
Executive Summary of the Thesis

End-to-end deep neural network and virtual sensing techniques: An
Arterial blood pressure waveform reconstruction using Soundi® device

Laurea Magistrale in Biomedical Engineering - Ingegneria Biomedica

Author: Federico Petraccia

Advisor: Prof. Pietro Cerveri

Co-advisor: Ing. Mattia Sarti

Academic year: 2022-2023

1. Introduction
Arterial pressure is a physiologically significant
parameter in monitoring human health. It pro-
vides crucial insights into the functioning of the
cardiovascular system and can reveal patholog-
ical conditions such as hypertension, hypoten-
sion, and other related diseases. This is a key
factor in preventing cardiovascular diseases. It
is often referred to as a "silent killer" since it
does not cause visible symptoms but can lead
to premature death. According to the World
Health Organization, hypertension represents a
global public health crisis and more than 4 mil-
lion people die of cardiovascular diseases every
year only in Europe, and more than 17 million
worldwide [4, 5]. Therefore, early detection and
continuous monitoring of blood pressure can be
essential in preventing cardiovascular diseases
and saving lives. Significant efforts are being
directed towards studying new techniques that
allow for simple monitoring of these parameters
due to the difficulties associated with traditional
invasive and non-invasive monitoring methods.
Traditionally, arterial pressure measurement has
been performed using non-invasive devices, such
as mercury manometers or sphygmomanome-
ters. However, these methods show limitations

in terms of practicality and the ability to con-
tinuously monitor pressure. In recent years, the
advent of artificial neural networks and machine
learning has opened up new perspectives in the
non-invasive prediction and monitoring of ar-
terial pressure [1, 6]. Deep Neural Networks
(DNNs) are particularly suited to handle com-
plex data and learn patterns from physiologi-
cal signals. The use of deep learning has gained
increasing relevance in modern medicine, espe-
cially in the field of medical imaging, where it
has become a key tool for diagnostic support.
In the present study, deep learning-based neural
networks are employed, creating an end-to-end
approach for arterial pressure monitoring using
a set of signals recorded with Soundi ®. An ex-
ample of CNN application in the medical field
is the U-Net, used for analyzing magnetic res-
onance and CT images. By using a novel de-
vice called Soundi ®, various physiological and
non-physiological signals are recorded, which are
then utilized for reconstructing the arterial pres-
sure waveform using a deep learning-based neu-
ral network. This procedure creates a virtual
sensor, aiming to monitor a target signal, in this
case, the physiological pressure signal, based on
other signals recorded with a device that does
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not have the function of directly monitoring the
ABP signal. Using the traditional mathemati-
cal model the PTT regression is computed, and
compared with the deep neural network. These
networks are capable of automatically extracting
relevant information from the data, enabling ac-
curate estimations of arterial pressure, without
the use of preprocessing part for the mark of the
fiducial point.

2. Material and Methods
2.1. Employed software
The presented study was fully implemented us-
ing Python 3.7 programming language. The
use of a single High-level language allowed for
a unified workflow for all the tools required
by the project. Moreover, Python is an open-
source language, widely supported by a range
of libraries and modules, including Keras, Ten-
sorFlow, Scikit-learn, NumPy, Pandas, SciPy,
Plotly, and Matplotlib, which were utilized in
this project for machine learning and artificial
intelligence procedures, high-performance data
analysis and dataframe manipulation, advanced
computing in signal processing and mathemat-
ics, as well as data visualization and interactive
figure creation. Since the work was conducted in
collaboration, GitHub was used for shared files
and update management.

2.2. Finapres Finometer® PRO
The Finapres Medical Systems BV (NL) offers
the Finometer Finapres PRO ®, a medically cer-
tified device that utilizes a finger cuff to estimate
continuous signals of blood pressure in a pul-
satile manner. The device employs the Volume-
Clamp technique, originally developed by Penaz
et All. [8], to reconstruct the blood pressure
waveform. In the research study, the Finometer
Finapres PRO Finometer® was used to collect
reference blood pressure waveforms for training
the deep network and validating model predic-
tions. Along with blood pressure estimation, the
device also provides various hemodynamic pa-
rameters such as stroke volume, total peripheral
resistance, cardiac output, pulse rate variability,
and baroreflex sensitivity analysis. To ensure
accuracy, the reconstructed blood pressure was
periodically calibrated against brachial measure-
ments using an upper arm cuff [3].

Figure 1: Finapres® device for ABP monitoring

Figure 2: Cuff sensor for ABP finger acquisition
by plethysmographic sensor

2.3. Soundi ®

The device is used for signal acquisition in this
study is Soundi ®, a chest-worn sensor de-
veloped by Biocubica Srl (Milan, Italy) Fig-
ure 3. It is capable of simultaneously recording
multiple physiological signals, including electro-
cardiographic, photoplethysmographic, acous-
tic, accelerometer, bioimpedance, and tempera-
ture (both body surface and ambient) for up to
24 hours. The device has a circular shape with
a diameter of less than 6 cm and a thickness
of approximately 1 cm, weighing no more than
40 grams. It is currently undergoing the CE
marking procedure to become a certified medi-
cal device of class II, and it has been patented at
the European level (Patent No. EP3248541A1).
To ensure secure attachment to the chest during
use, the device uses medically certified double-
sided tape.

Figure 3: Soundi® device and its sensors.

2.4. Signals Processing
To create the dataset, it is necessary first to
perform a signal analysis. These signals can be
divided into two main blocks, those recorded
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with the Soundi ® sensors are:

• Acceleration signals;

acceleration signal
signal FilterType Order Low[Hz] High [Hz]

Ax Bessel 2 0.05 1
Ay Bessel 2 0.05 1
Az Bessel 2 0.05 1
AM Bessel 2 0.05 1

Table 1: Filtering parameters adopted for Ac-
celeration signals

• Plethysmographic signals;

acceleration signal
signal FilterType Order Low[Hz] High [Hz]

Green Bessel 2 0.05 10
Red Bessel 2 0.05 10

Infrared Bessel 2 0.05 10

Table 2: Filtering parameters adopted for PPG
signals

• ECG and Bioimpedance;

acceleration signal
signal FilterType Order Low[Hz] High [Hz]

ECG Bessel 2 5 25

Notch 2 36 /
BioImp Bessel 2 0.05 10

Table 3: Filtering parameters adopted for ECG
and Bio signals

• Phonocardiogram;

acceleration signal
signal FilterType Order Low[Hz] High [Hz]

PCG Butter 2 10 40

Table 4: Filtering parameters adopted for PCG
signals

• Ambient temperature;
• Body temperature;

Those recorded by the Finapress are:

• Brachial ABP;

Signal FilterType Order Low cut-on frequency High cut-off frequency

ABP Bessel 2 25 /

Table 5: Filtering parameters adopted for ABP
Brachial signals

• Finger ABP;

Signal FilterType Order Low cut-on frequency High cut-off frequency

ABP Bessel 2 25 /

Table 6: Filtering parameters adopted for ABP
Finger signals

In addition, a mask is created to be used in
training to exclude segments where the Fina-
press calibration is present. In this case, only
the ABP signal acquired with the finger cuff is
analyzed. Respiration signals are also added to
these, derived respectively from the acceleration
magnitude signal, the plethysmographic signal,
and the acoustic signal. The first common op-
eration for signals acquired through Soundi ®

sensors (IMU, Acoustic sensor, ECG, PPG) is
to extract and process the signals saved on the
MicroSD. These signals are sampled at differ-
ent frequencies depending on the sensor with
which the signal is acquired, so they are interpo-
lated around the central sampling frequency of
400 Hz. Since the Finapress has a sampling fre-
quency of 1 kHz, it is also resampled at 400 Hz.
Signals are processed and divided into 10-second
windows without overlapping to be able to elim-
inate artifacts caused by the device. With the
use of Jittering first, noise is added with a scale
of 0.01 to the signal. Next, the signal was scaled
and time-warped, effectively doubling the initial
dataset by adding the newly processed signals.
The tsaug library is used, which allows the ap-
plication of the main algorithms previously de-
scribed. The parameters used are shown in Ta-
ble 7 [7].

type Algorithm Scale max drift drift point
Jittering ts.AddNoise 0.02 / /

Drift tsaug.Drift / 0.03 1

Table 7: Tsaug parameters for Data augmenta-
tion

Through a Labelling procedure, utilizing a sim-
ple interface developed in Python, chunks con-
taining disturbances in the target signal or poor
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PPG and ECG signals are eliminated. Upon
completion of the signal acquisition procedure
and labeling procedure, the dataset utilized to
train the network is constructed. The subject
metadata is presented in Table 8.

Item Value
N° of subjects 25
Gender

Woman 7 subjects
Man 18 subjects

Age
Mean 26 years
STD 20 years

Table 8: Subjects Information

Max (mmHg) Min (mmHg) Mean (mmHg) STD (mmHg)

SBP 200.103 83.882 130.726 22.00

DBP 117.584 49.054 81.545 14.754
MBP 163.586 62.565 97.839 17.556

Table 9: Dataset description of all subjects en-
rolled

Max (mmHg) Min (mmHg) Mean (mmHg) STD (mmHg)
SBP 170.80 81.973 135.36 18.90
DBP 113.18 59.86 87.39 12.07
MBP 131.15 67.23 103.38 13.71

Table 10: Dataset description of Subject00

Table 9 presents the average values of systolic,
diastolic, and mean pressures for the entire
dataset, which include resting and pedaling mea-
surements. These values have a high standard
deviation. Table 10 provides the values specifi-
cally for Subject00, with six recordings totaling
134.5 minutes. The explained datasets are used
for subject-independent and subject-dependent
analysis. Notably, diastolic and mean pressure
values have a low standard deviation, while sys-
tolic values show a significantly higher stan-
dard deviation. Some recorded values during
the acquisition phase were outside the accept-
able physiological range, especially for systolic
pressure. This could potentially affect the per-
formance of the proposed models.

3. Artificial Inteligence
The model consists of two distinct steps. The
first step involves using one of the three pro-
posed networks, taking the dataset’s signal bank
as input, and producing an intermediate arterial
blood pressure (ABP) signal. The second step
employs a ResNet that takes the signal predicted

by the intermediate model as input and gener-
ates the final ABP signal as output. This sec-
ond step helps the network in reassembling the
temporal shift and reducing noise introduced by
point-to-point prediction variability. The first
proposed model for intermediate ABP calcula-
tion is a traditional U-Net, as shown in Figure
4. It is initialized with the parameters presented
in Table 11. The model consists of a conven-
tional yellow encoder module and a purple de-
coder module, connected by blue skip connec-
tions, with a red Bottleneck module.

Figure 4: In this Figure is reported the classical
architecture of U-Net

Models Loss function Optimizer Initial Filter Epochs Batch size

U-Net MSE Adam 32 500 64

Table 11: U-Net Hyperparameters

The second model, illustrated in Figure 5, differs
from the previous one by introducing a Gated
Recurrent Unit (GRU) layer with a single unit
positioned at the output of the decoder. The
network is initialized with the parameters listed
in Table 12.

Figure 5: developed diagram of GRU-Net

Models Loss function Optimizer Initial Filter Epochs Batch size

GRU-Net MSE Adam 32 500 64

Table 12: GRU-Net Hyperparameters

The third model, shown in Figure 6, features
a specific characteristic developed specifically
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for the considered project. As illustrated in
the encoder, there are three different branches
designed to consider the frequency band of their
respective input signals. In this case, the signal
bank for each chunk is divided among the three
branches based on its frequency content. The
initial parameters of the network are listed in
Table 13.

Figure 6: Developed diagram of 3GRU-Net

Models Loss function Optimizer Initial Filter Epochs Batch size

3GRU-Net MSE Adam 32 500 64

Table 13: 3GRU-Net Hyperparameters

In the second step, the output calculated by the
respective network used is fed as input to the
ResNet, which is positioned in cascade with the
first network. The model image of the ResNet
is shown in Figure 7. It is noteworthy that, un-
like the regular U-Net, this ResNet incorporates
Residual Blocks in both the encoder and the de-
coder.

Figure 7: Proposed MultiResNet

Models Loss function Optimizer Initial Filter Epochs Batch size

Res-Net MSE Adam 32 500 64

Table 14: Res-Net Hyperparameters

These blocks have a different structure from the
blocks typically used in U-Net. They consist of
convolutional layers with an increasing number
of filters after each convolution. This design al-
lows for a significant improvement in the overall
performance of the model.

4. PTT Models
Many studies in the literature highlight the
presence of three main models on Pulse Transit
Time (PTT), as presented in the work at
the 2019 5th Iranian Conference on Signal
Processing and Intelligent Systems (ICSPIS)
[2]. The three models are described as follows:

• Linear Model{
SBP = αs ∗ PTT + bs

DBP = αd ∗ PTT + bd

• Inverse Model{
SBP = αs ∗ 1

PTT + bs

DBP = αd ∗ 1
PTT + bd

.

• Quadratic Model{
SBP = αs ∗ 1

PTT 2 + bs

DBP = αd ∗ 1
PTT 2 + bd

.

4.1. Regression Models
A simple algorithm is implemented in Matlab for
estimating the parameters α and b using the pre-
viously described linear, inverse, and quadratic
models. Following the pipeline illustrated in
Figure 8, a prediction is made for Diastolic and
Systolic pressure values, and the mean absolute
error is calculated to evaluate the accuracy.

Figure 8: Description of Regression model
pipeline

A total of 100 samples are selected, with 75
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samples used for training the parameter estima-
tion model and 25 samples for the test set, from
which the accuracy and mean absolute error of
the model are derived. Table 15 presents the
average values of systolic, diastolic, and mean
pressure for subject 00 in four out of the six
recordings, on which manual feature selection
was performed.

Max(mmHg) Min(mmHg) Mean(mmHg) STD(mmHg)

SBP 167.60 85.363 132.56 14.60

DBP 114.68 60.45 85.19 9.07
MBP 129.55 66.84 105.68 12.17

Table 15: Target value of input signals

5. Results
Table 16 provides a summary of the values for
the three different models: U-Net, GRU-Net,
and 3GRU-Net. As observed, the lowest val-
ues are obtained by the third model, indicating
that it is more suitable for waveform reconstruc-
tion. In fact, the predicted waveforms obtained
from the three models display that the U-Net in-
troduces noise and temporal shift in the recon-
struction while the GRU-Net, which, with the
addition of a GRU memory layer, performs bet-
ter in reconstruction and reduces noise. With
the 3GRU net, the prediction is more accurate
denoising the signal and reducing the temporal
shift.

Training set Validation set
Model Loss value MAE [mmHg] Loss value MAE [mmHg]
U-Net 193.34 9.80 257.90 11.55

GRU-Net 157.42 9.78 218.21 11.31
3GRU-Net 96.56 7.07 194.81 10.53

Table 16: Models metrics

A further evaluation is performed on the cal-
culation of target parameters such as systolic,
diastolic, and mean arterial pressure. Table 17
present the values of these physiological param-
eters. As observed, the most critical parameter
is the systolic pressure, as all three models ex-
hibit difficulties in predicting accurately. This
issue may be related to the fact that the input
dataset has a high standard deviation of systolic
pressure, leading to high variability in the pre-
diction. On the other hand, for other parame-
ters such as diastolic pressure and mean arterial
pressure (MAP), all three networks demonstrate
robustness in their prediction. We observe rela-

tively low MAE values for all three models.

MAE + STD [mmHg] MSE + STD [mmHg] RMSE + STD [mmHg]
SBP 11.35± 8.71 204.88± 9.13 14.31± 8.60

DBP 4.68± 4.22 39.78± 5.36 6.30± 4.19

MAP 6.27± 5.33 67.78± 7.82 8.23± 5.40

STD 5.78± 3.15 43.37± 3.14 6.58± 3.24

Table 17: Parameters computation for 3GRU-
Net over the Test set

The analysis of error distribution among the
three models reveals that the 3GRU-Net model
demonstrates lower mean values and a nearly
Gaussian distribution for all parameters, in-
dicating its robustness. The Bland-Altman
plot demonstrates minimal differences between
the Finapress method and the 3GRU model
for mean arterial pressure (MAP) and diastolic
values. However, the difference increases for
systolic pressure, reflecting the previously de-
scribed underestimation. The predicted wave-
form’s standard deviation, which evaluates the
shape of the predicted signal, is generally good,
accurately approximating the peaks of systolic
and diastolic pressure with slightly larger errors
for systolic pressure. Figure 9 showcases the pre-
dicted signal for a specific test set chunk and
analyzing the standard deviation of the signal,
it can be observed that the model has excellent
prediction capabilities for the waveform, closely
approximating the target signal.

Figure 9: Prediction of ABP waveform with
3GRU-Net model

From the subject-dependent analysis, it is evi-
dent that the 3GRU-Net is the model that pro-
vides the best performance in predicting the ar-
terial pressure waveform, as seen from the ear-
lier analysis of the error in calculating the final
parameters. This is further supported by the
calculation of the BHS for the three models.
By using the 3GRU-Net cascaded with the
Res-Net, a subject-independent analysis is con-
ducted, utilizing the entire dataset described in
the preceding section. Specifically, the values of
the input systolic, diastolic, and mean pressure
parameters are shown in Table 9. It can be ob-
served that the standard deviation calculated on
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the input parameters is significantly higher com-
pared to the subject00 input dataset in Table
10. This indicates a greater difficulty in predict-
ing the target parameters. Table 19 reports the
MAE and loss values of the network, and Ta-
ble 18 provides the hyperparameters used. As
seen here, the Adam optimizer is utilized, and
there are 15 initial filters for each branch of the
encoder and 5 filters for the ResNet.

Models Loss function Optimizer Initial Filter GRU Units Epochs
3GRU-Net+ResNet MSE Adam 15/5 1 1200

Table 18: 3GRU-Net+ResNet initialization pa-
rameters for the complete model

3GRU-Net+ResNet
Training set Validation set

Loss value MAE [mmHg] Loss value MAE [mmHg]
303.419 14.593 366.035 15.583

Table 19: 3GRU-Net+ResNet parameters errors
for the complete model

MAE + STD [mmHg] MSE + STD [mmHg] RMSE + STD [mmHg]
SBP 22.59± 12.83 675.57± 15.50 25.99± 12.90

DBP 12.53± 8.73 233.31± 10.33 15.27± 8.58

MAP 9.34± 8.70 165.01± 12.83 12.84± 8.81

STD 10.98± 4.85 144.61± 4.90 12.02± 4.89

Table 20: Parameters computation for 3GRU-
Net over the Test set for all subjects

Table 20 presents the error values calculated
for the target parameters. It can be observed
that the error for systolic pressure is relatively
high compared to the other parameters: This
can be explained by the fact that the standard
deviation in the input dataset, as shown in
Table 9, is high. Indeed, it is also evident
from the prediction errors, their distribution,
and the Bland-Altman plot of each parameter.
Especially the Bland-Altman plot highlights
a high mean difference of approximately 20.5
between the two methods. Additionally, an
analysis of the standard deviation is provided,
in which is possible to observe the prediction
of the standard deviation, that exhibits a
significant mean difference. This suggests that
the reproduced waveform often displays greater
variability compared to the target.

Figure 10: Prediction waveform example: in or-
ange the predicted signal and in blue the target
one

In Figure 10, an example of prediction on a
chunk of the test set is shown. As observed,
there is high variability in the signal and slight
noise present. However, the prediction for some
chunks appears to be very accurate, likely due
to the high quality of the input signal.

6. Discussion and Conclusion
The analysis reveals that the developed mod-
els, especially the one with three branches cor-
responding to the frequency content of the in-
put signals, perform well for subject-dependent
analysis. However, achieving equally satisfac-
tory results for subject-independent analysis on
the entire dataset is challenging. To address
this, the data is analyzed by combining both rest
and pedaling phases to account for movement.
This leads to an increased standard deviation of
the pressure, and the Finapress device occasion-
ally produces pressure values outside the clini-
cal range. During the pedaling phase, certain
PPG signals exhibit better quality, resulting in
excellent prediction performance. Higher qual-
ity in the PPG and ECG signals leads to better
prediction results. Although the model’s pre-
dictions differ from the target, it accurately ap-
proximates the systolic pressure. The position-
ing of the plethysmographic sensor is critical for
the Soundi ® device and can impact the signal
quality. This master’s thesis presents an "End-
To-End" approach to continuously calculate ar-
terial blood pressure waveform using three deep
learning models. A regression model based on
pulse transit time (PTT) is also developed using
mathematical models. The goal of the project
is to reconstruct arterial blood pressure wave-
form by utilizing a bank of physiological signals,
without relying on a loss function that maxi-
mizes point-to-point prediction by the network.
The study focuses on subject-dependent analysis
and compares the results obtained with the best-
proposed model with those from PTT regression

7



Executive summary Federico Petraccia

models and literature that computes the BHS in-
dex. The findings demonstrate the good perfor-
mance of the model for subject-dependent anal-
ysis, approaching clinical standards defined by
the British Hypertension Society. Then thanks
to the fact that the Soundi ® doesn’t need the
initial calibration phase, a subject-independent
analysis was performed. In this case, the perfor-
mance is lower compared to subject-dependent
analysis, as the complete dataset exhibits high
variability in input blood pressure, making it
challenging for the model to make accurate pre-
dictions. Further ablation studies could be con-
ducted to enhance the architecture’s complexity
and refine the selected hyperparameters. En-
hanced performance could lead to the develop-
ment of a monitoring model that utilizes key
physiological and non-physiological signals for
arterial blood pressure reconstruction. Given
the ease of recording these signals, this could
be a revolutionary aspect of non-invasive arte-
rial pressure monitoring. Therefore, the devel-
opment of a technique capable of calculating ar-
terial pressure parameters through the creation
of a regression model using a deep neural net-
work, without the need for initial calibration
like most techniques, is a major advantage as
it enables rapid measurement once the network
is trained. This is one of the key strengths of this
end-to-end approach compared to conventional
techniques for acquiring pressure through PPG,
such as the Finapress, which requires initial cal-
ibration on the subject under analysis to cali-
brate the pressure. By refining and integrating
the model with Soundi®, it is possible to mon-
itor blood pressure without the need for device
calibration, allowing measurements to be taken
even during movement.
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