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Abstract

The Hybrid High Order method (HHO) is a discretization method for PDEs designed

to support general polyhedral meshes and provide arbitrary approximation order. The

method’s strength is the great freedom it gives in choosing a discretization of the physi-

cal domain. No shape of the elements is imposed, and elements with a different number

of faces can coexist in the same mesh. Yet, a stability and convergence analysis can be

provided a priori. Moreover, despite an increased complexity, the method shows itself

prone to several techniques alleviating the computational burden.

The method’s unknowns are conceived as collections of polynomials attached to both

cells and faces of a polyhedral mesh, whence the term hybrid in the name. The first

cornerstone of the method is the concept of local reconstruction. It is a technique to

design local, easily invertible and embarassingly parallel problems that allow to ob-

tain higher degree cell-wise polynomial projections of functions starting from lower

degree polynomial projections on both cells and faces. The second main ingredient of

the method are suitable built-in stabilisation terms, added to guarantee stability while

preserving convergence properties.

After several proofs of performance in the domain of computational mechanics, the

latest boundary in HHO development is the numerical analysis of electromagnetism

models. Electromagnetic phenomena are fully described by the celebrated Maxwell

equations. In stationary conditions the magnetic component is independent, and must

respect a linear second order curlcurl problem. Starting from an original implementa-

tion of the HHO method for this problem, several optimization techniques are designed

together with an extension to more general boundary conditions. The method performs

stable and convergent on a heterogeneous variety of polyhedral meshes.
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1 Introduction

Hybrid High Order methods belong to the family of numerical schemes for computa-

tional mechanics whose most established member is the Finite Element Method. The

design and analysis of these methods is based on a variational formulation of differen-

tial problems in a Hilbert setting, which is the source for a finite dimensional recasting,

leading eventually to an algebraic problem faced numerically. The discretization step

always relies on a suitable decomposition of the domain into elements. The necessity to

apply Finite Element schemes in the most general scenarios, with irregular domains,

fractures and multiple scale geometries has driven the work in computational mechan-

ics towards new versions of the method relaxing the constraints on the mesh features. In

this sense, the Discontinuous Galerkin Method is one of the most known schemes. With

DG, vertices of neighbouring triangular elements are not required to match. Polytopal

methods push this trend beyond, allowing the support of elements with an arbitrary

number of flat faces. The most promising aspect of polyhedral schemes such as the

HHO method is that they can help working around typical drawbacks of classical un-

structured meshes of FEM. Geometric microstructures in a domain can be caught by

large agglomerated polyhedral elements instead of a greater number of small unstruc-

tured elements, without jeopardizing the accuracy. Moreover, treatment of interfaces

and mesh refinement suffers fewer constraints and limitations than the case of con-

forming Finite Element Method.

Another distinguishing feature of the HHO method is being hybrid. The so-called de-
grees of freedom are attached to both cells and faces of the mesh. Instead of considering

broken cell-wise polynomials to discretize functions as it is the case with continuous

and discontinuous Finite Element methods, with HHO collections of cell-wise and

face-wise polynomials are stored as unknowns. The cornerstone of the method is the

idea of reconstructing higher-degree broken polynomials starting from these collections

of heterogeneous objects. It is important to remark that such recostruction is the sum

of independent cell-wise reconstruction operations. From the implementation point

of view, this translates into the possibility to introduce a parallelization of the recon-

struction step. The latter is one of the strategies that can be put in action to prevent

the scheme from becoming computationally unbearable. Indeed, if we compare HHO

method with the linear Finite Element method having a DOF per vertex, we realize

that the total dimension of the overall system tends to be huge, revealing the main

drawback of non-conforming schemes. Actually, despite being an hybrid method, at

the implementation level HHO can be considered a skeletal scheme, as it is possible to

assemble a linear system accounting only for face unknowns. That is true thanks to

a local static condensation and computation of a local Schur complement. Again, the
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1 Introduction

local nature of this tecnhique allows its application in parallel at the element level.

The first apperance of the HHO method dates back to 2014 [DS14], when it was first

applied to linear elasticity problems. Since then, HHO approach has been proposed

and validated for several linear and nonlinear problems, both in solid and fluid me-

chanics. The results of the present work refer to a line of research with the aim of

expanding the analysis to computational electromagnetism. In particular the problem

of magnetostatics has been considered. The problem is linear and second order, and it

is characterized by the presence of the curlcurl operator. In [FS20] an effort is shown

to perform a reconstruction of the curl operator by reducing as much as possible the

number of degrees of freedom required without losing accuracy with respect to a more

straight-forward but heavier reconstruction. This work describes how an implemen-

tation of the optimized method has been performed and offers a comparison between

the results with a pre-optimized scheme and those obtained by following the scheme

architecture shown in [FS20]. Moreover, the case of general boundary conditions is ex-

plored. The original HHO scheme for the magnetostatics problem had been designed

and analised for the case of fully Dirichlet boundary conditions. Here, a similar scheme

is proposed to deal with the case of Neumann boundary conditions, with a proposal to

discretize the border contribution of the right hand side and an alternative stabilisation

scheme. A stability and convergence analysis is brought on following the steps of the

Dirichlet case. The choice of the stabilisation is crucial to define a seminorm which

must turn out to be a norm on a subspace to which we restrict the search of the solution.

The most important theoretical results supporting the analysis are Weber inequalities,

which play a similar role to Poincaré inequalities when curl is considered in place of

gradient. An HHO scheme for Mixed boundary conditions is showed and tested too.

Local reconstructions are at the core of HHO schemes, but the way it can be conceived

is not unique. The present exposition is mostly related to discrete reconstructions of

differential operators, but an alternative approach consists in the opposite direction,

a potential reconstruction. Even though it was not implemented numerically, some

space is devoted to expose the problem of reconstructing a potential. The task is

quite straightforward in case of a scalar potential, but some care must be taken when

reconstructing a vector potential. This difference is the discrete counterpart of the fact

that a scalar potential is fixed up to a constant, whereas a vector potential is fixed

up to a gradient. A possible closed reconstruction of a vector potential is proposed

that may be the source for future developments of the scheme. Another difficulty

emerging when dealing with potential functions is that their construction requires

special care with non trivial topologies, which can be instead very interesting in real-

world applications. The validity of the results showed assumes a connected domain

with connected boundary. In future generalized schemes may make use of topology

detecting algorithms as proposed in [P D13]. These should be coupled with topology-

sensitive reconstruction of potentials.

From the implementation point of view, most of the work has been devoted to define

suitable classes to represent the articulated classes of polynomial families that are used

12



in the optimized reconstruction. The library provided already a good number of ways

to represent polynomial spaces as objects, but still a way to represent composed basis

and ways to extract bases out of the image of differential operators like the curl was

missing. This made up the contribution touching the core of the project. After these

changes, the implementation of the scheme could go on by relying on a general routine,

adding a solver method specific for the magnetostatics problem. Most of the steps

of the solver are standard and share the same philosophy as Finite Element Methods.

The peculiar step involves the building of the cell-wise reconstruction matrices, the

computation of the discrete local matrices and the assembly of the statically condensed

local contribution for each cell. Once the schemes have been implemented, they have

been tested on different families of meshes to check the independence of the scheme

from the shape of the polyhedra.
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Figure 1.1: HHO performance on a family of hexahedral meshes

This exposition is organized as follows: after a framing of the physical model leading

to the equations of magnetostatics the HHO method is presented for general boundary

conditions. A stability and convergence analysis is presented, for the particular case

of Neumann conditions. After the theoretical discussion, the most relevating imple-

mentation features are shown, and an overview of the software is given, together with

a focus on the original contribution added to cope with new boundary conditions.

Eventually, a gallery of results is exposed, with an emphasis on independence of the

convergence trend from the chosen polytopal geometry of the mesh.
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2 Model Framing

Electromagnetic interaction is one of the four fundamental ways matter exchanges

forces, together with gravitation and the two kinds of nuclear interaction. Starting from

the description of forces acting on objects that acquired a property called electric charge
when rubbed, a long chain of apparently independent phenomena have been found to

be linked by a common physical entity, the electromagnetic field. By the end of the XIX

century the most relevant physical models for the microscopic nature of matter and light

were based on electromagnetism. From the point of view of applications, exploitation

of electricity has driven the most revolutionary technological outbreak after the advent

of steam machines. Nevertheless, the entire theory of electromagnetism is completely

described by a set of four principles, that mathematically translate as four linear partial

differential equations. Informally they read:
∇ ·E = ρ
∇×E = −∂B∂t
∇ ·B = 0
∇×B = J + ∂E

∂t ,

where E and B indicate respectively the electric and magnetic fields, ρ is the charge

density, and J the current density. This is known as Maxwell system. It is such a

solid set of physical laws that the fundamental concepts of space and time have been

reformulated to find consistence with one of its consequences: light travels in vacuum

at a constant speed for any observer. Einstein’s assumption of universal validity of

these equations lead to his groundbreaking work on relativity.

Set aside the theoretical importance of Maxwell equations, this work is mainly con-

cerned with the task of finding solutions in specific configurations. Computer-assisted

calculations based on approximations of the continuous laws by large systems of easy

to program discrete equations have been one of the very first tasks electronic calculators

were tested with. Since the half of the XX century, computational physics has produced

a great variety of different methods to discretize equations which helped and deal with

complex configurations that are beyond the scope of the analytical approach. Poly-

hedral methods such as the Virtual Element Method or HHO Method are part of the

effort to get simulations that are reliable and sufficiently accurate trying to minimize

the computational burden in terms of time and computer memory.

In order to apply a method that was originally introduced for mechanical problems

to the domain of electromagnetism, a step-by-step approach is in progress, starting

from simple hypotheses. First of all, we focus on the stationary case, where all time

derivatives vanish. In static conditions, the electric phenomena are independent from
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2 Model Framing

the magnetic ones. The electric equations, through the introduction of an electric

potential field, reduce to the well-known Laplace equation, which has been extensively

treated both analitically and numerically in the context of the harmonic theory. On the

other hand, the magnetic side of the decoupled Maxwell system reads:curlB = J
divB = 0.

From the mathematical point of view, sets of equations valid everywhere in a given

domain Ω are coupled with boundary conditions, required to be valid on the boundary

of Ω. This is often the way to obtain a closed well-posed problem, which can be proved

to have one and only one solution. In this context, the first condition one could add is

a Dirichlet condition, namely:

n ·B = n ·Ψ on ∂Ω,

where n is the outgoing vector normal to the boundary, and Ψ is a given vector-valued

field on ∂Ω. This condition, other than providing a mathematical closure to the system,

models the physical condition of a perfect conductor enclosing the domain. Having a

perfect conductor imposes that no impinging plane waves can cross the boundary, and

the energy of the system is not spread outside Ω. It is the electromagnetic equivalent

of the reflection condition for a vibrating rope with a fixed end. It is often the case that

an alternative formulation for this problem is considered, emerging from the fact that

B ∈ H (div0;Ω), that is B is a solenoidal field. Indeed, under the hypothesis of trivial

topology for Ω, it is true that:

H (div0;Ω) = curl(H (curl;Ω)).

In other words it is possible to find a fieldu such that curlu = B. u is called vector potential
for the magnetic field. The vector potential is not uniquely defined, unless the value of

its divergence and normal component at the boundary is prescribed. Assigning these

two values constitues a choice for a gauge. The most simple is the Coulomb gauge,

assuming divergence free potential with vanishing normal component at boundary.

When Ψ = 0, translating the null divergence condition as the existence of a potential

and fixing the gauge leads to the problem in potential formulation:
curl(curlu) = J inΩ

div(u) = 0 inΩ

n × (u×n) = 0 on∂Ω.

This is the problem our numeric analysis starts from. A further manipulation leads to a

weak form, suitable for discretization. That is where many discretization schemes are

introduced, HHO not being an exception.

Of course, Dirichlet condition is only one of the possibilities to obtain a well-posed prob-

lem with meaningful physical interpretation. An alternative is a Neumann condition,

namely:
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n × (B×n) = n × (Φ ×n),

where Φ is a vector-valued field on ∂Ω. This kind of condition is suitable to take into

account the presence of dissipative walls that allow energy transmission. There are

eventually configurations in which some walls are of type Dirichlet, and others of type

Neumann. Such mixed scenarios are to be considered too. In the end, after a suitable

analysis, an HHO solver is available to provide numerical simulation of the magnetic

field in closed domains, with sufficiently general conditions at the boundary.
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3 The HHO Method

3.1 Discrete setting

Before introducing the method, it is useful to expose a list of definitions and conventions

that will be used through the rest of the presentation, starting from the notion of

polytopal mesh.

Definition 1. Let an integer d > 2 be fixed. Given a set of vertices P := {P 0, ...,P d} ⊂ R
d

such that the family of vectors {P 1 − P 0, ...,P −P 0} is linearly independent, the interior of the
convez hull of P is a simplex of Rd . For each integer i ∈ 0, ...,d, the convex hull of P \ P i is a
simplicial face. A polytope is a connected set that is the interior of a finite union of closures
of simplices.

Definition 2. A polytopal mesh of Ω is a coupleMh = (Th,Fh) where:

• The set of mesh elements (or mesh cells) Th is a finite collection of nonempty disjoint
polytopes T with boundary ∂T and diameter hT such that the meshsize h satisfies

h =max
T ∈Th

hT

and it holds
Ω =

⋃
T ∈Th

T

• The set of mesh faces Fh is a finite collection of disjoint subsets of Ω such that, for any
F ∈ Fh, F is a non-empty open connected subset of a hyperplane of Rd and the (d − 1)-
dimensional Hausdorff measure of its relative boundary F \ F is zero. We denote by hF
the diameter of F. Further assume that:

– For each F ∈ Fh, either there exist distinct mesh elements T1,T2 ∈ Th such that
F ⊂ ∂T1 ∩∂T2 and F is called an interface, or there exists one mesh element T ∈ Th
such that F ⊂ ∂T ∩∂Ω and F is called a boundary face;

– The set of mesh faces is a partition of the mesh skeleton, i.e.,⋃
T ∈Th

∂T =
⋃
F∈Fh

F.

Interfaces are collected in the set F ih and boundary faces in F bh , so that

Fh = F ih ∪F
b
h .
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3 The HHO Method

For any mesh element T ∈ Th,
FT := {F ∈ Fh : F ⊂ ∂T }

denotes the set of faces contained in ∂T . Symmetrically, for any mesh face F ∈ Fh,

TF := {T ∈ Th : F ⊂ ∂T }

is the set containing the one or two mesh elements sharing F. Finally, for all T ∈ Th and all
F ∈ FT , nT F denotes the unit normal vector to F pointing out of T.

Figure 3.1: Examples of polytopal meshes supported by HHO in 2D and 3D

The method for a tridimensional problem, so from this point on d = 3will be considered.

We’ll need to consider several local polynomial spaces attached to the faces and cells of

a polytopal mesh:

• P k(T ): scalar polynomials of degree up to k on the cell T ,

• P k(T ): 3-valued polynomials up to degree k on the cell T ,

• P k(F): scalar polynomials of degree up to k on the face F,

• P k(F): 2-valued polynomials up to degree k on the cell T ,

• Rk(T ) := curl(P k+1(T ))

• Gk(T ) := grad(P k+1(T ))

• Gk(F) := gradτ(P k+1(F)) ⊆ P
k(T )

• P̃ k+2(F) : homogeneous polynomials of degree up to k +2 on face F

• P k+1♭ (F) := P k(F)⊕ gradτ(P̃ k+2(F))

Let X be a cell or a face of a polytopal mesh. We use the notation (f ,g)X to express the

L2 product

∫
X
f gdX and ||f ||X to indicate the L2 norm on X. In the design and analysis

of the HHO method L2 projectors on polynomial spaces play a fundamental role.
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3.1 Discrete setting

Definition 3. Let d = l = 2,3 and X ⊆ R
d . Let U be a subspace of L2(X). The operator

πU : L2(X)→U such that:

(πUg,u)U = (g,u)U ∀u ∈U

is called L2 orthogonal projector on U .
Let d = l = 2,3 and X ⊆ R

d . Let U be a subspace of L2(X,Rd). The operator πU :
L2(X,Rd)→U such that:

(πUg,u)U = (g,u)U ∀v ∈U

is called (tridimensional) L2 orthogonal projector on U .

When U = P k(T ) the synthetic notation πkT will be used, and similarly we will use:

πkF ,π
k
T and πkF .

To introduce the concept of local reconstruction we need to consider collection of

polynomes on a cell and on all the neighbouring faces.

Figure 3.2: Degrees of freedom collocation on a 2D hexagonal cell. Distinct colors are

used for cell and face unknowns

Definition 4.

Yk+1T := {q
T
= (qT , {qF}F∈FT ) :

{
qT ∈ P k(T )
qF ∈ P k+1(F)

}

is the local HHO space for scalar variables.
An interpolator is an operator Ik+1T : L2(T )→ Yk+1T defined such that:

Ik+1T q = q
T
= (πkT g, {π

k+1
F g |F}F∈FT ).

The local gradient reconstruction operator Gk+1
T : Yk+1T →P k+1(T ) associates to q

T
∈ Yk+1T

a reconstruction Gk+1
T q

T
such that:(

Gk+1
T qT ,F ,w

)
T
= −(qT ,divw)T +

∑
F∈FT

(qF ,w|F ·nT F)F ∀w ∈ P k+1(T ). (3.1)
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3 The HHO Method

Definition 5.

Xk+1T := {uT = (uT , {uF}F∈FT ) :
{
uT ∈ P k(T )

uF ∈ P k+1♭ (F)
}

is the local HHO space for vector variables.
An interpolator is an operator Ik+1T : L2(T ,R3)→ Xk+1T defined such that:

Ik+1T u = uT = (πkTu, {πP k+1♭ (F)u|F}F∈FT ).

The local gradient reconstruction operator CkT : Yk+1T → P k+1(T ) associates to uT ∈ X
k+1
T a

reconstruction CkTuT such that:(
CkTuT ,w

)
T
= (uT ,curlw)T +

∑
F∈FT

(uF ,γτ,F(w×nT F))F ∀w ∈ Rk(T ). (3.2)

A special role is played by the following commutation properties, valid for any T :

Gk+1
T Ik+1T q = πk+1T (gradq|T ), (3.3a)

CkT I
k+1
T v = πk+1CT

(curlv|T ). (3.3b)

We can then define the global hybrid spaces that appear in the HHO method:

Xk+1♭,h :=

vh = (
(vT )T ∈Th , (vF)F∈Fh

)
:
vT ∈ P k+1(T ) ∀T ∈ Th,
vF ∈ P k+1♭ (F) ∀F ∈ Fh

 , (3.4a)

Yk+1h :=

qh = (
(qT )T ∈Th , (qF)F∈Fh

)
:
qT ∈ P k(T ) ∀T ∈ Th,
qF ∈ P k+1(F) ∀F ∈ Fh

 . (3.4b)

It is also useful to consider global spaces of broken polynomials:

P k(Th) := {qh ∈ L2(Ω) : qh|T ∈ P k(T ) ∀T ∈ Th},
P k(Th) := {vh ∈ L2(Ω) : vh|T ∈ P k(T ) ∀T ∈ Th}.

To any element vh ∈ X
k+1
♭,h it is possible to associate a broken polynomial vh ∈ P (Th) such

that vh|T = vT ∀T . Similarly, we consider the broken scalar polynomial qh such that

qh|T = qT ∀T , for a given element q
h

of Yk+1h .

Finally we can extend to the global setting the notion of reconstruction:

Definition 6. The global gradient reconstruction operator Gk+1
h : Yk+1h → P k+1(Th) asso-

ciates to q
h
∈ Yk+1h a broken polynomial Gk+1

h q
h

such that:

Gk+1
h q

h
|T =Gk+1

T q
T
.

The global curl reconstruction operatorCkh : X
k+1
♭,h →R

k(Th) associates to vh ∈ X
k+1
♭,h a broken

polynomial Ckhvh such that:
Ckhvh|T = CkT vT .
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3.1 Discrete setting

The commutation properties of 3.3 can be recast globally:

Gk+1
h Ik+1Y,h q = π

k+1
h (gradq), (3.5a)

CkhI
k+1
X,h v = π

k+1
Ch

(curlv). (3.5b)

The analysis of the present application of the HHO method relies on a discrete version

of the second Weber inequality, a theoretical tool that can be used in demonstrations of

well-posedness of the magnetostatics problems in a variational setting. It states a result

similar to Poincaré inequality, allowing to bound the L2 norm with the curl seminorm

for a certain category of functions. At the continuous level, the following theorem

holds:

Theorem 3.1. Given the Sobolev spaces:

H(curl;Ω) = {u ∈ L2(Ω,R3) : curlu ∈ L2(Ω,R3)}
H(div;Ω) = {u ∈ L2(Ω,R3) : divu ∈ L2(Ω)}
H0(div

0;Ω) = {u ∈H(div;Ω) : divu = 0 , u ·n = 0 on∂Ω}

for any u ∈H(curl;Ω)∩H0(div
0;Ω):

||u||Ω ≤ Cw||curlu||Ω

for some Cw > 0 only depending on the domain Ω.

To show the validity of a discrete version of theorem (3.1) we will need the following

technical result.

Lemma 3.2 (Polynomial decomposition). Let q ∈ N. Let T ∈ Th and p ∈ P q(T ). Then,
there exist g ∈ P q+1(T ) and c ∈ P q(T ) such that p = gradg + (x − xT )× curlc and

∥p− gradg∥T ≤ 2hT ∥curlp∥T . (3.6)

The next step is to equip the space Xk+1♭,h with the seminorm ∥ · ∥X,h,♭ defined by

∥vh∥
2
X,h,♭ := ∥curlhvh∥

2
Ω +

∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
P ,♭

(
γτ,F(vT )− vF

)
∥2F . (3.7)

This seminorm is the discrete counterpart of the L2(Ω;R3)-norm of the curl and is com-

posed of two contributions: the first one is the L2(Ω;R3)-norm of the broken curl of the

function obtained patching the polynomials attached to mesh elements; the second one

accounts for the difference between the face unknowns and the (gradient part of the)

tangential trace of the element unknowns. γτ,F has been used to indicate the tangential

trace operator.
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3 The HHO Method

The discret result which is going to be discussed is valid on the following counterpart

of the space H (curl;Ω)∩H0(div
0;Ω) defined by

◦
Xk+1♭,h :=

{
wh ∈ X

k+1
♭,h :

(
wh,G

k+1
h q

h

)
Ω
= 0 ∀q

h
∈ Yk+1h

}
, (3.8)

We call it a discrete version of H (curl;Ω) ∩H0(div
0;Ω) as the condition in (3.8) is

the discrete version of requiring (w,gradq)Ω = 0 ∀q ∈ H1
0 (Ω), which entails divw =

0 , w·n = 0 on ∂Ω. Here and in what follows, the circle overset will be reserved to those

hybrid spaces that incorporate a discrete divergence-free property (see, in particular,

(3.42)).

Theorem 3.3 (Discrete Weber inequality). There exists a constant cW > 0 independent of h
such that, for all vh ∈

◦
Xk+1♭,h , one has

∥vh∥Ω ≤ cW∥vh∥X,h,♭, (3.9)

where we recall that the term in the left-hand side is theL2(Ω;R3)-norm of the broken polynomial
vector vh such that (vh)|T = vT for all T ∈ Th.

Proof. Let vh ∈
◦
Xk+1♭,h . Recall the following standard L2(Ω;R3)-orthogonal Helmholtz

decomposition (2nd Helmholtz decomposition) (cf., e.g., [ACL18, Proposition 3.7.3]):

L2(Ω;R3) = grad
(
H1
zmv(Ω)

) ⊥
⊕H0(div

0;Ω).

By the characterization of divergence-free functions from [ACL18, Theorem 3.5.1], and

since vh ∈ P k+1(Th) ⊂ L2(Ω;R3) and Ω is simply connected, we can write

vh = gradϕ + curlψ, (3.10)

for some ϕ ∈H1(Ω)zmv , and some ψ ∈H0(curl;Ω) such that divψ = 0. Furthermore,

∥ψ∥H(curl;Ω) ≲ ∥curlψ∥Ω. (3.11)

Using the L2(Ω;R3)-orthogonal decomposition (3.10) of vh, we have that

∥vh∥2Ω = (vh,gradϕ)Ω +
(
vh,curlψ

)
Ω
=: I1 + I2. (3.12)

For the first term in 3.12, setting φh := Ik+1Y,h ϕ ∈ Y
k+1
h , we infer that

I1 =
(
vh,π

k+1
P ,h(gradϕ)

)
Ω
=
(
vh,G

k+1
h φh

)
Ω
= 0, (3.13)

where we have used that vh ∈ P k+1(Th) to insert πk+1P ,h, followed by the commutation

property (3.5a) of Gk+1
h and the fact that vh ∈

◦
Xk+1♭,h .
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3.1 Discrete setting

Let us now estimate the second term in (3.12). We have

I2 =
∑
T ∈Th

(
vT ,curlψ

)
T
=

∑
T ∈Th

(curlvT ,ψ)T −∑
F∈FT

(
ψ |F×nT F ,vT |F

)
F


=

∑
T ∈Th

(curlvT ,ψ)T −∑
F∈FT

(
γτ,F(ψ×nT F),γτ,F(vT )− vF

)
F

 ,
where we have used an integration by parts formula on each mesh element T ∈ Th in the

first line, and the fact that the jumps of ψ vanish on interfaces along with ψ |F×nT F = 0
for all F ∈ F b

h to insert vF into the second term in the second line. Applying Cauchy–

Schwarz inequalities to the right-hand side, we obtain

I2 ≤
 ∑
T ∈Th

(
∥curlvT ∥2T +

∑
F∈FT

h−1F ∥γτ,F(vT )− vF∥
2
F

)1/2

×
 ∑
T ∈Th

(
∥ψ∥2T +

∑
F∈FT

hF∥ψ |F×nT F∥
2
F

)1/2.
(3.14)

We focus on the first factor on the right-hand side of (3.14). For T ∈ Th and F ∈ FT ,

decomposing vT ∈ P k+1(T ) along (3.6) as vT = gradg+(x − xT )×curlcwith g ∈ P k+2(T )
and c ∈ P k+1(T ), inserting into the norm ±

[
γτ,F(gradg) + π

k+1
P ,♭

(
γτ,F(vT )

)]
, and using

the triangle inequality, we infer, since vF ∈ P k+1
♭ (F), since γτ,F(gradg) = gradτ(g|F) ∈

Gk+1(F), and recalling Gk+1(F) ⊂ P k+1
♭ (F):∑

T ∈Th

∑
F∈FT

h−1F ∥γτ,F(vT )− vF∥
2
F ≲

∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
P ,♭

(
γτ,F(vT )− vF

)
∥2F

+
∑
T ∈Th

∑
F∈FT

h−1F ∥γτ,F
(
vT − gradg

)
∥2F

+
∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
P ,♭

(
γτ,F(vT − gradg)

)
∥2F .

(3.15)

Using the L2(F;R2)-boundedness of πk+1P , a discrete trace inequality (cf., e.g., [DD20,

Lemma 1.32]), and Lemma 3.2 with p = vT , we infer∑
T ∈Th

∑
F∈FT

h−1F ∥γτ,F(vT )− vF∥
2
F

≲
∑
T ∈Th

(
∥curlvT ∥2T +

∑
F∈FT

h−1F ∥π
k+1
P

(
γτ,F(vT )− vF

)
∥2F
)
.

(3.16)

Now, for the second factor on the right-hand side of (3.14), using that |ψ |F×nT F | ≤ |ψ |F |,
a continuous trace inequality (cf., e.g., [DD20, Lemma 1.31]), the fact that hT ≤ diam(Ω)
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3 The HHO Method

for all T ∈ Th, and concluding with (3.11), one has∑
T ∈Th

(
∥ψ∥2T +

∑
F∈FT

hF∥ψ |F×nT F∥
2
F

)
1/2

≲ ∥ψ∥H(curl;Ω) ≲ ∥curlψ∥Ω. (3.17)

Plugging (3.16) and (3.17) into (3.14), and recalling the definition (3.7) of the ∥ · ∥X,h,♭-
seminorm yields

I2 ≲ ∥vh∥X,h∥curlψ∥Ω ≤ ∥vh∥X,h∥vh∥Ω,
where we have used the L2(Ω;R3)-orthogonality of the decomposition (3.10) in the last

bound. We conclude by combining (3.12), (3.13), and this last estimate.

A direct consequence of the theorem is the following corollary:

Corollary 3.4 (Norm ∥ · ∥X,h,♭). The map ∥ · ∥X,h,♭ defines a norm on
◦
Xk+1♭,h defined by (3.8).

Proof. This is a direct consequence of Theorem (3.3) and of the definition (3.7). For all

vh ∈
◦
Xk+1♭,h , if ∥vh∥X,h,♭ = 0, then vh = 0, i.e. vT = 0 for all T ∈ Th. Then, for all F ∈ Fh,

∥πk+1P ,♭ (vF)∥F = ∥vF∥F = 0, i.e. vF = 0, whence vh = 0h.

This last corollary will be instrumental in the analysis of the HHO method of Section ??

Corollary 3.5 (Generalized discrete Weber inequality). Let dh : Yk+1h × Yk+1h → R be a
symmetric positive semi-definite bilinear form such that, for all ϕ ∈ H1

zmv(Ω), letting φh :=
Ik+1Y,h ϕ ∈ Y

k+1
h ,

dh
(
φh,φh

)1/2
≲ ∥gradϕ∥Ω. (3.18)

Then, there is cW > 0 independent of h such that, for all (vh,rh) ∈ X
k+1
♭,h ×Y

k+1
h satisfying

−
(
vh,G

k+1
h q

h

)
Ω
+dh

(
rh,qh

)
= 0 ∀q

h
∈ Yk+1h , (3.19)

one has
∥vh∥Ω ≤ cW

(
∥vh∥

2
X,h +dh(rh,rh)

)1/2
. (3.20)

Proof. We follow the steps of the proof of Theorem (3.3). If (vh,rh) ∈ X
k+1
♭,h ×Y

k+1
h satisfies

(3.19), then (3.13) becomes

I1 = (vh,gradϕ)Ω =
(
vh,G

k+1
h φh

)
Ω
= dh

(
rh,φh

)
.

By the Cauchy–Schwarz inequality and (3.18), we infer

I1 ≲ dh(rh,rh)
1/2∥gradϕ∥Ω ≤ dh(rh,rh)

1/2∥vh∥Ω, (3.21)

where we have used the L2(Ω;R3)-orthogonality of the decomposition (3.10) in the last

bound. The rest of the proof is unchanged provided we substitute (3.21) to (3.13).
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3.2 HHO schemes for magnetostatics

3.2 HHO schemes for magnetostatics

Let Ω ∈ R3
be an open, connected domain with a connected border. We consider the

potential formulation of the problem of magnetostatics, namely that of determining the

vector field u :Ω→R
3

representing the magnetic vector potential subject to the following

constraints: 
curl(curlu) = J inΩ

div(u) = 0 inΩ

n × (u×n) = 0 on∂Ω

(3.22)

The first line of ( 3.22) expresses Ampère’s law (cfr [ACL18, Eq 1.38]), where the vector

field J :Ω→ R
3

represents the current density in the domain, acting as a source for the

magnetic field. The second equation requires u to be solenoidal, a condition known as

Coulomb gauge. Finally, an homogeneous Dirichlet boundary condition fixes the value

of the component of u tangential to ∂Ω.

This set of equations can be recast in a variational formulation via the usual product by

test function and integration by part technique, leading to the following second-order

well posed problem (see [ACL18, sec. 7.2]):

Find (u,p) ∈H0(curl,Ω)×H1
0 (Ω) such that:

(curlu,curlv)Ω + (v,gradp)Ω = (J ,curlv)∀v ∈H0(curl;Ω) (3.23a)

(u,gradq)Ω = 0 ∀q ∈H1
0 (Ω), (3.23b)

where

H0(curl;Ω) = {w ∈ L2(Ω,R3) : curlw ∈ L2(Ω,R3), n × (w ×n) = 0 on ∂Ω}.

In problem ( 3.23) p represents an artificial scalar unknown serving as Lagrange multi-

plier to impose the divergence-free constraint on u. If divJ = 0 in Ω and J ·n = 0 on ∂Ω,

it can be easily shown that p = 0 (cfr [FS20] and [Kik89]).

On the entire ∂Ω or on a portion ΓH ⊂ ∂Ω an alternative Neumann boundary condition

can be imposed. In case of fully Neumann boundary conditions the strong form of the

problem reads as follows:

curl
(
curlu

)
= J in Ω, (3.24a)

divu = 0 in Ω, (3.24b)

u ·n = 0 on ∂Ω, (3.24c)

n × (curlu×n) = n × (curlΦ ×n) on ∂Ω, (3.24d)

where Φ :Ω→R
3

is a provided field. The corresponding weak formulation reads:

Find (u,p) ∈H (curl,Ω)×H1(Ω) such that:
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3 The HHO Method

(curlu,curlv)Ω + (v,gradp)Ω = (J ,v) ∀v ∈H (curl;Ω) (3.25a)

(u,gradq)Ω + (p,q)Ω = (Φ ×n,n × (v ×n))∂Ω ∀q ∈H1(Ω). (3.25b)

Finally the magnetostatics problem with mixed boundary conditions reads in its strong

formulation:

curl
(
curlu

)
= J in Ω, (3.26a)

divu = 0 in Ω, (3.26b)

u ·n = 0 on ΓH , (3.26c)

n × (curlu×n) = n × (curlΦ ×n) on ΓH , (3.26d)

n × (u×n) = 0 on ΓB, (3.26e)

where ∂Ω = ΓH ∪ ΓB, ΓH ∩ ΓB = ∅ and the field Φ ∈ H (curl,Ω) is provided. The weak

formulation reads as follows:

Find (u,p) ∈H ΓB
(curl,Ω)×H1

ΓB
(Ω) such that:

(curlu,curlv)Ω + (v,gradp)Ω = (J ,v) + (Φ ×n,n × (v ×n))∂Ω ∀v ∈H ΓB
(curl,Ω)

(3.27a)

(u,gradq)Ω = 0 ∀q ∈H1
ΓB
(Ω),
(3.27b)

where

H ΓB
(curl,Ω) := {w ∈ L2(Ω,R3) : curlw ∈ L2(Ω,R3),n × (w ×n) = 0 on ΓB}

Proof of well-posedness of the problem for varying boundary conditions can be found

in [ACL18]. It has to be remarked that in the analysis it is fundamental to assume the

topological assumption on Ω. If the domain is not connected or its boundary is not

connected well-posedness may not be granted.

To HHO method is built as a discretization of the weak problem (3.23). Such discretiza-

tion starts considering a polyhedral meshMh = (Th,Fh), as defined of section 3.

The discrete unknowns of the HHO method are collections of polynomials local to both

cells and faces. In particular we recall that the following hybrid spaces are considered:

Xk+1h :=

vh = (
(vT )T ∈Th , (vF)F∈Fh

)
:
vT ∈ P k+1(T ) ∀T ∈ Th,
vF ∈ P k+1♭ (F) ∀F ∈ Fh

 , (3.28a)

Yk+1h :=

qh = (
(qT )T ∈Th , (qF)F∈Fh

)
:
qT ∈ P k(T ) ∀T ∈ Th,
qF ∈ P k+1(F) ∀F ∈ Fh

 . (3.28b)
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3.2 HHO schemes for magnetostatics

We will as well consider subspaces incorporating strongly homogeneous Dirichlet

boundary conditions on the entire boundary, or a portion ΓB:

Xk+1♭,h,0 :=
{
vh ∈ X

k+1
♭,h : vF = 0 ∀F ∈ F bh

}
,

Yk+1h,0 :=
{
q
h
∈ Yk+1h : qF = 0 ∀F ∈ F bh

}
,

Xk+1h,ΓB,♭
:=

{
vh ∈ X

k+1
♭,h : vF = 0 ∀F ∈ F bh ∩ ΓB

}
,

Yk+1h,ΓB
:=

{
q
h
∈ Yk+1h : qF = 0 ∀F ∈ F bh ∩ ΓB

}
.

(3.29)

Given a mesh element T ∈ Th, we denote byXk+1T andYk+1T the restrictions of respectively

Xk+1♭,h and Yk+1h to T , and by vT :=
(
vT , (vF)F∈FT

)
∈ Xk+1T and qT ,F :=

(
qT , (qF)F∈FT

)
∈ Yk+1T

the respective restrictions to element T of generic vectors of polynomials vh ∈ X
k+1
♭,h and

q
h
∈ Yk+1h .

We let vh and qh (not underlined) be the broken polynomial functions in P k+1(Th) and

in P k(Th) such that

(vh)|T := vT and (qh)|T := qT for all T ∈ Th.

We are then ready to state the HHO discretization of problem ( 3.23):

Find (uh,ph) ∈ X
k+1
♭,h,0 ×Y

k+1
h,0 such that:

ah(uh,vh) + bh(vh,ph) = (f ,vh)Ω ∀vh ∈ X
k+1
♭,h,0, (3.30a)

−bh(uh,qh) + dh(ph,qh) = 0 ∀q
h
∈ Yk+1h,0 . (3.30b)

where we define the discrete bilinear forms ah : Xk+1♭,h ×X
k+1
♭,h → R, bh : Xk+1♭,h ×Y

k+1
h → R,

and ch : Y
k+1
h ×Yk+1h →R as follows:

ah(wh,vh) :=
(
Ckhwh,C

k
hvh)Ω + sh(wh,vh), (3.31a)

bh(wh,qh) :=
(
wh,G

k+1
h q

h

)
Ω
, (3.31b)

dh(rh,qh) :=
∑
T ∈Th

∑
F∈FT

hF(rF ,qF)F . (3.31c)

sh : Xk+1♭,h ×X
k+1
♭,h →R is the stabilization bilinear form:

sh(wh,vh) :=
∑
T ∈Th

∑
F∈FT

h−1F
(
πk+1G,F

(
γτ,F(wT )−wF

)
,πk+1G,F

(
γτ,F(vT )− vF

))
F
. (3.32)

as it is proposed in [FS20]. One can notice the distinguishing features of the HHO

method: occurrences of differential operators curl and grad are substituted with the

corresponding discrete reconstruction operators introduced in 3.5. Moreover extra sta-

bilisation terms sh and dh are added, which are symmetric, and positive semidefinite.
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3 The HHO Method

By setting: Z
k+1
♭,h,0 := Xk+1♭,h,0 × Y

k+1
h,0 Problem (3.30) can be reformulated as follows: find

zh = (uh,ph) ∈Z
k+1
h,0 such that:

Ah
(
zh,sh

)
= (f ,vh)Ω ∀sh = (vh,qh) ∈Z

k+1
h,0 , (3.33)

where the bilinear form Ah :Z
k+1
h ×Zk+1

h →R is defined by

Ah
(
(wh,rh), (vh,qh)

)
:= ah(wh,vh) + bh(vh,rh)−bh(wh,qh) + dh(rh,qh). (3.34)

The analysis brought on in [FS20] for the case of the Dirichlet problem establishes

that problem (4.2) admits a unique solution, stable with respect to data. Moreover the

following result is proved, providing the convergence order estimate with respect to

the local polynomial degree.

Theorem 3.6 (Energy-error estimate). Assume that

u ∈H0(curl;Ω)∩H1(Ω;R3)∩H k+2(Th;R3), p ∈H1
0 (Ω)∩Hk+1(Th).

Consider ûh := Ik+1X,h u ∈ X
k+1
♭,h,0 and p̂

h
:= Ik+1Y,h p ∈ Y

k+1
h,0 and define the errors

Xk+1h,0 ∋ eh := uh − ûh, Yk+1h,0 ∋ ϵh := p
h
− p̂

h
,

Then, the following holds true:

∥(eh,ϵh)∥Z,h,♭ ≲

∑
T ∈Th

h
2(k+1)
T

(
|u|2
Hk+2(T ;R3)

+ |p|2
Hk+1(T )

)
1/2

, (3.35)

where we equip the spaces Xk+1♭,h and Yk+1h with the seminorms

∥wh∥X,h,♭ :=
(
∥curlhwh∥2Ω + sh(wh,wh)

)1/2
, (3.36a)

∥rh∥Y,h :=

∑
T ∈Th

h2T ∥gradrT ∥
2
T +dh(rh,rh)


1/2

, (3.36b)

and the space Zk+1
♭,h with the seminorm

∥(wh,rh)∥Z,h :=
(
∥wh∥

2
X,h + ∥rh∥

2
Y,h

)1/2
. (3.37)

Let’s now consider general boundary conditions. On the basis of the analysis brought

on in [FS20], we will adapt the steps of the demonstration to deal with fully Neumann

boundary conditions, show stability and provide a similar convergence theorem.
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The proposed HHO scheme for the Neumann case reads:

Find (uh,ph) ∈ X
k+1
♭,h ×Y

k+1
h such that

ah(uh,vh) + bh(vh,ph) = (f ,vh)Ω +
∑
F∈F bh

(Φ ×n,n × (vF ×n))F ∀vh ∈ X
k+1
♭,h , (3.38a)

−bh(uh,qh) + ch(ph,qh) = 0 ∀q
h
∈ Yk+1h . (3.38b)

where

ch(rh,qh) := (rh,qh)Ω +
∑
T ∈Th

∑
F∈FT

hF(rF ,qF)F ,

is a slightly modified stabilisation term.

Numerical results will be showed also for mixed boundary conditions. The correspond-

ing discrete problem reads as follows:

Find (uh,ph) ∈ X
k+1
h,ΓB,♭

×Yk+1h,ΓB
such that:

ah(uh,vh) + bh(vh,ph) = (f ,vh)Ω +
∑

F∈F bh ∩ΓH

(Φ ×n,n × (vF ×n))F ∀vh ∈ X
k+1
h,0,ΓB

,

(3.39a)

−bh(uh,qh) + ch(ph,qh) = 0 ∀q
h
∈ Yk+1h,ΓB

.

(3.39b)

3.3 Stability analysis

Let’s start the analysis of the Neumann problem by getting precise on the notion of

norms that will be involved. By setting: Z
k+1
♭,h

:= Xk+1♭,h × Y
k+1
h Problem (3.38) can be

reformulated as follows:

Find zh = (uh,ph) ∈Z
k+1
♭,h such that:

Ah
(
zh,sh

)
= (f ,vh)Ω +

∑
F∈F bh

(vF ×n,n × (Φ ×n))F ∀sh = (vh,qh) ∈Z
k+1
♭,h , (3.40)

where the bilinear form Ah :Z
k+1
♭,h ×Z

k+1
♭,h →R is defined by

Ah
(
(wh,rh), (vh,qh)

)
:= ah(wh,vh) + bh(vh,rh)−bh(wh,qh) + ch(rh,qh). (3.41)

We also give an adapted version of dicrete divergence-free property in light of the

stabilisation:

◦
Z
k+1
♭,h :=

{
(wh,rh) ∈Z

k+1
♭,h : −bh(wh,qh) + ch(rh,qh) = 0 ∀q

h
∈ Yk+1h

}
=
{
(wh,rh) ∈Z

k+1
♭,h : Ah

(
(wh,rh), (0h,qh)

)
= 0 ∀q

h
∈ Yk+1h

}
.

(3.42)
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We equip the spaces Xk+1♭,h and Yk+1h with the seminorms

∥wh∥X,♭,h :=
(
∥curlhwh∥2Ω + sh(wh,wh)

)1/2
, (3.43a)

∥rh∥Y,h := ch(rh,rh)
1/2. (3.43b)

One can easily verify that ∥ · ∥Y,h defines a norm on Yk+1h . We now equip Z
k+1
♭,h with the

seminorm

∥(wh,rh)∥Z,♭,h :=
(
∥wh∥

2
X,♭,h + ∥rh∥

2
Y,♭,h

)1/2
. (3.44)

Lemma 3.7 (Norm ∥ · ∥
Z,♭,h). The map ∥ · ∥

Z,♭,h defines a norm on
◦
Z
k+1
♭,h .

Proof. The seminorm property being straightforward, we only need to prove that, for

all couples (wh,rh) ∈
◦
Z
k+1
♭,h , ∥(wh,rh)∥Z,♭,h = 0 implies (wh,rh) = (0h,0h). Let then (wh,rh) ∈

◦
Z
k+1
♭,h be such that ∥(wh,rh)∥Z,♭,h = 0. We infer that ∥wh∥X,♭,h = 0 and ∥rh∥Y,♭,h = 0. Since

∥ · ∥Y,♭,h is a norm on Yk+1h , we directly get from the second relation that rh = 0h. Now,

owing to the definitions (3.42) of

◦
Z
k+1
♭,h , (3.31b) of bh, and to the fact that

◦
Xk+1♭,h is defined

as in (3.8), we infer from (wh,rh) ∈
◦
Z
k+1
♭,h and rh = 0h that wh ∈

◦
Xk+1♭,h . By Corollary (3.5),

∥ · ∥X,♭,h defines a norm on

◦
Xk+1♭,h , hence wh = 0h, which concludes the proof.

We now state some preliminary results for the stability analysis of Problem (3.30).

Lemma 3.8 (Equivalences of seminorms). The following holds true:

∥wh∥
2
X,♭,h ≲ ah(wh,wh) ≲ ∥wh∥

2
X,♭,h ∀wh ∈ X

k+1
♭,h (3.45)

Proof. Let wh ∈ Xk+1♭,h , and T ∈ Th. By the definition (3.2) of CkT , testing with w =

curlwT ∈ Rk(T ), integrating by parts, and using the fact that γτ,F
(
curlwT×nT F

)
∈

P k(F) ⊂ P k+1
♭ (F), we infer

∥curlwT ∥2T =
(
CkTwT ,curlwT

)
T

+
∑
F∈FT

(
πk+1P ♭,F

(
γτ,F(wT )−wF

)
,γτ,F(curlwT×nT F)

)
F
.

By the Cauchy–Schwarz inequality, a discrete trace inequality (see, e.g., [DD20, Lemma

1.32]), and recalling the definition (3.31a) of ah, we get ∥curlhwh∥2Ω ≲ ah(wh,wh), and

the first inequality in (3.45) follows by adding sh(wh,wh) to both sides. To prove the

second inequality, we test (3.2) with w = CkTwT ∈R
k(T ) to infer

∥CkTwT ∥
2
T =

(
curlwT ,C

k
TwT

)
T

−
∑
F∈FT

(
πk+1P ♭,F

(
γτ,F(wT )−wF

)
,γτ,F(C

k
TwT×nT F)

)
F
,

and we conclude by the same arguments.
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3.4 Error analysis

We are now in position to show well-posedness for Problem (3.30).

Lemma 3.9 (Well-posedness). For all zh ∈Z
k+1
♭,h :

Ah
(
zh,zh

)
≳ ∥zh∥

2
Z,♭,h. (3.46)

Hence, Problem (3.30) is well-posed, and the following a priori bound holds true:

∥(uh,ph)∥Z,♭,h ≲ {∥f ∥
2
Ω + ∥Φ∥2∂Ω}

1
2 . (3.47)

Proof. Let zh = (wh,rh) ∈Z
k+1
♭,h . One has

∥zh∥
2
Z,♭,h. ≲ ah(wh,wh) + dh(rh,rh) = Ah

(
zh,zh

)
. (3.48)

To prove well-posedness, since the linear system associated to Problem (3.30) is square,

it is sufficient to prove injectivity. Assume that Ah
(
(uh,ph), (vh,qh)

)
= 0 for all (vh,qh) ∈

Z
k+1
♭,h . Taking (vh,qh) = (0h,qh) and using(3.42), we first infer that (uh,ph) ∈

◦
Z
k+1
♭,h . Taking

(vh,qh) = (uh,ph) and using (3.46), we then get

∥(uh,ph)∥
2
Z,♭,h ≲ Ah

(
(uh,ph), (uh,ph)

)
= 0,

which, by Lemma(3.7), eventually yields (uh,ph) = (0h,0h). To prove the a priori

bound (3.47), we take zh = (uh,ph) in (??) and we use (4.1). We get, by the Cauchy–

Schwarz inequality,

∥(uh,ph)∥
2
Z,♭,h ≲ (f ,uh)Ω +

∑
F∈F bh

(Φ ×n,n × (uF ×n))F

≤ ∥f ∥Ω∥uh∥Ω + ∥Φ∥∂Ω{
∑
F∈F bH

∥uF∥2F}
1
2

≤ {∥f ∥2Ω + ∥Φ∥2∂Ω}
1
2 {∥u∥2Ω +

∑
F∈F bh

∥uF∥2F}
1
2 .

The conclusion follows from the combination of a generalized discrete Weber inequal-

ity (3.20) of Corollary (3.5) applied to (uh,ph) satisfying (3.19) (one can easily check

that dh satisfies (3.18), thanks to an application of Poincaré-Wirtinger inequality, that is

Poincaré inequality on H1
zmv(Ω) to bound ∥uh∥Ω.

3.4 Error analysis

We recall that (u,p) ∈H (curl;Ω)×H1(Ω) denotes the unique solution to Problem (3.25).

We assume from now on that u possesses the additional regularity u ∈H1(Ω;R3), and

we let ûh := Ik+1X,♭,hu ∈ X
k+1
♭,h and p̂

h
:= Ik+1Y,h p ∈ Y

k+1
h . We define the errors

Xk+1♭,h ∋ eh := uh − ûh, Yk+1h ∋ ϵh := p
h
− p̂

h
, (3.49)
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3 The HHO Method

where (uh,ph) ∈ X
k+1
♭,h ×Y

k+1
h is the unique solution to Problem (3.30). Recalling (4.1) and

(4.2), the errors (eh,ϵh) ∈Z
k+1
♭,h solve

Ah
(
(eh,ϵh), (vh,qh)

)
= lh(vh) +mh

(
q
h

)
∀ (vh,qh) ∈Z

k+1
♭,h , (3.50)

where we have defined the consistency error linear forms

lh(vh) := (f ,vh)Ω +
∑
F∈F bh

(Φ ×n,n × (vF ×n))F − ah(̂uh,vh)−bh(vh, p̂h), (3.51a)

mh

(
q
h

)
:= bh(̂uh,qh)− ch(̂ph,qh). (3.51b)

Theorem 3.10 (Energy-error estimate). Assume that

u ∈H (curl;Ω)∩H1(Ω;R3)∩H k+2(Th;R3), p ∈H1(Ω)∩Hk+1(Th).

Then, the following holds true, with (eh,ϵh) ∈Z
k+1
♭,h defined by (3.49):

∥(eh,ϵh)∥Z,♭,h ≲

∑
T ∈Th

h
2(k+1)
T

(
|u|2
Hk+2(T ;R3)

+ |p|2
Hk+1(T )

)
1/2

. (3.52)

Proof. Since (eh,ϵh) ∈Z
k+1
♭,h , by (3.46) with zh = (eh,ϵh) and (3.50), we infer

∥(eh,ϵh)∥Z,♭,h ≲ max
(vh,qh)∈Z

k+1
♭,h ,∥(vh,qh)∥Z,♭,h=1

(
lh(vh) +mh

(
q
h

))
. (3.53)

Let us first focus on lh(vh) for vh ∈ X
k+1
♭,h . By (3.51a), the fact that f = curl(curlu)+gradp

in Ω, and element-by-element integration by parts, we infer

lh(vh) =
∑
T ∈Th

(curlu,curlvT )T −∑
F∈FT

(
curlu|F×nT F ,vT |F

)
F


+
(
gradp,vh

)
Ω
− ah(̂uh,vh)−bh(vh, p̂h)

=
∑
T ∈Th

(curlu,curlvT )T
−
∑
F∈FT

(
γτ,F

(
curlu×nT F

)
,γτ,F(vT )− vF

)
F

− ∑
F∈F bh

(curlΦ ×nT F ,vT |F)F − ah(̂uh,vh),

(3.54)

where we have used the fact that the tangential component of curlu is continuous

across interfaces (as a consequence of the fact that curlu ∈ H (curl;Ω) ∩H1(Th;R3))
along with curlu × nT F = curlΦ × nT F for all F ∈ F b

h to insert vF into the boundary

34



3.4 Error analysis

term, together with the fact that

(
gradp,vh

)
Ω

= bh(vh, p̂h) as a consequence of the

commutation property (3.5a). Using the definitions (3.31a) of ah and (3.5b) of CkT for

T ∈ Th (testing with w = CkT ûT ∈R
k(T )), and integrating by parts, we have

ah(̂uh,vh) =
∑
T ∈Th

(CkT ûT ,curlvT )T
−
∑
F∈FT

(
γτ,F(C

k
T ûT×nT F),γτ,F(vT )− vF

)
F

− ∑
F∈F bh

(πkR,T curlΦ ,γτ,F(vT ))F + sh(̂uh,vh).

(3.55)

Since, by Lemma (3.5b), CkT ûT = πkR,T
(
curlu|T

)
for all T ∈ Th, a combination of (3.54)

and (3.55) yields (recall that vT ∈ P k+1(T ))

lh(vh) =
∑
T ∈Th

∑
F∈FT

(
γτ,F

(
(πkR,T (curlu|T )− curlu)×nT F

)
,γτ,F(vT )− vF

)
F

−
∑
F∈F bh

(curlΦ −πkR,T curlΦ ,γτ,Fvt |F)F − sh(̂uh,vh).

Applying the triangle and Cauchy–Schwarz inequalities, we get

|lh(vh)| ≤
∑
T ∈Th

∑
F∈FT

∥πkR,T (curlu|T )− curlu∥F ∥γτ,F(vT )− vF∥F

+ ∥curlΦ −πkR,T curlΦ∥∂Ω{
∑
F∈F bh

∥γτ,F(vT )∥F}
1
2 + sh(̂uh, ûh)

1/2sh(vh,vh)
1/2.

(3.56)

Let us focus on ∥πkR,T (curlu|T )−curlu∥F forF ∈ FT . Adding/subtracting curl
(
πk+1P ,T (u|T )

)
,

using a triangle inequality, a discrete trace inequality (see, e.g., [DD20, Lemma 1.32])

on πkR,T (curlu|T )−curl
(
πk+1P ,T (u|T )

)
, and the approximation properties of πk+1P ,T on mesh

faces (see, e.g., [DD20, Theorem 1.45]) for curl
(
πk+1P ,T (u|T )

)
− curlu, we infer

h
1/2
F ∥π

k
R,T (curlu|T )− curlu∥F ≲ ∥π

k
R,T (curlu|T )− curlu∥T
+ ∥curlu− curl

(
πk+1P ,T (u|T )

)
∥T + hk+1T |u|Hk+2(T ;R3),

where we have used yet another triangle inequality to insert curlu. The second term

on the right-hand side is readily estimated using again the approximation properties

of πk+1P ,T . As far as the first term is concerned, we have

∥πkR,T (curlu|T )− curlu∥T = min
p∈P k+1(T )

∥curlp− curlu∥T ,
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3 The HHO Method

which finally yields

h
1/2
F ∥π

k
R,T (curlu|T )− curlu∥F ≲ h

k+1
T |u|Hk+2(T ;R3).

Following the same steps for Φ one concludes:

h
1/2
F ∥π

k
R,T (curlΦ |T )− curlΦ∥F ≲ h

k+1
T |Φ |Hk+2(T ;R3).

As for sh(̂uh, ûh) we have:

sh(̂uh ,̂uh) =
∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
G,F

(
γτ,F(π

k+1
P ,T (u|T )−u)

)
∥2F

≤
∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
P ,T (u|T )−u∥

2
F ≲

∑
T ∈Th

h
2(k+1)
T |u|2

Hk+2(T ;R3)
,

(3.57)

Plugging these last estimates into (3.56), applying a discrete Cauchy–Schwarz inequal-

ity, and using (3.16) as well as(3.57), we infer

|lh(vh)| ≲

∑
T ∈Th

h
2(k+1)
T (|u|2

Hk+2(T ;R3)
+ |Φ |Hk+2(T ;R3))


1/2

∥vh∥X,♭,h. (3.58)

Let us now focus on mh

(
q
h

)
for q

h
∈ Yk+1h . Since p̂

h
= p = 0,mh(qh) = bh(̂uh,qh). Starting

from(3.51b), performing an element-by-element integration by parts in (3.1), and using

that gradqT ∈ Gk−1(T ) ⊂ P k+1(T ), we infer

mh(qh) =
∑
T ∈Th

(gradqT ,u)T +
∑
F∈FT

(
πk+1P ,T (u|T )|F ·nT F ,qF −qT |F

)
F


=

∑
T ∈Th

∑
F∈FT

(
(πk+1P ,T (u|T )−u)|F ·nT F ,qF −qT |F

)
F
,

where the last identity follows from another element-by-element integration by parts,

and from the fact that divu = 0 in Ω, and that u ∈H1(Ω;R3) along with u ·n = 0 on ∂Ω.

By the triangle and Cauchy–Schwarz inequalities, one then gets

|mh

(
q
h

)
| ≤

 ∑
T ∈Th

∑
F∈FT

h−1F ∥π
k+1
P ,T (u|T )−u∥

2
F

1/2

×
 ∑
T ∈Th

∑
F∈FT

hF∥qF −qT |F∥2F

1/2.
(3.59)

Using, for all T ∈ Th, the approximation properties of πk+1P ,T on the faces of T for the first

factor on the right-hand side, and the triangle inequality along with a discrete trace
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3.5 Notes on local reconstruction

inequality (see, e.g., [DD20, Lemma 1.32]) for the second factor, we infer

|mh

(
q
h

)
| ≲

 ∑
T ∈Th

h
2(k+1)
T |u|2

Hk+2(T ;R3)

1/2∥qh∥Y,h. (3.60)

Plugging (3.58) and (3.60) into (3.53) for (vh,qh) such that ∥(vh,qh)∥Z,♭,h = 1 finally

yields (3.52).

3.5 Notes on local reconstruction

The characteristic feature of HHO schemes is local reconstruction. With this technique

a new polynomial on a cell is determined starting from polynomial defined on the same

cell plus all the polynomials local to the neighbouring faces. The idea at the base of

local reconstruction is that it is possible to obtain higher order polynomial projection of

a function on a cell by exploiting lower order polynomial projections on the faces and

on the cell.

In the version of the method that has been exposed reconstruction is implemented for

the operators curl and grad. An alternative scheme may be designed considering a

reconstruction for the potential.

To give an introductory example, we’ll show the reconstruction of a scalar potential,

that may be used to discretize the bilinear form bh of (3.31b). Consider a cell T and the

set FT of its neighbouring faces. We recall the definition of L2-orthogonal projection:

Definition 7. Let g : T → R be in L1(T ). The L2 projection πk0g ∈ PK (T ) of g is the k-degree
polynomial satisfying:

(πk0g,w)T = (g,w) ∀w ∈ P k(T ). (3.61)

We also consider the different definition of projection:

Definition 8. Let g : T → R be in H1(T ). The elliptic projection πk1g ∈ PK (T ) of g is the
k-degree polynomial satisfying:

(gradπk1g,gradw)T = (gradg,gradw) ∀w ∈ P k(T ) (3.62a)

(πk1g − g,1) = 0 (3.62b)

The condition (3.62b) is necessary to provide a consistent definition, as the first con-

dition (3.62b) only prescribes properties of its gradient, and two scalar fields with

the same gradient are equal up to a constant. The approximation properties of these

projectors are expressed by the following theorem (see also [DD20, Theor. 1.45, 1.48]):

Theorem 3.11. Let (M)h∈H be a mesh sequence. Let a polynomial degree l ≥ 0 and an integer
s ∈ {1, . . . , l +1}. Then, for any X element or face ofMh, all v ∈H s(X), and all m ∈ 0, . . . , s,

|v −π0,l
X v|Hm(X) ≲ h

s−m
T |v|H s(X) (3.63)

And for any T ∈ Th,
|v −π1,l

T v|Hm(T ) ≲ h
s−m
T |v|H s(X) (3.64)
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3 The HHO Method

With these definitions at hand, let’s consider the following integration by parts formula,

valid for any g ∈ L2 and w ∈H2(T ):

(gradg,gradw)T = −(g,∆w)T +
∑
F∈FT

(u,gradw ·n)F (3.65)

If we restrict this property to any w ∈ P k+1(T ) we can easily recognize on the left a

quantity that remains the same if g is changed with its elliptic projection of degree k+1,

whereas on the right g can be substituted with the L2 projection of degree k whenever

it appears:

(gradπk+11 g,gradw)T = −(πk0g,∆w)T +
∑
F∈FT

(πk0g,gradw ·n)F . (3.66)

If we add the second line in definition ( 3.61) to ( 3.66), we deduce the following local

well-posed problem to retrieve the elliptic projection:

Find πk+11 g ∈ P k+1T such that:

(gradπk+11 g,gradw)T = −(πk0g,∆w)T +
∑
F∈FT

(πk0g,gradw ·n)F∀w ∈ P
k+1

(πk1g − g,1) = 0

(3.67)

We consider a reconstruction operator pk+1T : P k(T )
�
{
�
F∈FT
P k(F)} → P k+1(T ) that maps

a k-degree projection of g into a k+1-degree projection. We can define it such thatpk+1T uT
is the solution to problem ( 3.67). We can also collect the L2-orthogonal projections of

a a function on a cell and its neighbouring faces defining an interpolation operator:

IkT : L2(T )→ XT : IkT v = (π0,k
T v, (π0,k

F )FT ) (3.68)

By doing so, we can state a commutation property:

pk+1T IkT v = π
1,k+1
T v (3.69)

Once introduced suitable problem-dependent local reconstructions the HHO method

discretizes bilinear forms appearing in the problem by discrete bilinear forms acting

on some reconstruction obtained from the dicrete unkowns rather than directly on the

discrete unknowns. In this example, bilinear form bh may be discretized like this:

b(v,q) = (v,gradq)Ω⇝ bh(vh,gradπ
k+1
1,h qh

) =
∑
T ∈Th

(vT ,gradπ
k+1
1,h qT

)T

Symmetrically, it would be interesting to obtain a similar reconstruction for the curl
potential. We are interested in a curl-version πc,k+1T of the elliptic projector , together

with a reconstruction operator gk+1T that, composed with an interpolator on a suitable
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3.5 Notes on local reconstruction

hybrid local space can make a statement like the following true for a function v ∈
H (curl,Ω):

gk+1T IkT v = π
c,k+1
T v (3.70)

The delicate point here resides in the way the curl-elliptic projection is defined. In the

case of the gradient a suitable polynomial is designated, such that its gradient coincides

with the gradient of the function to be projected. Here requiring the same is simple,

but closing the system to provide a consistent definition requires more than a scalar

condition. This reflects the continuous version of the problem. Functions that have the

same gradient differ by a constant. Fixing this constant is sufficient to uniquely define

a potential. On the other hand, functions that share the same curl are identical up to

the gradient of some scalar field. Then, in the continuous case, this would amount to

an infinitely dimensional condition to fix the potential. The way this is done is called

gauge fixing.

Working with polynomial spaces, it is however possible to reduce to a finite number

the conditions to reconstruct the potential. For this purpose we can consider the

polynomial decomposition introduced in lemma (3.2). Any three-valued k-degreed

polynomial in P k(T ) has its gradient part in the finite dimensional space Gk(T ). Then,

if we define a projector by imposing a condition on the curl, since curl(grad) = 0, the

gradient part is filtered out. To retrieve it we should impose a number of conditions

equal to the dimension of Gk(T ). These considerations lead to the following definition

of the curl-elliptic projection:

Definition 9. Let g : T → R
3 be in H (curl,T ). The curl-elliptic projection πkcg ∈ PK (T ) of

g is the k-degree polynomial satisfying:

(curlπkcg,curlw)T = (curlg,curlw) ∀w ∈ P k(T )

(πkcg − g,z) = 0 ∀z ∈ Gk(T )
(3.71)

Similarly to what we have done for the grad case we start from a Green formula, where

we notice that g can be substituted by its projections in the scalar products. Consider

w ∈ P k+1(T )

(curlg,curlw)T = (g,curlcurlw)T +
∑
F∈FT

(g,curlw ×n)F

(curlπk+1c g,curlw)T = (πk0g,curlcurlw)T +
∑
F∈FT

(πk0g,curlw ×n)F .

Finally, the curl potential reconstructor can be defined:

Definition 10. Consider a local hybrid space of collections of polynomials on a cell T and its
faces: Xk(T ) = P k(T ) × {

�
F∈FT
P k(F)}. Let pk+1c : Xk(T ) → P k+1(T ) be the curl potential
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3 The HHO Method

reconstruction operator such that, for an element (gT , (gF)FT ) = gT ∈ X
k(T ), pk+1c g

T
solves:

(curlπk+1c g,curlw)T = (gT ,curlcurlw)T +
∑
F∈FT

(gF ,curlw ×n)F ∀w ∈ P k+1(T )

(πk+1c g
T
− gT ,z)T = 0 ∀z ∈ Gk(T ).

For the implementation of the method for the problem of magnetostatics the opera-

tors curl and grad are reconstructed rather than a potential, but in a similar fashion.

The operators introduced in ( 3.1) and ( 3.2) indeed join the following commutation

properties:

CkT I
k+1
X,h v = π

k
Ch
(curlv)

Gk+1
T Ik+1Y,h q = π

k
h(gradq)

(3.72)

From an implementation point of view, whenever some kind of reconstruction is in-

troduced, what is done is building the so called local reconstruction matrix. Consider

for example the curl reconstruction defined in ( 3.2). We can take a basis {ψi}i of the

curl reconstruction space Rk(T ). Given a generic wT ∈ Xk+1T its local reconstruction

CkTwT can be expressed through a finite collection of coefficients using the basis {ψi}i as

CkTwT =
∑
iUiψi . We can store these coefficient in a column vector U . With an analo-

gous reasoning we can also consider a basis {φTm}m forP k(T ) and a basis {φFkn }n forP k♭ (Fk)
of any Fk ∈ FT . wT is the represented as a vector of coefficientsW = [W T ,W F1 , ...,W FN ]T .

Taking back definition ( 3.2) we can substitute the new expression for wT and CkTwT ,

and observe that the variational condition is verified for any vT ∈Rk(T ) iff it is verified

for any element of {ψi}i . We obtain:

∑
j

(
ψj ,ψi)TUj =

∑
m

(φTm,curlψi)TW
T
m +

∑
Fk∈FT

{
∑
n

(φFkm ,γτ,F(ψi ×nT F))FkW
Fk
n } ∀ψi :∑

j

MCTij ·Uj =
∑
m

Aim ·W T
m +

∑
l

B1il ·W
F1
l + · · ·+

∑
l

BNil ·W
FN
l ∀i :

MCT ·U = [A|B1|...|BN ] ·W
U =MCT −1 · [A|B1|...|BN ] ·W

(3.73)

In ( 3.73) MCT −1 · [A|B1|...|BN ] represents the local reconstruction matrix which allows

to obtain the coefficients of the local curl reconstruction from the HHO unknowns.
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4 Implementation aspects

4.1 Local static condensation

As it happens in similar methods, the practical implementation of the method relies

on the equivalence between the discretized weak formulation and an algebraic linear

system. Even though the HHO method is characterized by degrees of freedom which

are attached to both cells and faces, it is a common practice to assemble a global system

accounting only for face unknowns. The way the system is reduced is called static

condensation. When this technique is applied the HHO scheme becomes a skeletal
method, as the unknowns of the solution refer only to face degrees of freedom. Staic

condensation can be implemented locally, that is cell-wise, before global assembly. This

allows to perform it in parallel. To discuss the algebraic formulation of the method we

make reference to the problem set in the cartesian product space:

Find zh = (uh,ph) ∈Z
k+1
h,0 such that:

Ah
(
zh,sh

)
= (f ,vh)Ω ∀sh = (vh,qh) ∈Z

k+1
h,0 , (4.1)

where the bilinear form Ah :Z
k+1
h ×Zk+1

h →R is defined by

Ah
(
(wh,rh), (vh,qh)

)
:= ah(wh,vh) + bh(vh,rh)−bh(wh,qh) + dh(rh,qh). (4.2)

It is possible to express a generic element sh = (vh,qh) ∈ Z
k+1
h,0 using suitable bases for

Xk+1h,0 and Yk+1h by storing the collection of Hilbert coefficients for zh in a vector:

sh→ S =
[
SF
ST

]
=


V F
Q
F

V T
Q
T

 (4.3)

The variational condition of problem (4.1) must be valid for any element of the cartesian

product space Z
k+1
h,0 , thus it is necessary and sufficient that it is verified for each element

of the global basis. Let’s consider a basis B = {ξi}i of Z
k+1
h,0 . By imposing (4.1) to be

verified for any element of the basis it is found that the vector of degrees of freedom of

the discrete solution must solve the linear system:

A · S = B, (4.4)

where Ai,j = Ah(ξj ,ξi) and Bi = (f ,φ
i
)Ω , being ξi = (φi ,φi) ∈ B element of a basis for

the hybrid space.
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As it is evident from their definition, any of the bilinear forms that appear in definition

(4.2) is the sum of cell-wise contributions. This means that the algebraic global system

can be assembled starting from independent local contributions that only involve the

degrees of freedom related to a cell and all of its neighbouring faces. Arranging the

deegrees of freedom by putting in order all the face unknowns and at the bottom all the

cell unknowns, a local contribution can be represented with the following block-wise

structure:

AT =
[
AFF AFT
AT F AT T

]
,BT =

[
0
BT

]
. (4.5)

On their side, each of the three blocks which have at least one F in their label can be

represented with an inner block structure referred to single faces. We can call Amn the

block of AFF associated to faces m and n. Similarly, AmT will be used to indicate the

block in AFT related to face m and AT n the block of AT F associated with face n.

With reference to a suitable mapping from local to global indexing each of the blocks

of a local contribution can be added to the global system with a procedure which is

common in the implementation of similar methods.

However, it is possible to reduce the size of the contribution by applying static conden-

sation. Consider in the global system the lines associated to cell T . One can recognize

the blocks from T−local contribution:∑
F∈FT

AT FzF +AT T zT = BT

zT = A−1T T {BT −
∑
F∈FT

AT FzF}.
(4.6)

Thus, local cell unknowns are expressible in function of the neighbouring face un-

knowns. Inverting AT T is an affordable task, as this block embodies cell-cell bilinear

forms that turn out to be symmetric and definite positive for both the vector and the

scalar component. Consider now a generic internal face with label l, which is at the

interface of cells labelled respectively with 1 and 2. The block of lines referred to

the unknowns on l can be formulated substituting the expression derived for the cell

unknowns on T1 and T2:

{
∑
m∈F1

[A1
lm −A

1
l1A
−1
11A

1
1,m]zm +A1

1lA
−1
11B1}+

{
∑
m∈F2

[A2
lm −A

2
l2A
−1
22A

2
2,m]zm +A2

2lA
−1
22B2},

(4.7)

By making the substitution a system is obtained where the only unknowns are the face

coefficients zF . In (4.7), one can recognize the blocks of a new compact local contribution

referred only to face unknowns to work out cell-wise before global assembly:

AF = AFF −AFTA−1T TAT F , BF = −AFTA−1T TBT . (4.8)
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4.2 The HArD::Core3D library

4.2 The HArD::Core3D library

The library HArD::Core3D (Hybrid Arbitrary Degree::Core 3D) provides classes and

methods necessary to implement hybrid numerical schemes, where polynomial un-

knowns can be attached to several types of geometric entity (cells, faces, edges or

vertices) of a generic tridimensional mesh. In particular it provides the instruments to

build HHO schemes, where unknowns are associated to cells and faces.

The main ingredients are the following:

• An environment of classes to represent a polyhedral mesh and its associated

entities. Meshes are generally initialized from meshfiles in RF format. Suitable

classes are defined to represent vertices, edges, faces and cells. Moreover meshes

are are corredated with methods to provide number and address of neighbouring

entities as well as flags to distinguish internal and boundary. A mesh object

reduces to a collection of its composing elements. Among its methods, there is

one to reorder unknowns to cope with strongly imposed boundary conditions.

Notice that a mesh object designed like this is suitable for methods potentially

dealing with unknowns attached to any geometric entity, even though HHO

methods only have degrees of freedom attached to cells and faces.

#include "mesh.hpp"

#include "mesh_builder.hpp"

using namespace HArDCore3D;

int main() {

// Mesh file to read

std::string default_mesh =

"../../meshes/Voro-small-0/RF_fmt/voro-4";

// Build the mesh

MeshBuilder meshbuilder = MeshBuilder(mesh_file);

std::unique_ptr<Mesh> mesh_ptr = meshbuilder.build_the_mesh();

std::cout << "There␣are␣"
<< mesh_ptr->n_cells() << "␣cells␣in␣the␣mesh.\n";

std::cout << "There␣are␣"
<< mesh_ptr->n_faces() << "␣faces␣in␣the␣mesh.\n";
...

}

Listing 4.1: Loading a mesh

• Quadrature rules. Local assembly for an HHO scheme scales down to computing

quantities in the form: (LφF/Ti ,LψF/Tj )F/T where L is some first-order differential

operator, and φF/Ti , ψF/Tj are two elements of a polynomial basis attached to a face

or an cell. Quadrature rules shift from the need for computig local integrals to the

need of providing evaluation of polynomials on quadrature nodes. HArD::Core3D

makes use of the Dunavant rule to calibrate nodes and weights.

#include <quadraturerule.hpp>

...
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using HArDCore3D;

size_t iT = 0; // cell index

unsigned m_K = 1; // degree of exactness

const Cell & T = mesh_ptr->cell(iT);

QuadratureRule quad_2k_T =

generate_quadrature_rule(T, 2 * m_K);

Listing 4.2: Declaring a quadrature rule for a cell

• Suitable classes to represent families or bases of polynomial functions in R
d

with

d = 2,3. The kind of spaces that can be attached to cells and faces in hybrid high

order methods can cover a large variety. Then, the gamma of classes provided

in basis.hpp is quite large. Starting from the most simple bases, more abstract

classes are built by composing simpler classes.

– The most simple classes to define are those for scalar polynomials. Mono-

mials are chosen to span a basis for P k(R2) and P k(R3). Monomials are

completely described by lists of respectively two and three integers, repre-

senting the exponents assigned to each coordinate. Generating sequence of

exponents to span a basis up to a given deegree is relatively straightforward.

Starting from these encoding of monomials it is possible not only to evaluate

them, but also to evaluate their derivatives, by implementing automatic rules

of derivation for the lists of exponents.

– The next step consists in the definition of classes to represent local bases

P k(T ) and P k(F). As it is costumary when dealing with finite elements,

local basis functions are defined as affine transformations of reference basis

functions of P k(Rd). Cell basis functions are defined as:

φiT (x) :=
1
hT
φi∗(x − xT )

where xT ,hT are respectively the barycentre and diameter of the cell, and

φi∗ is a reference monomial. Since evaluation up to first derivation order of

reference functions is provided it is straightforward to extend these methods

to the transformed basis functions.

class MonomialScalarBasisCell

{

public:

/// Constructor

MonomialScalarBasisCell(

const Cell &T, ///< A mesh cell

size_t degree ///< The maximum

///polynomial degree to be considered

);

...

/// Evaluate the i-th basis function at point x

FunctionValue function(size_t i, const VectorRd &x) const;

/// Evaluate the gradient of the i-th
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4.2 The HArD::Core3D library

/// basis function at point x

GradientValue gradient(size_t i, const VectorRd &x) const;

private:

....

size_t m_degree;

VectorRd m_xT;

double m_hT;

std::vector<VectorZd> m_powers; //list of exponents

//of monomials

};

Listing 4.3: Representation of a basis of monomials

– Scalar polynomials are then enough to consider vectors of polynomials. To

generate spaces of l-valued polynomials it is sufficient to tensorize a scalar

basis:

φi →

φ
i

0
0

 ,
 0φi
0

 ,
 00
φi


– The last fundamental notion is that of family, a general collection of functions

in the space spanned by a provided basis. Given access to a basis object, a

family defines its members through a matrix with as many rows as the basis

cardinality and as many columns as the family cardinality. Each column

contains the coefficients of the expansion of a family member onto the basis.

By exploiting linearity, evaluation of family members scales down to the

evaluation of basis functions.

template <typename BasisType>

class Family {

...

public:

Family(

const BasisType &basis,

///< The basis in which the family is expressed

const Eigen::MatrixXd &matrix

///< The coefficient matrix whose

///<i-th line contains the coefficient

///<of the expansion of the i-th function

///<of the family in the basis

)

: m_basis(basis),

m_matrix(matrix){...};

}

Listing 4.4: The family template class

At this evel, starting from the primitive class representing a basis for P k(Rd),
it has been possible to build classes representing more and more complex

families of l-valued polynomials on face and cells. According to necessity it
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is possible to develop further this section of the library, for example to gen-

erate orthonormal basis or to consider bases for the image of a differential

operator like the gradient or the curl.

Even though all the basis classes that are declared in basis.hpp rely on

different implementations, all of them share a common utility, that is the

evaluation up to first order of derivation at quadrature nodes. It is then

desirable to have a common interface to evaluate families of functions re-

gardless of the actual type of the family. Evaluation traits are designed to

serve this purpose. Traits serve the role of proxy to the basis objects, so that

the evaluation step in an HHO solver can be made uniform and indepen-

dent of the specific chosen basis. In HArD::Core3D this is achieved through

the function template evaluate_quad which can be directly used to work

out local contributions. This is the case when calculating gradient or curl

reconstruction matrices, to perform local static condensation, and finally to

assemble the global system.

// Create basis (f_1,...,f_r) of degree k in cell T

MonomialScalarBasisCell basisT(T, k);

// Create quadrature rules of degree 2*k in cell T

QuadratureRule quadT = generate_quadrature_rule(T, 2*k);

// Compute values of gradients

//of basis functions at the quadrature nodes

boost::multi_array<VectorRd, 2> gradbasis_on_quadT

= evaluate_quad<Gradient >::compute(basisT, quadT);

// Create Gram-like matrix (here, a stiffness matix)

// of (\nabla f_i,\nabla f_j)

Eigen::MatrixXd M

= compute_gram_matrix

(gradbasis_on_quadT , gradbasis_on_quadT , quadT, true);

Listing 4.5: Evaluating a basis at quadrature nodes

• Classes defining HHO spaces. Classes for degrees of freedom are necessary to

provide an interface between local indexing and global indexing. Each HHO

space is built starting from a mesh object, and it holds the collection of cells and

faces, each corredated with a suitable basis. Moreover, at construction time, the

local reconstruction matrices are worked out cell-wise in parallel.

namespace HArDCore3D {

class YSpace : public HHOSpace {

public:

typedef Family<MonomialScalarBasisCell >

CellBasisType;

typedef Family<MonomialScalarBasisFace >

FaceBasisType;

typedef TensorizedVectorFamily <CellBasisType, 3>

GradientReconstructionBasisType;

// constructor

YSpace(const Mesh & mesh,

size_t K,

bool use_threads = true,
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std::ostream & output = std::cout):... {

...

m_output << "Computing␣gradient␣reconstructions"
<< std::endl;

// building local reconstruction matrices

parallel_for(mesh.n_cells(),

construct_all_gradients ,

m_use_threads);

}

...

private:

// Cell bases

std::vector<std::unique_ptr<CellBasisType> >

m_cell_bases;

// Face bases

std::vector<std::unique_ptr<FaceBasisType> >

m_face_bases;

// Gradient reconstruction basis

std::vector<std::unique_ptr<GradientReconstructionBasisType >>

m_gradient_reconstruction_bases;

// Container for local gradients

std::vector<Eigen::MatrixXd>

m_cell_gradients;

std::vector<Eigen::MatrixXd>

m_cell_gradients_rhs;

...}}

Listing 4.6: Class representing Yk+1h

• The last ingredient is an HHO scheme class, with a solve method that performs

all the steps in order:

– Loading of the meshfile

– Reordering of the elements to deal with strongly imposed boundary condi-

tions

– Instantiation of the problem-dependent HHO spaces and parallel building

of the local reconstruction matrices

– Computation of the statically condensed local contribution to the global

system

– Assembly of the global system

– Enforcement of boundary conditions (for Dirichlet or mixed boundary con-

ditions)

– Solution of the global system

During the solution there are two important processes of the solution algorithm that

are performed element-wise. The first is the assembly of the local reconstruction matrix

performed by the constructor of any HHO space, and the second is the computation
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of the local statically condensed contribution of each element to the global system.

This configures an embarassingly parallel problem. The parallelism is implemented by

incapsulating any cell-wise operation in a functor which can be passed as parameter to

a parallel for-cycle as in the following example:

...

bool m_use_threads = true;

// a functor performing a cell-wise

// operation within a given range

// of indexes

std::function<void(size_t, size_t)> construct_all_cell_bases

= [this](size_t start, size_t end)->void

{

for (size_t iT = start; iT < end; iT++) {

const Cell & T = *this->mesh().cell(iT);

...///cell-wise operations

}

};

m_output << "[XSpace]␣Constructing␣element␣bases" << std::endl;

parallel_for(mesh.n_cells(), construct_all_cell_bases , m_use_threads);

4.3 Original contribution

HArD::Core3D provides the general tools to load a mesh, specify quadrature rules and

assemble a global system starting from local contributions. Then, to provide a new

scheme for magnetostatics essentially five problem-dependent tasks have to be faced:

• Provide a class describing the hybrid HHO spaces Xk+1h an Yk+1h

• Define bases for cell unknowns, face unknowns and recontruction unknowns

• Describe how to build a local reconstruction matrix

• Define the local contribution specific of the problem

• Take care of strongly imposed boundary conditions in the Dirichlet and mixed

case

We briefly recall that for the magnetostatics problem an HHO space discretizing the

space of vector potentials is considered:

Xk+1h =


local cell space: P k+1(T )
local face space: P k+1♭ (F) := P k(F)⊕ gradτ(P̃ k+2(F))
local curl reconstruction space: Rk(T ) := curl(P k+1(T ))

(4.9)

together with another HHO space discretizing the space of pressures:
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Yk+1h =


local cell space: P k(T )
local face space: P k+1(F)
local curl reconstruction space: P k+1(T ).

(4.10)

When defining classes for these spaces the key step is to provide properly the definition

of the local bases, choosing from the gamma provided in basis.hpp. For Yk+1h it is

relatively easy, as bases for full polynomial spaces are already provided. The task is

more complex for Xk+1h , as bases for the requested polynomial spaces aren’t provided

in basis.hpp. Actually, a simpler version of the method can be given by considering

full polynomial local spaces for Xk+1h . This choice however, other than increasing the

number of local unknowns, and so the weight of the method, leads to worse convergence

performance (see Remark 17, [FS20]).

As a general remark on how HArD::Core3D is developed an emphasis should be put on

the independence of the section of code related to basis representation. Every tool in

basis.hpp can be potentially used even beyond the frame of HHO schemes. However,

new methods are added to this section according to necessity for specific problems. As

a result, the developer is not provided with the most general possible library to treat

polynomial spaces. It is expected that basis.hpp is extended when a new method is

implemented. In particular it is necessary to provide a class to represent direct sums

of bases, as well as a method to extract independent bases out of the image of the curl

applied to a full polynomial space. Accordingly, a class template and and a template

function were added to the set of utilities to represent polynomial bases:

/// class to represent a basis of

/// a direct sum of finite dim. spaces given

/// a basis of each one

template <typename BasisType1, typename BasisType2>

class BasisDirectSum {

public:

BasisDirectSum (BasisType1 &basis1, BasisType2 &basis2);

...

}

/// function to flush out from a family null

/// and repeated or linearly correlated elements

/// (based on numerical evaluation)

/// works for vector valued basis

///(originally thought to filter a curl rec. basis)

template <typename BasisType>

Family<BasisType> Filter (const BasisType &broadbasis,

const QuadratureRule &quad_rule);

So, in the definition of class XSpace representing Xk+1h the instantiation of local bases

works like this:

XSpace::XSpace(

const Mesh & mesh,

size_t K,
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bool use_threads,

std::ostream & output) {

...

/// cell-wise instantiation as an object function

std::function<void(size_t, size_t)> construct_all_cell_bases

= [this](size_t start, size_t end)->void

{

for (size_t iT = start; iT < end; iT++) {

const Cell & T = *this->mesh().cell(iT);

MonomialScalarBasisCell basis_Pk_T(T, m_K);

QuadratureRule quad_2k_T =

generate_quadrature_rule(T, 2 * m_K);

auto basis_Pk_T_quad =

evaluate_quad<Function >::compute(basis_Pk_T, quad_2k_T);

///storing cell basis (after orthonormalization)

this->m_cell_bases[iT].reset

( new CellBasisType(l2_orthonormalize(basis_Pk_T,

quad_2k_T,

basis_Pk_T_quad)) );

typedef CurlBasis

<TensorizedVectorFamily <MonomialScalarBasisCell , 3>>

temp_basis_type;

CurlBasis

<TensorizedVectorFamily <MonomialScalarBasisCell , 3>>

basis_curl =

CurlBasis(TensorizedVectorFamily

<MonomialScalarBasisCell ,3>

(MonomialScalarBasisCell(T, m_K)));

///take out null or repeated elements

///store the curl recontruction basis

this->m_curl_reconstruction_bases[iT].reset

( new CurlReconstructionBasisType (

Filter<temp_basis_type>

(basis_curl, quad_2k_T)));

}

};

/// parallel instantiation

parallel_for(mesh.n_cells(),

construct_all_cell_bases ,

m_use_threads);

}

The following issue regards the building of the curl reconstruction matrix. We recall

that the curl reconstruction CkT vT ∈ Rk(T ) is defined as:(
CkTuT ,w

)
T
= (uT ,curlw)T +

∑
F∈FT

(uF ,γτ,F(w×nT F))F ∀w ∈ Rk(T ). (4.11)

A problem emerges when realizing that to compute the quantity (uT ,curlφi)T for

a generic element φi of the basis for Rk(T ) it is necessary to provide second order

derivatives of polynomials on a cell. This is true because curl bases essentially hold a
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scalar basis on the same element, such that the evaluation of a curl basis function is

provided as the evaluation of the curl of its scalar ancestor. Then, evaluating the curl

of a curl basis function implies applying two times the curl operator to the ancestor,

which eventually requires computing second order derivatives. However computation

of second order derivatives is not a method provided by scalar polynomials. The direct

solution to this problem is extending the class MonomialScalarBasisCell to provide

the hessian matrix of each basis function. On top of this it is possible to definine a

curlcurl operator. An indirect solution resides in finding an equivalent formulation of

definition (4.11) for the curl reconstruction. This is possible by applying an integration

by parts to term (uT ,curlφi)T . This leads to an alternative formulation, given by:

(
CkTuT ,w

)
T
= (curluT ,w)T +

∑
F∈FT

(uF −uT ,γτ,F(w×nT F))F ∀w ∈ Rk(T ). (4.12)

With this work-around, no evaluation of derivatives is required for curl basis functions,

eliminating the need to manipulate the class MonomialScalarBasisCell. As for the

YSpace representing Yk+1h , it can instead rely completely on tools that are already pro-

vided by the original library.

Once the definition of the HHO spaces is given the next step is assigning the local

contribution. The construction of local contribution is provided as a method of the

solver class HHO-magnetostatics. The rest of the algorithm follows standard steps.

From dense local contributions a sparse global system is assembled. A standard lifting

technique is used to enforce strong boundary conditions, and a suitable method can be

chosen to solve the linear system.
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5 Numerical results

In this section the results of convergence tests are displayed. For each mesh sequence

the method is applied varying the maximum polynomial degree and reporting the

trend of the error with respect to the meshsize hT and the total number of degrees

of freedom. Also, estimates of the convergence rates are provided. The norm of the

error was considered both in the sense of (3.10) and in the sense L2. Several kinds of

polytopal mesh families were tested.

Dirichlet Boundary Conditions

To realize numerical tests on Dirichlet boundary conditions, the method was applied

to the problem with the following data:

• Ω = [0,1]3

• u =

 sin(πy)sin(πz)
sin(πx) ∗ sin(πz)
sin(πx) ∗ sin(πy)



• p = sin(πx)sin(πy)sin(πz)

• f = 2π2

sin(πy)sin(πz)sin(πx)sin(πz)
sin(πx)sin(πy)

+ gradp
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5 Numerical results

Figure 5.1: Dirichlet-Mesh Family: CubicCells

10−1 100

10−2

10−1

100

1

1

1

2

1

3

hT

∥u
−
u
h
∥ X

k+
1

♭,
h

k = 0
k = 1
k = 2

10−1 100

10−3

10−2

10−1

100

1

2

1

3

1

4

hT

∥u
−
u
h
∥ Ω

k = 0
k = 1
k = 2

102 103 104 105

10−2

10−1

100

DOF

∥u
−
u
h
∥ X

k+
1

♭,
h

k = 0
k = 1
k = 2

102 103 104 105

10−3

10−2

10−1

100

DOF

∥u
−
u
h
∥ Ω

k = 0
k = 1
k = 2

---- Convergence Rates: K=0 ----

Energy error:

Mesh size Error Rate

8.66e-01 6.59e-01

4.33e-01 3.19e-01 1.048

2.17e-01 1.63e-01 0.965

1.08e-01 8.23e-02 0.988

L2 error:

Mesh size Error Rate

8.66e-01 1.27e+00

4.33e-01 3.65e-01 1.799

2.17e-01 9.40e-02 1.957

1.08e-01 2.37e-02 1.990

---- Convergence Rates: K=1 ----

Energy error:

Mesh size Error Rate

8.66e-01 5.37e-01

4.33e-01 2.27e-01 1.243

2.17e-01 6.83e-02 1.731

1.08e-01 1.80e-02 1.921

L2 error:

Mesh size Error Rate

8.66e-01 3.96e-01

4.33e-01 4.64e-02 3.094

2.17e-01 5.16e-03 3.169

1.08e-01 6.09e-04 3.082

---- Convergence Rates: K=2 ----

Energy error:

Mesh size Error Rate

8.66e-01 2.26e-01

4.33e-01 3.58e-02 2.659

2.17e-01 4.77e-03 2.908

L2 error:

Mesh size Error Rate

8.66e-01 9.70e-02

4.33e-01 6.45e-03 3.910

2.17e-01 4.08e-04 3.984
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Figure 5.3: Dirichlet - Mesh Family: VoroSmall
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---- Compute convergence rates ----

Energy error:

Mesh size Error Rate

8.27e-01 1.20e+00

4.54e-01 8.20e-01 0.630

3.05e-01 5.92e-01 0.822

L2 error:

Mesh size Error Rate

8.27e-01 9.68e-01

4.54e-01 3.28e-01 1.807

3.05e-01 1.52e-01 1.934

---- Compute convergence rates ----

Energy error:

Mesh size Error Rate

8.27e-01 4.83e-01

4.54e-01 2.33e-01 1.219

3.05e-01 1.16e-01 1.749

L2 error:

Mesh size Error Rate

8.27e-01 1.64e-01

4.54e-01 3.24e-02 2.701

3.05e-01 9.85e-03 3.002

---- Compute convergence rates ----

Energy error:

Mesh size Error Rate

8.27e-01 1.84e-01

4.54e-01 3.64e-02 2.702

3.05e-01 1.13e-02 2.955

L2 error:

Mesh size Error Rate

8.27e-01 4.20e-02

4.54e-01 4.13e-03 3.871

3.05e-01 8.85e-04 3.881
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Figure 5.5: Dirichlet - Mesh Family: VoroTets
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---- Compute convergence rates ----
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L2 error:
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---- Compute convergence rates ----

Energy error:

Mesh size Error Rate

4.15e-01 2.69e-02

3.26e-01 1.46e-02 2.534

2.67e-01 7.58e-03 3.275

L2 error:

Mesh size Error Rate
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2.67e-01 5.03e-04 4.371
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Figure 5.7: Dirichlet - Mesh Family: RandomHexahedra
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L2 error:
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5.30e-01 4.65e-01
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---- Compute convergence rates ----

Energy error:

Mesh size Error Rate
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3.47e-01 1.23e-01 2.505

L2 error:

Mesh size Error Rate

5.30e-01 5.60e-02

3.47e-01 1.05e-02 3.958

---- Compute convergence rates ----

Energy error:

Mesh size Error Rate

5.30e-01 6.44e-02

3.47e-01 1.10e-02 4.179

L2 error:

Mesh size Error Rate

5.30e-01 8.04e-03

3.47e-01 7.98e-04 5.460
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5 Numerical results

Neumann boundary conditions

To realize numerical tests on Neumann boundary conditions, the method was applied

to the problem with the following data:

• Ω = [0,1]3

• u =

 sin(πx)cos(πy)cos(πz)
cos(πx)sin(πx)cos(πz)
−2cos(πx)cos(πy)sin(πz)



• p = 0

• f = 3π2

 sin(πx)cos(πy)cos(πz)
cos(πx)sin(πx)cos(πz)
−2cos(πx)cos(πy)sin(πz)
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Figure 5.9: Neumann - Mesh Family: CubicCells
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L2 error:
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8.66e-01 7.94e-01

4.33e-01 9.28e-02 3.096

2.17e-01 9.88e-03 3.232

---- K=2 ----

Energy error:

Mesh size Error Rate

8.66e-01 1.03e+00

4.33e-01 1.94e-01 2.413

2.17e-01 2.69e-02 2.851

L2 error:

Mesh size Error Rate

8.66e-01 2.67e-01

4.33e-01 1.44e-02 4.213

2.17e-01 8.15e-04 4.144
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5 Numerical results

Figure 5.11: Neumann - Mesh Family: RandomHexahedra
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---- K=1 ----

Energy error:

Mesh size Error Rate

5.30e-01 6.91e-01

3.47e-01 2.41e-01 2.487

L2 error:

Mesh size Error Rate

5.30e-01 1.08e-01

3.47e-01 1.84e-02 4.176

---- K=2 ----

Energy error:

Mesh size Error Rate

5.30e-01 1.44e-01

3.47e-01 2.42e-02 4.207

L2 error:

Mesh size Error Rate

5.30e-01 1.77e-02
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Figure 5.13: Neumann - Mesh Family: VoroTets
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Mesh size Error Rate
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L2 error:

Mesh size Error Rate

4.15e-01 4.45e-02

3.26e-01 2.37e-02 2.625

2.67e-01 1.23e-02 3.248

---- K=2 ----

Energy error:

Mesh size Error Rate

4.15e-01 6.18e-02

3.26e-01 3.95e-02 1.861

2.67e-01 1.82e-02 3.860

L2 error:

Mesh size Error Rate

4.15e-01 6.09e-03

3.26e-01 5.70e-03 0.278

2.67e-01 1.13e-03 8.058
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5 Numerical results

Figure 5.15: Neumann - Mesh Family: VoroSmall
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L2 error:
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---- K=1 ----

Energy error:

Mesh size Error Rate

8.27e-01 1.52e+00

4.54e-01 5.81e-01 1.607

3.05e-01 2.86e-01 1.782

L2 error:

Mesh size Error Rate

8.27e-01 3.87e-01

4.54e-01 6.69e-02 2.932

3.05e-01 1.90e-02 3.166

---- K=2 ----

Energy error:

Mesh size Error Rate

8.27e-01 5.20e-01

4.54e-01 1.12e-01 2.566

3.05e-01 3.70e-02 2.790

L2 error:

Mesh size Error Rate

8.27e-01 1.06e-01

4.54e-01 1.10e-02 3.781

3.05e-01 2.17e-03 4.082
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Mixed boundary conditions

To realize numerical tests on mixed conditions, the method was applied to the problem

with the following data:

• Ω = [0,1]3

• u =

−4sin(0.5π(x − 1))cos(πy)cos(πz)cos(0.5π(x − 1))sin(πy)cos(πz)
cos(0.5π(x − 1))cos(πy)sin(πz)



• p = 0

• f = 9
4π

2

−4sin(0.5π(x − 1))cos(πy)cos(πz)cos(0.5π(x − 1))sin(πy)cos(πz)
cos(0.5π(x − 1))cos(πy)sin(πz)
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5 Numerical results

Figure 5.17: Mixed - Mesh Family: CubicCells
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4.33e-01 9.53e-02 3.124

2.17e-01 1.02e-02 3.226

---- K=2 ----

Energy error:

Mesh size Error Rate

8.66e-01 9.68e-01

4.33e-01 1.56e-01 2.634

2.17e-01 2.08e-02 2.908

L2 error:

Mesh size Error Rate

8.66e-01 2.06e-01

4.33e-01 1.27e-02 4.017

2.17e-01 8.02e-04 3.989
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Figure 5.19: Mixed - Mesh Family: VoroTets
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L2 error:
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3.26e-01 2.75e-02 2.560

2.67e-01 1.39e-02 3.382

---- K=2 ----

Energy error:

Mesh size Error Rate

4.15e-01 6.13e-02

3.26e-01 3.28e-02 2.608

2.67e-01 1.70e-02 3.277

L2 error:

Mesh size Error Rate

4.15e-01 6.34e-03
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5 Numerical results

Figure 5.21: Mixed - Mesh Family: VoroSmall
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Energy error:

Mesh size Error Rate

8.27e-01 3.79e+00

4.54e-01 2.27e+00 0.857

3.05e-01 1.53e+00 0.998

L2 error:

Mesh size Error Rate

8.27e-01 1.39e+00

4.54e-01 5.95e-01 1.415

3.05e-01 2.91e-01 1.801

---- K=1 ----

Energy error:

Mesh size Error Rate

8.27e-01 1.64e+00

4.54e-01 5.93e-01 1.699

3.05e-01 2.90e-01 1.804

L2 error:

Mesh size Error Rate

8.27e-01 4.66e-01

4.54e-01 7.09e-02 3.146

3.05e-01 2.06e-02 3.107

---- K=2 ----

Energy error:

Mesh size Error Rate

8.27e-01 4.97e-01

4.54e-01 9.60e-02 2.745

3.05e-01 3.12e-02 2.830

L2 error:

Mesh size Error Rate

8.27e-01 1.26e-01

4.54e-01 1.08e-02 4.097

3.05e-01 2.13e-03 4.096
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6 Conclusions

The simulation output matches the expected convergence rate, and this is true in-

dependently of the chosen mesh family. Even the results for Neumann and mixed

conditions show encouraging results. We can conclude that after this work a tool is

available to approximate a magnetic potential field inside a finite domain with rather

general boundary conditions. For mixed conditions this was at least shown numerically.

To give an idea of how the method’s performance is improved after considering reduced

local bases for the vector unknown reconstruction we show a comparison between a

scheme with optimized curl reconstruction and a raw scheme where full polynomial

spaces are chosen to define the space of vector unknowns. The result is a reduction

of around 11% of the dimension of the global system with no deterioration in the

error. On the other hand this result should be balanced by the overhead brought by

the filtering of the curl basis which is a step added to the optimized version. Also, full

polynomial spaces may be more performing for coarser meshes.

Figure 6.1: Dirichlet BCs - Cubic Cells: optimization gain

In future the method’s performance may be improved on several grounds. A more

organic representation of the variety of classes used to represent polynomial bases

could be the next goal. Also, optimizatin on the algebraic side could be explored more

deeply, possibly by looking for preconditioning strategies or multigrid approaches.

Also, a different reconstruction basis based on potential reconstruction may lead to even

less degrees of freedom with no accuracy degradation. Probably the next challenge

will be a generalized method which shows stability even when the domain topology is

not trivial. This would have a positive effect for application with complex geometries.

The next achievements will be presumably the reuslts of merging HHO theory with
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6 Conclusions

typical methods of computational algebraic topology.
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