projection modification;
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Figure 4.1: Angular velocity components for a motion-to-rest manoeuvrer.

0 5 10 15 20 25 30 35 40 45 50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.2: Control torque components for a motion-to-rest manoeuvrer.
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• Controller C is identical to Controller B but also includes the σ -
modification in the update law (4.23).

The control objective is to track a given angular velocity profile ωd =
s(t)[1 1 1]T rad/sec with s(t) = 2sin(0.1t) + 0.1sin(t). The parame-
ters used in the simulation are ω(0) = [0.1 0.1 0.1]T rad/sec, θ̂(0) =
[0 0 0 0 0 0]T, k = 100 and Γθ = 1000 I6 for all the adaptive controllers,
λ = 10 for the Controller A, and σ = 10 for the Controller C. Simulating
the three closed-loop systems yields the results listed in Table 4.1 in terms
of error norms. The time evolutions of the error norm and control input
are shown in Figure 4.3 and Figure 4.4, respectively.

Table 4.1: Error norms during a motion-to-motion manoeuvrer.

Error 2-norm ‖e‖2 rad/s Error ∞-norm ‖e‖∞ rad/s

Controller A 0.14 0.03

Controller B 10.47 0.32

Controller C 9.29 0.17

We can state that the proposed controller shows better performance with
respect to the standard adaptive schemes in terms of smaller overshoot
at the beginning, smoother response and control input, faster rate of con-
vergence, and smaller steady-state error. These effects are due to the ro-
bustness term urob which dominates the perturbation introduced by the
time-varying parameters, i.e., “W ∆θ ” and “−J̇ω”. Finally, we can see
the proposed controller exhibits less oscillations with respect to the stan-
dard adaptive schemes thanks to the introduction of the robustness term
filtered by the hyperbolic tangent function. Figure 4.5, showing the am-
plitude of the input spectrum4, makes this effect more evident.

4For the sake of conciseness, only the first component u1 is reported.
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Figure 4.3: Time evolution of the error 2-norm with different controllers.
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Figure 4.4: Control torque components for a motion-to-motion manoeuvrer.
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Figure 4.5: Single-sided amplitude spectrum of u1 in motion-to-motion manoeuvrer.
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Part II

Harmonic Control for
disturbance rejection
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CHAPTER5
Harmonic Control theory

Harmonic Control (short, HC) has been the subject of extensive research
over the last few decades, particularly in the rotorcraft community. HC
enables the system to reach harmonic steady-state in the case of tonal or
multi-tonal disturbances with a known spectrum. The HC framework is
based on the representation of the system as a linear quasi-steady model
constructed in the frequency domain, known as T -matrix representation.
This Chapter is devoted to presenting a brief overview of the HC algo-
rithms starting from the definition of the T -matrix for linear systems.

5.1 Background

Feedback control for disturbance rejection plays a central role in an in-
creasing number of applications, and control techniques aimed at improv-
ing its overall effectiveness have been an established topic of ongoing re-
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search since the early 1980s [128]. Several families of algorithms have
emerged over the years, the classification of which has generally been
based on two main points [129]: knowledge of the system dynamics and
the properties of the disturbances. When the disturbance has a known
spectrum and is tonal or multi-tonal, the controller can be modified to
include a model of the exogenous signal, yielding high-gain feedback at
the frequencies that make up the spectrum of the disturbance. As a result,
the controller could apply infinite gain to the frequencies of the distur-
bance to achieve a complete reduction of the disturbance. An alternative
approach allows the system to reach harmonic steady-state and uses mea-
surements of the steady-state response amplitude and phase to determine
the required control signal. Active rotor balancing control, also known
as Convergent Control [130, 131, 132], and the active control of rotor-
induced vibration in helicopters, where the technique is referred as Har-
monic Control [133], are two renowned applications of this approach. For
a complete overview of the HC techniques, the readers are referred to the
survey papers produced by Friedmann and Millott [134] and Teves et al.
[135], and references therein.

5.2 Linear quasi-steady model

Referring to Figure 5.1, we consider u ∈ Rm the vector of control inputs
and y ∈ Rp the vector of measured outputs. Assuming that the dynamics

Figure 5.1: Mixed time-frequency domain representation in terms of Gyu(s) [136].
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relating u to y is Linear Time Invariant (LTI), it can be described by a
nominal transfer function denoted as:

Gyu(s) = {gyi,u j(s)} i = 1, . . . , p and j = 1, . . . , m. (5.1)

Furthermore, we assume that Gyu(s) corresponds to an asymptotically sta-
ble system. We consider the control input and the baseline disturbance
d ∈ Rp, acting on the system output y, be multi-harmonic with frequen-
cies ωh with h = 1, . . . , H. As a result, the steady-state signals d(t), u(t)
and y(t) can be expressed as:

d(t) =
[
d1(t) d2(t) · · · dp(t)

]T
, (5.2)

y(t) =
[
y1(t) y2(t) · · · yp(t)

]T
, (5.3)

u(t) =
[
u1(t) u2(t) · · · um(t)

]T (5.4)

with

di(t) =
H

∑
h=1

(dci cos(ωht)+dsi sin(ωht)) i = 1, . . . , p , (5.5)

yi(t) =
H

∑
h=1

(yci cos(ωht)+ ysi sin(ωht)) i = 1, . . . , p , (5.6)

u j(t) =
H

∑
h=1

(
uc j cos(ωht)+us j sin(ωht)

)
j = 1, . . . , m . (5.7)

where y(h)ci and y(h)si (similarly d(h)
ci ,d(h)

si and u(h)c j ,u
(h)
s j ) are given by

y(h)ci =
2

T (h)
p

∫ T (h)
p

0
y(h)i cos(ωht)dt , (5.8)

y(h)si =
2

T (h)
p

∫ T (h)
p

0
y(h)i sin(ωht)dt , (5.9)

where T (h)
p = 2π

ωh
. Then, we define the vector

Y (h)
i =

[
y(h)ci

y(h)si

]
i = 1, . . . , p (5.10)
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and in the same way D(h)
i and U (h)

j ,

D(h)
i =

[
d(h)

ci

d(h)
si

]
i = 1, . . . , p , (5.11)

U (h)
j =

[
u(h)c j

u(h)s j

]
j = 1, . . . , m . (5.12)

As a result, the following expression is obtained at the steady-state

Y (h)
i = T (h)

i, j U (h)
j +D(h)

i (5.13)

with

T (h)
i, j =

[
Real[gyi,u j( jωh)] Imag[gyi,u j( jωh)]
−Imag[gyi,u j( jωh)] Real[gyi,u j( jωh)]

]
. (5.14)

Defining the vector

Y (h) =
[

Y (h)T
1 · · · Y (h)T

p

]T
(5.15)

and similarly for D(h) and U (h), the steady-state response at frequency ωh
can be represented as

Y (h) = T (h)U (h)+D(h) , (5.16)

where

T (h) =




T (h)
1,1 · · · T (h)

1,m
...

...
T (h)

p,1 · · · T (h)
p,m


 . (5.17)

In the following, we consider, without any loss of generality, the problem
of rejecting a disturbance consisting of a single harmonic, i.e., H = 1. For
the sake of simplicity, the index h will be dropped.
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5.2.1 Extension to LTP systems: HTF

This Section provides some background on the frequency response of Lin-
ear Time Periodic (LTP) systems and uses such analytical tools to derive
explicit expressions for the T -matrix. LTP systems can be lifted to for-
mally LTI systems using various techniques [137]-[138]. This Section ex-
amines one such representation, the Harmonic Transfer Function (HTF).
Considering a continuous-time LTP system

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) =C(t)x(t)+D(t)u(t), (5.18)

each matrix can be expanded in a complex Fourier series1

A(t) =
∞

∑
m=−∞

Ame jmωt (5.19)

and similarly for B(t), C(t) and D(t). The system can be analysed in
the frequency domain as follows. Introduce the class of Exponentially
Modulated Periodic (EMP) signals [140]. The complex signal u(t) is said
to be EMP of period T and modulation s if

u(t) =
∞

∑
k=−∞

ukeskt = est
∞

∑
k=−∞

uke jkωt (5.20)

where t ≥ 0, sk = s+ jkω , and s is a complex scalar.

Remark 24. The class of EMP signals is a generalization of the class of
T -periodic signals, i.e. of signals with period T : in fact, an EMP signal
with s = 0 is just an ordinary time-periodic signal.

Remark 25. An LTP system forced by an EMP input has an EMP steady-
state response, similar to how an LTI system forced by a complex expo-
nential input has an exponential steady-state response. Specifically, all
signals of interest (x, ẋ, y) in an LTP system are EMP signals during a
response subject to EMP input.

1The expansion can be performed only under the assumptions depicted in [139].
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By deriving the Fourier expansions for A(t), B(t), C(t) and D(t), it is
possible to prove that the EMP steady-state response of the system can
be expressed as the infinite dimensional matrix equation with constant
elements [140]

sX = (A−N )X +BU
Y = CX +DU (5.21)

where X , U and Y are doubly infinite vectors formed with the harmonics
of x, u and y respectively, organized in the following fashion:

X T =
[
· · · xT

−2 xT
−1 xT

0 xT
1 xT

2 · · ·
]

(5.22)

and similarly for U and Y . N is a block diagonal complex-valued matrix
given by N = blkdiag{ jmωI} where I is the identity matrix the size of
which is equal to the number of states (see [141] for more details). A,
B, C and D are doubly infinite Toeplitz matrices [142]-[143]. They are
formed with the harmonics of A(·), B(·), C(·) and D(·) respectively as
follows

A=




. . . ...
...

...
...

...
· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

... . . .




(5.23)

(and similarly for B, C and D), where the submatrices An in equation
5.23 are the coefficients of the Fourier expansion of matrix A(t), given in
equation 5.19. To relate these coefficients to those of the Fourier series
expansion in trigonometric form

A(t) = A0 +
K

∑
k=1

[Akc cos(kωt)+Aks sin(kωt)] , (5.24)

it is recalled that the Fourier series expansion of a scalar function can be
rewritten in complex exponential form, i.e.,

a(t) = a0 +
∞

∑
k=1

(akc coskωt +aks sinkωt) =
∞

∑
k=−∞

ake jkωt (5.25)
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with ak = (akc− jaks)/2 and a−k = (akc + jaks)/2 for k = 1,2, . . . ,∞ .
Therefore, the coefficients of equations 5.19 and 5.24 are related by:

Ak =
1
2(Akc− jAks)

A−k =
1
2(Akc + jAks)

k = 1,2, . . . (5.26)

with A0 identical in both equations 5.19 and 5.24. Similar relations hold
for the harmonics of B, C, and D. From equation 5.21, one can define the
HTF G(s) as the operator:

G(s) := C[sI − (A−N )]−1B+D (5.27)

which relates the input harmonics and the output harmonics (contained in
the infinite vectors U and Y respectively). A more detailed explanation of
this development with the related proofs is provided in [140, 144].

Harmonic Transfer Matrix

Analysis of an LTP system response to an EMP signal when s = 0 is of
particular interest, i.e., a periodic signal with the same period as the LTP
system. The resulting output response, as noted in Remark 25, will be an
EMP signal with s = 0. Namely, we have

u(t) =
+∞

∑
k=−∞

uke jkωt G(s)−−−−→ y(t) =
+∞

∑
k=−∞

yke jkωt (5.28)

and

Y = G(0) U with G(0) = C[N −A]−1B+D. (5.29)

In this case, U and Y are constant vectors of the Fourier coefficients of
u(t) and y(t), respectively. Indeed, G(0) is a steady-state matrix gain that
gives the Fourier coefficients of the output when the input is a T -periodic
signal of known Fourier coefficients. The operator G(0), usually called
Harmonic Transfer Matrix (HTM), is for LTP systems what the frequency
response is for LTI. HTM yields the T -matrix relation by converting the
harmonics of the output from exponential to trigonometric form [144].
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5.3 HC architecture

HC was initially proposed by Shaw in [10]. Exploiting the linear relation-
ship (5.16), Shaw analysed the frequency response function between the
Fourier coefficients of the measured vibration outputs and the harmonic
inputs. As a consequence, a general complex non-linear problem is trans-
formed into a straightforward linear association in the frequency-domain.
A schematic overview of a typical HC system is depicted in Figure 5.2.

Figure 5.2: Schematic overview of the HC architecture.

Although HC is not the only method that could be used, it is significant for
practical and historical reasons, particularly in the rotorcraft community
(see, e.g., in [145], [146], [133], [147]). The HC controller is considered
to operate in the frequency-domain, because it handles only the harmonics
of output and control components. Indeed, it involves a harmonic analy-
sis, e.g., a Fast Fourier Transform (FFT), to extract the harmonics of the
output response. Then, the HC controller computes the optimal values for
harmonic controls, which are injected as part of the control signals. In this
way, rather than controlling the output itself, the control system controls
the factors that determine the amplitude of the harmonic output signal.

The steps required to transform between the time- and frequency-doma-
in are not instantaneous, but are carried out over finite time intervals. In-
deed, the closed-loop HC algorithm is typically defined not as a continu-
ous system, but rather at specific instants tk, where tk = k∆t with k ∈ Z≥0
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is the discrete-time index. Specifically, in order to give the system enough
time to sample the output signal, perform the harmonic analysis, compute
updated control amplitude and phase quantities, and allow for dissipation
of transient dynamics, the controls are updated every tk and kept constant
for the entire time interval ∆t. The underlying assumption is that HC
inputs are updated slowly enough for the transient dynamics to have a
negligible impact on the closed-loop dynamics [148].

5.4 Baseline T -matrix algorithm

As mentioned above, HC assumes that the measurements of the plant out-
put and the updates of the control input are not performed continuously,
but rather at specific times tk = k∆t. We define the vector U(k) of the
harmonics of the control signals computed by the HC system at time tk.
Similarly, we define the vector Y (k) which contains the cosine and sine
harmonics of the output signal. The T -matrix of relation (5.16) can be ei-
ther estimated from measured data, using on-line or off-line identification
algorithms, or computed on the basis of a mathematical model of the plant
[136]. At each discrete-time step k, the HC controller selects the value of
the input harmonics U(k) to attenuate the effects of the disturbance D
(assumed constant over the time interval ∆t) on the output Y (k).

Considering the linear relation

Y (k) = TU(k)+D , (5.30)

the optimal open-loop solution can be written as2

U(k) =−T−1D. (5.31)

Since the disturbance D cannot, in general, be measured directly, the same
result can be achieved by employing a discrete-time integral control law
in closed-loop, i.e., based on the measurements Y (k),

U(k+1) =U(k)−T−1Y (k) . (5.32)

Note that the integral action (5.32) ensures that Y (k)→ 0 when k→ ∞.
2Equation (5.30) assumes the T -matrix square (m = p). If this assumption does not hold, the control

algorithm must be written as U(k+1) =U(k)−T †Y (k), where T † = (T T T )−1T T is the pseudo-inverse of T .
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By replacing k with k+1 in (5.30) and subtracting the resulting equation
from (5.32), the model without the (unknown) disturbance is obtained

Y (k+1) = Y (k)+T (U(k+1)−U(k)) (5.33)

This model representation is equivalent to a local response model, which
relates the discrete change in the output to a step change in the control in-
put between two consecutive time samples. Figure 5.3 shows the general
block diagram of the T -matrix algorithm, where the delay operator z−1 is
used as in the following equation:

U(k) =U(k−1)−T−1Y (k−1) = z−1(U(k)−T−1Y (k)). (5.34)

Figure 5.3: General block diagram of discrete baseline T -matrix algorithm.

5.5 Optimal LQ-based algorithm derivation

The discrete-time T -matrix algorithm has undergone modifications and
improvements over the years, either with the goal of minimizing a de-
fined cost-function (as the method described in this Section) or by resort-
ing to adaptation mechanisms designed to recover quickly from improper
initialization or enhanced robustness properties [149].
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Specifically, a Linear Quadratic (LQ)-based HC version has been derived
by minimizing at each discrete-time step k the following cost function

J(k) = Y (k)T QY (k)+2Y (k)T SU(k)+U(k)T RU(k) (5.35)

where weighting matrices Q = QT ≥ 0, Q ∈ R2p×2p, S ∈ R2p×2m and
R = RT ≥ 0, R ∈ R2m×2m are defined such that

[
Q S
ST R

]
(5.36)

is positive semi-definite. Most implementations ignore the cross-weighting
term S in equation (5.35), i.e., the cost function is simplified to:

J(k) = Y (k)T QY (k)+U(k)T RU(k) . (5.37)

Substituting Y (k) from (5.30) into (5.37), we obtain

J(k) =U(k)TVU(k)+2U(k)T T T QD+DT QD , (5.38)

where V is defined as
V = T T QT +R . (5.39)

The optimal control law is found by differentiating the cost function (5.38)
with respect to the control input harmonics Uk

∂J(k)
∂U(k)

= 2VU(k)+2T T QD = 0 , (5.40)

leading to the open-loop control algorithm

U(k+1) =−(T T QT +R)−1(T T Q
)
D , (5.41)

which can be equivalently written as

U(k+1) =−T KU(k)+KY (k) , (5.42)

where K is defined as
K =−V−1(T T Q). (5.43)
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Remark 26. Note that the control law (5.42) still introduces a discrete-
time integral action. Considering Q= I and R= 0, the output goes to zero
after one discrete-time step (deadbeat control) if the T -matrix is known
without uncertainty. Moreover, the control law (5.42) reduces to equa-
tion (5.32) that minimizes the cost function J(k) =Y (k)TY (k) avoiding to
bound the control effort.

As for the implementation of this discrete algorithm, Algorithm 1 sum-
marizes the operations need to be carried out at each time step tk.

Algorithm 1 Implementation of the LQ-based HC law

1) Determination of the ω-harmonic component of y

yci =
2
Tp

∫ tk+Tp

tk
yi cos(ωt)dt and ysi =

2
Tp

∫ tk+Tp

tk
yi sin(ωt)dt for i = 1, . . . , p

2) Update Uk using the optimal control law

U(k+1) =−(T T QT +R)−1(T T Q
)
(Y (k)−TU(k))

3) Determination of the time domain value of the control variable u

u j = uc j cos(ωt)+us j sin(ωt) for j = 1, . . . , m

5.5.1 Convergence analysis

At each time tk, the effect of the disturbance can be evaluated as

D = Y (k)−TU(k). (5.44)

Therefore, by substituting (5.44) into (5.30) evaluated at k+1 one obtains

Y (k+1) = TU(k+1)+Y (k)−TU(k)
= T KTU(k)−T KY (k)+Y (k)−TU(k)
= (I−T K)Y (k)+T (KT − I)U(k). (5.45)
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5.5. Optimal LQ-based algorithm derivation

As discussed in [150], with initial conditions Y (0) and U(0), the system
dynamics (5.45) is equivalent to

[
Y (k+1)
U(k+1)

]
= AT

[
Y (0)
U(0)

]
(5.46)

∀ k ≥ 0, where

AT :=
[

I−T K T (KT − I)
−K KT

]
(5.47)

is an idempotent matrix. As a result, the optimal values of the control
input U(k) and resulting output Y (k) are attained after the first update.

Remark 27. This result holds true under the assumption that T -matrix
is known. If the T -matrix is uncertain, HC could result in degraded per-
formance and possible instability (see the next Section for the robustness
analysis with respect to an uncertain T ). Moreover, the one-step conver-
gence property is lost.

Based on equation (5.46), the steady-state output can be written as

Yopt := Y (k) = KLQ (Y (0)−TU(0)) = KLQD , (5.48)

where
KLQ = Q−1 (Q−1 +T R−1T T)−1

(5.49)

is a gain matrix which represents the ”distance” from the complete reduc-
tion of the disturbance D. Furthermore, following the steps described in
[150], an upper bound of the output norm ‖Y (k)‖ is obtained as

‖Y (k)‖ ≤ σmax(R)
σmin(Q)σi(T T T )

‖D‖ , (5.50)

where i = min(2p,2m).

5.5.2 Robustness analysis

The analysis in the previous Section shows that the LQ-based HC con-
troller ensures a bounded output for any bounded disturbance with a tun-
able upper bound, thus ensuring robustness against exogenous perturba-
tions, as confirmed by previous studies in [151, 141, 152, 153]. However,
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the implementation of HC control law requires the exact knowledge of the
T -matrix: as noted in Remark 27, an erroneous model of the system re-
sults in a wrong T -matrix which could degrade performance and possibly
lead to instability.

Given the approximations introduced in deriving the model for control,
it is worth understanding the robustness of the proposed algorithm with
respect to model variations. To this aim, if an estimate T̂ of T is given as

T̂ = T +∆T, (5.51)

then the control law defined in equation (7.1) becomes

U(k+1) =−T̂ K̂U(k)+ K̂Y (k), (5.52)

where
K̂ =−(T̂ T QT̂ +R)−1(T̂ T Q). (5.53)

As discussed in [151] the stability of the HC algorithm requires that

ρs(K̂∆T )< 1, (5.54)

where ρs(·) is the spectral radius. An upper bound on the spectral radius
of K̂∆T can be derived by using (5.53) to obtain:

ρs(K̂∆T ) = ρs((T̂ T QT̂ +R)−1T̂ T Q∆T )

≤ (σmax(T )+σmax(∆T ))σmax(Q)σmax(∆T )
σmin(R)

. (5.55)

Following the steps in [151], we obtain that if

σmax(∆T )<−σmax(T )
2

+
1
2

√
σmax(T )2 +4

σmin(R)
σmax(Q)

, (5.56)

then ρs(K̂∆T )< 1.

Remark 28. As noted in [150], there is evidence from equations (5.50)
and (5.56) of the presence of a trade-off between performance and robust-
ness properties of the closed-loop system (see Figure 5.4). Specifically, if
the ratio ρ := σmin(R)

σmax(Q) is large, i.e., tuning aims at minimum control effort
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(see equation (5.35)), then, according to inequality (5.56), the control
law achieves a high degree of robustness against parametric uncertain-
ties. However, inequality (5.50) suggests that poor disturbance attenua-
tion performance must be expected for large values of ρ .

Figure 5.4: Trade-off Robustness/Performance with the LQ-based HC Algorithm [136].

Remark 29. The validity of the previous method relies on the control in-
put being updated slowly enough that transient dynamics do not affect the
steady-state response measurements. Note that, if the transient dynamics
is not allowed to dissipate, the overall closed-loop response at the sample
times tk will contain a non-zero spurious component corresponding to the
zero-input response of the states, resulting in erroneous control amplitude
and phase estimates for the next iteration. This is effectively equivalent
to introducing model uncertainty in the estimate of the T -matrix. Contin-
uous, high frequency, periodic excitation of the system transient behavior
may result in unstable or unbounded amplitude responses [150].
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CHAPTER6
Active balancing system for rotating

orbital devices

This Chapter presents the design of an Active Balancing System (ABS)
for rotating orbital devices, motivated by recent space applications for
spacecraft endowed with rotating payloads. The main motivation behind
this work is the Copernicus Imaging Microwave Radiometry (CIMR) mis-
sion which will feature a large rotating microwave radiometer to provide
observations of sea-surface temperature, sea-ice concentration and sea-
surface salinity. Due to the presence of highly uncertain inertial asymme-
tries in the rotating device, potentially large internal forces and torques
can appear at interface between the spacecraft and the rotor which can
cause a significant degradation of the system performance and can even
affect its stability. To counteract such unbalance effects, in this work we
develop an active balancing system made of a suitable set of actuated
movable masses and sensors. The problem can be formulated as the one
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of compensating a periodic disturbance of a known frequency, being the
unbalance effects essentially periodic due to the constant payload angular
rate. In view of this, a HC algorithm has been designed to command the
positions of the actuated masses in such a way that the effects of rotor un-
balance are significantly reduced. After extensive numerical simulations,
accounting for both parametric uncertainties and exogenous disturbances
in the model, a dedicated breadboard has been developed and experimen-
tal validation of the control law has been carried out.

6.1 Introduction

Future space missions will increasingly rely on the use of large rotating
payloads, in particular in the context of missions requiring high Earth ob-
servation capabilities [154, 155]. Accommodation restrictions, whether
due to launcher fairing envelopes or limitations and constraints by the
spacecraft, make it necessary to stow for launch and deploy in-orbit the
payloads that are exceeding these restrictions due to their operational di-
mensions [156]. These systems require a careful design, because the un-
balanced force and moment arising from inertial asymmetries can lead to
the reduction of accuracy and stability of the spacecraft attitude and the
induced vibrations can directly affect the quality of the collected data. For
instance, one of the most challenging aspects of the Soil Moisture Active
Passive (SMAP) observatory mission by NASA [154] was the design of
the spinning reflector and beam assembly to minimize the impact of the
inertial unbalances. Ground testing and characterization of the assembly
was evaluated, but was considered impractical. It was determined that
a program of detailed analysis and modeling (detailed to the screw, nut,
washer and glue-line level) in conjunction with a rigorous hardware mass
properties measurement process at the piece parts and sub-assembly level
could effectively characterize the inertial properties of the system within
the requirements dictated by the spacecraft dynamics [157]. However, the
problems associated with unbalancing are magnified when the payload is
large and, as a consequence, the operational life could become shorter
and the operational reliability could degrade. In worst-case scenarios, the
attitude control system may fail to stabilize the spacecraft or the unbal-
anced loads may damage the motor sustaining the spin motion, thereby
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undermining the outcome of the mission.
The future Copernicus Imaging Microwave Radiometry (CIMR) mis-

sion [158] aims to provide high spatial resolution microwave imaging ra-
diometry measurements and derived products with global coverage and
sub-daily revisit in the Polar regions and adjacent Seas. To guarantee a
high spatio-temporal resolution, CIMR employs a conical scanning ge-
ometry with a spinning antenna reflector rotating about the nadir-pointing
axis of the spacecraft to guarantee a high spatio-temporal resolution. The
outward appearance of the CIMR spacecraft (see Figure 6.1) is domi-
nated by a 9-meters large deployable mesh antenna that is mounted on
the spun portion of the spacecraft and on the end of a 12-meters long
boom. The CIMR payload involves components much larger than the
SMAP ones (6-meters large reflector 6-meters long boom [159]) and, as
a consequence, even an accurate manufacturing might not guarantee suf-
ficient suppression of the inertial unbalances. For this reason, the effects
of the unbalances might have to be corrected at commissioning by means
of a dedicated balancing system [160].

Figure 6.1: CIMR spacecraft [161].
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6.2 Proposed architecture

In this Chapter, the concept introduced in the preliminary work [162] of
an ABS to actively counteract unbalance effects in a rotor, is extended to
explore a viable solution to the balancing of the CIMR rotating payload.
The original ABS concept has been further analyzed, generalized and,
then, experimentally validated on a simplified breadboard. Inspired by
previous works [153, 163], the proposed ABS is based on:

• a set of movable masses, mounted on the rotor, and actuated through
linear actuators;

• sensors, mounted on the spacecraft base, capable of measuring the
components of the in-plane joint force and torque to be canceled;

• an electronic unit with the control system to process data from the
sensors and to separately command the actuators to move the bal-
ancing masses to the target locations on the strokes.

After a detailed definition of a generic ABS configuration and the deriva-
tion of a suitable dynamical model, an analytical framework useful for the
analysis of the system balancing capabilities is proposed. The proposed
approach assumes a decoupled control architecture, wherein the attitude
of the spacecraft is controlled through the actuators of the spacecraft base
while the ABS controller tries to cancel out the effects of inertial unbal-
ances in the rotor by moving the masses at suitable locations. In this
regard, it has been recently shown in [164] that a properly tuned PD-like
controller is capable of keeping a stable attitude in the presence of inertial
unbalances in the rotating device and ensures convergence to the desired
attitude for vanishing unbalances, thereby allowing for balancing opera-
tions to be carried out safely. In this work, assuming that the spacecraft
controller keeps the attitude close to the desired one, we show that through
suitable assumptions the rotating device can be considered as fixed on the
ground when designing the control algorithm of the ABS. Due to the use
of sensors on the (non-rotating) spacecraft base, we further show that the
approximate dynamic model of the rotating device with the ABS is de-
scribed by a perturbed LTP system. Based on such a model, we develop
a HC law for the ABS to compensate for the effects of the unbalances.
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6.3 ABS modeling and control problem formulation

This Section is devoted to presenting the problem addressed in this work.
As mentioned in the Introduction, the system under investigation consists
of a rotating device, henceforth called “rotor”, mounted on a spacecraft,
which is referred to as “base”. To tackle the undesired effects associated
with the inertial unbalance of the rotor, in this work we consider the use
of an ABS made of a set of Nm ∈ Z>0 movable masses, mounted on the
rotor, and by sensors, mounted on the spacecraft, capable of measuring
the components of the joint force and torque perpendicular to the axis of
rotation. The system comprising the rotor and the ABS will be referred to
as the “payload” in the following.

6.3.1 Multibody system configuration and kinematics

To characterize the system configuration, several Cartesian reference frames
must be introduced (see Figure 6.2):

• an inertial frame Fi := (Oi,{i1, i2, i3}) fixed at center of the Earth;

• a base-fixed frame Fb := (Ob,{b1,b2,b3}), with Ob being the CoM
of the base. The difference vector between Ob and Oi resolved in Fi
is denoted by xb ∈ R3;

• a base-fixed frame Fa := (Oa,{a1,a2,a3}), with Oa being the at-
tachment point between the base and the payload and a3 ∈ S2 identi-
fying the axis of rotation. The difference vector between Oa and Ob
resolved in Fb is denoted by ha ∈ R3;

• a payload-fixed frame Fr := (O,{r1,r2,r3}), with O ≡ Oa. The
difference vector between O and Oi resolved in Fi is denoted by
xr ∈ R3. The difference vector between the payload CoM and O
resolved in Fp is denoted by xr

G ∈ R3.

Based on the above description, we are considering (without loss of gen-
erality) ai ≡ bi ∀i ∈ {1,2,3}, namely, that the frame Fa is aligned with
Fb. We now proceed by introducing the relevant quantities to describe
the kinematics of the system. The attitude of the rotor is represented by

113



Chapter 6. Active balancing system for rotating orbital devices

Figure 6.2: Multibody spacecraft configuration and definition of the reference frames.
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the rotation matrix Rr := [ r1 r2 r3 ] ∈ SO(3) which is described as a com-
position of two rotations:

Rr = RbQ (6.1)
where Rb = [b1 b2 b3 ] is the rotation matrix describing the attitude of the
spacecraft-fixed frame Fb with respect to the inertial frame Fi while

Q :=




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (6.2)

is the rotation matrix describing the attitude of the rotor-fixed frame Fr
with respect to the spacecraft-fixed frameFa, parametrized in terms of the
rotation angle θ ∈ [0,2π) and the spin axis e3 = [0 0 1 ]>. The position of
the i-th balancing mass expressed in Fi, denoted by xi ∈ R3, is a function
of the corresponding relative displacement si ∈ R as follows:

xi = xr + ri(si) (6.3)

where ri(si) := Rr(r̄i + sini), with r̄i := [ x̄i ȳi z̄i ]> ∈R3 is the zero location
(i.e.si = 0) of the i-th balancing mass relative to O and expressed in Fr,
while ni ∈ S2 is the unit vector assigning the corresponding displacement
direction. As the strokes on which the actuated masses can move have
finite length, we define si and s̄i the lower and upper limit of the i-th
stroke, respectively, such that si ∈ [si, s̄i].

The attitude kinematics of the rotor can be derived by differentiation
of (6.1):

Ṙr = ṘbQ+RbQ̇ = RbS(ω)Q+RbQS(e3)Ω

= RbQ(Q>S(ω)Q+S(e3)Ω) = RbQS(Q>ω +Ωe3)
(6.4)

where ω ∈ R3 is the (body) angular velocity of the spacecraft base, Ω :=
θ̇(t) ∈ R is the angular rate of the rotor relative to the frame Fa, which
is assumed to be constant, i.e., Ω̇(t) = Ω̈(t) ≡ 0 ∀t. In deriving (6.4)
we exploited the linearity property of the S−1(·) map and the property
S−1(R>S(ω)R) = R>ω ∀(R,ω) ∈ SO(3)×R3. From equation (6.4), one
can define the payload angular velocity resolved in Fp as

ωr = Q>ω +Ωe3, (6.5)
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which gives the compact expression Ṙr = RrS(ωr). The inertial velocity
of the center of mass of the rotor (point C in Figure 6.2) is obtained by
differentiating the expression xr

G := xr +Rrrr
G, which yields:

vr
G = vO +RrS(ωr)xr

G (6.6)

where vO := ẋr denotes the inertial velocity of the attachment point O.
The velocity of the i-th mass, resolved again in Fi, is given by

vi = vO +RrS(ωr)(r̄i + sini)+Rr ṡini, (6.7)

which comprises contributions from the motion of the attachment point
(vO), the overall angular velocity of the payload (ωr) and the relative
motion of the mass (ṡi). At this point, all the information needed to char-
acterize the proposed balancing system has been introduced and we can
formally define the ABS system.

Definition 6.1. Given a rotor-fixed frame Fr, the ABS with Nm movable
masses is defined by the tuple (m1, r̄1,n1,s1, s̄1, . . . ,mNn , r̄Nn,nNn,sNn

, s̄Nn)∈
(R>0×R3×S2×R×R)Nm .

6.3.2 Dynamics

The objective of the ABS is to move the balancing masses in such a way
that the in-plane components of the reaction force and torque at the in-
terface point, which are measured by sensors, are ideally canceled. To
understand how the inertial unbalances of the rotor affect those quanti-
ties, we apply Euler-Newton’s law to the rotor and the ABS system (i.e.,
the overall payload):

dq
dt

= f e + fO (6.8)

dhO

dt
=−vO×q+ τe

O + τO (6.9)
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where

q := mrvr
G +

Nm

∑
i=1

mivi

= mpvO +mrRrS(ωr)xp
G +Rr

Nm

∑
i=1

miṡini (6.10)

hO := mrS(Rrxr
G)vO +RrJrω +

Nm

∑
i=1

ri×mivi

= mpS(Rrxp
G)vO +RrJrωr+

+Rr
Nm

∑
i=1

mi(S(r̄i + sini)S(r̄i + sini)
>ωr +S(r̄i)niṡi)) (6.11)

are the translational and the angular momentum, respectively. The exoge-
nous force and torque have been split in contributions associated with the
interface reaction at O ( fO and τO) and in contributions associated with
environmental effects ( f e and τe

O). Herein, Jr ∈ R3×3 and mr ∈ R>0 are
the inertia matrix, with respect to O and expressed in Fr, and the mass of
the rotor, respectively, while mp := mr +∑

Nm
i=1 mi is the total mass of the

payload and xp
G := 1

mp (mrxr
G+∑

Nm
i=1 mi(r̄i+sini)) is the location of the cen-

ter of mass of the payload. Before proceeding, the following assumptions
are considered to simplify the dynamical model in (6.8)-(6.9) to carry out
the control design of the ABS controller.

Assumption 1. Given any constant desired attitude Rd ∈ SO(3), the at-
titude control system of the spacecraft keeps the spacecraft attitude Rb

close to the desired one Rd , so that one can consider Rb(t) ≡ Rd ∀t ≥ 0
when designing the ABS controller.

Remark 30. The above assumption is reasonable as the magnitude of the
unbalance force and torque are dependent on the rotor speed, as shown
next, and in a plausible scenario the rotor will be spun up slowly to avoid
the risks associated with large unbalances. Moreover, based on the re-
sults of [164], a properly designed and tuned attitude control system for
the spacecraft base can keep the attitude stable in the presence of a ro-
tating unbalanced device, with guaranteed convergence to the desired at-
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titude for vanishing unbalances. Small mismatches with respect to the
perfect stabilization condition embedded in Assumption 1 will be treated
as disturbance terms acting on the nominal model.

Assumption 2. The exogenous force and torque acting on the payload
are given by

f e := f g +∆ f e (6.12)
τe

O := Rrxp
G× f g +∆τe

O, (6.13)

where f g := −µ⊕mp xp
G

‖xp
G‖3 , with µ⊕ being the product of gravitational

constant and the mass of the earth, while ∆ f e ∈ R3 and ∆τe
O ∈ R3 repre-

sent unmodelled disturbances.

Remark 31. Assumption 2 implies that the main source of the exogenous
force and torque is due to the gravity field, derived using a point mass
model of the payload. Unmodelled (second order) effects associated with
the actual mass distribution of the system and other environmental per-
turbations are included in the terms ∆ f e and ∆τe, which will be dealt with
a robust control design. It is worth underlying that the approximation in-
troduced through Assumption 2 is standard when studying the dynamics
of robotic space systems [165], and it essentially splits the overall motion
of the spacecraft into the orbital motion of a point having the total mass
of the system and a superimposed relative motion, as if the spacecraft is
floating without gravity.

As shown next, Assumption 1 and Assumption 2 allow for the develop-
ment of a decoupled control architecture in which the ABS control design
can be carried out independently of the spacecraft attitude control, the lat-
ter being considered in [164]. Let us focus on the translational dynamics
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6.3. ABS modeling and control problem formulation

first. By substituting (6.10) into the left-hand side of (6.8), we have:

dq
dt

= mpv̇0 +Rr
Nm

∑
i=1

mi (S(ωr)ṡini + s̈ini)+

+ Ṙr

(
mpS(ωr)rC +

Nm

∑
i=1

mi(S(ωr)(r̄i + sini)+ ṡini)

)
+

+Rr

(
mpS(ω̇r)rC +

Nm

∑
i=1

mi(S(ω̇r)(r̄i + sini)+ ṡini)

)
. (6.14)

Based on Assumption 1, one also has ω(t) = ω̇(t)≡ 0 ∀t ≥ 0. Since the
payload is rotating at constant rate, Ω̇(t) ≡ 0 ∀t ≥ 0, it follows that the
angular velocity of the payload is identically zero as well, i.e., ω̇r = ω̇ +
Ω̇e3 ≡ 0. Further assuming that the orbital acceleration times the mass
of the payload is mostly balanced by the gravity force, i.e., mpv̇O ≈ f g

(we embed the mismatch into the disturbance term ∆ f e), using (6.10),
(6.14) and (6.12) the interface force can be approximated by the following
expression:

fO = RrS(Ωe3)

(
mrS(Ωe3)rC +

Nm

∑
i=1

miṡini +S(Ωe3)(r̄i + sini)

)
+

+Rr

(
Nm

∑
i=1

mis̈ini +S(Ωe3)ṡini

)
+∆ f e. (6.15)

We can now proceed similarly for the angular dynamics (6.9). To this
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end, consider the following equalities:

vO×q = S(vO)mpvO +S(vO)(mrRrS(ωr)xp
G +Rr

Nm

∑
i=1

miṡini)

=−S(mpRrS(ωr)xp
G +Rr

Nm

∑
i=1

miṡini)vO, (6.16)

d
dt

mpS(Rrxp
G)vO = mpS(RrS(ωr)xp

G +Rrẋp
G)vO +mpS(Rrxp

G)v̇O

= S(mpRrS(ωr)xp
G +Rr

Nm

∑
i=1

miṡini)vO +S(Rrxp
G) f g, (6.17)

where we exploited that S(vO)mpvO = mpvO× vO = 0 and then used the
approximation mpv̇O ≈ f g, which was already introduced when deriving
the approximated translational dynamics. Using (6.16) and (6.17), one
obtains vO× q + d

dt mpS(Rrxp
G) = S(Rrxp

G) f g. Then, substituting (6.13)
into (6.9), and performing some computations, we obtain the following
expression for the approximated interface torque:

τO = RrS(Ωe3)

(
Jrω +

Nm

∑
i=1

miS(r̄i + sini)S>(r̄i + sini)Ωe3+

+
Nm

∑
i=1

miS(r̄i)niṡi

)
+Rr

(
Nm

∑
i=1

mi

(
S(ni)S>(r̄i + sini)+

+S(r̄i + sini)S>(ni)
)

Ωe3ṡi +
Nm

∑
i=1

miS(r̄i)nis̈i

)
+∆τe

O (6.18)

where we considered the same approximations adopted for the transla-
tional dynamics stemming from Assumption 1. As the ABS setup de-
scribed in the Introduction makes use of sensors that measure the interface
force and torque in frameFa, it is necessary to express (6.15) and (6.18) in
such a frame. To this end, multiplying both sides of (6.15)-(6.18) by Rb>,
the in-plane components of fO and τO in Fa can be compactly written as
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6.3. ABS modeling and control problem formulation

follows:




f a
O1

f a
O2

τa
O1

τa
O2


=




c(θ(t)) −s(θ(t)) 0 0
s(θ(t)) c(θ(t)) 0 0

0 0 c(θ(t)) −s(θ(t))
0 s(θ(t)) c(θ(t))




︸ ︷︷ ︸
Z(t)




f r
O1

f r
O2

τr
O1

τr
O2


 , (6.19)

where c(·), s(·) is a shorthand notation for cos(·), sin(·), respectively, and
the expressions of f r

O, τr
O are reported in the following equations:

f r
O1

=−Ω
2

(
mrxr

G +
Nm

∑
i=1

mi(x̄i + sie>1 ni)

)
+2Ω

Nm

∑
i=1

mie>2 niṡi+

+
Nm

∑
i=1

mie>1 nis̈i +∆ f er
1 (6.20)

f r
O2

=−Ω
2

(
mryr

G +
Nm

∑
i=1

mi(ȳi + sie>2 ni)

)
−2Ω

Nm

∑
i=1

mie>1 niṡi+

+
Nm

∑
i=1

mie>2 nis̈i +∆ f er
2 (6.21)

τr
O1

=−Ω
2

(
Jr

23−
Nm

∑
i=1

mi(ȳi + sie>2 ni)(z̄i + sie>3 ni)

)
+

+
Nm

∑
i=1

mi
[
0 −z̄i ȳi

]
nis̈i +Ω

Nm

∑
i=1

mi
([
−z̄i 0 x̄i

]
ni+

+e>1 S(ni)
[
−ȳi− sie>2 ni x̄i + sie>1 ni 0

]>
+

+
[
0 −z̄i− sie>3 ni ȳi + sie>2 ni

]
S>(ni)e3

)
ṡi +∆τer

O1
(6.22)
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τr
O2

= Ω
2

(
Jr

13−
Nm

∑
i=1

mi(x̄i + sie>1 ni)(z̄i + sie>3 ni)

)
+

+
Nm

∑
i=1

mi
[
z̄i 0 −x̄i

]
nis̈i +Ω

Nm

∑
i=1

mi
([

0 −z̄i ȳi
]

ni+

+e>2 S(ni)
[
−ȳi− sie>2 ni x̄i + sie>1 ni 0

]>
+

+
[
z̄i + sie>3 ni 0 −x̄i− sie>1 ni

]
S>(ni)e3

)
ṡi +∆τer

O1
. (6.23)

Remark 32. Given the approximations introduced to derive the mathe-
matical model (6.19), the dynamics of the rotating device under an atti-
tude controlled base has been reduced to the one of a ground fixed system,
thereby effectively enabling a decoupled design for the attitude controller
of the base and the control system of the ABS and giving the possibility of
testing the ABS on ground by building a suitable breadboard, as discussed
in Section 6.5.1.

6.3.3 Control problem formulation

To describe the balancing control problem based on the dynamic model
derived in the previous section, we first characterize the necessary control
authority of the ABS to achieve a balanced configuration. Without loss of
generality, assume that the rotor and the ABS unbalances for si = 0 can
be split in nominal and perturbation terms as follows:

mrxr
G +

Nm

∑
i=1

mix̄i = S̄1 +∆S1 = ∆S1 (6.24)

Jr
13−

Nm

∑
i=1

mix̄iz̄i = J̄13 +∆J13 = ∆J13 (6.25)

mryr
G +

Nm

∑
i=1

miȳi = S̄2 +∆S2 = ∆S2 (6.26)

Jr
23−

Nm

∑
i=1

miȳiz̄i = J̄23 +∆J23 = ∆J23 (6.27)
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where, given i = 2,3, S̄i and ∆Si denote the static moment and the cor-
responding perturbation and similarly J̄i3 and ∆Ji3 denote the nominal
inertia moment and the corresponding perturbation. The idea behind the
decomposition in (6.24)-(6.27) is that the rotor and the ABS are designed
to be self-balanced (S̄1 = S̄2 = 0, J̄13 = J̄23 = 0) but that there will be
unavoidably residual unbalances in practice. Of note, for constant un-
balances, balanced equilibrium conditions (ṡi = s̈i = f r

O1
= f r

O2
= τr

O1
=

τr
O2

= 0) can be obtained provided that the ABS satisfies the following
assumption.

Assumption 3. Given positive scalars ∆̄i ∈ R>0, i = 1, . . . ,4, for any
[∆S1 ∆S2 ∆J13 ∆J23 ]

> ∈ Ω∆ :=
{

∆ ∈ R4 : |∆i| ≤ ∆̄i, i = 1, . . . ,4
}

, the ABS
(mi, r̄i,ni,si, s̄i), i = 1, . . . , Nm, is such that the system of algebraic equa-
tion

Nm

∑
i=1

mie>1 nisi =−∆S1 (6.28)

Nm

∑
i=1

mie>2 nisi =−∆S2 (6.29)

Nm

∑
i=1

mi

(
(e>2 ni)(e>3 ni)s2

i ȳi(e>3 ni)+ z̄i(e>2 ni)si

)
= ∆J23 (6.30)

Nm

∑
i=1

mi

(
(e>1 ni)(e>3 ni)s2

i x̄i(e>3 ni)+ z̄i(e>1 ni)si

)
= ∆J13 (6.31)

admits at least one feasible solution, i.e., there exist positions of the bal-
ancing masses solving (6.28)-(6.31) and such that si ∈ [si, s̄i] ∀i= 1, . . . , Nm.

Note that system (6.28)-(6.31) is obtained by substituting equations (6.24)-
(6.27) in (6.20)-(6.23) and then by setting to zero the terms that multiply
Ω2. The above assumption is necessary to have a feasible control prob-
lem, as more formally defined at the end of this Section. This system can
be rewritten in matrix form as
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∆1J2
13 · · · ∆MJ2

13
0 · · · 0

∆1J2
23 · · · ∆MJ2

23
0 · · · 0







s2
1
...

s2
M


+




∆1J1
13 · · · ∆MJ1

13
∆1S2 · · · ∆MS2
∆1J1

23 · · · ∆MJ1
23

∆1S1 · · · ∆MS1







s1
...

sM


=




∆J13
−∆S2
∆J23
−∆S1




(6.32)
where for the i-th mass the following definitions are valid

∆
iJ2

13 = mi(nxinzi)

∆
iJ1

13 = mi(nxizni +nzixni)

∆
iS1 = minyi

∆
iJ2

23 = mi(nyinzi)

∆
iJ1

23 = mi(nyizni +nziyni)

∆
iS2 = minxi.

(6.33)

Important considerations can now be made:

• Second order terms vanish when ni is on the xy plane or when ni =
[0 0 1 ]T .

∆
iJ2

13 = mi(nxinzi) = 0 ∆
iJ2

23 = mi(nyinzi) = 0.

• First order terms vanish when

∆
iJ1

13 = mi(nxizni +nzixni)−→ nxi =−
xni

zni

nzi with zni 6= 0

∆
iJ1

23 = mi(nyizni +nziyni)−→ nyi =−
yni

zni

nzi with zni 6= 0

∆
iS1 = minyi −→ nyi = 0

∆
iS2 = minxi −→ nxi = 0.

• When ni is aligned with a body axis in the xy plane, e.g., ni = [0 1 0 ]T

∆
iJ1

13 = mi(nxizni +nzixni) = 0

∆
iJ1

23 = mi(nyizni +nziyni) = mizni

∆
iS1 = minyi = mi

∆
iS2 = minxi = 0.
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6.3. ABS modeling and control problem formulation

In this case to have a well-defined problem we need at least two
masses at different coordinates along the z-axis

m1z1s1 +m2z2s2 = ∆J23

m1s1 +m2s2 = ∆S1.

• When ni is aligned with the z-axis, e.g., ni = [0 0 1 ]T

∆
iJ1

13 = mi(nxizni +nzixni) = mixni

∆
iJ1

23 = mi(nyizni +nziyni) = miyni

∆
iS1 = minyi = 0

∆
iS2 = minxi = 0.

It can be seen that masses moving in the xy plane are needed to
balance the static moments.

Exploiting these considerations and by defining w := [ f r
O1

f r
O2

τr
O1

τr
O2 ]
>

and by means of (6.24)-(6.27), equations (6.20)-(6.23) can be compactly
written as1:

w =
Nm

∑
i=1

Ci
absy

i
a +Dabsd (6.34)

where yi
a = [ si ṡi s̈i ]

> and d := [∆S1 ∆S2 ∆J13 ∆J23 ]
> and the exogenous dis-

turbances have been neglected for the purpose of deriving the nominal
model for control. The exact expressions of Ci

abs and Dabs can be de-
rived from (6.20)-(6.23) but they are omitted here for space reasons. The
ABS system includes Nm position-controlled linear actuators to assign
the motion of the balancing masses. Assuming a linear behavior, we can
compactly write the actuators dynamics as

ẋa = Aaxa +Bau, ya =Caxa +Dau, (6.35)

where xa = [ x1
a ··· xNm

a ]> ∈ RNmNa is a vector including all the states of
the Nm actuators, ya = [ yi

a ··· yNm
a ]> ∈ R3Nm is a vector collecting the out-

puts defined in (6.34) and u = [u1 ··· uNm ] ∈ RNm is the vector of control
1To handle a linear problem the ni are considered always on the xy plane or ni = [0 0 1 ]T in order to

eliminate the second order terms. This assumption holds in the entire work and in the following it is implied.
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variables, i.e., the desired positions of the ABS masses. Finally, Aa =
blkdiag(Ai

a), Ba = blkdiag(Bi
a), Ca = blkdiag(Ci

a) and Da = blkdiag(Di
a)

are block diagonal matrices formed from the quadruples (Ai
a,B

i
a,C

i
a,D

i
a)

characterizing the i-th actuator dynamics, which has order Na. The in-
plane torque and force in the spacecraft-base frame (equation (6.19)) are
measured by load sensors, for which we again assume a linear behavior,
given by:

ẋs = Asxs +BsZ(t)w
= Asxs +BsZ(t)(CabsCaxa +CabsDau+Dabsd) (6.36)

ys =Csxs (6.37)

where Cabs = [C1
abs ··· CNm

abs ], Z(t) is defined in (6.19) and As = blkdiag(Ai
s),

Bs = blkdiag(Bi
s), Cs = blkdiag(Ci

s) are block diagonal matrices formed
from the quadruples (Ai

s,B
i
s,C

i
s) characterizing the i-th load sensor dy-

namics, which has order Ns. By defining x = [ xa xs ]> and y = ys ∈R4, the
overall system can be written in state-space form as follows:

ẋ = A(t)x+Bu(t)u+Bd(t)d y =
[
0 Cs

]
x (6.38)

where

A(t) =
[

Aa 0
BsZ(t)CabsCa As

]
, Bu(t) =

[
Ba

BsZ(t)CabsDa

]
,

Bd(t) =
[

0
BsZ(t)Dabs

]
. (6.39)

By referring to system (6.38), the problem that we address in this work
can be formulated as the design of an output feedback controller for u (de-
sired positions of the ABS masses) such that the measured interface loads
y are minimized for all inertial unbalances satisfying |di| ≤ ∆̄i, i= 1, . . . ,4,
where ∆̄i ∈R>0 are the minimum unbalances that the ABS should be able
to compensate for according to Assumption 3.

6.4 Control law design

In this Section, we design a HC algorithm to command the positions of
the actuated masses in such a way that the effects of rotor unbalance are
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significantly reduced. Specifically, we define the T -matrix representation
of the LTP model of the rotor and the ABS in equation (6.38), following
the approaches in [150, 141]. Then, we apply the optimal LQ-based HC
algorithm described in Section 5.5.

6.4.1 T -matrix definition

It can be noticed that the rotor will be subject to a proper, steady-state
harmonic control input at frequency Ω whenever the control vector u is
constant (the same consideration holds for the disturbance d). This im-
plies that we only have to study the response of the periodic model to a
EMP input with s = 0, i.e., we only have to compute the input/output op-
erators Gu(0) and Gd(0). Given a constant input u(t) = U0, the vector U
corresponding to u(t) =U0 is given by

UT =
[
· · · 0 0 UT

0 0 0 · · ·
]

(6.40)

and the steady-state response Y of the periodic system without the distur-
bance is given by

Y = Gu(0) U (6.41)

which can be equivalently written as




...
Y−2
Y−1
Y0
Y1
Y2
...




=




. . . ...
...

...
...

...
· · · G u

−2,−2 G u
−2,−1 G u

−2,0 G u
−2,1 G u

−2,2 · · ·
· · · G u

−1,−2 G u
−1,−1 G u

−1,0 G u
−1,1 G u

−1,2 · · ·
· · · G u

0,−2 G u
0,−1 G u

0,0 G u
0,1 G u

0,2 · · ·
· · · G u

1,−2 G u
1,−1 G u

1,0 G u
1,1 G u

1,2 · · ·
· · · G u

2,−2 G u
2,−1 G u

2,0 G u
2,1 G u

2,2 · · ·
...

...
...

...
... . . .







...
0
0

U0
0
0
...




(6.42)
Focusing on the first harmonics, from equation (6.42) we have that

[
Y−1
Y1

]
=

[
G u
−1,0

G u
1,0

]
U0. (6.43)
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Converting the harmonics of the output from exponential to trigonometric
form, the following expression is obtained:

[
Y1c
Y1s

]
= TU0, (6.44)

where

T := 2
[

Real[G u
1,0]

Imag[G u
1,0]

]
∈ R2ny×nu (6.45)

is the T -matrix.

6.4.2 LQ-based HC algorithm

Let us assume that the update of the input u(t) (i.e., the commanded po-
sition of the actuated masses) is at specific times tk = k∆t, where ∆t is the
time interval between consecutive updates, during which the plant output
is assumed to reach a steady level, and where k ∈ Z≥0 is the discrete-time
index. Exploiting equation (6.45), the steady-state response of the system
(6.38) to both inputs and disturbances can be expressed by the following
discrete time mathematical model:

Y1(k) = Tu(k)+Wd, (6.46)

where Y1 ∈ R2ny is the vector of the first harmonics of measured outputs,
u is the vector of the desired positions of the ABS masses in the rotating
frame and d is the vector of the inertial unbalances defined below equation
(6.34). The matrix W ∈ 2ny× nd is a constant matrix defined in similar
fashion as

W := 2

[
Real[G d

1,0]

Imag[G d
1,0]

]
. (6.47)

For system (6.46), HC is a viable approach for the design of a feedback
controller aiming at the minimization of the measured interface loads. In
this work we apply the control law described in Section 5.5, namely:

u(k+1) = KTu(k)−KY1(k) (6.48)

where K = (T>QT +R)−1T>Q is a gain matrix.
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6.5 Simulation and experimental results

By carefully inspecting equations (6.20)-(6.23), one sees that the balanc-
ing problem can be decoupled in two sub-problems, one for the xz plane
and one for the yz plane, provided that the ABS is made of a suitable set
of strokes directed along the coordinate axes. Based on this idea, a bread-
board representative of a single-plane ABS has been designed and built to
test the proposed control design.

6.5.1 ABS breadboard design and modeling

The breadboard (see Figure 6.3 and Figure 6.10) has been designed with
an ABS made of three movable counter-masses lying in the xz plane of
the rotor frame: a central mass, which can be moved along the x-axis
(n1 = e1), and two side masses, which can be moved along the z-axis
(n2,3 = e3). While two masses would have been enough to balance the
system, three masses give more flexibility and allow to easily obtain a
self-balanced ABS. The main components of the breadboard are:

• the rotor structure, with the possibility of applying a known unbal-
ance (static and dynamic) through the placement of four masses at
the corners;

• three guides, each endowed with a linear actuator, to move the counter-
mass;

• three load cell sensors in an equilateral triangle configuration form-
ing a dynamometer;

• the stator structure;

• the rotary actuator, composed of motor, gearbox, and a differential
digital encoder to rotate the rotor shaft;

• the slip ring, to guarantee the electrical connection between rotor
and stator;

• the power supply, acquisition system, conditioners, and controllers.
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Figure 6.3: Multibody model of the breadboard.

The ABS configuration has been designed to be self-balanced, i.e., when
the counter masses are in their zero positions (si = 0) no unbalance is
added to the system (see again equations (6.24)-(6.27)). The dynamome-
ter allows the measurement of the interface force along the x−axis and
the torque about the y-axis. The nominal angular rate of the rotor is
Ω = 7.8rpm. For the considered setup, the reaction force f r

O1
(6.20) and

torque τr
O2

(6.23) reduce to the following expressions:

f r
O1

=−Ω
2 (∆S1 +m1s1)+m1s̈1− f e

1 (6.49)

τr
O2

= Ω
2 (∆Jr

13−m1z̄1s1−m2x̄2s2−m3x̄3s3)

+
3

∑
i=1

mi [ z̄i 0 −x̄i ]nis̈i− τe
O1

(6.50)

where ∆S1 = ∑
4
i=1 ms

i x̄
s
i and ∆Jr

13 = ∑
4
i=1−ms

i x̄
s
i z̄

s
i . Herein ms

i ∈R>0 is the
i− th unbalance mass and xs

i ∈ R and zs
i ∈ R represent the i-th unbalance
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mass and its coordinates in the xz plane, respectively. The exogenous
force component f e

1 is associated with disturbances acting on the plat-
form, such as, e.g., friction between the rotor and the stator, small incli-
nation of the structure with respect to the gravity direction, residual static
unbalance in the structure, etc.. Instead, the exogenous torque mainly
comprises the torque associated with gravity, i.e.,

τe
O1
≈

4

∑
i=1

ms
i gxi +mrgxr

G +m1gs1, (6.51)

and the torque associated with an unavoidable residual unbalance in the
structure.

Remark 33. While the gravity-induced torque (6.51) could be considered
as a disturbance to be balanced by the harmonic controller (by including
the term m1g in matrix C1

abs in equation (6.34)), it was decided to remove
it from the measured signal before applying the HC algorithm to better
replicate on-orbit operations.

At this point, the dynamic model of the breadboard can be written in
the same form as (6.38). Specifically, the matrices in equation (6.34),
entering the dynamics through (6.39), are given by:

C1
abs = m1

[
−Ω2 0 1
−Ω2z̄1 0 z̄1

]
, C2

abs =−m2

[
0 0 1

Ω2x̄2 0 x̄2

]
, (6.52)

C2
abs =−m3

[
0 0 0

Ω2x̄3 0 x̄3

]
, Dabs :=

[
−Ω2 0

0 Ω2

]
. (6.53)

For simplicity, we consider critically-damped second order systems for
both the actuators and the sensors dynamics with unit DC-gain (which
fully define matrices Aa,Ba,Ca,Da,As,Bs,Cs). Matrix A(t) defined as in
(6.39), can be expanded in a complex Fourier series A(t)=∑

∞
m=−∞ Ame jmΩt :

since Z(t) =
[

cos(θ(t)) 0
0 cos(θ(t))

]
for the considered case, only the terms

A0, A1 and A−1 are different from the null matrix. Expanding in the
same fashion Bu(t) and C(t), we consider the following finite-dimensional
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Toeplitz matrices

A=

[
A0 A−1 0
A1 A0 A−1
0 A1 A0

]
Bu =

[
Bu0 0 0

0 Bu0 0
0 0 Bu0

]

Bd =

[
Bd0 Bd−1 0
Bd1 Bd0 Bd−1

0 Bd1 Bd0

]
C =

[
C0 0 0
0 C0 0
0 0 C0

] (6.54)

to compute the T -matrix as given by equation (6.45). The choice of the
number of block rows used to approximate the infinite dimensional ma-
trices in (6.41) will affect the numerical accuracy of the results (see [166]
for an analysis of the effect of such a truncation in the study of frequency
response operators). We found that using 3×3 block-matrices as in (6.54)
was sufficient for our purposes.

6.5.2 ABS sizing and balancing capabilities

The proposed ABS is well-defined in the sense of Assumption 3 since the
system

[
m1 0 0

m1z̄1 m2x̄2 m3x̄3

]


s1
s2
s3


=

[
−∆S1
∆J13

]
, (6.55)

derived from equations (6.49)-(6.50), admits ∞1 solutions provided that x̄2
and x̄3 are different from zero, i.e., the system is overactuated. Of course,
due to the finite length of the strokes (s̄i = −si = 0.5m), the maximum
static and dynamic unbalances which can be compensated are bounded.
The balancing masses and their locations have been selected to counter-
act all the unbalances in the set Ω∆ :=

{
∆S1, ∆J13 ∈ R2 : |∆S1| ≤ ∆S1,

|∆J13| ≤ ∆J13
}

, where ∆S1 = 2.2kgm and ∆J13 = 4.5kgm2. The re-
sulting ABS is characterized by the following parameters: z̄1 = 0.98m,
z̄2 = z̄3 = 0.72m x̄2 =−x̄3 = 0.87m, m1 = 4.6kg and m2 = m3 = 8.1kg.
The balancing capabilities of the proposed sizing can be evaluated from
(6.55) by computing the range of the map

(s1,s2,s3) 7→
[

m1 0 0
m1z̄1 m2x̄2 −m3x̄2

]



s1
s2
s3


 (6.56)
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in the feasible set, i.e., for si ∈ [−0.5, 0.5]m, which corresponds to the
area within the black parallelogram shown in Figure 6.4. As can be seen
in the Figure, the red rectangle representing the set Ω∆ is strictly inside the
parallelogram with at least a 5% margin, thereby satisfying the balancing
requirements.

Figure 6.4: Operative range of the breadboard.

6.5.3 Control law tuning

In this Section, we present the procedure employed to tune the weight-
ing matrices Q and R in the gain matrix (7.2). The procedure has been
performed by requiring that the measured interface loads at the nominal
rotor speed (Ω = 7.8rpm) are below given bounds, specifically | f r

O1
| <

∆Sres
1 Ω2 = 0.07N and |τr

O2
| < ∆Jres

13 Ω2 = 0.2Nm, which correspond to
maximum allowed residual unbalances ∆Sres

1 ≈ 0.1kgm and ∆Jres
13 ≈

0.3kgm2. As explained in Remark 28, the selection of the weighting
matrices Q,R in the T -matrix algorithm (7.1) is based on the trade-off
between performance and robustness. For simplicity, we consider R = I3
and Q = α I4 with α := 1/ρ a scalar which is the only parameter to
tune. Considering the worst-case scenario, namely when (∆S1,∆J13) =
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±(∆S1,∆J13), different values of α are used in equation (5.48) and the
related suppression levels are plotted in Figure 6.5, where

|τr
02
|=
√

(τb
02
)2

c +(τb
02
)2

s and | f r
01
|=
√
( f b

01
)2

c +( f b
01
)2

s .

From the numerical results, α = 10 has been chosen, which guarantees a
worst-case suppression below the maximum allowed residual unbalance.

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

|| 
O

2

r
 ||

Allowable range

10
-1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

|| f
O

1

r
 ||

Allowable range

Figure 6.5: Unbalances suppression with different α .

Then, a Monte Carlo study has been carried out to assess the robustness
of the tuned HC algorithm with respect to uncertainty on the balancing
masses (±0.1kg) and on their locations (±0.05m). More precisely, 10000
samples have been generated and, for each of them, the upper bound on
the spectral radius has been evaluated using (5.55): the maximum bound
on ρs(K̂∆T ) found in the tests is 0.0579 (which is much smaller than 1),
showing that a high level of robustness is guaranteed with the proposed
tuning.
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6.5.4 Numerical results

In this Section, a simulation example is reported with the aim of show-
ing the performance of the proposed ABS combined with HC. For this
purpose, a multibody model of the breadboard which includes two un-
balancing masses (ms

1 = 6kg at (x̄s
1, z̄

s
1) = (0.75,1.46)m and ms

2 = 4kg at
(x̄s

2, z̄
s
2) = (−0.75,0.02)m), has been developed in Simulink. The con-

trol law has been implemented in discrete-time, with an update time of
200s, which is enough to reach steady-state conditions. Extraction of the
harmonics to be used in the T -matrix algorithm is performed through a
real-time Fast Fourier Transform (FFT) algorithm that processes the mea-
sured signals.

The performance of the control law has been analyzed in two differ-
ent conditions. In the first one the T -matrix is assumed to be exactly
known. The results obtained for this (ideal) case in the discrete-time do-
main are collected in Table 6.1. In this table and in the following ones,
”Iteration” corresponds to the discrete-time index; the ”Force and Torque
amplitude” are computed through the real time FFT algorithm with the
balancing masses in the positions reported in the row ”Actual”; the rows
corresponding to ”Computed” report the positions of the masses obtained
with the HC at the end of the update-time and to be implemented at the
next iteration. On the other hand, the results in continuous-time domain
are plotted in Figure 6.6 and Figure 6.7.

Table 6.1: Ideal case results.

Iteration 0 1-2-3-4
Force amplitude [N] -1.008 -0.003
Torque amplitude [Nm] -4.340 -0.007
Actual s1 [m] 0 -0.3251
Actual s2 [m] 0 -0.3583
Actual s3 [m] 0 +0.3583
Computed s1 [m] -0.3251 -0.3251
Computed s2 [m] -0.3583 -0.3583
Computed s3 [m] +0.3583 +0.3583

We can see that a satisfactory vibration suppression is achieved after one
update of the control law: the interface force and torque are well below
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Figure 6.6: Torque suppression - Nominal case.
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Figure 6.7: Force suppression - Nominal case.
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the given thresholds, with the same values for all iterations after the first
update (as expected from equation (5.46)).

In the second case, the ABS performance is evaluated in a more real-
istic scenario in which the system is affected by parametric uncertainties
and imperfect knowledge of exogenous disturbances, which must be re-
moved from the measured signal before applying the HC algorithm (Re-
mark 33). Besides the already mentioned torque associated with grav-
ity (6.51), a sinusoidal force of the form f b

e1
= Ae sin(ωet + φe), with

Ae = 0.21N, φe = 1.93rad, has been removed from the measured inter-
face force to replicate the disturbance identified on the real platform when
rotating at very low speed, a condition in which the force and torque as-
sociated with inertial unbalances are very small.2 A Monte Carlo study
(500 simulations) has been carried out with respect to: uncertainty on the
unbalancing masses (±0.2kg) and on their locations (±0.1m);3 uncer-
tainty on the amplitude (±0.05N) and phase (±0.1rad) of the compen-
sated disturbance force; uncertainty on the ABS components (balancing
masses and locations) using the same values considered in the previous
Section. The most relevant statistics (mean, standard deviation, maxi-
mum and minimum values) of the absolute value of the interface loads
at the last iteration of the HC algorithm are collected in Table 6.2, while
Figure 6.8 and Figure 6.9 depict the corresponding time-domain repre-
sentations. We can see that a satisfactory suppression is achieved in all
the tests, despite the uncertainties.

Table 6.2: Statistical properties Monte Carlo simulations.

Statistical parameter Force [N] Torque [Nm]
Mean 0.003 0.007
Standard Deviation 0.007 0.006
Minimum 0.001 0.001
Maximum 0.029 0.022

2While the root-cause of such a disturbance is probably a combination of several factors, e.g., friction,
a small inclination of the structure with respect to the gravity direction, it was found to be almost invariant
with respect to the rotating speed but dependent on the specific unbalancing. Hence, in the experimental tests,
a model of the disturbance has been identified at low speed at the beginning of each test and then used to
compensate the disturbance in the signal measured at the nominal operating speed.

3The values of the unbalancing masses are used only for the computation of the gravity torque (6.51) and
are not needed for the on-orbit case (see Remark 33).
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Figure 6.8: Torque suppression - Monte Carlo analysis.

Figure 6.9: Force suppression - Monte Carlo analysis.
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6.5.5 Experimental results

In this Section, we present the results obtained by applying the HC algo-
rithm on the breadboard shown in Figure 6.10.

Figure 6.10: Breadboard used in the experiments.

In addition to the breadboard, the experimental setup includes:

• a charge Amplifier (Kistler Type 5080A) which receives the signals
from the load cells and provides as output suitably amplified analog
measurements of the interface force and torque;

• a data acquisition board (National Instruments USB-6003) which
takes as input the amplified signals;

• a laptop computer which receives the output of the acquisition board,
runs the HC algorithm and sends the commands to the linear actua-
tors; it is also used to set the speed of the rotor.
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A schematic view of the overall setup is shown in Figure 6.11.

Figure 6.11: Test setup scheme.

The balancing tests reported in the following have been carried out at the
nominal rotor speed (Ω = 7.8rpm) through the following steps:4

1. a set of unbalance masses are mounted on the rotor;

2. data are logged for 300s using the USB-6003 acquisition board;

3. the discrete FFT is applied to the logged signal to evaluate the inter-
face loads amplitude at the rotating frequency of the rotor;

4. the target positions of the balancing masses are computed through
the HC algorithm;

5. an operator checks the algorithm outputs. If the positions are feasi-
ble, the operator sends them to the actuators;

4As mentioned before, at the beginning of each test a preliminary test at low speed (0.5RPM) is performed
with the aim of identifying possible disturbances, not related to inertial unbalances, to be removed from the
measured signals before applying the HC algorithm.
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6. the actuators receive the commands and we wait until the target po-
sitions are reached;

7. the steps 2-3 are repeated to check that the system is balanced. If
not, the steps 4-6 are repeated until the system is balanced.

Remark 34. The choice of implementing the HC algorithm with a human-
in-the-loop approach is motivated by the expected on-orbit procedures
in which a ground operator will have to assess, for safety reasons, the
correctness of the computed positions of the masses, due to the criticality
of balancing operations. It is worth mentioning that a limited amount of
iterations is expected.

In the following, three experiments with different unbalancing masses and
with increasing complexity are presented:

• a static unbalance compensation test, in which only the central bal-
ancing mass is used;

• a dynamic unbalance compensation test, in which only the vertical
balancing masses are used;

• a combined static and dynamic unbalances compensation test in
which all the balancing masses are used.

Static unbalance compensation

The first balancing test involves ms
1 = 1.051kg at (x̄s

1, z̄
s
1) = (0.75,1.46)m

and ms
2 = 1.046kg at (x̄s

2, z̄
s
2) = (0.75,0.02)m. To compensate for the

resulting static unbalance (∆S1 = 1.57kgm), the ideal position of the bal-
ancing mass m1 should be

s1 =−
∆S1

m1
=−0.34m. (6.57)

The data related to this test are reported in Table 6.3. By inspecting the
table, the slight difference in terms of the computed position (last row
of Table 6.3, second iteration) with respect to the ideal position of the
balancing mass (equation (6.57)) is likely due to the intrinsic unbalance of
the structure and to a slightly erroneous compensation of the disturbance
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f b
e1

. Thanks to the second iteration of the HC algorithm, the measured
interface load | f r

O1
| is reduced to 0.037N, which is below the required

threshold (0.07N).

Table 6.3: Static unbalance compensation test.

Iteration 0 1 2
Force amplitude [N] -1.035 -0.071 -0.037
Static unbalance [kgm] 1.551 0.106 0.056
Actual s1 [m] 0 -0.3101 -0.3130
Computed s1 [m] -0.3101 -0.3130 -0.3169

Dynamic unbalance compensation

The second balancing test involves ms
1 = 5.047kg at (x̄s

1, z̄
s
1)= (0.75,1.46)m

and ms
2 = 5.170kg at (x̄s

2, z̄
s
2) = (−0.75,0.02)m. To compensate for the re-

sulting dynamic unbalance (∆J13 =−5.45kgm2), the ideal position of the
balancing masses m2 and m3 should be

s2 =−s3 =
∆J13

m2x̄2
=−0.38m. (6.58)

As done for the first experiment, the data related to this test are reported
in Table 6.4. In this case only one iteration of the HC algorithm is re-
quired. Indeed, the ideal and commanded positions of the balancing
masses (equation (6.58)) are almost coincident after only one iteration
and the measured interface load |τr

O2
| is reduced to 0.152Nm, which is

below the required threshold (0.2Nm).

Table 6.4: Dynamic unbalance compensation test.

Iteration 0 1
Torque amplitude [Nm] -3.657 -0.152
Dynamic unbalance [kgm2] -5.482 -0.228
Actual s2 [m] 0 -0.3810
Actual s3 [m] 0 +0.3810
Computed s2 [m] -0.3810 -0.3943
Computed s3 [m] +0.3810 +0.3943
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Combined unbalance compensation

The last balancing test involves ms
1 = 6.193kg at (x̄s

1, z̄
s
1) = (0.75,1.46)m

and ms
2 = 4.185kg at (x̄s

2, z̄
s
2) = (−0.75,0.02)m. To compensate for the re-

sulting unbalances (∆S1 = 1.51kgm and ∆J13 =−6.7kgm2), the nominal
position of the balancing masses m1, m2 and m3 should be

s1 =−
∆S1

m1
=−0.33m, s2 =−s3 =

∆J13−m1z̄1s1

m2x̄2
=−0.37m. (6.59)

The data related to this test are reported in Table 6.5. Also in this case
only one iteration of the HC algorithm is required to reduce the measured
interface loads below the required thresholds and the values of the com-
manded positions are close to the expected ones.

Table 6.5: Combined unbalance compensation test.

Iteration 0 1
Force amplitude [N] -1.086 -0.001
Torque amplitude [Nm] -4.282 -0.029
Static unbalance [kgm] 1.628 0.002
Dynamic unbalance [kgm2] -6.419 -0.0435
Actual s1 [m] 0 -0.3328
Actual s2 [m] 0 -0.3539
Actual s3 [m] 0 0.3539
Computed s1 [m] -0.3328 -0.3329
Computed s2 [m] -0.3539 -0.3540
Computed s3 [m] 0.3539 0.3540

6.5.6 Final considerations

In this Section, the effectiveness of the proposed design has been eval-
uated both in simulation as well as through experiments on a dedicated
breadboard. The results showed that the system is capable of reducing
the force and torque induced by the unbalance at the interface between
the fixed and the rotating part within predefined bounds, even in the pres-
ence of imperfect knowledge of the system parameters.
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CHAPTER7
Integrated active and passive rotorcraft

vibration control

Most helicopters experience significant levels of vibration during flight.
Vibrations directly affect pilot, crew, and passenger comfort and have a
strong influence on the fatigue life of mechanical, structural, and elec-
tronic components, which has implications on maintenance and operating
costs. The main rotor represents the principal source of vibrations. The
effect on the fuselage of the generated vibratory loads is essentially peri-
odic, being the rotor angular rate essentially constant. Indeed, it has been
established that the resulting angular frequency is equal to NΩ (classi-
cally denoted as N/rev), where N is the number of blades and Ω is the
rotor angular frequency, also denoted as 1/rev, meaning “per revolution”.
Accordingly, the vibration suppression problem can be formulated as the
compensation of a periodic disturbance of a known frequency NΩ act-
ing at the output of a linear system. Several control strategies have been
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developed to solve this problem, which can be divided into passive and
active vibration control techniques. Despite the large amount of research
produced in the last decades, the interaction between active and passive
vibration control techniques has not been analysed yet. The main contri-
bution of this Chapter is the analysis of the interaction between the Active
Control of Structural Response and a Mast Vibration Absorber (MVA).
Specifically, we show that an ad hoc design of the control algorithm that
accounts for the MVA behaviour is needed to avoid instabilities and/or
degraded performance caused by the interaction between the two devices.

In this Chapter, we present a brief overview of the general vibra-
tion control problem in helicopter applications, highlighting similarities
and differences among the various approaches developed over the years.
Then, we model and analyse the coupling term between the active control
and the passive device and we design a HC algorithm explicitly account-
ing for this term. In the last part of the Chapter, numerical results obtained
with a virtual helicopter are discussed, comparing the proposed architec-
ture with the classical HC algorithm.

7.1 Background

In addition to their consolidated use in military applications, helicopters
have gradually expanded their influence in civilian society since the 1960s.
They are used in various extreme situations, such as rescue operations or
emergency air medical assistance, due to their unique characteristics and
manoeuvring capabilities. However, urban communities have often ex-
pressed a strong aversion to noisy aircraft, making police and passenger
helicopters still unpopular. The main aspects degrading passenger and
crew comfort are the high noise and vibration levels. In addition, vibra-
tion loads constitute a significant factor in the decline of structural in-
tegrity. Therefore, helicopters should be designed to achieve the lowest
possible vibrational levels, which in turn leads to improved acceptance
for the commercial market. The vibratory loads transmitted to the fuse-
lage originate in periodic airloads on the rotor blades, as a consequence
of the asymmetric airflow generated by the lifting rotor in forward flight
[167]. The vibratory blade airloads contain all harmonics of the rotor fre-
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quency, with a trend to lower magnitudes at higher harmonics. Many of
the harmonic components have little effect on vibration because the root
loads they produce on the various blades cancel out with each others. In-
deed, the net vibratory hub and the resulting fuselage vibration consist
primarily of blade-number multiple harmonics denoted as N/rev. From a
control standpoint, several methods have been developed to minimize vi-
bration in helicopter cabins. In particular, vibration control methods can
be categorized into passive and active techniques.

Passive vibration control techniques Among the passive control techniques,
one technique involves designing the blades and fuselages to separate
their natural vibration frequencies from the rotor harmonic frequencies.
This tuning aids in preventing resonances between the rotor harmonics
and the blade and fuselage. However, as demonstrated by Nguyen et al.
in [168], this approach necessitates extensive modelling and testing of
the blade and fuselage structural characteristics throughout the aircraft
development phase. Another commonly used method of vibration reduc-
tion is rotor isolation. Isolating materials, e.g., rubber pads or springs,
are placed between the vibrating system and its supporting structure to
minimize the force transmitted from the vibrating system to the structure.
Mechanical components, such as tuned-mass absorbers and tuned-mass
dampers, are used in other passive methods. The former can be attached
to a structure to reduce its dynamic response. The latter works similarly,
but includes an additional mechanical damper. Absorbers and dampers
are installed at specific locations in the fuselage and are tuned to the fre-
quencies to be removed. Despite their simplicity, the vibration attenuation
achieved by these methods is limited in the amount of energy absorption
and frequency operation range. Furthermore, they involve an additional
weight reducing the available payload of the helicopter [169]. Addition-
ally, tuned-mass absorbers and dampers cannot adjust to changes in oper-
ating conditions because of their fixed structure [168].

Active vibration control techniques In order to maximize noise and vibra-
tion reduction and get beyond the limitations of the passive control tech-
niques, active vibration reduction methods were developed. Typically,
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acoustic noise signals or vibrations are measured by sensors mounted on
the fuselage. After that, a controller processes the measurements and uses
them to produce a signal that drives the actuators, generating a vibration
field as close as possible to the one that has to be eliminated but opposite
in phase, leading to destructive interference. Based on the location of the
actuators, existing active techniques can be classified as (see Figure 7.1):

• Rotor location: Individual Blade Control (IBC) and Higher Har-
monic Control System (HHC);

• Fuselage location: Active Control of Structural Response (ACSR).

Figure 7.1: HC architectures classified according to the location of actuators.

Actuators mounted on the rotor are used in the HHC [170, 171] and IBC
[172, 173] techniques to attenuate vibrations. Consequently, vibrations
are attenuated before propagating to the fuselage. The ACSR method,
on the other hand, takes into account vibrations transmitted to the cabin
[174, 151]. Nonetheless, both the approach groups rely on the HC concept
(see, e.g., [151] and [150]) discussed in Chapter 7. The convergence of
the HHC algorithm was analysed in [150]. In particular, Patt et al. stud-
ied the robustness of the HHC algorithm to uncertainty in the T -matrix
and introduced a relaxation coefficient into the update law to increase the
robustness of the algorithm. However, their study only accounted for the
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steady-state representation. In [148] a continuous-time analysis of the al-
gorithm was presented, where it was shown that the controller could be
approximated using a notch filter with complex poles at the disturbance
frequency. On the other hand, in [175] the entire control loop was anal-
ysed in discrete-time and in [152] the continuous-time approach was com-
pared to the discrete one showing that neglecting the discrete components
of the HHC is unconservative.

The T -matrix is usually estimated from data as it is hardly computed
from first-principle models. Therefore, researchers have investigated both
adaptive and robust control approaches. Johnson proposed an adaptive
control approach based on Recursive Least Squares (RLS) methods to
estimate the T -matrix online in [176]. In [177], on the other hand, Lovera
et al., after formulating the control problem in a robust control framework,
used H∞ synthesis to design fully parametrized gain matrices.

7.2 Model formulation

In this Section, we analyse the interaction between the ACSR and the
Mast Vibration Absorber (MVA). First, we present the working principles
of the MVA and the ACSR. Then, we model and analyse the coupling term
between the active and passive device.

7.2.1 Mast Vibration Absorber

The MVA consists of a mass mounted on the rotor head of the helicopter
via an elastic beam (see Figure 7.2). A detailed description of a simpli-
fied model of the MVA can be found in [179, Chapter 13.3]. The main
function of the MVA, which rotates with the rotor head, is to create anti-
resonance in correspondence of its natural frequency, which is tuned to
the same frequency of the disturbance that needs to be attenuated in the
fixed frame, i.e., N/rev, thus, reducing the in-plane vibrations transmitted
to the airframe. The relation between the MVA and the helicopter can
be seen as a feedback interconnection: the passive device takes as input
the rotor accelerations (aMR) and returns as output the loads ( fMVA) that
oppose to the excitation ones.
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Figure 7.2: AW139 MVA assembly [178].

7.2.2 Active Control of Structural Response

ACSR is one of the most popular architectures for helicopter vibration
reduction. Sensors are located at critical points in the fuselage, where it
is necessary/desired to minimize vibration, e.g., the pilot and passenger
seats. The ACSR performance was examined in [180] using a coupled
rotor and flexible fuselage, which revealed that the ACSR has a low power
need. Furthermore, the ACSR could have fewer airworthiness problems
than the HHC, because no modification to the rotor is required [149].

The ACSR is based on the superposition of the primary uncontrolled
vibration response and the controlled secondary vibration response, con-
trolled in such a way that the vibration is minimised throughout the air-
frame. Both the actuators and the sensors are placed on the fuselage.
Since the objective of the control is to attenuate vibration at the N/rev,
the helicopter is modelled at steady-state, considering only the frequency
of interest. Let y ∈ Rp be the vector of measured outputs and u ∈ Rm be
the vector of control inputs and define the vectors YN and UN that contain
the N/rev cosine and sine harmonics of the measured output and con-
trol input respectively; then, HC is a viable approach for the design of a
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feedback controller. In this work, we apply the control law described in
Section 5.5, namely:

UN(k+1) = KMUN(k)+KNYN(k) (7.1)

where the gain matrices are defined as:

KN =−(T>u QTu +R)−1T>u Q and KM =−TuKN , (7.2)

where the Tu-matrix takes into account the usual steady-state response of
the measured outputs to the applied harmonic controls. In the following,
we consider the weighting matrices as Q = I and R = wI, where w repre-
sents the inverse of the compensator gain, i.e., the larger w is, the lower
the control action.

7.2.3 Coupled model

For simulation and analysis purposes, we take into account that, as far as
the N/rev vibratory response is concerned, the entry point of disturbances
is the main rotor hub and that the actual disturbance vector has dimensions
which are smaller than the ones of the vector of measured outputs1, i.e.,

YN(k) = TuUN(k)+TdDN , (7.3)

where the Td-matrix represents the harmonic response of the measured
outputs to the harmonic disturbances. This modelling approach allows
taking into account very easily the role of the MVA and its interaction with
the rotorcraft model and its dynamics. Indeed, the mechanical interface
between the helicopter and the MVA is precisely at the level of the forces
and accelerations at the main rotor hub, so that the complete model of the
aircraft with MVA can be represented as in the block diagram of Figure
7.3. The main rotor hub accelerations aMR have not been included as
outputs of the state-space models to reflect that they are not measured and,
as such, cannot be used in the implementation of the control system. It
is interesting to underline that the interconnection between the helicopter

1From a simulation and an analysis viewpoint treating the disturbance components as independent would
lead to an unrealistically challenging representation of the real situation as clearly the vibratory responses
sensed at the individual measurement locations cannot be assumed to be independent of each other.
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Figure 7.3: Block diagram of input-matched disturbance model.

structure and the MVA depicted in Figure 7.3 is a particular case of the so-
called Linear Fractional Representation (LFR) widely used in the robust
control engineering literature, which provides an interesting perspective
in the understanding of the interaction between the MVA and the active
control system to be analysed. Indeed, abstracting Figure 7.3 to Figure
7.4, we can translate the block diagram in the following set of equations:

Figure 7.4: Block diagram of input-matched disturbance model.
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[
z
y

]
= P

[
w
u

]
=

[
P11 P12
P21 P22

][
w
u

]
(7.4)

w = d +wM, wM = Mz. (7.5)

By manipulating the above equations one can compute the explicit rela-
tions between the two input-output pairs as follows:

y = P21d +P21Mz+P22u (7.6)

z = (I−P11M)−1P11d +(I−P11M)−1P12u (7.7)

and substituting the expression for z into the one for y one gets

y = P21
[
I +M(I−P11M)−1P11

]
d+ (7.8)

+
[
P22 +P21M(I−P11M)−1P12

]
u

z = (I−P11M)−1P11d +(I−P11M)−1P12u . (7.9)

Note that the above expressions can be used, mutatis mutandis, to model
both the dynamic response of the system (interpreting P and M as transfer
functions and y, z, u and w as Laplace transforms of the corresponding
variables) and the corresponding T -matrices (interpreting in this case P
and M as the T -matrices of the corresponding systems and y, z, u and
w as the N/rev harmonics associated with the corresponding variables).
Indeed considering

Tu = P22 +P21M(I−P11M)−1P12 (7.10)

Td = P21
[
I +M(I−P11M)−1P11

]
(7.11)

one can therefore obtain explicit expressions for the Tu and Td matrices
appearing in equation (7.3) as a function of the blocks of the helicopter
model P and of the MVA model M.

Remark 35. From the expression of Tu one can readily see that the pres-
ence of the MVA modifies the T -matrix of the active control system in a
significant way, by introducing the term P21M(I−P11M)−1P12 (which is
zero when the MVA is absent) which sums with the term P22 which cor-
responds to the no-MVA case. In dynamical terms, on the other hand,
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equation 7.10 clearly shows that the transfer function from the control
variable u to the measurement vector y contains additional modes aris-
ing from the feedback interconnection of the helicopter structure with the
MVA. Similarly, the equation (7.9) defining z, i.e., the acceleration at the
main rotor hub, which is the forcing input for the dynamics of the MVA,
shows a forcing term due to the control action u, through the function
(I − P11M)−1P12. This term accounts for the interactions between the
ACSR and the MVA: indeed when the control action is non-zero it will
cause a non-zero acceleration at the main rotor hub which in turn excites
the MVA dynamics, leading to potentially harmful interactions.

Remark 36. Since the HC algorithm relies on the steady-state model
(7.3), the time interval ∆t between the updates of the control action must
be long enough to allow the transients to decay. Therefore, if the con-
trol update is faster than the dynamics of the MVA, the coupling between
the two devices can destabilize the closed-loop system. To prevent this
possibly harmful coupling one can think to increase the update time of
the digital implementation of the HC algorithm or to increase the penal-
ization on the control term in the LQ-like cost function. However, both
solutions result in low performance: in the first case the closed-loop sys-
tem shows slow response to changes in the harmonic disturbance, while
in the second case low vibration attenuation is achieved.

While these considerations are extremely useful in terms of time-domain
analysis, as they allow to predict the onset of such interactions as a func-
tion of the controller tuning, their usefulness for control design purposes
is limited as they are based on the possibility of “unravelling” the LFR
associated with the dynamics and with the T -matrix starting from mea-
sured data. In other words, taking advantage of the special structure of
the T -matrix in control law design would be possible only if separate
measurements of the T -matrices with and without MVA were available.
In this work, assuming these measurements available, we add decoupling
between the MVA and the ACSR as a design requirement for the active
control system.
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7.3 Control design

In this Section, a novel HC law is developed to reduce the coupling be-
tween the HC action and the MVA. First, we show how knowledge of the
T -matrices with (Tu) and without MVA (T̄u) can be leveraged to identify
the subspace in which the control action does not excite the MVA. Then,
we design a control action constrained to lie in this subspace, achieving a
strong decoupling between the control action and the passive device.

7.3.1 Decoupling projection operator

In view of equations (7.4)-(7.5), we have:

Tu = P21M(I−P11M)−1P12 +P22 , (7.12)
T̄u = P22 . (7.13)

Subtracting (7.13) from (7.12) leads to:

Tu− T̄u = P21M(I−P11M)−1P12. (7.14)

Considering the singular value decomposition of the left-hand side

UΣV T = Tu− T̄u , (7.15)

we define the decoupling projection operator as:

Π = I−V (:,1 : r)V (:,1 : r)> = I −VrV>r , (7.16)

where Vr collects the first r singular vectors of V and r is the rank of Σ.
Equation (7.16) defines the orthogonal projection onto the null space of
P12 (P12Π= 0). Specifically, it identifies the subspace in which the control
does not excite the MVA; on the other hand I−Π identifies the directions
along which the control excites the MVA and possibly destabilizes the
closed-loop system.

Remark 37. Note that by right multiplying both side of equation (7.14)
by the projection Π, we obtain TuΠ = T̄uΠ, i.e., the operator Π makes the
’dynamics’ of the helicopter with and without the MVA equivalent.
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7.3.2 Decoupled HC

Once the projection operator Π is obtained, the control input UN can be
decomposed in two components denoted as U‖ = (I−Π)UN and U⊥ =
ΠUN

UN =U‖+U⊥ = ΠUN +(I−Π)UN , (7.17)
where ΠU is the orthogonal projection of UN onto the null space of P12,
i.e., the part of U that does not excite the MVA, while (I−Π)UN is the
part of UN that excites the MVA and can drive the system unstable. By
setting U‖ = 0 a strong decoupling between the control and the passive
device is achieved. The resulting algorithm is denoted Decoupled-HC
(D-HC).

Remark 38. The price to pay for a control action fully decoupled from
the MVA is a reduced control authority due to the reduced space in which
the control is allowed to operate. More precisely, since Π has a rank
of 2m− r, the effective Tu-matrix of the closed-loop system, TuΠ, has a
reduced column space (the rank is at most 2m− r).

Alternatively, it is possible to control the amount of coupling using an
LQ-based approach by choosing the control weight R as

R = w1Π
T

Π+w2(I−Π)T (I−Π). (7.18)

Therefore, the cost function to be minimized can be rewritten as

J (k) = Y T
N (k)QYN (k)+w1UN (k)T

Π
T

ΠUN (k)+

+w2UN (k)T (I−Π)T (I−Π)UN (k) . (7.19)

Then, the control matrices KN and KM can be computed using equation
(7.2). The weights w1 and w2 are the tuning parameters: the larger w2
is, the lower the control action that excites the MVA, namely u‖. The
resulting control algorithm is denoted Partially Decoupled-HC (PD-HC).
Moreover, as w2 → +∞ the control action is fully decoupled from the
MVA and we recover the D-HC algorithm.

7.3.3 Continuous time formulation of the HC algorithm

To assess the effectiveness of the proposed approach, the behaviour of
the closed-loop eigenvalues associated with the MVA modes is evaluated.
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This analysis aims to show that the coupling between the control action
and the passive device can lead to instabilities of the closed-loop system,
and that the proposed decoupling controller (D-HC) does not affect the
MVA modes avoiding this dangerous behaviour. In this Section, we re-
formulate HC algorithm in a time-domain state-space model that will be
used to close the loop with the virtual helicopter model described in the
following Section.

Following the approach presented in [175], one obtains:2

ẎN = AYN +B(Ωt)y, (7.20)
u =C(Ωt)YN , (7.21)

where the system matrices are defined as:

A = 02p×2p (7.22)

B =

[
cos(NΩt)
sin(NΩt)

]
⊗ Ip×p (7.23)

C =− 2
∆t

[
cos(NΩt) sin(NΩt)

]
⊗ Im×mKN , (7.24)

with⊗ is the Kronecker product, ∆t represents the update time of the dig-
ital implementation of the algorithm, and KN is obtained using equation
(7.2). This model has the appearance of a LTP one, however it is easy
to show by means of an appropriate Lyapunov transformation (see, e.g.,
[181]) that the demodulation and modulation carried out by the HC algo-
rithm cancel out exactly, leaving a LTI compensator. Indeed, choosing

S(t) =
[
−cos(NΩt) −sin(NΩt)

sin(NΩt) −cos(NΩt)

]
⊗ Ip×p, (7.25)

and performing the Lyapunov transformation
[

YN1
YN2

]
= S

[
YNc
YNs

]
, (7.26)

one has that the compensator can be equivalently described by the follow-
2For ease of notation in the following we consider a HC with a pure integral action i.e., KM = I.
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ing model:

Ẏ1,2 =
[
SAS−1 + ṠS−1]Y1,2 +SBy (7.27)

u =CS−1Y1,2. (7.28)

By combining equations (7.27)-(7.28) with equations (7.24)-(7.25) and
noting that for a LTI system KN inherits the same well-known block struc-
ture of the T -matrix [182], that is:

KN =

[
Ka Kb
−Kb Ka

]
(7.29)

After some manipulations one obtains:

Ẏ1,2 =

[
0p×p NΩIp×p

−NΩIp×p 0p×p

]
y1,2 +

[
−Ip×p
0p×p

]
y (7.30)

u =− 2
∆t

[
−Ka Kb

]
. (7.31)

The update time ∆t of the digital implementation appears as the inverse of
the controller gain. In the following Section, the sensitivity of the closed-
loop eigenvalues is studied with respect to this parameter.

7.4 Simulation study

Numerical simulations are performed to evaluate the proposed algorithm
in terms of stability, steady-state performance and transient behaviour.
The helicopter model used in this study is built based on data represen-
tative of a generic, medium weight helicopter with a conventional ar-
ticulated main rotor and tail rotor configuration. The model has been
realized using Modern Aeroservoelastic State Space Tools (MASST), a
MATLAB tool developed at Politecnico di Milano for the aeromechani-
cal and aeroservoelastic analysis of fixed and rotary wing aircraft [183].
The model is built from subcomponents that are assembled in an overall
model using the Craig Bamptons Component Mode Synthesis approach.
The airframe elastic model was generated in NASTRAN while both the
main rotor and the tail rotor aeroelastic models are obtained in CAM-
RAD/JA. For further details the reader is referred to [184]. The helicopter
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model is formulated as a linear system in state-space form, given by

ẋ = Ahx+Bhu (7.32)
y =Chx+Dhu, (7.33)

where y ∈ R10 is the vector containing the accelerations measured by the
sensors placed on the critical points of the airframe; the vector u ∈R7 ac-
counts for the three external forces and for the four actuator forces acting
on the gearbox struts. The setup considered in the case study is described
in Figure 7.5 and Figure 7.6, respectively as far as the sensor and actu-
ator location is concerned. As can be seen from the figures, the consid-
ered setup mimics the typical arrangement of actuators and sensors of the
ACSR system on the AW101.

Figure 7.5: Case study sensors location.

7.4.1 Stability analysis results

In this Section, we show the effect of the HC algorithms on the eigen-
values associated with the MVA modes as a function of the update time
∆t. The closed-loop system is obtained by combining the virtual he-
licopter model (7.32)-(7.33) and the continuous-time controller model
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Figure 7.6: Case study actuators location.

(7.30)-(7.31). We compare the results obtained with the standard HC and
the proposed D-HC using as weight on the control action R = wI, where
w= 10−2. Figure 7.7 shows the behaviour of the closed-loop MVA eigen-
values with the standard HC algorithm as ∆t goes from 5s to 0.1s, while
Figure 7.8 shows the behaviour of the same eigenvalues with the proposed
approach3.

This analysis shows that fast implementations of the standard HC al-
gorithm make the closed-loop system unstable. In this particular case, the
MVA eigenvalues cross the imaginary axis at ∆t = 1.4s, hence a shorter
update time (∆t < 1.4s) brings instability. On the other hand, our modi-
fication allows a faster implementation barely affecting the MVA modes.
As mentioned in Remark 38, the cost of this operation is a loss of control
authority caused by the reduced space in which the control action is al-
lowed to operate. The PD-HC law derived minimizing (7.19) provides a
way to tune the amount of the interaction and, therefore, to find a trade-off
between steady-state performance and transient behaviour.

3For ease of representation only the eigenvalues with positive imaginary part are shown.
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Figure 7.7: Closed-loop MVA eigenvalues with the standard HC.

Figure 7.8: Closed-loop MVA eigenvalues with the proposed D-HC.

161



Chapter 7. Integrated active and passive rotorcraft vibration control

7.4.2 Steady-state performance

In this Section, the effect of tuning the control weight R on the steady-
state performance is analysed in the HC and PD-HC algorithms using the
steady-state model (7.3). In other words, the results obtained in this Sec-
tion can be achieved using an update time much longer with respect to the
settling time of the system (dominated by the MVA dynamics). Specifi-
cally, we study the sensitivity of steady-state performance to changes in
w for the HC algorithm, while we assume w1 = 0 and we study the sensi-
tivity with respect to w2 for the PD-HC algorithm. To compare easily the
different configurations, the following metrics are defined4:

• 1−‖YN‖/‖ȲN‖ : The vibration attenuation with respect to the base-
line level ‖ȲN‖ that is evaluated at steady-state without the active
control (only MVA is considered);

• ‖UN‖ : The steady-state control action;

• ‖U‖‖ : The steady-state control action projected onto the subspace
that excites the MVA;

• ‖U⊥‖ : The steady-state control action projected onto the subspace
that does not excite the MVA.

Figure 7.9 shows the control effort as a function of w for the standard
HC algorithm. As expected, the control effort decreases as the weight w
increases. Figure 7.10 shows the control effort as a function of w2 for the
PD-HC algorithm. The values reported in Figures 7.9 and 7.10 are scaled
by the same reference value and consequently are comparable. Namely,
all the values are scaled by the norm of the control ‖UN‖ obtained in the
case w = 0, i.e., applying the T -matrix algorithm (5.32). When w2 = 0
the PD-HC algorithm behaves as the conventional HC since w2 = w1 =
w = 0. As expected, u‖ decreases as w2 is increased and it tends to zero
as w2→ ∞ achieving a fully decoupled control.
Remark 39. Note that ‖UN‖ is not a monotonic function of w2 since min-
imization of the cost function (7.19) requires an increased demand of con-
trol in the U⊥ direction, which is not as effective as the parallel direction
U‖ in reducing the remaining vibrations.

4In the following, the operator ‖(·)‖ will indicate the Euclidean norm of the vector (·).
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Figure 7.9: HC algorithm: norm of the steady-state input as a function of w.
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Figure 7.10: PD-HC algorithm: norm of the steady-state input as a function of w2.
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Figure 7.11 shows the vibration attenuation5 achieved with the two con-
trollers under study, obtained by varying the corresponding penalization
on the control. It can be seen that by increasing the penalization on U‖
(PD-HC case) the vibration reduction tends to the value achieved consid-
ering the fully decoupled controller (D-HC). Note that, by constraining
the control, i.e., U‖ = 0, we can only achieve a reduction of 70% instead
of 94% achievable with the standard HC.
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Figure 7.11: Norm of the steady-state output as a function of the LQ-weight.

Remark 40. It is important to underline that the previous analysis is
based on the steady-state model. As a consequence, the promising re-
sults of the standard HC algorithm requires an update time that can be
too long for practical applications. In fact, rapid manoeuvres such as the
transition to hover are characterised by a rapid increase in the baseline
vibration during 1 to 2 seconds. If the control update time is longer than
1 second, then the increase in vibration will go unchecked until a new
measurement is calculated, by which time the vibration may have further

5Recall that vibration reduction levels are computed with respect to the steady-state value obtained with
the MVA alone and not with respect to the bare rotorcraft (without the MVA).
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increased [185]. Furthermore, if the proposed decoupling technique is
not used, the coupling term U‖ 6= 0 can destabilize the overall closed-loop
system during the transient as shown in Section 7.4.1.

7.4.3 Transient behaviour

Finally, we compare the transient behaviour of the standard HC algorithm
with the proposed D-HC. All the results presented in the following are
appropriately scaled6. The standard HC algorithm is implemented with
two different update times ∆t = 1.5s and ∆t = 2s which respect the lower
bound obtained in Section 7.4.1. On the other hand, the proposed algo-
rithm eliminates the coupling interaction and, therefore, the choice of the
update time becomes independent from the presence of the passive de-
vice. Indeed, the D-HC algorithm is implemented with an update time
∆t = 0.5s. In all cases, the control system is activated after 5s and the
response is scaled by the steady-state value achieved when the active con-
trol is turned off. For the ease of visualization, we show the results of
this comparison only for a particular output/accelerometer, but the same
considerations are valid for the other outputs. In particular, Figure 7.12
shows the response with the different HC algorithms, while Figure 7.13
and Figure 7.14 show the results in terms of cosine and sine components
of the considered output, respectively. The standard HC response ob-
tained with an update time ∆t = 1.5s presents an unpleasant oscillatory
behaviour produced by the periodic excitation of the control action that
couples with the MVA; by increasing the update time to ∆t = 2s this ef-
fect is moderated, but the slow update time weakens the effectiveness of
the controller to time-varying disturbance as discussed in Remark 40. On
the other hand, the D-HC algorithm can be implemented with an update
time ∆t = 0.5s and the oscillatory behaviour produced by the coupling
between the active control and the MVA is eliminated.

We can state that the proposed approach accommodates successfully
the coupling term between the ACSR and the MVA. However, the price
to pay to suppress this interaction is a reduced control authority due to the
reduced space in which the controller is allowed to operate.

6Note that the amplitude of the disturbance can be arbitrarily chosen due to the linearity of the system.
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Figure 7.12: Closed-loop response of the ACSR with different HC algorithms.
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Figure 7.13: Closed-loop response of the ACSR: cosine components.
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Figure 7.14: Closed-loop response of the ACSR: sine components.
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CHAPTER8
Iterative Learning Control theory

Iterative Learning control (short, ILC) is based on the idea that the per-
formance of a system that performs the same task multiple times may be
improved by learning from previous executions (iterations, trials, passes)
[186]. Indeed, in describing the ILC technique, the term iterative is used
for the recursive nature of the system operation, and the term learning is
used for the modification of the input signal based on past performance in
executing a task or trajectory. Roughly speaking, the ILC idea is to utilize
the system repetitions as experience to improve the system control perfor-
mance under incomplete knowledge of the system to be controlled. The
fundamental ideas and aspects regarding ILC algorithms are described in
this Chapter, starting from the definition of a particular class of repetitive
systems, known in the literature as multipass systems.
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8.1 Repetitive systems

The control designer selects the controller structure based on the dynamic
characteristics of the system and the control objective. In the context of
this Part, the special property of the system dynamics is the repetitive
nature of its operation. Repetition is a common feature in control appli-
cations and takes several forms, described in the following.

8.1.1 Periodic signals and tonal disturbances

The simplest notion of repetition is evident in the situation where the ref-
erence signal and/or disturbances acting on the system are periodic. Pe-
riodicity can be interpreted as a repetition of these signals on the first
interval 0≤ t < T on subsequent intervals kT ≤ t < (k+1)T for all inte-
gers k ≥ 1. Control design for such systems lies within classical control,
and asymptotic tracking is achieved using feedback control with com-
pensators based on the idea of the Internal Model Principle [187]. This
research field is relevant to applications characterized by disturbances that
have a known source and period, but their amplitude is unknown. Part II
examined these applications in detail.

8.1.2 Multipass systems and Repetitive Control

Multipass systems evolve over a finite time interval 0≤ t < T after which
both the system and the clock are reset and the operation repeated. This
procedure is then repeated over and over again. Repetitions are frequently
referred to as trials, passes, or iterations. The particular dynamic charac-
teristic is that the output signal from each iteration affects the next one,
essentially acting as a correlated disturbance altering the next iteration
dynamics. This idea can be illustrated by the example, taken from [188],
of a recursive first order differential equation defined as

dy j+1(t)
dt

=−y j+1(t)+2y j(t)+1, y j(0) = 0 j ≥ 0 (8.1)

with starting iteration condition y0(t) = 0. The term y j(t) represents the
output on j-iteration and the term 2y j(t) represents the effect of j-iteration
on the dynamics of the ( j+1)-iteration. The term “−y j+1(t)” ensures the
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time-domain stability of the response on each iteration, but a problem
occurs after a large number of iterations. Specifically, assuming that the
outputs converge to a limit, i.e., lim j→∞ y j(t) = y∞(t), this limit is the
solution of the equation:

dy∞(t)
dt

= y∞(t)+1, y(0) = 0 (8.2)

We can notice that a series of stable iterations on a dynamical system can
converge to an unstable, and hence unacceptable, dynamical behaviour.
Effective control is, therefore, needed to ensure good system operation in
a repetitive environment. A control architecture, often called Repetitive
Control, grew out of the area of multipass systems theory [189].

8.2 Introduction to ILC

ILC is a particular case of Repetitive Control. It is relevant to applica-
tions involving trajectory tracking control over a finite time interval [190].
ILC focuses on problems where the interaction among iterations is about
zero, but where repetition of a specific task creates the possibility of im-
proving performance from one trial to the next. In terms of engineering
systems, the mechanism of improvement is the systematic use of data
collected from previous repetitions to create structured interactions that
promote controlled performance. The combined plant and control system
is thus a multipass process by design rather than by physical necessity.
The repetitive nature of the resulting control schemes puts the topic in the
area of classical control design with the added complexity of controlling
iteration-to-iteration dynamics [191].

8.2.1 Historical background

The concept of ILC can be traced back to an article published in Japanese
by Uchyama [192], which is sometimes cited as the origin of the topic.
However, the works by Arimoto et al. [193, 194] provided a formal def-
inition of ILC and are the most widely cited. The theory behind ILC is
motivated by human learning. Humans learn by practicing or repeating
a task until they perfect it. Arimoto et al. [193] studied whether similar
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methods could be applied to robotics, to produce a form of autonomous
learning without the need for human intervention. The development of
ILC grew originally from practical issues in industrial robotics, where
repetitive motions appear in many applications, e.g., mass production on
an assembly line [195, 196, 197]. Manufacturing, robotics, and rotary
systems are some examples [198]. Early works focused on analysing the
convergence and robustness of ILC algorithms, mainly on linear systems
[199] or the particular class of nonlinear systems represented by dynamic
models of robots [200]. In recent decades, numerous ILC algorithms have
been proposed and several research directions have been explored. The
book by Bien and Xu [201] covers analysis, design and applications ex-
plored in the 1990s. Another commonly cited paper [202] deals with
the practical aspects of design and implementation. Through this theory
consolidation, ILC has also been successfully applied to maneuvering au-
tonomous vehicles [203] and multicopters [204, 205].

In conclusion, the field of ILC is still growing, and there are many
theoretical and practical issues to be investigated. The research field of
ILC is covered by a range of surveys, see, e.g., [201, 206, 11, 190]. In
[186] Moore provides a detailed overview of the ILC area and categorizes
most of the publications up to 1998, while Ahn in [198] discusses and
classifies the literature published between 1998 and 2004. A topological
classification of the general results is provided in [207] containing a list
of references related to robotics and aerospace applications.

8.2.2 ILC architecture

The ILC main idea is to use the tracking error of the previous trials to
update the control input signal for the current trial of the ILC, and the
goal is to achieve better tracking performance from trial to trial. The
block diagram in Figure 8.1 shows the structure of a generic ILC closed-
loop system and the learning trend of related signals.

Remark 41. It should be pointed out that ILC is not an open-loop con-
trol operation, although ILC only modifies the input command for the next
repetition. ILC closes the loop in the iteration-domain since updates are
performed for the next trial using the feedback measurements of the pre-
vious one. This feedback architecture is similar to the closed-loop struc-
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Figure 8.1: General block diagram of ILC system [208].

ture of conventional controllers in the time-domain, which updates the
control signal of the next time step using the feedback at current or past
time steps. The difference is that the ILC mechanism is in the repetition-
domain, making it appears as open-loop control in the time-domain.

8.3 ILC problem formulation

The general ILC architecture is illustrated in Figure 8.2. All the signals
shown are assumed to be defined on a finite interval t ∈

[
0, t f

]
. The sub-

script j indicates the trial or iteration number. These signals are stored in
the memory units until the trial is over, at which point they are processed
off-line by the ILC algorithm1. The ILC scheme works as follows: dur-
ing the j-trial an input u j(t) is applied to the system, producing the output
y j(t). The ILC algorithm computes a modified input signal u j+1(t) based
on the observed error between the desired output and the actual output
and stores it in memory until the next iteration, at which time the new in-
put signal u j+1(t) is applied to the system. This new input u j+1(t) should

1Actually, several ILC algorithms does not require to wait until the trial end to do the processing [198].
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be designed to reduce the error with respect to the previous iteration.

Figure 8.2: General ILC architecture.

The ILC approach can be formalized by introducing some additional nota-
tion [186]. We define the nonlinear operator f : U 7→Y that maps elements
in the vector space U to those in the vector space Y be written as y = f (u)
where u ∈U and y ∈ Y . Given a system S, defined by y(t) = fS(u(t), t),
the ILC objective is to drive the output to a desired response defined by
yd(t). This is equivalent to finding the optimal input u∗(t) that satisfies

min
u(t)
‖yd(t)− fS(u(t), t)‖= ‖yd(y)− fS (u∗(t), t)‖ , (8.3)

where ‖(·)‖ is a suitable defined norm. ILC solves this problem generat-
ing a sequence of inputs u j(t) in such a way that the sequence converges
to u∗(t). Namely, the input is updated with the following recursive law:

u j+1(t) = fL
(
u j (τ) ,y j (τ) ,yd (τ) , t

)
τ ∈

[
0, t f

]
(8.4)

such that
lim
j→∞

u j(t) = u∗(t) for all t ∈
[
0, t f

]
. (8.5)
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The general algorithm (8.4) introduces a new variable τ . This reflects the
fact that there is effectively no causality restriction in the ILC operator fL
[209]. Thus one may construct the input u j+1 (tk) using information about
what happened after the input u j (th) was applied with th > tk.

Assumption 4. A number of assumptions that underlie ILC approaches
have been formulated by Arimoto in [193, 194] and are listed in the fol-
lowing.

• The iterations are finite in time, i.e., t f ∈ (0,∞).

• The desired reference is defined a priori for all t ∈
[
0, t f

]
.

• The dynamics of the system is invariant throughout the repeated it-
erations or at least slowly iteration-varying [210];

• The initial conditions of the system are reset at the beginning of each
iteration to the same value, i.e., y j(0) = y0 for all j. This is a key
assumption known as the “initial reset condition”.

Remark 42. ILC offers several advantages over conventional feedback
and feedforward control, including the ability to anticipate and respond
immediately to recurrent disturbances. This capability is possible be-
cause of the non-causality of the ILC algorithm. Indeed, since the en-
tire temporal sequence of data is available from all previous iterations,
a noncausal ILC algorithm is implementable in practice in contrast to
the conventional conception of noncausality [190]. In [211], Goldsmith
et al. demonstrated that when considering a causal ILC algorithm, the
asymptotic control signal u∗(t) could be obtained from a standard feed-
back controller. In contrast, when the ILC algorithm is noncausal, the
control signal u∗(t) cannot be provided by an equivalent feedback con-
troller except for special cases, see, e.g., [212].

There are several possible modifications to the learning algorithm (8.4).
For instance, higher-order learning algorithms compute u j+1 using the
error ei and the control input ui of N0 previous iterations iterations i ∈
{ j−N0 +1, . . . , j}. Another modification is the current-iteration learning
algorithm, in which the current error e j+1 is leveraged in real-time to
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compute the current control input u j+1. As shown in [207], the current-
iteration learning algorithm is equivalent to the standard ILC algorithm
combined with a feedback controller (see next Section).

8.3.1 ILC properties

ILC can be categorized as an intelligent control methodology2. In contrast
to other intelligent techniques, which are based on artificial intelligence
and computer science, e.g., artificial neural networks [214] or fuzzy logic
[215], ILC theory is based on a system-theoretic approach. Consequently,
ILC can guarantee a fast convergence, unlike other strategies that require
extensive data training [191]. ILC aims to generate a control input signal
that follows a desired trajectory or rejects a recurrent disturbance. Com-
pared to a well-designed feedback and feedforward controller, ILC has a
number of benefits. For instance, a feedback controller always has a lag
in transient tracking because it reacts to inputs and disturbances. Only
known or measurable signals, like the reference, and typically not dis-
turbances, can be eliminated by feedforward control. In contrast, ILC is
anticipatory and can react in advance to exogenous signals by leverag-
ing experience from previous iterations. Specifically, ILC only requires
that these exogenous signals (references or disturbances) repeat from one
iteration to the next [190].

Remark 43. A feedforward controller only performs well when the sys-
tem dynamics is known precisely. In contrast, ILC approach computes
its control signal based on experience (feedback in the iteration-domain),
making the closed-loop system remarkably robust to uncertainties or un-
modelled dynamics [11] and achieving low tracking errors.

Obviously, ILC cannot provide perfect tracking in every situation. In fact,
noise and non-repeating disturbances could degrade ILC performance
[198]. To overcome these limitations, a feedback controller is typically
employed in combination with the ILC. ILC algorithm can be integrated
with a feedback loop in two different ways, as shown in Figure 8.3 and

2Definition from [213]: Intelligent control uses conventional control methods to solve lower level control
problems ... conventional control is included in the area of intelligent control. Intelligent control attempts to
build upon and enhance the conventional control methodologies to solve new, challenging control problems.
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Figure 8.4. We refer to the first configuration as serial, because the ILC
control input is applied before the feedback loop, i.e., it alters the refer-
ence signal commanded to the closed-loop system [202]. This approach
is essential when applying ILC algorithm to a pre-existing system that
makes use of a commercial controller that prevents the system control
signal modification. A sufficient condition for asymptotical stability of
the serial configuration was derived in [216].

Figure 8.3: ILC in serial arrangement.

Instead, we refer to the second configuration as parallel, because the ILC
control input is added to the feedback control signal, i.e., it directly alters
the control signal to the system [217].

Figure 8.4: ILC in parallel arrangement.

Remark 44. Note that setting the ILC input to zero in both configurations
yields the typical feedback-controlled response to the reference signal.
Accordingly, whenever it is necessary to perform non-repeating tasks in
either of these arrangements, the ILC can be turned off.
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8.4 ILC algorithms and results

In this Section, we introduce and formalize the problem of trajectory
tracking in the ILC framework. The formulation is general and can be
applied to any dynamic system (including systems with underlying feed-
back loops). Firstly, we briefly describe the system to be controlled fol-
lowing the approach in [11] focusing on Linear Time Invariant Single
Input Single Output (LTI SISO) systems for the sake of simplicity. Then,
we introduce the most used system representations in the ILC framework.
Finally, we analyse the results in terms of convergence (stability), perfor-
mance, and robustness for a general ILC algorithm.

8.4.1 System description

Consider the discrete-time3 LTI SISO 2-dimensional system

y j(k) = F(q)u j(k)+d(k) with y j(0) = y0 (8.6)

where q is the forward time-shift operator qx(k)≡ x(k+1), y j is the out-
put, u j is the control input, and d is an exogenous signal4 that repeats at
each iteration; the plant F(q) is a proper rational function of q with a de-
lay, or equivalently relative degree, of m; k represents discrete-time points
along the time axis and the subscript j represents the iteration trial num-
ber along the iteration axis. Notice that y j(0) = y0 for all j. We assume
that F(q) is asymptotically stable5 and the plant delay m = 1. The last
assumption is made only in this Section to simplify the system descrip-
tion without loss of generality. For the analysis with a generic plant delay
the interested reader is referred to [11]. In the following, we consider the

3Since ILC demands storing data from previous iterations, which are frequently sampled, discrete-time is
the most suitable domain for it.

4The term d(k) encloses several effects, such as, e.g., repeating disturbances and non-zero repeated initial
conditions.

5When F(q) is not asymptotically stable, it can be stabilized with a feedback controller, and the ILC can
be applied to the closed-loop system. This agrees with the focus of the ILC algorithm that is to improve the
performance of the system [209].
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N-sample sequence of inputs and outputs:

u j(k), k ∈ {0,1, . . . ,N−1}
y j(k), k ∈ {1,2, . . . ,N}
d(k), k ∈ {1,2, . . . ,N}

and the desired system output:

yd(k), k ∈ {1,2, . . . ,N} .

The performance or error signal is defined by e j(k) = yd(k)− y j(k).

8.4.2 General ILC Algorithm

Originally, ILC was formulated for continuous systems in a continuous-
time framework. Indeed, the first ILC algorithm proposed by Arimoto is
defined in continuous time [194]:

u j+1(t) = u j(t)+ γ
d
dt

e j(t) , (8.7)

where the constant γ is the learning gain that multiplies the derivative of
the continuous tracking error in time. For a large class of systems, it can
be shown that this algorithm converges in the sense that, as j→ ∞, we
have y j(t)→ yd(t) for all t ∈

[
0,Tf

]
[191]. The discrete-time counterpart

of the control law (8.7) is given by:

u j+1(k) = u j(k)+ γe j(k+1) . (8.8)

The algorithm (8.8) can be seen as a special case of the widely used ILC
learning algorithm [11, 190, 198]:

u j+1(k) = Q(q)
[
u j(k)+L(q) e j(k+1)

]
, (8.9)

where Q(q) and L(q) are LTI systems referred as to the Q-filter and learn-
ing function, respectively. This algorithm is schematized in Figure 8.5.
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Memory Q(q)

L(q)Memorye j(k)

u j(k)

ILC

Figure 8.5: Representation of the ILC algorithm.

8.4.3 System representations

In this Section, we introduce and formalize the most commonly used rep-
resentations in the literature:

• Lifted-system (Time-domain),

• z-Domain (Frequency-domain).

Time-domain analysis using the lifted-system framework

When the system is described in the time-domain, the so called lifted-
representation is preferred in describing the input/output relation and the
ILC update algorithm [11]. The lifted form, in fact, allows to write the
SISO time and iteration-domain dynamic system (8.6) as a Multiple Input
Multiple Output (MIMO) iteration-domain dynamic system. To obtain
the lifted form, the rational LTI plant (8.6) is first expanded as an infinite
power series by dividing its denominator into its numerator:

F(q) = f1q−1 + f2q−2 + f3q−3 + · · · (8.10)
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where the coefficients fk are the Markov parameters. Note that f1 6= 0
since m = 1 is assumed. Considering the state space description

x j(k+1) = Ax j(k)+Bu j(k) (8.11)
y j(k) =Cx j(k) (8.12)

we have that fk = CAk−1B. Stacking the signals in vectors, the system
dynamics in (8.6) can be written equivalently as the lifted system:




y1(1)
y1(2)

...
yy(N)




︸ ︷︷ ︸
Y j

= F




ui(0)
u j(1)

...
u j(N−1)




︸ ︷︷ ︸
U j

+




d(1)
d(2)

...
d(N)




︸ ︷︷ ︸
D

(8.13)

with

F :=




f1 0 · · · 0
f2 f1 · · · 0
...

... . . . ...
fN fN−1 · · · f1


 ∈ RN×N . (8.14)

The components of Yj and D are shifted by one time step to accommo-
date the plant delay, ensuring that the diagonal entries of F are non-zero.
Similarly, the ILC algorithm (8.9) can be written in lifted form. In par-
ticular, the Q-filter and learning function can be noncausal functions with
the impulse responses given as

Q(q) = · · ·+q−2q2 +q−1q1 +q0 +q1q−1 +q2q−2 + · · · , (8.15)

L(q) = · · ·+ l−2q2 + l−1q1 + l0 + l1q−1 + l2q−2 + · · · . (8.16)

In lifted form, equation (8.9) becomes

U j+1 = Q U j +L E j (8.17)
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with

Q :=




q0 q−1 · · · q−(N−1)
q1 q0 · · · q−(N−2)
...

... . . . ...
qN−1 qN−2 · · · q0


 ∈ RN×N , (8.18)

L :=




l0 l−1 · · · l−(N−1)
l1 l0 · · · l−(N−2)
...

... . . . ...
lN−1 lN−2 · · · l0


 ∈ RN×N . (8.19)

Frequency-domain analysis using the z-domain representation

The one-sided z-transformation of a signal {x(k)}∞
k=0 is defined as

X (z) =
∞

∑
k=0

x(k)z−1 ,

and the z-transformation of a system is obtained by replacing q with z. The
frequency response of a z-domain system is given by replacing z with e jω

for ω ∈ [−π,π]. The z-domain representations of the system dynamics in
(8.6) and ILC algorithm in (8.9) are respectively

Y j(z) = F(z)U j(z)+D(z) (8.20)

and
U j+1(z) =Q(z) [ U j(z)+ zL(z)E j(z) ] , (8.21)

where E j(z) = Yd(z)−Y j(z). The z multiplying the learning function
L(z) underlines the noncausality of the ILC algorithm in equation (8.9).

Remark 45. The signals must be defined over an infinite time horizon,
i.e., N = ∞, to use the z-transformation. Accordingly, since practical ap-
plications have finite trial lengths, the z-transformation yields an approx-
imate representation of real-world ILC systems.
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8.4.4 Analysis of performance

In this Section, we summarize the properties of the ILC algorithm (8.9) in
terms of convergence (stability), performance and robustness [190, 218].
The linear system (8.6) is assumed to be subject to unstructured multi-
plicative uncertainty. Therefore, the method takes into account a set of
uncertain systems F∆(z) given as follows:

F∆(z) = F̂(z)(1+∆(z)W(z)), ∆(z) ∈ B∆ (8.22)

with

B∆ = {∆(z) = stable, LTI system : ‖∆(z)‖∞ ≤ 1} (8.23)

where ‖ ·‖∞ is the H∞ norm, F̂(z) is the nominal plant model, and the un-
certainty weighting functionW(z) determines the size of the uncertainty
which is assumed to be known.

Robust convergence and convergence speed

In [218], Son et al demonstrated that the ILC system (8.9) achieves robust
convergence if the following condition is satisfied:

sup
∆∈B∆

||Q(z) [1− zL(z)F∆(z)]| |∞ = γ∗ < 1, ∀F∆(z), ∀z ∈ D (8.24)

with D =
{

z = e jω |ω ∈ [−π,π]
}
. Furthermore, following the steps in

[219], the following relation is obtained for sufficiently large trial lengths:

E∞(z)−E j(z) =Q(z) [1− zL(z)F∆(z)]
(
E∞(z)−E j(z)

)
. (8.25)

Hence, condition (8.24) also guarantees monotonic convergence. In addi-
tion, the smaller γ∗, the faster E j(z) converges to the optimal E∞(z).

Robust performance

The tracking performance of an ILC system is based on the asymptotic
value of the error signal in the iteration-domain. Robust performance ILC
requires the tracking performance specifications to be met for all plants
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in the uncertainty set. If the ILC system (8.9) is robust convergent, the
asymptotic tracking error is given by [11]:

e∞(k) =
1−Q(q)

1−Q(q) [1−qL(q)F∆(z)]
(yd(k)−d(k)) . (8.26)

Accordingly, the robust performance condition is defined in the frequency-
domain as∣∣∣∣

∣∣∣∣Wp(z)
1−Q(z)

1−Q(z) [1− zL(z)F∆(z)]

∣∣∣∣
∣∣∣∣
∞

< 1, ∀F∆(z), ∀z ∈ D (8.27)

whereWp(z) is the performance weight selected by the designer.

Remark 46. Typically, robust convergence (8.24) and asymptotic perfor-
mance (8.26) are considered in the ILC design. Assuming exact knowl-
edge of the system model, a trivial solution, with the learning function L
as the inverse of the model and Q-filter equal to 1, achieves convergence
of the error to zero in only one iteration. However, since models are never
perfect and systems may be non-minimum phase, this result does not oc-
cur under real-world circumstances [11].

8.5 Typical design techniques

Since the classic Arimoto-type ILC algorithm, numerous algorithms have
been proposed and several research directions have been explored, as re-
flected in the categorization presented in Moore [186] and Ahn et al.
[190]. We can divide the types of algorithms into two different cate-
gories: basic algorithms and model-based algorithms [220]. The basic
type of algorithms is easy to implement and tune with few parameters re-
quiring very little knowledge of the real system, such as the static gain
and time delay of the system. As a result, this type is very attractive from
an industrial point of view [202]. On the other hand, model-based algo-
rithms require an explicit model of the system, and the methods are often
more computationally demanding. However, Gunnarsson et al. suggested
that more knowledge of the system could improve performance [221].

In this Section, some examples of basic and model-based design meth-
ods are given, limiting the discussion to linear ILC algorithms6.

6Nonlinear algorithms have also received much attention in ILC research, both in analysis and algorithm
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8.5.1 Basic design methods

The inherent message for designing and implementing basic ILC algo-
rithms in practical applications is clearly expressed in [226] by the fol-
lowing words: “Try simple things first.” Indeed, the ILC control law (8.7)
proposed by Arimoto involves only a simple Derivative (D) action. The
Proportional (P)-, D-, and PD-type learning functions are undoubtedly the
most popular learning techniques, especially for nonlinear systems [227].
For instance, the discrete-time PD-type control law can be written as

u j+1(k) = u j(k)+ kpe j(k+1)+ kd[e j(k+1)− e j(k)] , (8.28)

where kp is the proportional gain and kd is the derivative gain. These
approaches do not require an accurate model for implementation and
are based on fine-tuning or autotuning techniques [190]. The interested
reader is referred to [228] for a comparison of different tuning methods.

8.5.2 Dynamic inversion methods

Dynamic inversion methods use models of the inverted system dynamics
as the learning function L(q). The discrete-time dynamic inversion ILC
algorithm is given by

u j+1(k) = u j(k)+ F̂−1(q)e j(k) . (8.29)

Convergence happens after just one iteration and the converged error is
equal to zero if F̂(q) is an exact model of the plant. However, the imple-
mentation of such algorithms presents several practical challenges. Deal-
ing with non-minimum phase systems, where the direct inversion of the
system dynamics F∆(q) results in an unstable filter, is one of the immedi-
ate challenges with the plant inversion approach. Although finite-duration
iterations guarantee bounded signals, the unstable filter produces undesir-
able large control signals [188]. A stable inversion method, which yields
a noncausal learning function, can be used to get around this issue [229].

Furthermore, the effectiveness of the plant inversion methods depends
heavily on the model accuracy, regardless of whether F∆(q) is in mini-
mum phase or not. Poor transient behaviour can result from a mismatch
design, see e.g., [222, 223, 224, 225].
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between the model F̂(q) and the real dynamics F∆(q), which prevents
convergence from happening in one iteration and can lead to instability.
To avoid these obstacles, a low-pass Q-filter is typically used [190].

8.5.3 Frequency-domain design methods

A different design methodology is built in frequency-domain, which in-
volves ILC algorithms invariant in time and iteration domain [190]. One
example is the H∞ design method, which offers a systematic approach
to select the learning gains. In particular, the objective is to select the
learning function L(q) that offers the fastest convergence rate for a given
Q-filter, i.e., solving the optimization problem:

L∗(z) = argmin
L
‖Q(z)(I− zL(z)F∆(z))‖∞ (8.30)

This problem can be recast as a Linear Fractional Transform (LFT) as

Q(z)(I− zL(z)F∆(z)) = G11(z)+G12L(z)(I−G22(z)L(z))−1G21(z) ,

where

G(z) =
[
G11(z) G12(z)
G21(z) G22(z)

]
=

[
Q(z) Q(z)
−zF∆(z) 0

]
. (8.31)

The resulting scheme is depicted in Figure 8.6. Exploiting this formula-
tion, standard H∞ synthesis tools can be employed to solve (8.30). Fur-
thermore, a powerful feature of the H∞ synthesis is that the formulation
can be extended to include models with known uncertainty bounds [217].

Remark 47. Note that the solutions obtained through H∞ synthesis are
optimal for a given Q-filter. Indeed, iterating over the Q-filter bandwidth
is required to find the optimal trade-off between convergence rate and
performance [217]. To address this drawback, Son et al. suggested in
[230] an ILC architecture that solves a one-step optimization for non-
causal Q-filter and learning function L(q) including several ILC objec-
tives. Namely, ILC objectives are merged into a single constrained opti-
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Figure 8.6: H∞-synthesis of ILC scheme.

mization problem for L(q) and Q(q), as follows:

minimize
L(q),Q(q)

convergence speed (8.32)

subject to robust convergence
robust performance
input constraint

The problem was also reformulated as a convex problem in [218], ensur-
ing an accurate and efficient computation of the global optimum.

8.5.4 Optimization-based methods

Using the lifted representation of the system and ILC algorithm, the algo-
rithm design can be considered in the context of numerical optimisation,
see, e.g., [231, 232]. One example is the quadratically optimal (Q-ILC)
approach, also known as norm-optimal ILC [233]. The Q-ILC learning
functions are designed to minimize a quadratic next iteration cost func-
tion. Typically, the functions used have the following form:

J j+1
(
U j+1

)
= ET

j+1WeE j+1 +UT
j+1WuU j+1 +∆UT

j+1W∆u∆U j+1 (8.33)
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where E j+1 = F∆U j+1 +E j with ∆U j+1 = U j+1−U j, We is a positive-
definite matrix, and W∆u, Wu are positive-semidefinite matrices. The op-
timization formulation enables the integration of input and output con-
straints (ZuU j+1 ≤Umax and ZyYj+1 ≤ Ymax). The resulting minimization
can be formulated as a convex optimization problem which can be solved
efficiently by existing commercial software tools [188]. The resulting
block diagram is schematized in Figure 8.7.

SYSTEM

Q-ILC
U j+1 = argmin

U j+1

{
J j+1(U j+1,U j,E j)

}

with constraints:

{
ZuU j+1 ≤Umax

ZyYj+1 ≤ Ymax

Yd
−U j Y j

E j

U j+1

Figure 8.7: Q-ILC block diagram in lifted form.

Considering the unconstrained problem and minimizing the cost function
with respect to U j+1 yields the optimal Q-filter

Qopt =
(
FTWeF+Wu +W∆u

)−1 (FTWeF+W∆u
)
, (8.34)

and optimal learning function

Lopt =
(
FTWeF+W∆u

)−1 FTWe . (8.35)

Remark 48. The performance, convergence rate, and robustness of the
Q-ILC are all governed by the weighting function selection. For instance,
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substituting Qopt and Lopt into equation (8.26), we obtain the converged
error in terms of the weighting functions:

E∞ =
[
I−F

(
FTWeF+Wu

)−1 FTWe

]
(Yd−D) . (8.36)

Note that the weighting on the change in control W∆u (not present in
(8.36)) does not effect the asymptotic error. On the other hand, following
the steps in [11], it can be shown that W∆u affects how quickly the ILC
converges. Instead, the weight on the control Wu degrades the asymptotic
performance. However, selecting Wu = 0 is not recommended in practice,
because Wu 6= 0 may help limit the control action to prevent actuator sat-
uration, particularly for non-minimum phase systems [234]. The robust-
ness of optimization-based approaches is examined in [235] and [236].

Remark 49. To reduce the computational effort, a revised version, the
fast norm-optimal ILC has been proposed in [220] which is significantly
simpler and faster to implement. Some research has been done towards
reducing the calculation complexity of the lifted system ILC design prob-
lem through the use of basis functions [237]. Furthermore, low-order
Q-ILC solutions may also be found in the literature, which reduces the
memory requirements associated with the massive matrix form of the Q-
ILC method [238]. In particular, Dijkstra et al. proposed low-order solu-
tions that do not depend on the iteration duration and can be extrapolated
to iteration durations of arbitrary length [239].
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CHAPTER9
Smoother-based Iterative Learning Control

Certain problems of practical interest require the generation and repeated
execution of a path, where the choice of path and the related tracking
accuracy can have a dramatic impact on performance. This repetitive-
ness creates the possibility of improving performance from one trial to
the next. In view of this, the problem can effectively be formulated in
the ILC framework. This chapter presents a data-based control approach
to achieve high-performance trajectory tracking with Unmanned Aerial
Vehicles (UAVs). While we will specifically refer to multirotor platforms
for the experimental validation, the formulation can be applied to any dy-
namic system (including systems with underlying feedback loops). The
novelty of this work is the introduction of a smoother to estimate the repet-
itive disturbance to improve the learning performance.
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In the first part of the Chapter, the novel Smoother-based ILC algo-
rithm is presented, highlighting common points and differences concern-
ing state of the art described in the previous Chapter. Then, a Monte Carlo
analysis is carried out with the aim of showing the performance improve-
ments and limitations of the proposed algorithm with respect to existing
approaches. In the last part of the Chapter, experimental results obtained
on a quadrotor performing an aggressive manoeuver are reported to show
that the proposed approach is capable of remarkably reducing the tracking
errors in a few iterations.

9.1 Introduction

In recent years, the study of UAVs has received increasing attention thanks
to their wide range of applications. The generation and repeated execu-
tion of a path are necessary for some practical problems, where the path
choice and the associated tracking accuracy can significantly impact per-
formance. UAVs, for instance, have been widely used for performing a
persistent surveillance mission over a very small domain, where they are
required to precisely track a desired trajectory in order to perform the
task safely and effectively [240]. Another interesting example can be the
Airborne Wind Energy (AWE) systems [241]. AWE systems represent
an alternative to traditional wind turbines, where the tower is replaced by
tethers and a lifting body that either houses an onboard turbine or enables
ground-based energy generation through cyclic spooling motion [242],
[243]. Because the spool-out/spool-in process is highly repetitive, there
is an opportunity to leverage knowledge from previous cycles to optimize
our performance during future cycles [244, 245].

Trajectory tracking with UAVs is typically achieved using feedback
control approaches [42]. Specifically, linear control techniques are widely
used in commercial autopilots, but are not usually able to achieve high
performance. On the other hand, non linear methods (e.g., exact inputout-
put feedback linearization, backstepping, etc..) can yield controllers with
a significantly better performance, but require a careful ad-hoc tuning
of the parameters. Moreover, the performance of feedback control ap-
proaches is limited by the accuracy of the dynamics model and the causal-
ity of the control action that is compensating only for disturbances as they
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Figure 9.1: Scheme of the two-phase energy production for Ground Generation AWE
system. (a) The energy generation phase occurs during the unwinding of the ropes
as the aircraft performs a crosswind flight. (b) In the recovery phase, the aircraft is
controlled to glide towards the ground station [243].

occur. To overcome these limitations, when a system executes the same
task multiple times, ILC can be used.

In recent years ILC algorithms have been also developed and applied
to UAVs [246], [244], [47]. In this Chapter, we revisit the data-based con-
trol approach presented in [47]. It modifies the reference before sending
it to the UAV, therefore it is an add-on algorithm that fits with any com-
mercial controllers. Moreover it requires only the knowledge of the UAV
complementary sensitivity function (the transfer function from the refer-
ence to the actual trajectory) without going into details of the open-loop
dynamics and the baseline controller.

9.2 Proposed architecture

In this Section, we introduce and formalize the novel Smoother-based
ILC algorithm highlighting the novelties with respect to the existing ap-
proaches. While we will specifically refer to multirotor platforms for the
experimental validation, the formulation is general and can be applied to
any dynamic system (including systems with underlying feedback loops).
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9.2.1 Algorithm overview

We combine ILC with the feedback loop in a serial configuration, where
the ILC control input is applied to the reference before the feedback loop
[202] without modifying the feedback controller. As mentioned in the
previous Chapter, this concept is useful when applying ILC to a pre-
existing system that uses a commercial controller that does not allow to
modify the control signal to the plant. Similar to [47], the ILC algorithm
uses information on the input and the error at the current trial to design
the next trial input that minimizes the tracking error, i.e., the discrep-
ancy between the actual and the desired output at the upcoming iteration.
Namely, in [47] Schoellig et al. introduce a Kalman filter that estimates
the repetitive disturbance based on the current input and error measure-
ment in the iteration-domain1. This estimate is then used to update the
next trial input that is generated by solving an optimization problem (with
possible constraints in the input).

On the other hand, the novelty of this work lies in the inclusion of
a smoother to estimate the repetitive disturbance to improve the learn-
ing performance and speed up the convergence. Namely, a fixed-interval
smoothing algorithm is implemented that uses the entire batch of mea-
surements over a fixed interval to estimate all the states in the interval.
This smoother can be derived from a combination of two Kalman filters,
one of which works forward over the data and the other of which works
backward over the fixed interval [251]. In contrast to previous estimation-
based ILC algorithms (see, e.g., [252, 253]), the proposed estimator works
in the time-domain and can be extremely helpful when accuracy is an is-
sue exploiting the potentiality of the batch state estimation [254]. As
highlighted in [255], the time-domain estimator in the ILC framework
must rely on an accurate system model to not degrade the performance.
Indeed, for the experimental activities involving a small quadrotor, the
system model has been obtained through a black-box identification pro-
cedure using the Predictor-Based Subspace Identification (PBSID) algo-
rithm [256].

1Similarly, in [247, 248, 249] the error signal is estimated using a Kalman filter in the iteration-domain
assuming that the control error is measured directly. Instead, in [250] the error signal is estimated when the
control quantity is not directly available as a measurement.
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9.2. Proposed architecture

In the following, the two steps of the proposed learning algorithm are
described in detail. The overall approach is schematized in Figure 9.2.

SYSTEM

DISTURBANCE
ESTIMATOR

LEARNING
STEP

Yd−Uj Yj

Ej

D̂jUj+1

Figure 9.2: Estimator-based ILC block diagram in the iteration domain.

9.2.2 Disturbance estimation: Smoother

The iteration-to-iteration learning of ILC provides opportunities for ad-
vanced filtering and signal processing [11]. For instance, zero-phase fil-
tering [257], which is non-causal, allows for high-frequency attenuation
without introducing lag. Previous works estimated the repetitive distur-
bance using sequential measurements in the iteration domain [252, 253].

In this work, the disturbance has been estimated in the time-domain:
since the estimation is carried out offline, a batch estimation method is
used to achieve high accuracy. In fact, batch state estimation methods
(also known as smoothers, since they are typically used to smooth out
the effects of measurement noise) have the advantage of providing state
estimates with a smaller error covariance than sequential ones [258]. Ba-
sically, smoothers are used to estimate the state at time t, using measure-
ments obtained both before and after t. To accomplish this task, two filters
are usually used: a forward-time filter and a backward-time filter. The first
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practical smoothing algorithms are attributed to Bryson and Frazier [259],
as well as Rauch, Tung, and Striebel (RTS) [260].

In particular, the RTS smoothing algorithm has maintained its popular-
ity since the initial paper, and is likely the most widely used algorithm for
smoothing to date. In fact, RTS is one of the most convenient and efficient
forms of the fixed-interval smoother, because it combines the backward
filter and smoother into one single backward recursion. A formal proof of
the stability of the RTS smoother has been provided using a Lyapunov sta-
bility analysis in [254]. A comparison of the computational requirements
in the various smoother implementations is given in [261].

RTS Fixed-Interval Smoother

We consider a generic discrete-time system with the state space form

x(k+1) = A(k)x(k)+B(k)u(k)+w(k) (9.1)
y(k) =C(k)x(k)+ v(k) (9.2)

where w(k) and v(k) are two random vectors described as Gaussian noises
with zero mean values and given variance matrices: w(k) ∼ N (0,Q),
k(k) ∼ N (0,R). The optimal smoother is given by a combination of the
estimates of two filters: one, denoted by x̂ f (k), is given from a filter that
runs from the beginning of the data interval to time t(k), and the other,
denoted by x̂(k), that works backward from the end of the time interval.
The implementation of a generic RTS smoother is given in Algorithm 2.

Remark 50. The RTS smoother is the most widely used algorithm in prac-
tice for the following reasons [254]:

• The forward filter covariance updated P+
f (k) and propagated P−f (k),

as well as the state matrix A(k), do not need to be stored to determine
the RTS smoothed estimate x̂(k). This is due to the fact that the gain
K (k) can be computed during the forward filter process and stored
to be used in the smoother estimate computation.

• The smoother state x̂(k) does not involve the smoother covariance
P(k). Therefore, the smoother covariance should be computed only
if it is required for analysis purposes.
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Algorithm 2 State estimator: Discrete-Time RTS Smoother

Forward Filter Initialization:
State: x̂ f (0) = x̂ f 0

Covariance: Pf (0) = E
{

x f (0)xT
f (0)

}

for each k ∈ 1,2, . . . ,N do

Kalman Gain Computation:

K f (k) = P−f (k)C(k)T
[
C(k)P−f (k)H

T (k)+R(k)
]−1

Forward State Update:
x̂+f (k) = x̂−f (k)+K f (k)

[
y(k)−C(k)x̂−f (k)

]

Forward Covariance Update:
P+

f (k) =
[
I−K f (k)C(k)

]
P−f (k)

Forward State Propagation:
x̂−f (k+1) = A(k)x̂+f (k)+B(k)u(k)

Forward Covariance Propagation:
P−f (k+1) = A(k)P+

f (k)A(k)
T +Q(k)

end for

Smoother Initialization:
State: x̂(N) = x̂+f (N)

Covariance: P(N) = P+
f (N)

for each k ∈ N,N−1, . . . ,1 do

Smoother Gain:
K (k) = P+

f (k)A(k)
T
(

P−f (k+1)
)−1

Smoother Covariance:
P(k) = P+

f (k)−K (k)
[
P−f (k+1)−P(k+1)

]
K T (k)

Smoother Estimate:
x̂(k) = x̂+f (k)+K (k)

[
x̂(k+1)− x̂−f (k+1)

]

end for
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Disturbance estimation

The disturbance estimate d̂ is obtained at each iteration j by applying the
RTS smoother to the discrete-time stochastic model2

d(k+1) = d(k)+ω(k) (9.3)

with the measurement model

y(k) = F(q)u j(k)+d(k)+µ(k) , (9.4)

where ω and µ are two random vectors described as Gaussian noises
with zero mean values and given variance matrices: ω(k) ∼ N (0,Q),
µ(k) ∼ N (0,R). In the proposed model, the disturbance d represents
the state of the dynamical system, while the error e defines the output
measurement. The implementation of the RTS smoother specialized for
this problem is shown in Algorithm 3.

Assuming the disturbance remains constant among the different trials
(D̂ j+1 = D̂ j), the next iteration predicted error E j+1 can be written as a
function of the disturbance estimate D̂ j and the next input U j+1. Namely,
the next iteration predicted error in lifted form is defined as

Ê j+1(U j+1) = F U j+1−Yd + D̂ j . (9.5)

Remark 51. ILC in combination with the estimation of the control quan-
tity has been extensively analysed in the literature. In [262], it has been
shown that the performance of an industrial robot increases significantly
when an estimate of the control quantity is used instead of measurements
of a related quantity. Performance and convergence of the ILC algorithm
when combined with an estimator have been addressed in [263, 264].

Remark 52. The use of a time-domain filter in ILC can be effective at
reducing the variance of the output error resulting from random process
and measurement noise [254]. However, an important issue is the influ-
ence of having an imperfect model used to design the filter [255]. This
error could produce deterministic non-zero steady state errors. On the
other hand, if the model is accurate, then the filter is optimal and will
outperform a simpler model-free method. As a consequence, an accurate
model is required to exploit this design approach.

2If a more accurate model of the disturbance is available, it can be incorporated into this algorithm.
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Algorithm 3 Disturbance estimator: Discrete-Time RTS Smoother

Forward Filter Initialization:
Disturbance: d̂ f (0) = d̂ f 0

Covariance: Pf (0) = E
{

d̂ f (0) d̂T
f (0)

}

for each k ∈ 1,2, . . . ,N do

Kalman Gain Computation:

K(k) = P−f (k)
[
P−f (k)+R

]−1

Forward State Propagation:
d̂ f (k+1) = d̂ f (k)+K(k)

[
y(k)− d̂ f (k)−F(q)u j(k)

]

Forward Covariance Update:
P+

f (k) = [I−K(k)]P−f (k)

Forward Covariance Propagation:
P−f (k+1) = P+

f (k)+Q

end for

Smoother Initialization:
Disturbance: d̂(N) = d̂ f (N)

for each k ∈ N−1,N−2, . . . ,1 do

Smoother Gain:
K (k) = P+

f (k)
(

P−f (k+1)
)−1

Smoother Estimate:
d̂(k) = d̂ f (k)+K (k)

[
d̂(k+1)− d̂ f (k+1)

]

end for
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9.2.3 Input Update: Quadratically-Optimal Design

The learning algorithm is completed by the input update step using a Q-
ILC design (see Section 8.5.4). Specifically, the next input U j+1 is ob-
tained in the lifted system minimizing the quadratic cost criterion:

J j+1(U j+1) = ÊT
j+1WeÊ j+1 +∆UT

j+1W∆u∆U j+1 (9.6)

where no weight on the control is considered (Wu is a null matrix). In
this application, we impose constraints on the input acceleration since
it is related to the physical capabilities of the system actuators. These
constraints are expressed through the following mathematical inequality:

Ülow ≤ Ü j+1 ≤ Ühigh , (9.7)

where Ü j+1 is the centered difference approximation of the second deriva-
tive of the input reference U j+1. These constraint can be rearranged as
linear inequality with respect to U j+1 as:

Ü j+1 = Zu U j+1 , (9.8)

where

Zu =
1

t2
ILC




1 −2 1 0 · · · 0

0 1 −2 1 . . . 0
... . . . . . . . . . 0
0 0 · · · 1 −2 1


 (9.9)

with tILC being the ILC sampling time. The asymptotic minimization over
iterations of the tracking error under the proposed constrained optimization-
based ILC can be guaranteed with the following assumptions [236].

Assumption 5. The matrix F has full row-rank. If F does not have full
row-rank, a projection operator must be introduced to prove convergence
of the controllable part of the system [236].

Assumption 6. Given the input constraints (9.8), reference trajectory Yd ,
and the actual steady-state disturbance D, the zeroing of the error is pos-
sible with an input in the feasible set [265].
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9.3 Simulation results

In this Section, we compare in simulation the proposed approach with
the Kalman-filter-based ILC (K-ILC) presented in [252]. We apply these
algorithms on a 1D mass-spring-damper system using the nominal model:

G(s) =
ω2

n
s2 +2ξ ωns+ω2

n
(9.10)

with natural frequency ωn = 1.8 rad/s and damping ratio ξ = 0.8. The
algorithms performance is evaluated in a realistic scenario in which the
system is affected by parametric uncertainties. Further, as in [252], we
add a disturbance d(t) = 0.5sin2 (t) and a Gaussian noise N ∼ (0,0.01)
to the output signal y(t). The learning parameters chosen are listed in
Table 9.1 and the desired trajectory is yd(t) = sin(0.5πt).

Table 9.1: Parameters used in the simulations.

Wu W∆u We P(0) R Q

Proposed 0N 0.01 IN IN 0.1 0.01 0.1
K-ILC 0N 0.01 IN IN 0.1 IN 0.01 IN 0.1 IN

Firstly, a Monte Carlo study has been carried out with respect to uncer-
tainty (assuming standard deviation equal to 5% of the nominal values) on
the natural frequency and on the damping ratio. The learning process (30
iterations of ILC algorithm with a sampling time tILC = 0.01 s) has been
performed simulating different plants (100 dynamic parameters samples),
maintaining the same model in the learning algorithm. For each plant the
results have been averaged repeating the entire process 10 times to reduce
the noise influence. The most relevant statistics (mean and standard devi-
ation) of the error 2-norm (‖E j‖2) at the first iteration and at steady-state3

are collected in Table 10.2. To visualize the algorithms rate of conver-
gence, the error evolution in the iteration domain of a learning cycle4 is
shown in Figure 9.3.

3The steady-state error norm was approximated by the average error norms of iterations 20 to 30.
4The error evolution for most of the learning cycles has a behaviour similar to the one in Figure 9.3.
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Table 9.2: Error 2-norm with 5% level of uncertainty.

Algorithm First Iteration Steady-State

Proposed 0.84±0.10 0.23±0.01

K-ILC 1.46±0.21 0.23±0.01
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Figure 9.3: Error 2-norm evolution in the iteration domain (first 10 iterations).

We can see that the proposed approach achieves a faster convergence with
respect to K-ILC maintaining similar steady-state performance. After
that, 3 different Monte Carlo studies have been carried out with respect to
larger uncertainties (standard deviation equal respectively to 10%, 20%,
40% of the nominal values) on the dynamic parameters to assess the ro-
bustness of the proposed approach. The results are summarized in Table
9.3. We can notice that the proposed approach is capable to improve
the performance also with a considerable error in the parameters (20%
standard deviation). However, as expected from Remark 52, when the
model is very inaccurate (40% standard deviation), K-ILC outperforms
our approach at steady-state due to the deterministic error caused by an
imperfect knowledge of the model.
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Table 9.3: Error 2-norm with different levels of uncertainty.

Algorithm Uncertainty level First Iteration Steady-State

±10% 1.30±0.32 0.23±0.01
Proposed ±20% 2.39±0.65 0.23±0.01

±40% 4.33±2.53 0.38±0.25

±10% 1.99±0.42 0.23±0.01
K-ILC ±20% 2.74±0.66 0.23±0.01

±40% 4.10±2.16 0.28±0.18

9.4 Experimental results

In this Section, we apply the proposed ILC algorithm and the K-ILC to a
multirotor UAV to achieve high performance tracking. Firstly we special-
ized the algorithm for this task and then we present the results obtained in
the experiments.

9.4.1 Applying ILC to UAV trajectory tracking

The ILC scheme of Section 9.2 can be applied to any dynamic systems
with underlying feedback loops. Specifically, it is applied to improve the
tracking accuracy in executing a complex manoeuver with an UAV guided
by a commercial controller (PX4 autopilot [55]). The overall architecture
is schematized in Figure 9.4.

High-level Controller
ILC

Low-level Controller
PX4 Autopilot

System
Drone

Reference
signal

Modified
Reference

signal
Error
signal

System
input

System
output

-

Figure 9.4: Block diagram of the proposed architecture.

Remark 53. As pointed out in Section 8.3, the ILC scheme requires the
disturbance to be iteration-invariant (or at least slowly iteration-varying).
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In this application, this can be reasonably assumed true, because the ILC
objective is to achieve a high level of performance eliminating the unmod-
elled (possibly nonlinear) dynamics (e.g., aerodynamic effects). Other
iteration-varying disturbances (e.g., wind) have to be counteracted by the
feedback controller. Furthermore, the feedback loop allows us to use a
linear model as a good approximation of the UAV closed-loop dynamics.

In this work we consider without loss of generality the case of in-plane
trajectory (yd = [xd, yd]

T ). This is done by acting on the set-points (u =
[xsp, ysp]

T ) commanded to the stock controller exploiting measurements
of the position (y = [xm, ym]

T ) to estimate the disturbance.
To analyse the learning performance, the following metrics are de-

fined. A synthetic indicator at a specific iteration j is the average position
error along the trajectory:

epos, j =
1
N

N

∑
k=1

√
(xm, j(k)− xd(k))2 +(ym, j(k)− yd(k))2 . (9.11)

This indicator can be adimentionalized with respect the average position
error at the initial iteration epos, j

epos,0
. Additionally the performance indicator

epos, j−epos, j−1
epos, j

has been used to highlight the difference between two con-
secutive iterations.

9.4.2 Experimental setup

Flight tests are carried out inside the Flying Arena for Rotorcraft Tech-
nologies (FlyART) of Politecnico di Milano (see Appendix A for more
details) which is an indoor facility equipped with a Motion Capture sys-
tem (Mo-Cap). The drone is a fixed-pitch quadrotor designed by ANT-X
[266], with a maximum take-off weight below 300g (see Figure 9.5). A
ground control station receives measurements from the Mo-Cap system,
reconstructs the state of the drone and, then, computes the next iteration
set-points according to the proposed approach. The overall strategy has
been integrated in the PX4 autopilot [55] using the ANT-X rapid proto-
typing system for multirotor control.
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Figure 9.5: ANT-X drone.

9.4.3 Model Identification

The system dynamics (i.e., the complementary sensitivity of the UAV)
was identified as a black-box model, by applying the Predictor-Based
Subspace Identification algorithm (PBSID, see also [267], [268], [269]
for applications of PBSID to rotorcraft dynamics) to input-output data
gathered in dedicated identification experiments.The model for the trans-
fer function from xsp to xm is5

Gx(s) = e−0.25s · 0.08s+1.94
s2 +1.752s+2.01

. (9.12)

The model was validated against flight data collected in another exper-
iment. Figure 9.6 shows the measured response to the reference signal
against the simulated response obtained with the identified model, show-
ing a close match to the measured data.

5The PBSID algorithm returns a discrete time state space model, but the continuous time transfer func-
tion obtained with the Tustin approximation has been reported to give more physical insight. In fact, in this
formulation we can clearly notice that the system is characterized by a natural frequency ωn ≈ 1.4 rad/s and
damping ratio ξ ≈ 0.6.
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Figure 9.6: Validation of the identified model.

Note that due to symmetry, and based on previous experience, we can use
the model identified for longitudinal dynamics (x-direction) also for the
lateral dynamics (y-direction), i.e., assume that (Gx(s) = Gy(s)). These
models are used in the estimation step (time-domain) and in the input
update step (iteration-domain) constructing F following the approach de-
scribed in Section 8.4.3.

9.4.4 Results

In this Section, we present the results obtained by applying the proposed
algorithm and the K-ILC on the ANT-X UAV with the same learning
parameters used in Section 9.3 and with a sampling time tILC = 0.05 s.
In the experiment, the manoeuvre to be learned is an aggressive eight-
shape trajectory flown in the horizontal plane (see Figure 9.7) character-
ized by a maximum velocity vmax = 2.1m/s and maximum acceleration
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amax = 4m/s2. Namely, the trajectory is defined as:




xd = 1
2 · sin

(
π(t− ti)

)

yd = cos
(π

2 (t− ti)
)

zd =−2,
(9.13)

where xd , yd and zd are the components of the desired trajectory, t is the
time variable, and ti is the time in which the eight-shape trajectory starts.

N E

D

x y

z

Figure 9.7: Eight-shape trajectory.

The quadrotor is required to hover at the beginning of the eight-shape tra-
jectory: the learning motion starts and ends in the same hovering point.
The acceleration (blue dashed line) and deceleration (red dashed line)
phases must also be learned precisely at the beginning and the end of
the eight-figure.

Remark 54. ILC requires identical initial conditions at each iteration
(see Assumption 4). However, obtaining identical initial conditions in real
experiments is very problematic. In this work, we start from the hover
position and let the UAV stabilize around the initial trajectory position
until an in-plane position error of less than 5 cm is guaranteed.

The data comparison between the two methods is reported in Table 9.4.
We can notice that, as in Section 9.3, the proposed approach achieves
faster convergence with respect to K-ILC. Due to space limitations only
the trajectories obtained by to the proposed approach are plotted in the
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Table 9.4: Learning performance results for 8-shape trajectory.

Iteration epos j [m]
epos j
epos0
·100 [%]

|epos j−epos j−1 |
|epos j−1 |

·100 [%]

j = 0 0.422 100.0 -

Proposed approach

j = 1 0.040 9.59 90.41
j = 2 0.018 4.29 55.33

K-ILC

j = 1 0.072 17.2 82.84
j = 2 0.050 11.9 30.52
j = 3 0.044 10.5 12.13

following figures. Specifically, in Figure 9.8 the evolution in xy-plane is
depicted without the acceleration and deceleration phases, while in Figure
9.9 the time evolution of the North position is plotted (the East direction
shares similar behaviour). We can state that the proposed approach is
very effective in improving the tracking performance of the UAV, while
being robust to small initial errors in the positioning, unmodelled system
dynamics, process and measurement noises.

9.5 Final considerations

In this Chapter, we tackled the problem of high-performance tracking of
UAVs for the solution of which an ILC-based control approach has been
developed. This approach implements an efficient learning algorithm that
uses the dynamics model of the system and the experience gained through
repeating a given trajectory to improve tracking performance. Specifi-
cally, the proposed ILC algorithm modifies the reference signal offline
after each trajectory repetition. However, this approach requires an ac-
curate model of the system dynamics and cannot effectively handle non-
repetitive disturbances. To overcome these limitations, in the following
Chapter, we combine the proposed algorithm with an adaptive controller
that is able to force the system to behave close to a reference model despite
the presence of iteration-varying disturbances and unmodelled dynamics.
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Figure 9.8: 8-shape trajectories for the iterations 0, 1 and 2.

0 2 4 6 8 10 12

�1.75

�1.5

�1.25

�1

�0.75

�0.5

�0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

�1.5

�1

�0.5

0

0.5

1

1.5

Acceleration Deceleration8-shape

Time [ s ]

N
or

th
po

si
tio

n
[m

]

xm,0 xm,1 xm,2 xd

Figure 9.9: UAV North-position for iterations 0, 1 and 2.
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CHAPTER10
H∞-based Transfer Learning

The ILC approach presented in Chapter 9 has been capable of reaching
exceptional tracking performance. However, the learning phase needed
to apply such technique is related to each specific system, thus making
the application of ILC poorly scalable. To overcome this limitation, we
present in this Chapter a novel H∞-optimisation-based definition of a map
that allows transforming the input signal learnt on a source system to the
input signal needed for a target system to execute the same task.

10.1 Introduction

The downside of ILC is that, in order to actually learn the task, a time-
consuming training phase is needed, which is specific for each system and
for each task. As a consequence, whenever a new system and/or task is
considered, the whole process of learning has to restart from scratch.
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To widen the field of application of ILC to a large number of systems
operating in different environments like UAVs, there is the need for a sys-
tematic approach that allows transferring knowledge acquired in previous
training phases to new systems and/or tasks. This problem goes under
the name of Transfer Learning (short, TL) in the literature. For details,
the readers are referred to the survey papers [270], [271] and references
therein. This work focuses on multi-system TL, whose objective is to
transfer the knowledge acquired on a source system to a target system
that needs to perform the same task. This transfer of data may be bene-
ficial if the source system is less costly, difficult, or hazardous to operate
than the target system. Furthermore, if multiple, similar robots have to
perform the same task, it is more cost effective if one robot learns to per-
form the task and transfers its knowledge to the other robots [272].

The application of TL to ILC is a recent research topic. In [273],
Hamer et al. designed a TL approach based on the assumption that a lin-
ear mapping around the desired trajectories can approximate the learning
process of ILC. In [265], Pereida et al. developed a multi-robot multi-
task TL approach by using a dynamic transfer map in combination with
an adaptive controller. Another aspect that has been analysed is the na-
ture of the transfer map: the use of a dynamic map rather than a scalar one
appears to be the most reasonable choice, and, in fact, in [274], Sorocky
et al. proved that the optimal TL map between two robots is, in gen-
eral, a dynamic system. However, the effects of such maps on the trans-
fer error have not been analytically investigated yet. On the other hand,
scalar transformations have already been analysed, like in [275], in which
Raimalwala et al. derived an analytical upper bound on the transforma-
tion error. In [276], Helwa et al. proposed a novel approach to build a
dynamical TL map based on a grey-box model identification procedure:
the structure of the map is derived from knowledge of the order and rela-
tive degree of the source and target systems, and then the map is identi-
fied through simple experiments performed on both the source and target
system. Nevertheless, this procedure has an important drawback: experi-
ments are needed to identify the map. In this way, the time which would
be saved for the training of the target system is not actually saved.
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10.2. H∞-based transfer learning

10.2 H∞-based transfer learning

In this Section, we introduce and formalize the proposed TL approach.
The problem of multi-system TL in the framework of ILC consists in
finding a dynamical transfer map which transforms the input learnt on a
source system (i.e., which allows the source system to track the desired
trajectory) into the input needed for a target system to track the same tra-
jectory. The expected result of this approach is a reduction of the first
iteration error when the target system performs the same task. Specif-
ically, a novel H∞-optimisation-based TL architecture is derived from a
classical control problem, namely the model matching problem. While
we will specifically refer to multirotor platforms for the experimental val-
idation, the formulation is general and can be applied to any dynamic
system (including systems with underlying feedback loops).

10.2.1 Model matching

Considering the block diagram of Figure 10.1, the model matching goal is
to design C(s) to minimise the error e when the source and target systems,
namely G1(s) and G2(s), are excited by the same reference signal r. The
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Figure 10.1: Model matching problem.

matching error is defined as:

e(s) = y2(s)− ŷ2(s) = y2(s)−C(s)y1(s)
= (G2(s)−C(s)G1(s))r(s) . (10.1)

The model matching problem can be treated in the H∞ framework [277]
as an optimization problem that minimize a measure of the deviation be-
tween the two models by exploiting invariants of the system, i.e., the
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transfer functions. Specifically, the problem can be formulated in terms
of H∞ norm of the difference between the two models:

min
M(s)
||G2(s)−C(s)G1(s)||∞ . (10.2)

The non-smooth optimization of the H∞ norm has been studied exten-
sively in the last decade and for which reliable computational tools are
presently available [278]; these tools are embedded in the Robust Control
Toolbox of MATLAB, making use of the systune function. The method
implemented in these tools allows the H∞ design of a controller; since
there are infinitely possible architectures, the method considers a stan-
dard form, in which any block diagram can be rearranged. Considering
the performance inputs w (e.g., reference signals, disturbances and noise)
and outputs z (e.g., tracking errors, control actions, plant outputs subject
to disturbances), the standard form is depicted in Figure 10.2 and consists
of two main components:

• LTI model P(s) which combines all fixed (non tunable) blocks in the
control system;

• Controller K(s) which combines all tunable control elements.
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Figure 10.2: Standard form for H∞ synthesis.

By considering the closed-loop transfer function Tw→z(P,K), the opti-
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mization problem is formulated as follows:

min
K( jω)

max
ω∈[0,∞]

σ̄ (Tw→z(P( jω),K( jω))) (10.3)

subject to: K(s) stabilizes P(s) internally

where σ̄(·) denotes the maximum singular value associated with its argu-
ment: in the SISO case, this norm is just the peak gain over frequency,
while it measures the peak 2-norm of the frequency response over fre-
quency in the MIMO case. The problem (10.3) is solved iteratively start-
ing from initial guess, by constructing a tangent model around the current
iterate that approximates locally the original problem: an adequate de-
scent direction is then computed by solving a convex quadratic program;
further details on the state-of-the-art optimizer can be found in [277].
Other optimization methods based on convex formulation often rely on
conservative and expensive relaxations or resort to biconvex schemes [278].

It is worth noticing that the model matching problem formulated in
equation (10.2) is a special case of the one typically used for control sys-
tem tuning (10.3), but without the stability constraint, which is mean-
ingless for model matching [277]. In fact, it is very simple to obtain an
equivalent representation of the model matching problem in the standard
form (see Figure 10.3) by dividing the plant from the tunable element.
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Figure 10.3: Standard form of the model matching problem.

Specifically, the performance input is the reference signal while the per-
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formance output is the matching error, the measured output is substituted
by the reference signal, while the control input is ŷ2, which should be
as close as possible to the output of the target model G2(s). Finally, the
augmented plant and the tunable controller are respectively:

P(s) =
[

G2(s) −1
1 0

]
, K(s) =C(s)G1(s) . (10.4)

10.2.2 Multi-system transfer learning

Multi-system TL is an analogous problem, but, instead of transforming
the output, the goal is to transform the input that excites the target system,
as shown in Figure 10.4. The map M(s) has to be tuned to minimise the
error between the outputs of the two systems when the source one is fed
by the learnt input uL

1 and the target one by the transferred input u2, where
u2(s) = M(s)uL

1(s).

Figure 10.4: Transfer learning problem.

By looking at the structure of the block diagram in Figure 10.4 and as-
suming that G2(s) is a non-minimum phase system, a trivial solution to
solve the matching problem is:

Mbasic(s) = G−1
2 (s)G1(s) . (10.5)

This choice allows to ideally “cancel” the target dynamics and “substi-
tute” it with the source dynamics, thus producing a target output identical
to the source one. However this choice would work only in an ideal situ-
ation in which the two transfer functions are not affected by uncertainty.
In other words, this non-robust approach would not be exploitable in a
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10.2. H∞-based transfer learning

real-world application. For this reason an optimisation-based approach
like the H∞ one has to be preferred.

Similar to the previous Section, the block diagram of Figure 10.4 can
be manipulated in the standard form (see Figure 10.5) considering:

P(s) =
[

G1(s) −1
1 0

]
, K(s) = G2(s)M(s) . (10.6)
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Figure 10.5: Standard form of the transfer learning problem.

Moreover, the plant P(s) can be augmented using frequency weights,
namely frequency-dependent functions used to enforce requirements in
the optimisation problem. In the context of TL, a weighting function
W (s) should be defined to enforce a desired shape for the transfer func-
tion from the source learnt setpoint uL

1 to the error e. By using this weight,
the objective of the optimisation problem can be written as

min
M(s)
||W (s)(G1(s)−G2(s)M(s))||∞ . (10.7)

A powerful feature of the H∞ framework is the possibility of including
model uncertainty in the optimisation problem. The result will be a robust
transfer map which allows to maintain the desired performance (described
by the weighting function) in the worst-case scenario. Furthermore, the
structure H∞ synthesis has the possibility of enforcing a desired structure
to the tunable elements [277]. In the TL problem a rough structure of
M(s) is usually known a priori based on the model structure of the source
and target system, even if these models are uncertain.
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10.2.3 Proposed TL architecture

The result of H∞-optimization-based TL scheme is a dynamic transfer
map which is treated as a standard dynamic model, receiving as input
the set-point learnt on the source system (uL

1) and producing as output
the input needed for the target system (u2) to reproduce the same task.
In this work, the set-point uL

1 has been obtained performing NS iterations
of the Smoother-based ILC (S-ILC) algorithm presented in Chapter 9.
After that, the learning is continued on the target system (additional NS
iterations of the S-ILC algorithm) using as set-point (u2(s) = M(s)uL

1(s)).
The expected result of the proposed approach is a reduction of the first
iteration error when the target system performs the same task.

The overall approach is summarised in Algorithm 4. Note that if TL is
successful, then the learning phase on the target is not needed. However,
few iterations can still allow to further improve the performance.

10.3 Simulation results

In this Section we validate in simulation the proposed approach on two
1D mass-spring-damper systems. Concerning the characteristics of the
two systems sharing data, in [274] the authors analytically demonstrate
that TL is more likely to guarantee positive results if it is performed from
a more aggressive system to a less aggressive one. If this concept is con-
sidered in the framework of UAVs, this means that it is better to choose
a smaller (and faster) drone as source system and a bigger (and slower)
drone as the target one. This choice is beneficial in the aeronautical frame-
work, because tests performed on smaller vehicles are easier and safer to
perform.

The two (nominal) systems are therefore selected with this rationale:

G1(s) =
ω2

S

s2 +2ξSωSs+ω2
S
, ωS = 4 , ξS = 0.7 (10.8)

G2(s) =
ω2

T

s2 +2ξT ωT s+ω2
T
, ωT = 1 , ξT = 0.8 . (10.9)

The TL performance is evaluated in a realistic scenario in which the tar-
get system is affected by parametric uncertainties. Furthermore, we add
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Algorithm 4 H∞ Transfer Learning Approach

Input: G1(s) and G2(s) with the related uncertainty levels.

Dynamical transfer map
H∞ optimisation⇒ M(s)

Source system
for j = 1 : NS do

Apply U j
Measure Yj
S-ILC: Compute optimal U j+1 using D̂ j

end for

Result: Optimal input uL
1 =U j+1

Transfer learning
Transferred setpoint: u2(s) = M(s)uL

1(s)

Target system
Apply U1,T = u2
Measure Y1,T

for j = 2 : NT do

S-ILC: Compute optimal U j,T using D̂ j,T
Apply U j,T
Measure Yj,T

end for
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a disturbance D(t) = 0.1sin(2t) and a Gaussian noise N ∼ (0,0.01) to
the output signals of both source Ys(t) and target system Yt(t). The de-
sired trajectory is Yd(t) = 0.5sin(t) and the S-ILC parameters (which are
referred to the nomenclature of Chapter 9) are listed in Table 10.1.

Table 10.1: Parameters used in the simulations.

Wu W∆u We P(0) R Q

Proposed 0N 0.1 IN IN 10 0.01 0.1

A Monte Carlo study has been carried out with respect to uncertainty
(assuming standard deviation equal to 20% of the nominal values) on the
natural frequency and on the damping ratio of the target model (see Figure
10.6 for the Bode plot of the resulting uncertain model).
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Figure 10.6: Bode plot of the uncertain target model.

By using these uncertainty levels, the structured H∞ model matching is
solved by using MATLAB function systune. The frequency weight W (s)
is defined using the function makeweight, which enables to create a first
order, continuous-time weight with the following properties: |W (0)| =
40, limω→∞ |W ( jω)| = 0.99 and the gain cross-over frequency equal to
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2rad/s. Given the models of the source and target systems, the structure
assigned to the transfer map is:

M(s) =
a1s2 +a2s+1
b1s2 +b2s+1

, (10.10)

where a1,a2,b1,b2 ∈ R are the optimization variables. This choice is
justified by the previous considerations about the trivial solution of the
matching problem: even if the optimal solution cannot be Mbasic(s) =
G1(s)G−1

2 (s), it is still reasonable to choose the transfer map such that
nz = nz,s + np,t and np = np,s + nz,t , where nz is the number of zeros and
np is the number of poles. The optimization result is the transfer map:

M(s) =
0.823s2 +1.464s+1
0.043s2 +0.272s+1

. (10.11)

The procedure followed in the simulation environment is explained in the
following. Firstly, the learning process is applied on the source system
involving 10 iterations of the S-ILC algorithm. Then, the transferred set-
point is computed using the learnt input uL

1 and the computed transfer
map M(s). Finally, the target system undergoes the learning process both
with and without using TL. Namely, 10 iterations of S-ILC have been
performed simulating different target systems (100 natural frequency and
damping ratio samples), maintaining the same model in the learning al-
gorithm. The most relevant statistics (mean and standard deviation) of
the error 2-norm (‖E j‖2) at the first iteration on the target system are col-
lected in Table 10.2. We can notice that an average reduction of 82% is
obtained using the proposed TL approach despite the uncertainty.

Table 10.2: Relevant statistics of the first iteration error 2-norm with/without TL.

TL No TL

Error 2-norm 1.19±0.48 6.65±0.26

Furthermore, the evolution of the error mean of the target system in the
iteration domain is shown in Figure 10.7. We can see that the proposed
approach achieves a faster convergence with respect to the case without
TL maintaining similar steady-state performance.
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Figure 10.7: Mean error 2-norm evolution in the iteration domain.

10.4 Experimental results

In this Section, we apply the proposed TL approach to two different-scale
multirotor UAVs to achieve high performance tracking. Firstly, we de-
scribe the controller architectures for this task and, then, we present the
results obtained in the experiments exploiting the proposed TL algorithm.

10.4.1 UAV controller architectures

The controller architecture presented in Chapter 9 is applied to improve
the tracking accuracy in executing a complex manoeuvre with two different-
scale UAVs. Namely, the controller architecture implemented on the
source UAV is a modification of the nonlinear cascaded controller for
position stabilization implemented in the PX4 autopilot, where the com-
mercial controller is augmented using the L1 adaptive control [279]. The
overall architecture is schematized in Figure 10.8. Instead, the target UAV
controller is the stock version of the commercial one.

Remark 55. The combination of adaptive control and ILC is inspired
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from previous works [280, 281]. The adaptive controller drives dynami-
cally different nonlinear systems to behave as a defined linear model over
iterations, whereas ILC increases tracking performance over iterations.

Specifically, the source system dynamics is a feedback loop driven by
L1 adaptive control that follows the ILC reference setpoint U j behaving
as a desired linear model despite uncertainties and/or disturbances. L1
adaptive control is based on the MRAC architecture with the addition of
a low-pass filter that decouples robustness from adaptation. This decou-
pling allows for an arbitrary increase of the estimation rate, limited only
by the available hardware, while robustness is limited by the available
control channel bandwidth and can be addressed by conventional methods
from classical and robust control. The main feature of this configuration
is the guaranteed transient performance and guaranteed robustness in the
presence of fast adaptation [41]. As in the previous Chapter, we consider
the case of in-plane trajectory (yd = [xd, yd]

T ). This is done by acting
on the set-points (u = [xsp, ysp]

T ) commanded to the controller exploiting
measurements of the position (y = [xm, ym]

T ) to estimate the repetitive
disturbance. To analyse the learning performance, the metrics defined in
Section 9.4.1 are used.

High-level Controller
ILC+TL

Low-level Controller
L1 Adaptive Control

System
Drone

Experience
from other drones

Modified
Reference

signal
System
input

Reference
signal

Repeatable Behaviour
System
output

Figure 10.8: Block diagram of the proposed TL architecture.

10.4.2 Experimental setup

Flight tests are carried out inside the Flying Arena for Rotorcraft Tech-
nologies of Politecnico di Milano (see Appendix A). Two different-scale
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quadrotors (shown in Figure 10.9) are used. Namely, the source system
is ANT-X, a small-scale UAV with in-plane dimensions 20×20cm for a
takeoff weight of 0.250kg, and the target system is ADAM-0, with in-
plane dimensions 40× 40cm for a takeoff weight of 1.4kg. The overall
strategy has been integrated in the PX4 autopilot [55] using the ANT-X
[266] rapid prototyping system for multirotor control.

Figure 10.9: The two different quadrotors used in the experiments.

10.4.3 Model Identification

The complementary sensitivity of the UAVs (i.e., the system dynamics)
were identified as a black-box model, by applying the PBSID algorithm
to input-output data gathered in dedicated identification experiments. The
models for the transfer function from xsp to xm are1

G1(s) = Gx
ANT−X(s) = e−0.25s · 0.08s+1.94

s2 +1.75s+2.01
, (10.12)

1The PBSID algorithm returns a discrete-time state space model, but the continuous-time transfer functions
obtained with the Tustin approximation has been reported to give more physical insight.
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G2(s) = Gx
ADAM−0(s) = e−0.20s · 0.02s+1.97

s2 +1.92+1.94
. (10.13)

Note that due to symmetry, and based on previous experience, we can use
the models identified for longitudinal dynamics (x-direction) also for the
lateral dynamics (y-direction), i.e., assume that (Gx

(·)(s) = Gy
(·)(s)).

10.4.4 Dynamical transfer map

Based on the identified models, the structure assigned to the transfer map
is changed with respect to equation (10.10), opting for a third order poly-
nomial on both numerator and denominator. Two dynamical transfer
maps are computed: Mnom(s) considering no uncertainty on the identi-
fied models, and Munc(s) considering uncertainty on the target model (as-
suming standard deviation equal to 10% for the denominator coefficients
and equal to 15% for the numerator ones). Using the proposed H∞-based
TL approach with the same performance weight function W (s) of Section
10.3, the obtained transfer maps are:

Mnom(s) =
0.14s3 +1.79s2 +1.79s+1
0.15s3 +1.66s2 +1.78s+1

, (10.14)

Munc(s) =
0.50s3 +1.34s2 +1.60s+1
0.49s3 +1.35s2 +1.50s+1

. (10.15)

10.4.5 Results

In this Section, we present the results obtained by applying the proposed
TL algorithm. In the experiment the manoeuvre to be learned is an eight-
shape trajectory flown in the horizontal plane. The quadrotors are re-
quired to hover at the beginning of the eight-shape trajectory: the learning
motion starts and ends in the same hovering point. The acceleration and
deceleration phases at the beginning and the end of the eight-figure must
also be learned precisely. The flight tests with the two quadrotors have
been carried out in two phases. Firstly, we perform several ILC iterations
on the source system (until the average position error becomes less than
5 cm). The data related to the S-ILC algorithm on the source system is
reported in Table 10.3. We can notice that only three iterations are needed
to obtain the average position error below 5 cm (epos3 = 3cm).
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Table 10.3: S-ILC results on the source system.

Iteration epos j [m]
epos j
epos0
·100 [%]

|epos j−epos j−1 |
|epos j−1 |

·100 [%]

j = 0 0.7675 100.0 -
j = 1 0.0902 11.75 88.25
j = 2 0.0296 3.86 67.18

Then, the performance of the target system is evaluated in three different
scenarios: without TL, using the nominal transfer map Mnom(s) and the
uncertain transfer map Munc(s). In Table 10.4 the results obtained with the
target system are listed highlighting the performance improvement with
respect the case without TL (eposNoT L).

Table 10.4: TL results on the target system.

Case epos j [m]
epos j

eposNoT L
·100 [%]

No TL 0.7244 100.0
TL with Mnom(s) 0.0814 11.2
TL with Munc(s) 0.0989 13.6

As expected2, the performance is slightly better using the nominal transfer
map Mnom(s), but also using Munc(s) a consistent error reduction (86.4%)
is obtained with respect to the case without TL. This reduction confirms
the potentiality of the proposed approach that takes into account the mod-
els’ uncertainty in a systematic way. In Figure 10.10 and Figure 10.11
the time evolution of the North and East position are plotted respectively.
Furthermore, in Figure 10.12 the evolution in the xy-plane is depicted
(without the acceleration and deceleration phases). We can state that the
proposed TL approach is very effective in improving the tracking perfor-
mance of a UAV transferring knowledge between different-scale UAVs.

2In this case, despite the identified models being very accurate, a high level of uncertainty is considered in
the H∞ optimization to validate the proposed approach. As a consequence, the optimised dynamical transfer
map is more conservative than needed.
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Figure 10.10: UAV North position with and without TL.
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Figure 10.11: UAV East position with and without TL.
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Figure 10.12: 8-shape trajectories with and without TL.

10.5 Final considerations

In this Chapter, we define a robust and systematic approach to transfer
data acquired during the learning phase of a drone (source) and to use it
to train a different-scale one (target) to perform the same task. The devel-
oped approach is based on the H∞ optimisation of a transfer function and
takes advantage of the H∞ control design framework by adapting the for-
mulation to the TL problem. Furthermore, we combine the L1 adaptive
control with the S-ILC proposed in the previous Chapter. The adaptive
controller drives dynamically different nonlinear systems to behave as a
defined linear model over iterations, whereas the ILC algorithm increases
tracking performance over iterations. The validation of the proposed ap-
proach has been performed using two identified models of the source and
target system. However, in certain applications, only one identified model
could be available. In these cases, a dynamic scaling approach (see, e.g.,
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[282]) can be applied to obtain the other model starting from the identi-
fied one, and the obtained model can be used to build the transfer map and
tune the ILC algorithms. Finally, future works could exploit the proposed
H∞ framework to derive a procedure that allows us to guarantee that the
transferred experience will lead to improved performance (i.e., positive
transfer) on the target system prior to transferring experience from the
source system.
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This dissertation focuses on the development, simulation and experimen-
tal validation of various control algorithms for aerospace systems, ranging
from small UAVs to satellites with large rotating antennas. The main con-
tribution is the development of systematic approaches that integrate the
experience gathered during the operation (data-driven knowledge) into a
classic (model-based) control framework. Specifically, some innovative
control architectures are proposed and discussed.

The first Part of this work addresses two challenges for verifiable adap-
tive control systems, i.e., the presence of actuator dynamics and systems
with uncertain time-varying parameters. The resulting methods make it
possible to check and satisfy different conditions such that the adaptive
control system has performance and robustness guarantees. Finally, the
proposed algorithms are specialized to a UAV position controller and an
attitude controller for a spacecraft with time-varying inertial parameters.

The second Part of this work is devoted to presenting and discussing
two applications of HC algorithms. Specifically, an active balancing sys-
tem for rotating orbital devices has been designed and a HC algorithm
has been used to command the positions of the actuated masses. After
extensive numerical simulations, a dedicated breadboard has been devel-
oped, and experimental validation of the control law has been carried out.
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Then, a second application of HC with a slightly different paradigm is
presented. In particular, the HC framework is specialized in the heli-
copter rotor-induced vibration problem and the analysis of the interaction
between the active control of structural response and a mast vibration ab-
sorber is done using a virtual helicopter model.

The last Part of this work presents the novel Smoother-based ILC al-
gorithm that takes advantage of the repetition of a specific task to improve
performance from one trial to the next. This algorithm has been special-
ized to achieve high-performance trajectory tracking with UAVs, and an
experimental campaign involving a small quadrotor has been carried out.
However, the learning phase needed to apply such a technique is related
to each specific system, thus making the application of ILC poorly scal-
able. To overcome this limitation, a novel H∞-optimization-based defini-
tion of a transfer map is proposed that allows transferring the knowledge
acquired on a source system to a target system that needs to perform the
same task. This transfer of data may be beneficial if the source system is
less costly, difficult, or hazardous to operate than the target system. Fur-
thermore, if multiple similar robots have to perform the same task, it is
more cost-effective if one robot learns to perform the task and transfers
its knowledge to the other robots. Experimental results demonstrate the
effectiveness of the proposed approach in improving the tracking perfor-
mance of a UAV transferring knowledge between different-scale UAVs.
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APPENDIXA
The Flying Arena for Rotorcraft

Technologies

The Flying Arena for Rotorcraft Technologies (FlyART) is an indoor fa-
cility (see Figure A.1) designed and developed by the Aerospace Systems
and Control Laboratory (ASCL [283]) which is the scientific laboratory
of the Department of Aerospace Science and Technology of Politecnico
di Milano (DAER [284]) devoted to systems and control research. Fl-
yART facility allows the indoor testing and prototyping of small UAV
concepts and new subsystems (e.g., guidance, navigation and control sys-
tems) for single and formation flight. The FlyART has a flight volume of
12m×6m×4m equipped with a motion capture system. In this Chapter,
we describe the systems which compose the facility.
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Figure A.1: The FlyART facility.

A.1 Motion Capture system

The Motion Capture system (Mo-Cap) is composed by 12 Infra-Red (IR)
sensitive Optitrack cameras (Figure A.2(a)) which incorporate IR flood
lights. The cameras, mounted on the FlyART, are fixed at calibrated po-
sitions and orientation so that the measurement subject is into the field of
view of multiple cameras. Through markers sensitive to IR light (Figure
A.2(b)) mounted on top of the drones, it is possible to estimate and track
their attitude and positions inside the flight volume. Each UAV mounts
a different marker layout to be uniquely identified when several drones
fly at the same time. To control the Mo-Cap system, the Motive software
[285] is installed on the ground station. It allows the user to calibrate the
system and provides interfaces for capturing and processing 3D data that
can be recorded or live-streamed. The accuracy of the position estimated
onboard by the UAV depends on the frequency with which the position
information is sent to it, which can be selected in the range 30−240Hz.

A.2 Ground Control System

The Ground Control System (GCS) is dedicated to send and retrieve in-
formation from the UAVs during a flight session. The main task of the
GCS is to read the attitude and position information provided by the mo-
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(a) Infrared camera from [286]. (b) Infrared markers from [286].

Figure A.2: Motion Capture System components.

tion capture system and send it to the drones (at a frequency of 100Hz).
Furthermore, it is also possible to define a trajectory to be followed us-
ing specific way points (usually sent with a frequency of 20Hz) and view
telemetry data in real time. The GCS architecture involves two different
computers: the former, which runs Windows 10, is used to execute Mo-
tive while the latter, which runs Linux OS (more precisely Ubuntu 16.04),
is used to execute ROS [287] and MATLAB [288]. The GCS architectural
division was done because Motive is a Windows software while ROS in-
tegrates better in a Linux environment.

A.3 Drones HW/SW architecture

Each UAV flying inside the indoor facility mounts two electronic boards,
the Flight Control Unit (FCU) and the Flight Computer Companion (FCC).

Flight Control Unit

The FCU is an electronic board which runs the control and the navigation
algorithms. The adopted FCU is the electronic board Pixhawk Mini [289]
which integrates the inertial sensors, such as 3-axes accelerometer, 3-axes
gyroscope, magnetometer and barometer.
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Figure A.3: Pixhawk Mini FCU from [289].

The main features of the Pixhawk Mini are:

• Processor: main STM32F427 Rev 3 based on 32 bit ARM Cortex®

M4 core with 180 MHz CPU and an IO processor STM32F103
based on the Cortex® M3 core with 72 MHz CPU;

• Interfaces: UART serial port for GPS, spektrum DSM/DSM2/DSM-
X® satellite compatible RC input, Futaba S BUS® compatible RC
input, PPM sum signal RC input, I2C for digital sensors, CAN for
digital motor control with compatible controllers, ADC for analog
sensors and micro USB port;

• Weight: 15.8g;

• Dimensions: 38mm×43mm×12mm.

The MAVLink [290] protocol is used for serial communication between
FCU and FCC, PX4 firmware [291] is the one supported by Pixhawk
Mini, and QGroundcontrol [292] is the software used to configure the
Pixhawk Mini and to retrieve the drone status in real-time.

Flight Computer Companion

The FCC computer (Figure A.4) is the part of the drone system used to
interface and communicate with PX4 using the MAVLink protocol. It
enables a variety of functionalities, such as the possibility to execute pro-
cesses that require heavy CPU load. During the flight test in the FlyART,
the companion computer is used to receive from the GCS the position and
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attitude information (coming from the Mo-Cap system), and the com-
mands to be executed. This information is sent to the FCU through the
serial communication. On the drones the NanoPi NEO Air (see Figure
A.4) is used with the characteristics reported in the following:

• CPU name: Quad-core Cortex-A7 1.2 GHz;

• RAM: 512 MB;

• Wireless module: 2.4 GHz 802.11 b/g/n;

• Dimensions: 40mm×40mm;

• Weight: 7.9g;

• Power: 5V - 2A.

Figure A.4: NanoPi NEO Air from [293].

From a software point of view the Robot Operating System (ROS) [287]
is used to communicate with GCS through ROS messages. In particular
Mavros [294], that is a ROS package, provides communication driver for
Pixhawk Mini autopilot with MAVLink communication protocol. Addi-
tionally, it provides User Datagram Protocol (UDP) MAVLink bridge for
GCS (e.g., QGroundControl).
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A.4 UAV platforms

The aim of this Section is to describe the UAV platforms which have been
used during the experimental activities of this Thesis.

ANT-X

The ANT-X drone (see Figure A.5) is a fixed-pitch quadrotor designed by
ANT-X spin-off [266] with a maximum take-off weight below 300g. Its
main features are:

• Take Off Weight: 0.270kg;

• Frame size: 0.2×0.2×0.04m;

• Diameter (motor-to-motor distance): 0.16m;

• Motors: 4;

• Propellers: 4× three-bladed propellers of 3 inch;

• Rotor configuration: X configuration;

• Battery: LiPo 950mAh 3S;

• Flight time (hovering): 6.5min.

Figure A.5: ANT-X quadcopter.
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ADAM-0

The ADAM-0 drone (see Figure A.6) is a quadrotor built with commercial
off-the-shelf components in the FlyART. Its main features are:

• Take Off Weight: 1.4kg;

• Frame size: 0.4×0.4×0.08m;

• Diameter (motor-to-motor distance): 0.55m;

• Motors: 4× RCtimer High-performance series (HP2814) 810KV;

• Propellers: 4× two-bladed propellers 1245;

• Rotor configuration: X configuration;

• Battery: LiPo 4000mAh 3S;

• Flight time (hovering): 10min.

Figure A.6: ADAM-0 quadcopter.

273




	Abstract
	List of Figures
	List of Tables
	Introduction
	I Adaptive Control
	Adaptive control preliminaries 
	Introduction
	Historical background
	1950-1965: Early research
	1965-1980: Stability framework
	1980-2000: Robust adaptive control

	Adaptive control problem formulation
	Control objective
	Solutions
	Control architecture
	Model Reference Adaptive Control
	L1 Adaptive Control


	The role of attitude dynamics in adaptive UAV position control
	Introduction
	Problem statement
	Mathematical model
	Cascade control design for position-yaw stabilization
	Interactions between loops
	Linearised system

	MRAC with actuator dynamics
	Adaptive UAV position control
	Experimental results
	Concluding remarks

	Adaptive control for time-varying systems 
	Historical background
	Notation
	Congelation of variable method: State regulation
	Motivating example

	Congelation of variable extension: Trajectory tracking
	Smooth modification
	Robustness modifications
	Adaptive modification

	Simulation results

	Attitude control with time-varying inertia parameters
	Introduction
	Model formulation
	Detumbling control (motion-to-rest)
	Fixed-gain controller
	Proposed adaptive controller

	Angular velocity tracking (motion-to-motion)
	Error dynamics
	Adaptive control law design

	Simulation results
	Motion-to-rest manoeuvre
	Motion-to-motion manoeuvre



	II Harmonic Control for disturbance rejection
	Harmonic Control theory 
	Background
	Linear quasi-steady model
	Extension to LTP systems: HTF

	HC architecture
	Baseline T-matrix algorithm
	Optimal LQ-based algorithm derivation
	Convergence analysis
	Robustness analysis


	Active balancing system for rotating orbital devices 
	Introduction
	Proposed architecture
	ABS modeling and control problem formulation
	Multibody system configuration and kinematics
	Dynamics
	Control problem formulation

	Control law design
	T-matrix definition
	LQ-based HC algorithm

	Simulation and experimental results
	ABS breadboard design and modeling
	ABS sizing and balancing capabilities
	Control law tuning
	Numerical results
	Experimental results
	Final considerations


	Integrated active and passive rotorcraft vibration control 
	Background
	Model formulation
	Mast Vibration Absorber
	Active Control of Structural Response
	Coupled model

	Control design
	Decoupling projection operator
	Decoupled HC
	Continuous time formulation of the HC algorithm

	Simulation study
	Stability analysis results
	Steady-state performance
	Transient behaviour



	III Iterative Learning Control
	Iterative Learning Control theory 
	Repetitive systems
	Periodic signals and tonal disturbances
	Multipass systems and Repetitive Control

	Introduction to ILC
	Historical background
	ILC architecture

	ILC problem formulation
	ILC properties

	ILC algorithms and results
	System description
	General ILC Algorithm
	System representations
	Analysis of performance

	Typical design techniques
	Basic design methods
	Dynamic inversion methods
	Frequency-domain design methods
	Optimization-based methods


	Smoother-based Iterative Learning Control 
	Introduction
	Proposed architecture
	Algorithm overview
	Disturbance estimation: Smoother
	Input Update: Quadratically-Optimal Design

	Simulation results
	Experimental results
	Applying ILC to UAV trajectory tracking
	Experimental setup
	Model Identification
	Results

	Final considerations

	H-based Transfer Learning
	Introduction
	H-based transfer learning
	Model matching
	Multi-system transfer learning
	Proposed TL architecture

	Simulation results
	Experimental results
	UAV controller architectures
	Experimental setup
	Model Identification
	Dynamical transfer map
	Results

	Final considerations

	Conclusions
	Bibliography
	The Flying Arena for Rotorcraft Technologies
	Motion Capture system
	Ground Control System
	Drones HW/SW architecture
	UAV platforms



