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Abstract

The urgency of facing climate change has had a positive impact on the electric vehicle
market, which, combined with the pandemic situation of the last few years, is leading
customers to move on a new way of sustainable mobility, choosing short- range electric
vehicles, such as scooters and e-bikes. This trend importantly impacts in holiday resorts
where e-bikes are becoming one of the most requested activities, suited to a large spectrum
of tourists, promoting a new way of appreciating the natural landscapes. In this scenario
the range of the battery mounted on e-bikes could be a limit to these activities, especially
in resorts characterized by steep climbs and long trails. This thesis proposes two main
optimization models to address the problem of locating charger facilities on the network
of trails of a resort. A first formulation models the scenario where a set of predefined
itineraries is devoted to the specific cultural journey, and hence a location problem is
derived to cover the charge demand on the network. The second formulation models
the scenario where trails are not given, but are part of the decisions process. For this
case, we exploit an existing model in the literature, the so called Tourist Trip Design
Problem, which we generalize to accumulate charging stations locations decisions. The
derived models are applied to three randomly generated instances. Finally, we validate
the programs on a real test case scenario, evaluating their performances and deriving some
conclusions.

Keywords: E-bike; Charging Stations; Location Problem; Routing Location Problem;
Tourist Trip Design Problem.





Sommario

L’urgenza di affrontare il cambiamento climatico ha avuto un impatto positivo sul mer-
cato dei veicoli elettrici, che, combinato con la situazione pandemica degli ultimi anni,
sta portando i clienti a muoversi su un nuovo tipo di mobilità sostenibile, scegliendo
veicoli elettrici a corta percorrenza come monopattini e biciclette elettriche. Questa ten-
denza si riflette soprattutto sulle località di villeggiatura in cui l’e-bike sta diventando
l’attività più gradita ai turisti di ogni tipo, promuovendo un modo di apprezzare i siti
piu gettonati della regione, apprezzando la natura dei paesaggi e le attività proposte. In
questo scenario l’autonomia della batteria montata sulle e-bike potrebbe essere un limite
a questa attività, soprattutto nelle località dove le salite ripide e i lunghi sentieri limitano
i chilometri raggiungibili. Questa tesi propone due principali modelli di ottimizzazione
che sono in grado di trovare correttamente una soluzione al problema della posizione dei
caricabatterie. Una prima formulazione fornisce una soluzione a uno scenario in cui un
insieme di itinerari predefiniti è dedicato a specifici viaggi culturali e quindi un problema
di localizzazione viene derivato per coprire la domanda di ricarica sulla rete. La seconda
formulazione modella lo scenario in cui gli itinerari non sono dati, ma fanno parte del
processo decisionale. Per questo caso, sfruttiamo un modello esistente in letteratura, il
cosiddetto Tourist Trip Design Problem, che generalizziamo per accumulare le decisioni
di localizzazione delle stazioni di ricarica. I modelli derivati sono applicati a tre istanze
generate casualmente. Infine, convalidiamo i programmi su uno scenario reale, valutando
le loro prestazioni e derivando alcune conclusioni.

Parole chiave: E-bike; Stazioni di Ricarica; Problema di Localizzazione; Problema di
Localizzazione e Instradamento; Problema di Progetto di Reti Ciclo-Turistiche.
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Introduction

The need to address climate change is one of the most challenging and important problems
of our century. In a 2018 report from United Nations [1], thousands of scientists and
government reviewers agreed that to avoid the worst climate impacts and maintain livable
climate conditions we must limit the increase of global temperature within 1.5°C. However,
based on current climate plans, global warming is projected to reach 2.7°C by the end of
the century. The pressure to make real actions is resulting in agreements to guide this
progress, such as the Sustainable Development Goals, the UN Framework Convention on
Climate Change and the Paris Agreement. What emerges form these agreements is that
meaningful climate mitigation solutions exist to reduce greenhouse gas emissions, which
would in turn slow down climate change and prevent natural disasters.[2].

Hence it is of fundamental importance to switch energy systems from fossil fuels to renew-
able energy. This directly reflects on the private transportation vehicle market, where the
emissions of road vehicles, despite the continuous technological improvements, is still one
of the largest contributing factor to air pollution in cities, often outside of the air quality
standards provided by the World Health Organizations [3]. Governments and businesses
are hence transitioning to green solutions, spurred on by regulations aimed at discourag-
ing costumers and companies to invest in combustion engine vehicles, promoting instead,
initiatives aimed at speeding up the transition to electric vehicles. This combination of
facilitation-regulations and the quick growing of electrical vehicle market, is leading an
electrical transition also in the low range vehicle market, where e-scooter and e-bicycles
are quickly becoming among the most trendy personal urban vehicles. This new way of
transportation is one of the best solutions to fight the rise of greenhouse gas emissions, it
avoids traffic congestion and promote public transport in and outside of large metropoli-
tan areas. The global market of two wheeler electric vehicles is expected to grow at a
compound annual grow rate (CAGR) of 29.4 % for the end of 2028 [4], and a bigger move-
ment is expected in the e-bike/scooter rental market that is quickly growing in the Asia
Pacific regions, following the rapidly emerging economies like China and India. Moreover,
the Covid-19 pandemic has significantly spurred on this market, bringing an overall pos-
itive impact in the selling volumes. With authorities worldwide discouraging people to
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take crowded public transportation systems wherever possible, people are getting used to
their bikes for short-distance commuting.

This trend is reflected also in the touristic locations where e-bicycle is spreading not only
as a mean of transportation but also as common ludic activity: enjoying a trail with
pedal assist is attractive not only for family but also for sporty users who do not want
to compromise between long distance and speed even when the climbs become harder.
Resort and touristic administrations feel the pressure to develop cycling networks to face
the needs of this market, able to lead the economies of this locations thanks to targeted
investments and strategic decisions. A wider picture is presented in an article commis-
sioned by the the European Parliament’s Committee on Transport and Tourism in 2009
and conducted by the Institute of Transport and Tourism at the University of Central
Lancashire (UK) and the Center for Sustainable Transport and Tourism, at Breda Uni-
versity, in the Netherlands (ITT, 2009). In this study it is stressed how developing a cycle
tourism networks, emphasizes the economic impact on the local economies, increasing job
opportunities.

Setting up such a kind of project is quite challenging: quantitative and qualitative tools
aimed at evaluating the cost and the expected potential benefits of this investment are
of fundamental importance for local administrations where the budget and the resources
are quite limited. The main challenge stems from the development of the electrical infras-
tructure aimed at supporting the e-bike along the trails. Although the European Union
directive No 168/2013 [5] for the definition of e-bikes, limits the maximum continuum
rated power to less then 250 W , the market present models much more powerful. It fol-
lows that in a network open to each type of tourist, it is possible to find different types of
electrical bicycles, which can require a higher presence of charger facilities. Hence, in such
type of networks it is mandatory to have a reliable infrastructure of e-charger in order to
face the needs of all types of users.

Among all types of resorts, mountain regions are the ones that most require a rapid devel-
opment of these infrastructures. Indeed, e-bikes are quickly becoming the most popular
activities in these sites: driven by electric motors, tourists have the opportunity to expe-
rience this new type of mobility for sports, spending time with the family and enjoying
the beautiful natural landscapes. Furthermore, e-bikes make it possible to cover long
distances and helping face the most difficult climbs even for less trained users. Conse-
quently, these means of transportation use much of their capacity, requiring a frequent
and strategic positioning of the charging stations. In addition, the paths and mule tracks
characterizing the landscapes, lead the cyclists to arrive at very remote locations in the
network. This translates into a demand for chargers in places far from the power grid,
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such as huts and mountain passes, where the implementation of a charging station would
lead to a great expenditure of money and resources. Hence, the problem of find a strategic
and optimal positioning of the columns is of extreme importance in these tourist resorts,
requiring appropriate tools and methodologies.

In mathematical optimization, the family of Location Problems comprehend several stud-
ies studying the positioning of charging stations for electric vehicles. However, the pro-
posed models are designed for large cities and long distance vehicles such as cars and buses.
Consequently, if the formulations treated work well in urban contexts where charging sta-
tions capacity is generally treated as a coverage radius, in a mountain environment this
is not possible, both for the distances and differences in height between possible charging
points, and for the vehicles treated, very distant from the electric bicycles.

This thesis aims at proposing a new formulation that, modeling the mountain trails as
a directed graph, exploits the territory conformation to find the best charging stations
positions. This type of model is completely new in the literature, as it combines two
field of studies such as the problem of charger location with the Tourist Trip Design,
leading to competitive solutions which combine the constraints of battery capacity with
the maximization of itineraries attractiveness.

In particular we propose two main types of models that solve the problem in different
contexts. The first one can be defined as a Location Problem, i.e. with a formulation able
to find the charging stations positions in a selected set of nodes. The goal is to minimize
the implementation costs by finding the minimum number of chargers and ensuring in
this way a full coverage of the routes that the cyclist can travel. This model is in fact
implemented in a scenario where the feasible paths have been previously defined by local
authorities or particular territorial conformations that oblige the user to cover a certain
set of arcs to reach a desired destination. The second model is more detailed and flexible,
allowing to find the optimal chargers positions without knowing in advance the routes
taken by the cyclists. This formulation takes the name of Location Routing Problem
because it exploits a routing problem to define the paths of the network and the position
of the chargers. Such a strategy is applied by exploiting the potential of the Tourist Trip
Design Problem that allows to design an offer of routes able to maximize the cyclists
pleasure, exploiting the territory characteristics.

The thesis has the following structure, after the literature review , where the main contri-
butions in similar problems are summarized, in Chapter 1 we propose a Location Prob-
lem that aims at finding the best locations of charger facilities given a set of predefined
itineraries followed by the cyclists. In Chapter 2 we exploit the methodology of the Tourist
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Trip Design Problem to propose a Location Routing Problem which locates the charging
stations in a scenario where the set of predefined itineraries is missing. Then, in Chapter
3, these two models are tested on randomly generated networks to study their perfor-
mance on various types of graphs. Chapter 4 is devoted to analyze the results on a real
network, implementing the models on the Asiago Plateau, which represents a paradise for
mountain bikers. Finally, Chapter 5 brings some conclusions on the work developed in
this thesis, highlighting possible future developments in such a promising field.
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Literature Review

Analyzing how many charging stations are needed on a specific topological area and which
is their best position is a quite complex aspect for administration executives. It follows
that a proper analysis and evaluation of the possible infrastructure is mandatory to ensure
an e-charger network able to face the needs of the costumers and ensure a certain level
of reliability. The majority of the researchers agree that different demands need different
charger locations approaches [6], hence an appropriate model able to describe all the
feature and needs of the network-costumer relationship must be created ad-hoc for the
instance under analysis.

In the literature the problem of the location of charging stations for Electric Vehicles is
extensively studied. Based on the facility location theory, many studies [7],[8],[9],[10],
have analyzed EV refueling features to create an optimization problem able to size and
properly locate a charging facilities infrastructure. The literature is therefore rich of
articles that needs to be classified in different families. An appropriate classification is
proposed in [11] where the different models are organized based on the hypothesis done
on refueling demand, where the main groups are flow based, arc-based, and node-based
models.

Flow-based models are the most studied one in the literature and focus on the assumption
that the refueling capacity is associated to a traffic flow over the charger facilities. This
method originates from the problem of maximum covering and basically it aims to find
the best locations for p facilities in order to capture as much traffic flow as possible. The
ancestor of this family of models is the flow capturing location model (FLRM), proposed
in [12].

The main drawback of this method is that it does not take into account the trip distance,
assuming that all the traffic flows on a path can be covered by a single refueling capacity.
To overcome this problem Kuby and Lim [13] proposed a flow refueling location model
(FLRM), where the combination of different refueling stations on a path ensures a suffi-
cient flow coverage. Building on this work, different researchers proposed models where
the costumer is not constrained to follow a predefined itinerary, but is allowed to deviate
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from the original path to charge the vehicle, for example the so called deviation refueling
location model (DFLRM) [14] and the multi path refueling location model (MPRLM)
[15].

In addition to the flow-based models, several other formulations have been proposed to
solve the EV charging location problem. For example, a different approach was developed
by He at al. [16] where a method called network equilibrium is applied to find the optimal
location of n charging facilities.

Following this strand of problems a greatly developed branch over the years, is the facility
location on networks, where demand arises continuously along the edges. This field of
studies was first introduced by Revelle, Toregas, and Falkson [17]. Here, the model aims
at serving population along street networks, where a set of nodes and edges should be
covered by a minimum number of facilities within a maximum service distance.

These models tend to solve the problem of chargers positioning in urban contexts where
roads form a dense and complex network, allowing flexible itineraries between two points
of the city. This characteristic, combined with the urban electric grid, allows to choose
the charger position analyzing crowed traffic areas and main roads. From a recharging
perspective, these models totally differ from touristic resorts, where the conformation of
the territory and the isolated electric grid, force tourists to follow specific trails to achieve
possible charging points. As a consequence, although the literature presents a wide variety
of formulations and models, the location problem applied to touristic resorts is missing.

Another stream of works in the location of charging stations, focuses on the idea of
combining the vehicle routing with the optimal location problem, going under the popular
classification of Location Routing Problem (LRP). For example, the work by Yang and
Sun [18] models and solves a location-routing problem for EV battery swapping stations
(BSS). Such a problem aims at combining the strategic covering problem (such as the
location of chargers in a network), with the routing design, finding a set of itineraries that
minimizes the total BSS costs and the EVs shipping cost.

This family of problems descends from the study of Boventer [19] and evolved in the
modern LRP over time. In [20] we can find an extensive review of the classic LRP
problem, that can be defined as a “deterministic, static, discrete, single-echelon, single-
objective problem” , and aims at “opening a set of facilities, visiting every costumer by a
capacited vehicle starting at one of the open facilities” [21].

Combining two NP-hard problems leads to quite challenging solving methodologies, both
for the limitation of commercial solvers such as Cplex and GUROBI, and both for the ad-
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vanced solutions techniques. Hence many researchers concentrate their studies in finding
the best methodology to solve this kind of models, proposing heuristic and exact methods.
To this end, Berger et al. [22] proposed a model that aims at solving by a branch-and-
price methodology the standard LRP with uncapacitated facilities and vehicles, enriched
by a bound on the total length of each route. [23] present an Elementary Shortest Path
Problem with Resource Constraints (ESPPRC), solved by a heuristic and three exact
branch-and-price approach. Baldacci et al. [24] decomposes the problem in a finite set of
multi capacited depot and then solved the LRP with an algorithm composed by various
bounding procedures.

Despite these notable studies and all the LRP variants and extension, resumed in the
article by Drexl and Schneider [20], there is a lack of knowledge for what concerns the
LRP applications to a context of charging stations for tourist destinations. Indeed, as the
classic Location Problem, this methodology it has never been applied to find the optimal
charger location on holiday resorts. However, the growing market of electric bicycles,
urgently asks to the municipalities for the implementation of an appropriate charging
infrastructure. Therefore this methodology could be implemented to find a solution to
the e-bike charging location problem, providing different benefits such as maximize the
network competitiveness and minimize the implementation costs.

Speaking of touristic destinations, the touristic trip design problem (TTDP) propose
a technique that can be exploit by the LRP on cyclist resorts. The TTDP aims at
maximizing the total reward obtained in a path by passing over different Points of Interest
(POI) [25],[26],[27],[28],[29],[30]. However, this type of problems explored also case studies
where different objectives are optimizes: in [31] the goal is to maximize the reward with
respect to heterogeneous mode of transportation, while minimizing the time spent on the
network and the weight of the used arcs. In [32] instead, the object is to minimize the
time spent on each route.

Following the e-bike market direction, this type of problems could be the right solution
for the design and implementation of a touristic trails design enriched with an e-charger
facilities infrastructure, optimally located along the routes. Indeed, the capacity of rout-
ing the possible path on a touristic e-bike infrastructure gives a fundamental advantage
in the strategic planning of the e-charger locations, contributing significantly to the entire
attractiveness of the territory. Reliable charging facilities and a dedicated trails net-
work results in a minimization of the implementation investments and a maximization
of the economic upturn. Indeed, the TTDP plays a fundamental role in improving the
planning of tourist travel experience, increasing the economic benefits and improving the
competitiveness of the entire infrastructure as proven by many researchers in this field (
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[33],[34],[35],[36],[37]). This is also proven by the fact that this family of problems is quite
recent and has growing importance following the direction of the e-bikes market, making
his first appearance in 2007 [38].

Close to this family of problems it is important to recall a work proposed in [39] where
a multi commodity orienteering problem with network design (MOP-ND) is formulated.
This paper generalizes the orienteering problem, developed in [40], where the origin and
destination nodes collapsed to a single depot on the path. Moreover, it allows path more
complicated than a simple cycle and uses a concave function to estimate the reward for
multiple passages over the trails. Based on a previous work [41] where this attractiveness
function is introduced, this paper gives a more realistic implementation to the tourist trip
design problem.

Therefore, it is evident that although the literature presents a wide variety of models, to
the best of our knowledge, no one has ever applied the methodologies listed above for the
localization of chargers in tourist contexts. This thesis aims to cover this lack develop-
ing two promising models, respectively classified as a Location Problem and a Location
Routing Problem for E-bike charging facilities on a touristic network. In particular the
formulations are modeled as Mixed Integer Linear Programs (MILP) applied to direct
graphs G(N,A), faithful representation of the grid of trails, muleteer and roads present
in cyclist resorts. On this wave, following the work analyzed in [39], the second model
proposed in Chapter 2, exploits the attractiveness function to create a Location Routing
Problem combining the Tourist Trip Design Problem with the optimal location of charg-
ing facilities along the network. Moreover, the complexity of this formulation results in an
exponential number of constraints that requires the implementation of a Branch & Cut
to solve the problem in a reasonable computational time.
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Problem

1.1. Problem Description

Cycle tourism represents one of the largest considerably income for many resorts in the
world. In the last years this market has growth, spurred on by the anti-climate change
trend and the presence of new types of bicycle that attracts every kind of users. Some of
the locations where it is possible to see this growing trend are the major touristic desti-
nations, where several organized activities offer the possibility to relax, do sports and dis-
cover the food and culture of the territories for families and tourist of every kind. Among
them, mountain resorts are the most popular for cycle tourism, where a large network of
trails and muleteers are the perfect combination for Mountain Bikes and excursionists.
Starting from strategic points in the network, such as bus stations, information hubs or
small villages, the trails take different directions, passing trough attractive viewpoints
and picnic-areas, to continue then their journey to others trails and villages.

This combination of trails can lead users to achieve distances up to hundreds of kilometers.
Although these distances are normal for trained cyclist, thanks to the comfort offered by
the e-bike, also less trained tourists can achieve this span by exploiting the e-bike electric
motor. It follows that to face the needs of this new costumers, with the object of keeping
the flow of tourism as much as possible on the network, a supporting charger infrastructure
is mandatory to ensure a reliable charge spare capacity.

The cost related to the implementation of this charger facilities is quite high, making it
impossible to place chargers frequently along the whole trails. Hence, especially in large
networks, is fundamental to properly identify the demand of the e-bikes and consecutively
install the charger facilities in the best sites in the network.

Another aspect that must be taken into account is the fact that in many touristic resorts,
the paths can be devoted to specific cultural journey where the right sequence of the
activities along the trails is fundamental to have a full immersion experience and appre-
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ciate the cultural message of the territory. Moreover, in mountain resorts the paths are
constrained to follow the conformation of the territory, leading to have few intersection
along the network, especially for mountain bikes, that usually have dedicated paths and
cannot approach all the trails devoted to excursionist users. It follows that the network
is described by a sequence of predefined paths connecting different sites in the resort.

This chapter aims at proposing and solving a formulation for this problem that fits these
scenarios, finding the best possible location for the charger implementation along the
network.

1.2. Methodologies

Choosing the best locations on a cycle tourist network for chargers facilities is a task
that can be achieved with different types of models and techniques. As we will see in the
next chapter the Location Routing Problem with Touristic Trip Design implementation,
is the most promising technique that can be adopted over this kind of problems. Indeed,
choosing to optimize the map of trails leads to have more degrees of freedom in the
optimization routine that is able to create an infrastructure conformation where both the
charger locations and the trails contribute to an optimal result in terms of attractiveness
of the network and implementation cost.

Anyway, as mentioned above, redefining the map of trails could not be the right solutions
for resorts where a proper offer of paths is already defined on the network.

Analyzing the literature, this problem can be seen as a facility location problem for
EV. Works like [42] or [43], propose a way to solve the problems taking into account
complicated factors such as people driving behaviors or the amount of charging request.

It follows that the formulations proposed in the literature are mainly devoted to cars and
urban areas where the roads grid is quite different from a touristic resort, then models
that take into account e-bicycle for this kind of problem are not treated, leading to have a
lack of knowledge in this promising field. Moreover, the majority of the location problems
assumes the implementation of the charger facilities possible along the whole network.
Instead the formulation proposed here is based on a network, where the paths followed by
the e-bicycles are constrained by the conformation of the territory or by cultural objectives
and the location of the charger facilities is limited to a closed set of nodes.
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1.3. Model

As written above the following model has the objective of providing a solution to a location
problem applied to a particular network infrastructure devoted to cycle tourists. The
described territory made of trails, common roads and muleteers can be modeled as directed
graph G = (N,A), where N represents the set of nodes corresponding to sites in the
resort where an intersection between trails is present and or an infrastructure, rest area
is located in that position. Some of these nodes are listed in a subgroup N ′ ⊂ N due
to the presence of a connection to the electric grid infrastructure and hence a faster and
cheapest implementation of the charger facilities. The set A contains the arcs (i, j) of the
graph associated to a real connection between the nodes along the network. An energy
consumption eij characterizes the weight of the arc (i, j) that must be carefully calculated
taking into account the cyclist behavior and the type of trail. Taking into account that
some trail can be traveled in both the direction, eij is not necessarily equal to eji, in case
of a steep hill for example, eij can be large and eji could be 0. Moreover, in case of trails
dedicated to uphill or downhill, we may have (i, j) ∈ A and (j, i) /∈ A. Finally, at each
node i ∈ N ′ a cost ci for installing a charging station is associated.

For the e-bikes a maximum batery capacity E is defined, moreover two important as-
sumption are made:

• The e-bikes are supposed to have a full charged battery when starting the trails.
This assumption is feasible because users are likely to charge their own e-bike before
a long trail. This statement is also valid when e-bicycles are provided by rental
facilities at the beginning of the trails, because the provider ensures a fully charged
battery.

• At each charging session the maximum capacity is reached. Thus partial charges
are not contemplated.

Let P denote the set of path in the network, each path p ∈ P is described by a sequence
of arcs aij connecting a starting node Op to a destination node Dp, hence for each path a
subset Ap ⊂ A is defined.

It is important to underline that with respect to the location problem for classic EV, here
it is not necessary to analyze the volume of cyclists along each trail to properly size the
charger facilitates. Considering as model objective the minimization of the total number of
chargers along the network, the proposed solution choose a set of strategic points, possibly
common to more than one trail, where cyclists coming from different directions are able
to rest and charge the bicycle. Hence, knowing the possible paths and the maximum
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turnout of tourists who visit the whole network every day we have a complete knowledge
of the flow of charging that must be covered. It follows that each charger facilities should
be sized according to the maximum turnout of tourists, and guarantee an infrastructure
able to face the needs of the whole network.

To summarize, the model proposed here defines a location problem able to cover the
flow of charge of each trail, locating major chargers facilities along the network; resulting
then in a minimization of the total number of facilities to be installed and hence minor
implementation costs for the entire infrastructure.

1.3.1. Notations

For sake of clearness, here the proper notation used in the model is listed:

• G(N,A) directed graph, N set of nodes, A set of arcs;

• eij energy for crossing arc (i, j) ∈ A;

• E maximum capacity of a full charged battery;

• ci cost for installing a charger in node di;

• vi binary number equal to 1 if in node i is a possible to install a charger station, 0
otherwise, hence vi = 1 ↔ i ∈ N ′;

• P set containing all paths p;

• Op Origin of path p;

• Dp Destination of path p;

• Ap subset of A containing all the arcs (i, j) of the path p.

1.3.2. Model Formulation

The model can be formulated as a Mixed Integer Linear Problem (MILP) where the used
decision variables are:

• bpi Continuous variables associated to path p ∈ P , equivalent to the remaining
battery at node i;

• yi Binary variables, equal to 1 if the location problem chooses to put a charger in
node i, 0 otherwise.
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The MILP model is formulated as follow:

min
b y

∑
i∈N

yici (1.1)

s.t.
bOp = E ∀ p ∈ P

bpj ≤ bpi − eij + Eyivi ∀ (i, j) ∈ Ap,∀ p ∈ P

bpj ≤ E − eij ∀ (i, j) ∈ Ap,∀ p ∈ P

bpj ≥ (E − eij)yivi ∀ (i, j) ∈ Ap,∀ p ∈ P

bpj ≥ bpi − eij ∀ (i, j) ∈ Ap,∀ p ∈ P

bpi ∈ R+ ∀ i ∈ N,∀ p ∈ P

yi ∈ {0, 1} ∀ i ∈ N

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

The objective function (1.1) minimizes the total cost associated to the charging station
implementation in each selected sites. The first constraint (1.2) ensures that e-bikes has
a maximum charged battery at the beginning of each path. The constraints from Eq.
(1.3) to Eq. (1.6) defines the remaining battery at each nodes i for each path p, hence the
behavior of the variable bpi . In particular Eqs. (1.4) and (1.5) ensure that at the presence
of a charging station at node i, hence yi = 1, the remaining capacity at the next node
j is equal to the total energy E subtracted by the energy eij along the arc aij. Instead,
if there is no a charging station at node i, Eqs. (1.3) and (1.6) ensure that variable bpj
is equal to the remaining charging capacity at node i, hence bpi minus the energy eij to
reach node j along the arc aij.

Finally, Eq.s (1.7) and Eq. (1.8) bind respectively variable bpi to the domain of continuous
numbers and yi to be a binary variable.

This formulation guarantees that the remaining charging capacity at each node is always
greater or equal to the energy required to go to the following node along the trail, with
the possibility of recharging the e-bike when it runs out of charge.

1.3.3. Model Implementation

The model was implemented and solved by the Python-MIP package. This package pro-
vides tools to formulate different types of Mixed-Integer Linear programming problems
(MIPs), from the default installation it includes a large offer of solver such as the COIN-
OR Linear Programming Solver (CLP), the COIN-OR Branch-and-Cut solver (CBC), and
it supports the state-of-the-art GUROBI MIP solver, a strong mathematical optimization
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solver that provides different configuration tools and settings [44].

In this work the GUROBI solver was used, because is the most powerful one and it
guarantees the fastest and most precise solutions. However, several commercial packages
can be used, even if generally less performing.

Here a simple example of the results provided by the Location routing model exposed
above is presented. The network under analysis it is a fictional map corresponding to a
touristic resort infrastructure modeled as a direct graph G(N,A) composed by 11 nodes
and 17 arcs.

Figure 1.1: Network example

Given a set of five trails, a random energy consumption eij for each arc and a charger
implementation cost ci for each node i ∈ N ′, a simplistic result follows in figure 1.2.
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Figure 1.2: E-charger Location Problem Solution

For each path a proper scenario is shown and the trails followed by the cyclists is high-
lighted in red. The node chosen to implement the charger facilities are the one highlighted
in green and it is important to underline that the infrastructure is always the same for
each scenario, hence the chosen charger locations are common to all the five scenarios.
As can be seen the implemented facilities are less than the traveled paths, this is possible
because the program selects nodes shared by more trails. A more precise analysis of the
results is done in Chapter 3, where the model is applied to a set of different randomly
generated graphs.
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Routing Problem

2.1. Problem Description

The assumption of having a predefined network of trails as stated in the first Chapter 1,
remains true for resort where paths are devoted to cultural journey and the right sequence
of activities is fundamental to appreciate the cultural message of the territory. However,
the majority of the resorts present an offers of trails, mule tracks and roads that are
not devoted to specific cultural paths but create a huge network of connection between
villages and point of interest along the territory, with the presence of few specific paths
that connect origin-destination pairs simply following the shortest way.

As extensively dealt in the introduction to this thesis, to follow the growing trend of
e-bicycle users, the infrastructure managers of this territories must properly consider
the implementation of charger facilities along the trails, considering different factors and
information to optimally allocate the spare budget of these resorts. However, the absence
of predefined tracks lead to have a lack of information for what concern the location of the
flow of cyclists along the network. Hence the first model cannot be used in this scenario
but a proper formulation must be adopted.

In this chapter we first analyze how this problem is dealt in the literature, to then explain
the Tourist Trip Design methodology used to derive a Routing Model explain in section
2.3.1. Subsequently we exploit this formulation to propose a Location Routing Model
capable to find a solution for the e-bike charger location problem.

2.2. Methodologies

In case of extra urban roads and tracks such as in a mountain resorts, to minimize the
cost of installation of the chargers along the network is fundamental to know the most
common tracks by the cyclists and hence understanding which are the best possible sites
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for the location of the chargers facilities. This issue can be solved with information about
paths defined by a sequence of arcs connecting different pairs of origin-destination nodes,
as the scenario analyzed in Chapter 1. Without this information, understanding where
is located the flow of charge that must be covered along the network, lead to make the
e-charger location problem quite challenging.

In the literature papers such as [45], defines a methodology to optimally locate charging
stations using a trip origin/destination matrix, coupled with information about the ele-
vation of the territory to enable a specific characteristic of the energy needs. In this work
a routing problem on the Lyon Metropolitan Area to compute the various trips is solved,
providing with a complete knowledge of the flow of charge required along the network.
Hence, the literature presents studies adopting a location routing problem (LRP) to find
a solution for the optimal chargers locations problem. However these models mainly ana-
lyzed large cities scenarios and they concentrate on classic EV such as private long range
vehicle.

This chapter aims at defining a formulation modeled on a touristic resort scenario for e-
bicycle users. To do so, the methodologies introduced by the Tourist Trip Design Problem
perfectly fit with the goal of finding the trips along a cyclists network, maximizing the
economic benefits and improving the competitiveness of the entire infrastructure. By
using information such as the conformation of the territory, the activities along the tracks
and the kind of users that every day visit the resort it is possible to find optimal paths
for different class of users, maximizing the attractiveness of the whole network.

Matching the potentiality of this type of problems with the formulation provided in the
Chapter 1, the model here exposed proposes a solution to the Location Routing Problem
offering a strategic design of the paths that aims at maximizing the competitiveness of
the network and minimize the total implementation cost of the charger stations.

2.3. Tourist Trip Design Problem

By using territory and cultural information, these kinds of models propose different tech-
niques to design an optimal offer of tracks that aims at maximizing the competitiveness
and attractiveness of the whole tourist resort. In general the objective, of these models is
to maximize the total score associated with the visit to Points of Interest (POI) along the
network. Schilde [46] for example, proposed a model where the goal was to find routes
that maximize the total score associated to each POI category; Abbaspour [31], instead
formulated a model to maximize the score considering multi-modal transports where the
weights of the arcs and the travelling time were used.
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Here the goal is to design the most attractive itineraries from a pool of origin-destination
pairs in order to maximize the competitiveness of the network for different kind of user.
To do so, we based our routing problem on a model proposed in [39]. This work proposes a
routing problem which design an offers of trails on the Trebon region in the South Bohemia
province of Czech Republic, with the goal to exploit the old network of muleteers, common
tracks and roads, in order to create an offers of cyclist paths, respecting the budget
and maximizing the competitiveness of whole the network. To do so, an attractiveness
function is proposed, based on information about tourist behaviors and strategic known
sites such as lakes and viewpoint along the network. This method defined a concave
attractiveness function inversely proportional to the number of visit of the same arcs or
nodes along the paths. Moreover, it assumes different values with respect to the kind
of tourist approaching the network. In this way a proper offers of trails dedicated to
different kinds of cyclists is defined, ensuring a maximization of the attractiveness of the
whole territory. The result is a cyclist network that emphasize the economic impact of the
tourist in that region, spurring the local businesses and increasing the job opportunities.

Here we exploit the power of this method utilizing a simpler version of the attractiveness
function proposed in [39], keeping the different rewards with respect to the kind of user
under analysis, leading to a more realistic routing problem, able to design an set of tracks
that reflects the tourist’s needs. This is done because the model proposed in [39] is
able to collect the attractiveness reward over more traversal without keeping track of the
correct arc sequence, hence it is not compliant with the routing problem required by the
Location Routing Model. It follows that a simpler formulation is required to match the
two methodology.
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2.3.1. Routing Model

The routing problem proposed here is a simpler version of the problem, where decisions
on recharging infrastructure are disregarded, that will be then integrated in the Location
Routing Problem exposed in the next sections of this Chapter 2, where the decisions on
the location of charging station are integrated in section 2.4.

Once the grid of trails, muleteer and roads present on the resort territory is modeled as a
direct graph G(N,A), starting from a pool of origin-destination pairs previously defined,
the routing model here proposed aims at finding the best possible paths. To do so a
modified version of the attractiveness function described above is used to properly collect
different rewards over the nodes and arcs of the trip, reflecting the preferences of the users.
In particular we suggest three different category of cycle tourist, namely the classic, the
gastronomic and the sporty tourists. However different kind of profiles can be considered
without loss of generality. The classic tourist is attracted by observation decks, waterfalls,
villages and lakes, more likely choosing paths on scenic landscapes, without strong slopes
where a physical preparation is required. The gastronomic profile privileges rest area like
picnic parks and restaurants, but also mountain chalets and vineyards. Moreover, like the
classic tourist, tries to avoid difficult trails. Contrary, the sporty cyclist is more oriented
to difficult trails, where the effort required by both the e-bicycle and the user is higher,
with the goal of riding more kilometers or achieving the highest peaks of the mountain
resort. It is important to underline that the majority of the trails is accessible to each
class of tourist, hence it is possible that in order to achieve a viewpoint or a chalet also the
classic or the gastronomic tourist goes trough difficult slopes, with a bigger effort required
by the e-bike.

Hence the objecting function is a maximization of the total reward obtained by the trip
for each users for each origin-destination pair. It follows that some constrains must be
defined in order to keep the paths designed by the model in a certain range of time and
kilometers. In particular a constraint is defined on the maximum time available for each
class of cyclist. The total time required by a path for a certain origin destination pair,
is then calculated summing the time spent on each arc, corresponding, as in chapter 1,
to a trail, muleteer or roads between two nodes along the network. Here an important
assumption is taken: considering that each user is provided with an electric bicycle and
high velocity are strongly not recommended for the presence, on the same network, of
different kind of users such as children and elders, an average velocity of 25km/h up-
going and 35km/h down-going is stated. This is valid for each class of cycle tourists and
it rules the timing on the network.
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For simplicity, in this first version of the problem, multiple visits of an arc or node along
the same path are not allowed. As explained in the introduction to this section 2.3,
this allows a model flexible enough to be integrated with the Location Routing Problem
exposed in the next section 2.4.

Notations:

The terms described above and the terminology used in the model are here summarized:

• G(N,A) directed graph, N set of nodes, A set of arcs;

• tij time for crossing arc aij;

• T u maximum time for user u;

• P set containing all the paths p defined by O-rigin and D-estination;

• Op Origin of path p;

• Dp Destination of path p;

• Np any node subset containing both O-rigin, D-estination of a certain path p;

• U set containing each user type u;

• auij is the attractiveness on the arc (i, j) for user u;

• dui is the attractiveness on node i for user u.

Model Formulation

The decision variables used in the model are the following:

• xup
ij Binary variables associated to user type u for p ∈ P , equal to 1 if the routing

problem chooses the arc ai,j, 0 otherwise;

• γup
i Binary variables associated to user type u for p ∈ P , equal to 1 if the routing

problem chooses the node i, 0 otherwise.
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The problem can be solved by a Boolean optimization program with the following math-
ematical formulation:

max
x γ

∑
p∈P

∑
u∈U

(
∑

(i,j)∈A

auijx
up
ij +

∑
i∈N

dui γ
up
i ) (2.1)

s.t.∑
(j,i)∈BS(i)

xup
ji −

∑
(i,j)∈FS(i)

xup
ij = bi ∀i ∈ N, ∀u ∈ U,∀p ∈ P

∑
(i,j)∈A

tijx
up
ij ≤ T u ∀u ∈ U,∀p ∈ P

∑
(i,j)∈FS(i)

xup
ij = γup

i ∀i ∈ N, i ̸= Dp,∀u ∈ U,∀p ∈ P

∑
(j,i)∈BS(d)

xup
jDp

= γup
Dp

∀u ∈ U,∀p ∈ P

γup
v ≤

∑
(i,j)∈A:i/∈Np,j∈Np

xup
ij ∀v /∈ Np,∀Np ⊂ N,∀u ∈ U,∀p ∈ P

xup
i,j ∈ {0, 1} ∀(i, j) ∈ A, ∀u ∈ U,∀p ∈ P

γup
i ∈ {0, 1} ∀i ∈ N, ∀u ∈ U,∀p ∈ P

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

The objective function (2.1) maximize the total attractiveness collected by each user at
each edge and node of the network, for the chosen itinerary. The object function is also
the only function that ties together the decisions involving the different users. The first
constraint (2.2) ensures a flow balance between the origin and destination nodes of the
path p for each users class. In particular BS(i) and FS(i) are respectively the Backward
and Forward Star of node i and bi is equal to −1 if i is the origin node, +1 if i is
the destination node and 0 elsewhere. Eq.s (2.3) impose a constraint on the maximum
travelling time for each path p. The maximum time T is different for each class of users,
respecting the physical preparation of each cyclist. Eq.s (2.4) bounds together xup

ij and
γup
i , moreover combined with eq. (2.5) they ensure a correct population of variable γup

i .
For each user flow, the connectivity of the path proposed by the program is enforced by
eq.s (2.6), indeed this constraints cut all the possible sub-tour disconnected from the main
track. However, they create an exponential number of constraints which ask for a positive
user flow going into subset Np when a node v /∈ Np is selected as part of the itinerary
for user u from Op to Dp. Finally, constraints (2.7 -2.8) bind the decision variables to be
binary, in this way we ensure the single visit of the nodes and arcs of the network.
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Model Implementation:

As for the model proposed in Chapter 1, the program was implemented using Python-MIP.
Here the routing model is applied as example to the same network provided in the first
chapter. The difference is that the data associated to the nodes and arcs are enriched
with randomly generated attractiveness values, corresponding to the user’s preferences
related to the point of interest of the territory.

Figure 2.1 shows the discrete graph interpretation of the territory. The nodes number
(0-1-5-8) are connected to the urban grid, with the presence of bus stations and possible
e-bike rental locations. Then the attraction of territory are highlighted by symbols such
as the winery, the wood, some pic-nic area, a castle and the mountains.

Figure 2.1: Network with Attractive Sites
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Assuming that the bus stations are the possible entrances to the resort, this point are
used to create a pool of Origin/Destination pairs. It follows that, applied to this scenario,
the routing problem provides with a set of trails maximizing the reward of the cyclists
in terms of attractiveness. Hence, the program propose for each origin-destination pair
different tracks dedicated to the preferences of the class of users under analysis. The
solutions is shown in Figure 2.2:

Figure 2.2: Network example
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2.4. Location Routing Problem

Based on the routing problem presented in the previous section, we now integrate the
optimization of the charging stations location. The resulting problem is a variant of the
location Routing Problem.

The classic Location Routing Problem (LRP) aims at finding the optimal location of some
facilities and the routes of the vehicles to serve the customers demand under facilities and
vehicles constraints. With the growing of the electric vehicle market, this methodology
was exploited by many reseachers to find the best locations for charger facilities, in order to
cover the energy demand asked by EV present on the network. As previously explained,
the majority of this models analyzed large cities scenario, taking into account classic
electric vehicles such as cars and bus.

In this work we propose a location routing problem that aims at finding the best chargers
locations for e-bike users, matching the formulation stated by the Tourist Trip Design
Problem with the Location Problem expose in Chapter 1. This is possible by exploit-
ing the routing variables populated by the Tourist Trip Design model to activate the
constraints of the charger location model, ensuring a routing solution that match the en-
ergy constrained of the electric bicycle. Indeed, bounding the routing problem to satisfy
the never empty battery requirement, ensure the implementation of a certain number of
charger facilities along the tracks. Then a proper formulation of the object function con-
sist in the maximizing the attractiveness reward collected by the routing problem, while
minimizing the total implementation costs of the charger facilities. It follows that the de-
rived solution exploits the attraction points of the network to design a set of tracks with
possible common sites that satisfy the energy needs, minimize the charger’s investments
and maximizes the competitiveness of whole resort.

2.4.1. Notations

Here the notation utilized in the past models and properly adapted for the following LRP
model is summarized:

• G(N,A) directed graph, N set of nodes, A set of arcs;

• P set containing all the paths p defined by O-rigin and D-estination;

• Op Origin of the path p;

• Dp Destination of the path p;
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• U set containing each user type u;

• euij energy for crossing arc (i, j) for user u;

• tuij time for crossing arc (i, j) for user u;

• T u maximum time for user u;

• E maximum capacity of a full charged e-bike battery;

• ci cost for installing a charger in node i;

• vi binary number equal to 1 if it is possible to install a charger in node i;

• Np any node subset containing both O-rigin, D-estination of a certain path p;

• auij is the attractiveness on the arc (i, j) for user u;

• dui is the attractiveness on node i for user u;

• W is the weight to properly scale in the object function the total implementation
cost with respect to the attractiveness reward.

2.4.2. Model Formulation

The decision variables used in the model are the following:

LOCATION:

• bupi Continuous variables associated to user u for p ∈ P , equal to the remaining
battery at node i;

• yi Binary variables, equal to 1 if the location problem chooses to put a charger in
node i, 0 otherwise.

ROUTING:

• xup
ij Binary variables associated to user type u for p ∈ P , equal to 1 if the routing

problem chooses the arc ai,j, 0 otherwise;

• γup
i Binary variables associated to user type u for p ∈ P , equal to 1 if the routing

problem chooses the node i, 0 otherwise.
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The MILP is:

max
b y x γ

∑
p∈P

∑
u∈U

(
∑

(i,j)∈A

auijx
up
ij +

∑
i∈N

dui γ
up
i )−W

∑
i∈N

yici (2.9)

s.t.

∑
(j,i)∈BS(i)

xup
ji −

∑
(i,j)∈FS(i)

xup
ij = bi ∀ i ∈ N,∀ u ∈ U,∀ p ∈ P .

∑
(i,j)∈A

tuijx
up
ij ≤ T u ∀ u ∈ U,∀ p ∈ P

∑
(i,j)∈FS(i)

xup
ij = γup

i ∀ i ∈ N ↔ i ̸= Op,∀ u ∈ U,∀ p ∈ P

∑
(j,i)∈BS(O)

xup
jOp

= γup
Op

∀ u ∈ U,∀ p ∈ P

γup
v ≤

∑
(i,j)∈A:i/∈Np,j∈Np

xup
ij ∀ v /∈ Np, ∀ Np ⊂ N,∀ u ∈ U,∀ p ∈ P

bupo = E o ∈ p,∀ u ∈ U,∀ p ∈ P

bupj ≤ bupi − eijx
up
ij + Eyivi + (1− xup

ij )E ∀ (i, j) ∈ A,∀ u ∈ U,∀ p ∈ P

bupj ≤ E − eijx
up
ij ∀ (i, j) ∈ A,∀ u ∈ U,∀ p ∈ P

bupj ≥ (E − eij)yivi − (1− xup
ij )E ∀ (i, j) ∈ A,∀ u ∈ U,∀ p ∈ P

bupj ≥ bui − eij − (1− xup
ij )E ∀ (i, j) ∈ A,∀ u ∈ U,∀ p ∈ P

xup
i,j ∈ {0, 1} ∀ (i, j) ∈ A,∀ u ∈ U,∀ p ∈ P

γup
i ∈ {0, 1} ∀ i ∈ N,∀ u ∈ U,∀ p ∈ P

bupi ∈ R+ ∀ i ∈ N,∀ u ∈ U,∀ p ∈ P

yi ∈ {0, 1} ∀ i ∈ N

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The objective function (2.9) is the maximization of a value that corresponds to a trade-off
between the total attractiveness collected by each user on each path and the total costs
related to the e-charger implementations. it is important to underline that in order to
minimize the total implementation costs, the corresponding sum is preceded by a negative
sign, in this way maximizing the function we are also minimizing these costs. Moreover,
considering that the attractiveness data associated to each arc and node are of the orders
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of units, the total implementation costs are scaled by a weight W . This value must be
properly tune in accordance with the objective of the resort. In particular a lower weight
correspond to an offers of trails closer to the best preferences of the users and potentially
an higher implementation cost marginally due to the higher number of chargers facilities.
Instead if the main task is to minimize the implementation costs without losing the
possibility to have an attractive offers of paths, a smaller value of W should be selected.

From eq.s (2.10) to (2.14) the constraints bound and properly populate the routing vari-
ables xup

ij and γup
i for each user u and path p as in the routing problem previously exposed.

Then this variables are used in the next constraints (2.15-2.19) appertaining to the cov-
ering problem of the first chapter. The routing decision variables gives hence a perfect
knowledge of which tracks are followed by the cycle tourist, defining visited arcs and
nodes. In this way these variables can be used to activate the covering constraints and
hence properly populate the positional variable yi, locating the charger facilities in order
to cover the energy demand along the paths. Finally, eq.s (2.20-2.23) bound the decision
variables to their proper domain.
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2.4.3. Model Implementation

As the previous models, the Location Routing MILP formulation was implemented in
Python using the Python-MIP package. Here a simple example showing the capacity of
the program is shown. The scenario under analysis is the simple fictional network used
also in the previous examples, formulated as a Graph G(N,A) with 11 nodes and 23 arcs.
Merging than the data used for the routing problem with the one used for the location
problem, such as the energy requirements, we end up with the following solution:

Figure 2.3: LRP solution example

The solution reflects the aim of the algorithm, proposing different itineraries for each
class of user, maximizing the attractiveness of the network and minimizing the number
of charger stations.
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Branch and Cut

The strong formulation of the Location Routing Program exposed above include an ex-
ponential number of constraints that could limit the performance of the algorithm when
applied to large graph. Model of this kind can be directly solved by the Python-MIP
solver only for small instances, indeed adding all this constraints at once is usually not
practical, asking a strong computational effort that can lead to a not convergence of the
algorithm.

This kind of problems can hence be solved using the cutting planes method where a
relaxation of the model is solved and only the violated constraints are inserted. The most
famous relaxation method is the Linear Problem Relaxation that aims at removing the
integrality constraints of the real formulation obtaining an easier solvable Linear Problem
(LP). Then the relaxed model is optimized and if an integral solution is found the original
problem is solved. If the solution violates one of the relaxed constraints, the method
generates a cutting plane, hence a linear constraint that excludes the LP solution but
does not consider any integer points. Finally, the cut is added to the LP and the routine
is repeated. Hence the cutting plane method generates linear constraints which aim at
closing the region of the possible solutions getting closer to the so called convex hull,
defined as the region containing all the feasible integral points of the original model.

Computing the convex hull may become very difficult with a large number of decision
variables. In the LRP proposed above, the computational effort grows significantly when
applied to large graphs where an important number of paths and users are defined. Better
results can be obtained with the Branch & Cut algorithm, a method of combinatorial
optimization, in which cut generation is combined with branching. Exploiting tree-based
search method, so called Branch & Bound, the algorithm explores the space of possible
variable’s values and combining the method of cutting planes improves the bounds found
via the LP relaxation. Finally, as the classic Branch & Bound, it prunes the branches
of the tree finding the optimal integer solution of the problem without exploring all the
possible leafs of the search tree.

As explained in the documentation of Python-Mip [47], the package allows to implement
this method using a BC algorithm implemented in the solver engine using callbacks. Cut
generation callbacks (CGC) are called at each node of the search tree where a fractional
solution is found. Cuts are generated in the callback and returned to the MIP solver
engine which adds these cuts to the Cut Pool. The most active cuts are merged with
the cuts generated by the solver builtin cut generators and then the most active ones are
included to the relaxed model.
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This methodology could be useful also to produce lazy constraints. Lazy constraints are
dynamically generated, just as cutting planes, with the difference that lazy constraints
are also applied to integer solutions. They should be used when the initial formulation is
incomplete.

In our model, this approach could be useful to avoid the sub-tours elimination constraints
Eq. (2.14) from the initial formulation. Indeed, these constraints are stated for every
subset of nodes, leading to have an exponential number of constraints proportional to
the number of nodes of the Graph under analysis. Moreover, these constraints cannot be
neglected because are fundamental to avoid disconnected sub-tours created by the routing
problem. Hence, using the lazy constraint generator, MIP allows to solve an incomplete
initial formulation, adding the sub-tour generation constraints on demand.

In this scenario is fundamental to solve the Separation Problem, an optimization rou-
tine that leads to know when and which are the missing violated sub-tour elimination
constraints, activating the relatives lazy constraints.

The separation problem and hence the lazy constraints generation is solved eat each leaf
of the tree. Analyzing the results of the incomplete problem formulation denied from the
sub-tour elimination constraints, for each origin-destination pair and user Figure 2.3, an
appropriate logic is executed.

Figure 2.4: Path from 1 to 8 for Sporty user
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After generating the graph composed by arcs active in the unfeasible solution for each
user and path, the code collects the value γup

d associated to the destination node d. Then
for each node v, different from the destination one and with a value γup

v greater than 0, the
Minimum Cut Problem is executed. This method makes a partition of the graph in two
subset (NS, S) that are disjointed for a certain minimum quantity, corresponding to the
value of the minimum arc that connects these two subsets. The subsets (NS, S) contain
respectively the node v and the destination node d. It follows that if these two subset are
isolated a sub-tour characterize the solution.

For example Figure 2.2 if the selected node appertain to the subset composed by nodes
(2 − 3 − 10), the two subsets returned by the Minimum Cut Problem are isolated and a
lazy constraint must be activate to eliminate the disconnected sub-tour. To automatically
identify if the subsets are isolated a simply inequality is checked:

value ≤ γup
v − ϵ (2.24)

Where value corresponds to the value of the minimum cut hence the arc connecting the
two subset. It follows that if this value is smaller than γup

v , it means that v belongs to a
disconnected sub-tour. Hence a lazy constraint of this form 2.25 is added to the program:

γup
v ≤

∑
(i,j)∈A:i∈NS,j∈S

xup
ij (2.25)

This procedure is done for each path and user of the scenario under analysis, ensuring
the elimination of disconnected sub-tours, moving the number of sub-tour elimination
constraint from 2N to N . However, these procedure allows us to cut only sub-tours of
dimension greater than two, hence simple constraints of the form 2.26 are added to the
initial formulation. In this way we eliminate also sub-tours of dimension two.

xup
ij + xup

ji ≤ 1 ∀aij ∈ A, ∀u ∈ U,∀p ∈ P (2.26)
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2.5. Model Extension with Multiple Level

The LRP formulation obtained above allows us to find the best charger facilities locations,
disposed along the network to cover the energy demand of the cycle tourists travelling
on a strategically designed offer of trails. However following the Tourist Trip Design
methodology, the maximization of the attractiveness reward obtained from the paths
traveled by the cyclist should allow the cyclists to visit multiple times an arcs or nodes
along the same path. Indeed, because the cycle tourists ride for pleasure, it could happen
that riding for more than one time the same track increase the satisfaction of the user
even though it is not a new experience.

It follows that the LRP model exposed above limits the possibility to obtain a higher
reward from a routing problem with multiple visit as exposed in [39]. The formulation
proposed in this thesis adds to the classic routing problem a binary variable ξkij associated
to each one of the kth traversal of arc aij. In this way the model allows to keep track of the
number of times that the cyclist rides along the same arc. The same method is applied to
the nodes of the graph with a proper variable. Then the proposed attractiveness function
returns a specific reward with respect to the number of traversal of the same tracks. In
particular after the second visit the total reward can still be greater than the one obtained
at first visit but, less than the double: riding the same tracks several times can still be
enjoyable after many traversal although the absolute pleasure may, reasonably, decrease.

However, the mathematical formulation exposed in this model cannot be used here because
although if it is able to keep track of the number of traversal, it does not allow to know
the right sequence of tracks from origin to destination. Moreover, the LRP formulation
here proposed already presents many variables and constraints, hence adding other terms
could lead to have a not easy solvable problem.

Exploiting the Branch & Cut method applied above, the solution we propose suitable
modifies the data of the problem in order to allow multiple visits of the same arc or node.
Duplicating the nodes of the graph in two levels we can associate the first level to the
first visit of the network and the second one to the revisit. In general it is possible to use
this techniques to create more than two levels, allowing the cyclists to do more traversals.
However, after the third ride along the same track the pleasure of the tourist starts to
decrease. Hence here we propose only two levels leading to have a maximum number of
three traversal of the same arc and only two of the same nodes. hence the third visit of
the same node is not allowed.

The graph is now composed by two levels, a first one corresponding to the real network
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of trails and sites along the territory infrastructure, and a second one that is a straight
copy of the real network, with the same conformation of arcs and nodes. Between these
two levels, a pair of arcs are stated for each connected nodes in the original network, one
for rise and one for fall from the actual level. Considering the fictional network used in
the previous examples, the multiple level graph takes the following shape:

Figure 2.5: Fictional Multi-level Network Example

As can be seen, the two levels are defined by a shift in the nodes enumeration (n0), equal
to the cardinally of the original nodes set N0. It follows that the obtained graph has now
two levels with a double number of nodes and four times the arcs of the original grid.
The data used for the original LRP model, such as the energy consumption, the time and
the installation costs associated to each candidate sites, are the same for both the levels
and for the arcs moving between them. The only difference is the attractiveness function
that associates different values on each level. In particular considering that the pleasure
at the second and third traversal should be smaller than the one obtained at the first one,
the attractiveness value associated to each arc of the upper level are half with respect to
the original one; the same is done for the arc that rise between the first and the second
level, leaving to the original attractiveness value the fallen arcs. In this way the routing
problem is allowed to obtain a higher reward from designing paths on the first level and
only in case of high attractiveness it may choose to route on the second level.



2| E-bike Charger Location Routing Problem 35

However, the object function maximizes the total attractiveness obtained from the com-
bination of all the itineraries. It follows that the routing problem can decide to route on
the second level of some nodes for then going to the first one, obtaining a final reward
higher then the one passing through first level of the previous arc in the sequence. This
is caused by an attractiveness value of some arcs that is smaller of the half of other ones.
Hence the following constraints are defined in order to keep the routing result on the first
level and only in case of an already visited trail going to the second one.

xi,j + xj,i = xi+n0,j+n0 + xi,j+n0 ∀ai,j ∈ Asl1 ⊂ A

xi,j = xi+n0,j+n0 + xi,j+n0 ∀ai,j ∈ Asl2 ⊂ A

(2.27)

(2.28)

Where Asl1 contains all the arcs ai,j of A of the first level that has also a returning arc
aj,i and Asl2 the ones that are of the first level but do not have a returning arc.

To remain consistent with the e-charger implementation, a constraint on the binary deci-
sion variable yi, corresponding to the installation of the charger on node i is stated:

yi = yi+n0 ∀i ∈ N0 (2.29)

In this way we ensure that if a node is chosen to hold a charger facility, the charger is
present on both the level. Moreover, in the object function, the term associated to the
total implementation cost is calculated only for the nodes of the first level:

max
b y x γ

∑
p∈P

∑
u∈U

(
∑

(i,j)∈A

auijx
up
ij +

∑
i∈N

dui γ
up
i )−W

∑
i∈N0

yici (2.30)

The final formulation is identical to the one stated at paragraph (2.4.2), with the object
function here proposed (2.30) and the added constraints (2.27-2.28-2.29).
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3| Results on Artificial Data

This chapter aims at apply the location model, the routing location model and the version
with multiple levels on a set of randomly generated instances, which mimics reals networks,
in order to evaluate the performance of the various algorithms and the possible limitations.

3.1. Data Generation

The generation of the data-set used for the simulations is a crucial aspect of this chapter,
including a directed graph G(N,A), main representation of the resort under analysis, a
proper energy consumption and timing associated to the arcs of the graph, the subset of
nodes chosen to possibly implement the charger facilities and the associated costs. Finally,
the values of attractiveness of the entire network. To properly generate all this data more
than 3000 lines of code were written in Python, exploiting different Python package and
script which are here summarized.

3.1.1. Graph Generation

Since e-bikes are spreading typically in mountain resorts, the directed graph G(N,A)

here generated, represents the network of trails, common roads and muleteers typical
of these locations. To simulate the energy consumption required by travelling on these
infrastructure, the graph generation must associate to the nodes of the network an altitude
and a proper slope to the arcs connecting them.

To do so, we adapted an open source Python package called Random_Planar_Graphs
[48]. The algorithm proposed here, allows for creating a random 2-D planar graph with
different specifications such as the number of nodes, arcs, the dimension of the network
and the minimal arc length. With the right choice of options, the obtained graph perfectly
models the 2-D map of trails, common roads and muleteer present on a mountain resort,
which, combined with the strategic sites along the network, completes the graph G(N,A)

needed by the program.

Anyway the package does not allow for creating a 3-D graph which is, fundamental to
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obtain altitude which would be used to get the data necessary for the energy consumption
and timing calculation. Hence Python program was coded for this specific problem: after
picking from the nodes set N of the 2-D graph, three random points A,B,C are associated
to random altitudes between 2500 and 1500 meters, creating a landscape with three
upside-down cones, representing the mountain peaks in the resort. Then the following
formula is used to associate an altitude h to the remaining nodes:

hi = Max(200,∆hA,i,∆hB,i,∆hC,i) ∀i ∈ N \ {A,B,C} (3.1)

∆hA,i = hA − slope ∗ distance(A, i))

∆hB,i = hB − slope ∗ distance(B, i))

∆hC,i = hC − slope ∗ distance(C, i))

(3.2a)

(3.2b)

(3.2c)

The slope is generated from a random routine between two limit values (3%, 9%) and the
distance correspond to the one computed for the 2-D planar graph. These assignments
ensure that each point of the network has an altitude proportional to the selected slope
and the original distances with respect to those of the main peaks. It follows that the
created network follows the conformation of the territory, leading to have trails with a
slope smaller than 12%. This value is perfect for our purpose because the bicycle trails
usually have slopes smaller than 12%, for different limitations due to the achievable human
power, friction and the center of mass of the system [49].

The final 3-D discrete graph is close to the representation of a real mountain area, with
a vast offer of trails, common roads and muleteers that connect strategic sites, possibly
provided with a connection to the electric grid, and hence feasible implementation points
for the charger facilities. To properly test the models on different scenarios the script is
used to generate three instances with a growing number of arcs and nodes. The three
networks are shown with the selected options in Figure 3.1, 3.2, 3.3.
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Network Width 25km
Network Length 25km
Network Height 2500m
Number of Nodes 15
Number of Arcs 25
Minimum Node Distance 5km

Figure 3.1: 3-D Small Network Example
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Network Width 50km
Network Length 50km
Network Height 2500m
Number of Nodes 20
Number of Arcs 40
Minimum Node Distance 5km

Figure 3.2: 3-D Medium Network Example



3| Results on Artificial Data 41

Network Width 75km
Network Length 75km
Network Height 2500m
Number of Nodes 50
Number of Arcs 130
Minimum Node Distance 5km

Figure 3.3: 3-D Large Network Example
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It is interesting to observe how the generated graphs assume a shape closer to a mountain
as the number of nodes and arcs increase. This is probably due to the fact that the
constraint related to the slopes, the dimensions and the altitude of the network brings
the program to create a graph with more details, capable of describing in this way the
typical shape of plateaus, valleys and peaks, typical of a mountain area.

3.1.2. E-bike Model

To apply the models developed in this thesis, it is fundamental to know the e-bike battery
consumption along the trails, a proper characterization of this data is indeed mandatory
to end up with a realistic solution that reflects the behaviour of the battery. However,
understanding the energy required by the e-bike is a challenging task that must consider
heterogeneous factor such as the e-bicycle dynamics, the terrain type, the weight and
physical preparation of the cyclist under analysis. In the literature it is possible to find
various papers that formulate an accurate model to the e-bike energy consumption.

These studies proposed detailed mathematical formulations far from the scope of this
thesis. Moreover, modelling the real behavior of this system is almost impossible because
of all the influencing factors to which the e-bike is subjected. Among them there is the
surface of the road and the mechanical condition of the e-bike that are very variable and
subjective.

The optimization models proposed here, are formulated with the purpose to find a reliable
implementation of the charging facilities in order to ensure the possibility to charge the e-
bike for 3 different classes of tourists. It follows that for each class, the final infrastructure
should ensure a fully charged battery also for the cyclist that exploits the maximum power
of the electric motor mounted on the bicycle. Hence a simple model considering the worst
case scenario for each class is enough to describe the energy requirements of each trail.

First of all, a consideration on the e-bike must be stated: According to the European
classification standard, an e-bike can provide a maximum rated power of 250 W, which
decreases over the time until the maximum speed of 25km/h is reached. Moreover, the
e-bike is defined as a Pedelec Drive, hence the motor is activated by the cyclist’s pedalling
effort and it is cut immediately if the cyclist stops pedaling. [5]

Based on this limitation and on the assumption that, reasonably, the velocity on the
cyclist network is limited to values lower than 25km/h uphill and 35km/h downhill, some
mathematical equations can be stated to model the e-bike energy consumption with this
specification.



3| Results on Artificial Data 43

It follows that when the e-bike goes uphill, the power required by the electric motor Pe−bike

is equal to the total power PTot necessary to keep a constant speed of 25km/h minus the
power generated by the cyclist Puser. In particular for a bicycle the total power PTot is
given by the sum of three different components: the power to win the drag forces Pdrag,
the friction Pfriction and the power to go uphill Phill, defined with a formula (3.6) proposed
by Lim [50].

α

Figure 3.4: Power Balance E-bike

The following equations describe this relationship:

PTot = Pdrag + Pfriction + Phill

Pdrag =
(Cd ∗ A ∗ ρ)

2
∗ v3

Pfriction = g ∗M ∗Rc ∗ v

Phill = g ∗M ∗ v ∗ slope

(3.3)

(3.4)

(3.5)

(3.6)

Finally, it is important to underline that, in order to properly describe the energy con-
sumption of the e-bike with respect to the class of user under analysis, Puser assumes 3
different values. The power generated by the cyclist mainly depend on its physical prepa-
ration. To have an idea, a Tour de France athlete is able to generate 200/300 Watt for
almost four hours; instead an amateur athlete does not exceed values of 120 Watt. Hence
we will assume 3 different values of Puser characterizing the user class. In particular the
tourist will produce 80 watt per hour, the gastronomic 60 watt per hour and the sporty
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one reaches to 100 watt per hour. Hence the final equations that define the ideal motor
power is the following:

Pe−bike = PTot − Puser

Preal =
Pe−bike

η

(3.7)

(3.8)

It is important to underline that the power requirement Pe−bike resulting from these rela-
tionships is divided by a factor η that reflects the efficiency of the power provided by the
motor on a real track. In fact the real power Preal will be larger than the ideal one, due to
various external factors such as rocks, roots and holes that contributes to a greater power
consumption.

Hence knowing the power that the e-bike should provide to the wheel it is possible to
calculate the energy spent on the arc as [Wh] . To do so the real power required Preal is
multiplied by the time tarcij needed to go through the arc (i, j), calculated as the track
length divided by the average velocity of 25km/h. This relationship is stated by the
following formulas:

earcij = Pe−bike ∗ tarcij

tarcij =
Larcij

v

(3.9)

(3.10)

Finally, note that in case of a downhill track the energy required by the battery on that
arc earcij is set to 0 due to the acquired potential energy that allows one to descend the
mountain without using any power from the e-bike.

Below a table defining all the parameters used above is presented:
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Symbol Parameter Unit Comment
M Mass kg E-bike and cyclist
g Gravity acceleration m/s2 Equal to 9.81m/s2

v Speed km/h 25km/h uphill and 35km/h downhill
Cd Drag coefficient − Equal to 1 for a cyclist
A Frontal Area m2 0.6m2 for upright cyclist
Rc Rolling friction coefficient − 0.0125 for mtb

slope Slope % − ∆hij

Larcij
∗ 100

ρ Density of air kg/m3 equal to 0.4

η External factors − equal to 0.8

Table 3.1: E-bike Model Parameters

3.1.3. Attractiveness Values

For the location routing problem the attractiveness values associated to the arcs and nodes
of the network must be generated. To do so the data set is constructed by a random routine
that choose values between 0 and 3, with different indications with respect to the type
of tourist under analysis. In particular for the Touristic and Sporty classes, the values
of attractiveness are bigger on mountain peaks and smaller on lower nodes, moreover the
arcs associated with a large energy consumption has an higher attractiveness for sporty
cyclists. Then all the remaining attractiveness values are randomly generated within the
range specified above.

3.1.4. Charger Cost and Implementable Sites

In the creation of this realistic instances, the implementable sites, described by the binary
variables vi are assumed to be all the nodes of the graph and the charger costs are stated
to a symbolic cost of 100 units. This is done to have an easy readable solution of the
models without bounding the program to choose the implementation sites only in a certain
subset of nodes. This simplification is then removed in the real test case scenario proposed
in Chapter 4, where the nodes are associated to specific sites on the network and hence
fundamental information are retrieved to populate variables vi and the implementation
costs.
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3.2. Computational Results

The model was coded in Python and solved on a two-core machine with an Intel i7
processor and 2.50GHz of clock. The used solver was GUROBI, one of the fastest and
most powerful solver available on the market. Here the results of the different problems
over the 3 instances exposed above are shown and analyzed.

3.2.1. Location Model

To test the Location Model exposed in Chapter 1, the program was fed with different
data-sets associated to the 3 graphs exposed above. Moreover, a set of 6 routes composed
by a sequence of nodes between selected origin-destination pairs were randomly generated.
The following images show the different instances with the best locations for the charger
facilities, highlighted on the 2-D graph by green nodes. Moreover, the red arcs show up
the itineraries followed by the cyclists, between an origin and destination nodes always
circled in red. For sake of conciseness only three out of six routes are here reported:
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Figure 3.5: Location Problem Solution: Small Network Scenario
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Figure 3.6: Location Problem Solution: Medium Network Scenario

The first two instances show that the model works properly, indeed although if the routes
are quite long and hence they require at least one charger to complete the trip, the total
number of facilities allocated on the network is less than the number of routes. This is
possible because the routes pass through some common nodes, hence the program decides
to put the chargers on these sites, minimizing the total implementation costs. Moreover,
it is possible to observe that the number of chargers along the network is not directly
proportional to the size of the area. The reason is that the routes are randomly generated
on the graph and are not designed to minimize the charger implementation costs. Hence
the result is strongly influenced by the itinerary design, leading for example in a larger
number of chargers on the small instance (3.2) with respect to the medium one (3.3),
where the paths share more nodes.
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Finally, the model was tested on the biggest network (3.4), here the result of two out of
six routes is shown:
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Figure 3.7: Location Problem Solution: Large Network Scenario

Although the dimension of the graph results in an optimization model with 350 variables
and 186 constraints, the simple build in GUROBI Branch and Cut routine solves the
problem at the root node in only 0.01 s . Here it is clear that the dimension of the graph
leads to have some itineraries that are totally isolated from the others, consequently
requiring isolated chargers.
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3.2.2. Location Routing Model

Here the results of the LRP are shown, for the sake of conciseness only the third path out
of six is reported, in this way we are able to analyze the difference with respect to the
class of cyclist under analysis. However, it is important to underline that the presence of
three kind of cyclist and six different origin-destination pairs mean that we must solve 18
different instances for each network.

The pool of origin-destination pairs is defined by taking four border points, representing
the resort entrances at the boundaries of the network, and three characteristic points,
respectively characterized as the lowest and the highest at the center of the graph and
the most prominent peak of the entire resort. Then from the combination of these points,
a random routine picks six couples that define the final origin-destination pairs. The
maximum time on the network Tu is reasonably set to two hours and a half for the
Touristic and Gastronomic cyclist, and four hours for the Sporty one.
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Figure 3.8: Location Routing Problem Solution: Small Network Scenario
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Figure 3.9: Location Routing Problem Solution: Medium Network Scenario

From the small and medium instance it is clear that the routed path is different for the
three cyclists, maximizing the attractiveness reward gained along the trip. For example
the sporty class has a longer trail, traveling on steeper slopes and gaining an important
delta of elevation. However, the limit on the multiple visit is evident on the small instance
where the sporty user visits almost all the network without repeating the hardest trails,
where he could gain an higher reward. Finally, as it can be seen from the small instance,
the number of chargers is lower with respect to the Location Model. This is possible
for the strategic design of the routes, which shares the charger facilities minimizing the
implementation costs.



3| Results on Artificial Data 51

22

45

43

1927

30

47

29
37

Figure 3.10: Location Routing Problem Solution: Large Network Scenario

On the largest instance, the dimensions of the network require more chargers along the
routes; this can be limited by increasing the weight on the implementation costs inside
the object function W . This way the designed paths visit more shared sites, leading to
have a smaller number of facilities. The computational effort significantly increases with
the size of the graph: if, in the medium instance, the number of variables and constraints
remain respectively at 1946 and 6552, in the largest graph the variables grows to 6098
and the problem presents 22644 constraints. However, the Branch and cut is still efficient,
speeding up the optimization process with the generation of more than 1000 cutting planes
and exploring 190’000 nodes.
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3.2.3. Location Routing Model with Multiple Level Extension

In this section the output of the model with Multiple Level Extension is shown. The
three instances grow in complexity for the presence of the second level, leading to double
the nodes and quadruple the arcs of the original instances. Even so, the solver is able to
find a solution in a reasonable amount of time for all the three instances. The following
pictures show the results:
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Figure 3.11: LRP-ML Solution: Small Network scenario
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Figure 3.12: LRP-ML Solution: Medium Network scenario

To make the comprehension clearer, an appropriate color scale highlights the selected
arcs. In particular the red arcs appertain to the original graph, hence to the first level,
the arcs colored in orange instead show the transition between the two levels; finally the
blue ones highlight the movement on the second level.

As can be seen from these two examples, the model allows the cyclists to pass trough the
same arc multiple times after visiting the first level. This happens when the attractiveness
reward of the region is enough to justify more than one traversal. For example, in the
tracks proposed on the medium instance (3.12), the Tourist user moves multiple times
between nodes 18 and 7. However, this causes longer itineraries that can results in a higher
demand of charging stations along the network. Indeed, in the small instance (3.11), the
sporty user discharge frequently his battery leading to higher number of charging stations
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along the itinerary.

Analyzing the performance of the program we can conclude that this version of the LRP
model leads to an important number of variables that slows down the resolution process,
requiring a large computational efforts by the machine. In particular the multiple level
method applied to the large instance (3.3) results in 20692 variables and 91166 constraints.
Applying the solver we can see in the progress line a feasible solution after 255 seconds
with a gap of 32% with respect to the upper bound. Then it is possible to observe a
decreasing progress in the gap between the lower and upper bound, achieving the optimal
solution after 484 seconds.

Here the 2-D map of the full graph for the found partial on the Sporty user solution is
shown:
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Figure 3.13: LRP-ML Solution: Large Network scenario
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Highlighting the nord - est region it is possible to observe the path between 45 and 22:
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Figure 3.14: LRP-ML Solution: Large Network scenario
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4| Case study:

In this chapter the charger location problem is applied to a real mountain network. We
analyzed the Asiago Sette Comuni Plateau, located in Trentino Alto Adige, Italy. This
territory is a true paradise for cycling lovers and MTB excursionists, because it offers a
myriad of itineraries and routes, with various degrees of difficulty, ideal for bike traveling.

If until a few years ago discovering the Plateau by mountain bike was an experience that
only trained cyclists could enjoy, because of the long and difficult routes and the hard
climbs, lately, thanks to the advent of E-bikes, even those who do not have a particular
sports and technical preparation can travel the mountain itineraries on a bicycle, managing
to reach the most beautiful destinations and views. The resort present also different rental
facilities that push this growing market, providing e-bikes directly at the beginning of the
trails, because of their strategic positions on the different municipalities of the territory.

4.1. Data Generation

Although not all the trails are achievable with an e-bike due to portage passage, combining
the different paths, muleteers and roads it is possible to construct a large graph connecting
all the seven major municipality of the territory: Asiago, Enego, Foza, Gallio, Lusiana-
Conco, Roana and Rotzo. Hence, in the proposed test case, a pool of the major trails were
chosen to construct a 3D graph G(N,A) on which applying the models developed in this
thesis. In particular the chosen trails are: Passo Vezzena, Il Sentiero 800, Monte Cengio e
Kaberlaba, Ortigara, Monte a Fior la Città di Roccia, Marcesina - Anepoz, Monte Lisser,
Monte Verena, I 3 Monti della Battaglia, Rubbio - Col D’Astiago, Le Incisioni Rupestri
della Val D’assa, Il vecchio Trenino di Asiago and Cima della Caldiera.

The obtained planar graph G(N,A) hs 28 nodes and 45 arcs, that cover all the Plateau
and includes also the municipality of Bassano del Grappa. Here a graphic representation
is shown:
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Figure 4.1: Asiago Trails Graph

The nodes are associated to points of interest along the territory such as mountain peaks,
villages and farm holidays, connected by a grid of trails synthesized by the arcs. It follows
that the nodes are associated to specific altitudes and a proper length characterize the
trails. This data was retrieved from topographic maps of the territory [51]. Then the data
related to the energy requirements were computed exploiting the Bike Model presented
in Chapter 3.

The attractiveness reward was then specifically stated with respect to the preferences
of the different classes of cyclists. For example the attractiveness of a farm-restaurant
is bigger for the gastronomic class and smaller for the sporty one who, instead, earns a
higher reward by passing through a mountain peak or a hard climb.

As stated for Chapter 3 these values are limited in a range between a lower bound of zero
and an upper bound equal to three. However, if in the simulation on artificial data the
values were stated with an almost random routine, here the values are specifically stated
considering the main characteristic of the territory.

The following table lists the nodes with the associated sites, the relative possibility to
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install a charger and the implementation costs:

Node Location Installing point Implementation Costs
0 Monte Cengio No −
1 Sp 349 Yes 100

2 Cima del Porco No −
3 Bassano del Grappa Yes 100

4 Malga Col dei Remi Yes 200

5 Tresche’ Conca Yes 100

6 Roncalto - Mela Yes 100

7 Cima Echar No −
8 Sasso Yes 100

9 Monte Valbella No −
10 Asiago Yes 100

11 Roana Yes 100

12 Malga Erio Yes 200

13 Monte Verena No −
14 Passo Vezzena Yes 200

15 Gallio Yes 100

16 Monte Fior No −
17 Stoner Yes 100

18 Enego Yes 100

19 Monte Lisser No −
20 Passo della Forcellona No −
21 Malghe Mandrielle e Buson Yes 200

22 Monumenti Yes 200

23 Monte Ortigara No −
24 Cima della Caldera No −
25 Anepoz No −
26 Primolano Yes 100

27 Rifugio Campo Muletto Yes 200

Table 4.1: Node Locations and Data

The data related to the charger implementation such as the cost ci and the possibility to
install the charger on the nodes i, ruled by the binary variable vi, were formulated taking
into account two important assumption. First of all the possibility to implement a charger
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facilities is possible only if there is a connection to the electric grid or a farmhouse, that
can provide the required electricity thanks to autonomous power supplies such as solar
panels. Then the implementation costs of a single charger were set to a symbolic value of
100 units for easy accessible sites such as provincial roads, municipalities or small villages.
The cost doubles for farmhouses, where the isolated positions and the cost of electricity
lead to higher implementation costs.

4.2. Results

Here the results achieved by the 3 models on the Asiago Plateau are shown.

4.2.1. Location Problem

For the Location Problem different trails were combined to create a set of 6 paths on
which the problem is executed. The following table shows the 6 paths and the related
trails:

Sequence of Nodes Used Trails
10− 15− 27− 16− 17− 9− 8− 7− 4− 3 Il Sentiero 800 - Monte Fior
3− 4− 7− 8− 9− 17− 16− 27− 15− 10 Il Sentiero 800 - Monte Fior

26− 18− 17− 19− 20− 25− 21− 24− 15− 10 Marcesina Anepoz - Monte Lisser
10− 23− 22− 14− 12− 13− 11 Passo Vezzena - Ortigara
11− 5− 0− 1− 2− 6− 10− 15 Monte Cengio

14− 12− 13− 11− 5− 0− 1− 2− 6− 10 Passo Vezzena- Il vecchio Trenino

Table 4.2: Asiago Predefined Paths

As done for the fictional test case of the location problem the data related to the energy
consumption are calculated considering the power requirement for a classic tourist user.
Analyzing the result in Figure 4.2 we can see that, following the itineraries proposed, the
e-bike riders need to charge the battery in order to finish the paths. Hence the resort
should install five chargers to ensure a reliable infrastructure. Moreover, it is interesting
to observe how only a charger is located close to a farm-restaurant, asking for a double
cost of installation.
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Figure 4.2: Asiago Location Problem Solution

4.2.2. Location Routing Problem

For the scenario with predefined tracks a set of six origin-destination pairs were chosen
among the main entrance to the network, represented by municipalities and provincial
roads. This way the model is executed over six different instances for the three classes of
cyclists, resulting in a total number of 18 scenarios. Here for brevity only the itinerary
that brings from Primolano to Asiago is shown, for the tourist and sporty cyclist:

Figure 4.3: Asiago Location Routing Problem Solution

The graphical result shows how the sporty user passes through different peaks of the
network, asking for more charging stations and designing a longer path.
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4.2.3. Location Routing Problem with Multiple Level Extension

Finally, the LRP with Multiple Level Extension is applied to the Asiago Plateau keeping
the same set of origin - destination pairs used for the classic LRP model. The follow-
ing figure shows the graphic results of the chosen tracks between the municipalities of
Primolano and Asiago for the Sporty user:

Figure 4.4: Asiago LRP-ML Solution

The map shows clearly that the solution brings the sporty user to pass through the main
peaks of the region, such as Passo della Forcellona (20), Anepoz (25) and Monte Fior
(16). There are only two charger facilities for all the resort and they are placed at Stoner
(17) and Sasso (8), where the implementation cost are lower due to a direct connection to
the electric grid. Moreover, these locations are shared by more itineraries that are almost
constrained to pass through this nodes, moving between Bassano del Grappa and Asiago
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or Enego and Asiago.

The model has 8408 variables and 35344 constraints that are used by the algorithm to find
the first feasible solution in 105 seconds. The optimization routine is then able to improve
again, moving from a gap of 35% with a lower bound of 320.5, to the final solution after
228 seconds, with a lower bound of 379.5 and a gap of 14.4%. The process terminates
after exploring 1657 nodes at 550 seconds, generating more 500 cuts.
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5| Conclusions and Future

Developments

The results shows that the developed models are perfectly capable to find a solution to the
Charger Location Problem for E-bikes, providing flexible formulations that reflects the
needs of the interested resorts. The best results can be obtained by the Location Routing
Model with Multiple Level Extension which yields an offer of trails that limits the number
of charging stations required on the network. Indeed, it results in a smaller number of
installed facilities that can be further decreased playing with the weight of the object
function (2.1). Moreover the possibility to visit multiple times the same node and arc leads
to a more realistic scenario that exploits the charging locations to formulate a competitive
and reliable infrastructure. Instead the output of the Location Problem strongly depends
on the set of predefined itineraries, statistically leading to higher implementation costs.
The performance of the Branch & Cut are clearly visible in the LRP-ML, when it is
applied to huge instances as the one shown in Figure 3.13, allowing the program to find
a solution in a reasonable amount of time. Although the program is meant to be applied
in an offline context, this is a datum that shows the competitiveness of the algorithm.

This field of studies will increase in the next years, following the e-bicycles growing market
and in general the wave of low range vehicles mobility. Further implementation, in a
touristic context, should consider possible partial charges taking into consideration the
time spent on each charging point.
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