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1. Introduction

This thesis investigates the application of
advanced on-line control methods, such as
Model Predictive Control (MPC) and its more
recent stochastic extension, called Tree-Based
Model Predictive Control (TB-MPC), for the
regulation of Lake Como, in northern Italy.
These control schemes can use hydrological
forecasts which are increasingly available
with better and better accuracy. MPC is a
deterministic approach that can employ de-
terministic predictions to generate an optimal
sequence of controls over a receding control
horizon, while TB-MPC exploits probabilistic
predictions, also called Ensemble Forecasts
(EFs). These EFs are a collection of different
deterministic trajectories, representing the
prediction uncertainty which can be then taken
into account in the optimization problem.
The real-time knowledge and forecast of lake
inflows from the upper catchment is expected
to bring short-term improvements to the off-line
management policies [1]. However, despite the
increasing availability of operational forecasts
for the region of Lake Como (and beyond) espe-
cially of local deterministic forecasts (but also
probabilistic continental forecasts), these have

not been tested in any operational real-time
framework like MPC yet, that could support
the lake regulator in decision-making. Beyond
Lake Como, the literature suggests a limited
uptake by practitioners for all optimal reservoir
management techniques. Thus, there is an
urgent need for showing the value of available
operational forecasts in real-world case studies
for the re-operation of existing infrastructure to
optimise their benefits.

In this study, the tested on-line approaches,
MPC and TB-MPC, will be compared to more
extensively studied off-line approaches, namely
Deterministic Dynamic Programming (DDP)
and Stochastic Dynamic Programming (SDP),
and to the current (historical) management by
the lake operator (Consorzio dell’Adda). A
previous study on Lake Como [2] has analysed
the value of exogenous hydro-meteorological
information, like inflow forecasts, in an off-line
control scheme, but no previous author has
investigated the value of real forecasts with
on-line control schemes in this case study before.

A few previous studies for other water reservoirs
(e.g.[3]) showed that TB-MPC can provide



a more adaptive control framework facing
uncertainties and outperform deterministic
MPC. However, the currently available EFs
from continental forecasting systems (e.g. the
EU Copernicus - European Flood Awareness
System, EFAS) may have large biases and need
further model calibration before being poten-
tially used within TB-MPC for Lake Como or
other areas. So another interesting research
aspect of this study is to generate EFs with a
novel machine-learning technique based on the
re-calibration of neural networks. A method for
this has been recently proposed in the literature
[5], but has yet to be applied in a real-world wa-
ter management problem setting. This method
has been receiving growing interest from the
scientific community as it could provide skillful
EFs at low computational and monetary cost.
This could be an interesting locally-calibrated
alternative to existing global hydrological EFs
generated by big international meteorological
data centers, running computationally demand-
ing Numerical Weather Prediction (NWP)
models but requiring more efforts for local
calibration and bias adjustments.

The main objectives of the thesis are: (i)
assessing the skill of available short-term
deterministic hydrological predictions (maxi-
mum lead time of 3-days) for the Lake Como
basin, (ii) investigating in what measure these
short-term forecasts can bring benefits in the
optimal regulation of the lake for flood control
and downstream water supply, with respect to
off-line policies and the current management,
(iii) assessing the advantages of using TB-MPC
with EFs generated via a novel data-driven
technique that would be operationally feasible,
and represents a computationally-effective
alternative to traditional ensembles from NWP.

2. Case study: Lake Como

Lake Como is the third largest lake of Italy
and has a total active water storage capacity
of 247Mm3. The lake regulation is committed
to an authority called Consorzio dell’Adda, con-
trolling the lake levels since 1946 by operating a
dam located in Olginate. The lake is part of the
Adda River Basin (4.552 Km?), whose hydro-
meteorological regime is typical of the southern
Alps, characterized by dry periods in summer

and winter, and streamflow peaks in late spring
and autumn, fed by snowmelt and rainfall, re-
spectively. Lake Como is regulated mainly to
satisfy two primary competing objectives: (i)
providing water supply to downstream users,
mainly to irrigation districts, and (ii) prevent-
ing flooding along the lake shores, especially in
the city of Como. To satisfy the summer water
demand, the agricultural districts downstream
prefer to store the water from snowmelt, but this
increases the lake level and the flood risk. The
lake is also important in sustaining ecosystems
and a range of human activities, often in conflict
in terms of objectives and requirements, like hy-
dropower, navigation, tourism, etc.

3. Methods
3.1. Forecast skill and EF generation

The available deterministic inflow forecasts
are the operational forecasts produced by
PROGEA, an Italian company specialised in
hydrological forecasting. Hourly forecasts are
produced through their software called EF-
FORTS, using meteorological forecasts as input
of a hydrological model. These are originally
provided at 60-h lead time, over 2014 to 2022.
Daily forecasts are obtained from these through
an aggregation (mean) over 24h. The accuracy
and skill of the available deterministic forecasts
by PROGEA has been evaluated using a series
of overall error-based scores (including RMSE,
MAE, and NSE), derived skill scores, and flood
event-based scores.

Reliable and bias-corrected hydrological EFs
were not available for this case study, as those
from EFAS are not calibrated for the region
and have known large biases. Also, building
local hydrological EFs with physically-based
models may have associated monetary costs
and require large computational resources. For
these reasons, EFs have been generated from
the historical observations and deterministic
forecasts, with a machine-learning method
recently proposed in the literature. This
method consists of a data-driven synthetic EF
generation through a series of Feed Forward
Neural Network (FFNN), as in Figure 1.
This approach circumvents the complexity and
computational burden related to the NWP



models used by large data centers, allowing
operational users to have access to alternative
synthetic ensembles in real-time, potentially
more locally effective.

A recent study ([5]) proposed four meth-
ods for generating synthetic EFs with the use of
neural networks:

e Random initial perturbations: It con-
sists in applying a random noise to the
training data set of the neural network.

e Singular Value Decomposition: It is
a technique from linear algebra, used to
find and apply minimum input perturbation
leading to the maximum output perturba-
tion through the network’s Jacobian.

e Network Retraining: It consists in car-
rying out a new training of the network for
every ensemble member (inherently a "ran-
dom" procedure, being a non-linear opti-
mization).

¢ Random Dropout: It consists in a ran-
dom deactivation of one or more neurons
and all their connections, normally applied
during training, but applicable during
forecasting too, to diversify outputs.

This study will adopt the Network Retraining
method, being one of the simplest and the one
yielding the best results among them [5].

Hidden layer #1  Hidden layer #2
output layer

Figure 1: FFNN architecture for daily ensemble
forecasting

The number of layers and neurons has been cho-
sen empirically according to the size of the in-
put data available (historical observed inflow) to
avoid overfitting. Two hidden layers of n = 10
neurons led to good prediction capabilities.

In addition to the main procedure of randomized
recalibration, other sources of uncertainty are
introduced to differentiate more between output
trajectories. These can be activated /deactivated
at every training cycle, and they were progres-
sively implemented in order to generate EFs with
different associated skills, in order to asses the

effect of EF performances on those of the man-
agement policy produced by TB-MPC.

These randomness factors are six, and include:
changing seed of random number generator and
training algorithm at every iteration, using dif-
ferent partition of whole data set for training
and validation and adding a Gaussian perturba-
tion to the input data sets and finally random.

3.2. Deterministic MPC

MPC is an advanced control framework that
uses a model of the system together with the in-
put prediction to estimate the future state of the
system itself over a finite horizon, at every time
step. This allows the optimisation of a control
sequence with respect to an objective function.
Then a receding horizon strategy is adopted, i.e.
at each instant, the first control action of the
sequence is applied and the horizon is moved to-
wards the future from the next control time step.
In our context, such optimization is non linear
and constrained, formalized as:

t+H
minimize  fior = Z gr(xr,ur) + gﬁ"d(xT+H)

Uty Ut+ H
T=t

subject to :

Tr+l = Ty + AT(QT - UT)
Tr=t = Tg given

(1)

Umin S Ur S Umax (2)

Equation (1) represents the model of the
system, a mass balance employing the inflow
prediction ¢, the state of the system (lake
level) x,, and the control action (dam release)
ur. Equation (2) represents the saturation of
the control,dictated by the dam infrastructure
characteristics. The control horizon H is set
to 3 days (or 60 hours in the hourly case),
coinciding with the lead time of the available
deterministic hydrological forecasts.

The goal is to obtain an optimal control
sequence g, ..., Uy minimizing the total cost
ftot over the forecast horizon H. Then, only
the first control w; is actually applied to the
real system (receding horizon strategy). The
total cost is composed by the step-cost g, and
the end state penalty gﬁ"d. The step-cost is
a weighted sum of three different components



mathematically defining the management
objectives:

flood —h 2
(tﬂﬁig{( floods 0))
wde ficit __ MEF _ 0 2
9z = (,max ( +w —ur,0))
lowlevel _ ( max (hlow — 1z, 0))2
T tot+H ’

gflo"d is related to the flooding objective, it

penalizes solutions that bring the system state
over a certain threshold hyo0q (1.1 m), which
delimits the occurrence of a flood along the lake
banks in Como. g¢¥%/"" represents the water
deficit objective, it penalizes those solution that
do not satisfy the water demand (w) over the
horizon; the Minimum Environmental Flow
component (M EF) is an additional component
representing the minimum release of water
necessary for preserving the river ecosystem.
Finally, glovtevel is the low level objective, which
penalizes solutlons lowering the level of the lake
under a specific threshold hj,,, (-0.2 m). This
last objective is not as important as the others,
and has been mostly neglected throughout the
study by setting its weight to 0.

The end state penalty ¢¢ is a critical
component of the total cost for MPC to ensure
the long-term targets; it is the cost associated to
less desirable states of the system. It is of par-
ticular importance in water systems as it allows
the system to be left in a non-detrimental state
once the optimization ends. In this study, it is
defined as proposed in [1], using the optimal-
cost-to go of a solved off-line management
problem (either the DDP or SDP, for MPC with
perfect or real predictions, respectively). In
other words, g™ contains crucial information
from the end of the foreseeable future H to the
end of the simulation, informing the system of
the future cost associated to being in a certain
state at the end of the optimization.

3.3. Stochastic Tree-Based MPC

TBMPC is a stochastic modification of MPC
that can use EFs and optimises an optimal con-
trol tree instead of searching for an optimal con-
trol sequence. The inflow EFs are transformed
into a tree of inflows. The power of the approach
stems from the fact that the optimization takes
into account every likely scenario represented by

the EF, and the control action can be changed
when information about which scenario is actu-
ally happening is available, denoting higher flex-
ibility and robustness.

The approach is formalized as:

mmzmzze frot = Zp(z) *
t Tv 7ut+H
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subject to
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Equations (3) and (4) represent the same mass-
balance and physical constraint seen before for
MPC. The same notation as the original frame-
work of MPC is followed, with the addition of
the subscript z, indicating how this optimization
is actually spanned across the z € Z members of
the ensemble. Every ensemble has a total cost
fz, coinciding with the one for the single deter-
ministic optimization of MPC. All the different
f» are combined together into the total cost fio
by a weighted sum with their probability of out-
come p(z). The simulation aims to minimize
the comprehensive cost for every ensemble by
devising a set of controls uiMT, s ui‘fH in a tree
structure forced by the tree nodal partition ma-
trix M,. A tree can be efficiently represented
in a mathematical way by means of two sets,
P(-) and B(-) defined on every member z of the
ensemble, the former being the Parent set of a
member (from which member it branches) and
the latter the Branches set of a member (which
members branch out of it). These have to re-
spect the so called "Non-anticipatory condition"
defined as:

A A Pli) =
»=ul when (9) ‘7
t < B(j)

This is an important condition for the tree def-
inition, stating that controls should not depend
on the outcome of stochastic variables that have
not been extracted yet [4]. Control actions are
computed between all the possible branches un-
til uncertainty resolves and the specific control
action for the branch happening is selected.

U



4. Results and discussion

The first comparison between the benchmarks
(DDP, SDP and historical management) showed
that the inflow knowledge is a valuable infor-
mation management-wise. DDP significantly
outperforms both SDP and the historical
management for both objectives (Figure 2
and Figure 3). This is because it has access
to perfect knowledge over an infinite horizon;
yet the more realistic non-perfect knowledge
used by SDP leads to satisfactory results.
The deterministic MPC was fed with perfect

(a)
T

T
Hourly MPC
Daily MPC
DDP
08} soP
Historical

Level [m]
o
IS

o
N

L

02 . I I I . . I
Jan  Feb Mar  Apr May Jun  Ju  Aug  Sep Oct Nov Dec  Jan

time [month]

300 (\b,

T
Hourly MPC
Daily MPC
DDP

SDP

250 [~

Historical
Demand

Level [m]
N
3
8

@
3

100

50 . L . . .
Jan  Feb Mar  Apr May Jun  Ju  Aug  Sep Oct Nov Dec  Jan

time [month]

Figure 2: Daily cyclostationary levels and re-
leases over the whole simulation period of 8
years, daily/hourly MPC with real predictions
alongside the benchmarks (DDP, SDP) and the
historical management.

and real forecasts, with both daily and hourly
control frequencies.  With perfect forecasts,
results proved that indeed an on-line control
scheme with short-term forecast has the po-
tential to reach the performance of DDP for
flood control (while outperforming SDP, also for
the deficit), proving the validity of an on-line
management approach. With real forecasts
instead, the performances slightly deteriorate,

yet still improving indicators with respect to
SDP (for floods) and the historical management
(both indicators). The good performance is in
line with the evaluation of the accuracy of the
forecasts, showing that they are quite skillful
in reproducing the observations. Overall, an
hourly control frequency was found to give
slightly better performances than the daily one
(even slightly outperforming DDP in terms of
flood control). However, as seen in Figure 2,
the long-term behaviour is mostly the same.
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Figure 3: Simulation results: (a) Flooding, and
(b) Water deficit indicators, over the 8-year
study period, for the four TB-MPC options with
different EFs, alongside the daily deterministic
MPC with perfect and real forecasts, and bench-
marks (DDP, SDP and historical management).

Then, a daily TB-MPC was run with four
different synthetic EFs, generated with varying
degree of randomness factors in the FFNN,
leading to varying degree of skill. They are
proposed in order of EF performance in Figure
3, from the most skillful (EF#1) to the less
skillful (EF#4). No drastic improvement was
found, but only a slight one in flood control for
the most skillful EF (EF#1). More skilful EFs



seem to lead to better control performances.
Even if in this simulation, TB-MPC did not
yield a clear cut improvement, the key strength
of TB-MPC optimizing over inflow trees is to
beat deterministic MPC operations across more
variable or unexpected scenarios on average.
Thus, a stochastic control of this type is a
"no-regret" implementation that may increase
the control robustness in the long run.

TB-MPC was also tested with a hourly
control frequency with a simplified EF gener-
ation procedure, though from the results with
daily /hourly deterministic MPC (Figure 2)
only a minor short-term improvement may be
expected with the hourly control. Given the
high computation time, the hourly TB-MPC
was tested only on selected flood and drought
periods. The results suggest that the hourly
TB-MPC is too influenced by "jumpy" forecast
behaviour. So there seems to be no incentive in
further developing an operational procedure to
generate hourly EFs, when the daily TB-MPC
with EFs (from the FFNN procedure) yields
better results than the hourly TB-MPC.

5. Conclusions

In conclusion, among the different on-line
approaches and resolutions tested, the daily
stochastic (TB-MPC) one appeared to be the
best option for this case-study, especially for
flood control. The EF uncertainty seems to
provide more consistent information at the
daily scale given the current accuracy and
jumpiness of hourly forecasts. The multiple
randomized calibration of neural networks
method successfully produced skillful ensembles
with performance metrics similar to the local
operational (PROGEA) deterministic forecasts,
proving the potential for the implementation of
this method and its use for TB-MPC.

Future work should mainly focus on tack-
ling other practical aspects for the real-world
implementation of TB-MPC, aiming partic-
ularly at reducing its computational time.
TB-MPC has a significantly higher computa-
tional time than a standard MPC, due to a
higher number of optimization variables, and
this requirement would grow even more with
larger ensemble sizes and longer lead times,

that would probably require more refined opti-
mization routines or to develop efficient ways
to distribute computational time. Further work
should also assess the link between ensemble
forecast skill at different resolutions and the
performance of TB-MPC over a larger set of
extreme events and other case studies.
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