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Abstract

Portfolio replication is a widespread problem in finance. Several investors, institutional
or not, aim to build stable and efficient replicating strategies. The purpose of this study
is to analyze the problem from a broader perspective. Two different models are proposed,
then some analysis are executed and applications are shown. The models are based on
the assumption, useful and widely used in finance, that the target portfolio return is
a linear combination of the returns of its constituent assets. To build the replicating
portfolio two separated set of factors are available, the five Fama and French factors and
a collection of US Indexes. After the data presentation and analysis, the models are
presented. Both models have an elastic net regression at their core, but the approaches
are different: the former is based on rolling windows, where the portfolio weights are
dynamically adjusted; the latter is static, with rebalancing that not allowed. Firstly,
models are tested replicating 13 target portfolios, which are divided into sectorial and
diversified according to their composition. Finally, a portfolio is selected to perform a
more in-depth analysis and to show what can be done with the replicating portfolios built
with the models of the study.

Keywords: portfolio replication, elastic net, rolling window, risk management metrics,
fama and french models





Abstract in lingua italiana

La replica dei portafogli è un problema molto diffuso in ambito finanziario. Diversi in-
vestitori, istituzionali e non, mirano a costruire strategie di replica stabili ed efficienti. Lo
scopo di questo studio è quello di analizzare il problema da una prospettiva più ampia.
Vengono proposti due diversi modelli, quindi vengono eseguite alcune analisi e mostrate le
applicazioni. I modelli si basano sull’ipotesi, utile e largamente utilizzata in finanza, che
il rendimento del portafoglio target sia una combinazione lineare dei rendimenti dei suoi
componenti. Per costruire il portafoglio di replica sono disponibili due insiemi separati di
fattori, i cinque fattori di Fama e French e una collezione di indici US. Dopo la presen-
tazione e l’analisi dei dati, vengono presentati i modelli. Entrambi i modelli hanno alla
base una regressione elastic net, ma gli approcci sono diversi: il primo si basa su rolling
windows, in cui i pesi del portafoglio vengono aggiustati dinamicamente; il secondo è
statico, con il ribilanciamento che non è consentito. In primo luogo i modelli vengono
testati replicando 13 portafogli target, suddivisi in settoriali e diversificati in base alla
loro composizione. Alla fine, viene scelto un portafoglio per effettuare un’analisi più ap-
profondita e per mostrare cosa si può fare con i portafogli di replica costruiti con i modelli
dello studio.

Parole chiave: replica di portafogli , elastic net, rolling window, metriche di gestione
del rischio, modelli di fama and french
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1| Introduction

The term portfolio replication refers to the set of strategies and techniques used to build
a portfolio that mimics the performance of another one, the so called target portfolio,
without knowing its holdings. The goal of the replica is to reproduce the risk and return
characteristics of the original portfolio as closely as possible, while minimizing tracking
error or deviations.
In most of the cases it is not known which are the securities contained in the portfolio,
and which are their weights. The only feature observable from the outside are the returns;
it can be said that this is a Black Box problem. A Black Box problem refers to a situa-
tion where the internal workings or mechanisms of a system are not visible or understood
from the outside. This definition fits well the topic of this study, in fact, for example, a
portfolio manager may use complex algorithms and trading strategies to run his portfolio,
but the exact steps and parameters used in his model are not disclosed in public. This
can make difficult to understand the drivers of the returns and find the best strategy to
replicate them.
There are several reason for which investors, institutional or not, might want to build
stable and profitable replicating strategies. The first one is to build alternative invest-
ments clones. Alternative investments are financial assets that are not part of the con-
ventional investment categories like stocks, bonds and cash. They are also known as
"non-traditional" investments and they are often riskier, more complex and less regu-
lated. Some examples of alternative investments are: hedge funds, private equity, real
estate, commodities, derivatives and cryptocurrencies. These assets are sometimes very
illiquid and have really high fees, raising investor’s will to build his own replica portfolio
to not be affected by these problems.
Investors may be interested in the replica also for risk management purposes. The clone
shows which are the factors that drive portofolio returns; consequently the investor is
aware at which risks is exposed to and, if he wanted, he would have the information
needed to hedge his positions. Knowing the drivers of an investment can be useful in
models where there is a multiple scenario simulation: instead of lots of securities only
these factors are simulated, with a less demanding operation.
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Another application of portfolio replication techniques is index tracking, where the index
is treated as a portfolio. In particular, it can be really useful with indexes with these
two features: illiquid and big. 1 In the first case, considering the difficulty and in some
situations the impossibility to buy an illiquid security, the investor is able to replicate the
index buying the liquid factors that drive the returns. In the second case the strategy let
an investor, who does not have under management enough asset to physically replicate
the index buying all its components, to be able to replicate this big security. Related to
the index topic, portfolio replication is also important for passive investment strategies,
such as index funds or ETFs, 2 which aim to replicate the performance of a particular
market index.
An aspect that is often ignored in academic studies but that plays an important role is
taken up by the transaction costs. Replicating a portfolio can help us understand the
costs associated with trading the original portfolio; this can be useful for evaluating the
efficiency of trading strategies or for optimizing trade execution.
Until now it have been mentioned only possible replication strategy’s usage from a "buyer"
perspective: there is more. There are companies, which have customers that are not el-
igible by the MiFID II3 regulation, that sell instruments that are not UCITS4. These
companies may want to create another product with similar features tracking the previ-
ous one, by using only securities to keep this new product UCITS and sell it to retail
investors.
Despite the replica is a difficult operation, there are some strategies actually available in
the literature that have a good performance, that are interpretable and easy to imple-
ment. In this study replica portfolios are built using two different approaches: the first
is based on rolling windows and rebalancing, while in the second the chosen portfolio is
kept constant over time. There is no evidence that one approach is universally better
than the other, but the choice depends on the scenario in which the model is used, not
only considering the mere replication but also for the further risk management analysis
that are exploited with the obtained portfolio.

1Indexes that require billions to be replicated
2ETFs(’Exchange Traded Fund’) are financial instruments that replicate the performance a particular

index, sector, commodity, or other assets. ETFs advantage is that they can be purchased or sold on a
stock exchange the same way that a regular stock can.

3Markets in Financial Instruments Directive 2014 (2014/65/EU) commonly known as MiFID 2 (Mar-
kets in financial instruments directive II),is a legal act of the European Union. Together with Regulation
(EU) No 600/2014 it provides a legal framework for securities markets, investment intermediaries, and
trading venues.

4UCITS stands for "Undertakings for Collective Investment in Transferable Securities." UCITS funds
are a type of investment fund that is authorized to be sold to investors throughout the European Union.
They are regulated by the European Union, and must comply with a set of standards that are designed
to protect investors
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During the whole development of this study a constant dialogue with R. Zenti and the
Risk Management and Data Analytics team of Fondaco SGR, which has an open interest
in alternative investments and portfolio replication, has taken place. They have provided,
in addition to the dataset, knowledge and ideas for the success of the study.

1.1. Literature Review

The portfolio replication is inherent in a more attentioned, debated and famous problem
vastly present in the literature: hedge found cloning. In fact, trying to build a clone
that tracks an hedge fund is an exercise of portfolio replication. These funds are typically
organized as private investment vehicles for wealthy individuals and institutional investors.
Since they are not required to disclose their activities to the public, little is known about
the risk of hedge fund strategies. The lack of transparency and the fear of style drift have
raised the question of whether it is possible to identify and estimate the risk factors that
drive hedge fund returns and to build a model to replicate them.
A first analysis has been done by Sharpe [27], who introduced the concept of style analysis;
it consists in separate portfolio’s returns into a set of underlying factors that explain its
performance. This approach helps investors better understand the sources of risk and
return in their portfolio and can help them in the construction of more efficient and
diversified portfolios. Sharpe approach is used by Hasanhodzic and Lo [15] to build a
linear factor model. They show that using a set of factors such as market risk, interest
rate risk and credit risk it is possibile to replicate the returns of many hedge funds.
Nevertheless, looking at empirical conclusion of other studies, several limits of the factor-
based hedge fund replication can be found. Agarwal and Naik [1], Fung and Hsieh [12]
and Vrontos, Vrontos and Giamouridis [29] with their studies highlight that, due to the
lack of transparency of hedge fund trading strategy, it is not possible fix a priori a set of
factors. With the fixed set, the replication strategy allocates capital to all assets and it
is not able to distinguish between important and less important factors.
A work close to this study is Giamouridis and Paterlini [13], who propose a new method for
the construction of hedge funds clones. Their model minimize the tracking error volatility
between the hedge fund index and the clone while imposing a constraint on the 1-norm
and 2-norm of the factors. The procedure is equivalent to minimizing a penalized version
of the tracking error volatility, with the penalty that allows us to reduce the sensitivity to
the estimation error and, with the 2-norm, is addressed possible instability in the factor
estimates due to the presence of collinearities among factors.
Recently several studies developed with new machine learning techniques came out, but
most of them are more focused on the prediction rather than on the construction of an
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interpretable replica portfolio.

1.2. Thesis approach

This thesis aims to show techniques of replication of the target portfolios, comparing
different models used with different set of factors, and to present some possible analysis
that can be done using the outcome portfolio.
The returns of a portfolio are a linear combination of the returns of the assets contained
in it; for this reason, a linear model fits well the problem and it is able to obtain a clone
that is close to the target. Models in this study are based on linear regression, where
the coefficients of the regression are the weights of the portfolio; in particular, an Elastic
Net [32] regression has been chosen to better handle multicollinearity between factors and
relevant features selection. Two different approaches are exploited: in the first one the
replica is built using rolling windows and rebalancing, the portfolio is not constant over
the time, but at each time step it is built considering only the past returns contained in
the rolling window; in the second one the portfolio is built using all the past returns and
it is no more rebalanced, it is kept constant. Both models are evaluated twice using two
different set of factors, first 14 US indexes and then the 5 Fama and French factors [7];
the two sets are never mixed.
The results of the two approaches and two different datasets are compared and it is
analyzed in which circumstances one is more appropriate than the other. After that,
the replica portfolio of one target portofolio is chosen. Deeper analysis are executed on
it, such as adding stochasticity to the weights of the target portfolio, and some possible
applications, such as the VaR calculation, are shown.
It’s important to highlight that the models of this study have been thought with the goal
of obtaining the exact structure of the target portfolio, its weights. Some techniques, that
maybe would have led to better prediction results, have been discarded because of the
fact that they are less interpretable and do not provide the weights.

1.3. Thesis structure

This study is structured as follows:

• chapter 2 : it contains the explanation of why a portfolio replication problem can
be solved using a linear regression model; in particular, the Elastic Net choice is
motivated. In addition, the approach used to build the models, which is the most
common in a machine learning framework, is explained;
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• chapter 3: it contains the description of the dataset and the explaination of Fama
and French models. Collections of time series of prices and returns available for this
study are two: a set of 14 US Indexes and the 5 Fama and French factors;

• chapter 4: it contains a short analysis of the dataset. Stationarity of returns is
tested and some general statistics of the factors are inspected.

• chapter 5: it contains the descriptions of the two models object of these study:
Model 1, which is dynamic and based on rolling windows, and Model 2, which is
static;

• chapter 6: it contains the results of the two models in replicating 13 target portfolios;

• chapter 7: it contains some test and analysis using the replicating portfolio of one
among the 13 target portfolios. Firstly, some stochasticity is added to the weights
of the target portfolio. Then the result obtained with an Elastic Net inside Model
1 is compared with the result obtained with Lasso. Gross exposure, turnover and
transaction costs are analyzed later. In the end, some applications of the replicating
portfolio are presented; two risk metrics are calculated (VaR and ES) and Ibbotson
Cone associated to the replicating portfolio is built;

• chapter 8: it contains conclusions and future developements.
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behind the replica

The models are based on the assumption, useful and widely used in finance, that the
target portfolio price is a linear combination of the prices of its constituent assets. As
well as for the prices, this relation holds for returns.
The equations that drive the values are the following:

zt = q1,tp1,t + q2,tp2,t + q3,tp3,t + ...+ qn,tpn,t (2.1)

for the prices, and

yt = w1,tr1,t + w2,tr2,t + w3,tr3,t + ...+ wn,trn,t (2.2)

for the returns. The variables are:

• zt is the price of the target portfolio at time t;

• qi,t is the quantity of asset i contained in the portfolio at time t;

• pi,t is the price of asset i contained in the portfolio at time t;

• yt is the return of the target portfolio at time t;

• wi,t is the weight of asset i contained in the portfolio at time t;

• r2,t is the return of asset i contained in the portfolio at time t;

• the intercept is imposed to zero.

By imposing a zero intercept, the linear regression assumes that there is no value in holding
cash, which is consistent with the no-arbitrage assumption in finance. This means that
the portfolio replication is unbiased and there are no systematic errors in the replication
process. Amenc et al. [2] have discussed in their paper the use of linear regression to
replicate a target portfolio, stating that the assumption that the return on the portfolio
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is zero when the returns on all underlying assets are zero implies that the regression
intercept should be equal to zero.
At this point an important clarification has to be made. Considering the returns of a
portfolio with this linear combination, is a good approach if the aim of the model is to
understand the structure of the portfolio; in fact, in this way the weights can be obtained
and what the portfolio is made of is clear. Instead if the ultimate goal of a model is just
the prediction of the returns, there were some models, such as Random Forests or Neural
Networks, that could perform well; nevertheless, a limit of these models is that they are
black box and do not return as outcome the exact weights to construct a portfolio.
This study is centred on the structure, for this reason the outcome of both models are the
weights of the replica portfolio. Obtaining the weights is useful because some strategies
may be built imposing constraints on them:

• it can be imposed that they sum to 1: this would mean that all the budget available
is invested on the market. Keeping the portfolio fully invested helps to optimize the
returns while minimizing the risk of holding cash that is not earning any returns;

• if the sum of weights of a portfolio is greater than 1, it indicates that the portfolio is
over-invested or has a leverage. This means that the total investment in the portfolio
exceeds the total amount of funds available for investment, which can happen when
an investor borrows money to invest in the portfolio;

• if a portfolio has some negative weights, it means that the investor is using a short
selling strategy. Short selling is a technique where an investor borrows an asset and
sells it in the market, hoping to buy it back at a lower price and return it to the
lender, making a profit on the price difference.

• the turnover of the portfolio and transactions costs can be kept under control. The
turnover of a portfolio is a measure of how frequently the assets in the portfolio
are bought and sold within a specific time period; it is calculated as the total value
of the securities bought or sold in the portfolio divided by the total value of the
portfolio.

Differently from other studies, the set of factors used for the replica is quite large. Hasan-
hodzic and Lo [15], for example, did their analysis with five factors, that is, proxies for
the equity, bond, currency, credit, and commodity markets. Moreover, without knowing
the exact factors that drive target portfolio returns, it seems appropriate to considered a
wider set of factors. Anyway, if the set is large, a procedure to pick the right factors is
needed. This group of techniques, that are called regularization techniques, let the model
pick only a restricted group of factors out of many.
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Deep connected with the regularization argument is the choice of the regression technique
for the models: they are both based on an Elastic Net. For the model that uses a rolling
windows approach the regression is dynamic, the portfolio is rebalanced at each time step
and the outcome are several vectors of weights. In the other model the regression is static
and the outcome is a single vector of weights that will be kept constant over the test set.

2.1. Elastic Net choice

Regularization techniques in linear regression are methods used to avoid overfitting of the
model to the training data. There is overfitting when a model becomes too complex and
starts to fit the noise in the data rather than the underlying pattern. This leads to poor
performance on new, unseen data. Regularization techniques are particularly useful when
the number of features in the data is large relative to the number of observations, or when
there is multicollinearity among the features. In this study, mainly when the models are
run using the dataset of US indexes, the set of factors may be larger than necessary and
applying regularization becomes crucial. Regularization makes possible to avoid a feature
selection at the start of the procedure and gives to the model the capability of picking
the most appropriate factors setting the others to zero.
Regularization techniques add a penalty term to the objective function, which balances
the fit of the model to the data with the complexity of the model. The choice of which
regularization method to use depends on the specific problem and the characteristics of
the dataset. For linear regression problems several regularization techniques exist, but the
most used are L1 regularization, known as Lasso regression [28], and L2 regularization,
known as Ridge regression [17].
In the Lasso regression the penalty term added to the objective function is the sum of the
absolute values of the regression coefficients. This is its equation:

β̂Lasso = min
β

1

2n

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj| (2.3)

where:

• β is the vector of regression coefficients, including the intercept term β0;

• n is the number of samples in the dataset;

• p is the number of factors in the dataset;

• xij is the value of the jth factor for the ith sample;
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• yi is the target variable value for the ith sample;

• λ is the regularization parameter.

λ is the hyperparameter of the model, which controls the strength of the penalty, that has
to be calibrated. Lasso regression is a shrinkage estimator : it encourages the coefficients of
some of the factors to become zero, performing feature selection. This technique is useful
to reduce the number of irrelevant and redundant features in the model. In particular, in
case of high dimensional dataset, Lasso regression can reduce the dimensionality of the
problem; it identifies the most important features for the prediction task and eliminate
irrelevant or redundant features, leading to simpler models. Models are not only simpler,
but also more interpretable. Indeed, thanks to the shrinking procedure, Lasso regression
tends to produce sparse solutions with only the more relevant factors.
In the Ridge regression the penalty term added to the objective function is proportional
to the sum of the squared values of the coefficients of the model. This is its equation:

β̂Ridge = min
β

1

2n

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + α

p∑
j=1

β2
j (2.4)

where α is the hyperparameter of the model, which controls the strength of the penalty,
that has to be calibrated. The objective of Ridge regularization is to shrink the magnitude
of the coefficients of the model, without imposing any of them to exactly zero. This can
help to reduce the variance of the model and improve its ability to generalize to new data,
by preventing the coefficients from taking on large values that are specific to the training
data. A larger value value of alpha determines more regularization and smaller values of
the coefficients.
To sum up, Lasso and Ridge regularization have the same purpose, fighting the issue of
overfitting, but they use different strategies and perform well in different situations; they
are consistent with the No Free Lunch Theorem of Wolpert and Macready [31] . The
theorem is a fundamental result in the field of machine learning and optimization, which
states that there is no single algorithm that is universally superior to all other algorithms
across all possible datasets and problems. A general algorithm may perform reasonably
well on many different problems, but may not be optimal for any particular problem,
while a specific algorithm may perform exceptionally well on a particular problem but
may not generalize well to other problems. Lasso tends to perform better than Ridge
when the dataset has many predictor variables, but only a few of them are important
for predicting the response variable. This is because Lasso can produce sparse solutions
where some of the coefficients are exactly zero, effectively selecting a subset of the most
relevant predictors. In contrast, Ridge regression may produce non-zero coefficients for all
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predictors, even if some of them are irrelevant. Instead Ridge regression may be preferred
over Lasso when the number of predictors is large relative to the number of observations,
the predictors are highly correlated, or the goal is to improve the predictive accuracy of
the model rather than selecting a subset of relevant predictors.
In this study the set of factors that can be used to build the replica portfolio is quite large:
14 securities considering only a dataset of US indexes and the 5 Fama and French factors.
The exact number of factors, and their importance, is not known a priori; consequently,
it is not possible to assess if it is better to use Lasso or Ridge. For this reason, Elastic
Net has been chosen.
Elastic Net regularization is a technique for linear regression that combines the penalties
of L1 and L2 to achieve a balance between the two. It was introduced as a way to overcome
some of the limitations of Lasso and Ridge regularization when used individually. The
equation of its objective function is:

β̂EN = min
β

1

2n
||y −Xβ||22 + α · l1ratio||β||1 +

1

2
α · (1− l1ratio)||w||22 (2.5)

where:

• β is the vector of regression coefficients

• n is the number of samples in the dataset;

• X is the matrix of the j factors and the i samples;

• y is the vector of the target variables samples;

• ||.||2 represents the L2 norm;

• ||.||1 represents the L1 norm;

• α is the regularization strength parameter

• l1ratio represents the ratio of L1 penalty term to the total penalty.

The hyperparameters α and l1ratio are linked in Elastic Net regularization: α controls the
strenght of regularization, if it increases the amount increases; l1ratio controls the balance
between L1 and L2 penalties. When l1ratio is 1, the penalty is pure L1 and the regression
is equivalent to a Lasso, while when it is 0 the penalty is pure L2 and it is equivalent to
a Ridge.
Compared with the Lasso, it can be noticed that that Elastic Net has a better feature
selection; in fact, it handles correlated features and select groups of features together,
which is not possible with Lasso. In addition, it is more stable because Lasso, in the case
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of correlated predictors, can produce different set of coefficients for small variations in the
data. Compared with Ridge, Elastic Net handles the multicollinearity better because it
can select one feature from a group of correlated features rather than keeping all of them
To conclude, Elastic Net has been chosen because it is an hybrid between the two other
techniques, combining the strengths of both methods while overcoming their limitations.

2.2. Machine learning approach

The approach used in this study for the construction of the models is the most common
in a machine learning framework. The steps of the procedure are:

• Problem definition: the first step is to define the problem that needs to be solved.
The problem is the portfolio replication.

• Data collection: historical price time series of factors has been collected.

• Data preparation: once the data have been collected, the next step is to prepare
them for analysis. In this case the returns are computed from the prices. The
model uses the historical time series of returns, so all the factors are comparable
in magnitude and no data pre-processing technique, such as Min-Max scaling, is
needed.

• Data splitting: data are splitted in training set and test set. The training set is
used to train the model, while the testing set is used to evaluate its performance.
Due to the cross validation procedure that is performed, data of the validation set,
used to tune the hyperparameters, are contained in the training set.

• Model selection: once the data has been prepared, the next step is to select an
appropriate model to solve the problem. The model is an Elastic Net, both for the
dynamic and the static approach.

• Model training: the selected model is to trained on the training set. This involves
setting the hyperparameters for the algorithm and fitting it to the data to create a
predictive model.

• Model tuning: using cross validation techniques the best combination of hyperpa-
rameters is chosen

• Model evaluation: the performance of the model on the test set is evaluated.

This pipeline has been followed for both models and at the end their results are compared.
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In order to replicate a Black Box portfolio a collection of financial products, each one
covering a different risk factor, is needed. In this chapter dataset is presented and Fama
and French models explained.
The collection of this study, provided by Fondaco SGR, is made up of two group of
instruments: a set of 14 US Indexes and the 5 Fama and French factors. The Black Box
portfolios used to test the model are built with a linear combination of different portfolios
available in the data library on the website of Kenneth R. French. [11]
The dataset includes prices and returns on monthly basis, covering the time period from
January 2001 to September 2022, with in total 261 observations. In the following sections
the variables are presented and the Fama and French models explained.

3.1. US Indexes

Every product of this set is and index of the american stock market; an index is an instru-
ment that tracks the performance of a certain group of stocks, bonds or other investments.
Each one, which is built with a formula, represents only a segment of the financial market
and it is used by investors to obtain quickly insights about that particular segment. For
this reason having indexes which cover every area of the financial market would be really
useful for the purpose of this study.
Indexes used are: RU20INTR, XNDX, LF98TRUU, I00189US, LUATTRUU, M1US000V,
M1US00G, SPTR, LUACTRUU, XMI, HUI, GSCI, OEX, VIX.

• RU20INTR("Russell 2000 Small-Cap TR Index"): ETF 1 replicating the perfor-
mance of the Russel 2000 Index. It is a small-cap stock market index composed of
the 2000 smallest stocks in the Russell 3000 index, which instead tracks the perfor-
mance of the 3000 largest U.S.-traded stocks.
RU20INTR is focused on small-cap companies in the U.S. market, indeed it is con-
sidered a good indicator of the U.S. economy.

1For simplicity ETFs and indexes in this study are considered as if they had the same properties.
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• XNDX("Nasdaq 100 TR Index"): the total return version 2 of Nasdaq 100, which
is a market capitalization weighted index that includes 100 of the largest domestic
and international non-financial stocks listed on the NASDAQ Stock Market based
on market capitalization.

• M1US000V ("MSCI US Value Net TR Index"): index capturing large and mid
cap US stocks exhibiting overall value 3 style characteristics.

• M1US000G ("MSCI US Growth Net TR Index"): index capturing large and mid
cap securities exhibiting overall growth style characteristics in the US.

• SPTR ("S&P 500 TR Index"): the total return version of S&P 500, which is a
market capitalization weighted index of the five hundred, largest, publicly traded
companies in the United States. This index is said to represent the best picture of
the large-cap equities in the US market.

• XMI ("NYSE ARCA Major Market Index"): American price-weighted stock mar-
ket index made up of 20 Blue Chip 4 industrial stocks of major U.S. corporations.

• HUI ("NYSE ARCA Gold Bugs Index"): index composed of publicly-traded gold-
mining companies that is useful for tracking short-term trends in gold prices.

• GSCI ("S&P GSCI Commodity TR Index"): index of commodities that measures
the performance of the commodities market. The index often serves as a bench-
mark for commodities investments. Investing in a GSCI fund provides a broadly
diversified, unleveraged long-only position in commodity futures.

• OEX ("S&P 100 Index"): index that is composed of the 100 largest Blue Chip
stocks in the S&P 500 with listed stock options.

• LF98TRUU("Bloomberg Barclays US Corp High Yield TR Index"): index provides
investors with exposure to U.S. high yield bonds.

• I00189US("Bloomberg Barclays US Caa High Yield TR Index"): index provides
investors with exposure to U.S. high yield bonds of corporate with an index rating
of at least Caa3.

2A total return index is a type of equity index that tracks both the capital gains as well as any cash
distributions, such as dividends or interest, attributed to the components of the index. A look at an
index’s total return displays a more accurate representation of the index’s performance to shareholders.

3There is a duality between Value and Growth stocks: value stocks are companies investors think are
undervalued by the market while growth stocks are companies that investors think will deliver better-
than-average returns.

4Blue Chip is a term that comes from poker and stands for companies that are known for being
valuable, stable and established. They’re typically big names in their industries, and investors count on
them for their reliability.
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• LUATTRUU ("Bloomberg US Treasury Total Return Unhedged USD Index"): this
index track the performance of the U.S. Treasury bond market.

• LUACTRUU ("Bloomberg Barclays US Investment Grade TR Index"): index pro-
vides investors with exposure to U.S. investment grade bonds.

• VIX ("Volatility Index"): this index is a calculation designed to produce a measure
of constant, 30-day expected volatility of the U.S. stock market, derived from real-
time, mid-quote prices of S&P 500 Index call and put options. It is one of the most
recognized measures of volatility.

3.2. Fama and French factors

Fama and French factors inherited their name from Eugene Fama and Kenneth French,
two american economists that have designed a statistical model to describe stock returns.
They wrote several papers questioning the validity and the precision of the "Capital
Asset Pricing Model" (CAPM) [26]. The CAPM is a theoretical model that explains the
relationship between the expected return of an asset and its risk. The model predicts that
the expected return of an asset is equal to the risk-free rate plus a risk premium, which
is proportional to the asset’s beta. Beta is a measure of an asset’s volatility compared to
the overall market and it is the only source of risk.
However, Fama and French found that the Beta factor alone was not able to explain all
the patterns of the stock market: they proposed a Three-Factor Model that was later
expanded to a Five-Factor Model. The dataset of this study contains five Fama and
French factors.

3.2.1. Factors Models vs CAPM

Fama and French built their factor models as a way to improve upon the CAPM, which
was originally proposed as a way to explain the relationship between expected returns
and systematic risk as measured by beta. However, they found that the CAPM did not
explain the observed cross-sectional patterns in average stock returns. The reason why
CAPM does not work is that it assumes that all stocks are perfect substitutes and that
the only source of risk is market beta. Anyway, this assumption has been challenged by
empirical evidence showing that factors introduced by Fama and French can explain the
cross-sectional variation in average returns. As a result, CAPM has been criticized for
over-simplifying the real-world dynamics of stock returns and for not being able to explain
the empirical patterns in average returns.
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The Fama-French Three-Factor Model wanted to explain the variation in stock returns
using three factors: the market factor, the size factor, and the value factor. The model
was accepted and used but some anomalies were found in the data that could not be fully
explained by the three factors.
To overcome these problems, Fama and French decided to extend their model from three
factors to five factors. In this paper [9] they introduced two additional factors: the
profitability factor (RMW) and the investment factor (CMA). The profitability factor
represents the performance of firms with high operating profitability relative to firms with
low operating profitability. The investment factor represents the performance of firms
with low investment relative to firms with high investment. They found that these two
additional factors improved the model’s ability to explain the cross-sectional variation in
stock returns, particularly for small and value stocks. The Five-Factor Model has become
widely accepted and used as a benchmark for explaining stock returns. The inclusion
of the profitability and investment factors in the Five-Factor model has been seen as
evidence that the factors play a significant role in determining stock returns and that a
multi-factor approach is necessary to fully understand stock market performance.

3.2.2. Three-Factor Model

The three factors of the Fama and French Three-Factor Model are RM,t - Rf,t , SMBt

and HMLt. The equation of the model is the following:

Ri,t −Rf,t = α + β1(RM,t −Rf,t) + β2SMBt + β3HMLt + ϵi,t, (3.1)

where:

• Ri,t is the excess return on asset i at time t;

• Rf,t is the risk-free rate at time t;

• RM,t is the return on the market portfolio at time t;

• SMBt is the size factor;

• HMLt is the value factor;

• α, β1,β2,β3 and ϵi,t are the usual components of a linear regression.

The factor RM,t - Rf,t is the market beta used in the CAPM and represents the systematic
risk of the market. The SMB ("Small Minus Big") factor represents the difference in
average returns between small-cap stocks and large-cap stocks; it is used to capture the
risk premium that is associated with investing in smaller stocks relative to larger ones,
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indeed there is empirical evidence of the fact that small-cap companies outperform large-
cap ones considering long periods of time. The HML ("High Minus Low") represents
the difference in average returns between high book-to-market 5 stocks and low book-to-
market stocks; empirical evidence suggests that high book-to-market stocks outperforms
low book-to-market stocks considering long periods of time.
To compute the everyday value of SMB and HML, firstly Fama and French sort every
stock of the considered region 6 in different portfolios, dividing them using a particular
feature as a criteria. They build 6 portfolios splitting stocks in two market cap and three
book-to-market groups. The portfolios are:

• Small Value stocks

• Small Neutral stocks

• Small Growth stocks

• Big Value stocks

• Big Neutral stocks

• Big Growth stocks

SMB is the equal-weight average of the returns on the three small stock portfolios for
the region minus the average of the returns on the three big stock portfolios:

SMB =
1

3
(SmallV alue+ SmallNeutral + SmallGrowth)

−1

3
(BigV alue+BigNeutral +BigGrowth).

(3.2)

HML is the equal-weight average of the returns for the two high B/M portfolios for a
region minus the average of the returns for the two low B/M portfolios:

HML =
1

2
(SmallV alue+BigV alue)− 1

2
(SmallGrowth+BigGrowth). (3.3)

5The book-to-market (B/M) ratio is a financial indicator that compares the market value of a company
to its book value. This ratio is obtained by dividing the book value (calculated as total assets minus
liabilities) by the market capitalization.

6All CRSP ("Center for Research in Security Prices") firms incorporated in the US and listed on the
NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t
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3.2.3. Five-Factor Model

The five factors of the Fama and French Five-Factor Model are RM,t - Rf,t , SMBt ,
HMLt, RMWt and CMAt . The equation of the model is the following:

Ri,t −Rf,t = α + βMKT (RM,t −Rf,t) + βSMBSMBt

+βHMLHMLt + βRMWRMWt + βCMACMAt + ϵi,t,
(3.4)

where:

• Ri,t is the excess return on asset i at time t

• Rf,t is the risk-free rate at time t

• RM,t is the return on the market portfolio at time t

• SMBt is the size factor

• HMLt is the value factor

• RMWt is the robust minus weak factor

• CMAt is the conservative minus aggressive factor

• α, βMKT ,βSMB,βHML, βRMW , βCMA and ϵi,t are the usual components of a linear
regression

It can be noticed that the market beta Ri,t−Rf,t, the size factor SMBt and the value factor
HMLt are in common with the Three-Factor model. The RMW (’Robust Minus Weak’ )
factor represent the difference in average returns between robust operating profitability7

portfolios and weak operating profitability portfolios; Fama and French found that firms
with high operating profitability tend to have higher returns than firms with low operating
profitability, and that this effect was not captured by the market, size, and value factors.
The CMA (’Conservative Minus Aggressive’ ) is the difference in average returns between
conservative investment 8 portfolios and aggressive investment portfolios; it is use to
account for the fact that firms with low investment tend to have higher returns than firms
with high investment.

To compute the everyday value of RMW , firstly Fama and French sort every stock of
the considered region in different portfolios, dividing them using a particular feature as

7The operating profitability of a firm is often measured by its operating income, which is calculated
as revenue minus operating expenses.

8Investment refers to the amount of capital that a firm invests in its operations and growth, for
example, in research and development, new projects, or acquiring other companies.
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a criteria. They build four portfolios splitting stocks in two market cap and operating
profitability groups. The portfolios are:

• Small Robust stocks;

• Small Weak stocks;

• Big Robust stocks;

• Big Weak stocks.

RMW is the equal-weight average of the returns on the two robust stock portfolios for
the region minus the average of the returns on the two weak stock portfolios:

RMW =
1

2
(SmallRobust+BigRobust)− 1

2
(SmallWeak +BigWeak). (3.5)

To compute the everyday value of CMA, they build two portfolios splitting stocks in two
market cap and investment groups. The portfolios are:

• Small Conservative stocks;

• Small Aggressive stocks;

• Big Conservative stocks;

• Big Aggressive stocks;

CMA is the equal-weight average of the returns for the two conservative investment
portfolios for a region minus the average of the returns for the two aggressive investment
portfolios:

CMA =
1

2
(SmallConservative+BigConservative)

−1

2
(SmallAggressive+BigAggressive).

(3.6)

The Five-Factor Model present some advantages and novelties. One of them is its im-
proved explanatory power compared to the CAPM. Additionally, the model takes into
account behavioral biases such as the size and value premiums, which have been consis-
tently observed in the stock market.
The model introduces several novelties to traditional finance models. Firstly, it introduces
three new factors, which provide a more complete explanation of stock returns. Secondly,
the model shifts the focus from individual stocks to common risk factors, providing a
more systematic approach to portfolio construction. Finally, the model considers microe-
conomic variables such as profitability and investment, which are not considered in the
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CAPM.

3.2.4. The role of the intercept a

The intercept in the Fama-French Factors Models is a measure of the average excess
return of the stocks in the sample. It is calculated as the average return of the stocks
in the sample minus the expected return predicted by the model. In financial terms, the
intercept represents the average abnormal return of the stocks in the sample. Abnormal
returns are the returns that are not explained by the systematic risk factors captured by
the five factors. The intercept can be interpreted as the compensation investors require for
taking on any residual risks that are not captured by these factors. A positive intercept
indicates that the average excess return of the stocks in the sample is greater than the
expected return predicted by the model, while a negative intercept indicates the opposite.
If the intercept is not significantly different from zero, it suggests that the Fama-French
model provides a good fit to the data.

3.2.5. The Risk Free Rate

The risk free rate Rf that is used in the models is a 1 month american Treasury Bill.
A Treasury Bill is a short-term debt security issued by the United States government,
with a maturity of one year or less, which is considered to be one of the safest investments
available, due to the fact that they are backed by the US government.

3.2.6. Fama and French factors available in the dataset

To exploit this study all the data library on the website of French [11] is available. In
order to obtain a better replication and to keep track more sectors as possible, the Five-
Factors Model has been chosen over the Three-Factors one. For each factor a time series
of monthly returns has been downloaded; the period covered is from January 31th, 2001
to September 1st, 2022.

3.3. Black Box portfolios

The term Black Box is used to describe a portfolio whose composition in unknown. The
aim of the model is to track the movements of these portfolios building a replica portfolio
composed choosing instruments among the Indexes or the Fama and French factors.
As for the factors, also for the Black Box portfolios the time series of returns comes from
the website of French [11]; the number of portfolios downloaded is 8. They are not only
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used as they comes, indeed new portfolios can be built with a linear combination of them.
Considering the fact that the composition of these portfolios follows the logic of Fama
and French Models, this choice could be useful to avoid strong correlation between one of
them and a particular risk factor.
The 8 portfolios are:

• SCG: Small Cap Growth contains all the stocks of the indexes NYSE, AMEX and
NASDAQ which are small cap and growth 9;

• BCM: Big Cap Medium BtM contains all the stocks of the indexes NYSE, AMEX
and NASDAQ which are big cap and with a medium book-to-market;

• LCV: Large Cap Value contains all the stocks of the indexes NYSE, AMEX and
NASDAQ which are large cap and value;

• Cnsmr: contains all the stocks of the indexes NYSE, AMEX and NASDAQ which
belong to the industry of consumer durables, non durables, wholesale, retail and
some services (laundries, repair shops);

• Manuf : contains all the stocks of the indexes NYSE, AMEX and NASDAQ which
belong to the industry of manufactoring, energy and utilities;

• Hitec: contains all the stocks of the indexes NYSE, AMEX and NASDAQ which
belong to the industry of business equipment, telephone and television transmission;

• Hlth: contains all the stocks of the indexes NYSE, AMEX and NASDAQ which
belong to the industry of healthcare, medical equipment and drugs;

• Other: contains all the stocks of the indexes NYSE, AMEX and NASDAQ which
belong to other industries (mines, constructor, hotels, bus services, entertainment,
Finance)

From now on, they are identified with the ticker written in bold. The target portfolios,
some of them built with a linear combination, that are used to test the model, will be
specified in the following pages.

9The size breakpoint is the median NYSE market equity. The book-to-market breakpoints are the
70th and the 30th NYSE percentiles. Stocks with book-to-market higher than the 70th percentile are
defined as Value, lower than the 30th as Growth.
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In this chapter the main features of the historical time series that compose the dataset are
analyzed. Due to the fact that data are on monthly basis there may exist a choice between
returns and log returns; for this reason, the first operation is to execute stationarity to
decide how to continue the study, if with returns or log returns. Then, some properties
of the time series are shown in tables.

4.1. Stationarity Test

When dealing with time series it’s crucial to check if they are stationary or not. Sta-
tionarity is a very important concept in time serie analysis, because it guarantees that
the statistical properties of the series remain constant over time. A time series is said
to be stationary if it has constant mean, constant variance and constant covariance over
time. Stationarity is an important prerequisite for many time series analysis and there
are some techniques used to obtain it, such as the first differences, log transformations or
detrending.
Data available in this study are the time series of monthly returns. When the returns are
daily, it’s a common practice in finance to use a log transformation to reach the station-
arity; in this case they could already be stationary before applying any transformation.
To clarify any doubt, two different stationarity test are applied both to the monthly
returns and monthly log returns. The two tests are the Augmented Dickey-Fuller Test
(ADF) [6] and the Phillips-Perron Test (PP) [24].

4.1.1. Augmented Dickey-Fuller Test

The ADF test is a statistical test used to check the stationarity of a time series by
regressing the it against its lagged values and testing the hypothesis that the residuals
are not stationary. The p-value from the test can be used to determine if the time series
is stationary or not. The null hypothesis of the test is that the time series has a unit root,
which is a property that indicates not stationarity. A time series is said to have a unit
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root if it can be expressed as a first-order autoregressive model:

yt = ϕyt−1 + εt, (4.1)

where yt is the value of the time series at time t, ϕ is the autoregressive coefficient, and
εt is the error term. A time series with a unit root is non-stationary because the mean,
variance, and autocovariance of the series are not constant over time.
These are the steps of the test more detailed:

• set the null hypothesis: the time series has a unit root and is not stationary

• build the regression equation

yt = c+ ϕ1yt−1 + ϕ2∆yt−1 + ...+ ϕp∆yt−p + εt, (4.2)

where yt is the value of the time series at time t, c is a constant, ϕ1, ϕ2, ..., ϕp are
the regression coefficients, ∆yt is the first difference of the time series, and εt is the
error term. The number of lags p is chosen based on the order of integration of the
time series;

• the ADF test statistic is calculated as the t-statistic for the coefficient of the first
lag of the time series, ϕ1. If this term is significantly different from zero, then the
null hypothesis is rejected, and the time series is considered to be stationary;

• the p-value for the ADF test is calculated from the test statistic and can be used to
determine the level of significance for the test. If the p-value is less than 0.05, then
the null hypothesis is rejected and the time series is considered to be stationary.

4.1.2. Phillips-Perron Test

To have a stronger and more robust conclusion, after the ADF test, also the Phillips-
Perron test is performed on the dataset.
The Phillips-Perron (PP) is used to test for unit roots in time series data. It overcomes
some of the limitations of the ADF test by using a more efficient estimation procedure.
The idea behind the PP test is to estimate a time series model that includes both a
linear trend and a unit root. The null hypothesis for the test is that the time series
has a unit root, and the alternative hypothesis is that the time series is stationary. The
estimation procedure is called Inverse Root (IR) method. After the estimation of the
parameters with this procedure, a test statistic is calculated based on the estimates. If
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the test statistic is greater than a critical value, then the null hypothesis of a unit root
is rejected, and the time series is considered to be stationary. If the test statistic is less
than the critical value, then the null hypothesis cannot be rejected, and the time series
is considered to have a unit root and to be non-stationary. The critical value comes from
the critical value table, which gives the critical value for a given level of alpha and the
number of observations and which is based on the asymptotic properties of the test statis-
tic and takes into account the distribution of the test statistic under the null hypothesis.

4.1.3. Stationarity Results

As it can be seen in Table 4.1 and in Table 4.2, for each factor, both for returns and
log returns, the results of the two test is unanimous: p-values are really low and the null
hypothesis are rejected. It can be concluded that the time series of monthly returns and
the time series of monthly log returns are stationary and they can be used both inside
the model.
In this study, as standard and literature practice, the choice is to use the logarithmic
returns. From now on, for simplicity, in the thesis the log returns are called as returns.
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ADF PP

RU20INTR 2.82e-28 2.57e-28
XNDX 2.36e-28 2.30e-28
LF98TRUU 2.08e-11 5.67e-24
I00189US 2.03e-20 7.11e-20
LUATTRUU 3.65e-13 3.87e-27
M1US000V 9.32e-28 7.65e-28
M1US000G 3.22e-28 2.69e-28
SPTR 3.53e-28 2.98e-28
LUACTRUU 8.73e-27 8.67e-27
XMI 2.76e-29 2.39e-29
HUI 7.56e-30 7.45e-30
GSCI 8.16e-24 1.75e-23
OEX 2.58e-28 2.36e-28
VIX 1.12e-10 1.36e-10
Mkt-RF 6.84e-28 5.38e-28
SMB 2.54e-18 1.04e-29
HML 1.65e-09 3.47e-26
RMW 6.17e-26 3.83e-26
CMA 3.48e-26 1.47e-26
SCG 1.58e-27 1.79e-27
BCM 1.56e-27 1.58e-27
LCV 3.14e-27 3.78e-27
Cnsmr 1.15e-06 8.36e-29
Manuf 7.53e-29 7.52e-29
Hitec 1.15e-28 9.84e-29
Hlth 1.06e-29 1.10e-29
Other 6.53e-09 3.20e-27

Table 4.1: Results of Augmented Dickey-Fuller Test and Phillips-Perron Test performed
on returns of the factors. P-values are low and the null hypothesis are rejected
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ADF PP

RU20INTR 4.22e-28 4.07e-28
XNDX 5.22e-28 3.93e-28
LF98TRUU 1.63e-11 1.25e-23
I00189US 2.81e-20 1.24e-19
LUATTRUU 3.51e-13 3.86e-27
M1US000V 1.52e-27 1.13e-27
M1US000G 6.23e-28 4.87e-28
SPTR 6.02e-28 4.68e-28
LUACTRUU 9.40e-27 9.66e-27
XMI 3.78e-29 3.40e-29
HUI 7.63e-30 7.25e-30
GSCI 2.39e-23 6.12e-23
OEX 3.96e-28 3.42e-28
VIX 9.70e-16 2.34e-15
Mkt-RF 1.17e-27 8.55e-28
SMB 2.06e-18 9.22e-30
HML 1.43e-09 3.34e-26
RMW 5.67e-26 4.02e-26
CMA 2.70e-26 1.33e-26
SCG 2.29e-27 2.66e-27
BCM 2.79e-27 2.74e-27
LCV 6.00e-27 7.25e-27
Cnsmr 1.18e-06 1.21e-28
Manuf 1.32e-28 1.33e-28
Hitec 1.99e-28 1.33e-28
Hlth 1.26e-29 1.30e-29
Other 8.09e-09 4.89e-27

Table 4.2: Results of Augmented Dickey-Fuller Test and Phillips-Perron Test performed
on logarithmic returns of the factors. P-values are low and the null hypothesis are rejected
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4.2. Returns analysis

As decided in the previous section, the historical time series of monthly log returns is
considered. Some statistics of these factors, covering the period January 2001 - September
2022, are reported in Table 4.3.

Mean Std Dev Max Min Skewness Kurtosis

RU20INTR 0.006253 0.058072 0.169172 -0.244961 -0.811658 2.075387
XNDX 0.007018 0.064761 0.172869 -0.306548 -0.904343 2.693173
LF98TRUU 0.005543 0.027632 0.114263 -0.173244 -1.517915 9.714089
I00189US 0.005413 0.041535 0.176501 -0.271666 -1.568950 10.667923
LUATTRUU 0.002796 0.013041 0.05171 -0.044917 -0.079753 1.164333
M1US000V 0.004304 0.044586 0.121679 -0.175236 -0.863386 2.117821
M1US000G 0.006161 0.048584 0.142352 -0.201059 -0.706960 1.647600
SPTR 0.005834 0.044276 0.120618 -0.18386 -0.743910 1.410923
LUACTRUU 0.003925 0.017301 0.065755 -0.080876 -1.001980 4.856212
XMI 0.003725 0.040932 0.12884 -0.177204 -0.721545 1.974915
HUI 0.005124 0.112642 0.362784 -0.482969 -0.098294 1.196179
GSCI -0.000435 0.069446 0.179527 -0.348499 -1.062962 3.480165
OEX 0.003288 0.044337 0.119358 -0.157717 -0.598588 0.805051
VIX 0.001179 0.218062 0.852588 -0.614279 0.459012 1.074104

Table 4.3: Statistics of the indexes log returns

A first comment that can be done is that the means, except for the index accounting for
commodities, are positive. These reflects the performance of the financial markets in the
period taken into account; also considering period of decline such as the global financial
crysis of 2008-2009 and the Covid pandemic, the performance has been overall positive.
One thing that stands out is the line of the VIX; due to its nature, it’s not surprising
that it has very different statistic compared with the other securities. VIX is a measure
of the volatility of the market and does not represent the ownership of a stock or of an
obligation, but it is left in the set of factors because it can be traded. In fact, many
investors trade VIX as a way to hedge against volatility using future contracts or options
to buy and sell it. Coherently, it has a volatility that is way higher than others factors
and also the max value and min value are more extreme. In Figure 4.1 it can be seen the
difference between monthly log returns time series of the VIX and the one of the SPTR,
the index tracking S&P 500.
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Figure 4.1: Monthly log returns of VIX and S&P 500 compared

Some consideration can be done comparing different kinds of securities: indexes tracking
bonds (LF98TRUU, I00189US, LUATTRUU and LUACTRUU) are in general less volatile
than equity indexes, with the ones exposed to high yield that are closer to equity than the
others. As expected, the index tracking the US Treasury bond market is the less volatile
and with low kurtosis. The Figure 4.2, displaying the frequency returns distribution of the
index tracking U.S. high yield bonds and U.S. high yield bonds of corporate with an index
rating of at least Caa3, explains their high values of kurtosis: the data are concentrated
around the mean, but they have tails more dense of extreme values compared to a normal
distribution.
Between equity, the most volatile and the one with more extreme values is the index
composed of gold-mine companies, and this fact is not surprising because this security is
exposed to a single factor that is gold’s price.
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Figure 4.2: Frequency distributions of log returns of LF98TRUU and I00189US

Mean Std Dev Max Min Skewness Kurtosis

Mkt-RF 0.005042 0.045777 0.127953 -0.189105 -0.710379 1.408772
SMB 0.002247 0.026745 0.068873 -0.086757 0.049651 0.091710
HML 0.000239 0.031690 0.120003 -0.150474 -0.100947 3.504548
RMW 0.003526 0.023013 0.087186 -0.096621 0.104562 2.459673
CMA 0.001782 0.020161 0.086636 -0.071926 0.570115 2.126407

Table 4.4: Statistics of the Fama and French factors log returns

Mean Std Dev Max Min Skewness Kurtosis

SCG 0.006056 0.065927 0.20785 -0.249906 -0.539191 1.108035
BCM 0.005886 0.044750 0.134119 -0.192591 -0.957822 2.784286
LCV 0.005232 0.060876 0.167316 -0.317993 -1.251950 4.431393
Cnsmr 0.007787 0.041346 0.14583 -0.159347 -0.377811 1.479526
Manuf 0.006758 0.047186 0.126192 -0.212946 -1.040354 3.003278
Hitec 0.006216 0.059795 0.181404 -0.255925 -0.712635 1.808904
Hlth 0.005719 0.040647 0.125839 -0.115972 -0.470670 0.355578
Other 0.004768 0.053838 0.153493 -0.226148 -0.936130 2.843574

Table 4.5: Statistics of the target portfolio components log returns
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Table 4.4 and Table 4.5 contain statistics of Fama and French factors and portfolio derived
from them, so it is appropriate to analyze them together. Fama and French factors have
standard deviations that are lower than the one of the components of the target portfolios,
and also of the equity; for sure they are more similar to bond indexes. Also here all the
means are positive in value, with the mean of Fama and French factors that is similar to
the indexes one. It can be notice that, although they are built following Fama and French
models, the returns of Table 4.5 behave similarly to the returns of the equity US indexes.

4.3. Multicollinearity

In financial problems, when dealing with multiple stocks, is always important to anayl-
ize their correlation. A correlation coefficient measures the strength and direction of the
linear relationship between two variables, and ranges from -1 to +1, where -1 indicates a
perfect negative correlation, 0 indicates no correlation, and +1 indicates a perfect positive
correlation. In the problem of these study study the correlation is even more important
because of the model that is used: linear regression results are affected by the multi-
collinerity between factors. Multicollinearity is a phenomenon that occurs when two or
more independent variables in a regression model are highly correlated with each other.
This means that the independent variables are not independent of each other, which can
cause issues in the interpretation of the regression coefficients and the predictive accuracy
of the model. When multicollinearity is present, it becomes difficult to determine the indi-
vidual effect of each independent variable on the dependent variable, as the effects of the
variables may be overlapping. Additionally, the regression coefficients may be unstable,
and small changes in the data or the model can lead to large changes in the coefficients.
One common way to detect multicollinearity is to calculate the correlation matrix between
the independent variables. If there are high correlations (higher than a threshold of 0.7
or 0.8 more or less) between two or more independent variables, multicollinearity may be
present. To address multicollinearity, several techniques can be used. One approach is to
remove one or more of the highly correlated independent variables from the model. In
this study the approach is to apply regularization techniques directly on the model, which
can help to shrink the coefficients of the correlated variables and improve the stability.
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Figure 4.3: Correlation matrix of US Indexes returns from January 2001 to September
2022

Figure 4.4: Correlation matrix of returns of Fama and French factors from January 2001
to September 2022

Observing Figure 4.4 it can be noticed that there are no high correlation between variables
and multicollinearity can be excluded. Instead, observing Figure 4.3, it can be noticed
that there are group of variables with correlation between them above the threshold.
This group is composed by the indexes exposed to equity and corporate bonds. The
highest correlation exists between SPTR and M1US000V, with a correlation coefficient ρ
of 0.96266.
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5| Models

In this chapter we present two models. One based on a rolling windows approach is defined
as Model 1, the static one as Model 2. We present the explanations of concepts useful
to understand how models work; concepts such as rolling windows, hyperparameters, loss
function and cross validation procedures. At the end the metrics used to evaluate the
performance of the models are presented.

5.1. Model 1

5.1.1. Short overview

As mentioned before, this model is based on a rolling windows approach. The first feature
which has to be highlighted is that the model is dynamic: indeed, thanks to the rolling
windows, portfolio weights evolve during time and are not freezed. At the core there is
a linear regression, in particularly an Elastic Net that is able to perform regularization.
The Elastic Net, trained using a fixed size set of past returns of the factors and of the
target portofolio, finds the weights necessary to build the replica portfolio.
The paremeters of this model are three:

• WS: the size of the rolling window;

• α : the regularization strenght parameter;

• l1ratio: the ratio of the L1 penalty term to the total penalty.

The pipeline of the model can be summed up in these steps:

• the dataset is splitted in train set and test set;

• the customized loss function that the linear regression tries to minimize is con-
structed. This loss is used by the cross validation procedure to select the parameters
α and l1ratio of the Elastic Net;

• for each values of WS, an Elastic Net is trained at every month and then shifting of
one step the window the procedure is repeated. At the end, the best α and l1ratio
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for all the train set (for the specific WS) are fixed by the cross validation minimizing
the custom loss;

• the WS granting the best values for the metric is chosen with an hyperparameter
tuning procedure;

• Chosen WS, also the linked α and l1ratio are recovered;

• the performance of the model is tested out-of-sample on the test set.

The model outcome from this procedure is an Elastic Net with parameters α and l1ratio

which, at each time step t , is trained using the returns of the factors and the target of
the t - WS days before; this model is able to give the best weights to build a portfolio to
replicate the returns of the following month.

5.1.2. Rolling windows

A rolling windows approach is a useful and common technique in time series analysis,
used in several works related to finance such as at the papers of DeMiguel et al. [5] and
Frazzini et al. [10], consisting in dividing the dataset in a sequence of overlapping windows
of a fixed length. A rolling window is a fixed size set of consecutive data points, part of
a larger dataset; this window is used to perform a particular task, such as calculate a
statistics or fitting a model like in this case. At the next time instant of the series, the
rolling window remains constant in size but shift of one position and the task is repeated
with this different set of data: the process is repeated until the entire dataset has been
analyzed.
For example in this model, imitating what is shown in Figure 5.1, if the window size
were 50 months, the situation would be the following: the set of returns of the factors
and the target portfolio from the 1st month to the 50th would be used to train the model
and obtain the weights to build the portfolio to replicate its return in the 51th month.
Then the window shifts, and in the 51th month the model is trained with the returns from
the 2nd to the 51th to build the best replica for the 52th. This procedure until the end
of the dataset. In this example the replica portfolio is rebalanced every month, but the
frequency of rebalancing can be changed with an adjustment on the shift imposed to the
rolling window.
Rolling windows approach have several strenghts but also some limitations. Among the
strenghts, the most useful is that windows allow to analyze the data in more detailed way
than looking at the overall time series: this permit to find patters or trends that would
have not be found observing at the entire time series. Among the limitations, using
overlapping windows may introduce correlation to data within the same window leading
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to biased results. Another problem could be overfitting, with the model that becomes to
specific for the data of the window and does not generalize well.
One way to tackle these limitations, besides the regularization that is already performed
by the Elastic Net, is to use larger windows size, reducing the noise and the fluctuations
in the data.

Figure 5.1: Example of a rolling window of size 5 shifting of one time step

Following these considerations, the windows sizes tested are the values in Table 5.1, where
the smallest size is one year and the largest five years. The best window size is the value
of WS that minimizes the tracking error volatility (TEV), a metric later explained in
section 5.3.
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WS

12 27 30
33 36 39
42 44 48
52 54 60

Table 5.1: Tested values of window size for Model 1

5.1.3. Hyperparameters

In a machine learning algorithm hyperparameters are parameters of the model that are
not learned from the data. They can be considered as the configuration settings the
model, indeed they have to be set before training and remain constant. The procedure
of setting them is called hyperparameters tuning. This procedure consist in searching
the best combination of hyperparameters values that maximizes the performance of the
model on a validation set. In Model 1, due to how cross validation is performed, the
dataset is splitted only in two part and the validation set is contained in the test set. The
hyperparameters are three: α , l1ratio and WS.
For the first two the tuning is automatized using a random search, as explained by Bergstra
and Bengio [4], which is a technique that samples the hyperparameters values randomly
from a defined grid or distribution. A random combination of hyperparameters is sampled
from the search space, and the model is trained and evaluated using these values. The
performance is then recorded, and the process continues for a fixed number of iterations or
until a stopping criterion is met. This procedure can often identify good hyperparameter
configurations with few evaluations. For the window size the tuning is not automatized
and there is not any randomness: for each value of WS the model is trained across the
training set with the window shifting of one step each iteration and at the end the WS
granting the best performance is chosen. The difference in the techniques is justified by
the different sizes of the grid from which the hyperparameters are searched: the best WS
is chosen among twelve values, while α and l1ratio among respectively 108 and 107 values.

Lower bound Upper bound Number of points

α 1e-6 1e-4 1e8
l1ratio 0.1 1 1e7

Table 5.2: Grid of values for the two hyperparameters of the Elastic Net α and l1ratio
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In Table 5.2 the grid for the sampling.

5.1.4. Cross validation

Cross validation is a statistical method used to evaluate the performance of machine learn-
ing models. The training set is splitted in multiple subsets, called folds. In each iteration
all the folds are used to train the model, except one that is used to test it. In the following
iteration the procedure is the same, but the fold used to test changes. With this technique
each data of the training is used in most of the cases to train the model, and in one case
to test it. The most common type of cross-validation is k-fold cross-validation, shown
by Kohavi [22], where the dataset is randomly divided into k subsets of equal size. The
model is trained on k− 1 folds and tested on the remaining fold. This process is repeated
k times, with each fold being used once for testing and the other k − 1 folds being used
for training. The results from each of the k tests are then averaged to provide an overall
estimate of the model’s performance. The procedure permits to select hyperparameters,
that are the configuration setting providing the best average result across the folds.

Figure 5.2: Example of k-fold cross validation procedure.

Due to the fact that this study lives in a time series framework, k-fold cross validation can
not be applied; in fact, data would be shuffled while randomly divided into the k subsets.
With time series this is a problem, because the data are ordered in time, and there is a
relationship between them. Random shuffling of the dataset would cause the rupture of
this relations causing a worse performance for the model.
To preserve the time ordering of the dataset the folds are built using a different cross
validation technique, available in the paper of Pedregosa et al. [23]. In the procedure
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different models are tested, keeping the WS fixed, to find the best values of α and l1ratio

for that value of WS. This technique is based on three parameters:

• max train size;

• test size;

• n splits.

Max train size represents the maximum size for a single training set and it is set equal to
WS.
Test size is the size of the test set internal to the cross validation and it is set equal to 1
because the model is trained to build the portfolio to replicate the next month return.
N splits is the number of splits of the dataset and it is defined as:

nsplits =
sizeofthetrainingset− windowsize

testsize
, (5.1)

that is the exact number to obtain every fold of size equal to WS. With these setting of the
parameters the Elastic Net is always trained with a set of dimension WS and the perfor-
mance evaluated on a test set of dimension 1. The performance is determined by the value
of the custom loss, explained in subsection 5.1.5, that are obtained. For each WS are cho-
sen the α and l1ratio which guarantee the best average performance across the training set.
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Figure 5.3: Example of cross validation procedure of Model 1 with test size of length one,
training size fixed and the windows rolling of one time step.

In the end the hyperparameter WS is tuned: at this point all the performances are
available and the WS granting the best one is chosen.

5.1.5. Loss function

In machine learning algorithms the loss function is a function used to evaluate the per-
formance during training; it calculates the distance between the predicted output and
the actual output. The objective of the algorithm is to minimize the loss function by
adjusting model’s parameters.
The distance calculated in the loss function can be measured using different metrics, some
examples are: mean squared error (MSE), root mean squared error (RMSE), mean ab-
solute error (MAE), mean absolute percentage error (MAPE) and the symmetric mean
absolute percentage error (SMAPE). The metric used in the loss function in this work is
the SMAPE, one of the measure of forecast accuracy described by Armstrong [3]. SMAPE
has been chosen because it is a symmetric measure, taking into account the relative dif-
ference between the predicted and actual values. This means that SMAPE is not affected
by the direction of the prediction error and it gives equal weight to overestimation and
underestimation errors. The objective of the model is to perfectly replicate the returns
of the target portfolio, for this reason obtaining higher returns is equally weighted to
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obtaining lower returns.
The SMAPE is defined as following:

SMAPE =
1

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

× 100 (5.2)

where:

• n is the number of observations in the dataset;

• yi is the actual (true) value for observation i;

• ŷi is the predicted value for observation i.

As said before, the model has to minimize the loss function. The Elastic Net presented in
this work uses a coordinate descendent algorithm to do it. This algorithm, explained by
Zou and Hastie [32], updates the coefficients of the model one at a time while fixing the
values of the other coefficients. During each cycle of the coordinate descent algorithm,
the coefficients are updated in a specific order, with each coefficient being updated using
a closed-form solution. The order of the updates is typically randomized at the beginning
of each cycle to prevent any biases.

5.1.6. Final overview

To sum up, Model 1 aims to solve the task of portfolio replication. It finds the best
weights to build a portofolio replicating the target using a rolling windows approach. At
the core of the model there is a linear regression, performed with an Elastic Net to allow
regularization.
Model 1 depends on three parameters: the size of the rolling windows WS, α and l1ratio

of the Elastic Net. The first parameter is tuned minimizing the tracking error volatility
(TEV), a metric discussed in section 5.3, while the other two are found using cross vali-
dation and minimizing the SMAPE.
This model can be directly tested out-of-sample, fitting at each period the obtained Elastic
Net with the set of size WS of the previous returns of the factors and of the target. This
procedure may lead to a rebalancing of the portfolio between two consecutive periods.
Metrics used to evaluate the performance of Model 1 are later discussed in section 5.3.

5.2. Model 2
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5.2.1. Short overview

For Model 2 a simpler model has been chosen to have a benchmark for Model 1. Its most
important feature is that it is static; weights obtained after training are kept constant
until the end of the test set.
The frequency of rebalancing depends on various factors, such as the investment strategy,
the market conditions, and the investor’s risk tolerance. Some investors may rebalance
their portfolios periodically, such as monthly or quarterly, while others may prefer to
rebalance based on specific triggers or thresholds. Strongly linked with the frequency
of rebalancing are cost of transactions; indeed a no-rebalancing strategy leads to less
costs than the strategy provided by previous model. Constant weights means that the
portofolio is no more rebalanced and consequently the frequency of rebalancing is no more
a parameter of interest.
Model 2 is based on a linear regression. As in Model 1, the regression is performed with an
Elastic Net to apply a regularization and optimize the number of assets in the portfolio.
The pipeline of this model is shorter and can be summed up in these steps:

• the dataset is splitted in train set and test set;

• an Elastic Net is trained using the whole training set and the best α and l1ratio are
fixed by the cross validation minimizing the custom loss;

• the performance of the model is tested out-of-sample on the test set.

5.2.2. Hyperparameters

The hyperparameters of this model are the two parameters of the Elastic Net, α and
l1ratio. The grid of values among which they are chosen is the same of Model 1, shown
in Table 5.2. For the tuning it is used again Bergstra and Bengio technique [4], sampling
them randomly from the grid and to select the best combination, 20000 attempts are
executed and the best one is chosen.

5.2.3. Cross validation

Even though it is static, the model lives in a time series framework and therefore it needs
a different cross validation procedure rather than the standard k-fold.
Also the procedure use in this model, contained in Pedregosa et al. [23], takes into account
the temporal ordering of the data but it is conceptually different from the one used in
Model 1.
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Figure 5.4: Example of cross validation procedure of Model 2.

The technique is a variation of k-fold cross-validation: the main idea behind this procedure
is to split the time series data into several folds, where each fold consists of a contiguous
subset of time points. The most important concept of the procedure is that successive
training sets are supersets of those that come before them, to ensure that the model is
trained on data that precedes the test data in time. For each fold i, the first i folds are
used as training set and the i + 1th fold is the test set. The overall performance of the
model is the average of the performances across all folds.
Hyperparameters of Model 2 are two but it could have been considered a third. Indeed,
this cross validation technique requires as input parameter the number of splits of the
folds. Nevertheless, a number of splits equal to five has been chosen a priori. The choice
of the number of splits in cross-validation is somewhat arbitrary and can depend on the
specific data and modeling problem. However, the value of five is a common default
choice for the number of folds, explained by Hastie et al. [16], because it provides a good
trade-off between bias and variance in the estimated performance. A larger value of k can
reduce the bias of the estimated performance by reducing the dependence of the estimate
on a single partition of the data; but, it can also increase the variance of the estimate by
reducing the amount of data used for training the model.

5.2.4. Loss function

Model 2 does not use a customized loss function but the standard one for Elastic Net
regression: the mean squared error (MSE).
MSE measures the average of the squared differences between the predicted values and
the actual values of the target variable. This is its formulation:
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MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (5.3)

where:

• n is the total number of observations;

• yi is the actual value of the target variable for the i-th observation;

• ŷi is the predicted value of the target variable for the i-th observation.

The MSE is non negative and it is in the same unit as the target variable, making it easy
to be interpreted; a smaller value indicates better performance of the model. One possible
drawback of the MSE is that it gives more weight to large errors than to small errors, as
highlighted by Willmott et al. [30], due to the squaring operation; but in this case study,
considering the order of magnitude of returns it has not been considered a problematic
scenario.

5.2.5. Final overview

To sum up, Model 2 aims to solve the task of portfolio replication. Differently than the
rolling windows approach in which only the more recent data are used for the training,
this model is trained with all the returns of the past that are available.
α and l1ratio, the values determining the configuration setting of the Elastic Net, are the
only two parameters of the model. They are selected using cross validation and random
search combined, minimizing the MSE.
The weights of the replica portfolio are found using all the returns of the past and then
are kept constant out-of-sample, there is no rebalancing.
Metrics used to evaluate the performance of Model 2 are later discussed in section 5.3.

5.3. Metrics

In this section metrics used to evaluated the performance of the models are explained.
In machine learning, a metric is a quantitative measure used to to determine how well
a model is able to make predictions on new, unseen data. Some common metrics for
classification tasks include accuracy, precision, recall, and F1 score. For regression tasks,
as the Elastic Net in this study, common metrics include mean squared error (MSE) ,
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mean absolute error (MAE) , and R2.
In portfolio replication problems, the metric used to evaluate the performance of a port-
folio is typically the tracking error volatility (TEV). This metric has been used in several
works; some examples are Giamouridis and Paterlini [13], the book of Grinold et al. [14]
and Roncalli [25].
Tracking error volatility measures the deviation of a portfolio’s returns from the returns
of the target. It is calculated as the standard deviation of the difference between the
portfolio returns and the target returns. A low TEV indicates that the portfolio closely
matches the target, while a high TEV indicates that the portfolio is deviating significantly
from the target.
In this study the tracking error volatility is chosen as metric to tune the WS hyperpa-
rameter in the Model 1 and to evaluate performance of both models on the test set. Data
are monthly, but the measure of interest is the annual TEV; it is obtained scaling the
monthly tracking error volatility by the square root of the number of periods in a year.
In this case, since there are 12 periods (months) in a year, it used the square root of 12
to scale the monthly tracking error volatility to an annualized tracking error volatility:

TEVa =
√
12 ∗ TEVm, (5.4)

where:

• TEVa is the annual tracking error volatility;

• TEVm is the monthly tracking error volatility, standard deviation of the difference
between the portfolio returns and the target returns.

To better evaluate the performance of the models on the test set and have a wider view,
TEV is not the only metric chosen. The other metrics used are excess return (ER), cor-
relation (CORR) and SMAPE, already used in the loss function.
ER is defined as the sum of the differences between the predicted returns and the target
returns on a specific period:

ER =
n∑

i=1

(yrp,i − yt,i), (5.5)

where:

• yrp,i is the is the return of the replica portfolio in period i;

• yt,i is the return of the target in period i;
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• n is the total number of periods over which the excess return is calculated.

ER has been widely used in the literature: for example, by Hou et al. [19] as a metric to
evaluate the performance of a portfolio replication strategy based on anomalies in stock
returns; or by Holthausen et al. [18] to evaluate the prediction of stock returns obtained
with financial statement information.
CORR is defined as the correlation between the returns of the replica portfolio and the
target returns, measuring the strength of the linear relationship between them:

ρrp,t =
cov(yrp, yt)

σrpσt

, (5.6)

where:

• ρrp,t is the correlation coefficient between the returns of replica portfolio and target
portfolio;

• cov(yrp, yt) is the covariance between the returns of replica portfolio and target
portfolio;

• σrp is the standard deviation of the returns of replica portfolio;

• σt is the standard deviation of the returns of target portfolio.

When evaluating the performance of a portfolio replication model, it is important to not
consider this metric alone because an high correlation does not necessarily imply that
the predicted return accurately replicates the target return; Giamouridis and Paterlini
[13], to overcome this problem, have combined CORR with excess return, tracking error
volatility and turnover.





47

6| Results

In this chapter we present the results of Model 1 and Model 2. We use the models firstly
with the set of 14 US Indexes and then with the Fama and French factors, comparing the
results. Models are trained with returns from January 2001 to April 2017 and are then
tested out-of-sample from May 2017 to September 2022 using 13 target portfolios. Then
the results are analyzed considering the fact that some of these portfolios are sectorials
and others are obtained with a linear combination of different instruments.
The results of the replica of all target portfolios are presented in tables; among the
columns, between the metrics, model parameter WS and N are reported. Considering
that Model 1 admits rebalancing between a time step and the following one, N is the
average number of factors composing the replica portfolio in each time step. For Model 2,
where the portfolio is fixed across the test set, N is not an average but a constant number.
For the calculation of N a threshold of 5% has been chosen: if a factor is present in the
portfolio with a weight less than the threshold is not added to the count.

6.0.1. Target portfolios

13 target portfolios are built using the Black Box portfolios presented in section 3.3.
Depending on their composition, they are divided in two categories: sectorial and mixed.
A sectorial portfolio is composed by only one security, instead a mixed portfolio is a linear
combination of different portofolios.
As shown in Table 6.1, the set of sectorial is composed by P5, P6, P7, P8 and P9; the set
of mixed by P1, P2, P3, P4, P10, P11, P12 and P13.
The most diversificated portfolio is P12, where 7 Black Box portfolios out of 8 are used
in the composition.
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Ticker SCG BCM LCV CNSMR MANUF HITEC HLTH OTHER

P1 0.50 0.50
P2 0.50 0.50
P3 0.50 0.50
P4 0.35 0.30 0.35
P5 1.00
P6 1.00
P7 1.00
P8 1.00
P9 1.00
P10 0.40 0.30 0.20 0.10
P11 0.30 0.35 0.35
P12 0.10 0.10 0.15 0.15 0.15 0.15 0.15
P13 0.50 0.25 0.25

Table 6.1: Weights of the target portfolios. See section 3.3 to have informations about
the Black Box portfolios.

6.1. Model 1 results

Table 6.2 and Table 6.3 contain Model 1 results, while Table 6.4 contains the difference
between the values in the two tables.
Average results show that there are no important differences in the performance of Model
1 using the two sets of factors. TEV, which is the most important among the metrics, is
in average 4.37% in the US Indexes case and 4.32% for the Fama and French factors. The
difference of ER is in average 5.97%: the replica with US Indexes performs better than
the target portfolio more than what Fama and French replica does.
In general, the replicating portofolio is able to overperform the target; the only exception
is for P7, where Fama and French replica has a very negative ER equal to -17.19%. This
situation has been investigated and in Figure 6.1 weights of the replica portfolios are
shown. P7 is fully composed by one portfolio, the Hitec. In the case of US Indexes, the
replica portfolio is mostly composed by the XNDX, while for Fama and French by the
factor Mkt-RF which across the test set period has underperformed the Hitec portfolio.
With P7 the limitations of the set of factors composed by the 5 Fama and French factors
emerge: it can happen that the idiosyncratic risk of a particular sector is not represented
by any of the 5 factors and consequently the replica is not accurate.
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Figure 6.1: Weights of the portfolio replicating P7.

Another situation that deserves to be mentioned is the P8, fully composed by Hlth and
representation of the healthcare sector. Its replica is the worst performance of Model 1
with both set of factors. A motivation for this can be found in the fact that healthcare
policies and regulations have a significant impact on the stock market; for example, a
change in healthcare policies and regulations can strongly impact the profitability of
healthcare companies. Among the factors, and considering how the model works, there is
no possibility to take in account this kind of idiosyncratic risk.
As happened for the worst performance, also the best one is reached in the replica of the
same portfolio with both set of factors; indeed, TEV of the replica portfolio of P12 with
US Indexes is 1.34% and 1.80% with Fama and French factors. P12 is the most diversified
portfolio, composed of 7 securities. In Figure 6.2 prices of P12 and of the two replicas are
compared. It can be noticed that in the first 3 years price of the target and of the replicas
are almost the same; the slight distance present after the end of 2020 is due to different
returns during the first wave of Covid-19 pandemic, as it can be seen in Figure 6.3.
The smallest value for WS is 27: there are no replica portofolio in which the optimal size
of the rolling window is less than 2 years. The largest value is 60: for P4 the Elastic
Net of the model builds the weights of the replica portfolio using the returns of the last
5 years.
The average number of replica portofolio components with a weight larger than 5% is 4.99
for US Indexes replica and 3.86 for Fama and French. Considering that the US Indexes
are 14, the Elastic Net successfully performs feature selection and it keeps in the replica
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portfolio only the most appropriate factors.

Figure 6.2: P12 price.

Figure 6.3: P12 returns; the zoom-in box covers from March 2020 to October 2020.
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Ticker WS ER CORR SMAPE TEV N

P1 48 15.42% 98.72% 20.00% 3.19% 3.59
P2 27 6.06% 96.25% 23.43% 5.69% 6.89
P3 30 2.94% 97.62% 16.97% 4.95% 4.83
P4 60 2.76% 98.83% 15.99% 3.24% 4.95
P5 54 6.25% 94.95% 29.95% 5.80% 5.48
P6 39 5.36% 95.40% 36.60% 5.58% 4.03
P7 52 10.12% 98.61% 16.52% 3.16% 3.59
P8 44 18.33% 80.50% 45.85% 9.93% 6.51
P9 30 6.10% 96.05% 28.51% 5.52% 3.74
P10 52 5.11% 99.11% 17.72% 2.32% 5.06
P11 27 8.27% 98.27% 20.39% 3.07% 5.09
P12 39 5.34% 99.69% 8.21% 1.34% 4.63
P13 39 16.26% 98.38% 22.86% 2.99% 6.49
Average 41.62 8.33% 96.34% 23.31% 4.37% 4.99

Table 6.2: Model 1 : results with US Indexes.

Ticker WS ER CORR SMAPE TEV N

P1 33 14.99% 98.41% 19.37% 3.55% 4.49
P2 33 13.09% 98.35% 18.44% 3.68% 3.26
P3 39 2.32% 98.19% 16.71% 4.25% 4.81
P4 42 9.99% 98.41% 14.61% 3.67% 4.58
P5 48 5.14% 95.74% 25.54% 5.51% 4.75
P6 52 15.56% 94.44% 36.60% 6.37% 2.37
P7 48 -17.19% 97.07% 21.36% 4.59% 4.23
P8 44 23.90% 85.68% 38.86% 8.12% 4.41
P9 33 5.79% 96.97% 20.51% 4.81% 3.84
P10 44 9.01% 99.09% 17.05% 2.27% 3.64
P11 33 3.47% 98.26% 19.49% 3.15% 3.11
P12 54 6.89% 99.45% 1.95% 1.80% 2.71
P13 52 23.75% 96.23% 24.78% 4.39% 3.95
Average 42.69 11.62% 96.64% 21.17% 4.32% 3.86

Table 6.3: Model 1 : results with Fama and French factors.
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Ticker WS ER CORR SMAPE TEV N

P1 15 0.43% 0.31% 0.63% -0.36% -0.90
P2 -6 -7.03% -2.10% 4.99% 2.01% 3.63
P3 -9 0.62% -0.57% 0.26% 0.70% 0.02
P4 18 -7.23% -0.42% 1.38% -0.43% 0.37
P5 6 1.11% -0.79% 4.41% 0.29% 0.73
P6 -13 -10.20% 0.96% 0.00% -0.79% 1.66
P7 4 27.31% 1.54% -4.84% -1.43% -0.64
P8 0 -5.57% -5.18% 6.99% 1.81% 2.10
P9 -3 0.31% -0.92% 8.00% 0.71% -0.10
P10 8 -3.90% 0.02% 0.67% 0.04% 1.42
P11 -6 4.80% 0.01% 0.90% -0.08% 1.98
P12 -15 -1.55% 0.24% 6.26% -0.46% 1.92
P13 -13 -7.49% 2.15% -1.92% -1.40% 2.54
Average 8.92 5.97% -0.30% 2.13% 0.05% 1.13

Table 6.4: Model 1 : delta of results.

6.2. Model 2 results

Table 6.5 and Table 6.6 contain Model 2 results, while in Table 6.7 the difference between
values in the two tables is reported.
As for Model 1, average results show that there are no important differences in the per-
formance of Model 2 using the two sets of factors. TEV is on average 4.44% in the US
Indexes replica and 4.60% in the Fama and French one.
As for Model 1, the worst replica is the one of the target portfolio P8; TEV of the portfolio
built using the US Indexes set of factors is equal to 9.85% and equal to 8.84% using Fama
and French factors. In Figure 6.4 and Figure 6.5 the bad performance of the model can
be seen.
As for Model 1, the best result is obtained with the replica of P12: CORR is the highest
and TEV is the lowest for US Indexes replicas and also for Fama and French ones.
As for Model 1, due to the negative ER of the replica with Fama and French factors
(-10.97%), the composition of the target portfolio P7 is investigated and can be seen in
Figure 6.6: for US Indexes the XNDX is predominant and the 5 Fama and French factors
lack of one or more additional factor to provide an accurate replica.
As for Model 1, Elastic Net successfully performs feature selection; the average number of
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factors in the replica portofolio with a weight larger than 5% is 4.46 for US Indexes and
2.31 for Fama and French factors.

Figure 6.4: P8 price.

Figure 6.5: P8 returns.
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Figure 6.6: P7 weights comparison.

Ticker WS ER CORR SMAPE TEV N

P1 - 6.34% 98.74% 18.18% 3.31% 5
P2 - 3.08% 96.80% 26.12% 5.35% 3
P3 - -16.70% 93.77% 35.75% 7.33% 2
P4 - 2.53% 98.80% 15.28% 3.35% 3
P5 - 8.00% 94.10% 35.94% 6.39% 3
P6 - 6.40% 98.91% 16.79% 2.80% 6
P7 - 6.50% 98.91% 16.79% 2.82% 3
P8 - 8.40% 76.54% 46.31% 9.85% 9
P9 - 8.80% 96.67% 25.49% 5.05% 5
P10 - -1.49% 99.19% 17.65% 2.50% 3
P11 - 5.14% 98.38% 19.03% 2.98% 5
P12 - 1.30% 99.69% 10.82% 1.40% 4
P13 - 14.27% 96.20% 26.40% 4.41% 7
Average - 6.65% 95.86% 24.25% 4.44% 4.46

Table 6.5: Model 2 : results with US Indexes.
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Ticker WS ER CORR SMAPE TEV N

P1 - 8.55% 98.64% 17.40% 3.30% 2
P2 - 9.80% 97.91% 18.92% 4.39% 2
P3 - -9.51% 99.00% 14.52% 3.55% 3
P4 - 4.86% 98.52% 13.81% 3.71% 4
P5 - -17.57% 95.17% 34.73% 6.88% 1
P6 - 19.02% 92.63% 37.22% 6.98% 4
P7 - -10.97% 95.75% 29.04% 6.00% 1
P8 - -6.78% 81.65% 46.24% 8.84% 1
P9 - 6.67% 96.91% 22.46% 4.97% 2
P10 - 1.40% 99.34% 16.45% 1.96% 3
P11 - -0.03% 98.59% 18.26% 2.82% 2
P12 - 2.31% 99.36% 12.94% 1.99% 2
P13 - 18.92% 95.76% 25.23% 4.67% 3
Average - 8.95% 96.09% 23.58% 4.60% 2.31

Table 6.6: Model 2 : results with Fama and French factors.

Ticker WS ER CORR SMAPE TEV N

P1 - -2.21% 0.10% 0.78% 0.01% 3
P2 - -6.72% -1.11% 7.20% 0.96% 1
P3 - -7.19% -5.23% 21.23% 3.78% -1
P4 - -2.33% 0.28% 1.47% -0.36% -1
P5 - 25.57% -1.07% 1.21% -0.49% 2
P6 - -12.62% 6.28% -20.43% -4.18% 2
P7 - 17.47% 3.16% -12.25% -3.18% 2
P8 - 15.18% -5.11% 0.07% 1.01% 8
P9 - 2.13% -0.24% 3.03% 0.08% 3
P10 - -2.89% -0.15% 1.20% 0.54% 0
P11 - 5.17% -0.21% 0.77% 0.16% 3
P12 - -1.01% 0.33% -2.12% -0.59% 2
P13 - -4.65% 0.44% 1.17% -0.26% 4
Average - 8.09% -0.19% 0.26% -0.19% 2.15

Table 6.7: Model 2 : delta of results.
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6.3. Overall results

In Table 6.8 the results are divided in sections; one for each combination of model num-
ber and set of factors. Results are also divided for tipology of target portfolio. Values in
the rows sectorial are the average of the values of the portfolios that replicate a sectorial
target portfolio; the same holds for mixed portfolios.
It can be noticed that there is not a particular combination of model and set of factors
that outperforms the others. The results are similar: CORR and ER of Model 1 are
slightly higher than the correspondents of Model 2 but this relation does not hold for
SMAPE and TEV.
This result is not surprising. Indeed, the target portofolios built to test the model are
constant; they never change their composition and consequently they are always exposed
to the same risk factors. For this reason Model 2, even though it keeps the same replica
portfolio across the test period, does not have worse performance than Model 1.

Type WS ER CORR SMAPE TEV N

US INDEXES Model 1
SECTORIAL 43.8 9.23% 93.10% 31.49% 6.00% 4.67
MIXED 40.25 7.77% 98.36% 18.20% 3.35% 4.98
AVERAGE 42.03 8.50% 95.73% 24.84% 4.67% 4.83

F. FRENCH Model 1
SECTORIAL 45 13.52% 93.98% 28.57% 5.88% 3.92
MIXED 41.25 10.44% 98.30% 16.55% 3.35% 4.11
AVERAGE 43.13 11.98% 96.14% 22.56% 4.61% 4.02

US INDEXES Model 2
SECTORIAL - 7.62% 93.03% 28.26% 5.38% 5.20
MIXED - 6.36% 97.70% 21.15% 3.83% 4.25
AVERAGE - 6.99% 95.36% 24.71% 4.61% 4.73

F. FRENCH Model 2
SECTORIAL - 12.20% 92.42% 33.94% 6.73% 1.80
MIXED - 6.92% 98.39% 17.19% 3.30% 2.25
AVERAGE - 9.56% 95.41% 25.56% 5.02% 2.03

Table 6.8: Average results of each of the four combination model / factors. Values are
the mean of sectorial portfolios and mixed portfolios.
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In a problem of portfolio replication, in which there is the additional information that the
target portfolio is constant, using Model 2 may be preferable to avoid transaction costs
and to keep the model simpler. Some tests about this topic are shown in chapter 7.
In addition, this result underlines the importance of choosing a good set of factors to
build the replica portfolio. Considering that Fama and French 5 factors is a good set for
portfolio replication purposes, the fact that using US Indexes leads to the same perfor-
mances indicates that this set has been well composed and no risk factors have been left
out. Anyway, a crucial role is played by the regularization technique contained in the
model that allows to choose only the most important factors avoiding multicollinearity.

Type WS ER CORR SMAPE TEV N

AVERAGE Model 1
SECTORIAL 44.40 11.37% 93.54% 30.03% 5.94% 4.29
MIXED 40.75 9.10% 98.33% 17.37% 3.35% 4.55

AVERAGE Model 2
SECTORIAL - 9.91% 92.72% 31.10% 6.06% 3.50
MIXED - 6.64% 98.04% 19.17% 3.56% 3.25

Table 6.9: Results averaging US Indexes and Fama and French Replica.

Result shown in Table 6.9 are obtained averaging the US Indexes replica and Fama and
French replica.
Looking at them it can be noticed that both Model 1 and Model 2 provide a better
performance in replicating a target portfolio which is mixed rather than sectorial; mixed
portfolios are composed by multiple securities and are diversified. Coherently, as seen
in section 6.1, the best performance is the replica of P12, which is the most diversified
portfolio composed by 7 securities. As discussed by Grinold et al. [14], systematic factors
are common to many assets in the portfolio and can be better captured by a model, while
the idiosyncratic factors are specific to individual assets and can be difficult to predict.
For this reason, a diversified portfolio, which has a lower level of idiosyncratic risk, may
be more predictable using a linear regression model.
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7| Tests and analysis on portfolio

P4

In this chapter we choose a target portfolio and we present some tests and analysis on its
replicating portfolio. The portfolio chosen is P4, because it is a good compromise between
sectorial and diversification: statistics are summed up in Table 7.1 and visualized in
Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4. The replica using US Indexes is slightly
better than the Fama and French and the best one is obtained with Model 1.

Type WS ER CORR SMAPE TEV N

US INDEXES Model 1 60 2.76% 98.83% 15.99% 3.24% 4.95
F. FRENCH Model 1 42 9.99% 98.41% 14.61% 3.67% 4.58
US INDEXES Model 2 - 2.53% 98.80% 15.28% 3.35% 3
F. FRENCH Model 2 - 4.86% 98.52% 13.81% 3.71% 4

AVERAGE 51 5.04% 98.64% 14.92% 3.49% 4.13

Table 7.1: Results of the replication of P4.

P4 is composed by 35% of SCG, 30% of BCM and 35% of LCV and the weights of the
replicating portfolio are shown in Figure 7.3 and Figure 7.4. In the US Indexes replica
the RU20INTR has a large weight during all the period tested; the other two important
components are M1US000V and SPTR. A correspondence exists between the replicas with
the two set of factors. Indeed, in the Fama and French replica the largest components
are Mkt-RF and SMB which are deeply connected with securities in US Indexes replica.
RU20INTR and SMB both account for small cap stocks and SPTR and M1USOOOV are
a good representation of the whole equity market.

To conclude the analysis, in the end of the chapter we show a couple of applications of
the replicating portfolio.
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Figure 7.1: P4 analysis: price and returns calculated with Model 1 using US Indexes and
Fama and French factors.

Figure 7.2: P4 analysis: price and returns calculated with Model 2 using US Indexes and
Fama and French factors.
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Figure 7.3: P4 analysis: weights of the portfolio built by Model 1 and Model 2 using US
Indexes.

Figure 7.4: P4 analysis: weights of the portfolio built by Model 1 and Model 2 using
Fama and French factors.
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7.1. Tests and analysis

7.1.1. Stochastic target weights

In chapter 6 the target portfolios built to test the model are constant; they never change
their composition and consequently they are always exposed to the same risk factors. In
this section a test on the replica of P4 is performed: a stochastic component is introduced
and the target weights are no more constant.
Before the explanation of the two scenario considered, the procedure needs to be clarified.
The stochasticity is introduced only in the target weights of the test and models are
trained with constant target weights. The situation represented by this procedure is the
worst case scenario: the model has been trained to replicate a portfolio assumed to be
constant, but the portfolio manager of the target has decided to change his strategy and
the weights are adjusted during time. This method is a robustness test for both Model 1
and Model 2, with the expectations of a better performance of the former thanks to the
admitted rebalancing.
The stochasticity is introduced updating the target portfolio adding a gaussian jump to
the weights:

wi,t = wi,t−1 + z (7.1)

where:

• wi,t is the weight of the i component at time t;

• wi,t−1 is the weight of the i component at time t− 1;

• z is gaussian variable with mean equal to zero and standard deviation equal to σ.

Only one simulation is considered. The frequency of the jumps depends on a variable Q,
which has a Bernoulli distribution of parameter p and admits only 0 or 1 as values: if
the value of Q simulated is equal to 1 the jump is applied to the weights, if the value is
equal to 0 nothing happens. Two different configurational settings of the parameters are
tried out: in the Scenario 1 the value of p is equal to 0.40 and σ is equal to 0.01; in the
Scenario 2 the value of p is equal to 0.10 and σ is equal to 0.05. The evolutions of the
portfolio weights of this simulation are in Figure 7.5.
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Figure 7.5: P4 stochastic weights comparison.

Scenario 1 represents the situation of a portfolio manager who decides to make small
adjustments to the weights frequently. In each month there is a probability equal to 40%
that a rebalance takes place; furthermore, due to the fact that its volatility is equal to
1%, the adjustment is most likely to be small. The results of the test are contained in
Table 7.2 and the predicted returns are shown in Figure 7.6.
As expected, the result of each combination are worse than the results with a deterministic
target portfolio. Despite this, value of the metrics are still low for each replica: TEV is
lower than 5%, CORR is higher than 95% and SMAPE is lower than 20%.

Figure 7.6: Scenario 1 replicating portfolios returns.
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Type WS ER CORR SMAPE TEV N

US INDEXES Model 1 60 8.09% 97.85% 18.92% 4.21% 5.23
F. FRENCH Model 1 42 17.43% 97.18% 18.21% 4.75% 4.67
US INDEXES Model 2 - 9.50% 96.48% 19.56% 4.80% 3
F. FRENCH Model 2 - 11.84% 96.96% 17.84% 4.94% 4

AVERAGE 51 11.72% 97.12% 18.63% 4.68% 4.23

Table 7.2: Scenario 1 Results.

Model 1 has better performance than Model 2 and in both cases the best set of factors
for the replica is US Indexes.
Scenario 2 represents the situation of a portfolio manager that keeps the weights con-
stant for a longer period during the year, but when he decides to rebalance the portfolio
is because he wants to change his strategy and consequently the adjustment is larger in
value than Scenario 1. In each month there is a probability equal to 10% that a rebalance
takes place; furthermore, due to the fact that its volatility is equal to 5%, the adjustment
is larger. The results of the test are contained in Table 7.3 and the predicted prices are
shown in Figure 7.7.
In this scenario the replica is worse than Scenario 1 and the prediction ability is consid-
erably lower; models are not able to capture the rebalancing of the target portfolio. As it
can be seen in Figure 7.7 the performance is particularly poor from mid 2020, after when
some jumps are concentrated in a short time span.

Figure 7.7: Scenario 1 replicating portfolios returns.
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Type WS ER CORR SMAPE TEV N

US INDEXES Model 1 60 10.54% 94.24% 20.15% 7.27% 6.24
F. FRENCH Model 1 42 1.47% 92.18% 22.17% 8.12% 4.49
US INDEXES Model 2 - 15.26% 95.03% 18.02% 6.85% 3
F. FRENCH Model 2 - 17.59% 94.73% 16.75% 7.05% 4

AVERAGE 51 11.22% 94.20% 19.27% 7.32% 4.43

Table 7.3: Scenario 2 Results.

In this case holding the same portfolio better captures the stochasticity contained in the
target weights than the dynamic replication: Model 2 has better performance than Model
1 and in both cases the best set of factors for the replica is US Indexes.

7.1.2. Lasso regression

As explained in section 2.1, Elastic Net used in the models is a regularization technique
that combines Lasso regression and Ridge regression; the former tends to perform better
than the latter when the dataset has many predictor variables, but only a few of them
are important for predicting the response variable. Model 1 and Model 2, using the set of
factors of the US Indexes, build a replicating portfolio composed by on average 4.95 and 3
securities (Table 7.1): this subset is considerably lower than the complete set, composed
by 14 factors. For this reason, to give more space to the capability of Lasso of performing
feature selection and shrinking coefficients to zero, the Ridge component of the Elastic
Net has been turned off. In Table 7.4 and Figure 7.8 the results of the replica can been
seen. In the case of P4, Lasso regression performs better than the Elastic Net: comparing
the corresponding model in Table 7.1 and Table 7.4 it can be noticed that each value of
the metric in the Lasso replica has better values. Furthermore, the average number of
portfolio components of Model 1 has decreased.

Type WS ER CORR SMAPE TEV N

US INDEXES Model 1 54 0.10% 98.87% 14.28% 3.14% 4.2
US INDEXES Model 2 - -0.74% 99.03% 14.31% 2.96% 3

AVERAGE - -0.32% 98.95% 14.30% 3.05% 3.6

Table 7.4: Lasso Results.
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Figure 7.8: Price of the replicating portfolios built using Lasso.

This robustness test is not executed with the Fama and French set because they are only
five and Lasso works better in a context of large sets of factors.

7.1.3. Gross exposure, Turnover and Transaction costs

Gross exposure, turnover and transaction costs are aspects, often ignored in academic
studies, that for a practioner are really important. Portfolio managers sometimes have
constraints imposed by the firm or by the regulation and they can not apply the best
strategy obtained with a mathematical model. These three quantities are calculated for
the replica portfolio of P4 to analyze potential problems and are shown in Figure 7.9,
Table 7.5, Table 7.6 and Table 7.7.
Gross exposure is the total value of a portfolio, considering both long and short positions.
In each time instant it is calculated by taking the sum of the absolute values of all posi-
tions held in a portfolio:

Gross Exposure =
n∑

i=1

|wi|, (7.2)

where:

• n is the total number of positions in the portfolio;

• wi is the weight of the factor i.
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Gross exposure is an important metric for portfolio managers because it helps them un-
derstand the total amount of risk their portfolio is exposed to.

Figure 7.9: Gross Exposure of Model 1 replica.

In Figure 7.9 the gross exposure of the portfolios obtained with Model 1 and using the
two different set of factors is shown. It can be noticed that it is always larger than 100%:
this means that the replica portofolio uses leverage. Leverage refers to the procedure
of borrowing money or using financial derivatives, such as futures or options, to gain
exposure to a larger amount of assets than the amount of capital actually held by the
portfolio. Leverage augments portfolio exposition: it can increase the potential returns,
but also increases the potential risks. If the value of the underlying assets declines,
portfolio manager may be required to provide additional collateral or liquidate positions
to cover losses, which could further amplify them. The maximum leverage allowed for a
portfolio depends on jurisdiction and on the type of financial institution that holds the
portfolio. Gross exposure of the US Indexes replica is always under 140%; instead the
Fama and French replica portfolio is highly leveraged, with the value of gross exposure
that breaks the level of 200%.
Turnover is a measure of how much a factor is bought or sold, and in which quantity,
during the life of a portfolio. It is calculated only in Model 1 where the rebalancing is
allowed and the results are shown in Table 7.5 and Table 7.6. For each factor the turnover
is calculated with this formula:
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Turnoveri =
T∑
t=1

|wi,t − wi,t−1|, (7.3)

where:

• T is the number of periods;

• wi,t is the weight of the factor i at time t;

• wi,t−1 is the weight of the factor i at time t− 1.

Security Turnover

RU20INTR 0.3593
XNDX 0.0017
I00189US 0.3761
M1US000V 0.5061
M1US000G 0.2110
LUACTRUU 0.0446
XMI 0.1571
HUI 0.0801
GSCI 0.1824
OEX 0.1760
SPTR 0.3537
LUATTRUU 0.6167
LF98TRUU 0.0098
VIX 0.0360

TOTAL 1.5553

Table 7.5: US Indexes turnovers. The TOTAL amount has been divided by 2 because the
same percentage of turnover has been counted both in the factor bought and sold.

The total turnover of the Fama and French replica is equal to 244.64%, meaning that dur-
ing the test set the factors are bought and sold for an amount of money that is more than
double than the portfolio value. This percentage is higher than US Indexes case because
of the portfolio adjustment that takes place on mid 2020; the jump can be observed in
Figure 7.9.
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Security Turnover

Mkt - RF 0.5224
SMB 0.8408
HML 0.8961
RMW 1.2995
CMA 1.3340

TOTAL 2.4464

Table 7.6: Fama and French turnovers. The TOTAL amount has been divided by 2
because the same percentage of turnover has been counted both in the factor bought and
sold.

Transactions costs can have a significant impact on portfolio replication strategies; bro-
kerage fees, bid-ask spreads, and market impact costs, can erode the returns of a portfolio
and affect the ability of the replication strategy to closely track the target. In particular,
high transaction costs can make it difficult to replicate the turnover of the target port-
folio, which can lead to differences in the factor exposures and returns of the replicated
portfolio. In this study the transaction costs are considered both for buy and sell trades
equal to 0.04% and are shown in Table 7.7.

Factors Total Turnover Trade Cost Total Transaction Costs

US INDEXES 3.1106 0.0004 0.0012
FAMA AND FRENCH 4.8928 0.0004 0.0020

Table 7.7: Total transaction costs.

In this case the total turnover is double of the one showed in Table 7.5 and Table 7.6,
because it is considered that when there is a change in the portfolio two trades take place,
one for buy a factor and one for sell the other. The total transaction costs are the product
between the total turnover and the trade cost; consequently, the replication strategy using
Fama and French factors is more expensive than using US Indexes.

7.2. Applications

After the tests and analysis presented in section 7.1, we show what may be done with the
replication portfolios obtained with Model 1. For example, they may be used to calculate
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the Value at Risk (VaR) and the Expected Shortfall (ES) of the position or to build the
Ibbotson Cone [20] associated to the investment.

7.2.1. VaR and ES

Value at Risk (VaR) is a statistical measure that quantifies the potential loss in the value
of a portfolio over a certain period of time, with a given level of confidence. VaR estimates
the maximum amount of potential loss that a portfolio may suffer, under normal market
conditions, within a specific time horizon and at a certain level of probability. As explained
by Jorion [21], VaR is commonly used by risk managers to set risk limits and manage
portfolio risk by ensuring that potential losses do not exceed a certain threshold. Sev-
eral methods to compute VaR exist, for example: historical method, variance-covariance
method and Monte Carlo method.
In this study the variance-covariance is used, also called parametric method. This method
is based on the assumption that gains and losses, and so portfolio returns, are normally
distributed and that are stationary. Normality of returns has been explained by Fama
[8] and the stationarity has been proved in section 4.1. The formula to calculate the
parametric VaR is:

V aR(α)t = µt + σt ∗N−1(α), (7.4)

where:

• α is the level of confidence;

• µt is the mean of the portfolio composed with the weights at time instant t;

• σt is the standard deviation of the portfolio composed with the weights at time
instant t;

• N−1(α) is the inverse of the cumulative distribution function of the standard normal
distribution, representing the value of the Z-score corresponding to the desired level
of confidence α.

VaR of the current replica portfolio is calculated each month of the test set and the level
of confidence used are 95% and 99%; the results are shown in Table 7.8 and in Figure 7.10.
For the US Indexes replica portofolio the month in which the VaR reaches its minimum
is in 2018 an it is equal to 9.07%. This value is the maximum amount of potential loss
for the following month in the 95% of the cases.
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Factors Min VaR 95% Max VaR 95% Min VaR 99% Max VaR 99%

US INDEXES 9.07% 9.78% 12.60% 13.52%
F. FRENCH 8.55% 9.88% 11.89% 13.77%

Table 7.8: VaR of replicating portfolios built with Model 1.

Figure 7.10: VaR of replicating portfolios built with Model 1.

VaR is useful because is widely used, easy to understand and provides a single number
measure of risk. Nevertheless, it has some limitations. The biggest weakness of VaR is
that it is not able to capture the tail risk: this means that VaR may underestimate the
potential losses in extreme market conditions, with some disruptive events that could not
be captured by the normal distribution. In Figure 7.11 it can be clearly noticed that
the Covid pandemic, perfect example of an extreme event, breaks the threshold of both
VaR95% and VaR99%.
VaR is usually accompanied by another risk measure: the Expected Shortfall (ES). ES is
calculated by taking the average of the portfolio’s losses that exceed the VaR threshold,
weighted by the probability of those losses occurring. ES measures the average amount of
loss expected if the portfolio experiences a loss greater than the VaR limit. In other words
ES is a measure of the expected loss, beyond VaR, in the event of an extreme market
event. The formula to calculate the parametric ES is:

ES(α)t =
µt + σt ∗N(zα)

1− α
(7.5)
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Figure 7.11: VaR test performed on replica portfolio built with Model 1 using US Indexes.

Factors Min ES 95% Max ES 95% Min ES 99% Max ES 99%

US INDEXES 12.16% 13.96% 15.64% 20.40%
F. FRENCH 11.68% 13.11% 14.43% 20.66%

Table 7.9: ES of replicating portfolios built with Model 1.

where:

• α is the level of confidence;

• µt is the mean of the portfolio composed with the weights at time instant t;

• σt is the standard deviation of the portfolio composed with the weights at time
instant t;

• zα is the critical value of the standard Normal distribution at the α percentile level.

The values of ES for P4 are shown in Table 7.9 and in Table 7.9.
By using both VaR and ES, a portfolio manager can better understand the potential
risks of the portfolio and make more informed risk management decisions. While VaR
provides a useful benchmark for measuring potential losses, ES provides a larger view of
the portfolio’s risk profile and helps to identify the tail risk of the portfolio.
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Figure 7.12: ES of replicating portfolios built with Model 1.

7.2.2. Ibbotson Cone

The Ibbotson Cone [20], or Volatility Cone, is a graphical representation of the expected
return and risk of an investment portfolio over time. The cone makes it possible to
describe, in probabilistic terms, the evolution of the portfolio by contextually representing
in a single graph the evolution in a worst-case scenario, in a best-case scenario, and in
the median scenario.
The Ibbotson Cone is characterized by two parameters:

• confidence level: it is the probability that the portfolio price evolution is under the
values of the worst-case scenario;

• protection level: it is the probability that the portfolio price evolution is between
the values of the best-case scenario and the worst-case scenario.

The cone of the replica portfolios built using Model 1 and the two set of factors are shown
in Figure 7.13 and Figure 7.14. They are built on the first month of the test set, namely
May 2017; the levels chosen are 2.5% for the confidence level and 5.0% for the protection.
The curves representing the best-case and worst-case scenario are calculated using the
assumption of normality of the returns and the equations are the following:

WorstCaset = ∆t ∗ µ−
√
∆t ∗ σ ∗N−1(α), (7.6)
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Figure 7.13: Ibbotson Cone associated to the price of the portfolio replicating P4 with US
Indexes. The confidence level is equal to 2.5% and the protection level is equal to 5.0%

Figure 7.14: Ibbotson Cone associated to the price of the portfolio replicating P4 with
Fama and French factors. The confidence level is equal to 2.5% and the protection level
is equal to 5.0%
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BestCaset = ∆t ∗ µ+
√
∆t ∗ σ ∗N−1(α), (7.7)

where:

• ∆t is the time interval between May 2017 and t;

• µ is the mean of the portfolio, composed with the weights of May 2017, calculated
considering data from January 2001 to May 2017;

• σ is the standard deviation of the portfolio, composed with the weights of May 2017,
calculated considering data from January 2001 to May 2017;

• α is the percentage equal to 100%− confidence level.

The curve representing the average-case is calculated considering only the first part of the
equation:

AverageCaset = ∆t ∗ µ. (7.8)

In the two figures the evolutions of the portfolio price, keeping the same weights of May
2017, are represented; it can be noticed that they are always contained in the 95% inter-
val, also for example during the extreme event of the Covid 19 pandemic.
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developments

In this study we have addressed the problem of replication of Black Box portfolios using
two different models and two different set of factors. These models are based on a linear
regression, developed with an Elastic Net to perform regularization. Model 1 lives in
a rolling window framework, with the replica portfolio that is rebalanced in each time
period; Model 2 is static, it does not allow rebalancing and the portfolio is kept constant.
The replica is performed using two different set of factors, 14 US Indexes and the 5 Fama
and French factors, and using 8 securities to build the target portfolios. In general, both
models are able to build a replicating portfolio that has the same risk and return char-
acteristics of the target portfolio using the two different datasets. They perform better
with target portfolios which are diversified; indeed, they have encountered some issues in
replicating the portfolio representing the Healthcare sector alone. Diversified portfolios,
which has a lower level of idiosyncratic risk and are more exposed to the systematic one,
are more predictable using the models; on the contrary, in the sectorial target portfolios,
the idiosyncratic risk is difficult to be individuated and causes a decrease in the perfor-
mance. The Elastic Net contained in the models is able to execute an efficient feature
selection; it is more evident in the case of US Indexes, where the total number of securities
in the replicating portfolios is very distant from the initial 14 factors. Model 1 and Model
2 have equivalent performance on the tested target portfolios. This does not mean that
rebalancing has no value, but it is a consequence of the fact that the weights of target
portfolios are constant.
Then we have chosen one target portfolio to perform a more detailed analysis and to show
some possible applications with the replica. The choice is P4, because it is good compro-
mise between diversification and sectorial. P4 is composed by three portofolios equally
weighted and the result of its replica is not the best and not the worst among all the
replication results. The same analysis may be performed in future with each one of the
target portfolios. The first test performed is to transform his weights from deterministic
to stochastic, adding a gaussian component. The simulated scenarios are two: Scenario
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1 represents the situation of a portfolio manager who decides to make small adjustments
to the weights frequently; Scenario 2 represents the situation of a portfolio manager that
keeps the weights constant for a longer period during the year, but when he decides to
rebalance the portfolio is because he wants to change his strategy and consequently the
adjustment is larger in value. For P4, there is evidence that Model 1 is better than Model
2 in Scenario 1, instead Model 2 is the best one in Scenario 2. In addition, in Scenario
1 the overall performance of the models is slightly worse than the replica of the target
portfolio with deterministic weights; on the contrary in Scenario 2, due to the adjustment
that is larger, the performance is much worse.
Then, considering only the set of US Indexes, the Elastic Net is replaced by the Lasso
regression, which performs better when the dataset has many predictor variables. The
result is an increase of the performance and a reduction in the number of factors selected.
The portfolio structure used in the models allows to do some analysis that for a practi-
tioner could be really useful. After obtaining the replicating portfolio, it is not complex
to calculate the gross exposure, the turnover and the transaction costs of the strategy.
We have computed them for the replicating portfolios of P4, noticing that using the set of
Fama and French factors in this case leads to an higher leverage and higher transaction
costs. In the end, we have shown that, after that is appropriately calculated, the repli-
cating portfolio has some useful applications. The applications considered are in the field
of risk measurement and are: Value at Risk, Expected Shortfall and the Ibbotson Cone.
Possible further developments of this work are the choice of a non linear model in place
of the Elastic Net or to extend the analysis, that for now have been computed only on
P4, to each of the 13 target portfolios.
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