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Abstract

In recent years, sensors and micro-devices are becoming more and more part
of our everyday life, as their presence is increasing in a very high number of
appliances, from smartphones and gaming apparatus to domotics and IoT ap-
plications. As such, there is a growing trend in the research and academic world
toward the study and development of mechanisms which can allow such systems
to be powered autonomously, allowed even by the fact that the smaller dimension
of sensor, nowadays, makes them less power consuming. In this work, the aim is
focused on the review of solutions which allow to concentrate the displacement
and the energy of vibrations in a single spot, to pose ground for further inves-
tigation of EH systems coupled with lenses. In particular, the focus has been
put on phononic crystal based lenses. Phononic crystals are periodic structures
which aim at tailoring material properties by exploiting physical or geometrical
features, like local inclusions of height variations. As a result, by proper mod-
i�cations of the structure of the device, local tuning of the refractive index for
elastic waves can be enabled, which will allow to build lenses. Three di�erent
devices are tested, in particular a GRIN lens, which focuses waves on the centre
of the device, and two Luneburg lenses, which focus waves at the diametrically
opposed point with respect to the entrance one. The aim is to compare their
results in terms of focusing ability and frequency range of validity. Based on
the found results, the following step will test the ability of such structures not
only to amplify wave displacement, but in their e�ciency in concentrating the
energy that waves carry in a single localised point, with the potentiality of being
used for energy harvesting purposes if results are promising. As such, the �nal
discussion is dedicated to the overview of which device could be the best for a
possible prototype realization.





Abstract

Negli ultimi anni, sensori e microdispositivi stanno diventando sempre più parte
integrante della nostra quotidianità. Ne è testimonianza la loro presenza all'interno
di dispositivi che usiamo giornalmente, notevolmente aumentata. Se, qualche
anno fa, le applicazioni che ne prevedevano l'utilizzo erano molto più limitate,
anche per una questione di costo, oggi sensori sono installati in dispositivi molto
comuni quali smartphone, consolle di gioco, per arrivare a dispositivi per la do-
motica e l'IoT. Da questa osservazione nasce una problematica, ovvero come
riuscire a dare energia a ciascuno di questi dispositivi, tutti in connessione tra
di loro, in maniera sostenibile. Ad oggi molte soluzioni prevedono batterie però,
allo stesso tempo, la ricerca sta sviluppando prototipi e tecnologie che permet-
tano il riciclo e l'accumulo di energia dall'ambiente circostante, con l'obiettivo
�nale di riuscire a fornire energia a questi sistemi in maniera più eco sosteni-
bile. Questo oggi è reso possibile anche dal fatto che le dimensioni più ridotte
dei sensori permettono di ottenere un'e�cienza energetica molto maggiore. In
questo lavoro di tesi, l'attenzione è stata posta sull'utilizzo di lenti per onde
elastiche basate su strutture de�nite cristalli fononici. I cristalli fononici sono
strutture periodiche, arti�cialmente realizzate che, grazie allo sfruttamento di
proprietà �siche dei costituenti e della periodicità stessa, permettono di regolare
localmente le proprietà del materiale. Questo, nel nostro caso, consente la rego-
lazione dell'indice di rifrazione per le onde elastiche, di modo tale che si possano
costruire delle lenti che focalizzino le onde entranti in un punto ben preciso del
dispositivo. In particolare, tre diversi dispositivi sono stati analizzati: una lente
GRIN, che si pone l'obiettivo di focalizzare onde al centro della lente stessa,
e due lenti di Luneburg che, invece, hanno come obiettivo la focalizzazione
delle onde sul punto diametralmente opposto a quello di entrata. I risultati
ottenuti, mediante simulazione numerica, vengono confrontati per veri�care la
riproducibilità dell'e�etto di focalizzazione e per testare in che intervallo di fre-
quenze il fenomeno sia nettamente visibile. Una volta individuato il dispositivo
migliore per ogni categoria, questi vengono confrontati ulteriormente per testare
se, oltre ad un incremento della magnitudo di spostamento, le lenti o�rono dei
tangibili e�etti di localizzazione dell'energia. In questo modo, è possibile ipotiz-
zare l'utilizzo di tali strutture per EH mediante l'utilizzo di layer piezoelettrici.
In�ne, una volta compreso quale sia il dispositivo più promettente, viene pro-
posta una discussione sulla e�ettiva realizzazione di un prototipo.
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Chapter 1

Introduction

With a continuously increasing number of sensors is used in devices of every-
day life, there is a constantly growing need of �nding an e�cient way of giving
them power. The most reliable source of energy are batteries, which come with
problems of maintenance and durability. Hence, the need for �nding alterna-
tives which are more ecological, with the �nal aim of wirelessly powering those
sensors. Vibration energy harvesting aims exactly at this purpose, to collect
power from the environment, accumulate it and reuse it when needed. Between
the di�erent strategies that can be used to absorb and collect power from the
environment, nowadays there is a growing interest toward the use of metama-
terials and phononic crystal based strategies. They can be de�ned as arti�cial
structures which are created thanks to the periodic repetition in space of a sin-
gle geometric unit. The main interesting feature of such novel materials is that
their material properties are strongly in�uenced by the geometrical features of
the repeating unit. By changing it, properties can be tailored. This master the-
sis focuses on the construction of di�erent phononic crystal structures to build
di�erent prototypes of lenses. Three di�erent types of lenses will be considered,
following designs found in literature. Once de�ned, each lens will be numeri-
cally tested, to correctly address their capabilities in terms of focusing. Then,
the �nal discussion will be dedicated to their possible e�ciency in applications
for energy harvesting. The work is organized as follows. Chapter 2 is dedi-
cated to the overview of the theory exploited in this work. First, an explanation
on phononic crystals and their band structure is presented, to understand how
waves propagate inside them. After, a more general description of elastic waves
in solids is given. Then, a description of lenses and their working principle
is given, to �nally conclude with how the realization of lenses with phononic
crystals can be possible. Chapter 3 proposes a discussion on energy harvest-
ing, with a focus on the review of di�erent solutions based on metamaterials.
Then, three di�erent prototypes are going to be tested. Chapter 4 describes
the realization and the numerical testing of the �rst device, here referred to as
"GRIN Prototype". Chapter 5 describes the realization of the �rst Luneburg
Lens, here referred to as "Luneburg Prototype 1". Then, chapter 6 describes the
realization of the second Luneburg lens, also referred to as "Luneburg prototype
2". For each device tested, the correspondent chapter �rst describes the theory
employed behind the realization of such structure. In particular, the focus is
put on how it has been possible to match the theoretical refractive index pro�le
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of the lens to the one associated to the phononic crystal structure. Then, fre-
quency analysis performed with numerical simulations are reviewed. The aims,
here, are two. The �rst is to prove if focusing can be achieved. Then, the next
step is to check for which range of frequency the device allows to reproduce the
correct phenomena. Last, in all this three chapters a �nal discussion is car-
ried out on time domain simulations, aiming at con�rming the functioning of
the device and at testing the e�ciency of vibration based energy harvesting on
some prototypes. Finally, chapter 7 contains �nal concluding remarks, selecting
which of the di�erent designs reviewed proved to be the most promising.
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Chapter 2

Metamaterials: De�nition

and examples of applications

In the research �eld of environmental vibration energy harvesting, an innovative
group of structures has rose to prominence in recent years for their ability to
control sound wave propagation. These structures are often called metamate-
rials. By de�nition, a metamaterial is an arti�cial periodic structure which is
created with the precise purpose to locally tailor its material properties, for in-
stance sti�ness, speed of travelling waves and Poisson's ratio, in order to obtain
�nal objects with innovative characteristics which cannot be found naturally
in existing materials, like waveguiding abilities. The idea for these structures
came from the observation of real crystals, where the study of electronic states
lead to the conclusion that electrons cannot have any value of energy available,
but they are constrained to have precise energy levels dictated by the structure
of the crystal itself. In fact, the presence of potential energy in crystals and
the periodicity of the structure are the main responsible for the opening, in the
dispersion curves for electrons, of forbidden energy levels, called bandgaps[1]. In
light of this behaviour, numerous e�orts have been employed into demonstrating
the same e�ect that we can see with electrons for electromagnetic and elastic
waves. This led to the theoretical postulation �rst, then practical demonstra-
tion, of the existence of photonic and phononic crystals, where bandgaps for the
propagation of light or sound waves, depending, arise. Since we are interested in
elastic wave propagation, we focus now on the description of the latter. In this
chapter a detailed explanation on metamaterials is carried out, with a precise
focus on the working principle behind them. In particular, section 2.1 deals with
the description of crystals in physics and the derivation of their dynamic theory,
essential for understanding the calculation of dispersion relations, which play
a key role for wave propagation. Section 2.2 deals with the more general phe-
nomena of wave propagation in elastic media, with focus on guided wave modes
or Lamb modes, which are the subject of our study. Section 2.3 describes the
working principle of lenses and the theoretical derivation of the refractive index
pro�les needed for their realization. Last, section 2.4 deals with how we can
induce locally in metamaterials the variation of a wave's speed, to create such
presented structures.
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Figure 2.1: FromWikipedia (https://it.wikipedia.org/wiki/Reticolo_di_Bravais),
graphical representation of two 2D lattices with a unit cell. Left: square sym-
metry. Right: Hexagonal symmetry

2.1 Phononic Crystals: Dynamic Theory

First, crystals are de�ned as structures where a geometric entity, called primitive
cell, is repeated in 3D space by translation. Considering a simple bidimensional
case, a graphical representation of a crystal is given in image 2.1, where the
primitive cell underlined in both �gures is able to replicate the entire structure
of the crystal by translation only. Crystals, to be fully characterized, need to be
described by a lattice system and a base. We can de�ne lattice systems as the
geometrical backbone structures of the unit cell, described by three angles and
three edges. Each lattice system di�ers from the others for at least one of these
variables. They are 7: cubic, monoclinic, triclinic, hexagonal, orthorhombic,
rhombohedral and tetragonal. A base, on the other hand, contains informations
on where, in the unit cells, atoms are located. The union of lattice systems
with precise bases gives birth to Bravais Lattices. Not all combinations between
bases and lattice systems are possible, in fact only 14 of them exist in natural
materials. A unit cell is called primitive if it cannot be reduced in smaller sized
cells which correctly reproduce, by translation, the entire crystalline material.
Once a de�nition of a primitive cell has been given, it is essential to introduce
another important geometric entity, which is called reciprocal lattice, of which

Figure 2.2: From Wikipedia (https://en.wikipedia.org/wiki/Brillouin_zone),
Graphical representation of a 3D Brillouin zone for a simple cubic lattice.
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an example is reported in �gure 2.2. Essentially, the reciprocal lattice is the
Fourier transform of the primitive unit cell, which leads to the formation of
another unit cell, also primitive, in a 3D space where vectors are represented by
the momentum k. The primitive unit cell of the reciprocal space is called �rst
Brillouin zone, and the study of its properties is of key importance in explaining
scattering and bandgap opening. Having cleared what a crystal is, the next step
is dedicated to dynamic theory's derivation, which is essential for explaining
wave propagation behaviour inside crystals and the opening of bandgaps in
their dispersion relations. This purpose can be realized with the introduction
of the Born-Von Karman model[2] and the explanation of its core implications.
The problem is going to be treated with a semi-classical approximation, which
means that the main assumptions are derived starting from classical physics'
equations, after which a quantum treatment will be needed. The �rst step is
taken by writing the position of the generic nucleus p following the Born and
Huang notation, as

r

(
p

n

)
= Rn + rp = n1a1 + n2a2 + n3a3 + rp (2.1)

where Rn represents coordinates of the lattice points, while rp represents the
position of the nucleus written following the internal reference system of the cell
itself. If vibrational motions exist in the crystal, the displacement vector u can
be written as the di�erence between the position after and before motion, like
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If we are at thermodynamic equilibrium, a potential function can be written by
a series expansion arrested at the second order as
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The tensor Φjj′ is also called interatomic force constant tensor and is de�ned as
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The equations which will allow to solve the problem can be written starting
from the Lagrangian Lv = Tv − Uv and writing Lagrange's equation. In order
to do that, the vibrational kinetic energy of a crystal is needed, which takes the
form

Tv =
1

2

∑
n

1,s∑
p

mp|u̇
(
p

n

)
|2 (2.5)

It follows that, writing Lagrange's equation

d

dt

∂Lv

∂u̇
(
p
n

) − ∂Lv

∂u
(
p
n

) = 0 (2.6)

mpü

(
p

n

)
= −

∑
n′

1,s∑
p′

Φ

(
p p′

n n′

)
: u

(
p′

n′

)
= F

(
p

n

)
(2.7)
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The obtained equations form a system of 3sN Newtonian equations, where s
is the number of atoms in the unit cell and N the number of unit cells in the
crystal. Now, crystals have been de�ned as periodic structures. As such, the
next step will be the application of boundary conditions which are periodic, as

u

(
p

n+ (Nj − 1)aj

)
= u

(
p

n

)
(2.8)

with j = 1, 2, 3 and N = N1N2N3, where N is the total number of cells avail-
able in the crystalline structure. As a consequence of the application of periodic
boundary conditions, solutions of the written Newtonian equations have to sat-
isfy Bloch's theorem, so

u

(
p

n

)
= u

(
p

0

)
expiqn (2.9)

where q represents the available set of wave-vectors inside the 1BZ of the crystal,
which are discrete. The fundamental role of Bloch's theorem is exactly ensuring
that, to solve this problem, we can reduce the number of equations needed, from
3sN to 3s. This is thanks to the fact that, due to symmetry and periodicity, every
situation outside the Brillouin zone can be obtained by studying phenomena
inside the zone and, then, by translating them out. As such, the focus now will
be put on the study of the fundamental cell, from which the behaviour of the
whole crystal can be grasped. Considering the new facts underlined, Newtonian
equations can be rewritten again introducing the dynamic matrix, which is the
Fourier transform of the interatomic force constant tensor. It is found that

mpü(p,q) = −√mp

1,s∑
p′

√
mp′D

(
pp′

q

)
: u(p′,q) (2.10)

with

D

(
pp′

q

)
=
∑
h

Φ
(
pp′

h

)
√
mpmp′

expiqh (2.11)

Having obtained the �nal version of the equations, the last missing piece of
information is the possible form of sets of solutions. Solutions for this problem
can be written in the form

u(p,q) =
1√
Nmp

Q(q)e(p,q) exp−iω(q)t (2.12)

where two new quantities have been introduced: the polarization unit vector
e(p,q) and the scalar complex amplitude Q(q). Substituting this expected so-
lution an eigenvalue problem is obtained

1,3∑
j′

1,s∑
p′

{Djj′

(
pp′

q

)
− ω2(q)δjj′δpp′}ej′ (p′,q) = 0 (2.13)

Remaining focused on the �rst Brillouin zone, the solving conditions gives, for
every available q value, 3s solutions ω2(q) = ω2

α(q), where α is called branch
index. Positive solutions ωα = ωα(q) are called dispersion relations. Only
positive solutions are considered since they are the only one with a physical
meaning. All the available solutions can be divided into two types. Of the
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3s ωα(q) solutions, 3 are referred to as acoustic branches, while 3s-3 solutions
are called optical branches. The distinction between them lies in the fact that
they are linked to di�erent phenomena: acoustic branches are related to the
movement of the centre of mass of the basis, while the other ones refer to the
internal motion of the basis. The di�erent nomenclature, on the other hand,
highlights another di�erence. Acoustic modes are such called because their
motion coincides with that of macroscopic elastic waves when q −→ 0. Optical
modes, on the other hand, derive from the fact that corresponding modes can
have a �uctuating electric dipole, which strongly in�uences light absorption
properties of the crystal. Acoustic frequencies always exist, while is not the
same for optical frequencies. In fact, if s = 1, 3s − 3 = 0 and only acoustic
branches exist. Until now, the problem has been treated as a classical one, so
no quantization has been introduced. The last step of the derivation is now
introduced, which needs the quantum treatment. A more general solution for
this problem can be written by a linear combination of obtained solutions like

u

(
p

n

)
=

1√
Nmp

∑
q∈BZ

1,3s∑
α

Q(q, α)e(p,q, α) expiqn exp−iωα(q)t (2.14)

Introducing the vibrational Hamiltonian and substituting the linear combination
of displacements we get

Hv =
1

2

∑
q∈BZ

1,3s∑
α

{
|P (q, α)|2 + ω2

α(q) |ξ(q, α)|2
}

(2.15)

where P (q, α) are kinetic momenta conjugated to normal coordinates ξ(q, α).
This is the practical demonstration that the vibrational behaviour of the crystal
itself coincides with that of 3sN independent quantum harmonic oscillators. In
fact, all this quantum treatments allow to pass from 3sN equations in 3sN
variables to a set of 3sN equations

ξ̈(q, α) + ω2
α(q)ξ(q, α) = 0 (2.16)

which are completely independent. To better explain more practically all those
implications and derivations, let's explore a more practical example. The situ-
ation of a 1D crystal with 2 atoms per unit lattice will be described hereafter.
Let a be the lattice constant, m1 and m2 their masses, with m1 > m2. The
atoms will be separated by an equal distance. This means that, if atom 1 is
located at the edge of the cell, atom 2 is positioned in the middle. The focus will
now be placed on the primitive cell and the derivation will start by taking into
consideration only the interaction between this atoms and their �rst neighbours.
After some calculations, the dynamic matrix can be built as

D

(
pp′

q

)
=

(
2κ
m1

− κ√
m1m2

(1 + exp−iqa)

− κ√
m1m2

(1 + exp+iqa) 2κ
m2

)
(2.17)

Having found D, it is possible to write the eigenvalues of the matrix, in the form

ω2
1,2(q) =

κ

µ
∓ κ

µ

√
1− 4(

µ

M
) sin2 (

qa

2
) (2.18)
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Figure 2.3: Bottani C.E., 2017[2]: Acoustic modes for the simple 1D crystal
with 2 atoms pr unit cell. The dispersion relations y = ω

√
µ
κ are plotted over

−π < x = qa < π

where µ = m1m2/2 is the reduced mass andM = m1+m2 is the sum of the ion's
masses. Wanting to plot our result a comment can be made on what happens
at the origin and at the edges of the �rst Brillouin zone. If q −→ 0 it is found
that

ω1 ≈
√

κ

2M
a |q| (2.19)

ω2 ≈
√

2κ

µ
(1− µa2q2

8M
) (2.20)

while, when at the zone edge, so q = ∓π/a,

ω1 =

√
2κ

m1
(2.21)

ω2 =

√
2κ

m2
(2.22)

The obtained results can be graphically seen by looking at the graph in image
2.3. We can see that two branches are drawn, corresponding to ω1 and ω2.
The �rst branch is acoustic, while the second one is optical. between the two
branches, in the frequency range between ω1(π/a) and ω2(π/a) it can be noticed
that neither of the curve passes there for any q value belonging to the 1BZ.
Translated in other terms, this means that a Bragg bandgap opened between
those frequencies, which represents forbidden frequencies that cannot propagate
in the crystal[3]. The derivation of the dynamic theory is now complete. In our
case, the dynamic theory will be of vital importance. In fact, the ability to
correctly plot dispersion relations for crystalline materials will be crucial in
this work. The study of these graphs is exactly what will allow us to trigger
wave propagation control: by tuning locally the properties of the unit cell, the
dispersion relation for a given mode changes, allowing to create devices which
can focus waves, which is one of our main aim.

8



2.2 Wave propagation in solids: Bulk and surface

waves

Having derived the dynamic theory and its results, the next step is dedicated
to the discussion of the more general topic of wave propagation in elastic solid
media. Generally speaking, di�erent types of waves can exist and propagate in
those materials: body, surface and guided waves[4]. Their nomenclature already
tells much about their nature: body waves can exist and propagate only in the
bulk of materials, surface waves can propagate only along their boundaries while
guided waves, which are our main interest, exist in thin structures, where the
presence of two surfaces acts like a waveguide, hence the name. It is interesting
to point that the premises to solving those problems are very much similar,
as it is often required to start from the Navier's equation or the Christo�el's
equation, depending if the medium is isotropic or anisotropic. However, these
waves have very di�erent characteristics when it comes to dispersion relations,
velocity and direction of propagation. What will pose an extreme di�erence
will be the application of di�erent boundary conditions, owing to dissimilar
solutions. Starting this overview with bulk waves, let's suppose to be studying
the case of an in�nite, elastic and isotropic body with the absence of body forces
F = 0. The Navier equation then becomes

(λ+ µ)∇(∇ ·u) + µ∇2u = ρü (2.23)

Using Helmholtz's decomposition principle to divide the displacement �eld in
the sum of a scalar and a vector potential and substituting it inside the equation
we get

(λ+ µ)∇(∇Φ +∇Ψ) + µ∇2(∇Φ +∇Ψ) + F = ρ(∇∂
2Ψ

∂t2
+∇× ∂2Ψ

∂t2
) (2.24)

Now, since the gradient of Ψ and the curl of Φ are equal to zero, the equation
can be rewritten as

∇[(λ+ 2µ)∇2Φ− ρ∂
2Φ

∂t2
] +∇× [µ∇2Ψ− ρ∂

2Ψ

∂t2
] = 0 (2.25)

The �nal form of the solving equation has already been obtained. If a solution
needs to exist, both terms have to vanish, which leads to two possible solutions,
the �rst one being

∇2Φ =
1

α2

∂2Φ

∂t2
(2.26)

while the second one is

∇2Ψ =
1

β2

∂2Ψ

∂t2
(2.27)

The two equations allow to obtain, as solution, travelling waves inside the
medium and, at a more close look, they even resemble in form the classical
D'Alembert's equation. The existence of two separate solutions and the possi-
bility to solve them without the need to pose boundary conditions, as we are in
an in�nite medium, highlights the fact that the solutions are independent from
one another, and so they cannot be coupled inside the bulk of the material itself
and travel without interaction. So, we can have only two types of waves that
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Figure 2.4: Zongquing S. et al, 2009[5]: Top: Graphical representation of a
compression or P wave, where the displacement direction matches the propaga-
tion direction. Bottom: Graphical representation of a shear or S wave, where
displacement is perpendicular to propagation direction.

can exist in the bulk of an in�nite homogeneous material. Analysing the two
waves that can travel, few interesting points can be highlighted, also noticeable
graphically in �gure 2.4. The �rst equation yields a wave which can travel inside
the medium with speed equal to α, where

α2 =
λ+ 2µ

ρ
(2.28)

These types of waves are called compressional or longitudinal waves because
they have nonzero displacement only along the direction of propagation, and
so they generate compressive and extensive motions as they propagate. The
second equation yields a wave which travels at speed equal to β, where

β2 =
µ

ρ
(2.29)

In this case, the wave has nonzero displacements only in the two directions per-
pendicular to the direction of propagation. For this reason, these types of waves
are also called transversal or shear waves. For every kind of material, α > β,
and this can be simply understood by looking at their formulas. So, longitudinal
waves travel at faster speed, and are usually detected �rst by instruments like
seismographs. This precise fact leads to the usage of another terminology to
refer to these waves. Longitudinal waves are also called P waves, from prima, as
they are faster, while shear or transverse waves are also called S waves, from se-
cunda. Furthermore, in some particular cases, only longitudinal waves exist, for
instance in liquid media, since µ = 0 in this case. Having analysed the form and
existence of body waves, the other big group of elastic waves are surface ones. In
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Figure 2.5: Surface waves displacement representation. Left: Love waves, from
Wikipedia (https://en.wikipedia.org/wiki/Love_wave). Right: Rayleigh waves,
from [4]

more general terms, when waves encounter inhomogeneities in the medium, they
su�er phenomena of re�ection and transmission. Depending on how parameters
like ρ and µ change between subsequent inhomogeneous layers, we have re�ec-
tion and refraction at di�erent angles, similarly to what happens with light that
crosses materials with di�erent refractive indexes. However, if a homogeneous
body is considered, like we have done before, ρ and µ are constant. As such, the
only possibility that can exist of encountering inhomogeneities in the material
occurs at the free surface. There, from the re�ection of P and S waves, we can
generate new type of waves which come from the constructive interference of
di�erent body waves. They are called surface waves because their amplitude of
displacement decreases exponentially with the object's depth, similarly to what
happens with an evanescent wave. As such, they can propagate with relevant
amplitude of displacements only on those boundaries. Even placing ourselves
in this scenario, di�erent types of surface waves can exist, di�erentiating from
one another essentially in the geometry of displacement that they cause. More
precisely, usually they are divided into Rayleigh and Love waves. Looking at
the right image of �gure 2.5, Rayleigh waves cause elliptical displacements of
particles in the solid material, as they possess both a longitudinal and trans-
verse component of displacement which are out of phase, while Love waves cause
horizontal displacements along the body's surface, which is pictured as an hor-
izontal surface in the left image in �gure 2.5. As mentioned before, even if the
starting point is similar to that of the bulk wave problem, now the absence of
an in�nite material introduces the need for application of boundary conditions.
In particular, the solution can be reached by applying traction free boundary
conditions, that are

τ31 = τ32 = σ33 = 0 (2.30)

Not only that, but since these waves come from superposition of other waves,
their velocity is no more constant, and it depends on frequency. For this reason
their frequency-wavelength correlation is often called dispersion relation. Gen-
erally speaking, due to their characteristics, surface waves are slower of both
P and S waves. Surface waves in general are very much studied in seismology
because, due to their high displacements at the surface of the earth's crust,
they are the main responsible for structural damage in earthquakes. We now
proceed to analyse our main case of interest, that is wave propagation inside a
layer of thickness H, or guided wave propagation, represented in �gure 2.6. This
can be seen as a peculiar surface wave propagation case where two free surfaces
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are present. In both the case that we start from a longitudinal or shear wave,
re�ection and refraction across free surfaces occurs, owing to the decoupling of
these modes and their superposition. The so called Lamb waves are, then, prod-
uct of the superposition of re�ected waves[5]. The starting point is, as before,
represented by the Navier's equation, reported in (2.23). The next step will be
dedicated at solving this equation for a system like the one depicted in �gure
2.6. The two boundaries, or free surfaces, are placed at positions x3 = ±H/2.
By using the scalar and vector potentials formulation and re-substituting them
inside the equation, the following formulation is obtained

∂2φ

∂x2
1

+
∂2φ

∂x2
3

=
1

α2

∂2φ

∂t2
(2.31)

∂2Ψ

∂x2
1

+
∂2Ψ

∂x2
3

=
1

β2

∂2Ψ

∂t2
(2.32)

As a simplifying assumption, the derivation is performed in a plane strain con-
dition. Supposing that the solution takes the form of a plane wave, it can be
written that

φ = Φ(x3) exp[i(kx1 − ωt)] (2.33)

Ψ = Ψ(x3) exp[i(kx1 − ωt)] (2.34)

If this tentative form is substituted inside the previous equations, it can be
found that

φ = Φ(x3) = A1 sin(px3) +A2 cos(px3) (2.35)

Ψ = Ψ(x3) = B1 sin(qx3) +B2 cos(qx3) (2.36)

where

p2 = (
ω2

α2
− k2) (2.37)

q2 = (
ω2

β2
− k2) (2.38)

As a consequence of this derivation, equations for stresses and displacements will
now be a sum of sine and cosine functions of x3, which are algebraic functions
with di�erent properties. Especially, with respect to x3 = 0, we have that sine
is an odd function, while the cosine is an even function. This leads to the possi-
bility of splitting the solution that we can get into two categories: symmetrical

Figure 2.6: Zonqing S. et al, 2009[5]: Graphical representation of a lamina used
for the derivation of Lamb waves' dispersion relations.
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Figure 2.7: Zonqing S. et al, 2009[5]: Graphical representation of the displace-
ment caused by a symmetric lamb wave. Left: displacement symmetry with
respect to axis x1. Right: Graphical representation of the motion caused in the
laminar structure.

and antisymmetric modes[6]. Symmetric modes are characterized by having a
displacement along x1, the propagation direction, that is symmetric. For anti-
symmetric modes the opposite is true, in fact displacements along direction x1

are antisymmetric. The last step in the derivation is obtaining the dispersion
relations and the amplitudes of scalar and vector potentials A1, A2, B1 and B2,
which still are missing. This can be done by applying traction free boundary
conditions that are, in the case of plane strain conditions,

σ31 = σ33 = 0atx3 = ±H/2 (2.39)

Discarding trivial solutions, represented by A2 = B1 = 0 or A1 = B2 = 0 and
making some rearrangements, the dispersion relation are obtained as

tan(qH)

tan(pH)
= − 4k2pq

(q2 − k2)2
(2.40)

tan(qH)

tan(pH)
= − (q2 − k2)2

4k2pq
(2.41)

Equation (2.40) is the dispersion relation for symmetric waves, while (2.41) is
the equation for antisymmetric waves. Taking back the attention on displace-
ments, their graphical representation is clearly depicted in �gures 2.7 and 2.8.
Symmetric modes will have a symmetric displacement with respect to the x1

axis. This causes a radial in plane motion of particles. For antisymmetric modes,

Figure 2.8: Zonqing S. et al, 2009[5]: Graphical representation of the displace-
ment caused by an antisymmetric lamb wave. Left: displacement symmetry
with respect to axis x1. Right: Graphical representation of the motion caused
in the laminar structure.
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Figure 2.9: Zongqing S. et al, 2009[5]: Graphical representation of the displace-
ment caused by SH waves in a lamina.

on the other hand, displacement is antisymmetric with respect to the x1 axis,
thus particles move in and out of plane. There are in�nite solutions that can
satisfy the above equations, both for symmetric and antisymmetric modes. It
is to be noted, though, that the hypothesis of plane strain limits the number of
solutions that can be grasped by solving the problem, as some particular modes
will be missing. In particular, modes that cause displacements along u2 are
not grasped by this derivation. To get the solutions that are missing, results
have to be obtained from another perspective and, more importantly, without
any assumption on the strain state, so now the plane strain assumption will be
removed[6]. Let's start supposing that the solution can still be represented by
an exponential plane wave and that this form is suitable for representing every
one of its re�ection when it strikes the surface, as

uj = aj exp[ik(x+ lzz)] (2.42)

with j = 1; 2; 3 and lz = kz
kx
. From the substitution of this tentative solution

form into the Christo�el's equation

(kilcIjkJj − ρω2δij)uj = 0 (2.43)

where i, j = x; y; z, I, J = xx; yy; zz;xy;xz; yz and

kil =

kx 0 0 0 kz ky
0 ky 0 kz 0 kx
0 0 kz ky kx 0

 (2.44)

and solving the equation, it can be found that

uj =

6∑
n=1

Cnα
(n)
j exp[ik(x+ l(n)

z z)](j = x, y, z) (2.45)

The goal now is to apply traction free boundary conditions in order to �nd
solutions for the amplitudes Cj . As before, by doing so a linear homogeneous
system of equations is found and, searching for non-trivial solutions, the same
result as before for what concerns symmetric and antisymmetric waves are re-
trieved, plus the existence of the extra modes that were missing, which are still
in�nite in number. The extra modes that have been found are called SH modes,
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Figure 2.10: Rose J.L., 2014[6]: Representation of the dispersion relations for
Lamb waves. Left: S0 and A0 waves. Right: SH0 waves.

their displacement representation can be seen in image 2.9 and their dispersion
relation is

(Mπ)2 = (ωh/β)2 − (kh)2 (2.46)

Note that all the equations found for symmetric, antisymmetric and shear hor-
izontal modes appear to be simple, but usually they can be solved only nu-
merically. Figure 2.10 proposes a graphical representation of their dispersion
relations for the �rst modes. When referring to one of these modes, since they
are in�nite, usually a number is followed by the type of wave encountered. The
�rst order mode are indicated with subscript zero, all the other with increasing
numbers.

2.3 Working principle of lenses

Having concluded the part dedicated to wave transport phenomena in both
crystalline structure and generic solids, the next paragraph will be focusing on
the structures that we want to exploit for our application: lenses. In optics, a
lens is de�ned as a refractive object that is able to de�ect light, usually to achieve
focusing or collimation. This allows us to have control on light propagation
phenomena. Di�erent types of lenses exist, which di�erentiate from one another
thanks to their di�erent refractive index pro�le across the lens itself, which
allows to trigger di�erent focusing points or deviation e�ects from device to
device. In the next pages, two di�erent types of lenses are going to be analysed,
which are the main interest of this master thesis project: a GRIN lens and a
Luneburg lens. Starting with the �rst device, �at GRIN lenses, abbreviation
for GRadient-INdex lens, are devices able to focus planar wavefronts entering
one edge of the device along their axis[7]. To achieve this kind of focusing,
usually a parabolic or hyperbolic secant refractive index pro�le is needed, which
allows to trigger the desired focusing or collimation e�ect. The hyperbolic secant
refractive index pro�le, for a planar waveguide in plane xz, is

n2(x) = n2
s + (n2

0 − n2
s)sech

2(αx) (2.47)

where, referring to the waveguide pictured in image 2.11, ns is the substrate's
refractive index, n0 is the refractive index along the z axis and α−1 is the
position, in the parabolic or HS pro�le where the refractive index decays to
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Figure 2.11: Reino C.G. et al, 2002[7]: Left: schematic representation of a
planar optical waveguide with the reference system used for the theoretical ray
equation derivation. Right: Representation of the hyperbolic secant refractive
index pro�le.

0.42 of its maximum value. Having de�ned the refractive index, the goal now is
to study propagation of beams in this medium. As such, the derivation of the
ray equation, which describes the propagation of light between any 2 points, is
crucial. The graphical description of the phenomena is reported in �gure 2.12.
To do this task, the �rst step consists in writing the expression of the di�erential
arc length along a beam like

ds =
√
dx2 + dy2 + dz2 =

√
1 + ẋ2dz (2.48)

Figure 2.12: Reino C.G. et al, 2002[7]: Representation of the ray trajectory
inside the GRIN medium.
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After some algebraic passages, the equation can be rewritten, integrated between
two points located at z=0 and any z>0. Then, the form of the ray position and
slope is obtained, as

x(z) =
1

α
sinh−1[u(z)] =

1

α
sinh−1[u0Hf (z) + u̇0Ha(z)] (2.49)

ẋ(z) =
u̇(z)

α cosh[αx(z)]
=

u0Ḣf (z) + u̇0Ḣa(z)

α cosh
{

sinh−1[u0Hf (z) + u̇0Ha(z)]
} (2.50)

where several de�nitions have been introduced. γ is a function of both the
third invariant direction cosine of the beam and the homogeneous substrate's
refractive index, while Ha and Hf are called axial and �eld rays, where

Ha(z) =
sin(αγz)

αγ
; Ḣa(z) = cos(αγz) (2.51)

Hf (z) = cos(αγz); Ḣf = −αγ sin(αγz) (2.52)

Now, these formulas have been obtained as an exact solution, without the need
to introduce any approximation at all. This means that the hyperbolic secant
gradient index pro�le used has a great advantage over the parabolic one: in fact,
this pro�le is free of aberrations. In the case of a parabolic pro�le, a similar
solution can be found, but some approximations are needed for reaching the
�nal solution. As another remark of this conclusion, the �rst order arrested
Taylor series expansion of the hyperbolic secant is exactly a parabolic plot.
Now, having derived the ray equation, we apply it to see where we have to
expect collimation or focusing to happen. In particular, to study the focusing
and collimation properties, answers are to be found by looking at the zeros of
the two de�ned functions Ha and Hf . For achieving focusing, the condition is

Ha(zm) = Ḣf (zm) = 0 (2.53)

where m is an integer number, and zm any position in the waveguide satisfying

zm =
mπ

αγ
(2.54)

Figure 2.13: Reino C.G. et al, 2002[7]: Graphical demonstration of the focusing
capabilities of GRIN planar waveguides for both left: on axis and right: o� axis
case.

17



Figure 2.14: Reino C.G. et al, 2002[7]: Demonstration of the collimation capa-
bilities of GRIN planar waveguides.

When this condition is satis�ed, it can be found that

x(zm) = (−1)mx0 (2.55)

ẋ(zm) = (−1)mẋ0 (2.56)

This means that, independently of the starting ray slope at the input position,
all rays are perfectly equalized at zm. The graphical representation of this
e�ect can be seen in images 2.13. Both in the case of an on axis (left) or o� axis
(right) light source, focusing is achieved. This is one of the two properties that
can be exploited by GRIN planar waveguides, the other one, as anticipated, is
collimation, which requires the following condition on axial and �eld rays:

Hf (zp) = Ḣa(zp) = 0 (2.57)

where, again, p is an integer number and zp any length satisfying

zp =
(2p+ 1)π

2αγ
(2.58)

Recalculating position and slope of beams in the Cartesian coordinates we have

x(zp) =
(−1)p

α
sinh−1[

ẋ0

γ
] (2.59)

ẋ(zp) = 0 (2.60)

The situation is graphically represented in image 2.14. This second property is
exploited widely in literature, as it allows planar wavefronts entering from one
side of the device to be focused on the other side.

The second type of lens that will be investigated in this project is the realization
of a Luneburg lens. The device takes its name from the scientist that �rst solved
the light propagation problem across its surface, de�ning the needed refractive
index pro�le inside it. A graphical representation of the problem solved by
Luneburg is reported in �gure 2.15. Essentially, for building this device, two
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Figure 2.15: Luneburg R.K.[8]: Graphical representation of the generic problem
solved by Luneburg.

points have to be �xed, in the �gure labelled as r0 and r1, which are the two
points at which light is focused, one being the starting point of light beams,
the other one being the �nal focusing point[9]. It is clear that endless di�erent
lens pro�les can arise from this de�nition. Generally speaking, the problem has
been solved following these steps. Due to the symmetry of the given problem, as
the device has radial symmetry, the system is going to be described with polar
coordinates, de�ned by r and θ. The light ray equation can then be written as

θ = θ∗ −K
∫ r

r∗

dr

r
√
ρ2 −K2

(2.61)

where θ∗ is

θ∗ = π +K

∫ r∗

r0

dr

r
√
ρ2 −K2

(2.62)

and ρ is
ρ2 = n2r2 = K2 = r2

0 sin2 α0 (2.63)

Depending on our starting point, if the distribution of n inside the material
is known, so ρ is given, the equation allows to determine at which position r1

intersection with the axis veri�es. Otherwise, if the r1 position is known, the
necessary pro�le to obtain such deviation can be retrieved. Our case of interest
matches that used by Luneburg in its �rst derivation of the solution[8]. Since
our goal is to focus planar wavefronts on the diametrically opposed point with
respect to the entrance one, it follows that one focus is placed at in�nite, such
that light is perfectly collimated when entering the device, while the second
focus is placed at the lens' edge, as depicted in �gure 2.16. To obtain a device
that allows this propagation, the following refractive index pro�le has to be
adopted

n(r) =

√
2−

( r
R

)2

(2.64)

where r is the radial position inside the lens and R the value of its radius.
Usually, in literature, Luneburg lenses are designed such that the refractive
index, as the pro�le suggests, is equal to 1 at the external surface, such to
avoid re�ection at the interface between the outer material and the lens. For
now, only light propagation has been taken into account, even if our case of
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Figure 2.16: Luneburg R.K.[8]: Graphical representation of the Luneburg lens'
working principle.

interest is sound wave propagation. Essentially, all the concepts seen up to
this point can be extrapolated and reused for elastic waves: a sonic lens has
the same goal and the same working principle as a lens for light. As such,
the refractive index's variation inside the medium allows to de�ect waves. Of
course, to achieve this variation, changes in density and Young's modulus are
exploited, rather than changes in dielectric constant ε(r). This, as it will be
cleared out shortly, can be possible thanks to metamaterial structures. Another
peculiarity of lenses for elastic waves is that, thanks to some of the advantages
of metamaterials based structures, we are able to change locally the device's
properties, refractive index included, with the possibility to create lenses which
are �at, with respect to their optical counterpart which, in their most classical
realizations, often contain convex elements.

2.4 Metamaterial based lenses: how to tailor the

refractive index and application examples

Having just reviewed lenses and their working principle, the issue of how to
control elastic wave speed remains. The answer lies in the versatility of meta-
materials which, alongside their novel properties, can allow to tailor material
properties inside them. As such, they are an optimal choice for this application.
Again, by de�nition, a metamaterial is an arti�cial periodic structure which is
created with the precise purpose to tailor its material properties, in order to
obtain �nal objects with novel characteristics not found naturally in more con-
ventional materials. What is striking and remarkable is that the tailoring in
material properties is not achieved by exploiting the chemical properties of its
constituents, but rather by proper modi�cation of the geometry of the unit cell.
As anticipated before, the observation of real crystals and the study of electrons
in them, historically, lead �rst to the development of photonic crystal, in which
variations of the dielectric constant allow to deviate, refract and, more generally,
control light propagation. The �rst practical applications to such derivations
came at the end of the last century. For instance, Joannopoulos J.D. et al. in
1997 tried to apply these concepts to prototype devices[10]. They calculated
photonic bandgaps for crystalline structures composed of square and hexagonal
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Figure 2.17: Joannopoulos J.D. et al, 1997[10]: Graphical representation of the
dispersion relations for two materials with two di�erent unit cells. Left: unit
cell with square simmetry. Right: Unit cell with hexagonal symmetry.

unit cells, as it can be seen in images 2.17 Then they applied this concept to
create a waveguide. In order to do that, they removed a row inside the perfect
crystal layer, thus introducing a defect band inside the forbidden gap, which
allows waves to selectively travel only in this region. Figure 2.18 shows the
electric �eld of light propagating in the crystal on the right and its calculated
band structure for the used crystal on the left. We can see that the electromag-
netic �eld propagates only where the cylindrical inclusions are not present, since
in that region the �eld fades away, as it turns into an evanescent wave. Once
proven correct, the same idea was carried to elastic waves, and phononic crys-
tals were developed. In order to achieve the manipulation of material properties
inside the cell, many strategies can be used. the most promising ones will now
be reviewed. Some examples, which will be treated more in details in the next
pages, could be the variations of the cell's thickness[11], usage of an inclusion
with a varying radius[12] or rotation of the inclusion itself[13]. A �rst example
of tailoring wave speed inside phononic crystals can be achieved by modifying
the �lling ratio of the cell by insertion of an inclusion, either empty or realized
with a material di�erent from the bulk one. As an example, Jaeyub H. et al.

Figure 2.18: Joannopoulos J.D. et al, 1997[10]: Left: Projected photon bands
for a waveguide in a square lattice of dielectric rods. The removal of rows of
rods creates the red band inside the forbidden bandgap. Right: Simulation
showing the electric �eld output for a propagating electromagnetic wave, which
can propagate selectively only inside the waveguide.
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proposed a structure working as a GRIN lens by exploiting a circular hollow

Figure 2.19: Jaeyhub H. et al. 2019[12]: Left: Representation of the unit cell
used in this work. Right: Representation of the GRIN structure obtained with
the diameter variation.

Figure 2.20: Sz-Chin S.L. et al. 2009[14]: schematic representation of the two
metamaterial based devices used in their research. Left: Metamaterial composed
by a steel matrix with an epoxy inclusion of variable �lling fraction. Right:
Metamaterial composed by a steel matrix with inclusions of di�erent materials
with the same diameter.
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inclusion, as we can see in image 2.19[12]. By changing the diameter of the
inclusion, hence the �lling fraction, di�erent wave speeds can be achieved. In
order for the change in wave speed to be e�ective, the radius of the hollow part
has to be tuned with an ideal pro�le for the refractive index, giving focusing in
a given spot. The ideal pro�le follows the law

ntarget = nmaxsech(ηy) (2.65)

η =
1

h
cosh−1(

nmax
neff

) (2.66)

Once built, the device shows its working capabilities as intended. Other authors
exploited a similar idea, using a �lled unit cell instead, like Sz-Chin S. L. et
al, 2009[14]. Having always as goal the realization of a GRIN structure, they
employed two di�erent designs, reported here in image 2.20. While the one on
the left aims at achieving the tuning of refractive index by changing the radius'
inclusion, so basically the same approach done by the previous paper but with
a di�erent material that the bulk one, the second image reveals a di�erent
approach, where the tuning is done by exploiting cylinders of constant radius
but made of materials with di�erent sti�nesses, which allow waves at a given
frequency to travel at di�erent speeds. Also in this case, after the theoretical
representation of the unit cell and the calculation of an ideal refractive index
pro�le, the device is built and tested, showing to behave as demonstrated, always
with axial focusing. An interestingly di�erent approach has been employed by
Yuping T. et al in 2019[13]. In fact, although even they wanted to create a
phononic crystal based GRIN plate, they employed a totally di�erent approach,
exploiting an asymmetric scatterer. In other terms, they still added a solid
constituent to the unit cell, in this case an epoxy resin inclusion in a steel
matrix but, what causes waves to change speed and direction of propagation
is their orientation. The left image of �gure 2.21 explains the concept visually.
The selected unit cell has an hexagonal geometry with a scatterer embedded

Figure 2.21: Yuping T. et al, 2019[13]: Left: representation of the unit cell
employed in this work for the realization of a GRIN device. Right: Plot of the
dispersion relations, calculated via numerical software, which show the e�ec-
tiveness of the inclusion rotation strategy
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Figure 2.22: Tol s. et al.2019[11]: Left: Representation of the unit cell used
in this work for realizing a GRIN plate. Right: GRIN plate obtained by 3D
printing.

which has a sort of clover-like form. By rotating the scatterer, inside the GRIN
structure, of an angle α between 0° and 30°, they are able to control wave
propagation. The right image in �gure 2.21 shows how the dispersion relation
for waves changes as the inclusion angle is rotated. Once the concept has been
proven valid, the aim is to match the value of the refractive index of a given
rotated scatterer to an ideal pro�le that allows axial focusing. Even here, the
device showed the predicted behaviour in numerical simulations. More often,
solutions in literature exploit out of plane variations of the cell's thickness to
induce a variation in the propagation speed for �exural waves. For instance, Tol
S. et al, 2019, used an aluminium unit cell with a stub of variable height[11], as
reported in image 2.22. By properly changing the diameter, waves travelling in
these cells are able to show di�erent travelling speeds. Simulations made with
COMSOL Multiphysics software allowed to get the dispersion curve at di�erent
diameter values. Then, the estimated refractive index plot, for a given frequency
wave, is exploited for the �nal design of the GRIN device. Another interesting
addition is that, in some cases, these e�ects have been exploited altogether, to
have more control over property tuning in these materials. It is the case of the
work proposed by Torrent D. et al, 2016[15]. In fact, they designed a complex
unit cell, depicted in image 2.23, always for sound wave focusing. It is composed
by a rhombus made of aluminium with a double inclusion. The �rst, denoted by
radius Rα, is made of gold, while the second is a hollow inclusion. The double

Figure 2.23: Torrent D. et al, 2016[15]: Representation of the complex unit cell
used for wave propagation control in the authors' work.
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inclusion choice was made for enabling multimodal focusing of the proposed
lens in their work, as is demonstrated in COMSOL Multiphysics simulations,
where all Lamb waves modes(S0, SH0andA0), can be focused altogether. This
is due to the fact that they develop an ad hoc model which allows to tune the
refractive index pro�le for each mode separately by changing one of the three
cells' variables, which are the two radiuses and its thickness. Furthermore, if
the refractive index pro�le for each mode is correctly regulated, all waves can
be focused at the same spot, which is an interesting feature to carry. As it has
been demonstrated, there are di�erent articles in literature covering the topic of
metamaterials. In particular, there are di�erent strategies available and already
tested for changing properties across metamaterials. The e�ectiveness of some
of these will be reviewed even in the next chapter, which focuses on energy
harvesting powered by metamaterials.
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Chapter 3

Energy Harvesting

In this chapter an overview on energy harvesting is presented. First, the state
of the art of such practice is analysed, with the delineation of its main purposes
and recent progress. After such a presentation, the attention is shifted back
to our case of metamaterial based power scavenging, with the aim of search-
ing the literature for energy harvesting applications which involve the use of
metamaterials, to further comment on their potential application on this sector.
Energy harvesting can be de�ned as the ability of scavenging power from an
available external source, in order to collect it and reuse it for other purposes.
In recent years, with the development of the internet of things, the amount of
sensors used in everyday appliances is constantly growing, with purposes rang-
ing from monitoring the health of structures to the use in domotics[16]. The
most challenging task, at this point, is to provide a durable and reliable energy
source for those devices. Until recent years, sensors were usually designed to be
battery powered but, inevitably, this source of energy comes with some draw-
backs. First of all, batteries have a limited lifetime, as the chemical reactions
that creates energy becomes less e�cient in time with degradation of its com-
ponents. For this reason, they needs maintenance, which is not cost e�cient.
On top of that, they carry some environmental issues, linked with the di�culty
of recycling those devices, which poses another point in favour of more green
and eco-friendly alternatives. With the introduction of proper and reliable EH
devices, the possibility of wirelessly powering those devices, without the use of
an external energy source, becomes very intriguing. The exact reason why in
the last decades research teams have grown an exponential interest toward this
speci�c application, however, lies in the analysis of the state of the art of sensor
production. With respect to even few years ago, sensors have become much
smaller. From one side this means that the cost of a single chip goes down by
much, since a wafer can host much more sensors. This is part of the reason why
they are much more widespread nowadays. Not only that, but less bulky sensor
generally need less power to work properly, and that is the exact reason why
research in this topic has grown exponentially. If few years ago the proposed
designs for EH devices scavenged insu�cient powers, now those values may be
enough[17]. Of course, scavenged power varies greatly considering that there are
even di�erent sources of energies available to be recycled via harvesting e�ect,
each of them with their own strengths and weak points, all explored in literature:
mechanical, wind power, thermal, radiofrequency or light energy harvesting[18].
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Remembering that a very important role in scavenging is played by the trans-
ducer, which is the part responsible for converting the selected input in electrical
power, between these alternatives solar energy seems the one generally capable
of giving the highest power densities, in the order of micro-watts per square cm,
compared to the others, which are generally less impressive[19]. Of course, solar
energy is not always readily available, especially for indoor applications. At this
point, other sources become more interesting. In the sensor and MEMS devices
world, for instance, one of the most researched technique to date is vibration or
motion based EH, which aims at converting existing vibrations, that naturally
are present in these devices, to reusable energy. In this frame, the most used
transducing technique is indeed piezoelectric transduction, which employs the
natural coupling between mechanical strains and charge accumulation that is
present in these materials, to produce and store power. Piezoelectricity is the
main studied transduction mechanism as it is able to o�er great power den-
sities and can easily be implemented in a micro-fabrication process. In fact,
growing piezoelectric �lms on top of MEMS is commonly done, using technolo-
gies such as pulsed laser deposition, sputtering or sol-gel technique[17]. Some
drawbacks of this material are related to thin �lms fabrication, which have
poor mechanical-electric coupling, and, sometimes, poor mechanical properties.
Other transduction mechanism that could be exploited are electromechanical
and electrostatic transduction, far less used[20]. In order to analyse and build
a device that collects energy from vibrations, the main trade-o� that needs to
be highlighted is that the natural frequencies of vibrations, that naturally oc-
cur in environment, are very small. For example, vibrations from industrial
machines are in the few hundreds Hertz range, human motion even an order
of magnitude lower. So, if these sources of rather small frequency vibrations
are to be exploited, we need to remember that scaling down the dimension of a
device increases resonant frequencies, this means that often a trade-o� between
maximum scavenged power and object size must be attained. Since the aim
of this master thesis is to explore which bene�ts would arise if a metamaterial
based sonic lens is coupled to a harvester, such that an increase in energy out-
put can be observed, a bibliographic research on this topic is presented. On this
regard, some �rst attempts have already been proposed in literature. In partic-
ular, metamaterials and phononic crystals, exploited for their novel capabilities,
have been employed in di�erent forms, like: phononic crystal bandgap mate-
rials which exploit defect wave trapping[21]; focusing lenses[22]; funnels and
parabolic mirrors[23]. If metamaterials employment for EH is not a new topic
indeed, coupled applications that target both EH and sonic lenses are rather few.
In the following pages, an overview on some papers that present some of these
smart solution is presented, to see which is the true potential of metamaterial
applications for EH. For example, in the work presented by Tae-Gon L. et al,
the authors decided to exploit the advantages of acoustic black holes in order to
trap waves in a point defect created ad hoc in the structure of the metamaterial
itself[21]. This allows wave displacement and energy localization. Then, energy
harvesting capabilities are reviewed, trying to reach a high generated output
power. First, the device is numerically tested, in order to pose solid ground for
the energy harvesting considerations. The arti�cial crystal, in this case, consists
of an octahedral unit cell, like the one depicted in �gure 3.1. The bulk material
is Aluminium, where a hole with this shape is drilled. By usage of COMSOL
Multiphysics (R) software, dispersion relations were calculated by application
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Figure 3.1: Left: Tae-Gon et al, 2020[21]: Representation of the unit cell em-
ployed in this work. Right: representation of the dispersion relation calculated
via numerical simulations.

of Bloch-Floquet periodic boundary conditions, and the acoustic band structure
for the crystal was obtained, showing a clear phononic bandgap, where waves
of that frequency (between 47 and 52 kHz) cannot propagate. This is exploited
to create a wave trapping structure: by inserting a defect in the crystal, in this
case represented by a non drilled unit cell, some defect bands appear inside the
previously opened gap, allowing to use the defect as an energy trapping point.
The authors then made a simulation with a propagating wave at 50kHz, ex-
actly the frequency of one of those bands induced by the defect presence. When
the wave impinges the crystal, it propagates as an evanescent wave until the
defect is crossed, and then the displacement of the wave is localized inside the
defect, with no escape possibility, since the wave is surrounded by a crystalline
structure that re�ects that frequency. The position of the defect is not casual,
but it has been calculated to give the best localization e�ect and placed in the

Figure 3.2: Tae-Gon L. et al, 2020[21]: Numerical simulations performed via
COMSOL Multiphysics show the correct functioning of a wave trapping struc-
ture.
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Figure 3.3: Tae-Gon L. et al, 2020[21]: Left: Output voltage registered from a
piezoelectric harvester placed inside the metamaterial and right: output power
registered in the same situation.

second row of a 5x11 grid. In fact, placing it before would break the symmetry
of the phononic crystal, with no bandgap opening, while placing it in an inner
position reduces the amount of energy stored, since the wave needs to cross as
an evanescent wave a greater portion of the crystal and dispersion takes place.
Numerical simulations reported here in �gure 3.2. clearly show the localization
e�ect taking place. The idea of the authors was then to employ a piezoelectric
disk where the defect was placed, in order to analyse the performance of energy
harvesting. The response was evaluated in time domain simulations measuring
the output voltage and output power under di�erent resistive loads. The results,
reported in �gure 3.3, showed that both voltage and power exhibit an increas-
ing trend and reach a maximum value in time domain at 9ms, after which both
tend to diminish. Increasing the resistance increases the output voltage, which
tends toward its open circuit value, while the maximum power can be generated
using the optimal electrical resistance of 4.8kΩ. Carrara et al. reviewed, in
2013, di�erent possible metamaterial-based solutions to be employed for energy
harvesting, testing them both via numerical simulation and experiments, owing
to the con�rmation of corresponding theoretical derivations[23]. Three struc-
tures have been reviewed: the use of a metamaterial mirror, the use of a 2D
lattice with an imperfection, already cited in the previous paper example, and
the use of metamaterials as funnels to waveguide vibrations and convey selec-
tively energy to the harvester. Skipping the middle situation,already explained
based on results from another paper, the focus will be now put on the other two
methods. The �rst solution studied is the construction of a parabolic acoustic
mirror, or PAM, which structure is reported in �gure 3.4. Essentially, it consists
in a row of cylindrical stubs placed to form a parabular plot, such that Lamb
waves coming through, in particular planar A0 waves, which are �exural, can be
scattered from this con�guration and concentrate at the focus of the parabola.
The spacing of the stubs has been selected with the proper intent of creating
a broadband device, capable of working at multiple frequencies. To activate
the focusing e�ect, the spacing needs to be smaller or, at most, of the same
order of magnitude of the λ of the incoming wave. Now, to make the numerical
simulation, the source has been implemented in the software as a series of point
loads which stimulate the plate with a 4 cycle sine burst. Image 3.5 shows the
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Figure 3.4: Carrara et al, 2013[23]: Schematic representation of the structure
of a parabolic acoustic mirror (PAM).

reported results, where the maximum displacement is obtained at the parabola
focal point, exactly where predicted. Then, experimental results are performed
using the same con�guration and using a line array of piezoelectric transduc-
ers, which con�rms the behaviour predicted by simulations. By performing the
same test at di�erent frequencies and plotting the displacement graph on the
x=0 line, as done in the right image of �gure 3.5, a peak in normalized dis-
placement, placed at point y=30mm and achieved at frequencies around 50kHz,
can be highlighted. Going up in frequency a limiting point is reached, where
λ becomes smaller that the stub spacing, so the device doesn't work properly
anymore, as underlined before. Then, the piezoelectric harvester e�ciency is
tested, using a disk of given thickness and diameter, attached to an electrical
load near to the estimated optimal load for energy harvesters, which is

R =
1

ωC
(3.1)

Figure 3.5: Carrara et al, 2013[23]: Left: Numerical simulation shows the correct
focusing that PAM device brings when excited with A0 waves. Right: Plot of
the normalized displacement �eld, along the x=0 line, at di�erent frequencies,
showing the focusing point.
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Figure 3.6: Carrara et al. 2013[23]: Left: Comparison between the harvester
performance with the PAH and without. Right: Realization of the funnel device.

where ω is the excitation radial frequency and C the the piezoelectric mate-
rial capacitance. Depending on the frequency analysed, the increase in output
power, showed in the left image of �gure 3.6, between using or not using the
metamaterial device is substantial to say the least, with an average 1800% in-
crease in output power. Passing on, next is discussed the third and last adopted
solution described in this work, in which the employed metamaterials for EH is
a waveguide that uses an acoustic funnel. In this case, the ability of metama-
terials of creating bandgaps for inhibiting wave propagation is still exploited,
but in a di�erent manner. As opposed to the previous case, the metamaterial
is formed by cylindrical stubs, now arranged in such a way to create a proper
"channel", delimited by the absence of those stubs, where waves can selectively
propagate, as shown in the right �gure of image 3.6. At the end of this channel,
a harvester is placed. The following designed metamaterial has two bandgap re-
gions, between 30-60kHz and 90-130kHz. The metamaterial is then numerically
tested at 100kHz to check its behaviour and, as expected, the A0 �exural waves
cannot propagate in the region where the crystal lies, but only in the properly
tailored "channel", as seen in �gure 3.7. The last passage was, again, to test the
performances of the harvester. In this case, harvested power increases, but not
as much as it does with the previous con�guration, stopping at a 2x maximum.
Switching to metamaterial based lenses, one of the �rst tries has been performed
by Tol S. et al. in 2016 who have developed, for instance, a metamaterial-based
GRIN plate that is able to showcase focusing and collimation properties, here

Figure 3.7: Carrara et al, 2013[23]: Numerical simulations showing the per-
formance of the acoustic funnel structure, with waves propagating only in the
designed hollow cavity. The three images are shot at di�erent time frames.
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Figure 3.8: Tol S. et al, 2016[24]: Left: Representation of the unit cell used in
this work for the realization of a GRIN lens. The blind hole has hb = 2.75mm.
Right: Graphical representation trajectories of impinging beams thanks to the
grading of the unit cell's hole diameter.

exploited for enhancing EH capabilities[24]. In particular, the authors built a
device by adopting a periodic structure with the unit cell depicted in �gure
3.8. For changing the wave speed and achieving focusing, they decided to use
a blind-hole structured unit cell, with blind hole diameter varying across the
pro�le of the device. The pro�le used for achieving focusing is

n(y) = n0sech(αy) (3.2)

where α is the gradient coe�cient, related to the focusing point, and n0 is the
gradient index value at the centre of the device, where waves are slower. After
having calculated at which values of diameter corresponds which refractive in-
dex value n(r), the �nal device can be built. In image 3.8 the form of the ideal
pro�le is visible on the right, with the representation of the calculated beam tra-
jectories. Designed to be working at a frequency of 50kHz, the authors tested its
working capabilities by performing an experiment exciting this GRIN material
with a sonic wave from a line source made by piezoelectric transducers. Results,
reported in image 3.9, show the capabilities of A0 waves to be focused, defo-
cused after the �rst point and refocused at a much greater distance, as predicted
by trajectory calculations. Going above or below the selected frequency gives
similar results. However, since the refractive pro�le changes, authors reported a
slight modi�cation of the focusing points. If the α parameter increases, the fo-
cusing point position increases too and, vice versa, if α decreases, the position of

Figure 3.9: Tol S. et al, 2016[24]: Numerical simulation of the working principle
of the GRIN lens, with the two focal points clearly visible at x= 13.5a and
x=40.5a for f=50kHz.
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Figure 3.10: Tol S. et al, 2016[24]: Comparison between a baseline harvester
and the same harvester with the presence of the GRIN plate.

the focusing point decreases too. Second, the harvesting performances are eval-
uated, using a given piezoelectric harvester and comparing the baseline situation
with the enhanced one. In image 3.10 it can be observed that the lens brings
an increase in harvested output power, in particular the e�ciency increases 13.2
times comparing a baseline situation with the presence of the GRIN plate. The
main reported limitation of this device is, indeed, its directional dependency,
as the wave needs to have a very precise propagation direction, or focusing is
not triggered, as the tuning of the refractive index is performed only along y-
direction, keeping it constant along x. The same authors, Tol S. et al, tried
to solve this problem in another paper, where they designed a Luneburg lens,
always for the speci�c application in energy harvesting[11]. Also in this case,
the authors �rst described the creation of the lens, then tested its performance.
Since Luneburg lenses are omnidirectional devices, they are able to focus the
impinging plane wave on the diametrically opposed point of the structure in-
dependently of the wave source position, so the main problem of GRIN plates
is overcome. In order to realize such design, an unit cell with hexagonal sym-
metry has been used. The unit cell consists of an Aluminium made hexagon
with a blind hole. The authors demonstrated that, by varying the diameter of
the blind hole inside the unit cell, a di�erent speed of travelling waves inside
the crystal can be obtained, as shown by the dispersion relations in �gure 3.11.
They proceed then to de�ne the refractive index of elastic waves as

n(r) = υ/υΓM (3.3)

where υΓM is the speed of travelling waves inside the medium with a certain
diameter, as obtained by dispersion relations. υ, on the other hand, is the speed
of waves calculated in a homogeneous plate of pure material with no holes. Since
υΓM < υ, it is true that, for every possible diameter, n>1. Once this relationship
is known, it is necessary to know at each point of the device which speed value
needs to be attained. To ful�l this goal, a theoretical refractive index pro�le is
used. Since the presented device is a Luneburg lens, the refractive index should
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Figure 3.11: Tol S. et al, 2017[22]: Left: Graphical representation of the unit
cell, characterized by hexagonal symmetry and a tunable blind hole. Right:
Graph, built by the authors, which shows the correct value of diameter to use
at each radial position r/R to match the refractive index value given by the lens
pro�le.

vary radially. The employed formula is

n(r) =

√
2−

(
r2

R2

)
(3.4)

where r is the position of the selected unit cell and R is the lens radius. So,
by knowing this information, the authors plotted the graph in the right of im-
age 3.11, where the correct value of diameter for each r/R value is highlighted.
Having thus �nished the theoretical realization of the lens, the authors provide,
in the paper, �rst the demonstration of its working principle, both by numer-
ical and experimental means. Then, the illustration of the energy harvesting
properties, by attachment of piezoelectric harvesters, is reported. First, for the
demonstration of the working principle of the lens, numerical simulations us-
ing COMSOL Multiphysics® have been performed. The tested domain was
an aluminium plate which contains the lens, excite by a sine burst load with 4

Figure 3.12: Tol S. et al, 2017[22]: Both �gures show the behaviour of the
numerically tested lens at two di�erent time frames, in particular t = 168µs for
the left picture and t = 212µs for the right image. The plotted value is the
RMS wave �eld velocity in z direction.
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Figure 3.13: Tol S. et al, 2017[22]: Comparison between a baseline harvester
and the two situations where the Luneburg lens is used. The gain between using
and not using the lens is pretty clear.

Figure 3.14: Zhao L. et al, 2020[25]: Base structure of a Luneburg lens for wave
propagation control.

cycles centred at 50kHz. At the edges of the lamina absorbing boundary condi-
tions have been implemented, in order to remove wave re�ection at boundaries.
Results are reported in �gure 3.12, showing simulations at two di�erent time
steps. The authors noted that the phenomena is simulated correctly both via
software and, performing an experiment on an aluminium plate in real life,
results converge, with a focusing point located exactly at the end of the lens
region, clearly visible in those images. The second step has been that of testing
the performance of the harvester. For doing this, a baseline harvester has been
placed both in the lens region and outside the lens region at the same distance
from the line source, as illustrated in image 3.13. The idea here is to see how
much the output power increases. Looking at �gure 3.13, the authors reported
that output power increases drastically with the usage of the lens at 50kHz. In
fact, scavenged power increases 13 times. Last, an extremely recent work from
Zhao L. et al is presented, who tested a di�erent structure for a Luneburg lens
and reviewed its EH capabilities[25]. In this case, the grading of the wave's
velocity is performed by continuously changing the thickness of an aluminium
plate, as depicted in �gure 3.14. The e�ect is justi�ed in the following way: the
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theoretical refractive index pro�le is estimated as

n(r) =

√
F 2 +R2 − r2

F
(3.5)

where F is the position of the focusing point, R the lens' radius and r the radial
position of a point inside the lens. The A0 wave's phase velocity is also known
as

c =
ω

k
=

(
Eh2ω2

12ρ(1− ν2)

) 1
4

(3.6)

where E is the Young's modulus, ν is the Poisson's ratio and ρ is the material's
density. Making the ratio between c in any point and c0, the speed of A0 waves
for an aluminium plate with thickness equal to the thickness of the external
lamina it is clear that

n =

√
h0

h
(3.7)

Figure 3.15: Zhao L. et al, 2020[25]: Numerical simulations show the working
principle and the capability of the Luneburg lens. The lens works in two di�erent
ways, as it can be seen from the pictures. Left: A planar wavefront is localised
on the diametrically opposed point. Right: A spherical wavefront is transformed
into a planar one.

Figure 3.16: Zhao L. et al, 2020[25]: Comparison between the gain registered
by left: numerical setup and right: experimental simulations.
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using both the equations derived, we get

h(r) =
h0F

2

F 2 +R2 − r2
(3.8)

The authors analytically studied the performance of this lens, deriving three
lens types: if F/R < 1 the focusing point is inside the lens, ifF/R = 1 , the
focusing point is at the lens' border, else is located after the lens' region. Going
on to simulations, they tested the behaviour of all three types of lenses. Re-
porting in image 3.15 results for F/R = 1, the lens' behaviour is then shown.
In particular, the authors demonstrated that the lens works on two opposite
ways. It is able to focus plane wavefronts of A0 sound waves on the point op-
posite to the entrance one, �g b, but is even able to deviate spherical waves
collimating them, as visible on the right image in �gure 3.15. Experimental
results, performed in an aluminium plate excited with piezoelectric transduc-
ers showed similar results. It has been demonstrated that the lens gives a 5x
displacement magnitude increment with respect to a baseline situation. Having
demonstrated its capabilities, EH is investigated next. Making both numerical
and experimental investigations, the authors found that normalized voltage on
a piezo harvester increases up to 300%, with peak gains of 20-24x depending
on the used frequency, as shown in image.. The shift in peak is attributed, by
the authors, to the discrepancy between simulation and experiment's material
properties employed.
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Chapter 4

GRIN lens prototype

The aim of this research project is to test di�erent metamaterial based lenses for
focusing elastic waves, in light of foreseeing a possible use in EH implementa-
tions. To achieve this goal, numerical simulations have been performed both to
check their focusing capabilities and to test the potential of this peculiar appli-
cation in energy harvesting. This chapter focuses on the demonstration of this
goal for the GRIN lens prototype. First, in section 4.1, a deep description of the
realization process is given, explaining all the steps that allowed to pass from
the theoretical refractive index pro�le to the e�ective one given to the material.
The subsequent part will analyse in detail the results of numerical simulations.
In order to do such task, the lens will be analysed by a numerical simulation
software, in particular COMSOL Multiphysics version 5.5. Frequency analyses,
discussed in section 4.2, are going to be used to foresee which could be the
behaviour at regime of the device for a given set of frequency. Time domain
simulations, discussed in section 4.3, intend to simulate the propagation of the
wave time frame by time frame, allowing to see the focusing at a precise time
slot and a behaviour of the device closer to the real life one. Di�erent materials
will even be tested, with the precise purpose to control which is the in�uence
of material properties on the displacement magni�cation ratio between a case
where a lens is used and a case where a lens is not used.

4.1 Construction of the Lens

The GRIN lens presented in this work is built following the steps indicated by
Pennec et al in their work, where a Luneburg lens and a GRIN device are tested
for focusing[26],[27]. In particular, in these given set of papers the authors �rst
go through the derivation of a model, called "E�ective medium theory", which
acts as a link between the ideal refractive index pro�le and the refractive index
across the material's surface. Then, they numerically test the functioning of this
device by usage of simulation software. The aim of this part will be the expla-
nation of the e�ective medium theory, which will allow to construct the material
with a correct refractive index pro�le. The aim of this theory is straightforward
when looking at �gure 4.1. Let's suppose to excite our real device, composed
by a periodic arrangement of scatterers in a matrix and reported on the upper
part of the picture, with an incident wave �eld ψ0. As a consequence, the object
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will produce a scattered wave �eld ψsc, which depends on the incident �eld in
the following way:

ψsc = Tclsψ0 (4.1)

The so called T matrix of the cluster of scatterers has been introduced, which
links the scattered and incident �eld and depends on the physical properties
of the scatterers. The main object of this derivation is to demonstrate that
the behaviour of these scatterers can be correctly replicated by a homogeneous
material, represented in the bottom part of �gure 4.1, which possesses unknown
mechanical properties ρeff , νeff and Deff , where D is the plate's rigidity which
can be estimated as

D =
Ebh

3
b

12(1− ν2
b )

(4.2)

In this newly conceived material it is still true that the scattered �eld and the
incident one are linked by the T matrix, which in this case is called Teff . The
link between these two approaches lies in the study of the T matrix: in fact, if
the excitation frequency is in the low frequency limit, it is true that

lim
ω→0

Tcls = lim
ω→0

Teff (4.3)

Since the left part is a known quantity, as the nature of the scatterer and their
position are known, the e�ective T matrix can be calculated and, then, the
e�ective material's properties, which will describe equivalently the material. In
the low frequency limit, all the T matrix elements go to zero. For this reason,
depending on the nature of the impinging wave, some terms will be predominant
on others. Those will dictate the value of the e�ective material properties.
For the case of elastic waves, the predominant terms are three, since we need

Figure 4.1: Pennec y. et al, 2014[27]: Graphical representation of the aim of
the e�ective medium theory.
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three material properties, and are T0,T1, and T2. The derivation starts with
another approximation: the wave �eld needs to have a wavelength larger than
the thickness of the plate, such that this formula for wave displacement inside
the material apply

− ∂2

∂x2

(
Db[

∂2W

∂x2
+ νb

∂2W

∂y2
]

)
− ∂2

∂y2

(
Db[

∂2W

∂y2
+ νb

∂2W

∂x2
]

)
−2

∂2

∂x∂y

(
Db(1− νb)

∂2W

∂x∂y

)
= ρh

∂2W

∂t2

(4.4)
Under the hypothesis that the background's parameters are constant and an
harmonic time dependence on the �eld W is assumed, the equation can be
simpli�ed to

(Db∇4 − ρbhbω2)W (x, y) = 0 (4.5)

where the incident �eld is expressed by

W0 =
∑
q

[AJq Jq(kbr) +AIqIq(kbr)] expiqθ (4.6)

being a sum of Bessel functions of argument kb, where

k4
b =

ρbhb
Db

ω2 (4.7)

On a similar manner, the scattered �eld and the �eld inside scatterers can be
expressed as

Wsc =
∑
q

[BHq Hq(kbr) +BKq Kq(kbr)] expiqθ (4.8)

Wi =
∑
q

[CJq Jq(kar) + CIq Iq(kar)] expiqθ (4.9)

Next, boundary conditions are to be applied, and they give 4 equations that
can be expressed as

X0
1Aq +XSC

q Bq = Xa
qCq (4.10)

Y 0
q Aq + Y SCq Bq = Y aq Cq (4.11)

Matrices Xi and Y i are 2x2 matrices, while A,B,C are vectors 2x1. Solving for
Cq in one of them and substituting into the other yields, after some rearrange-
ments,

Bq = −[Y SCq − Y aq (Xa
q )−1XSC

q ]−1 × [Y 0
q − Y aq (Xa

q )−1X0
q ]Aq (4.12)

Finally, form this matricial form equation, the expression which leads us to the
T matrix can be obtained as(

BHq
BKq

)
=

(
THJq THIq

TKJq TKIq

)(
AJq
AIq

)
(4.13)

The next step is calculating T for our case of interest. For �exural waves, that
are A0 Lamb wave modes in the plate, actually the predominant terms are only
two, for q = 0, and q = 2. Being 2x2 matrices, though, the requirement of
having still 3 independent components is preserved. It is found that

T0 ≈
iπ(kbRa)2

4

(
Γ11

0 Γ12
0

2i/πΓ12
0 2i/πΓ11

0

)
(4.14)
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T2 ≈
iπ(kbRa)2

4

(
Γ2 Γ2

2i/πΓ2 2i/πΓ2

)
(4.15)

where Γ11
0 , Γ12

0 , Γ2 are

Γ11
0 =

1

2

ρaha
ρbhb

+
Db

Db(1− νb) +Da(1 + νa)
− 1 (4.16)

Γ12
0 =

1

2

ρaha
ρbhb

− Db

Db(1− νb) +Da(1 + νa)
(4.17)

Γ2 =
1

2

Db(1− νb)−Da(1− νa)

Db(3 + νb) +Da(1− νa)
(4.18)

Arrived at this point, the last step is remembering that

Γeffq = fΓclsq (4.19)

Substituting and making �nal rearrangements, the equations which will be
exploited for e�ective parameter calculation are found as

ρeff = [1 + f(Γ11
0 + Γ12

0 )]ρb (4.20)

Deff (1 + νeff ) =
1 + νb − f(Γ11

0 − Γ12
0 )(1− νb)

1 + f(Γ11
0 − Γ12

0 )
Db (4.21)

Deff (1− νeff ) =
1− νb − 2fΓ2(3 + νb)

1 + 2fΓ2
(4.22)

The next step before proceeding with the construction of the GRIN device has
been dedicated to reproduce the e�ect of this theory, proposed by the authors,
by practically testing it to see if we manage to replicate the results presented
on the paper by Pennec et al, 2016[27]. The authors tested it in three cases:
Aluminium+Lead; Aluminium+Rubber, Aluminium+holes. The material prop-
erties used for the derivation are indicated in table 4.1. Using the data in these
table, it has been possible to evaluate ρeff , νeff , Deff and ceff . Results are
reported in �gure 4.2 and 4.3. As is can be seen from the images, the trend for
all these variables is di�erent from one another. The only linear trend is the

Figure 4.2: Graphical representation of the trend for e�ective parameters calcu-
lated by variation of the �lling fraction of the inclusion. Left: e�ective density.
Right: e�ective velocity.
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Table 4.1: Material Properties for Aluminium, Lead and Rubber.

MATERIAL E [GPa] ν ρ[Kg/m3]
Al 70 0.35 2710
Pb 16 0.44 11340
Rubber 7e-4 0.45 960

Figure 4.3: Graphical representation of the trend for e�ecive parameters calcu-
lated by variation of the �lling fraction of the inclusion. Left: e�ective Poisson's
ratio. Right: e�ective plate rigidity.

one followed by the density, which increases linearly from its value in the bulk
material to its value in the inclusion as the �lling fractions ranges from 0 to
1. The other variables follow a more complex trend. However, as noted before,
the theory for �exural plates does not hold if the �lling fraction is high, but
only for low-mid �lling fractions. Since our �nal goal is to build a GRIN device,
it is mandatory to make sure that this e�ective material correctly reproduces
elastic wave propagation in our medium. To do that, as even the authors did in
one of their research projects, the dispersion relations of a crystal with a given
�lling fraction are to be compared with the estimated dispersion relation that
this e�ective material provides. Let's start from the derivation of the analytical
form of the dispersion relation in our e�ective case. If the hypothesis λ > h still
holds, it is true that the dispersion relations for lowest order Lamb modes in
plates are parabolic for the antisymmetric A0 mode. More precisely,

ω =
vphb√

12
k2
A (4.23)

What is missing now is the form of vp in the case of an e�ective medium.
Remembering that, from previous derivations the dispersion relation for �exural
waves in low frequencies is

ω2 =
D

ρhb
k4 (4.24)

For the e�ective material we have that

ω2 =
Deff

ρeffhb
k4 =

D̄

ρ̄

Eb
ρb(1− ν2

b )

h2
b

12
k4 (4.25)

which allows to identify vp as

v2
p =

D̄

ρ̄

Eb
ρb(1− ν2

b )
(4.26)
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Figure 4.4: CAD representation of the unit cell employed in the construction of
the GRIN lens, composed by a square with an inclusion of varying diameter.

It can be even demonstrated that the theory holds even for symmetric S0 waves,
which have an in plane motion. In fact, if the same low frequency limit is applied,
for the S0 mode it is true that

ω = vpkS (4.27)

Making an example with one of the materials used before, we calculate �rst the
dispersion relation for a square-symmetry unit cell of aluminium with a lead
inclusion of R=0.3a, then the dispersion relation for an aluminium matrix with
a hole inclusion of the same radius, where a is the lattice constant, which means

fsquare =
πR2

a2
= 0, 2827 (4.28)

A representation of the unit cell is given in �gure 4.4. The out of plane thickness
has been set to hb = 1mm, such that low frequency conditions apply. After
having calculated the value of k at the edges of the �rst Brillouin zone, we can
calculate the trend of the dispersion relations for the e�ective case, reported

Figure 4.5: Graphical representation of the dispersion relations for A0 and S0

modes calculated via the guidelines given by Pennec Y, et al.[26],[27]. Left: sil-
icon bulk material + lead inclusion of radius 3mm. Right: silicon bulk material
+ hollow inclusion.
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Figure 4.6: Dispersion relations calculated via numerical simulation for the unit
cell represented in �gure 4.4.

in �gure 4.5. We can notice that in the right case the dispersion relations
allow to get higher frequency values. After having done this task, a COMSOL
simulation has been performed on the same unit cells to make a comparison
between the real case and the e�ective one. An eigenfrequency simulation has
been set for both cases, searching for the band structure by making a sweep
of the k wavevector along the irreducible zone. The comparison between the
theory and the simulation is reported, both in the case of lead and in the case
of a hole inclusion, in �gure 4.6. The yellow curve represents the dispersion
relation calculated numerically, while the purple-dotted dispersion is the one
calculated with formulas (4.23, 4.27). As the authors predicted, the agreement
between the e�ective medium theory and the numerical simulation is very good,
especially keeping the frequency low, as it has been done in the image. Some
discrepancies are found at the Brillouin zone's edges but, overall, the agreement

Figure 4.7: Graphical representation of the GRIN ideal refractive index pro�le
if central focusing is wanted.
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Table 4.2: Material Properties for Silicon and Lead.

MATERIAL E [GPa] ν ρ[Kg/m3]
Si 150 0.28 2330
Pb 16 0.44 11340

is very great. As such, the employment of this theory has been considered for
the realization of the GRIN device since, once the e�ective material properties
are known, the e�ective plate velocity for a given Lamb wave mode can be
calculated and, then, the refractive index, which can be locally tailored. That
is, of course, if we employ the low frequency limit and �lling fractions do not
grow too much. As explained in chapter 2, a GRIN plate, to focus waves on a
given point, needs to have a change in the refractive index that follows the law

n(y) = n0sech(αy) (4.29)

α =
π

2x
(4.30)

where n0, is the refractive index at the centre of the device, since is y-axis
symmetric, and x is the focusing point. Let's suppose to build a GRIN plate of
30x15 unit cells. Depending on the focusing point, the refractive index pro�le
is going to change. Supposing that the focusing point is on the centre of the
device, once x is known, the theoretical refractive index pro�le can be derived
in all the device. Then, there is the need to match this theoretical distribution
to the real index of the device, so a law that tells us how the refractive index
changes in the plate has to be found. However, since we are dealing with 2
di�erent modes with two dispersion relations, actually two refractive indexes
are to be modulated, one for the S0 mode and the other for the A0 mode. In
particular

nS0 =
vpb
vp(y)

(4.31)

n2
A0

=
vpb
vp(y)

hb
h(y)

(4.32)

where vp is the plate velocity of the given material with an inclusion of unknown
radius, vpb is the plate velocity of the bulk material of which the plate is com-
posed, h(y) the thickness of the plate a t a given position and hb the thickness
of the plate outside the lens zone. Building the device with the purpose of fo-
cusing A0 and S0 waves at the same spot, it follows that nS0

= nA0
. So, the

plate velocity term can be used to tailor the speed of symmetric waves, while
the thickness of the plate can be used for tailoring the speed of �exural ones.
Having solved for vp and hb, the �nal step is to track back which value of f gives
this plate velocity, to calculate the value of the e�ective parameters, to be used
in the analysis. At this point, the GRIN plate can be fully built. Supposing to
build the plate with silicon as a base material and lead as inclusions, table 4.2
reports the material properties employed for both pure materials, while table
4.3 reports calculated data for the construction of the device with central fo-
cusing. Now, since one of our main aim is to practically check the e�ectiveness
of this e�ective theory, other devices are going to be tested, following the same
guidelines. To demonstrate the focusing capabilities, two other devices with
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Table 4.3: Data for Silicon and Lead GR-IN lens which focuses waves at x=15a

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.2809 6524.9 0.102 1.801 7.807 130.03 0.244 3247.70
a 1.2739 6560.7 0.099 1.778 7.850 130.50 0.245 3225.13
2a 1.2533 6668.5 0.092 1.711 7.979 131.88 0.247 3158.53
3a 1.2202 6849.5 0.080 1.596 8.195 134.12 0.251 3051.08
4a 1.1762 7105.8 0.064 1.429 8.502 137.16 0.256 2907.77
5a 1.1233 7439.9 0.045 1.196 8.902 140.90 0.263 2734.98
6a 1.0639 7855.8 0.023 0.861 9.399 145.22 0.271 2539.89
7a 1 8357.9 0 0 10 150 0.280 2330

Table 4.4: Data for Silicon and Lead GR-IN lens which focuses waves at x=12a

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.450 5764.0 0.162 2.271 6.897 115.85 0.226 3789.62
a 1.438 5813.5 0.158 2.239 6.956 116.68 0.227 3749.08
2a 1.4017 5962.7 0.145 2.148 7.134 119.01 0.231 3636.45
3a 1.3449 6214.2 0.125 1.995 7.435 122.84 0.237 3456.25
4a 1.2717 6572.4 0.099 1.771 7.864 128.11 0.245 3217.49
5a 1.1866 7043.3 0.068 1.471 8.427 134.48 0.255 2942.68
6a 1.0947 7635.1 0.035 1.048 9.135 141.88 0.267 2640.85
7a 1 8357.9 0 0 10 150 0.28 2330

Table 4.5: Data for Silicon and Lead GR-IN lens which focuses waves at x=20a

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.1550 7236.43 0.056 1.341 8.658 136.97 0.259 2839.07
1a 1.1514 7258.76 0.055 1.323 8.685 137.29 0.260 2825.55
2a 1.1409 7325.89 0.052 1.280 8.765 138.06 0.261 2794.02
3a 1.1236 7438.23 0.045 1.197 8.890 139.51 0.263 2735.45
4a 1.1002 7596.48 0.037 1.078 9.089 141.42 0.266 2658.87
5a 1.0713 7801.61 0.026 0.910 9.334 143.83 0.270 2564.26
6a 1.0376 8054.89 0.014 0.656 9.637 146.76 0.275 2451.64
7a 1 8357.89 0 0 10 150 0.28 2330

Table 4.6: Data for Silicon and holes GR-IN lens which focuses waves at x=15a

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.2809 6524.90 0.660 4.583 7.807 31.06 -0.0328 792.20
1a 1.2739 6560.71 0.635 4.496 7.85 33.76 -0.0249 850.45
2a 1.2533 6668.54 0.575 4.278 7.979 40.55 -0.005 990.25
3a 1.2202 6849.55 0.480 3.909 8.195 52.34 0.0293 1211.60
4a 1.1762 7105.75 0.363 3.399 8.502 69.03 0.0769 1484.21
5a 1.1234 7439.95 0.237 2.747 8.902 90.699 0.1364 1777.79
6a 1.0639 7855.80 0.114 1.905 9.399 117.399 0.2048 2064.38
7a 1 8357.89 0 0 10 150 0.28 2330
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silicon and lead are built. In particular, the aim here is to control that a theo-
retical change in the focusing point is followed even by numerical simulations.
More precisely, table 4.4 reports data for a GRIN device built by setting the
focusing point at x=12a from the lens' left edge, while table 4.5 reports data
for a GRIN device with focusing point at x=20a from the lens' left edge. After
having built the device for a given couple of materials, in particular silicon and
lead, one of our last aim is to check the accuracy of this model if we change
the pair of materials from the one used by the authors. In particular a GRIN
lens, with central focusing only, is built with silicon as base material and hollow
inclusions. This particular choice has been made because, if one has to think
of a possible prototype, a silicon plate with through hollow inclusions is much
easier to produce that its counterpart with lead inclusions, which will be more
di�cult to fabricate and test in real life. Table 4.6 reports data for such GRIN
device.
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4.2 Frequency Domain Analysis

Having described both the working principles of GRIN lenses and the procedure
used to obtain the refractive index pro�le from the e�ective medium theory,
the following step is to perform analyses on such designs using a numerical
simulation software, in particular, COMSOL Multiphysics. In this section the
focus has been put on analysing the GRIN design in the frequency domain.
When in the frequency domain, the software gives back, as result, the regime
response of the system under the in�uence of a frequency-dependent load. In the
following pages, di�erent tests have been carried out. The �rst one is dedicated
to the trial of the focusing capabilities of the device: to do such task a lens,
made by silicon and lead, is tested with three di�erent focusing points set (at the
centre of the lens, at x=12a and x=20a), so with three di�erent refractive index
pro�les. To further underline the power of the e�ective medium theory, each one
of this device with di�erent focusing points will be tested in two con�gurations:
as a "layered device" and as a real one. The real device is built by drawing each
single unit cell with the required inclusion diameter for the focusing e�ect to
take place. On the other hand, the layered device has been built by creating a
plate composed by di�erent homogeneous layers with properties equal to that of
the e�ective material. A comparison between the geometries of the two devices
can be appreciated in image 4.8. If the e�ective material theory really holds well,
it is expected that the two geometries give back similar results for all focusing
positions here analysed. Then, after having reviewed focusing properties, the
next e�ort is dedicated to demonstrate if, as teased in the theoretical section of
the e�ective medium theory, the device shows focusing capabilities in a broad
frequency span. The choice of materials used in these �rst tests is justi�ed
by the fact that the authors, which presented this e�ective medium theory,
tested this exact combination, such that we should expect the devices to work
properly. After having tried the exact same setup, a di�erent pair of materials
will be put in comparison, to clearly see if, �rst, it works as expected and, then,
to see which could be the most suitable for a prototype realization. Before
seeing the proper �nal results of the analysis, a description on the di�erent
geometry tested and how boundary conditions have been set is required. The
geometry of the GRIN device, in both real and layered con�gurations, is a
15x30cm rectangle. To test it, it has been embedded in a silicon homogeneous
plate with thickness 1cm and radius 35cm. An overview of the geometry tested
can be seen in �gure 4.9. The input, in the frequency domain, has been simulated

Figure 4.8: Comparison between the two GRIN devices analysed here. Left:
real device. Right: layered device built thanks to the e�ective medium theory.
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Figure 4.9: CAD representation of the whole domain used to test the GRIN
lens.

as a prescribed displacement, at a given frequency, in a predetermined direction.
In other words, if the aim of the test is to check the functioning of the device for
the A0 mode, a prescribed displacement in the z direction will be imposed while,
for the S0 modes the displacement will be imposed in the x direction. Of course,
being in the frequency domain, imposing a �xed displacement is translated in
analysing the response of a sinusoidal input with a given frequency at regime.
The input has been imparted along the line highlighted in blue in �gure 4.10.
To generate such line, an internal cylinder of radius 30cm has been built and
cut with a vertical plane distant x=-29cm from the centre of the device. The
testing frequency for these devices has been selected according to the guidelines
given by the authors of the text which proposed the use of the e�ective medium
theory for these devices[26]. In particular, the authors decided to test the device

Figure 4.10: Graphical representation of the region where prescribed displace-
ments are set.
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Figure 4.11: Graphical representation of the mesh used for the test of the real
device.

for the A0 and the S0 waves at the same wavenumber ka = 1, meaning

fA0 =
ω

2π
=

vphb

2π
√

12
k2
A = 38399Hz (4.33)

fS0 =
ω

2π
=
vpkS
2π

= 133019Hz (4.34)

For what concerns the applications of boundary conditions, absorbing boundary
conditions have been applied along the thickness of the more external cylinder.
This has been imposed with the precise purpose to eliminate re�ection of inci-
dent waves at the external boundary. This allows us to concentrate on the focus-
ing phenomena, avoiding that re�ected waves perturb the reproduction of the
focusing capabilities. Before starting with the overview, a �nal word is brought
up on the di�erent meshes used in these devices. Di�erent devices with di�erent
focusing points have been used, so their meshes will di�er slightly from one an-
other, but the main concepts expressed here are valid for all of them. The mesh
for the real device and central focusing is reported in �gure 4.11. This mesh has
been created by setting a "�ner" element size in COMSOL Multiphysics and by
building a free tetrahedral mesh on it. This leads to the pictured results. The
mesh is not very re�ned, especially in the xy plane, but the available amount
of RAM in our PC didn't allow to do better, so this is what will be used for
simulations. Along the thickness of the device there is only one element, as the
image clearly show, but is considered enough for our simulation. In fact, when
dealing with wave phenomena, usually 6 or 7 elements per unit wavelengths
are needed for the correct reproduction of results and, since our wavelength is

Figure 4.12: Graphical representation of the mesh used for the test of the layered
geometry.
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λ = 6.28cm, this limit is checked. For what concerns the mesh of the layered
geometry, it is reported in �gure 4.12. This time, the simpler geometry allowed
to get more re�nement in the xy plane. In fact, this mesh has been built by
setting an "extra �ne" element size in COMSOL, then another free tetrahedral
mesh has been built with that setting. Along the thickness there is still only
one element but, since the tested wavelength is the same for both geometries,
the same conclusion is reached. Starting with the review of results, the �rst
one presented are those of the device with central focusing (at x=35cm). We
start from the analysis of the S0 mode. In image 4.13 the surface plots, where
it is plotted the absolute value of displacement in x direction, give an overview
on the functioning of the device. It can be noticed that both geometries allow
the phenomena to be correctly reproduced as the wave, which impinges from
the left, is correctly focused at the centre of the device. To perform a more
quantitative comparison between the two geometries, an ad hoc plot is reported
in image 4.14, where the absolute value of displacement in the x direction is

Figure 4.13: Surface plot showing the absolute value of displacement, along the
x direction, for a GRIN plate which aims at focusing S0 waves. Left: real device.
Right: layered device.

Figure 4.14: Superposition of two line plots, drawn at y=0, of the absolute value
of displacement, along the x direction, for the two di�erent geometries tested.
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plotted along the y=0 line for both geometries. This allows to better compare
the displacement trend across the whole domain. We can see that, although
the phenomena is correctly reproduced by both designs, predicted trends are
a bit di�erent. In particular, what changes is the magni�cation e�ect of the
lens. Since we are imposing a prescribed displacement with a maximum value
of 1µm, the lens in the real con�guration gives back an ampli�cation of 3.8x,
while the layered design stops at 2.2x. Not only that, but even the position of
the focusing point is di�erent. While the real geometry places it at x=34.5cm,
the layered geometry places it at x= 36.5cm, with the prediction of the real
geometry much more close to the ideal con�guration, which is x=35cm. Before
investigating this discrepancy, we analyse the lens even with the A0 wave, to
test if the anomaly is present in both �exural and in plane waves or is limited
only to one of those. In �gure 4.15 the surface graphs that report the absolute
value of displacement, now along the z direction, are reported for the two dif-
ferent geometries. Even in this case, both geometries correctly reproduce the

Figure 4.15: Surface plot showing the absolute value of displacement, along the
z direction, for a GRIN plate which aims at focusing A0 waves. Left: real device.
Right: layered device.

Figure 4.16: Superposition of two line plots, drawn at y=0, of the absolute value
of displacement, along the x direction, for the two di�erent geometries tested.
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phenomena, as the analyses predict red spots at the centre of the device, which
is correct. In this case, though, the agreement between the di�erent analyses
seem much better even by looking at this �rst plot. For more precise assess-
ments, a plot which compares the absolute value of displacement, along the
y=0 line, for both geometries is reported in �gure 4.16. Here it can be noticed
that practically the two designs report the same expected results, with almost
no discrepancy in displacement magni�cation, which is set at 2.5x. Even more
appreciated is the fact that the expected focusing point is the same in both
cases, with the peak positioned at x=36cm. Having registered this profound
discrepancy between analyses of the S0 and A0 waves, before going on testing
the other devices a re�ection will be brought on the possible reason for that.
Of course the two geometries are di�erent, but the main point of using those
two con�gurations is exactly for them to reach convergence and report similar
results. While this is clearly true for the A0 mode, it is not for the S0 mode.
An explanation could lie in the accuracy of the mesh. In particular, while the
analysis with the A0 wave could be at regime, maybe the ones with the S0 mode
are simply just not. This is supported even by the fact that the two geome-
tries share the same amount of �nite elements along the thickness, which should
in�uence �exural A0 wave propagation, while the number along the plane is
di�erent. To further con�rm this hypothesis or not, we try building an alterna-
tive mesh on the layered device, since the simpler geometry should allow better
re�nement. The new mesh is composed by extruded elements rather than free
tetrahedral elements, to further increase element density along the thickness. A
comparison between the two meshes built with the layered geometry device is
proposed in image 4.17. It can be noticed that the mesh used up to this point
has only one element along the thickness of the device, which is not much but,
as already noted, su�cient to satisfy the limit of at least 6 �nite elements per
tested wavelength. On the right, the exactly opposite situation is represented,
where 13 elements are placed along the thickness of the device. The number is
so high for a question of need. In particular, to build this mesh the software re-
quired to slice the geometry for every di�erent height of the central lens, as each
layer has its own height which triggers A0 focusing. This constraints the lens to
already have 8 elements in a region of 1.5mm over the total thickness of 1cm. In
the remaining region, 5 elements are placed. The analysis have been performed
with the same boundary conditions and the same prescribed displacement as
before. In �gure 4.18 the absolute value of displacement, over the y=0 line,

Figure 4.17: Overview of the density of elements, along the thickness of the
device, for the two di�erent meshes used in the simulation. Left: old mesh.
Right: new mesh.
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Figure 4.18: Comparison between di�erent line plots of absolute value of dis-
placement obtained via the usage of di�erent meshes. The left �gure shows the
comparison for the S0 mode, while the comparison for the A0 mode is displayed
on the right.

is plotted and compared for both the new and the old mesh over the S0 case
on the left and the A0 case on the right. The main di�erences can, again, be
noted for the S0 case. In fact, the A0 analysis shows a satisfying level of agree-
ment, both in terms of displacement magni�cation and focusing point accuracy,
even with this high di�erence in �nite elements along the z direction. This level
of accuracy is not reached for S0 analysis. To a certain extent, the analysis
worsened, as the displacement peak is placed at a coordinate x=32.5cm. This
con�rms the initial suspect: A0 waves accuracy is in�uenced by the amount of
elements in the thickness. Being both the old and new mesh at convergence,
no crucial discrepancies are revealed. This is not true for the S0 wave propa-
gation simulation. In this case, the limiting factor is the density of elements
along the xy plane, which changes much more across di�erent meshes, hence
the more relevant di�erences. So, if we try to make the mesh denser in the xy
plane for the layered geometry, instead of making it denser along the thickness,

Figure 4.19: Superposition of two line plots, drawn at y=0, of the absolute value
of displacement, along the x direction, for two di�erent tested meshes on the
layered geometries.
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pushing it to the limit supported by our computer, the situation should better
even for S0 waves. Results for this test are reported in �gure 4.19. As pre-
dicted, the analysis changed a bit, but the overall behaviour of the device has
not changed dramatically. There, it can be noticed that the main di�erence lies
in the ampli�cation factor predicted, which changes from 2.2x in the original
mesh, represented in red, to a 2.5x for this new denser mesh in the xy plane.
Having con�rmed that the layered geometry mesh is at perfect convergence for
A0 mode and reproduces results which are reliable for the S0 mode, the next
step to better the comparison would be, of course, to test if a re�nement in the
xy plane for the real mesh betters the problem of discrepancy. Sadly, for per-
forming this operation a higher quantitative of RAM is needed on the pc used
for simulations, so this last test could not be performed for the �nal con�rma-
tion. Having concluded with the design which proposes focusing at the centre
of the device, the next test is to shift the focusing point on the left, to x=32cm.
Due to the need of focusing waves before the middle point, the refractive index
changes more abruptly between subsequent layers, with thickness and diameter
variations which will be more pronounced, compared to the previous case. The
analysis still is based in the frequency domain and has the same prescribed dis-
placement and absorbing boundary condition applied. Having already discussed
the e�ectiveness of each di�erent meshes, here the ones that have been found
optimal in the previous case are reused, to ensure accuracy and to make more
fair the comparison between di�erent focusing points. In image 4.20 the results
for the S0 mode are reported, where the surface plot for the absolute value of
displacement along the x direction is shown, on the left for the real geometry
and on the right for the layered one. The phenomena is correctly reproduced
even in this case. The focusing point shifts on the left, as it was intended, for
both cases, highlighting that the theoretical shift in focusing point is followed
by a practical one, which is a remarkable result not highlighted in the paper
with a correspondent numerical analysis. To make a more precise comparison,
�gure 4.21 reports the superposition between line plots of the absolute value of
displacement, registered along the line y=0, for both geometries. This graph,
though, shows even greater discrepancies than the previous one drawn for the
central focusing case for the S0 mode. In particular, the accuracy is better for
the layered case, where the focusing point is estimated around x=33cm against
the theoretical x=32cm. The real device, on the other hand, places the focus-
ing point at x=28cm, further from the ideal position. On the other hand, the

Figure 4.20: Surface plot showing the absolute value of displacement, along the
x direction, for a GRIN plate which aims at focusing S0 waves at x=32cm. Left:
real device. Right: layered device.
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Figure 4.21: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the device which focuses S0 waves at x=32cm.

amplitude of displacement is greater in the real case, with almost a 6x magni-
�cation with respect to the maximum amplitude of the sinusoidal input given,
compared to the layered geometry ampli�cation, which stops at 3x. It is to
be noted that, however, a similar problem with displacement ampli�cation was
detected even for the central focusing case, probably due to the poorly re�ned
mesh in the real geometry. Having discussed the performances for the S0 wave
propagation case when the focusing point is changed, the same review is done
for the A0 wave propagation. In �gure 4.22 the surface plot which reports
the absolute value of displacement for the real and layered case are reported.
From this graphs, it can be noticed that the shift in focusing point is correctly
reproduced even for A0 waves. In �gure 4.23 the graph which superimposes the
line plot of absolute value of displacement at y=0 for both real and layered case
is reported. In particular, it is found that the accuracy of reproduction of the
focusing point is very great, with an estimated point of x=31.5cm. The over-

Figure 4.22: Surface plot showing the absolute value of displacement, along the
z direction, for a GRIN plate which aims at focusing A0 waves at x=32cm. Left:
real device. Right: layered device.
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Figure 4.23: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the device which focuses A0 waves at x=32cm.

all very great accuracy of result reproduction for the A0 mode was underlined
even for the device with central focusing. This time though, the amplitude of
displacement is a bit di�erent even here, with a higher 2.4x magni�cation pre-
dicted by the real geometry, compared to the 1.6x predicted by the layered one.
Overall, though, the �exural A0 mode is still better simulated than the radial in
plane S0 one, probably due to the mesh problems already cited before. The last
device which has to be tested is the one where the focusing point is moved to
x=40cm, so waves are supposed to be focused after the centre of the device. To
obtain this e�ect, the refractive index needs to vary more mildly between layers.
Translated in simpler terms, this means that both the thickness of the unit cells
and the inclusions' diameters variations between subsequent layers are going to
be smaller that for the central case, so tolerances here are going to be crucial.
Again, the boundary conditions and the prescribed displacement imposed are
still the same. Starting, as always, from S0 waves, �gure 4.24 reports surface

Figure 4.24: Surface plot showing the absolute value of displacement, along the
x direction, for a GRIN plate which aims at focusing S0 waves at x=40cm. Left:
real device. Right: layered device.
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Figure 4.25: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the device which focuses S0 waves at x=40cm.

plots of the absolute value of displacement for the two di�erent geometries. On
the left the reported results are for the real device, while results on the right are
for the layered one. This time, though, the phenomena is reproduced with a far
worse accuracy in both designs. Although it does not appear as clear by look-
ing only at the surface plots of displacement, it becomes more visible in �gure
4.25, where the line plot of absolute value of displacement, along the y=0 line,
is reported for both cases. In fact, here it can be noticed that the accuracy of
reproduction of the focusing point is decreased. The layered device places it at
x=45cm in spite of x=40cm, while the real device performs even worse, placing
it at x=50cm. Again, even the ampli�cation of displacement, with respect to
the maximum amplitude given by the input, is di�erent. The real device man-
ages, even here, to grasp a greater magni�cation at 2x, compared to the 1.6x
of the layered one, so overall pretty mild ampli�cations are registered. Before
taking �nal conclusions even on this design, the performances of the A0 waves

Figure 4.26: Surface plot showing the absolute value of displacement, along the
x direction, for a GRIN plate which aims at focusing A0 waves at x=40cm. Left:
real device. Right: layered device.

58



Figure 4.27: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the device which focuses A0 waves at x=40cm.

are reviewed. In �gure 4.26 the surface plot which reports the absolute value
of displacement in the out of plane direction is reported. On the left the real
device is shown, while on the right the layered one is reported. In this case,
there are some major problems even for the A0 mode, already clearly visible
from the surface plots, which fail to show clearly a displacement concentration
in one precise spot over the geometry of the device. Again, let's refer to the
line plot graph comparison, reported in �gure 4.27, which allows to make more
quantitative considerations. First, it can be noticed that the two analysis are
much similar: in fact, a part from a small di�erence in maximum displacement
value reached, which is very minimal however, the two analysis are comparable.
The problem here lies in the ability of the numerical simulation to correctly
represent the phenomena, which fades. This can be evinced by noticing that
there is no clear peak in those graphs, while the behaviour of the lens is pretty
�at overall. Not only this but, actually, we have that the maximum amplitude
of displacement is reached outside the lens zone for both cases, so it cannot be
attributed to the lens' ampli�cation characteristics. As such, since numerical
simulations have failed either to correctly reproduce the phenomena in this last
device or to give substantial magni�cation e�ects, both for the S0 and A0 wave,
we can conclude that this last prototype does not work as intended. The reason
for this behaviour is attributed to the dimension of inclusions' diameters and
di�erent layers' thicknesses variations. Due to the focusing point being placed
farther away from the device's centre, as it has been pointed out before, we
have to use smaller inclusions and smaller height variations. Being the vari-
ations between a layer and the other very small, in the order of µm for both
radiuses and diameters, a possible explanations is that those variations are too
small for the phenomena to be correctly reproduced. This is even supported
by the reported analysis, which show an almost �at behaviour, which seems
suggesting that the device is made of evenly built layers. Then, even if such

59



device worked, the very strict tolerances would have made it very hard to make.
Brie�y concluding this part dedicated to focusing properties, it can be stated
that the best design is the one that allows to focus waves at the centre of the
device. There, especially for the �exural A0 waves, the agreement between the
two tested geometries is almost perfect. The device which focuses waves before
the centre is good and works as intended, though with general less precision.
The last device, as noted, does not work as expected. Next, before analysing
di�erent couples of materials, e�orts have been employed in the reproduction
of the validity range for the GRIN lens. The authors, which described in their
work the "e�ective medium theory", reported two limits in wavelength for this
kind of devices to work properly[26]. The maximum working wavelength, so
the minimum frequency, is set such that the wave should be smaller than the
device's dimensions, not to have di�ractive e�ects predominate over refraction.
For ensuring this in our case

λ ≤ 15a (4.35)

On the other hand the minimum working wavelength, so the maximum working
frequency, is set such that the wave has to be higher that at least 3 or 4 unit cells.
This limit is strictly related to the e�ective medium theory requirements which,
for working properly, requires a low frequency limit to be applied. Otherwise,
the homogeneous approximation does not hold correctly. This can be translated
into

λ ≥ 3a (4.36)

Remembering that, for the S0 and the A0 the dispersion relation is di�erent, in
particular
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it follows that the ranges for �exural A0 waves and symmetric S0 waves will
be di�erent. For each device working with A0 waves, this means that 7kHz <
f < 170kHz while, for each device working with S0 waves, this means that
55kHz < f < 280kHz. Our next goal will be to test this ranges, to see if the
e�ective medium theory holds correctly and if the real and homogeneous devices
report similar working ranges. Having already concluded that the best device for
focusing is the one with central focusing, the analysis will be proposed only for
such prototype. Simulations have been conducted in the frequency domain with
the same settings already mentioned before. The only di�erence is that now we
make a sweep for di�erent frequencies with a step of 2.5kHz to search the limit
of validity predicted by numerical software. The �rst tested range will be the
S0 range. Starting the overview with the real geometry, results of the analysis
indicate a much more shallow range, which shows the correct functioning for fre-
quencies between 110kHz < f < 150kHz. Although this device does show that
more than a single frequency can be used for focusing, which is indeed a very
appealing characteristic for a possible prototype, we are far from the complete
range theorized by the authors. The analysis of the lowest functioning frequency
is reported in �gure 4.28. Here, in particular, it can be noticed that, even if the
device works and simulates a gradual displacement ampli�cation, the simulated
maximum point is heavily shifted from its theoretical position of x=35cm, be-
ing collocated at x=39.5cm. The magni�cation e�ect is good, with a 2.5x with
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Figure 4.28: Plots of the absolute value of displacement, along the x direction,
for the Si+Pb real device testing the S0 mode at f=110kHz.

respect to the maximum amplitude of the given input. The higher frequency
limit for the real device and the S0 mode is reported in �gure 4.29. In this case,
the overall predicted trend agrees better with theoretical derivations. In fact,
even here we have gradual ampli�cation of displacement toward the simulated
maximum, placed at x=36.5cm, so less far from the theoretical point than in
the previous analysis. The displacement magni�cation e�ect is registered as 3x.
Outside this range, the behaviour worsens badly. To practically demonstrate
this, �gure 4.30 reports the line plot of absolute value of displacement, drawn
at y=0, at the frequencies correspondent to the theoretical limits. It is pretty
clear that, in both cases, the device fails to correctly simulate the intended
behaviour. In the theoretical low frequency limit, plotted here in green, the
behaviour becomes completely �at, with no focusing detected at all. In the the-
oretical high frequency limit, reported here in the light blue plot, the device also
fails to catch the correct behaviour, with peaks arising in zones where they are
not supposed to be present. Before making �nal conclusions on the functioning
of the S0 range, the analysis of the device with layered geometry is reported.
What strikes the most here is that the frequency range is much more wider.
In fact, the device works as intended for frequencies 115kHz < f < 252kHz.
The minimum working frequency is similar to the one detected by the real de-

Figure 4.29: Plots of the absolute value of displacement, along the x direction,
for the Si+Pb real device testing the S0 mode at f=150kHz.
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Figure 4.30: Line plots of absolute value of displacement, along the x direction
and taken at y=0, for the Si+Pb real device testing S0 waves at frequencies
correspondent to theoretical frequency limits. Left: 55kHz. Right: 280kHz.

vice even before, and its results are reported in �gure 4.31. It can be noticed
that the focusing point is reached by gradual ampli�cation, which is a good
reproduction of the phenomena. The maximum amplitude of displacement is
achieved at x=37cm, so on the right from the theoretical point, and the ampli-
�cation factor is not that wide, stopping at 2.2x. However, this was true even
for the real geometry, so the two geometries show similar results for the low
limit in frequency. The higher limit, on the other hand, is almost completely
matched. Some upper frequencies are missing, but still theory is much better
reproduced here than it was in the real device. Figure 4.32 reports results
for that limit, found to be f=252kHz. At this frequency the focusing behaviour
is still present, but some problems are starting to show in the analysis. The
maximum is reached, precisely, at x=34cm, with an almost 3.4x magni�cation
e�ect with respect to the maximum amplitude of the given input. The fact that
the device is starting to show its limits, though, is represented by the fact that,
both in correspondence to the entrance and the exit of the GRIN lens, peaks
arise, which should not be there. Not only that, but the displacement magni-
�cation e�ect registered there is not even negligible, almost matching that of
the central peak. To demonstrate, even in this case, that the original range is

Figure 4.31: Plots of the absolute value of displacement, along the x direction,
for the Si + Pb layered device testing the S0 mode at f=115kHz.
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Figure 4.32: Plots of the absolute value of displacement, along the x direction,
for the Si+Pb layered device testing the S0 mode at f=252kHz.

not completely matched, �gure 4.33 reports the line plot of absolute value of
displacement, drawn at y=0, for the frequency limits predicted by the theory.
The theoretical low limit, reported in the green graph, shows the same problem
highlighted before for the real device, as the simulation completely fails to grasp
the behaviour of the lens. This time though, on the theoretical upper frequency
limit, the behaviour is somewhat caught, as a maximum is registered at coordi-
nate x=36.5cm, with an overall displacement trend which resembles the correct
one. The reason for which the upper frequency limit was trimmed to 252kHz
lies in the fact that some frequencies, between 252kHz and 265kHz, didn't al-
low the phenomena to be grasped. To conclude this analysis on the S0 range,
table 4.7 reports a comparison between the frequency limits found by numerical
software and the ones found by theoretical derivations. While the lower limit
in frequency is not matched by either geometries, the upper one is much better
represented by the layered geometry. In particular, results of the layered device
are very good if we put them in perspective by calculating the wavelength at
which the frequency found corresponds. Computing it for f = 252kHz results
in λ = 3, 32a. This is, however, still in line with what the authors said, as
they predicted a minimum wavelength of either 3 or 4 unit cells. This proves

Figure 4.33: Line plots of absolute value of displacement, along the x direction
and taken at y=0, for the Si+Pb layered device testing S0 waves at frequencies
correspondent to theoretical frequency limits. Left: 55kHz. Right: 280kHz.

63



Table 4.7: Comparison between theoretical ranges and discovered ones, for the
S0 mode, on the Silicon and Lead device focusing waves at the centre.

Theoretical Range Real Geometry Layered Geometry
55kHz<f<280kHz 110kHz<f<150kHz 115kHz<f<252kHz

that, at least for S0 waves on the layered geometry, the found limit of roughly
λ > 3.3a �ts with theoretical derivations. For the real device the upper limit in
frequency falls around λ = 5.5a, so less promising. For the minimum frequency,
so the maximum wavelength, both devices predict a frequency around 110kHz,
which can be translated to λ = 7.5a, exactly half the theoretical limit. The
last conclusion is that, again, the real device accounts for phenomena in a less
elegant and precise way than the e�ective device but, again, this is probably
due to a more coarse mesh employed in such case. Concluded the discussion
on S0 waves, the same comparison is made for the A0 wave propagation. As
before, the comparison starts from the analysis of the device with real geome-
try which, again, predicts a range of frequencies shallower than the theoretical
one. Figure 4.34 reports results for the found minimum limit, which is 20kHz.
Looking at the aforementioned graphs, it can be noticed that the device works,
but with some remarks to be made. The focusing point is placed around the
theoretical position, being located at x=36cm, so a good �t is found. However,
the ampli�cation e�ect is much less striking. In fact, in the left image it can
be appreciated that the red zone, indicating higher displacement magnitudes,
is much more spread over the whole lens. Even the line plot con�rms that the
ampli�cation e�ect is present, but the di�erence in peak heights inside the de-
vice is not that remarkable. Having acknowledged this behaviour, the one at
the upper frequency limit is described, reported in �gure 4.35, which is found
to be 90kHz. Here, the focusing point is concentrated in a smaller area, located
at a coordinate x=33cm. The most impressive result here is the displacement
ampli�cation factor, which reaches 5x, a very promising result. The trend inside
the device is even good, as the maximum amplitude reached at the device's cen-
tre overcomes strongly the displacement trend in other points of the device, as
it should be. To further demonstrate that the theoretical limit is not matched
by the analysis, simulations made at the frequencies belonging to the theoretical

Figure 4.34: Plots of the absolute value of displacement, along the z direction,
for the Si+Pb real device testing the A0 mode at f=20kHz.
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Figure 4.35: Plots of the absolute value of displacement, along the z direction,
for the Si+Pb real device testing the A0 mode at f=90kHz.

Figure 4.36: Line plots of absolute value of displacement, along the z direction
and taken at y=0, for the Si+Pb real device testing A0 waves at frequencies
correspondent to theoretical frequency limits. Left: 7kHz. Right: 170kHz.

Figure 4.37: Plots of the absolute value of displacement, along the z direction,
for the Si+Pb layered device testing the A0 mode at f=20kHz.

range are reported in �gure 4.36. The low frequency limit, reported in the green
graph, shows the correct behaviour, although the e�ect is spread over a larger
area. The range has been reduced, though, because some frequencies between
the theoretical limit and the reported one completely diverge from the intended

65



Figure 4.38: Plots of the absolute value of displacement, along the z direction,
for the Si+Pb layered device testing the A0 mode at f=170kHz.

behaviour. The higher limit, on the other hand, predicts peaks not in the cor-
rect position, and are not attributable to the lens' e�ect. Having described the
real device, the last step is to comment the layered one. Like it has been found
for the S0 wave propagation analysis even here, for A0 waves, the layered device
behaves better. However, di�erences between the two tested devices are much
less pronounced for the A0 mode. Starting from the low limit of the layered
device for the A0 mode, it is found to be 20kHz. Results of the simulation at
that frequency are reported in �gure 4.37. This time what strikes is that the
analysis is practically the same performed with the real geometry, as the same
strong points and limitations are found. In particular, at this frequency the
device works, has a focusing spot placed at x=36cm but, as underlined before,
the increment between the displacement at the lens' edge and the one at the
centre is very shallow, underlining that the device brings a very small ampli�-
cation. In fact, the overall magni�cation e�ect at the peak is registered as 2.5x.
Figure 4.38 reports results for the upper frequency limit of this last con�gura-
tion tested. This time, the upper frequency limit is perfectly matched, with the

Figure 4.39: Line plot of absolute value of displacement, along the z direction
and taken at y=0, for the Si+Pb layered device testing A0 waves at the theo-
retical low frequency limit.
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Table 4.8: Comparison between theoretical ranges and discovered ones, for the
A0 mode, on the Silicon and Lead device focusing waves at the centre.

Theoretical Range Real Geometry Layered Geometry
7kHz<f<170kHz 20kHz<f<90kHz 20kHz<f<170kHz

analysis at f = 170kHz showing a correct behaviour. In fact, in this case it
can be noticed that the peak is strongly localised at the centre of the lens, with
an absolute maximum reached at x=36cm. The overall trend of the analysis
across the device is also great, with a sharp ampli�cation predicted only at the
focusing point, as it should be. Figure 4.39 reports the line plot of absolute
value of displacement for the case belonging to the theoretical frequency limits.
This time, the only non matched limit was the lower one, reported in the green
graph. The device shows a �at behaviour, with no focusing detected. Finally,
table 4.8 recaps the discovered ranges for the A0 device and puts them in com-
parison with the theoretical ones. Once again, the real device shows a lower
range reproducibility than the layered one. In particular, the layered geometry
is able to almost correctly grasp the whole behaviour, missing only some low
frequencies. The low frequency limit is the same for both geometries, placed at
f=20kHz, which corresponds to λ = 8.7a. Even this time the maximum working
wavelength is around half the ideal limit. As it has been underlined before with
the analysis of the devices at ka = 1, generally speaking A0 mode simulations
results between the two di�erent geometries show a better degree of convergence
that the correspondent S0 mode results. Having tested the focusing properties
and the accuracy of this lens, the next step will be dedicated to testing this
con�guration with di�erent pairs of materials. In particular, up to this point
the pair of materials silicon + lead has been tested. However, if this design is
supposed to be built and not only theorized, a practical realization of a pro-
totype with such di�erent material will be particularly challenging and, if it is
even possible, most probably it will not be cost e�cient. This premise poses
ground for testing the usage of di�erent pairs of materials, to �nd one that will
be more suitable for a prototype realization. The most obvious choice, even
thinking at a possible application in MEMS and micro-devices world is using
silicon coupled with hollow inclusions, as existing manufacturing processes for
MEMS already allow to build such structures. The next part is dedicated to
the analysis of the device built with this pair of materials. For reference, results
will be compared with the previous case with central focusing, which showed to
be the most consistent and precise overall. For this exact reason and to make
the comparison as fair as possible, even the new device is set to focus waves
at its centre. The setting of the analysis has not changed by any means: the
same absorbing boundary conditions are applied, to eliminate the interference
of re�ected waves inside the domain. Even the prescribed displacement is set in
the same manner. For what concerns the mesh used, the same discussion made
above for the silicon and lead device apply. In particular, both devices have
been tested by using a free tetrahedral mesh. However, the layered one was
built using an "extra �ne" element size, while the real geometry allowed only
for the use of "�ner" element size. Remembering that the frequency at which
the analysis is lead depends on the plate velocity of the external homogeneous
layer, even this parameter doesn't change, as the bulk material is still silicon.
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As a reminder, the frequencies are

fA0 =
ω

2π
=

vphb

2π
√

12
k2
A = 38399Hz (4.39)

fS0 =
ω

2π
=
vpkS
2π

= 133019Hz (4.40)

As usual, we start this comparison from the analysis of the S0 mode. The
simulation at the given frequency is shown in �gure 4.40 for both the real device,
shown on the left, and the layered device, shown on the right. As the two images
clearly show, the device works correctly even in this case with di�erent materials.
The focusing point is correctly predicted in both analysis and visible in both
images. To make more precise assessments, a comment on the line plots which
represent the absolute value of the amplitude of displacement, reported in �gure
4.41, is brought up. Of course, being the inclusions empty in this case, the line
plot is not made at y=0, because the plot will be constantly interrupted by
the hole's presence, but is made at a slightly lower coordinate, at y=-0.5a=-
5mm. There it can be noticed that the two trends are not identical but share

Figure 4.40: Surface plots showing the absolute value of displacement, along the
x direction, for a Si+Holes GRIN lens with central focusing when testing the
S0 mode. Left: real device. Right: layered device.

Figure 4.41: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the Si+holes device testing the S0 mode.

68



similar traits. In particular, the focusing point is predicted, in both geometries,
at the coordinate x=36cm, so near its theoretical position at x=35cm. The
maximum ampli�cation is di�erent in the two cases, being 5.5x in the layered
geometry and 4.75x in the real case. Overall, the analysis shows a good trend,
and the phenomena is correctly reproduced. After this promising premise, the
next step is to evaluate the performances of the A0 mode. In �gure 4.42 are
reported the surface graphs where the absolute value of displacement, along the
z direction, can be seen at comparison for both geometries. Even in this case,
the behaviour of the device is correctly reproduced by both geometries. The
focusing point is clearly visible in red and the e�ect of deviation and focusing
is correctly reproduced by both geometries. As usual, to make more precise
comparisons we look at the line plot of the absolute value of displacement,
taken at the y=-5mm line, reported here in �gure 4.43. As it was noted for the
previous devices, even here for the device with holes the A0 mode comparison
shows an overall better agreement between the test fo di�erent geometries. In

Figure 4.42: Surface plots showing the absolute value of displacement, along the
z direction, for a Si+Holes GRIN plate with central focusing when testing the
A0 mode. Left: real device. Right: layered device.

Figure 4.43: Comparison of line plots of absolute value of displacement, com-
puted at y=0, for the Si+holes device testing the A0 mode.

69



Figure 4.44: Plots of the absolute value of displacement, along the x direction,
for the Si+Holes real device testing the S0 mode at f=110kHz.

particular, the trend reproduced is the correct one for both, as the focusing point
is present and visible, though a little bit shifted from the theoretical position.
In the real device the focusing point is at x=37cm, while on the layered device
is at x=37.5cm. The ampli�cation e�ect is visible and the device behaves as
supposed. Even here there is a small di�erence for what concerns the amplitude
of displacement prediction, here higher on the real device, which predicts a
5.5x with respect to the layered one, which predicts a 5x magni�cation e�ect.
So, for what concerns analysis at the wavenumber ka = 1, results are good.
To further test even this design, the frequency range behaviour is tested next.
Again, since the bulk material is the same in both devices, the theoretical ranges
calculated before do not change. As done previously, the �rst tests report the
range simulated by the real device with the S0 mode. Similarly to what has
been found for the device with lead inclusions, the range of the real device
with the S0 mode is particularly shallow. Figure 4.44 reports the lower limit
in frequency found by numerical simulations, which is 110kHz, far from the
theoretical one. Looking at both plots reported, it can be deduced that the
focusing point is present at a reasonable coordinate, being placed at x=36cm.
The magni�cation e�ect on the displacement amplitude, given by the lens, is
great, with a predicted 5.5x ampli�cation. There only strange element is a zone

Figure 4.45: Plots of the absolute value of displacement, along the x direction,
for the Si+Holes real device testing the S0 mode at f=143kHz.
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Figure 4.46: Line plots of absolute value of displacement, along the x direction
and taken at y=0, for the Si+Holes real device testing S0 waves at frequencies
correspondent to theoretical frequency limits. Left: 55kHz. Right: 280kHz.

Figure 4.47: Plots of the absolute value of displacement, along the x direction,
for the Si+Holes layered device testing the S0 mode at f=115kHz.

outside the device which behaves abnormally, as a pretty high displacement is
registered even before the lens is encountered, which should not be present in the
�nal analysis. However, after the lens is encountered, the magni�cation e�ect is
triggered as it should be. Figure 4.45 reports the plots of the absolute value of
displacement for the upper limit in frequency found by numerical simulations,
which is 143kHz. Here it can be noticed that the simulation is starting to show
some problems. The focusing point is present, even at a great coordinate, being
placed at x=35.5cm. The e�ect of the device is clear and visible, but some peaks
at the device are starting to be predominant. To demonstrate that the device
doesn't work outside this shallow frequency limit, simulations at frequencies
equal to the theoretical limit are reported in �gure 4.46. The theoretical low
limit in frequency, represented by the green line plot, focuses waves at the wrong
point, placing it at the lens' end rather than in the middle. The upper limit,
on the other hand, behaves even worse, as an e�ect is registered before the lens,
where no phenomena should be present, while inside the lens the behaviour
is completely �at. Passing on to the review of the S0 mode propagation on
the layered device, the following is found. The range predicted by simulations is
closer to the ideal one, but still not completely matched. Figure 4.47 reports the
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Figure 4.48: Plots of the absolute value of displacement, along the x direction,
for the Si+Holes layered device testing the S0 mode at f=280kHz.

Figure 4.49: Line plot of absolute value of displacement, along the x direction
and taken at y=0, for the Si+Holes layered device testing S0 waves at the
frequency correspondent to the theoretical low frequency limit of 55kHz.

absolute value of displacement for the lower frequency limit, found to be 115kHz.
In particular, it can be noticed that, at this frequency, the focusing point

is present and at a coordinate x=36.5cm, not so distant from the theoretical
point. The problem is, again, that the displacement peak at the middle is less
localized, with the surrounding areas presenting a similar value of displacement.
The upper frequency limit, on the other hand, is matched at 280kHz. Looking
at the results for this analysis, reported in �gure 4.48, what strikes the most is
the expected magni�cation e�ect, set to be 12x, a very promising result indeed
not matched by any simulation made here. There overall trend is also very
good. Is worth to mention, though, that for some frequencies around this limit

Table 4.9: Comparison between theoretical ranges and discovered ones, for the
S0 mode, on the Silicon and holes device.

Theoretical Range Real Geometry Layered Geometry
55kHz<f<280kHz 110kHz<f<143kHz 115kHz<f<280kHz
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Figure 4.50: Plots of the absolute value of displacement, along the z direction,
for the Si+Holes real device testing the A0 mode at f=22.5kHz.

the behaviour at the lens' edge starts to become anomalous since peaks start to
arise even there. To demonstrate that the low frequency limit is not matched,
results of simulation at that frequency is reported in �gure 4.49, where is clear
that the device does not focus waves on the correct position. Concluding the
discussion for S0 waves, table 4.9 reports a comparison between the theoretical
ranges and the ones found by numerical simulation software. Similar conclusions
to the ones already reported for the silicon and lead device can be made. In
particular, the real device shows a shallower range than the layered device,
probably due to the coarser mesh. The lower frequency limit is similar for both
devices, corresponding to a wavelength λ = 7.5a. The main di�erence lies in
the upper frequency limit. While the layered device matches the upper limit,
so still around the theoretical limit, the real device places such limit at a much
larger wavelength, precisely λ = 5.84a. Having discussed the range for the S0

waves, the �nal discussion is dedicated to the comparison of ranges for the A0

waves. Starting the overview with the real geometry, the lower frequency limit
is not matched, as the minimum working frequency is found to be 22.5kHz.
Figure 4.50 reports the surface plot of the absolute value of displacement for
the analysis at that precise frequency value. There it can be noticed that the
maximum ampli�cation value is reached at the centre of the device, precisely

Figure 4.51: Plots of the absolute value of displacement, along the z direction,
for the Si+Holes real device testing the A0 mode at f=87.5kHz.
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Figure 4.52: Line plots of absolute value of displacement, along the z direction
and taken at y=0, for the Si+Holes real device testing A0 waves at frequencies
correspondent to theoretical frequency limits. Left: 7kHz. Right: 170kHz.

at x=36cm. Even here the ampli�cation e�ect predicted by the device is much
more promising, arriving at a 10x with respect to the maximum amplitude of
displacement given by the input. Again, the only problem encountered here
is that the device shows a bit of ampli�cation even before the lens is met.
However, inside the device, the behaviour is the expected one. Even the upper
frequency limit is not matched, particularly analysis work until the frequency
87.5kHz is reached. The response of the device at that frequency is reported
in �gure 4.51. In particular, the focusing point is still clearly visible, and the
central peak is very sharp and localised, being placed at x=34cm. Even the
general trend is very great this time, as the displacement ampli�cation e�ect
is reached gradually along the lens. Even here, to further demonstrate that
theoretical limits are not matched, �gure 4.52 reports results for simulations at
the theoretical frequency range. The low theoretical limit, represented in green
in the image, shows an almost �at behaviour, as if no lens was present. The
upper theoretical frequency limit, represented in the light blue graph, does not
show focusing, as the trend of displacements inside the device do not follow
the correct trend. Before making �nal considerations, the performances of the
layered device are commented. The layered device, as always, is able to grasp

Figure 4.53: Plots of the absolute value of displacement, along the z direction,
for the Si+Holes layered device testing the A0 mode at f=23kHz.
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Figure 4.54: Plots of the absolute value of displacement, along the z direction,
for the Si+Holes layered device testing the A0 mode at f=170kHz.

the functioning of the device more correctly. In particular, the lower limit in
frequency is still missed, as the analysis places it at 23kHz. Its results are
reported in �gure 4.53. There, it can be noticed that a focusing e�ect on the
centre is present. However, the di�erence in displacement between the edges of
the device and the centre is much less pronounced. This analysis is very similar
to the correspondent one for the real device, underlining once again that A0

waves simulations tend to converge better between di�erent geometries. Even
here, for the layered geometry, the upper frequency limit is completely matched,
being placed at 170kHz, and its results are reported in �gure 4.54. The result
for the high frequency limit is particularly promising. In fact, the focusing point
is very localized, and the displacement ampli�cation is reached gradually, as it
should be. The displacement ampli�cation value is even great, reaching a 7x
value. Figure 4.55 reports results for the analysis at the theoretical frequency
limit, to further con�rm the conclusions reported here. As the upper frequency

Figure 4.55: Line plot of absolute value of displacement, along the z direction
and taken at y=0, for the Si+Holes layered device testing A0 waves at the
frequency correspondent to the theoretical low frequency limit of 7kHz.
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Table 4.10: Comparison between theoretical ranges and discovered ones, for the
A0 mode, of the Silicon and holes device.

Theoretical Range Real Geometry Layered Geometry
7kHz<f<170kHz 22.5kHz<f<87.5kHz 23kHz<f<170kHz

limit is matched, only the lower limit analysis will be reported here. As it is
clearly visible from the image, also this time the behaviour is not bad, but it has
been removed from the range since, even here, frequencies between 7 and 23kHz
fail to show the correct behaviour. Table 4.10 reports a comparison between
the theoretical limits and the ones found by numerical simulation software.
One again, the layered device performs better due to its more re�ned mesh.
As it was discovered for the device with lead, the A0 mode is overall better
represented even in the real device, where it is able to show a broader frequency
limit than it predicts for the S0 waves. The low frequency limit of 23kHz
corresponds to a wavelength of λ = 8.1a, a bit more than half the theoretical
limit. The upper frequency limit, for the real device, is set at f=87.5kHz, which
corresponds to λ = 4.1a, which is not that bad if we recall that the authors
of the theory predicted a minimum working wavelength of 3 or 4 unit cells.
Still, the behaviour does not match the one of the layered geometry, which is
able to match the limit completely. Having concluded even the comparison
for the Si+Holes device, some conclusions can be made. The two devices share
many treats, for example both have some frequency range reproducibility issues,
especially on the real device. In terms of working capabilities, both are very
good. The only consistent di�erence between the two is that the device with
holes predicts, on average, much greater displacement ampli�cations, which is
a very appreciated feature, considering that, if one has to think of building a
prototype, making it with through holes and silicon would be much easier than
doing it with lead. The only remark made here is that the central holes of the
Si+holes device reach a �lling fraction of f=0.6, which is a mid to high �lling
fraction. Remembering that the device does not work for high �lling fraction,
the only potential problems were related to working capabilities issues but, since
simulations showed a good behaviour, this concerns should not be problem at
all.
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4.3 Time Domain Analysis

Having concluded the part dedicated to the overview of each GRIN device ca-
pabilities, in the next pages the attention will be put on time domain analysis.
In this case, simulations aim at reproducing the behaviour of the device giv-
ing, as an output, the focusing of the GRIN lens as it evolves in time. This
types of analysis are closer to what happens in real life, so they usually allow
to visualize better the phenomena. This time, two analysis will be conducted
in the time domain. The �rst simulation is dedicated, again, to the correct
visualization of the focusing point, to check if informations found before are
in agreement with what will be found in time domain analysis. The second
test, on the other hand, aims at testing the wide frequency range functioning of
the device more thoroughly. In fact, it has been demonstrated that the device
works in a frequency range wide enough. The next step is to check if it is able to
correctly recognise and focus a non monochromatic input, so a multi-frequency
wave inside the working range of the device. For what concerns the setting of
the analysis, it has not changed: the same boundary conditions apply. This
means that absorbing boundary conditions are implemented alongside the ex-
ternal thickness of the cylinder to avoid that waves, on this boundary, can re�ect
and interfere with the phenomena. What will change in both tests, with respect
to frequency analyses, is the application of the given input. In fact, for the
focusing test, a sine burst input will be given, composed of 4 cycles of sinusoidal
displacement centred at a precise frequency. For the second test, a sinusoidal
displacement which changes frequency in time is given. Figure 4.56 reports the
graphical representation of both inputs. Both test will be carried only on the
silicon and lead device, focusing waves on the centre, and on the layered ge-
ometry, to further test the potential of the design presented by the authors of
the "e�ective medium theory". Having described the setting of the analysis,
results are reported. Starting with the focusing point test, the performances of
the S0 mode are reviewed �rst. For this test, remembering the conclusions that
were made on the mentioned device, a sine burst centred at f=133kHz is tested.
Figure 4.57 shows the instant at which the sine burst input is focused in this
con�guration. It can be noticed that the behaviour is the one expected: in

Figure 4.56: Graphical representation of the di�erent inputs used for time do-
main analysis. Left: sine burst input used for the focusing test. Right: multi-
frequency input used for the second test.
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Figure 4.57: Surface plot showing the absolute value of displacement, along the
x direction, registered in the S0 mode analysis at time t = 6.23× 10−5

Figure 4.58: Surface plot showing the absolute value of displacement, along the
x direction, registered in the S0 mode analysis at two di�erent time frames.
Left:t = 4.661× 10−5. Right: t = 7.668× 10−5

plane S0 waves are focused at the correct spot. The ampli�cation e�ect, which
had an amplitude of displacement of 1µm maximum, is roughly 2.2x, matching
what has been found in frequency analysis. Even the overall trend is correctly
reproduced, as the maximum displacement value at the centre of the device is
reached by gradual ampli�cation. Figure 4.58 helps visualise the phenomena in
a better way: waves enter the GRIN lens from the left. There, thanks to the
di�erent e�ective properties of each layer, the wave is bent as a consequence
of the refractive index tuning and is focused on the central spot. After that,
waves exit from the device almost as collimated as they were at the entrance.
Overall, the agreement between this simulation and the correspondent one in
frequency domain is great. Going on with th analysis, the A0 wave propagation
behaviour is tested next. In particular, this time the sine burst was centred at
frequency 170kHz, as it proved to be the most promising from the analysis of
ranges. Figure 4.59 reports the instant at which focusing is achieved Even in
this case, the behaviour reproduced is exactly the expected one and converges
to the informations found in the frequency analysis. The focusing point is sharp
and localised, and predicts an ampli�cation e�ect of 3.5x, reached gradually.
This time the predicted amplitude of displacement is a bit lower than the the-
oretical maximum in the frequency analysis, which placed the ampli�cation at
4x. However, keeping in mind that the input between the two simulations is
di�erent, the result found is not bad at all. Looking at �gure 4.60, even here
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Figure 4.59: Surface plot showing the absolute value of displacement, along the
z direction, registered in the A0 mode analysis at time t = 8.23× 10−5.

Figure 4.60: Surface plot showing the absolute value of displacement, along the
z direction, registered in the A0 mode analysis at two di�erent time frames.
Left: t = 5.43× 10−5. Right: t = 1.04× 10−4

it can be seen that the device is working correctly: waves enter on the left, are
bent thanks to the refractive index pro�le, and exit from the device collimated,
as the two pictures at di�erent time frames show. Having con�rmed that infor-
mations between time and frequency domains converge, the next step will be
dedicated to the use of a multi-frequency load, like the one depicted in �gure
4.56. These loads have been obtained in MATLAB using the chirp function. Es-
sentially, the load starts, at time t0 = 0, at a precise value of frequency, which
is increased linearly up to a second time frame value t1. For both the test of
the S0 and the A0 mode, a multi-frequency load which varies in time of 10kHz
will be tested. Of course, being the frequency ranges of the two modes di�erent,
the tested frequency window and the t1 value will be di�erent. In particular,
for the S0 mode, a load which varies between 130kHz and 140kHz will be used,
with t1 = 7.31×10−5. For the A0 mode, on the other hand, a load which ranges
from 40kHz to 50kHz will be applied, with t1 = 2.56×10−4. Starting the review
of results with a comment on the S0 mode, �gure 4.61 reports surface plots of
the absolute value of displacement, along the x direction, taken at two di�erent
time frames. In particular, the time frame on the left represents the moment
at which waves start crossing the centre of the device, while the time frame
on the right represents the last time frame at which waves cross the centre. It
is clearly visible that focusing in evident in both images, and this means that
the feature of the lens, so focusing properties, are maintained throughout the
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Figure 4.61: Surface plot showing the absolute value of displacement, along the
x direction, registered in the S0 multi-frequency analysis at two di�erent time
frames. Left: t = 4.07× 10−5. Right: t = 1.09× 10−4.

whole analysis, which was exactly the aim of this test. Having con�rmed the
behaviour for the S0 mode, the last step will be dedicated to testing the A0

mode. Results for the A0 mode are reported in �gure 4.62. Here, it can be
appreciated that the same considerations made on the S0 mode still apply: the
focusing behaviour is present and clearly visible in both images. This means
that focusing is maintained throughout the whole analysis, from the �rst time
step at which waves cross the centre of the device, to the last one. This last
analysis demonstrated that even a non monochromatic input can be correctly
recognised by the device and focused, which is a great feature, given that not
always monochromatic inputs are available in the environment to be exploited.

Figure 4.62: Surface plot showing the absolute value of displacement, along the
z direction, registered in the A0 multi-frequency analysis at two di�erent time
frames. Left: t = 7.9× 10−5. Right: t = 3.3× 10−4.
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Chapter 5

Luneburg lens prototype 1

This chapter is dedicated to the analysis of the numerical simulation results for
one of the two Luneburg lenses tested in this work. In particular, as it will be
explained shortly, this lens has been built exploiting the same guidelines fol-
lowed for the GRIN lens, so the same e�ective medium theory still applies. In
particular, section 5.1 deals with an overview on the theoretical model used for
this lens. Since it has already been explained in chapter 4, here only the ma-
jor di�erences between the two devices, hence the refractive index pro�le, will
be treated in more detail. Section 5.2 deals with the analysis and comment of
the results for this device developed in the frequency domain, making compar-
isons between layered and real geometry, with the addition of some new tests
performed here concerning the directionality of the input in an omnidirectional
lens, like this one. Then, section 5.3 deals with time domain simulations, aimed
at the veri�cation of convergence between what has been discovered before in
frequency. A part of the discussion will be reserved to the test of a beam for
wave energy localization and, possibly, energy harvesting.

5.1 Construction of the Lens

The aim of this section is to explain all the theoretical passages which allow
to build the �nal design for the �rst prototype of Luneburg lens. Such lens
has been built following the same e�ective medium theory proposed by Pennec
et al. in 2007[26, 27] and already explained in the previous chapter for the
construction of GRIN lenses. As such, since the derivation has already been
reported there, here the focus will be particularly put on all the di�erences that
arise between this design and the previous one. A �rst change manifests in the
de�nition of the unit cell, which now is a rhombus and can be observed in �gure
5.1. This was done to respect the particular symmetry of this lens. Luneburg
lenses, as it has been cleared in Chapter 2, are omnidirectional devices, which
means that their working principle is maintained notwithstanding the direction
from which the input arrives. This feature descends form their radial symmetry,
hence the need for a change of de�nition in the unit cell, as the construction
of the device becomes easier with this type of symmetry. Since the geometry
of the unit cell has been changed, now the �lling fraction de�nition changes
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Figure 5.1: CAD representation of the unit cell employed in this chapter for the
construction of a Luneburg lens.

accordingly, becoming

F =
2π(d/2)2

√
3a2

(5.1)

where a is the lattice constant and d is the diameter of the inclusion added in
the unit cell. Having cleared this point, the goal now is to create the device by
matching the refractive index pro�le generated by the change in the inclusion's
diameter to a theoretical one coming from an ideal pro�le. As it has been
explained before, the refractive index of a Luneburg lens that focuses planar

Figure 5.2: Graphical representation of the ideal pro�le of a Luneburg lens
versus the radial position inside the lens.
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wavefronts on the opposing point with respect to the entrance one is

n(r) =

√
2−

( r
R

)2

(5.2)

where r is the radial position of the unit cell inside the lens and R the lens' radius.
A graphical representation of this pro�le versus the radial position inside the lens
is proposed in �gure 5.2. Having de�ned the theoretical pro�le, the following
step is to de�ne the refractive index inside the lens to tailor it accordingly. One
of the advantages of this e�ective medium theory lies in the ability to tune
independently the refractive index for two separate Lamb wave modes: the S0

mode and the A0 mode. If our �nal device has to focus both types of waves on
the same spot, as it was done for the GRIN plate, the two refractive indexes
have to be matched across the whole device. Being the dispersion relation of the
two waves di�erent, their index de�nition will change accordingly: in particular
we have that

nS0
=

vpb
vp(r)

(5.3)

n2
A0

=
vpb
vp(r)

hb
h(r)

(5.4)

where vp is the plate velocity term, which depends on the plate's rigidity and its
density, h is the plate's thickness and the subscript b denotes material properties
of the background material. To be able to set both refractive indexes to the same
value, the S0 mode's index is regulated �rst. So we search, at a given position,
for the plate velocity's value which is able to grant that index tuning. Once it
has been identi�ed, the last step is to tune the A0 mode's refractive index by
changing the thickness of the plate locally, as now the plate velocity is a given

Table 5.1: Material Properties values for Silicon, Lead and Aluminium.

MATERIAL E [GPa] ν ρ[Kg/m3]
Si 150 0.28 2330
Pb 16 0.44 11340
Al 70 0.35 2710

Table 5.2: Data for the Silicon and Lead Luneburg device

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.4142 5909.92 0.149 2.178 7.071 118.26 0.229 3672.49
a 1.4107 5924.75 0.148 2.170 7.089 118.45 0.230 3663.48
2a 1.4 5969.92 0.144 2.141 7.143 119.20 0.231 3627.44
3a 1.3820 6047.55 0.138 2.096 7.236 120.34 0.233 3573.38
4a 1.3565 6161.52 0.129 2.026 7.372 122.06 0.236 3492.29
5a 1.3229 6317.97 0.117 1.930 7.559 124.41 0.239 3384.17
6a 1.2806 6526.41 0.102 1.802 7.809 127.40 0.244 3249.02
7a 1.2288 6801.55 0.083 1.625 8.138 131.30 0.250 3077.83
8a 1.1662 7166.83 0.061 1.388 8.575 136.09 0.258 2875.11
9a 1.0909 7661.66 0.033 1.025 9.170 142.22 0.268 2627.33
10a 1 8357.89 0 0 10 150 0.28 2330

83



Figure 5.3: CAD drawings of the two di�erent geometries of the Luneburg lens.
Left: real device. Right: layered device.

term already calculated. Having done that, the value of every variable that is
needed to de�ne our e�ective material can be obtained, since the needed �lling
fraction at a given point is known, so simulations can be started. Following
what has been done by the authors, the studied device was created with a unit
cell made of silicon with lead inclusions. Their material properties are reported
in table 5.1, while the derived e�ective medium properties are reported in table
5.2. The idea, at this point, was to try and build a di�erent lens based on a
more convenient pair of materials, like it has been done for the GRIN plate.
The obvious choice, even here, was to try the same base material, so silicon,
with hollow inclusions. There was, however, a problem. Supposing that the
�lling fraction can range from 0 to 1, the e�ective plate velocity term for silicon
and hollow inclusion, normalized with respect to the background value, ranges
from 1 to 0.72. Since this precise refractive index pro�le requires a maximum
index of 1.414, we have that vp(y)/vSi = 0.7, which is unreachable and, so, this
pair of material is not suitable for the construction of a Luneburg lens with this
refractive index pro�le. The obvious subsequent thought was to change the bulk
material, in order to try match the plate velocity value needed. A try has been
done with aluminium and holes as inclusions. In this case, the plate velocity
value is reached, but only for �lling fractions far too high. Remembering that
the e�ective medium theory holds for low to mid �lling fractions, we expect such
built device to not show focusing. Generally speaking, using hollow inclusions
here is made very hard since the plate velocity, with respect to the use of a solid
material, changes more subtly. The plate velocity is de�ned as

v2
p =

D̄

ρ̄

Eb
ρb(1− ν2

b )
(5.5)

where values with a bar are normalized with respect to their background value.
If we want the velocity term to drop, D has to drop too but ρ has to increase.
This is exactly why lead inclusions are so good in terms of design: increasing
the �lling fraction allows to have a decreasing rigidity and an increasing density.
With holes, both background terms are set to zero, so the overall decrement in
vp value is more gradual. Having cleared that holes employment with this design
is rather impossible, to be able to build a di�erent design we have to switch back
to the usage of two solid materials. The issue of this con�guration, however,
remains, as the combination of two solid materials is usually more di�cult to
realize, if one has to think of a possible prototype. For this reason, the trial of
a di�erent material combination has been eventually scrapped for this design.
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Table 5.3: Data for Silicon and holes Luneburg device

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.4142 5909.92 N.A. N.A. 7.071 N.A. N.A. N.A.
a 1.4107 5924.75 N.A. N.A. 7.089 N.A. N.A. N.A.
2a 1.4 5969.92 N.A. N.A. 7.143 N.A. N.A. N.A.
3a 1.3820 6047.55 N.A. N.A. 7.236 N.A. N.A. N.A.
4a 1.3565 6161.52 0.913 5.017 7.372 7.10 -0.103 202.71
5a 1.3229 6317.97 0.799 4.693 7.559 17.21 -0.0731 468.33
6a 1.2806 6526.41 0.660 4.265 7.809 31.06 -0.033 792.20
7a 1.2288 6801.55 0.502 3.720 8.138 49.49 0.021 1160.34
8a 1.1662 7166.83 0.337 3.048 8.575 73.14 0.088 1544.79
9a 1.0909 7661.66 0.168 2.152 9.167 104.83 0.173 1938.56
10a 1 8357.89 0 0 10 150 0.28 2330

Table 5.4: Data for Aluminium and holes Luneburg device

y[m] n(y) vp[m/s] f R[mm] h[mm] E [GPa] ν ρ[Kg/m3]
0 1.4142 3836.42 0.958 5.138 7.071 1.49 -0.096 115.18
a 1.4107 3846.04 0.945 5.104 7.089 1.93 -0.093 149.05
2a 1.4 3875.37 0.906 4.998 7.143 3.36 -0.083 254.74
3a 1.3820 3925.76 0.850 4.841 7.236 5.49 -0.067 406.50
4a 1.3565 3999.74 0.767 4.598 7.372 8.86 -0.042 631.43
5a 1.3229 4101.30 0.662 4.272 7.559 13.54 -0.007 915.98
6a 1.2806 4236.61 0.550 3.894 7.809 19.18 0.035 1219.50
7a 1.2289 4415.22 0.418 3.395 8.138 26.97 0.092 1577.22
8a 1.1662 4652.34 0.280 2.778 8.575 37.05 0.161 1951.20
9a 1.0909 4973.56 0.140 1.965 9.167 50.53 0.246 2330.60
10a 1 5425.51 0 0 10 70 0.35 2710

Table 5.2 and 5.3 still report material properties' data for the two discarded
devices with holes. Figure 5.3 shows the silicon and lead device built with two
di�erent strategies: as a layered device and in its real con�guration.

5.2 Frequency Domain Analysis

Having described in detail the derivation which leads to the calculation of the
correct refractive index pro�le to realize this lens, the next step will be the re-
view of some results. Even here, results will be split into time and frequency
domain analysis, starting with the description of the latter. As it has been de-
clared before, these analysis mainly aim at correctly reproducing the behaviour
of the lens, to see if the design works or if there are problems to work out. The
representation of the whole domain tested is reported in �gure 5.4, which is com-
posed of an external cylinder of radius 35cm where, at the exact centre, the lens
is placed. To correctly reproduce the behaviour of the lens, absorbing bound-
ary conditions have been set along the external thickness of the cylinder, to
ensure that waves hitting that boundary are not re�ected back into the domain.
Essentially, this measure is taken to avoid that wave re�ections at boundary can
interfere with the focusing phenomena. The input is given, as for the previous
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Figure 5.4: CAD drawing of the whole domain on which simulations have been
performed.

analysis of the GRIN lens, as a prescribed displacement with a maximum am-
plitude of 1µm at a given frequency. To simulate planar wavefronts, an internal
cylinder of radius 30cm was created and sectioned with a vertical plane placed
at coordinate x=-28cm. If the test involves A0 waves focusing, the displacement
is given along the z direction while, if it involves S0 waves, the displacement is
set along the x direction. For more clarity, the line on which the displacement
is set is highlighted in blue in �gure 5.5. If the device works as intended, planar
wavefronts are to be focused at point x=45cm. Following the guidelines given
by the authors that presented and tested the e�ective medium theory[26], this
device has been tested �rst at a frequency which corresponds to a wavenumber
ka = 1, where a is the lattice constant, in this case set to 1cm. Substituting
this value inside the dispersion relation for S0 waves, it is found that

fS0
=

ω

2π
=
vpkS
2π

= 133019Hz (5.6)

Figure 5.5: Representation of the zone where the load is applied to the structure.
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Figure 5.6: Graphical representation of the mesh used for the layered Luneburg
device.

while, for the A0 waves we have that

fA0 =
ω

2π
=

vphb

2π
√

12
k2
A = 38399Hz (5.7)

Before the comment of results is brought up, the meshes used for those simula-
tions are presented. The mesh used for the layered device is reported in �gure
5.6. This mesh has been built by using a free tetrahedral mesh and setting in
COMSOL an element size of "extra �ne", which leads to the reported distri-
butions. It can be noted that there is only one element along the thickness of
the device. Considering that the wavelength is, for ka=1, λ = 6.28cm and that,
for representing correctly results in numerical simulations, at least 6-7 elements
per unit wavelengths have to be modelled inside the device, the situation seems
good. The mesh for the real device was harder to create, as the particularly
complex geometry didn't allow too much re�nement with the available RAM in
our PC. The correspondent mesh is reported in �gure 5.7. This mesh has been
built by setting an "extra �ne" element size on the surface of the device with the
"edge mesh" command, which was then exploited to create a free tetrahedral
mesh. Even here, along the thickness there is only one element but, since the
tested wavelength is equal to the case of S0 waves, is considered su�cient even in
this case. Having cleared that, let's start the overview from S0 waves. Figure 5.8
reports the comparison between the analysis made on the real device and on the
layered device. Overall, the behaviour is correctly grasped by both geometries.
There are, however, some di�erences. By looking at the aforementioned results,
it is pretty clear that the focusing point is more localized in the real analysis. On

Figure 5.7: Graphical representation of the mesh used for the real Luneburg
device.
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Figure 5.8: Graph of the absolute value of displacement registered, along the
x direction, for the S0 wave propagation case when ka = 1. Left: real device.
Right: layered device.

the other hand, the layered analysis proves to be more in line with what should
occur in theory since focusing is predicted at the lens' edge, though it seems
distributed along a greater area. To further comment on those �ndings, the line
plot of the absolute value of displacement along x, at y=0, is reported in �gure
5.9 for both geometries. For what concerns the trend of displacement across
the whole device, the analysis gives back satisfactory results in both geometries,
as the maximum point is reached by gradual ampli�cation, rather than with a
more abrupt behaviour. What has been underlined before on the focusing point
position is even more evident here. While the real geometry reproduces a focus-
ing point at x=40cm, so with a 5cm discrepancy over theoretical derivations,
the layered device places it at x=43cm, a much better �t. Another di�erence
between the two analyses lies in the ampli�cation of displacement registered:
while the real device predicts a 3.5x magni�cation, with respect to the maxi-
mum amplitude of displacement of the input, the layered geometry predicts a
2.2x. Having discussed the behaviour of the device for ka=1 and the S0 mode,
before making �nal considerations, the next step is to review the A0 mode at the
same wavenumber. In �gure 5.10 the surface plot showing the absolute value

Figure 5.9: Comparison of the absolute value of displacement, in the x direction
and calculated along the y=0 line, for the two di�erent geometries testing the
S0 mode at ka=1.
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Figure 5.10: Graph of the absolute value of displacement registered, along the
z direction, for the A0 wave propagation case when ka = 1. Left: real device.
Right: layered device.

of displacement, along the z direction, for both real and layered geometry is
reported. For the A0 case it can be noticed that the two simulations are better
in agreement, as it was already underlined even for the GRIN plate, probably
due to a mesh which is more toward convergence than it is for the S0 mode. In
particular, the analyses show similar strong points and �aws. The focusing point
is correctly localized at the end of the device for both, placed at x=44cm, while
the theoretical point is located at x=45cm, so the theory-simulation agreement
on this front is good. The greatest problem encountered involves the overall
displacement trend inside the device. In fact, this becomes clearer by looking at
�gure 5.11, which proposes a comparison between the line plots, graphed on the
y=0 line, of the absolute value of displacement, along the z direction, for both
geometries. While it has already been stretched that the focusing point position
is good, the behaviour before reaching the focusing point is a bit unusual here,
as an ampli�cation is registered even toward the entrance of the device, and its
magnitude is not even negligible. In fact, if the focusing point predicts a 3.1x
magni�cation e�ect with respect to the maximum displacement amplitude given
as input, which was 1µm, such point shows a 2.9x increment, which should not

Figure 5.11: Comparison of the absolute value of displacement, in the z direction
and calculated along the y=0 line, for the two di�erent geometries testing A0

waves when ka=1.
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Figure 5.12: Graphical representation of the re�ned mesh for the layered device.

be as prominent as it is. However, on the bright side, both devices show similar
trends, apart from the small discrepancies in displacement magnitude, which
indicates a convergence for the two meshes for A0 wave propagation. Conclud-
ing, this �rst frequency analysis showed a behaviour which is in line with what
has been found before for the GRIN device: while the S0 mode tends to show
larger discrepancies testing the two di�erent geometries, the two A0 mode anal-
yses tend to agree better. This behaviour is attributed, even here, to the poor
mesh of the real device which, especially for the bad re�nement in the xy plane,
shows its limits. Although it is able to predict greater displacement magni�ca-
tion values than the one of the layered device, the overall predicted behaviour
is further from the ideal one. To better sustain this conclusion, a re�nement on
the layered mesh is proposed, since it's easier to produce denser meshes with
homogeneous layers than it is for the real device. In particular, the "new mesh"
for the layered device is proposed in �gure 5.12. It can be noticed that the
mesh has been re�ned manually both in the xy plane, where it was built by
using a free triangular mesh on the surface as a base for a free tetrahedral one,
and even along the thickness, where the number of elements doubles, going to
two. Testing only the S0 mode, since is the only one with severe discrepancies
between geometries, in �gure 5.13 a comparison between line plots of absolute

Figure 5.13: Graphical comparison of the absolute value of displacement, along
the x direction, drawn at the y=0 line, between the two di�erently built meshes
testing the S0 mode at ka=1.
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Figure 5.14: Plots of the absolute value of displacement, along the x direction,
when testing the S0 mode on the real device at a frequency of 120kHz.

value of displacement along the x direction, taken at y=0, is proposed. We
can clearly see that, no matter the great re�nement that has been made on the
mesh, results are absolutely the same. So, the poor agreement is attributed to
the real device but, again, with the given computer further re�nement on that
mesh is not possible. Going on with the analysis, the next step is to review the
frequency ranges of those devices. As before, the aim is to see if, �rst, the fre-
quency range validity is con�rmed by numerical simulations or if discrepancies
arise. Second, we check the range to see if the behaviour, this time especially for
the A0 mode, can be bettered at other frequencies. For what concerns ranges,
as it has been explained in chapter 4 for the GRIN device, the e�ective medium
theory places two constraints on the minimum and maximum wavelength for the
device to work properly. The minimum constraint in wavelength is set such that
λ ≥ 3− 4a, otherwise the homogenization theory cannot correctly simulate the
device. The maximum is set to avoid that di�raction dominates over refraction,
as λ ≤ 20a, which is the total dimension of the device. Taking into account
that the range will be di�erent, as the two dispersion relations are unequal, it is
obtained 4kHz < f < 170kHz for the A0 mode and 42kHz < f < 280kHz for
the S0 mode. Starting with an overview of the performances of the S0 mode,
we consider the real device. In this case, results are poor, to say the least. The

Figure 5.15: Plots of the absolute value of displacement, along the x direction,
when testing the S0 mode on the real device at a frequency of 145kHz.
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Figure 5.16: Simulation results showing the absolute value of displacement along
x, at the y=0 line, for the real geometry device testing the S0 mode at frequencies
correspondent to the theoretical limits. Left: lower theoretical limit. Right:
upper theoretical limit.

minimum limit is found to be 120kHz and its results are reported in �gure 5.14.
In this case, the focusing point is shifting a bit toward the edge of the lens,
at x=42cm, so a slightly better �t than the ka = 1 case. However, here some
peaks in the centre of the device start to arise with amplitudes which are not
negligible, a clear sign that the accuracy of reproduction of results is starting
to fade. On the other hand, the highest frequency at which the device works
is 145kHz, for which the results are reported in �gure 5.15. It can be noticed
that, although the device works, it shares the same problems underlined in the
overview of the working principle for ka = 1. Especially, the focusing point is
a bit shifted from its theoretical position, positioned at x=40cm, but the mag-
ni�cation e�ect of 3.5x and the gradual increment in displacement amplitude
are a good �t. Although the overall behaviour of each single analysis for S0

waves in the real device is not the worst seen, still this results seems poor, at
least compared to the theoretical range, much more wider. To further prove
that the range is more shallow, �gure 5.16 reports line plots, of absolute value
of displacements, for the real geometry and the S0 wave propagation test at the
limiting frequencies predicted by the theoretical range. At the low theoretical

Figure 5.17: Plots of the absolute value of displacement, along the x direction,
when testing the S0 mode on the layered device at a frequency of 70kHz.
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Figure 5.18: Plots of the absolute value of displacement, along the x direction,
when testing the S0 mode on the layered device at a frequency of 280kHz.

frequency limit, represented by the green plot, the analysis shows completely
wrong behaviour, with no ampli�cation registered at all, as the maximum am-
plitude reached is equal to the maximum given as input. On the other hand
the upper frequency limit, represented by the light blue plot, shows a behaviour
which is not intended, with very sharp and localised peaks not to be attributed
to focusing. Switching to the layered device description, always for the analysis
of the S0 mode, the following is found. The low limit is not matched, and the
lowest frequency with acceptable results, reported in �gure 5.17, is 70kHz. At
this frequency, the peak is still clearly visible, although spread over a greater
area. The magni�cation of displacement is going down a bit, compared to the
result for high frequencies, with an expected 2x. The upper limit, on the other
hand, is correctly matched, as reported in �gure 5.18. In particular, from the
images it is pretty evident that the focusing point is present and placed at a
reasonable coordinate, with x=43cm. The magni�cation e�ect predicted is very
good, with a 3.5x with respect to the maximum amplitude of the load given.
It can also be noted, however, that the overall trend of the analysis starts to

Figure 5.19: Simulation result showing the absolute value of displacement along
x, at the y=0 line, for the layered geometry device testing the S0 mode at a
frequency correspondent to the theoretical lower limit.
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Table 5.5: Comparison, between theoretical ranges and discovered ones, for the
S0 mode.

Theoretical Range Real Geometry Layered geoemetry
42kHz<f<280kHz 120kHz<f<145kHz 70kHz<f<280kHz

become more blurry, especially looking in the left image of �gure 5.18, meaning
that e�ectively this setup is starting to show some di�culties in the numerical
simulation, emphasizing the limit of the homogenization theory employed here.
To further emphasize that the theoretical low frequency limit is not matched,
�gure 5.19 reports results of the simulation at that frequency value, which is
42kHz. From the green plot, it is pretty clear that the lens does not work, as
the peak is absent and, again, no magni�cation of displacement is detected any-
where in the device. To summarize better results for the S0 mode propagation,
table 5.5 proposes a comparison between the ranges found with numerical sim-
ulations and the one found by theoretical derivations. The di�erence between
the two geometries here is particularly evident: while the real device predicts a
shallower range, the layered one allows to reproduce way better the phenomena.
Focusing on the real device, the low frequency limit corresponds to λ = 6.96a,
while the maximum limit in frequency corresponds to λ = 5.76a. On the other
device, the low frequency limit of 70kHz corresponds to λ = 11.93a, a much
better �t. The reason for this is attributed to the poorly re�ned mesh of the
real device, compared to the one of the layered device. Having reviewed the S0

mode, we go on by analysing the A0 mode. The �rst device analysed, again, will
be the real geometry. Sadly, even in this case the real device fails to match the
theoretical lower frequency limit, which is found to be 20kHz and corresponds
to a wavelength of λ = 8.7a. Particularly, in this case the simulation, reported
in �gure 5.20, is starting to show its limitations. As it was underlined for the
analysis at ka=1, simulations at low frequency for the A0 mode tend to show
peaks even before the focusing point, as it can be noticed even here, which is a
clear sign that the analysis is diverging from its intended behaviour. Another
remark of this conclusion derives from the comparison of the heights of the two
peaks present, which is very similar. Figure 5.21 reports the results for the
upper frequency limit, found to be 90kHz, so even the upper limit in frequency

Figure 5.20: Plots of the absolute value of displacement, along the z direction,
when testing the A0 mode on the real device at a frequency of 20kHz.
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is not matched. Looking at the bright side, though, in this analysis the device
behaves de�nitely better than in the case for ka=1. Here, the simulation shows a
gradual increment toward the absolute maximum, which is located at x=42cm,

Figure 5.21: Plots of the absolute value of displacement, along the z direction,
when testing the A0 mode on the real device at a frequency of 90kHz.

Figure 5.22: Simulation results showing the absolute value of displacement along
z, at the y=0 line, for the real geometry device testing the A0 mode at frequen-
cies correspondent to the theoretical limits. Left: low theoretical limit. Right:
high theoretical limit.

Figure 5.23: Plots of the absolute value of displacement, along the z direction,
when testing the A0 mode on the layered device at a frequency of 23.5kHz.
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Figure 5.24: Plots of the absolute value of displacement, along the z direction,
when testing the A0 mode on the layered device at a frequency of 170kHz.

Figure 5.25: Simulation result showing the absolute value of displacement along
z, at the y=0 line, for the layered geometry device testing the A0 mode at a
frequency correspondent to the theoretical lower limit.

so still on the left of the theoretical point, but an overall not bad �t. Even
the ampli�cation e�ect with respect to the maximum amplitude of the starting
input is great, with a 4.75x magni�cation. To further demonstrate that the
theoretical limits are not respected, analyses at that frequencies are reported in
�gure 5.22. The low frequency limit, reported in the green graph, shows a �at
behaviour, as if no lens was present, but this is a common problem for all low
limits. The upper limit, pictured in the light blue graph, shows peaks which
are not to be attributed to focusing. Finally, the results for the layered device
and A0 mode are presented. As it has been proven before for the S0 mode, the
upper limit is correctly matched by the analysis, while the lower one is not.
The �rst frequency which starts to show the correct trend is 23.5 kHz, reported
in �gure 5.23. In this case, the device behaves similarly to its real counterpart,
predicting a trend of magni�cation which is not very great, as a peak in dis-
placement is localised not only toward the end of the device, but even inside it,
which is an indicator of some problems in the analysis. This value corresponds
to a wavelength of λ = 8.11a, lower than the theoretical value. On the other
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Table 5.6: Comparison, between theoretical ranges and discovered ones, for the
A0 mode.

Theoretical Range Real Geometry Layered geoemetry
4kHz<f<170kHz 20kHz<f<90kHz 23.5kHz<f<170kHz

hand, the upper theoretical limit is matched, at 170kHz, and results are re-
ported in �gure 5.24. Clearly, this frequency shows much better agreement with
the intended behaviour of the device than the case for ka = 1. The focusing
point is small and localised, positioned at x=44.5cm. Even the overall trend is
very encouraging, as the increase in displacement amplitude is gradual toward
the focusing point, where an absolute maximum is achieved. The ampli�cation
factor is also pretty great, with a 4x magni�cation on displacement. To prove
that the low theoretical limit is not matched, �gure 5.25 reports the analysis
made at that value of frequency. There, as pointed out even for all other devices,
simulations show a behaviour as if no lens was present. To summarize, table
5.6 reports the comparison between the theoretical range and the one found in
numerical simulations for the A0 mode. Even here, the layered device behaves
much better, matching the upper limit and missing only the lower one. The
real device, as before, misses both theoretical limits but, this time, predicts a
wider range of frequency, in line with what has been found for the GRIN devices
built with the same e�ective medium theory. Having described the behaviour
of the device in terms of focusing and theoretical ranges, the next step will be
dedicated to demonstrate a particular feature of this lens. In chapter 2, where a
section is dedicated to the working principles of lenses, it has been highlighted
that Luneburg devices are omnidirectional. This means that, no matter where
you place the input, so long as it's applied correctly, the output rotates ac-
cordingly. The following analysis tries to prove this feature by performing a
rotation of the line on which the input is given by 45°, as pictured in �gure
5.26. This test is going to be performed on the layered geometry only as it's the
geometry which delivers the most consistent results overall. Analysing results,
starting with the S0 mode, the surface plot of absolute value of displacement,
when the input is 45° rotated, is reported in �gure 5.27. We can see that the
behaviour of the device is exactly the one that was expected: the output rotates

Figure 5.26: Graphical representation of the rotated area where the input is
going to be set.
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Figure 5.27: Surface graph showing the absolute value of displacement, for the
layered geometry, testing S0 waves coming from a rotated input position.

according to the input, as now the focusing point is 45° rotated. Comparing
the absolute value of displacement, along the x direction and taken at the y=0
line, for both the original case and the tilted input one, as done in �gure 5.28,
we can see that the analysis is exactly the same, as these plots superimpose
clearly without severe discrepancies. Repeating the analysis for the A0 mode
propagation, similar results are expected. Figure 5.29 reports the surface plot
for the case when the input is rotated. Again, even here the plot shows exactly
what could be expected, as the output rotates accordingly to the input position.
Figure 5.30 reports a comparison between line plots, this time representing the
absolute value of displacement along z, for the original case and the rotated one,
con�rming even more the idea that the two analyses are absolutely the same.

Figure 5.28: Superposition of di�erent plots of absolute value of displacement,
which put in comparison the result of the original test with the one of the 45°
rotated input case.
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Figure 5.29: Surface graph showing the absolute value of displacement, for the
layered geometry, testing A0 waves coming from a rotated input position.

Figure 5.30: Superposition of di�erent plots of absolute value of displacement,
which aims at comparing the result of the original test with the one of the 45°
rotated input case.

The last frequency analysis has been dedicated to try and place the input in a
di�erent con�guration. The idea was to apply the input no more on the line
highlighted in �gure 5.5, but to apply it on a circumference's arc of a de�ned
radius. The idea was that, if the device correctly recognised the input, there
could, theoretically, be a larger focusing spot, spread on the edge of the device.
Figure 5.31 reproduces the idea in a more graphical way: the blue line covers the
area where the the input, which will be applied radially, is going to be placed,
while the orange arc represents the hypothetical focusing region if the device
recognises the input correctly. This trial is done only on the layered device and
for the S0 mode, for a frequency of f = 133kHz. Figure 5.32 reports the results
of this trial, where the input has been applied on half the circumference's arc.
The results clearly show that something is wrong here. The focusing behaviour
of the lens is gone completely, and the simulation shows results as if there was
no lens at all. In fact, since the displacement was applied radially toward the
centre, simulations show its concentration at that exact central spot, with no
deviation e�ect to be attributed to the lens detected at all. Then, the following
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Figure 5.31: Graphical representation of the idea behind the last test.

try was to see if a less wide arc of circumference shows more encouraging results.
Results, analysed always for a layered plate on the S0 mode, are shown in �gure
5.33, where the imposition of the displacement is done on a circumference's arc
of 40° on the left and 60° on the right. Neither of these simulations show an ex-
tended focusing point, but it can be clearly noticed that the device's behaviour
changes dramatically between the two simulations reported. On the left, the
device works better: the focusing point is placed correctly toward the lens' edge
and the maximum amplitude of displacement is reached there. However, taking
as a reference results obtained when applying the input on a straight line, there
are some discrepancies. Particularly, the focusing point shifts toward the inner
part of the lens, becoming x=41cm from the lens' left edge in spite of x=43cm
found when applying the input on a straight line, which was a better �t with
theoretical �ndings. The displacement amplitude remains almost unchanged.
Increasing the arc's width, the situation worsens badly, as the point shifts to-
ward the centre of the lens, placed exactly at x=35cm, which is the middle point

Figure 5.32: Surface plot of the absolute value of displacement registered by the
numerical simulation if the input is put on half the circumference's arc.
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Figure 5.33: Graphical representation of the absolute value of displacement,
along the x direction, at the y=0 line, changing the application of the input.
Left: 40° arc. Right: 60° arc.

of the device. Not only that, but the displacement magni�cation increases to
3.2x. Remembering that, for the half arc case the concentration of displace-
ment on the centre of the device was 6x, it becomes clear where the simulation
is going. This is even more evident if we make a close comparison between
di�erent arc length cases superimposed in one graph, as seen in picture 5.34. It
can be noticed that there is a progressive trend on these analysis. Increasing
the arc length, the focusing point shifts toward the inner part of the lens and it
increases in magnitude, as it can be clearly seen in this graphical comparison.
This is to be attributed exactly to the input. As we increase the arc's length, the
device progressively doesn't recognise anymore the input as correct and tends
to shift from a behaviour where focusing is still appreciable, even though on a

Figure 5.34: Superposition of di�erent plots of absolute value of displacement,
taken along the y=0 line, for an input applied over di�erent arc lengths.
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single point, to a point where the presence of the lens is completely ignored,
as the radial input is not seen by the lens. So, having shown that the problem
is this input, clearly the lens works only with planar wavefronts and the focus
can only be a localized point, so the idea of extending the focusing point posi-
tion is completely discarded. Proven that, though, the silicon and lead device
works as intended for some frequencies, those will be put to test in time domain
simulations.

5.3 Time Domain Analysis

Having discussed the focusing properties of this lens, the next step is to review
time domain analysis. In this case, the aim is to �rst check if informations
emerged from frequency domain analysis converge to what is found here. Then,
as it has been done for the GRIN device, a multi-frequency test will be car-
ried out, to see if the device correctly recognises a non monochromatic input.
Last, a possible prototype for energy harvesting is reviewed and analysed. The
setting for all these analyses is not changed: the lens is still put inside a 35cm
radius cylinder and absorbing boundary conditions are applied along the cylin-
der's external thickness, to avoid that re�ected waves become an issue for the
discretization of the phenomena. What will change, though, is the application
of the input, depending on the analysis considered. The �rst analysis considered
will aim at con�rming the behaviour that frequency analysis have predicted in
the previous section by checking that the informations collected on focusing are
retrieved even here. Due to the higher mesh precision, tests will be carried out
only on the layered geometry. Previously, the input has been applied as a sinu-
soidal wave of constant amplitude equal to 1µm, so the input was not changing
in time. For this �rst analysis, the input will be set as a sine burst load com-

Figure 5.35: Graphical representation of the sine burst load used in time domain
simulations.
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Figure 5.36: Surface plot of the absolute value of displacement, along the x
direction, registered at di�erent time frames, for the layered device testing the
S0 mode. Left: t = 4.64× 10−5s. Right: t = 5.93× 10−5s.

posed of 4 cycles of sinusoidal displacement, centred at a given frequency. The
input has been calculated with a MATLAB script and its appearance, for a
frequency of 133kHz, is reported in �gure 5.35. This allows to better see the
focusing point in time domain simulations, as we can see waves focusing along
their path in a more clear way. The overview of results starts form the test of
the S0 mode. In this case, the device has been tested with a sine burst load
centred at 133kHz, to better compare it with the previously discovered results
in the frequency domain. Figure 5.36 reports the surface plot of the absolute
value of displacement, along the x direction, for two di�erent time frames. Here
the e�ect of the lens is particularly clear, as waves are bent as they progress
inside the device, which is a direct consequence of the refractive index tuning
operation. Remembering that, for frequency domain analysis for the S0 waves,
results predicted a focusing point placed at x=42.5cm, the next step is to see
if, even here, the point is moved back inside the lens. Figure 5.37 reports plots
of the absolute value of displacement at the instant at which waves cross the
reported coordinate for focusing in the frequency analysis. The magni�cation
e�ect, with respect to the maximum displacement value of the input, is reg-
istered as 2x. This value is in line with what has been found in the previous
frequency analysis. Furthermore, if the same plots are taken when waves hit

Figure 5.37: Plots of absolute value of displacement, along the x direction, taken
at a time frame of t = 7.14 × 10−5 when testing the S0 mode on the layered
device.
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Figure 5.38: Plots of absolute value of displacement, along the x direction, taken
at a time frame of t = 7.55 × 10−5 when testing the S0 mode on the layered
device.

the lens' edge, as �gure 5.38 shows, the magnitude of displacement goes down
to 1.7x, which con�rms the idea that focusing takes place a bit on the left with
respect to the lens' theoretical focusing point. Having discussed the S0 mode
and demonstrated that the simulation behaved as predicted, the next step will
be the review of the A0 mode. In this case, we test the device with a sine burst
centred at 170kHz, since it was clear from the frequency range analysis that,
at this frequency, results are particularly promising. Figure 5.39 reports the
surface plot of the absolute value of displacement for di�erent time steps. The
focusing behaviour can, even here, be clearly seen, as waves are bent toward
the diametrically opposed point with respect to the entrance one. The time at
which the maximum ampli�cation e�ect is registered is reported in 5.40 where,
thanks to another surface plot of the absolute value of displacement, we can see
waves converge in the required area at the lens' edge. In this case the point in
which maximum displacement is found is much more closer to the lens' edge,
reported at a coordinate of x=44.5cm. The ampli�cation of displacement, in
this case, with respect to the one of the given input, is 4x. All this information
correspond to what has been obtained in frequency domain analysis. So, even
for A0 waves, informations found here are in line with what has been underlined
in the previous section, highlighting the convergence of information between do-

Figure 5.39: Surface plot of the absolute value of displacement, along the z
direction, registered at di�erent time slots, for the layered device testing the A0

mode. Left: t = 6× 10−5s. Right: t = 8.32× 10−5s.
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Figure 5.40: Surface plot of the absolute value of displacement, along the z
direction, for the layered device testing the A0 mode at time t = 1× 10−4.

mains, which is a great result. Having reviewed the behaviour of the device
in time domain when tested with a sine burst load, the next step will be aimed
at trying to see if non monochromatic inputs are correctly recognised by the
device. To do that, a new input has been generated. It consists of some cycles
of sinusoidal displacement which varies its frequency in time. In particular, the
input starts at a given frequency at t = 0 and is set to increase linearly the
frequency up to a second time frame t1. Of course, the test of S0 and A0 modes
will involve di�erently built inputs, as their ranges are di�erent. To prove this
feature, the input is tested in a frequency window of 10kHz. The graphical rep-
resentation for the input given when testing the S0 mode is reported in �gure

Figure 5.41: Graphical representation of the multi-frequency input given for the
S0 mode testing.
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Figure 5.42: Surface plots, taken at di�erent time frames, showing the absolute
value of displacement, along the x direction, when testing the S0 mode with a
multi-frequency input. Left: t = 5.8214× 10−5. Right: t = 1.22× 10−4.

5.41. The input starts at t = 0 with a frequency of 130kHz, which arrives at
140kHz at time t = 7× 10−5. Having described the multi-frequency input, the
next step will be the test of such input. Starting with the description of time
domain analyses on the S0 mode, �gure 5.42 reports the correspondent results.
The images reported have been taken at two time frames correspondent to the
�rst and last time instant at which the input strikes the device. It can be seen
that, notwithstanding the multi-frequency nature of the input, the behaviour
represented is the correct one and has been kept from the start to the end of
the simulation, as expected. Similar results have been recorded even for the A0

mode. There, the test has been performed by using a load similar in form to
that represented in �gure 5.41, but obtained by changing the frequency span
from 40kHz to 50 kHz. Results are reported in �gure 5.43. Even here it can be
noticed that the simulation correctly reproduces the phenomena from the �rst
time frame to the last one. It is even recognisable, from the right image, that
there is a spot, on the left part on the lens, where waves concentrate lightly.
This phenomena was present even in frequency simulation where, near the en-
trance of the lens, a peak was visible, once again underlining the convergence
between all di�erent analyses. Having con�rmed the multi-frequency function-
ing of the device, the last test that will be reported here involves simulating the
same layered geometry with the addition of a beam, which is put to resonance
with the frequency of the input. The idea, in this case, is to test if such a
con�guration allows to localise the energy that waves carry. If such supposition

Figure 5.43: Surface plots, taken at di�erent time frames, showing the absolute
value of displacement, along the z direction, when testing the A0 mode with a
multi-frequency input. Left: t = 1.06× 10−4. Right: t = 3.4× 10−4.
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Figure 5.44: Beam used in the time domain simulation. Left: �nal CAD repre-
sentation of the beam's geometry. Right: Eigenfrequency analysis showing the
�exural mode activated at 170kHz.

is true, then the application of a piezoelectric layer over the beam would ensure
energy harvesting capabilities with a good e�ciency, which is vital. This test
will be performed only on the A0 mode propagation, since the aim is to test
EH performances via the activation of the d31 mode of the piezoelectric layer,
so �exural waves will be employed. The test is carried out at two di�erent fre-
quencies, to see if results change. The selected frequencies are f1 = 38.399kHz
and f2 = 170kHz. They have been selected since frequency results, at those
values, underlined a device which works in either versions, but the ampli�cation
e�ect and accuracy of reproduction of the phenomena is di�erent, being better
at f2. The input, in this case, will be given as a sine burst, like the one pictured
in �gure 5.35, centred at f1 and f2. Before describing results, a description
of the used beam is given. As anticipated, a resonator has been built with the
precise purpose of putting it at resonance with the frequency of the input. Fig-
ure 5.44 reports the CAD representation of such beam in the case where we
test the geometry at f2. The base is composed of a 3x3x3mm cube, while the
beam itself is designed as a 7.75x3x1.5mm block placed on top. On the right
of the aforementioned �gure, it can be seen the activation of the �exural mode
at the testing frequency of f2 = 170kHz. A beam with the same geometry, but
with di�erent measures, has been created and used for the f1 case, such that its
resonance is f1. Let's start the overview of results from the f1 case. First, let's
quantify if the lens brings some advantages over the usage of the resonator only.

Figure 5.45: Surface plot of the beam showing the absolute value of displace-
ment, along the z direction, taken at time frame t = 2.18 × 10−4 when testing
at f1 for two cases. Left: the lens is present in the domain. Right: the lens is
absent.
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Figure 5.46: Graphs which report the kinetic energy variation across two dif-
ferent volumes: the whole device and the beam only. Left: device with lens.
Right: Device with no lens.

Figure 5.45 proposes a comparison between surface plots of absolute value of
displacement, along the z direction, taken at a time step for both the case where
the lens is present in the domain and when is absent. When the lens is present,
the maximum displacement on the beam reaches a value of 33µm while, if there
is no lens present, the value goes down to 14µm. This allows to identify an am-
pli�cation factor, given by the lens, of 2.35x. Frequency analysis had underlined
a slightly better magni�cation e�ect, which reached 3x but, still, the e�ect is
present even here. Having described the performances in terms of displacement
ampli�cation, the next aim is to verify if energy is correctly localised on the
beam. To do that, the goal now is to verify how kinetic energy varies in time
in two di�erent volumes: on the beam only and on the whole geometry. Results
are reported in �gure 5.46 for both the case where the lens is present and when
the lens is absent. To obtain these graphs, the kinetic energy density value has
been integrated, over all time steps taken, on both the described volumes. It
is clear, from the comparison of the two graphs, that the presence of the lens
allows to localise the energy of the impinging wave. In fact, the blue graph on
the left allows to appreciate a greater localization e�ect than the case where
the lens is absent. The localization e�ect, although is present, is not that great.

Figure 5.47: Surface plot of the beam showing the absolute value of displace-
ment, along the z direction, taken at time frame t = 9.64 × 10−5 when testing
at f2 for two cases. Left: the lens is present in the domain. Right: the lens is
absent.
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Figure 5.48: Graphs which report the kinetic energy variation across two dif-
ferent volumes: the whole device and the beam only. Left: device with lens.
Right: Device with no lens.

Especially, considering the instant t = 2.2 × 10−4, we have that the energy on
the beam is 0.5mJ, while on the whole domain is 7.75mJ. This leaves us with
a concentration e�ect of 7.67%, a bit low. Having registered such results, the
test is repeated for f2. Figure 5.47 reports surface plots of the absolute value of
displacement comparing the ampli�cation of a design where the lens is present
against one where the lens is absent. On the left of the image it can be seen the
results of the test with the usage of the lens and the beam altogether. Even here,
when the lens and the beam are tested altogether, the amplitude of displace-
ment goes up, as one could expect, since the beam is vibrating at resonance. In
particular, as the image suggests, the amplitude of displacement reaches 25µm,
which is a very promising result. On the other hand, if the lens is not present,
the maximum magnitude of displacement is around 5.5µm, which means that
the gain given by the lens is roughly 4.54x. This is a good result, as it tells us
that the lens is working better than in the previous example, and is even in line
with frequency domain analysis, where simulations reported, for this frequency
and the A0 mode, an ampli�cation factor of 4.5x. The other result which is in-
teresting to comment is the one regarding energy variations inside the structure.
To check if energy is localised on the beam and not dispersed, we check again
how the kinetic energy varies in the domain. In particular, a volume integration
of the kinetic energy density is performed over all time steps calculated for two
di�erent volumes: only the beam and on the whole device. Figure 5.48 shows
the results of this integration. From the comparison of the two graphs is clear,
even in this case, that the presence of the lens allows to localise, on the beam,
a greater portion of energy than it would be localised if no lens was present,
which is a strong point over the usage of lens structures in EH. Furthermore,
here the e�ciency is even better than in the previous case. In fact, taking a
time instant of t = 1.2 × 10−4, if the whole device registers a kinetic energy of
80mJ, the beam registers 16mJ. This can be translated into a 20% energy local-
isation. This result is much better than the previous found but, again, this was
expected since, as frequency analysis have shown, frequency f2 has an overall
behaviour which allows a greater magni�cation e�ect and a greater localisation
of displacement, which are responsible for the better performances in energy
localisation.
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Chapter 6

Luneburg lens prototype 2

This chapter is dedicated to the overview and analysis of the second Luneburg
lens design reviewed in this work. First, section 6.1 deals with the theoretical
description of this new construction method employed here, highlighting all the
major di�erences found between this procedure and the one described in chap-
ter 5. Subsequently, a detailed report on all numerical simulations, which have
been performed via the usage of COMSOL Multiphysics simulation software, is
reported. In particular, section 6.2 deals with all the frequency domain simula-
tions which aim at reproducing the correct behaviour of the lens. A discussion
on the mesh's convergence will also be reported. Then, section 6.3 reports the
results of time domain simulations, with a particular focus on the ones which
will be needed for making EH considerations.

6.1 Construction of the Lens

The last category of device that is going to be tested is another Luneburg lens.
In this case, as it has been anticipated, the theoretical derivation which leads to
the �nal refractive index distribution is di�erent from the one seen in Chapter
5. The lens, aimed at focusing only �exural A0 waves, is built here via the usage
of guidelines reported on the work �rst presented by Tol S. et al, 2017[22]. The
main discrepancy found between this method and the one previously analysed
lies in the de�nition and calculation of the refractive index. If, previously, the
refractive index was calculated via the usage of the plate velocity term, now
the referring term is the wave velocity value taken directly from dispersion
relations, which creates some di�erences between the two methods, as it will
be explained in a moment. Even in this case, as is has been pointed out in
the previous section, due to the peculiar omni-directionality that characterizes
this type of lens, the authors employed a unit cell which possesses hexagonal
symmetry. The unit cell used for the calculation of dispersion relations is shown
in �gure 6.1, alongside the representation of its Brillouin zone. The inclusion,
in this geometry, is represented by a hollow cylinder which is not completely
drilled, leaving a blind hole. The authors justi�ed this choice citing better
preservation of the plate's structural integrity, in spite of the corresponding
situation with a through hole. The cell has the following dimensions: unit
cell size a = 8mm, height of the blind hole hb = 2.175mm, total height htot =
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Figure 6.1: Tol S. et al, 2017[22]: Left: Unit cell employed in their work and used
for the construction of the second Luneburg prototype. Right: Correspondent
brillouin zone for such cell.

3.175mm and a variable diameter of the inclusion. Next, the goal is to tune
correctly the refractive index. As anticipated, the most important di�erence
from the previous methods lies exactly in how it has been de�ned. This time,
the refractive index is still calculated by means of a ratio between velocities but,
now, the procedure to get those values is di�erent. The refractive index can be
written as

nA0 =
v

vΓM
(6.1)

Figure 6.2: Calculated band structure for the hexagonal unit cell at a �xed
diameter of 4mm.
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Figure 6.3: Calculated dispersion relations for the A0 �exural waves in the
hexagonal blind holes unit cell as the diameter gradually changes.

where vΓM is the �exural wave phase velocity inside the cell with a varying
diameter and v is the phase velocity of �exural waves in a pure bulk material
plate. By calculating the band structures for a di�erent set of diameters via
numerical simulation software, the speed of the wave at a given frequency can be
discovered. Then, the refractive index is readily available and can be compared
to the ideal pro�le, to build the radius' inclusions distribution. To do that, we
�rst have to select a frequency for the functioning of this device. Selecting it to
be 50kHz, the derivation of the refractive index can start. Figure 6.2 shows the
graphical representation of the band structure for the unit cell depicted in �gure
6.1, calculated via simulation software, obtained by making an eigenfrequency
analysis and sweeping the wavevector from Γ to M. After having performed
this passage for di�erent sets of diameters, the A0 dispersion relation can be
extrapolated by each of this graphs and plotted cumulatively in another one.
Figure 6.3 shows the calculated dispersion relation of the �exural A0 mode for
the unit cell at various diameters, ranging from 2mm to 7.75mm. If we know
the wavenumber at which the dispersion relation crosses 50kHz, then we can
calculate the phase velocity of the wave by using

λf = v (6.2)

Once the velocity of the A0 wave inside a given cell is found, then the refractive
index is calculated. The next passage is to tune the refractive index inside the
device, calculated with the aforementioned derivation, by matching it to an ideal
pro�le. The most common ideal pro�le used for Luneburg lenses, as explained
in more detail in Chapter 2, is the following:

n(r) =

√
2−

( r
R

)2

(6.3)

In �gure 6.4 this ideal refractive index pro�le for a Luneburg lens is reported,
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Figure 6.4: Ideal refractive index pro�le, calculated via the usage of the above
given formula, plotted against the radial position inside the lens.

where the di�erent values of refractive index pro�le are plotted against the radial
position where such index has to be set. To do such task, the authors already
provided, in their work, the graph that allows to pass from the value of radial
position to the value of the cell's diameter. In �gure 6.5 on the left such graph
is visible. On the right, a representation of the �nal lens via usage of CAD
software is displayed. Diameters value range from a maximum of 7.75mm in the
central region, where the wave speed needs to be the lowest, to a value of 2mm
at the lens' edge. This is how this lens has been built. The main consequence

Figure 6.5: Left: Plot of the inclusion's diameter needed at a given radial
position to achieve focusing inside the lens. Right: Final lens design obtained
via CAD software.
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Figure 6.6: Left: Graph that correlates the diameter of the inclusion in the
through hole case to the radial position of the cell inside the lens. Right: CAD
representation of the through holes design.

of this approach is that this lens prototype, compared to other two described in
the previous chapters, where the usage of the e�ective medium theory allows to
increase the frequency-functioning span, does non show this property. This is to
be attributed precisely to the di�erent de�nition of the refractive index. Here,
such index is de�ned thanks to the speed of the wave taken from dispersion
curves, so is a frequency dependent value, hence the limited frequency validity
of the theory. Previously, the de�nition of n(r) from the plate thickness and
plate velocity allowed to increase the frequency working window of the lens
since the cited values depended from the inclusion's diameter but not from the
functioning frequency. In order to test more accurately this second design,
which does not involve an e�ective medium theory, another lens has been built
for further testing. In this case, it has been supposed that the holes are further
drilled such that this second lens is based on unit cells with fully drilled holes. Of
course, since now the holes are through, supposing the same working frequency
of 50kHz, for a given value of diameter the dispersion relation for the A0 mode in
the through case will be lower that the one in the blind case. So, the graph that
allows to know which is the correct diameter value for each value of the device's
radial position, reported here in �gure 6.5, has to be rebuilt. In �gure 6.6 such
graph is reported on the left, while the representation of the �nal lens depicted
with CAD software is reported on the right. In this case, diameters range from
7.3mm to 0 on the lens' edge. The material used in this case will be aluminium,
with material properties reported in table 6.1. Having explained how each lens
has been built, the following step is to describe the analysis performed and
to comment on them. The next section is dedicated to the overview of the
focusing capabilities for each lens, underlining which is the lens that allows to
get the most ampli�cation with respect to a no lens case. A brief discussion on
the frequency ranges in which these devices work correctly is also brought up.
For simplicity, the two devices will be referred to as "blind hole device" and

Table 6.1: Material Properties used for these simulations

MATERIAL E [GPa] ν ρ[Kg/m3]
Al 70 0.35 2710
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"through hole device", to distinguish them more easily.

6.2 Frequency Domain Analysis

Having explained how the lenses are going to be built in the previous section,
here the description of some analysis will be carried out. In particular the �rst
focus will be put on analysis in the frequency domain. First, the functioning of
each device will be inspected, to demonstrate the power of this second design.
Then, a brief analysis is dedicated to demonstrating that this device does not
show any broadband functioning, as it has already been recalled. Before, let's
discuss the geometry and the boundary conditions. For the setting of the anal-
ysis, the guidelines given by the authors of this second method were followed, to
ensure the maximum reproducibility of the results reported in that paper[22].
First, the domain is set to be an aluminium plate of dimensions 760x305mm.
The domain, compared to the lens, which has a radius of 88mm, is much bigger.
This choice has been justi�ed to ensure that re�ection of waves at boundaries
does not interfere with our problem. Going in the same direction, the applica-
tion of absorbing boundary conditions along the plate's external thickness has
been imposed, to ensure that waves do not re�ect back in the domain when they
hit the external walls of the plate. Then, depending on the type of analysis per-
formed, a di�erent type of loading condition will be set. The authors of the text
from which the design is taken used time domain simulations to evaluate the
lens' performances and exploited a sine burst load that changes in time. Before
moving to the time domain here, in frequency domain analysis, the type of load
will be the same used in the previous frequency analysis, which consists in a
prescribed displacement in z direction at a frequency of f = 50kHz, since now
only A0 waves trigger the focusing e�ect and are tested. The �rst trial reported
here will be the one dedicated to the blind hole device, where the focusing ca-
pabilities of the device are tested. Before going through the results, a bit of
discussion is dedicated to the mesh, visible here in �gure 6.7. The mesh has
been built by using the following rule: for being at convergence when dealing
with wave phenomena, you need to have at least 6 or 7 �nite elements per unit
wavelength, such that the result is correctly reproduced. In our case, wave prop-
agation is along x, but displacements are along z, so the number of elements in
z has to be checked. For the selected frequency f=50kHz, the wavelength inside
the pure Al plate is

λ =
v

f
= 2.3cm (6.4)

Figure 6.7: Graphical representation of the mesh used for the blind hole device.
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Figure 6.8: Surface plot displaying the absolute value of displacement, along
the z direction, for the blind hole device tested at f=50kHz.

Where v is the velocity and f the frequency of the wave.The overall thickness of
the device is 3.175mm, and in that space 2 elements are placed, clearly visible
in the left image of �gure 6.7. This means that, in our case, the minimum
requirement holds. Results evaluated with this mesh are reported in image 6.8.
Here it can be seen that the blind hole device works great and as expected.

Planar A0 wavefronts are focused at the opposite point with respect to the
entrance one, as it can be clearly noted. To make more quantitative assessments,
the conventional line plot which passes across the focusing point is proposed
in image 6.9, where the absolute value of displacement along the y=0 line is

Figure 6.9: Line plot showing the absolute value of displacement, along the
z direction and plotted at the y=0 line, for the blind hole device tested at
f=50kHz.
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Figure 6.10: Line plot, created along the y=0 line, of the absolute value of
displacement obtained with the use of a mesh more re�ned in the xy plane.

reported. In this case, the e�ectiveness of the device can be clearly noticed
by looking at the sharp and localised peak present at the end of this lens.
Even the displacement concentration e�ect found here is very great, since a
5.75x magni�cation, with respect to the maximum amplitude of displacement
of the initial input, is registered. The following e�orts will be dedicated to the
demonstration that this simulation has indeed reached convergence, with some
comparison between di�erent meshes. As it has been declared, the mesh that
has been used up to this point has got two elements along the thickness of the
device and a "�ner" element size, de�ned in COMSOL, along the xy plane. Here
it will be proposed the comparison with two other meshes, one more re�ned in
z, the other more re�ned in the xy plane, to see if the increased number of
elements in either directions alters the results considerably or not. The �rst
comparison deals with analysing the behaviour when we make the mesh denser
along the xy plane. In this case, the new mesh contains only 1 element along
the thickness of the device, while the size of elements on the plane has been set,
inside the simulation software, as "extra �ne". For this new mesh the line plot,
at y=0, of the absolute value of displacement along the z direction, is proposed
in �gure 6.10. We can still notice that the behaviour is correctly reproduced
and, so, that even 1 element along the thickness allows the phenomena to be
grasped by the numerical simulation. This was expected though, as we still
are inside the 6-7 �nite elements per unit wavelength limit. To make a closer
comparison, image 6.11 proposes the comparison between this mesh, denser on
the xy plane, and the one used previously in the test of the device. It can be
clearly seen that both meshes allow the simulation to work as expected, with
some minor di�erences. The mesh with 1 element along the thickness shows a
more gradual increment of the displacement when approaching the maximum
point of ampli�cation, which is a more elegant representation of the functioning
of the device. The other, with 2 elements along the thickness, reproduces the
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Figure 6.11: Comparison between line plots of absolute value of displacement,
along the z direction and taken at y=0, obtained from two analysis performed
with two di�erent meshes, one more re�ned in the xy plane (green plot) and the
other more re�ned in z (blue plot).

phenomena correctly but the increment between the middle peaks and the �nal
one is more abrupt. The peak shifts even slightly, from x=38.25cm in the
mesh with 1 element along the thickness of the device to x=38.75cm for the
other, so a very small shift. For what concerns the actual ampli�cation, the
maximum amplitude is the same in both, with the focusing point that reaches

Figure 6.12: Line plot of the absolute value of displacement along the z direction,
taken at the y=0 line, for the mesh with 3 elements along the thickness.
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Figure 6.13: Comparison between line plots which represent the absolute value
of displacement, along the z direction and taken at y=0, obtained from two
analysis performed with two di�erent meshes, one with 2 elements along the
thickness and the other with 3.

a 5.75x ampli�cation of displacement. Overall, both meshes are very good at
reproducing the phenomena. Next, the test of a re�nement along the thickness
will be proposed, where a mesh with 3 elements along the thickness and the same
density of elements along the plane as the initial mesh will be studied. The line
plot of the absolute value of displacement, drawn along the y=0 line, is reported
in �gure 6.12. Here it can be seen that the simulation, with this mesh more
re�ned in z, behaves almost identically to the original one with less elements
along the thickness. A more detailed comparison with the initial mesh can be
brought up by superimposing the line plots at �gure 6.13. Here, it can be seen
that the behaviour of the device under these two di�erent meshing conditions
is practically the same, justifying even more the evidence that the �rst mesh
is, at least in z direction, at convergence. The only minimal di�erence is on
the amplitude of displacement, where this new mesh more re�ned in z registers
a 6x ampli�cation, compared to the 5.8x of the previous one. Again, even if
a small increment is found, it is not considered too wide to justify the usage
of this new mesh over the other. Concluding, it has been demonstrated that
the correct behaviour of this device is picked up by all of these meshes, which
propose overall close results. It is expected that the most precise behaviour on
the simulation will be reached with two elements along the thickness and an
"extra �ne" element size along the xy plane. Sadly, this mesh does not run on
our computer, since more RAM would be needed. A choice, then, has to be
made for the following simulations on which mesh to use, where the starting
mesh will be employed, as it demonstrated to be overall well balanced. Next,
the �nal analysis for this device involves the demonstration that is not capable
of broadband functionality. In particular, a frequency sweep has been done for
frequencies between 49kHz and 51kHz, with a step of 100Hz, reported in �gure
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Figure 6.14: Superposition of various line plots of the absolute value of displace-
ment, along the z direction and taken at the y=0 line, for the blind hole device
at di�erent frequencies, ranging from 49 kHz to 51 kHz.

Figure 6.15: Surface plot showing the absolute value of displacement, along the
z direction, in the lens' region. The device tested is the blind hole design at a
frequency of f=45kHz.

6.14. As it can be noticed from the analysis, the device still works, but the
middle peaks are starting to arise, showing a progressive worsening in the trend
of the analysis. If a frequency even lower is taken, for example 45kHz, reported
in �gure 6.15, it can be seen that the focusing behaviour of the lens vanishes
completely. This is particularly evident by checking that the maximum red
dot has moved form the lens' edge, where it belongs theoretically. Looking at
the usual line plot reported in �gure 6.16, which reports the absolute value of
displacement along the y=0 line, the di�erences are straightforwardly grasped.
Not only the �nal peak decreases in intensity, bet even the other middle one
increase, owing to a more �at behaviour of the lens, where focusing capabilities
have been lost. This result is in agreement with what has been stated before
on the working principle of this lens. It can be added that the device can
work at frequencies near the design one but, as it has been demonstrated, going
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Figure 6.16: Line plot, graphed at y=0, of the absolute value of displacement,
along z, in the blind hole case at a frequency of f=45kHz.

further from those compromises the functioning severely. Having concluded the
analysis on the blind hole design, the next step is to review the through hole
design to make a closer comparison between the two. Of course, as it has been
anticipated, the settings of the analysis have not changed: we barely changed
the geometry, but boundary and loading conditions remain the same. So, along
the thickness of the device absorbing boundary conditions are imposed, while
the loading condition is still a sinusoidal displacement at frequency 50kHz with
maximum amplitude 1µm. This time, the use of through holes allows to further
re�ne the available mesh on the xy plane. In particular, the mesh used has
been built by creating a free triangular mesh on one surface with an element

Figure 6.17: Surface plot of the absolute value of displacement, along the z
direction, of the through hole device tested at the design frequency of f=50kHz.
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Figure 6.18: Line plot, taken at y=0, of the absolute value of displacement, along
z, for the through hole device working at the design frequency of f=50kHz.

size of "extra �ne", which was then used to create a free tetrahedral mesh. In
�gure 6.17 results for the analysis at 50kHz are reported. Although the picture
reported here seems nice, as the focusing point can clearly be seen in the image
and registers a 5.5x ampli�cation, there are some problems with the through

Figure 6.19: Cumulative representation of the line plot, at y=0, of the absolute
value of displacement, along the z direction, for the through hole design at
frequencies ranging from 49kHz to 51kHz.
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Figure 6.20: Line plot of the absolute value of displacement, taken at y=0, for
the through hole case working at a frequency of f=49kHz.

hole design. First, even if in the image cannot be clearly seen, there are some
red spots inside the lens, which means that ampli�cation occurs even inside the
device, and this is unusual, to say the least. Not only that, but actually the
absolute maximum is not achieved at the lens' border, but in the middle. This
are all signals that, even if an ampli�cation at the end is present, the device
doesn't work completely as intended. To support more this deduction, the graph
along y=0 of the absolute value of displacement is reported in �gure 6.18. Here
it can be clearly seen that, while the device shows focusing at the lens' edge,
something is wrong with the behaviour inside the lens. In particular, peaks in
the middle of the device start to arise and have an almost comparable height to
the maximum at the lens' end. So, even if focusing is indeed present, the device's
behaviour is showing deviations from its ideal one, which is not a great sign.
This becomes more evident if, like it has been done for the blind hole design, a
sweep between 49kHz and 51kHz is performed. Cumulative results, where the
plot of the absolute value of displacement along the y=0 line are reported for all
frequencies, are shown in �gure 6.19. In this case, gong away from the design
frequency alters more substantially the behaviour of the device. The last peak
remains the absolute maximum only for a handful frequencies very near 50kHz.
Already going to 49kHz, for example, as �gure 6.20 shows, alters the behaviour
badly. In fact, for this frequency, the middle region of the lens registers higher
ampli�cations than the edge region. Concluding, it has been demonstrated that,
while the blind hole device behaves as expected, the through hole one still shows
focusing, but with overall less precision in the reproduction of the phenomena.
Both devices are not set to work at wide frequency range, being able to work
only at their design frequency or for frequency not that far.
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Figure 6.21: Graphical representation of the sine burst input calculated with
MATLAB.

6.3 Time Domain Analysis

In this section, time domain analysis made on both devices will be reviewed. In
our case, these analysis have been performed for two main reasons. First, using
time domain simulations allows to see better the focalization e�ect localized at
a precise given time frame. So, the simulated behaviour is much closer to what
can be expected to occur in real life. Second, these analyses will be fundamental
in the subsequent discussion on the possibility of using this design for energy
harvesting purposes, since they will allow us to make considerations on the
energy of the system. Both devices will be tested in time domain simulations,
trying to see if what has been found in the frequency domain matches this
new results. The simulations have been set in the same way as the other ones,
which means that the same plate with absorbing boundary conditions along
the thickness is going to be tested. Even the same meshes used in frequency
domain simulations are employed. This time, though, what changes is the input.
Following the guidelines given by the authors in their research[22], a sine burst
input has been given, composed of 4 cycles at amplitude 1µm centred at 50kHz.
A representation of this input is given in image 6.21. The main di�erence is,
of course, that this input is no more constant in time, as the previous ones
were. This particular input, though, should allow to see the working principle
of the lens very clearly by representation of waves bending in the medium and
reaching the focusing point at di�erent speeds. As it has been done before,
we start from the blind hole device. The simulation hs been run between zero
and t = 4.6× 10−4s, which should allow to see the phenomena. The time step
has been selected such that it respects the Courant-Friedrichs-Lewy condition,
represented by

C =
v∆t

∆x
< Cmax = 0.2 (6.5)
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Figure 6.22: Surface plot of the absolute value of displacement, along the z
direction, for the blind hole device taken at time t = 2.43× 10−4

Figure 6.23: Surface plots of the absolute value of displacement, along the z
direction, for the blind hole device taken at di�erent time windows, to help
visualise the focusing e�ect in time. Left: t = 1.325 × 10−4. Right: t =
1.88× 10−4

where v is the wave's speed, ∆x the spacial interval and ∆t the temporal one.
This is done to ensure that time convergence is met. Setting ∆x as the mesh
dimension, we get that ∆t ≤ 3 × 10−7s. For what concerns the mesh, the
one with 2 elements along the thickness and a "�ner element density along
the plane" has been used, like in the previous section. Having cleared that,
let's start by looking at the results. Figure 6.22 shows the instant at which
focusing happens. The image clearly tells us that the device is working, as
the displacement is well concentrated in the point diametrically opposed to the
entrance one. The maximum displacement at the focusing point is registered
as 3.3µm. Considering that this input, built using MATLAB, has a maximum
amplitude of 1µm, the magni�cation e�ect is 3.3x. This is a little bit less than
what has been found in frequency analysis. It is to be noticed, though, that the
input there was constant and not a sine burst, so the increased magnitude there
is probably due to the di�erent input. To help visualize better the functioning
of this device, �gure 6.23 reports two surface plots, of the absolute value of
displacement, at two di�erent time instants, before wave localization occurs.
As it can be clearly seen, planar wavefronts enter the device, they travel inside
a medium with di�erent speed, due to the locally tailored refractive index,
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Figure 6.24: Surface plot of the absolute value of displacement, along the z
direction, for the through hole device taken at time t = 2.4× 10−4

Figure 6.25: Surface plots of the absolute value of displacement, along the z
direction, for the through hole device taken at di�erent time windows, to help
visualise the focusing e�ect in time. Left: t = 1.5×10−4. Right: t = 1.87×10−4

to then converge into the focusing spot, which is represented by the instant
shown in �gure 6.22. The next analysis will be dedicated to the through hole
device. The same sine burst load will be used as input. Figure 6.24 reports the
instant at which focusing occurs even in this lens. In this case, the amplitude
of displacement predicted at the focusing point is very similar to the blind hole
case, so the magni�cation e�ect of the input is comparable. Figure 6.25 reports
the behaviour of the device at two di�erent instants, highlighting the deviation
e�ect caused by the refractive index tuning even for through holes. The
main di�erence, highlighted in the section dedicated to frequency analysis, is
that this through hole design causes to have high magnitudes of displacements
inside the lens, which come much closer to the maximum value reached at the
lens' edge. This can be even appreciated by comparing the plots reported in
�gures 6.23 and 6.25. If, for the blind hole case, inside the lens the displacement
rarely overcomes 15µm, in the through holes the displacement slightly overcomes
20µm, underlining one more time that the blind hole device shows a behaviour
which is more in line with the ideal one. Having cleared that the time domain
simulation and the frequency domain one converge, the following analysis for
energy localization can be carried out. In particular, being interested at the
behaviour for energy harvesting, the idea is to add to the domain a beam. If
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Figure 6.26: Left: CAD representation of the beam used for the time domain
simulation. Right: Graphical representation of the activation of a �exural res-
onance at f=50.05kHz

the resonance frequency of the beam is set to match that of the input, of course
the beam will vibrate in resonance and amplify even more the displacement. Our
hope is �rst to check if the usage of both this lens and the beam is convenient
in terms of ampli�cation of displacement and, then, if such design allows to
concentrate energy locally on the beam, such that a piezoelectric layer placed
on top of the beam can bene�t from this setup by activating the d31 mode. The
beam used in this domain is reported in �gure 6.26. The beam is 11.14mm long,
5mm wide and 2mm thick. On top there is a 2µm piezoelectric layer, while
the base is a 3x3x3mm cube. This particular design has been selected since
it allows to use the same material as the material of the lamina for reaching
resonance at 50kHz. Otherwise, if the base was all on the left, the resonant
frequency would have been too low. The right image of �gure 6.26 shows the
eigenfrequency analysis, which con�rms that, at f=50.05kHz, a �exural vibration
mode is activated. Having done so, this beam is placed inside the Luneburg lens
plate at the exact position of the maximum achieved by numerical calculations.

Figure 6.27: Surface plot showing the absolute value of displacement, along the
z direction, for the beam tested in conjunction with the blind hole lens. The
image is taken at instant t = 2.42× 10−4
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Figure 6.28: Surface plot showing the absolute value of displacement, along the
z direction, for the beam tested without any lens. The image is taken at instant
t = 2.5× 10−4

The same sinusoidal input as the previous time analysis is given, composed by a
4-cycle sine burst centred at 50kHz and represented in image 6.21. Having said
so, the review of this results starts with an overview of the blind hole device.
Figure 6.27 reports the absolute value of displacement in the z direction on the
beam at a time frame slightly after the time at which, in previous analysis, the
focusing was achieved. It can be noticed that the displacement along the beam
is not symmetric. This could be justi�ed by the fact that the displacement is not
caught and distributed symmetrically from the below lamina. The maximum
amplitude reached by this con�guration of the left beam's edge is 35µm. Overall
this does not seem a bad number but, to put it more on perspective, the same
test has been repeated removing the lens from the domain, to see if e�ectively
the usage of the lens brings up some advantages or not. The result can be seen

Figure 6.29: Surface plot showing the absolute value of displacement, along the
z direction, for the beam tested in conjunction with the through hole lens. The
image is taken at instant t = 2.58× 10−4
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Figure 6.30: Graphical representation of the energy density value, integrated
over a given volume and for every time step simulated, when the lens is not
present in the domain.

in �gure 6.28. Looking at the �gure, we can see that the beam without the lens
captures a maximum displacement of 9µm given the same input. The ratio,
at this point, is almost 4x, which is in line with what the previous analysis
in time domain revealed. However, the real great advantage of using the lens
is another, as it will be shortly demonstrated, precisely energy concentration.
The same conclusion can be made for the through hole design. Making the same
analysis with the same sine burst, results are reported in �gure 6.29. In this
analysis, the maximum amplitude of displacement is a little bit lower than in
the previous case at 30µm, but the same conclusion can be made. In fact, the
analysis of this domain without the lens is exactly the same reported in �gure
6.28, so the ampli�cation e�ect here is 3.5x, similar to the blind hole case.
Having demonstrated that both lenses indeed have an e�ect in displacement
magni�cation, which is similar in both through hole and blind hole design,
the goal now is to check how the kinetic energy varies in time with the input
that propagates in both cases. To be a good setup for energy harvesting, the
device should show energy localization where we want to place the piezoelectric
material, so the beam, to ensure that the e�ciency of energy conversion goes
up. To do that, we calculate, in both analyses with and without the lens, how
kinetic energy varies in all the domain and how it varies locally on the beam.
Let's start by analysing the results for the plate without any lens, reported in
�gure 6.30. These curves have been obtained by integrating the kinetic energy
density, time step by time step, in a given volume. Two volumes are put in
comparison: the whole domain and only the beam. In this graph, it can be
pointed out that there is no energy localization in the no-lens case. In fact, the
green curve, which represents the energy variation inside all the plate, is orders
of magnitude above the blue curve, which represents the energy variation inside
the beam. This means that, although the beam picks up the displacement of
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Figure 6.31: Graphical representation of the energy density value, integrated
over a given volume and for every time step simulated, when the lens is present
in the domain. The left image is referred to the blind hole design, the right one
to the through one.

the sine burst and magni�es it, energy is more disperse all over the plate. This,
fortunately, is not true for the case when either lens is coupled with the beam.
Figure 6.31 reports the same kinetic energy integration operation in the case
where the blind hole or the trough hole lens is added to the domain. These
graphs, on the other hand, are much more promising. The green curve still
represents the whole device. Comparing it to the previous one, the behaviour is
similar, which is a relief since it means that the time domain simulations are in
agreement. The only di�erence between the green curve of �gure 6.30 and the
ones in �gure 6.31 lies in the behaviour after the wave hits the beam, which is
more oscillatory in the case where a lens is present, meaning that the beam's
kinetic energy constitutes a relevant fraction of the whole one, as we should
expect if localization takes place. Even looking at the blue curve of �gure 6.31
we can deduce the same conclusion: the kinetic energy of the beam is no more
negligible: at its maximum, the kinetic energy on the beam is roughly 1mJ
while, at that same time fraction, the kinetic energy of the whole structure is
2.5mJ . This can be translated into a 40% energy localization, which is great
for a possible prototype for EH.
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Chapter 7

Conclusions

To conclude, in this thesis project di�erent lenses designs have been tested and
compared, to be able to see which one showcases the greatest potentiality for
an application in energy harvesting. Three di�erent devices have been tested:
a GRIN lens and two Luneburg lenses. Each single device has been tested
thoroughly with di�erent trials. Frequency domain tests aimed at verifying the
focusing properties of each lens, reviewing their accuracy and eventual broad-
band frequency functioning span. Time domain simulations aimed at con�rming
previously found informations and posed ground for evaluating the potentiality
of each design for energy harvesting. After having collected informations from
the analysis of all this devices, the following conclusions can be made.

Every lens tested proved to be e�ective from the focusing point of view, as
focusing is reproducible in every situation. In particular, we have that:

� The GRIN lens device worked as expected for a broadband frequency
range, although shallower than the theoretical one. The layered geometry
predicts a wider range than the real geometry does.

� The �rst Luneburg lens prototype, built with identical guidelines as the
GRIN lens, reproduces similar results to that lens, so analogous conclu-
sions can be made.

� The second Luneburg lens prototype, on the other hand, proved to be
e�ective only at the design frequency, or for frequencies not that far.

The main reason for this drastic change in behaviour is to be traced back to
the two di�erent theories employed in the construction of such lenses, as the
refractive index derivation is di�erent. More speci�cally,

� The e�ective medium theory of Pennec Y. et al.[26] links the refractive
index in the material to the plate velocity term and to the thickness of
the plate.

� The theory proposed by Tol S. et al.[22], on the other hand, exploits a
refractive index calculation based on the phase velocities of waves in the
phononic crystal.
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This leads to the consequence that, while the e�ective medium theory allows to
get a broadband functionality, the other developed theory does not show this
property. As such, this is the greatest selling point of the GRIN lens and the
�rst Luneburg lens. The main limitation, however, is that, although focusing is
appreciable, the magni�cation e�ect provided by the lens is not always so great.
In particular,

� Devices built with silicon and lead through the e�ective medium theory
show mild displacement ampli�cations, averaging at 2-3x.

� Devices built with silicon and holes through the e�ective medium theory
show greater displacement ampli�cations, averaging at 5x.

� Devices built with the other theory, on the other hand, show an ampli-
�cation of 4.75x, more stable in both the blind hole and through hole
case.

In every chapter, di�erent con�gurations have been tested and picked, di�er-
entiating for focusing positions and materials employed. To make a recap, for
each device the best lens was:

� GRIN lens prototype: Device made with silicon and holes

� Luneburg lens prototype 1: Device made with silicon and lead (the only
one tested)

� Luneburg lens prototype 2: Blind holes device

Focusing now on energy harvesting, however, only the two Luneburg prototypes
have been tested, and for a practical reason. If we suppose to test the GRIN
plate with equipment for EH, the problem of where to place it arises, since
through holes are present in the zone where we want to absorb energy. For
Luneburg devices this problem doesn't pose, as the focusing point is at the edge
of the device, so all the apparatus can be put on the background material, hence
why only the two Luneburg lenses have been tested for EH. Summarizing found
results, it was found that:

� The �rst Luneburg lens prototype, although great in focusing waves at
wider ranges of frequency, was able to reach only a 20% energy concentra-
tion e�ect, and only at the most promising frequency of the entire range.

� The second Luneburg lens prototype managed to match, in both blind
and through hole con�gurations, an energy localisation e�ect of 40%.

At this point, is pretty clear that the best design for energy harvesting is the
second Luneburg lens. Not only for a question of e�ciency, but even because the
�rst Luneburg lens, tested with silicon and lead, would be much harder to build
as a real prototype. Having to think at possible ways to build a prototype at the
microscale with this con�guration, there could be di�erent options. Exploiting
micro-fabrication technologies, ThELMA�process from STMicroelectronics[28]
has already been used to build some kind of structures like the one illustrated
here. The process allows to build devices with through holes in the structural
layer, leaving them suspended over the base wafer, being anchored only on
speci�cally designed parts. This works, however, for the through hole version
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of the device. There have been successful trials of using a modi�ed version of
ThELMA�technology for building devices with blind holes. Of course, being
more complex to carry, the cost goes up and, if there aren't very compelling
reasons to go for the blind hole model over the other, probably this process is
not the best for building the blind hole device. Instead, another possible option
would be the use of additive manufacturing technologies. Hypothetically, in
this case, for both the blind hole and the through hole device, there could be
the possibility of getting a prototype. However, as of today, the construction
of such devices at the micro-scale is not possible with metals. Successful tri-
als have been performed with polymers though, in particular with two-photon
lithography[29]. This process allows to locally induce polymerization, thanks
to the double absorption of photons on a photosensitive material, which acts
as an initiator for polymerization processes. As such, the reaction is carried
locally, only where the material has been chemically modi�ed by the photon
absorption, allowing to build complex 3D structures. Future developments of
this argument will aim at testing energy harvesting properties more thoroughly
and, if possible, at the comparison between numerical and experimental results
for such presented devices.
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