
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Aeronautical Engineering

Physics-Informed Neural Networks
for Shallow Water Equations

Advisor:
Prof. Edie Miglio

Author:
Riccardo Anelli

ID 787052

October 6, 2022



Abstract

In recent years, a class of methods that incorporate Partial Differential
Equations (PDEs) into a Neural Network (NN) emerged, these methods
are commonly referred to as Physics-Informed Neural Networks (PINNs).
Embedding the laws of physics into the learning process of a NN allows
to combine the NN’s ability to extract patterns, automatically, from large
volumes of data, with the theoretical knowledge accumulated in scientific
theories. The purpose of this work is to investigate the possibility of using
the PINNs to approximate the Shallow Water Equations (SWE), a system
of hyperbolic PDEs that simulates free-surface flow problems. A wide
variety of benchmark problems, selected for both steady state solutions
and Riemann problems of increasing complexity, are examined. Moreover,
parametric cases are considered for one-dimensional and two-dimensional
transient problems, for the purpose of testing the degree to which the
PINNs are a convenient tool to be used when dealing with many-query
problems. The extensive PINN application showed remarkably results
in terms of accuracy of the numerical solutions produced, regardless of
the the presence of viscosity or shock waves. Despite the challenge of a
high computational cost, this tool proved to be markedly promising when
dealing with many-query problems.

Keywords: Partial Differential Equations, Physics-Informed Neural Net-
works, Shallow Water Equations, steady state solutions, Riemann problems,
many-query problems.



Abstract in lingua italiana

Negli ultimi anni è emersa una classe di metodi che inserisce le equazio-
ni differenziali alle derivate parziali nelle reti neurali, questi metodi sono
comunemente denominati Physics-Informed Neural Networks (PINNs).
Introdurre le leggi della fisica nel processo di training di una rete neurale
permette di combinare la capacità delle reti neurali di estrarre modelli, au-
tomaticamente, da una grande quantità di dati, con la conoscenza teorica
dei fenomeni naturali. Lo scopo di questo lavoro è analizzare la possibi-
lità di utilizzo dei PINN per approssimare le equazioni Shallow Water,
ossia, un sistema di equazioni differenziali alle derivate parziali iperboli-
che utilizzato in modelli geofluidodinamici e idraulici. Viene esaminata
un’ampia varietà di problemi di riferimento, scelti con difficoltà crescente
sia per problemi con soluzioni stazionarie che per problemi di Riemann. I
problemi non stazionari, sia monodimensionali che bidimensionali, ven-
gono successivamente dotati di un’aggiuntivo spazio dei parametri, con
lo scopo di testare l’efficacia dei PINN verso i problemi many-query. La
vasta applicazione dei PINN ha prodotto risultati di notevole precisione,
senza alcuna dipendenza dalla presenza di viscosità o di onde d’urto.
Nonostante la difficoltà rappresentata da un costo computazionale elevato,
questo metodo si è dimostrato oltremodo promettente nell’applicazione ai
problemi many-query.

Parole chiave: equazioni differenziali alle derivate parziali, Physics-
Informed Neural Networks, equazioni Shallow Water, soluzioni staziona-
rie, problemi di Riemann, problemi many-query.



It only ends once. Anything that
happens before that is just progress.

—Jacob



Contents

Abstract 2

Abstract in lingua italiana 3

Contents 5

Introduction 8

1 Mathematical model 12
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Shallow Water Equations (SWE) . . . . . . . . . . . . . . . . 13

1.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . 16
1.3 Scaling of the SWE . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Machine Learning 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Artificial neural networks . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Operation and representation . . . . . . . . . . . . . . 26
2.3.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Gradient descent . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Stochastic gradient descent . . . . . . . . . . . . . . . 33
2.3.5 Backpropagation . . . . . . . . . . . . . . . . . . . . . 35

2.4 Automatic differentiation . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Analytical derivative . . . . . . . . . . . . . . . . . . . 37
2.4.2 Numerical differentiation . . . . . . . . . . . . . . . . 39



Contents 6

2.4.3 Symbolic differentiation . . . . . . . . . . . . . . . . . 40
2.4.4 Automatic differentiation . . . . . . . . . . . . . . . . 42

2.5 Available libraries . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Physics-Informed Neural Networks 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Partial differential equations . . . . . . . . . . . . . . . . . . . 48

3.2.1 PDE families . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 PDE solution . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The PINN algorithm . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Elliptic problem, parametric . . . . . . . . . . . . . . . 54
3.5.2 Parabolic problem, parametric . . . . . . . . . . . . . . 55
3.5.3 Nonlinear hyperbolic problem . . . . . . . . . . . . . 57

4 Results 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Lake at rest with an immersed bump . . . . . . . . . . . . . 61
4.3 Lake at rest with an emerged bump . . . . . . . . . . . . . . 64
4.4 Subcritical flow . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Dam break on a wet domain . . . . . . . . . . . . . . . . . . 70
4.6 Dam break on a wet domain with friction, parametric . . . . 73
4.7 Dam break on a dry domain . . . . . . . . . . . . . . . . . . 76
4.8 Dam break on a dry domain with friction . . . . . . . . . . . 81
4.9 Dam break on a dry domain with friction, parametric . . . . 84
4.10 Circular dam break . . . . . . . . . . . . . . . . . . . . . . . . 87
4.11 Circular dam break, parametric . . . . . . . . . . . . . . . . . 94

Conclusions 97

Bibliography 99

A Source code 103
A.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Data import from FullSWOF_1D . . . . . . . . . . . . . . . . 104
A.3 Parameters definition and scaling . . . . . . . . . . . . . . . 106



Contents 7

A.4 Functions definition and scaling . . . . . . . . . . . . . . . . 107
A.5 Hard constraints . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.6 NN building and training . . . . . . . . . . . . . . . . . . . . 110
A.7 Output visualization . . . . . . . . . . . . . . . . . . . . . . . 111

List of Figures 116

List of Tables 119



Introduction

The massive increase of data and computing resources available made
possible, over the last 15 years, a significant growth in the field of ma-
chine learning—particularly, in deep learning. The term deep learning
generally refers to neural network methods. These methods are able to
extract patterns and models automatically from large volumes of data,
and are generally agnostic to the underlying scientific principles driving
the variables, thus earning the name of black box models. Capitalizing
on the neural networks’ potential to be universal function approxima-
tors [16], this technology yielded state-of-the-art results in disciplines of all
sorts [22] such as image recognition [19], natural language processing [12]
and cognitive sciences [20].

However, in scientific problems the variables can interact in complex
nonstationary and nonlinear ways, and the available dataset is often
limited: this makes considerably difficult the challenge of achieving good
performances with data-hungry methods. With a small dataset, the neural
network may learn relationships that fit good that dataset, but do not
perform well outside of it. Therefore, black box methods are likely to fail
when are applied in scientific problems [21, 27].

Considering that there are two possible sources of information in any
scientific problem, i.e., scientific knowledge or data, two extremes can be
identified in the spectrum of the conceivable approaches: theory-based
and data science models [17]. This dichotomy is shown in Fig. 1. Theory-
based models (cyan rectangle) make extensive use of scientific theories,
consequently, they are well-suited for representing processes that are well
understood. For this reason, these methods suffer from certain weakness
when applied in problems that are not completely understood—e.g., the
turbulence. On the other side of the range there are the data science models
(magenta rectangle): they require a large amount of available data, while



Introduction 9

Figure 1: Theory-based vs. Data Science Models (from Ref. [17]).

essentially ignoring the theoretical background behind the process. These
methods have a wide range of applicability in problems where a plentiful
supply of data is available, therefore, they are susceptible to fail where
this abundance of data lacks. There’s a third approach, the theory-guided
data science models (green rectangle), that make effective use of both the
sources of information at an equal level. These methods can automatically
extract patterns from data while making use of the theoretical knowledge
accumulated in scientific theories.

Recently, an algorithm that incorporates Partial Differential Equations
(PDEs) into a neural network came out, this method is commonly referred
to as Physics-Informed Neural Network (PINN). The fundamental step of
this approach is embedding a PDE into the loss of the neural network: by
constraining the neural network to minimize the PDE residual, the space
of admissible solutions the neural network can identify is shrunk to the
physical ones.

In this work, the feasibility and the effectiveness of this method are
investigated through the solution of problems described by the Shal-
low Water Equations (SWE), a system of hyperbolic PDEs that simulates
free-surface flow problems. There is a wide variety of situations, of envi-
ronmental interest, that can be mathematically represented by this model,
such as flow in open channels and rivers, tsunamis, even urban floods [30].



Introduction 10

Numerous applications of the SWE include a margin of uncertainty
over some parameters’ values and, consequently, these problems have
to be solved several times for every parameter’s value guess: they are
called many-query problems. Other applications may involve optimization
problems over models containing physical or geometrical parameters:
every optimization task requires multiple runs of the given problem and,
every single time that the problem is recalled, the parameters’ values are
different.

The PINN seems to be a promising tool to deal with this class of prob-
lems for one fundamental reason: following one single training session,
the PINN is able to instantly provide simulations for every requested
parameter value. Consequently, the computational cost of the complete
parameters space analysis is, basically, the one of a single training session.

The purpose of this thesis is to examine the degree to which the PINN
is actually a convenient tool to be used—whether it is on parametric
tasks or not—and the inviscid SWE have been selected as a representative
prototype for the hyperbolic class of problems.

The work is organized as follows. In Chapter 1 the mathematical
background of the physical problems studied in this thesis is covered.
First, the expression of the shallow water equations, the hypotheses they
are based upon, the variables involved, and the modeling of the forcing
terms are detailed. Then, the analysis of the scaling for a given problem
described by the shallow water model is provided.

In Chapter 2 the description of the fundamental notions in machine
learning are covered. The supervised learning technology is introduced.
The definition of artificial neural network, and the explanation of its
operating principles are presented. The various differentiation systems,
with a focus on the automatic differentiation techniques, are explained.
Finally, an overview of the free software available for neural network
implementation is presented.

In Chapter 3 the differential problems, and the way they can be solved
by NNs are described. First, the partial differential equations, their clas-
sification and solution possibilities are presented. Then, the algorithm
that makes the NNs capable of effectively solve the problems described
by partial differential equations is summarized. Next, the analysis of the
sources of error caused by the use of NNs in solving differential equations



Introduction 11

is provided. Finally, the core of the Python code implemented throughout
this work of thesis is tested and validated, on three different classes of
problem.

In Chapter 4 the numerical solutions produced by the PINN tool are
presented. The work is introduced starting from the one-dimensional
steady state cases, proceeding with the transient problems, ending with
the two-dimensional transient one. Moreover, parametric problems are
built upon the existing ones.

In Appendix A the main structure of all the source codes is described.



Chapter 1

Mathematical model

1.1 Introduction

The Navier–Stokes equations are a comprehensive model that can de-
scribe the motion of a three-dimensional real fluid. This elaborate approach
is appropriate for the simulation of flows dominated by three-dimensional
effects, e.g., in strongly meandering rivers. Since the computational cost
of a three-dimensional model simulation is still very high, it makes sense
to reduce the model for calculations with simpler flow conditions: the
depth-averaged two-dimensional flow equations, also called Shallow Water
Equations (SWE), provide a suitable approximation to model free-surface
flow problems.

In spite of the name, the fluid doesn’t have to be water (for example,
the weather forecasting can be done by applying these same equations),
indeed, the SWE can be modified in order to simulate different moving
fluids, and they can be applied to many free-surface flow scenarios such
as:

• tsunamis prediction;

• flash floods prediction;

• atmospheric flows;

• flows around structures;

• planetary flows.



1. Mathematical model 13

This chapter covers the mathematical background that the physical
problems studied in this work of thesis have in common. The expression
of the shallow water equations, the hypotheses they are based upon, the
variables involved, and the modeling of the forcing terms are the topics
detailed in Section 1.2. Then, Section 1.3 provides the analysis of the
scaling for a given problem described by the shallow water model.

1.2 Shallow Water Equations (SWE)

The SWE consist in a system of nonlinear PDEs that model the two-
dimensional incompressible flow. The derivation of these equation is
obtained, mainly, by averaging the Navier–Stokes equations over the
depth, and is based on the following hypotheses:

• the fluid is incompressible and its density is uniform;

• the vertical dimension is much smaller than the horizontal scale;

• the vertical velocity is zero;

• the vertical dynamics is neglected;

• the pressure distribution is hydrostatic.

Within the ambit of this thesis the equations are written in conservative
form, in the Cartesian coordinate system, following the notation illustrated
in Fig. 1.1 on page 14. The coordinate z defines the vertical direction, to
which the free surface elevation is associated.

The SWE are first implemented in Python holding as unknowns the
water height h(x, y, t) and the two horizontal components of the depth-
averaged velocity u(x, y, t) and v(x, y, t). This set of variables can be used
to define a new array of unknowns called flows and defined as qx = hu
and qy = hv. Then, the new unknowns set made up of the water height
h(x, y, t) and of the two flows qx(x, y, t) and qy(x, y, t) can be used to write
the SWE in a second form.

A general expression of the 2D SWE, holding as unknowns h, u and
v, that takes into account several complex terms like rain, infiltration and
viscous terms, is given in Eq. (1.1) for the sake of completeness. Indeed,



1. Mathematical model 14

Figure 1.1: 2D SWE. Notation.

different source terms can be included in the right-hand side of the shallow
water system of equations, depending on the application.



∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= R− I

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
+

∂(huv)
∂y

= gh(S0x − S fx) + µSdx

∂(hv)
∂t

+
∂(huv)

∂x
+

∂(hv2 + 1
2 gh2)

∂y
= gh(S0y − S fy) + µSdy

(1.1)

where:

• the first equation is a mass balance and the other two equations are
the momentum balances;

• g = 9.81 m/s2 is the standard gravitational acceleration;

• R ≥ 0 is the rain intensity, its physical dimensions are [L/T]. It’s a
given function of time and space that will be always set to zero in
the test cases studied in this thesis;

• I is the infiltration rate, [L/T]. The expression of this term can be
given by the Green-Ampt model [14] and won’t be taken into account
in this work;



1. Mathematical model 15

• S0x and S0y , dimensionless quantities, are the opposite of the slopes
in the x, y directions. The topography z could be variable over the
time in applications that take into account the erosion; in this thesis it
will be considered constant in time. Consequently, these two terms
are defined as:

S0x = −
∂z(x, y)

∂x
, S0y = −

∂z(x, y)
∂y

(1.2)

• S fx and S fy , dimensionless quantities, are the terms that model the
friction between water and ground. The friction laws behind these
terms are based on experiential evidences and can take two different
shapes. The first expression is based on the Manning-Strickler’s
model:

S fx = n2 u|u|
h4/3 = n2 qx|q|

h10/3 (1.3)

S fy = n2 v|u|
h4/3 = n2 qy|q|

h10/3 (1.4)

where n is the Manning’s coefficient, u = [u, v]T is the velocity vector
and q = [qx, qy]T is the flow vector. This model doesn’t work for
applications that allow for dry zones. This issue is solved using the
Darcy-Weisbach’s model. The expressions of the Darcy-Weisbach’s
laws are:

S fx = C f
u|u|

h
= C f

qx|q|
h3 (1.5)

S fy = C f
v|u|

h
= C f

qy|q|
h3 (1.6)

with C f = f /(8g) = 1/C2, where f is a dimensionless coefficient
and C is the Chézy’s friction coefficient;

• µSdx and µSdy are the viscous terms. They can be modeled by the
Laplace operator and µ is the kinematic viscosity of the fluid. No
viscous term will be taken into account in this work.



1. Mathematical model 16

The conservative variables, derived with respect to the time, and the
components of the flux tensor, can be conveniently organized into vectors:

U =

 h
hu
hv

 , E =

 hu
hu2 + 1

2 gh2

huv

 , G =

 hv
huv

hv2 + 1
2 gh2

 (1.7)

In the same way, all the source terms in the right-hand side of the
system can be organized into a vector:

S =

 R− I
gh(S0x − S fx) + µSdx

gh(S0y − S fy) + µSdy

 (1.8)

Writing the SWE adopting these vectors results in a single, compact,
vector equation:

∂U
∂t

+
∂E
∂x

+
∂G
∂y

= S (1.9)

1.2.1 Boundary conditions

The applications of the SWE that allow for Laplacian terms require the
boundary conditions to be set in every border of the differential problem,
along with the initial condition in case of transitory problems. On the other
hand, if the SWE are applied to the perfect fluid model and if the condition
h > 0 is met, the problem is hyperbolic and the boundary conditions
treatment must comply with a suitable set of requisites explained right
away.

Let n be the outward unit normal vector on the border of the computa-
tional domain, so that:

• the condition u · n > 0 denotes an outflow point on the border, the
fluid exits the domain through an outflow point;

• the condition u · n < 0 denotes an inflow point on the border, the
fluid enters the domain through an inflow point.



1. Mathematical model 17

The flows described by the SWE for a perfect fluid can be classified
according to the value of a dimensionless number, the Froude number
(Fr), defined as:

Fr =
|u|√

gh
(1.10)

• if Fr < 1 the flow is known to be subcritical, the information can
travel upstream as well as downstream;

• if Fr > 1 the flow is known to be supercritical, the information cannot
travel upstream;

• if Fr = 1 the flow is known to be critical, the upstream propagating
information remain stationary.

As explained in [11], the combination between the type of border and
the value of the Froude number can generate four possible situations on
every point of the border:

• if Fr > 1 and u · n < 0, three conditions have to be set;

• if Fr ≤ 1 and u · n < 0, two conditions have to be set;

• if Fr < 1 and u · n > 0, one condition has to be set;

• if Fr ≥ 1 and u · n > 0, no conditions can be set.

1.3 Scaling of the SWE

The problems examined throughout this work are often defined in
big spatial domains, and develop within large time scales. Furthermore,
some of these problems involve infinitesimal solutions. These scenarios
conflict with the technology used to solve each case study, since the NN
best deals with both domains and solutions belonging to the O(1) scale.
The effective strategy that can get every single problem to fit with the
solver is the scaling.

The standard practice begins with the identification of suitable refer-
ence values for the geometry of the problem, for its temporal domain and



1. Mathematical model 18

for the variables, specifically L, T, H, U. The optimal outcome of this pro-
cess would be a scaled problem defined in an unitary geometrical domain,
lasting one second, involving solutions with both range and upper limit
unitary. The original SWE in Eq. (1.1) are scaled into a new system of
equation that is tagged with the tilde symbol. It is relevant pointing out
that initial and boundary data have to be scaled as well, but here only the
equations are considered for the sake of simplicity.

The relations between the original quantities and the scaled ones are:

• x = L x̃

• y = L ỹ

• z = H z̃

• t = T t̃

• h = H h̃

• u = U ũ

• v = U ṽ

Substituting in Eq. (1.1) and making explicit the right-hand side terms:



H
T

∂h̃
∂t̃

+
HU

L
∂(h̃ũ)

∂x̃
+

HU
L

∂(h̃ṽ)
∂ỹ

= 0

HU
T

∂(h̃ũ)
∂t̃

+
HU2

L
∂(h̃ũ2 + 1

2 g̃h̃2)

∂x̃
+

HU2

L
∂(h̃ũṽ)

∂ỹ
=

= −U2

H
H

H
L

g̃h̃
∂z̃
∂x̃
− U2

H
U2 g̃C f ũ|ũ|

HU
T

∂(h̃ṽ)
∂t̃

+
HU2

L
∂(h̃ũṽ)

∂x̃
+

HU2

L
∂(h̃ṽ2 + 1

2 g̃h̃2)

∂ỹ
=

= −U2

H
H

H
L

g̃h̃
∂z̃
∂ỹ
− U2

H
U2 g̃C f ṽ|ũ|

(1.11)

where g̃ = H
U2 g. After simplification we obtain:



1. Mathematical model 19



L
TU

∂h̃
∂t̃

+
∂(h̃ũ)

∂x̃
+

∂(h̃ṽ)
∂ỹ

= 0

L
TU

∂(h̃ũ)
∂t̃

+
∂(h̃ũ2 + 1

2 g̃h̃2)

∂x̃
+

∂(h̃ũṽ)
∂ỹ

=

= −g̃h̃
∂z̃
∂x̃
− LU2

H2 g̃C f ũ|ũ|

L
TU

∂(h̃ṽ)
∂t̃

+
∂(h̃ũṽ)

∂x̃
+

∂(h̃ṽ2 + 1
2 g̃h̃2)

∂ỹ
=

= −g̃h̃
∂z̃
∂ỹ
− LU2

H2 g̃C f ṽ|ũ|

(1.12)

If:

U =
L
T

and H =

√
L3

T2 (1.13)

then:

L
TU

= 1 and
LU2

H2 = 1 (1.14)

and the mathematical expressions used for the scaled problem—made
up of equations, boundary conditions and initial conditions—and for
the original unscaled one are identical. Actually, the possibility of taking
advantage of this convenient choice for the reference values depends
on the problem at hand. Since the unit values of the scaling groups in
Eq. (1.14) are obtained enforcing the relations in Eq. (1.13), not all the
reference values L, T, H, U can be chosen arbitrarily. So:

• if this choice of reference values allows to end up with a scaled
problem defined in a O(1) domain, for O(1) variables, it’s ok;

• if this choice of reference values brings to a scaled problem with
variables values too far from the O(1) scale, then the best option
would be choosing arbitrarily and suitably all the reference values,
ending up with a scaled mathematical expression different from the
original one.



Chapter 2

Machine Learning

2.1 Introduction

Machine Learning (ML) is the scientific discipline that the American
pioneer Arthur Samuel defined, back in 1959, as the field of study that
gives computers the ability to learn without being explicitly programmed.
It comes under the broad umbrella of Artificial Intelligence (AI). Despite a
terminology that suggests an ability to think by the machines, there are
no magic human-like tools on the table: the process behind every machine
learning based design, as remarkable as it may be, is nothing more than
the elaboration of a computation.

As described in [15], the traditional programming procedure requires
a program—a code—to be written; it’s successively processed by the com-
puter together with the data and the output is provided. The machine
learning approach is different: the computer gets the output and the data,
then it provides the program. This distinction is depicted in Fig. 2.1.

The whole ML discipline can be divided into three main fields of study:

• supervised learning

• unsupervised learning

• reinforcement learning

This thesis will cover only supervised learning tasks (see [4, 10] for
an overview of the unsupervised and reinforcement learning techniques).



2. Machine Learning 21

Computer

Data Program

Output

(a) Traditional programming

Computer

Data Output

Program

(b) Machine learning

Figure 2.1: Introduction. Comparison between approaches.

The main approach that will be examined and used in order to deal with
this kind of problems will be the Artificial Neural Network (ANN).

This chapter covers the description of the fundamental notions in
machine learning. The supervised learning technology is introduced in
Section 2.2. The definition of artificial neural network and the explanation
of its operating principles are presented in Section 2.3. The various
differentiation systems, with a focus on the automatic differentiation
techniques, are explained in Section 2.4. Finally, an overview of the free
software available for neural network purposes is presented in Section 2.5.

2.2 Supervised learning

The data-set that enters a supervised learning algorithm is a collection
of N labeled examples {(xi, yi)}N

i=1. Each one of these elements comes in
the form of a row vector made up of an n-dimensional vector x called
feature vector and of another element, the label yi, appended to the previous
vector. As suggested by its denomination, the feature vector x is made up
of elements called features, they are denoted as f j for j = 1, . . . , n. A classic
example of labeled element is illustrated in Fig. 2.2.

The vector x can be represented as a datapoint, i.e. a point in the
n-dimensional space where the axes are the features: this goes to show
that the dimensionality of a supervised learning problem matches the



2. Machine Learning 22

f1 f2 · · · fn label
[ ]n features

Figure 2.2: Supervised learning. Labeled example.

number of features. The nature of these features can be different, so are
the properties they can have:

• numerical features. This class of features consist of pure numerical
values. There are two properties that these kind of data have. First,
they can be put in order: 1 is before 5, 5 is before 25 and so forth.
Second, calculations can be performed with these values.

• ordinal features. These data come apparently in the form of first,
second, and so on. The algorithm dealing with this data can take
advantage of the first property but not of the second one.

• categorical features. Here there is only the names of the data—for
instance, information like colours—and nothing can be deduced from
them. A machine learning algorithm can’t be given pure categorical
data as they are, so they must be properly converted. The conversion
technique is called one-hot encoding. While this transformation in-
creases the dimensionality of the problem, yet it allows the algorithm
to manage categorical data. For further details about the one-hot
encoding, see [34].

The aim of a supervised learning algorithm is to produce a program—a
model—able to predict the label y of a given feature vector x. For instance,
a model created using a data-set of text messages could take as input an
incoming e-mail and output information that allows deducing whether
or not it is an unwanted commercial bulk email. The whole supervised
learning branch is commonly broke down in two categories:

• classification. This is the problem of automatically assigning the
label to an unlabeled example. For instance, recognising a dog in an
image can be seen as classifying the image in one of the two classes:
‘has a dog’ or ‘does not have a dog’. The label is a member of a finite



2. Machine Learning 23

set of classes. If the size of this set is two, the problem is referred
to as binary classification; if it’s larger than two, then it’s a multiclass
classification problem.

• regression. This is the problem of assigning a real-valued label to
an unlabeled example, this specific kind of label is called target. For
instance, the problem of estimating the house price based on an
array of house features—such as the location, the measurement of
the surfaces or the number of bedrooms—is an example of regression.
This kind of problems are solved by regression learning algorithms:
they take in a collection of labeled examples and build a model that
can take an unlabeled example as input and output the target.

2.2.1 Classification

Since this thesis will focus on the classification learning branch only, the
most classical approaches of this technology are introduced in this section.

The challenge of a classification problem is to produce an accurate
classifier. The typical machine learning approach—considering a binary
classification case—is to supply the algorithm with k labeled examples of
one class together with h labeled examples of another class, then to let it
determine whether a brand-new unlabeled example is more similar to the
k-type labeled examples or the h-type ones.

The classification performed by the algorithm can be seen as a bound-
ary in the n-dimensional space that divides the datapoints according to
what the algorithm is asked to do, e.g., if it’s a binary classification task,
the boundary will conveniently divide the whole set of points into two
groups—the k-type point one side of the boundary, the h-type the other
side. This boundary, the object that partitions the workspace, is called hy-
perplane. Once the hyperplane is set, the type prediction for the brand-new
element provided to the algorithm is automatic: the side of the boundary
the new element falls in the n-dimensional space is all the algorithm needs
to look in order to assign the label.

A suitable selection of hyperplanes is shown in Fig. 2.3 in order to
point out some typical issues that have to be taken into account:



2. Machine Learning 24

(a) Underfitting (b) Overfitting (c) Good fit

Figure 2.3: Classification. Fitting issues, (a)-(b), good fit case, (c).

• the hyperplane (a) is not capable of separating effectively the two
groups of elements, it underfits the data. The reason behind this
problem can be twofold: the excessive simplicity of the algorithm
compared to the characteristics of the data-set, or the scarcity of
information brought by the data-set.

• the hyperplane (b) splits perfectly the elements, it divides the blue
circles from the black triangles without any error, yet it actually
overfits the data. This is a problem, because the algorithm has learned
to predict perfectly a data-set that is not perfect, i.e. it has learned
to predict imperfections along with the fundamental information
brought by the data-set.

• the hyperplane (c) is a reasonable separator. It is not strictly correct,
yet it is in excellent accordance with the prevalent arrangement of
the data.

The goal of the training process is to build an excellent separator,
but perfection is not on the table: it’s the trend of the elements that are
actually relevant that the algorithm is after. A hundred percent accurate
hyperplane for the whole training set turns out to be be too intricate, and
eventually wrong, because it would perfectly fit a set of data that inevitably
carry some random oscillations. Looking for perfection when operating
with imperfect data it’s ineffective, there must be a trade-off between the
complexity of the hyperplane and the accuracy of the algorithm.

The ability to build the hyperplane is learned by the algorithm through
a process that takes the name of training, at this point the algorithm doesn’t



2. Machine Learning 25

give any output. The operation of generating the label to the brand-new
unlabeled elements takes place in the following phase that is called the
predicting phase.

2.3 Artificial neural networks

The artificial neural network is a supervised learning algorithm. The
feedforward neural network (FNN), the simplest neural network archi-
tecture, applies linear and nonlinear transformations to the inputs. As
the name suggests, the neural network is a framework made up of basic
elements, called neurons, that actively execute in the network by taking in
input data, by processing it, and by producing an output. The two elements
that constitute each neuron—the bias and the activation function—and the
details of the neuron’s operations are defined and described right away.

The neurons are arranged in layers. The information enters the neural
network by way of the input-layer neurons, then it moves towards the
output-layer neurons passing through the hidden-layers neurons. The
number of the input-layer neurons matches the number of the features in
the input vector, while the number of the output-layer neurons matches
the dimensionality of the label. A neural network consisting of more than
one hidden layer is called deep neural network; the subfield of machine
learning with deep neural networks is called deep learning.

a(0)1

a(0)2

a(1)1

a(1)2

a(1)3

a(1)4

a(2)1

a(2)2

a(2)3

a(2)4

a(3)1

a(3)2

Figure 2.4: Example of deep neural network.

A typical neural network architecture is illustrated in Fig. 2.4. Every
neuron is labeled with a superscript indicating the layer, starting from
number 0 for the input layer, then number 1 for the following layer and so
forth. A subscript indicates which neuron of that layer it is. Every neuron



2. Machine Learning 26

belonging to one layer is connected with all the neurons belonging to the
previous layer, as well as with all the neurons belonging to the following
layer. Neurons belonging to the same layer are not interconnected.

The elements which are not given as inputs are the parameters. A
first set of parameters—they’re real numbers, they’re called weights—is
associated with each and every neuron-to-neuron connection existing in
the neural network. A second set of parameters is associated with the
neurons belonging to any layer other than the input one, they are real
numbers as well and they are called biases.

Weights and biases play a crucial role. They are both randomly set by
the algorithm at the start of the process, then they are properly modified
in order to make the network work its optimization problem out: the task
of finding an optimal set of weights and biases is performed through a
training process.

2.3.1 Operation and representation

This section is devoted to the elaboration of the network’s mode of op-
eration. While all the calculus will be gradually broken down, a schematic
representation of an isolated neuron is shown in Fig. 2.5.

Σ

b(1)1

a(0)1

a(0)2

a(0)n
z(1)1

σ
(

z(1)1

)
a(1)1

...

w(1)
1,1

w(1)
1,2

w(1)
1,n

Figure 2.5: Neuron a(1)1 . Inner components, operations, input neurons.

A machine learning algorithm accepts a collection of data and output:
in the neural network case the data are the features, and they are fed to the
input-layer neurons; the output are the labels, and they are compared with
the output-layer neurons. The operating principle of a neural network



2. Machine Learning 27

begins with the feeding of the data into the input-layer neurons: each of
those neurons get one numerical value. The information contained in every
input-layer neuron propagates through the neural network according to a
basic principle: the values contained in the neurons belonging to one layer
determine the values contained in the neurons of the next layer.

The first step to get the value for one neuron belonging to the layer
next to the input layer, is computing the weighted sum of all the input
layer neurons values according to the weights, plus the bias:

z(1)1 = w(1)
1,1 a(0)1 + w(1)

1,2 a(0)2 + · · ·+ w(1)
1,n a(0)n + b(1)1

=
n

∑
k=1

w(1)
1,k a(0)k + b(1)1

(2.1)

where:

• z(1)1 is the logit, a number still to be handled in order to get a valid
neuron value, it’s associated with the first hidden layer’s neuron;

• a(0)k is the value stored in the k-th input layer’s neuron, it’s called
activation;

• n is the number of neurons belonging to the input layer;

• w(1)
1,k is the weight associated to the connection between a(0)k and the

first hidden layer’s neuron;

• b(1)1 is the bias associated with the first hidden layer’s neuron.

This is just for one neuron; every other neuron in the same layer is
connected to all the neurons of the previous layer and has its own weights,
plus one bias, associated. Such a sophisticated computational procedure
can be written in a more compact way: the weights are organized into a
matrix where each row corresponds to the connections between one layer
and a particular neuron in the next layer; the biases are organized into a
column as a vector, so are all the neurons values from every layer. The
number of neurons belonging to the layer next to the input layer is m.



2. Machine Learning 28



z(1)1

z(1)2
...

z(1)m


=



w(1)
1,1 w(1)

1,2 . . . w(1)
1,n

w(1)
2,1 w(1)

2,2 . . . w(1)
2,n

...
... . . . ...

w(1)
m,1 w(1)

m,2 . . . w(1)
m,n





a(0)1

a(0)2
...

a(0)n


+



b(1)1

b(1)2
...

b(1)m


(2.2)

At this point, a nonlinear transformation is performed on this vector by
means of a nonlinear function, called activation function, that will transform
the weighted sum into the actual value stored in the neuron—the activation.
The application of the nonlinearity to the logit will determine the intensity
a particular neuron will be activated with, if at all. This will enable the
network to learn complex mapping functions. Three popular functions
that do this are the rectified linear unit (ReLU), the sigmoid function (S) and
the hyperbolic tangent:

ReLU(z) =

{
0 if z < 0

z otherwise
(2.3)

S(z) =
1

1 + e−z (2.4)

tanh(z) =
ez − e−z

ez + e−z (2.5)

These functions, along with their derivative, are plotted in Fig. 2.6 on
page 29. Several factors have an influence on the choice of the appropriate
activation function, such as the properties of the function, the properties
of the function’s derivative or the structure of the neural network.

Another element that influence this choice is the type of classification
problem the network is supposed to learn: whether it is a binary classifica-
tion task or a multi-class one, the activation function that will lead to the
better result may be different [10].



2. Machine Learning 29

−5 0 5
0

2

4

6

(a) ReLU(z)

−5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

(b) S(z)

−5 0 5
−1.0

−0.5

0.0

0.5

1.0

(c) tanh(z)

−5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

(d) step(z)

−5 0 5
0.00

0.05

0.10

0.15

0.20

0.25

(e) d
dz S(z)

−5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

(f) d
dz tanh(z)

Figure 2.6: Activation functions. Three popular functions, (a)-(b)-(c), corre-
sponding derivatives, (d)-(e)-(f).

Starting with a thorough analysis of the plots, some observation can be
made:

• ReLU. This function is a simple computation that returns the logit
provided as input directly, or the value zero, and the neuron does
not activate, if the input is zero or less. This computation results
in a sparse network and a faster data processing. Another major
advantage of this function over the S(z) and the tanh(z), that require
the use of an exponential calculation, is that the ReLU is easy to
implement, requiring just a max function.

On the other hand, the limitations come from its gradient, that is zero
whenever the neuron is not active. This can bring about problems in
gradient-based optimization algorithm, since they will not adjust the
weights of a neuron that never activates initially. Some extensions to
the ReLU overcome this problem, e.g., the Leaky ReLU, that modifies



2. Machine Learning 30

the function to allow small negative values when the input is less
than zero in order to avoid the case of dead neurons [10].

• sigmoid function. This function is smooth and continuously differ-
entiable, very negative inputs end up close to 0 and very positive
inputs end up close to 1. It outputs only positive signals. Since
the derivative is smooth and continuously differentiable as well,
gradient-based optimization algorithm will benefit from that.

The disadvantage is that while the derivative is very high when the
logit values between -3 and 3, it becomes flat away from that and
the training algorithm comes to a halt: this is the vanishing gradient
problem.

• hyperbolic tangent. This function is smooth and continuously dif-
ferentiable as well as the S(z), yet it becomes flat more quickly and
it can return both positive and negative signals. The derivative is
smooth but it is steeper than the derivative of S(z), so the hyperbolic
tangent function also has the vanishing gradient problem.

Different layers may have different activation functions, but all neurons
of the same layer apply the same nonlinearity to its logits. Once the
activation function set is selected for the particular application—often by
testing different functions and eliminating the ones that do not work—a
final step in the mathematical representation can be made, as the nonlinear
activation function is wrapped around the whole matrix framework. The
function is applied element-wisely to the m-dimensional resulting vector.
For the sake of simplicity, only the symbol σ is used to identify the
activation function.



a(1)1

a(1)2
...

a(1)m


= σ





w(1)
1,1 w(1)

1,2 . . . w(1)
1,n

w(1)
2,1 w(1)

2,2 . . . w(1)
2,n

...
... . . . ...

w(1)
m,1 w(1)

m,2 . . . w(1)
m,n





a(0)1

a(0)2
...

a(0)n


+



b(1)1

b(1)2
...

b(1)m




(2.6)



2. Machine Learning 31

The algorithm iterates this information propagation procedure up to
the output layer of the neural network. A schematic representation of an
isolated neuron is shown in Fig. 2.5 on page 26.

Summarizing the whole process, let N L(x) : Rdin → Rdout be a L-layer
neural network, meaning it’s a (L− 1)-hidden layer neural network: there
are N0 = din neurons in the input layer, NL = dout neurons in the output
layer, Nℓ neurons in the ℓ-th layer. Let Wℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ be
the weight matrix and the bias vector in the ℓ-th layer, respectively. The
FNN is defined as follows:

input layer: N 0(x) = x ∈ Rdin

hidden layers: N ℓ(x) = σ(WℓN ℓ−1(x) + bℓ) ∈ RNℓ , for 1 ≤ ℓ ≤ L− 1

output layer: N L(x) = WLN L−1(x) + bL ∈ Rdout

2.3.2 Loss function

In order to get the neural network to operate effectively, a training
process is mandatory. The concept is to measure the error the network
commits and then modify its parameters set to improve its perfomance
and make this error very small; this is done through an algorithm called
backpropagation, which happens to be the reverse of the forward pass
described above.

The prerequisite is a whole bunch of training data, i.e. a set of feature
vectors to provide as input of the network along with labels for what every
feature vector is supposed to be. The goal of the training process is to
generalize the behaviour of the network beyond the training data, to new
unlabeled input vectors.

The pattern of the output layer neurons values is compared with the
desired pattern for that specific input vector—the desired pattern is exactly
the label, suitably made up of the same number of elements of the output
layer. What is done is define a loss function L as a way to measure the
dissimilarity between the desired output layer pattern and the actual one,
hence, this is a way to quantify how good or bad the neural network
is performing. The loss of a single training element Lh is defined by
adding up the squares of the differences between each of those output
layer neurons values and the desired values:



2. Machine Learning 32

Lh =
n

∑
k=1

(ak − yk)
2 (2.7)

where:

• n is the number of neurons belonging to the output layer;

• ak is the activation of the k-th output layer’s neuron;

• yk is the desired value for ak.

The procedure is repeated for all the training elements at disposal,
then the average loss over the whole training set at disposal is considered.
Hence the loss L, the end result of the computation, is a function that
takes in all the weights and biases and it returns one number describing
how suitable the weights and biases are.

L =
1
N

N

∑
h=1

(
n

∑
k=1

(ak − yk)
2

)
h

(2.8)

where N is the number of the whole bunch of training samples.

The loss is small when the network operates correctly but, as might
be expected, the network is going to perform badly on the firsts cycles of
training inputs since it’s working with randomly initialized parameters.
The scalar information provided from the loss function is used in order to
properly modify these parameters. The aim is to find the value for all these
parameters that minimizes the loss and, moreover, every single tweak to
the parameters is made with the purpose of causing the fastest decrease
to the loss. This process is called learning.

2.3.3 Gradient descent

The gradient is a mathematical operator that provides the direction of
the steepest ascent of a function, consequently, the negative gradient of the
loss function gives the direction that decreases this function most quickly
starting from the point the gradient is computed. Naturally enough, the
algorithm for minimizing the loss function computes its negative gradient,



2. Machine Learning 33

it takes a small step in that direction afterwards and then repeats the same
procedure over and over.

The input of the loss function is a large set of variables. There are many
possible local minimums that the gradient-based algorithm might land in
depending on which random input it starts, and there is no guarantee that
the local minimum it gets to is going to be the absolute global minimum of
the loss function. It’s important to restate that the loss function involves
an average over all the training data, therefore, minimizing it yields to a
better performance on all the samples.

All the weights and the biases can be thought as scalars orderly ar-
ranged in a vector W, the gradient of the loss function ∇L(W) is a vector
the same size of its input W. The algorithm will modify every single weight
and every single bias by a quantity proportional to the corresponding
value in the negative gradient vector:

W ←− W− η∇L(W) (2.9)

where η is a constant called learning rate, a coefficient that controls the
step size towards the local minimum. The process of repeatedly adjust the
input of the loss function by a multiple of its negative gradient is called
gradient descent. If the learning rate η is very small the convergence will
take more time, but this will keep the minimization process under control
in order to avoid overshooting. On the other hand, an high value of η

might cause the algorithm to overshoot and to miss the local minimum:
find the best way to pick the step size is still an open research problem.
This issue is depicted in Fig. 2.7 on page 34.

2.3.4 Stochastic gradient descent

In practice, computing a gradient descent step based on the whole
training dataset, for modern large scale machine learning systems, can be
an incredibly difficult task.

Let {(x1, y1), . . . , (xn, yn)} ∈ Rn×d ×Rn be the whole training dataset,
where n is the number of all the training data points and d is the dimension
of each input sample: in large scale machine learning systems they can
both be large. The number of training data points, these days, could be in
the order of millions; moreover, the dimensionality of the feature vectors



2. Machine Learning 34

(a) Very small learning rate (b) Large learning rate

Figure 2.7: Gradient descent. Effect of the learning rate value on the convergence
to a local minimum.

can also be pretty large, e.g., if x is a megapixel image then d is a million as
well. This indicates that computing the gradient at a single point involves
computing the gradient of the entire sum over the whole training samples
in Eq. (2.8), and that sum is huge. As a result, the computation of a single
gradient to do a single step of gradient descent could take hours or days:
that is a major drawback so this is not what is commonly done.

As made clear in [36], one first technique that makes sense for optimiz-
ing this machine learning problem is to compute the gradient based on
just a single randomly-chosen training sample, i.e. at iteration k an integer
i(k) is randomly picked:

i(k) ∈ {1, 2, . . . , n} (2.10)

The randomness used is, as might be expected, the one without replace-
ment: the algorithm takes the dataset, it runs a pre-shuffle operation and
then just streams through the data. The update of the parameters set is
performed using the loss produced by the i-th training sample alone:

Wk+1 ←− Wk − ηk∇Li(k)(Wk) (2.11)

The gradient iteration of one individual component is now n times



2. Machine Learning 35

faster. This technique is referred to as Stochastic Gradient Descent (SGD).
Instead of making a clear descent at every step like the gradient descent

does—after all, the gradient descent is called gradient descent, at every
step it descends, it decreases the loss function—the SGD doesn’t do any
descent at every step: sometimes it goes up, sometimes it goes down, still
making progress towards the optimum.

Moreover, the SGD process is much more sensitive to the step size
ηk than the method based on the full gradient is. This problem emerges
when the process approaches the optimum: the greater the step size is, the
wilder the fluctuations are. At the beginning of the SGD iterations, instead,
high ηk values do not limit the stability of the process, that therefore can
make quick initial progress. That is a very typical behaviour of SGD: the
user may see the training loss decrease very fast in the beginning but this
favorable performance declines afterwards, just as soon as the process gets
closer to the optimum.

Because of the high variance that such process may have, then rather
than pick one random training sample at the every given k-th iteration,
the algorithm picks a mini-batch Ik of samples, so that:

Wk+1 ←− Wk −
ηk

|Ik| ∑
h∈Ik

∇Lh(Wk) (2.12)

This will average things and reduce the variance of the process. A
mini-batch of size 1 is the SGD explained earlier, a mini-batch of size n is
the pure gradient descent, something in between is what libraries actually
use.

2.3.5 Backpropagation

The backpropagation is a very famous algorithm that computes every
single gradient for deep network training. For the purpose of getting the
idea of the calculus underlying this procedure, let a(L)

j be the activation of

the j-th output layer’s neuron, then let a(L−1)
k be the activation of the k-th

last hidden layer’s neuron, so that:

z(L)
j = w(L)

j,k a(L−1)
k + b(L)

j

a(L)
j = σ(z(L)

j )
(2.13)



2. Machine Learning 36

The desired value for a(L)
j , for a given training example, is yj. The loss

for a single non-specific training example is Lh, defined as:

Lh =
nL

∑
j=1

(a(L)
j − yj)

2 (2.14)

where nL is the number of neurons in the output layer. The components
of the vector ∇Lh, i.e. the partial derivatives of Lh with respect to all the
weight and biases in the network are in the form:

∂Lh

∂w(L)
j,k

=
∂Lh

∂a(L)
j

∂a(L)
j

∂z(L)
j

∂z(L)
j

∂w(L)
j,k

= 2
nL

∑
j=1

(a(L)
j − yj) σ′(z(L)

j ) a(L−1)
k

(2.15)

∂Lh

∂b(L)
j

=
∂Lh

∂a(L)
j

∂a(L)
j

∂z(L)
j

∂z(L)
j

∂b(L)
j

= 2
nL

∑
j=1

(a(L)
j − yj) σ′(z(L)

j ) 1

(2.16)

with a(L−1)
k that depends in turn by weights an biases going back up to

the input layer; the algorithm is not able to directly influence the neurons’
activations.

Taking SGD into consideration, the loss function LSGD generated by
one iteration is the average over all the losses Lh across the samples belong-
ing to each mini-batch, then its derivative requires the same procedure,
e.g., for the Eq. (2.15) it becomes:

∂LSGD

∂w(L)
j,k

=
1
|Ik| ∑

h∈Ik

∂Lh

∂w(L)
j,k

(2.17)

where Ik is the k-th mini-batch. This same chain rule idea can be iterated
backwards to compute the partial derivatives of the loss function with
respect to all the previous weights and biases.



2. Machine Learning 37

2.4 Automatic differentiation

Differentiation shows up everywhere in science and engineering, as
well as in this thesis: from the gradient-based optimization algorithm,
the backpropagation, to the the technology that will be introduced in the
next chapter, the physics-informed neural networks, where the computation
of the derivatives of the networks’ outputs with respect to the inputs is
performed. The possible methods for computing the derivatives are four:

1. analytical hand-coded derivative;

2. finite difference or other numerical approximations;

3. symbolic differentiation;

4. automatic differentiation.

Following, all the possible approaches to the evaluation of a function
derivative are discussed, with a strong attention on the most advanced
technique available today for neural network computing—the Automatic
Differentiation (AD). An overview scheme of all these techniques is shown
in Fig. 2.8 on page 38.

2.4.1 Analytical derivative

If the function to be derived depends on a small set of variables, if it’s
not made up of a series of highly nonlinear functions and if it’s not highly
composed, then the manual derivative can be performed using the basic
derivative rules. Here is a short list of well-known derivative rules:

Power rule

d
dx

xn = nxn−1 (2.18)

Sum and difference rule

d
dx

(
f (x)± g(x)

)
=

d
dx

f (x)± d
dx

g(x) (2.19)



2. Machine Learning 38

Figure 2.8: Differentiation. Possible approaches (from Ref. [1]).



2. Machine Learning 39

Product rule

d
dx

(
f (x) · g(x)

)
=

d
dx

f (x) · g(x) + f (x) · d
dx

g(x) (2.20)

This method returns the exact derivative, however, the procedure may
become almost impossible, and subjected to errors hard to debug, for
complicated functions.

2.4.2 Numerical differentiation

The second approach is a numerical differentiation method like the finite
difference. The method follows from the limit definition of the derivative:
it applies a small perturbation to a given function, then computes an
approximation of its derivative whose accuracy depends on the magnitude
of the perturbation.

Let f (x) : Rn → R be a continuous scalar function defined in the
n-dimensional space, its partial derivative with respect to xi, evaluated in
the point x0, can be approximated by a forward finite difference scheme
as:

∂ f (x)
∂xi

∣∣∣∣
x0

≈ f (x0 + hei)− f (x0)

h
(2.21)

where ei is the i-th unit vector along the i-th axis, and h is the step size.
A higher accuracy can be obtained by running a center finite difference
scheme:

∂ f (x)
∂xi

∣∣∣∣
x0

≈ f (x0 + hei)− f (x0 − hei)

2h
(2.22)

While these scheme can be quite simple to implement, some issues may
come up with accuracy and numerical stability. As the step size h get closer
to zero, the truncation error decreases but the computer will face floating
point errors and returns an incorrect result. Then again, if h is too large
the rounding error will be small but accuracy of the approximation will
be sub-standard. An instance of trade-off between truncation rounding is
illustrated in Fig. 2.9.



2. Machine Learning 40

Figure 2.9: Numerical differentiation. Error trend for the derivative of the logistic
map given in Eq. (2.26), for n = 4, at x0 = 0.2 (from Ref. [1]).

2.4.3 Symbolic differentiation

The third strategy is the symbolic differentiation, that is basically an
automated version of the manual differentiation and is used in software
programs such as Mathematica, Maxima, and Maple. Indeed, just like
the the manual differentiation, it works by breaking apart a complex
expression into a bunch of simpler expressions by using the standard
derivative rules.

This method provides the exact computation of the derivatives (up
to numerical precision) since it bypasses the sources of error present in
numerical differentiation, still it comes with a major issue: even though
the method works towards a simplification of the expressions, the length
of the resulting function (the derivative) can be exponentially larger than
the original one and the evaluation of considerable large expression can be
prohibitively slow. This problem is known as expression swell. It happens
because some derivative rule, like the product rule, intrinsically lead to
duplicated computation:

h(x) = f (x) g(x)

h′(x) = f ′(x) g(x) + f (x) g′(x)
(2.23)



2. Machine Learning 41

If f (x) in turn involves a product of function

f (x) = u(x) v(x) (2.24)

then the h′(x) expression’s length would escalate

h′(x) =
(

u′(x) v(x) + u(x) v′(x)
)

g(x) + u(x) v(x) g′(x) (2.25)

The measure of this problem becomes remarkably apparent by applying
the symbolic differentiation to a recurrence relation known as logistic map:

ln+1 = 4ln(1− ln), l1 = x (2.26)

For values of n like 1 and 2 the derivative expression is essentially as
simple as the original, but as the n increases the derivative expression’s
length quickly gets beyond control, as made clear in Table 2.1. Sometimes
the expression can be simplified in a shorter polynomial form, but this
isn’t always possible.

Table 2.1: Symbolic differentiation. Expression swell, illustrated for the deriva-
tives of the logistic map.

n ln
d

dx ln

1 x 1

2 4x(1− x) 4(1− x)− 4x

3 16x(1− x)(1− 2x)2 16(1− x)(1− 2x)2 − 16x(1− 2x)2 −
64x(1− x)(1− 2x)

4 64x(1− x)(1− 2x)2

(1− 8x + 8x2)2
128x(1− x)(−8 + 16x)(1− 2x)2(1−
8x + 8x2) + 64(1 − x)(1 − 2x)2(1 −
8x + 8x2)2 − 64x(1 − 2x)2(1 − 8x +
8x2)2 − 256x(1− x)(1− 2x)(1− 8x +
8x2)2



2. Machine Learning 42

2.4.4 Automatic differentiation

The automatic differentiation is one of the most useful and efficient
techniques in scientific computing. This method has been developed
as a way to compute derivatives with the same accuracy as symbolic
differentiation, that is the exact answer up to the numerical precision, but
rather than producing an expression for a derivative, the only output of
the process is the numerical value. The two main algorithms for AD are the
forward mode and the reverse mode.

Like finite differences, AD involves only the evaluation of the function,
moreover, it bypasses the inefficiency of the symbolic differentiation by
taking advantage of the intermediate variables that make up the original
function’s expression. These intermediate variables build the global func-
tion by way of primitive operations whose corresponding derivative rules
are known.

Let f : Rn → Rm be a differentiable function with n input variables xi
and m output variables yj:

• forward mode AD takes one single pass to define all the intermediate
variables vi and the corresponding partial derivatives with respect
to one input variable, e.g., ∂vi

∂x1
. It takes n forward AD evaluations

to compute the full Jacobian of a function, for this reason, forward
mode AD is recommended for functions f : Rn → Rm where n≪ m.

• reverse mode AD takes one single pass to compute all the partial
derivatives of one output variable with respect to all the input vari-
ables, e.g., ∂y1

∂xi
. It takes m reverse AD evaluations to compute the

full Jacobian of a function, for this reason, reverse mode AD is rec-
ommended for functions f : Rn → Rm where n ≫ m. That it the
case for the ANN, where the input are the weights whose amount is
considerable large: the backpropagation algorithm takes one single
reverse AD pass to compute all the gradients for every output.



2. Machine Learning 43

As a way to make the concepts clear, let

y = f (x1, x2) = x1 + ex2 + sin(x1x2) (2.27)

be a function that will serve as an example, the two partial derivatives of y
are evaluated at (x1, x2) = (4, 1). The full elaboration of the two forward
iterations is given in Tables 2.2 and 2.3.

Table 2.2: AD. Forward mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, intermediate variables. Right, partial derivatives with respect to
the input x1.

v1 = x1 = 4
v2 = x2 = 1

v3 = ev2 = 2.718
v4 = v1v2 = 4
v5 = sin v4 = −0.757
v6 = v1 + v3 + v5 = 5.961

y = v6 = 5.961

v̇1 = ẋ1 = 1
v̇2 = ẋ2 = 0

v̇3 = v̇2 ev2 = 0
v̇4 = v̇1v2 + v1v̇2 = 1
v̇5 = v̇4 cos v4 = −0.654
v̇6 = v̇1 + v̇3 + v̇5 = 0.346

ẏ = v̇6 = 0.346

Table 2.3: AD. Forward mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, intermediate variables. Right, partial derivatives with respect to
the input x2.

v1 = x1 = 4
v2 = x2 = 1

v3 = ev2 = 2.718
v4 = v1v2 = 4
v5 = sin v4 = −0.757
v6 = v1 + v3 + v5 = 5.961

y = v6 = 5.961

v̇1 = ẋ1 = 0
v̇2 = ẋ2 = 1

v̇3 = v̇2 ev2 = 2.718
v̇4 = v̇1v2 + v1v̇2 = 4
v̇5 = v̇4 cos v4 = −2.615
v̇6 = v̇1 + v̇3 + v̇5 = 0.104

ẏ = v̇6 = 0.104



2. Machine Learning 44

In order to compute the gradients with the reverse AD algorithm, still
a forward AD pass is required. It’s a two-part process: first, one forward
pass computes all the outputs, then, one reverse pass computes all the
gradients. While the forward AD pass complements every intermediate
variable with the corresponding partial derivative, the reverse AD pass
complements every intermediate variable with the corresponding adjoint:

v̄i =
∂yj

∂vi
(2.28)

The derivatives will be propagates backwards, according to the depen-
dencies, by means of the adjoints. The full elaboration of this two-steps
process is given in Table 2.4.

The models—introduced in the next chapter—that execute the compu-
tation of the derivatives of the networks’ outputs can take advantage of
both the forward and reverse AD algorithms: only one forward pass and
one reverse pass are required to compute the derivatives with respect to all
the network’s weights.

Table 2.4: AD. Reverse mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, one forward pass computes the intermediate variables. Right, one
reverse pass computes the partial derivatives.

v1 = x1 = 4

v2 = x2 = 1

v3 = ev2 = 2.718

v4 = v1v2 = 4

v5 = sin v4 = −0.757

v6 = v1 + v3 + v5 = 5.961

y = v6 = 5.961

v̄1 = ∂y
∂x1

= 0.346

v̄2 = ∂y
∂x2

= 0.104

v̄1 = v̄4
∂v4
∂v1

+ v̄6
∂v6
∂v1

= 0.346

v̄2 = v̄3
∂v3
∂v2

+ v̄4
∂v4
∂v2

= 0.104

v̄3 = v̄6
∂v6
∂v3

= 1

v̄4 = v̄5
∂v5
∂v4

= −0.654

v̄5 = v̄6
∂v6
∂v5

= 1

v̄6 = ȳ = 1



2. Machine Learning 45

2.5 Available libraries

Several open-source libraries are available and still in active devel-
opment in the field of deep learning, helping in simplifying the overall
programming experience. Three of them can be identified as the most
used by data scientists as well as by beginners: TensorFlow, Keras and
PyTorch.

• Keras is an high-level neural networks library that can run on top of
TensorFlow as well as of several other libraries, this is why Keras can
be regarded as a complementary option to TensorFlow rather than a
rival library. It is written in Python code and best runs on GPUs and
TPUs.

• TensorFlow is a symbolic math machine learning library developed
by the Google Brain team. The term tensor refers to the representation
of data as multi-dimensional array while the term flow refers to the
series of operations that the user can performs on tensors. Tensorflow
can be used with CPUs, GPUs and TPUs as well.

• PyTorch is a machine learning library used for applications such as
natural language processing and computer vision, it’s largely devel-
oped by the Facebook’s AI research group. At its core it provides
n-dimensional tensors similar to the NumPy ones; it can run on
GPUs.

While Keras and Tensorflow are intrinsically interconnected—and
PyTorch is an entirely separate alternative—the three libraries have got
some differences that distinguish one from another.

Keras is a high-level Python application programming interface (API),
recognized for its ease of use and syntactic simplicity. Tensorflow provides
both high and low level APIs, widely used in Python, which are completely
under stable releases. Other language APIs are under development and
not in stable releases. Pytorch is a lower-level API, mainly used in Python,
focused on direct work with array expressions.

Keras is commonly used for small datasets and its performance is rela-
tively slower; on the other hand, Tensorflow and PyTorch provide a similar



2. Machine Learning 46

fast pace which is suitable for high performance models and large datasets
that require fast execution.

One major competitive advantage of TensorFlow over the other deep
learning libraries lies in its greater popularity, that results in a larger
community where the users’ issues can be addressed quickly. As a matter
of fact, all the program codes written within the scope of this thesis use
TensorFlow [41].



Chapter 3

Physics-Informed Neural
Networks

3.1 Introduction

The Physics-Informed Neural Networks (PINNs) are a specific type of
neural networks (NNs) trained to approximate the solution to any given
law of physics described, in general, by a partial differential equation
(PDE) or by a system of PDEs. This kind of approach allows to use the
PDEs in strong form directly [8].

There are mainly two challenges, in the contemporary scientific areas of
expertise, that can be effectively worked out by the PINN technology. The
first challenge is about the actual data availability on physical, biological
or engineering systems: while other neural network applications like
computer vision and natural language processing can rely on a giant
amount of data ready for use, the same advantage is not within easy
reach for physical systems since the cost of data acquisition for this field of
research can be exorbitant. The second obstacle concerns the dimensionality,
the truncation errors and the numerical quadrature errors brought in by
the conventional solving techniques: the traditional mesh-based methods,
such as the finite element method, can obtain the approximate solution of
a PDE through a mesh built in the computational domain and, since these
methods requires the PDE to be written in its integral form, through the
approximated solution of integrals.

This chapter is devoted to the description of the differential problems,



3. Physics-Informed Neural Networks 48

and to the way they can be solved by NNs. First of all, the partial
differential equations, their classification and solution possibilities are
presented in Section 3.2. Section 3.3 summarizes the algorithm that makes
the NNs capable of effectively solve the problems described by partial
differential equations. Section 3.4 provides the analysis of the sources of
error caused by the use of NNs in solving differential equations. Finally,
the core of the Python code implemented throughout this work of thesis is
tested and validated, on three different classes of problem, in Section 3.5.

3.2 Partial differential equations

The differential equations are a fundamental element for many math-
ematical models of physical phenomena, many everyday devices are
designed on the basis of these equations. The partial differential equations
are differential equations whose unknown function is derived with respect
to multiple variables of the time or the space.

Let u(x, t) be an unknown function defined in Ω ⊂ Rd × (0, T), let g
be the set of data on which the PDE depends. In this case, the generic
PDE is expressed as:

P(u, g) = f
(

x, t, u,
∂u
∂t

,
∂u
∂x1

, . . . ,
∂u
∂xd

, . . . ,
∂p1+···+pd+pt u

∂xp1
1 . . . ∂xpd

d ∂tpt
, g
)
= 0 (3.1)

where x = (x1, . . . , xd)
T, and p1, . . . , pd, pt ∈ N. The maximum value of

the sum p1 + · · ·+ pd + pt is called the order of the PDE, it is an integer
number and equals the maximum order of the partial derivatives present
in the Eq. (3.1). If this equation depends linearly on the unknown u it is
called linear, otherwise it is called nonlinear.

3.2.1 PDE families

The partial differential equations can be organized into three different
families: elliptic, parabolic and hyperbolic equations.

This classification is accomplished examining the coefficients of the
PDE. For the sake of simplicity, an example of this analysis is carried out



3. Physics-Informed Neural Networks 49

for a linear second-order PDE with constant coefficients, written in the
form Lu = G:

Lu = A
∂2u
∂x2

1
+ B

∂2u
∂x1∂x2

+ C
∂2u
∂x2

2
+ D

∂u
∂x1

+ E
∂u
∂x2

+ Fu (3.2)

where G is an assigned function, while A, B, C, D, E, F ∈ R.

Let ∆ = B2 − 4AC be the discriminant of the PDE, the classification is
accomplished basing on the sign of the discriminant so that:

if ∆ < 0 the PDE is elliptic

if ∆ = 0 the PDE is parabolic

if ∆ > 0 the PDE is hyperbolic

The numerical validation of the Python code for implementing the
PINNs, for each of the three PDE categories, is carried out in Section 3.5.

3.2.2 PDE solution

A given PDE does not completely define a differential problem, since a
well-posed problem needs the PDE to be supplied with suitable boundary
conditions (BC)—that could be Dirichlet, Neumann or Robin boundary
conditions—and an initial condition (IC) on the unknown function u. A
differential problem is defined well-posed if:

• the solution exists;

• the solution is unique;

• the solution depends continuously on the data, i.e. if the data change
very little, the solution changes very little.

Anyway, in most cases is not possible to obtain the solution of a PDE
in closed form. For this reason, it is very relevant the use of numerical
methods that allow to build an approximation uN of the exact solution u.
The PINNs can be successfully applied to problems belonging to all the
three classes of PDEs. In Section 3.4 will be showed that a feedforward



3. Physics-Informed Neural Networks 50

neural network with enough neurons can simultaneously and uniformly
approximate any function and its partial derivatives. Despite this, the error
estimation for PINNs—and for supervised learning overall—is currently
still an open research problem. For further details about the PDEs and the
numerical methods for handling them, see Ref. [31].

3.3 The PINN algorithm

Let u(x) be an unknown function defined in the spatio-temporal do-
main Ω ⊂ Rd, let λ be the set of data on which the PDE depends. For the
sake of simplicity, a second-order differential equation is considered. In
this case, the generic PDE is expressed as:

P(u, λ) = f
(

x,
∂u
∂x1

, . . . ,
∂u
∂xd

,
∂2u

∂x1∂x1
, . . . ,

∂2u
∂x1∂xd

, . . . , λ

)
= 0 (3.3)

where x = (x1, . . . , xd). Any of the variables xi, for i = 1, . . . , d, could
represent the temporal variable, consequently, the IC can be managed as
a Dirichlet BC set on the border t = 0. Suitable BC can be given in the
following forms:

u(x)− gD(x) = 0 on ΓD ⊂ ∂Ω (3.4)

n ·∇ u(x)− gN(x) = 0 on ΓN ⊂ ∂Ω (3.5)

αu(x) + βn ·∇ u(x)− gR(x) = 0 on ΓR ⊂ ∂Ω (3.6)

The description of the PINN algorithm is now detailed:

Step 1: a neural network û(x, θ) is built as a surrogate of the unknown
solution u(x), where x ∈ Rd. The NN’s input neurons number
matches d, while the NN’s output neurons number matches the
dimension of u. The set of all the NN’s parameters is θ, so that:
θ = {Wℓ, bℓ}1≤ℓ≤L, where L is the number of layers of the NN. The
tuning of the hyperparameters of the NN (e.g. the network size, the
learning rate, the number of training points, the value of the loss’



3. Physics-Informed Neural Networks 51

weights) is up to the user, is significantly based on the experience
and could strongly affect the performances.

Step 2: two sets of scattered training points T f ⊂ Ω and Tb ⊂ ∂Ω are
defined: these are the locations in the computational domain where
û will be trained, i.e., û is constrained to satisfy the PDE in these
points. These points can be either:

• randomly generated by the program

• defined by the user

The whole training points set is defined as T = {T f , Tb}.

Step 3: a suitable loss function is defined to make an estimation of the
discrepancy between û and the constraints, the PDE and the BC/IC,
whose residuals are respectively symbolized as P(û, λ) and B(û, x):

L(θ, T ) = w fL f (θ, T f ) + wbLb(θ, Tb) (3.7)

where w f and wb are the weights, and:

L f (θ, T f ) =
1
|T f | ∑

x∈T f

∥P(û, λ)∥2
2 (3.8)

Lb(θ, Tb) =
1
|Tb| ∑

x∈Tb

∥B(û, x)∥2
2 (3.9)

All the derivatives within both the residuals P(û, λ) and B(û, x) are
effectively handled via AD.

Step 4: the loss function L(θ, T ) is minimized through the training of
the neural network û. This procedure will constantly update the
parameters set θ up to an optimal composition θ∗ that will get û to
behave the desired way.

A diagram of the whole procedure—for the case of the 1D heat equation
supplied with mixed BCs—is shown in Fig. 3.1 on page 52.



3. Physics-Informed Neural Networks 52

Figure 3.1: PINN algorithm. 1D heat equation. (from Ref. [25]).

The IC is dealt with as a special case of Dirichlet data on the spatio-
temporal border t = 0, so that:


∂u
∂t
− λ

∂2u
∂x2 = 0 in Ω

u(x, t)− gD(x, t) = 0 on ΓD ⊂ ∂Ω

n ·∇ u(x, t)− gR(u, x, t) = 0 on ΓR ⊂ ∂Ω

(3.10)

All the codes written in this thesis run DeepXDE [25, 37], a deep
learning Python library conceived to solve differential problems. Moreover,
this library has the potential to:

• randomly generate different training points T in each optimization
iteration, this is very advantageous in multiscale problems where
the number of training points required is very large and would be
computationally expensive to perform every iteration with the full
batch of training points;

• enforce hard constraints of BC/IC, for simple cases: the loss Lb intro-
duced by a hard-constrained BC/IC is zero.

Each of these options will be fully employed in every possible case.
Based on the experience developed throughout this work, the hard con-
straint of the IC doesn’t work for steep IC (e.g., in Riemann problems).



3. Physics-Informed Neural Networks 53

3.4 Error analysis

The loss L is a non-convex, highly nonlinear, function with respect
to the parameters set θ. The optimization problem for a function like
that doesn’t have, in general, a unique solution. Consequently, there is
no guarantee on unique solutions for PINNs. However, the question of
whether there exists a NN satisfying both the PDE and the BC can be
addressed. The theorem of derivative approximation due to Pinkus [25,28],
expressed using a single hidden layer NN, shows that a feedforward NN
with enough neurons can uniformly approximate any function and its
partial derivatives. Yet, the intrinsic limits of the NN approach, explained
in [3], are due to the fact that:

1. The NN have inevitably limited size. Let F be the family of all
the functions representable by a given finite-size NN; the best func-
tion representable by the NN, i.e., the closest to u, is defined as:
uF = argmin f∈F∥ f − u∥. The approximation error Eapp is defined
as: ∥uF − u∥.

2. The NN are trained on a finite set of training points. The NN’s
representable function if the loss is at the global minimum is defined
as: uT = argmin f∈FL( f , T ). The generalization error Egen, deter-
mined both by the density of the training points and by the NN’s
expressiveness, is defined as: ∥uT − uF∥.

3. Minimizing the non-convex, highly nonlinear, loss function can
be computationally unmanageable [2], hence, the computation of
the global minimum of L is a task very unlikely to be performed.
Let ũT be the actual function represented by the NN as a result
of the training. Hence, the optimization error Eopt is defined as:
∥ũT − uT ∥.

Hence, the total error E is defined as:

E def
== ∥ũT − u∥ ≤ Eapp + Egen + Eopt (3.11)

As previously stated, the estimation of this error is currently still an
open research problem; the illustration of this error decomposition is
shown in Fig. 3.2.



3. Physics-Informed Neural Networks 54

Figure 3.2: Error analysis. Decomposition of the total error (from Ref. [25]).

3.5 Code validation

In this section, the Python code implementing the PINNs is tested on
three different classes of problem. In order to investigate the accuracy of
the method, the relative error of the NN solutions with respect to the exact
solutions is computed in norm L2(Ω).

3.5.1 Elliptic problem, parametric

The code is tested on the Poisson equation. The problem is defined in
the domain Ω = (xmin, xmax)× (κmin, κmax), for x ∈ (0, 1) and κ ∈ (1, 4).

Find u(x, κ) : R2 → R so that:−
∂2u
∂x2 = f (x, κ) in Ω

u(0, κ) = u(1, κ) = 0
(3.12)

The selected forcing term, and the corresponding exact solution ob-
tained by integration are:

f (x, κ) = sin(2πκx) (3.13)

uex(x, κ) =
1

(2πκ)2

[
sin(2πκx)− sin(2πκ)x

]
(3.14)

In order to set the problem properly before the training, two observa-
tion have to be done:

1. The factor 1
(2πκ)2 implies small solution values whereas the NN

performance are better around O(1) solution values, therefore the
problem must be scaled so that ũ = Uu, where U is the trade-off
value κmax(2π)2.



3. Physics-Informed Neural Networks 55

2. The Dirichlet BCs in such a simple domain can be hard constrained,
i.e., the loss contribution due to the BCs will be zero.

Hyperparameters. For the training is used an Adam optimizer [18] and
a fixed learning rate of 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer. The training points in the domain and on the boundary
are 104 and 5, respectively, both resampled every 5× 104 iterations. The
number of iterations is 6.5× 105.

Even though both the BCs are hard constrained in the code, they
still enter the loss function as penalty terms (LBC0 , LBC1) with associated
weights set to 1. The same weight value proved to work fine for the loss
term generated by the PDE residual (LPDE). As a result, the suitable loss
function for this problem is:

L = 1LPDE + 1LBC0 + 1LBC1 (3.15)

The results for a selected set of parameter values, provided with the
relative errors of the PINN solutions computed in norm L2(Ω), are shown
in Fig. 3.3 on page 56.

3.5.2 Parabolic problem, parametric

The code is tested on the heat equation. The problem is defined in the
cubic domain Ω× (0, T) with Ω = (xmin, xmax)× (κmin, κmax), considering
x ∈ (0, 1), κ ∈ (1, 4) and t ∈ (0, 1).

Find u(x, κ, t) : R3 → R so that:
∂u
∂t
− ∂2u

∂x2 = f (x, κ, t) in Ω× (0, T)

u = 0 in Ω : t = 0

u(0, κ, t) = u(1, κ, t) = 0

(3.16)

The forcing term, obtained by differentiation, and the the selected exact
solution are:



3. Physics-Informed Neural Networks 56

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

u(
x,

κ
)

×10−2 κ = 1.4

Exact
PINN

(a)
∥uex−uPINN∥L2
∥uex∥L2

= 2.232× 10−7

0.0 0.2 0.4 0.6 0.8 1.0

x

-7.5

-5.0

-2.5

0.0

2.5

5.0

u(
x,

κ
)

×10−3 κ = 2.2
Exact
PINN

(b)
∥uex−uPINN∥L2
∥uex∥L2

= 5.668× 10−6

0.0 0.2 0.4 0.6 0.8 1.0

x

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

u(
x,

κ
)

×10−3 κ = 3.0
Exact
PINN

(c)
∥uex−uPINN∥L2
∥uex∥L2

= 2.220× 10−6

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.0

0.0

1.0

2.0

3.0

u(
x,

κ
)

×10−3 κ = 3.8
Exact
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 2.044× 10−4

Figure 3.3: Elliptic problem, parametric. Poisson equation. PINN solutions for
selected values of the parameter κ. Errors computed in norm L2(Ω).

f (x, κ, t) =
[

sin(2πκx)− sin(2πκ)x
][

sin
(

π

2
t
)
+

(
π

2
t
)

cos
(

π

2
t
)]

+ sin
(

π

2
t
)

sin(2πκx)(2πκ)2t

(3.17)

uex(x, κ, t) =
[

sin(2πκx)− sin(2πκ)x
]

sin
(

π

2
t
)

t (3.18)

Both the Dirichlet BCs, in such a simple domain, and the homogeneous
IC can be hard constrained, i.e., the loss contribution due to the BCs and
to the IC will be zero.



3. Physics-Informed Neural Networks 57

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer. The training points in the domain, on the boundary
and for the IC are 1.5× 104, 5 and 5, respectively, each one resampled every
5× 104 iterations. The number of iterations is 5× 105.

The IC and the two BCs, hard constrained in the code, still enter the
loss function as penalty terms (LIC, LBC0 , LBC1) with associated weights
set to 1. The weight value that proved to work fine for the loss term
generated by the PDE residual (LPDE) is 10−4. Hence, the suitable loss
function for this problem is:

L = 10−4LPDE + 1LIC + 1LBC0 + 1LBC1 (3.19)

The results for picked out values of κ and t, provided with the relative
errors of the PINN solutions computed in norm L2(Ω), are shown in
Fig. 3.4 on page 58.

3.5.3 Nonlinear hyperbolic problem

The code is tested on the Burgers’ equation in the domain Ω× (0, T),
considering Ω = (−0.5, 1.5) and t ∈ (0, 1).

Find u(x, t) : R2 → R so that:
∂u
∂t

+ u
∂u
∂x

= 0 in Ω× (0, T)

u = u0 in Ω : t = 0

u = 1 on ∂Ωin × (0, T)

(3.20)

where ∂Ωin denotes the inflow boundary, specifically the left boundary,
since the IC is defined as:

u0(x) =


1 x ≤ 0

1− x 0 < x < 1

0 x ≥ 1

(3.21)

For the case of this selected IC, a shock wave is expected to originate
at the spatio-temporal coordinates (x = 1, t = 1).



3. Physics-Informed Neural Networks 58

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

u(
x,

κ
,t

)

×10−1 κ = 1.2 t = 0.25
Exact
PINN

(a)
∥uex−uPINN∥L2
∥uex∥L2

= 2.514× 10−4

0.0 0.2 0.4 0.6 0.8 1.0

x

-4.0

-2.0

0.0

2.0

4.0

6.0

u(
x,

κ
,t

)

×10−1 κ = 1.6 t = 0.6

Exact
PINN

(b)
∥uex−uPINN∥L2
∥uex∥L2

= 1.876× 10−6

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.0

-0.5

0.0

0.5

u(
x,

κ
,t

)

κ = 2.4 t = 0.8
Exact
PINN

(c)
∥uex−uPINN∥L2
∥uex∥L2

= 3.706× 10−5

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0
u(

x,
κ

,t
)

κ = 3.2 t = 1.0
Exact
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 1.947× 10−4

Figure 3.4: Parabolic problem, parametric. Heat equation. PINN solutions
at four temporal snapshots, for selected values of the parameter κ.
Errors computed in norm L2(Ω).

The form of the exact solution, acceptable before the occurrence of the
shock wave, is:

uex(x, t) =


1 x ≤ t
x− 1
t− 1

t < x < 1

0 x ≥ 1

(3.22)

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer. The training points in the domain, on the boundary
and for the IC are 104, 10 and 50, respectively, each one resampled every



3. Physics-Informed Neural Networks 59

5× 104 iterations. The number of iterations is 7.5× 105. The loss function
is made up of three terms (LPDE, LIC, LBCin), respectively generated by
the PDE, IC and BC residuals. Every single term enters the loss function
with an associated weight set to 1:

L = 1LPDE + 1LIC + 1LBCin (3.23)

The results, provided with the relative errors of the PINN solutions
computed in norm L2(Ω), are shown in Fig. 3.5. Another approach to
this problem can be found in [32], where Raissi et al. applied the PINN
method to the viscous Burgers’ equation, investigating the accuracy of the
results for different network architectures and for different number of
training points.

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

t = 0.0
Exact
PINN

(a)
∥uex−uPINN∥L2
∥uex∥L2

= 7.765× 10−7

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

t = 0.25
Exact
PINN

(b)
∥uex−uPINN∥L2
∥uex∥L2

= 6.760× 10−7

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

t = 0.75
Exact
PINN

(c)
∥uex−uPINN∥L2
∥uex∥L2

= 6.311× 10−7

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

t = 1.0
Exact
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 3.358e× 10−4

Figure 3.5: Nonlinear hyperbolic problem. Burgers’ equation. PINN solutions at
four temporal snapshots. Errors computed in norm L2(Ω).



Chapter 4

Results

4.1 Introduction

This chapter presents the numerical solutions produced, by the PINN
tool, to both steady state and transient problems. Many of these problems
have got an exact solution the PINN output will be compared to, whereas
for the other cases the comparison solutions will be the numerical results
provided by two other methods: for the one-dimensional cases it will be
FullSWOF_1D, a C++ code based on the one-dimensional shallow water
equations [6]; for the two-dimensional case it will be the Liou–Steffen split-
ting (LSS), a finite-volume component-wise Total Variation Diminishing
(TVD) scheme [23].

The first two cases, examined in Sections 4.2 and 4.3, present hydro-
static equilibrium problems with an increased level of difficulty [5]. In
Section 4.4, while there is still a steady state solution, impulsive boundary
terms are introduced [13].

The next five cases are devoted to a thorough analysis of the one-
dimensional dam break problem on a flat topography, once again with
an increased level of difficulty, basing on the cased proposed in [7]. First,
the problem on a wet domain is investigated in Section 4.5. Then, the
additional difficulty of the dry domain is considered in Section 4.7. Even
more, a friction term is added to the dry domain case in Section 4.8. Two
parametric cases are built upon both the wet and the dry cases, they are
described in Sections 4.6 and 4.9. No analytic solutions are available for
the cases that involve friction terms.



4. Results 61

Figure 4.1: NVIDIA T4 Specifications (from Ref. [39]).

Finally, the two-dimensional shallow water equations are examined.
The circular dam break [11, 23] is examined in Section 4.10. The problem
is expanded in Section 4.11 by making the gravitational acceleration a
wide-ranging parameter of the problem.

All the tests are conducted on a NVIDIA® T4 GPU, a cloud computing
resource freely accessible in Google Colaboratory [38]. The details of this
hardware are given in Fig. 4.1.

4.2 Lake at rest with an immersed bump

This case tests the ability of the PINN to preserve steady states. The
problem is defined in the domain Ω× (0, T) with Ω = (xmin, xmax), consid-
ering x ∈ (0, 25) and t ∈ (0, 100). The topography, given by the Eq. (4.1),



4. Results 62

is completely immersed and is flat at the boundaries.

z(x) =

{
0.2− 0.05(x− 10)2 if 8 m < x < 12 m

0 otherwise
(4.1)

The initial conditions are:

{
h = 0.5− z m

q = 0 m2/s
(4.2)

and the boundary conditions are chosen as:

{
h = 0.5 m

q = 0 m2/s
(4.3)

The problem involves ICs and BCs for h and q, while the SWE are
implemented holding as unknowns h and u, as explained in Section 1.2
on page 13. This obstacle is solved adding the definition of the flow as
a third, algebraic equation, to the PDE system. The complete system is
given in Eq. (4.4). 

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= ghS0x

q− hu = 0

(4.4)

The representation of the initial condition, that the numerical scheme
is tested to keep unchanged for a large time, is shown in Fig. 4.2.

Model setup. In order to make the learning as fast as possible, the
model is suitably scaled and hard constraints are imposed, where possible.
Specifically, the reference values for the scaling are set as:



4. Results 63

0 5 10 15 20 25

x (m)

0.0

1.0

2.0

3.0

4.0

5.0
z

(m
)

×10−1

Free Surface
Topography

Figure 4.2: Immersed bump. Steady state condition.

• L = 1

• T = 100

• H = 1

• U = 1

Both the ICs for the water height and for the flow have been hard
constrained. Considering that the problem is stationary, and that the flow
must be null over the whole spatio-temporal domain, the relation between
the water velocity and the flow is used to build both IC and BC for the
velocity without alter the setup of the original problem.

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−3, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain, on the boundary and for the IC
are 4× 103, 2× 103 and 103, respectively, each one resampled every 100
iterations. The number of iterations is 4× 105.

The loss function is made up of nine terms: (Lh
PDE, Lhu

PDE, Lq
equat, Lh

BC,
Lu

BC, Lq
BC Lh

IC, Lu
IC, Lq

IC), respectively generated by the residuals of the
mass conservation and of the momentum balance PDEs, the algebraic
equation for the flow, the BCs and the ICs for the variables h, u and q.
Every term enters the loss function with an associated weight set to 1:



4. Results 64

L = 1Lh
PDE + 1Lhu

PDE + 1Lq
equat

+ 1Lh
BC + 1Lu

BC + 1Lq
BC + 1Lh

IC + 1Lu
IC + 1Lq

IC

(4.5)

The results of the learning of all the variables, h, u and q, provided
with the errors of the PINN’s approximations computed in norm L2(Ω),
are shown in Fig. 4.3 on page 65. The integral errors account for a
very good numerical approximation. Moreover, examining the plots, the
characteristics of the problem seem to be replicated pretty well.

4.3 Lake at rest with an emerged bump

This case tests the ability of the PINN to preserve steady states, further-
more, the wet/dry transition treatment is analyzed. The problem is defined
in the domain Ω× (0, T) with Ω = (xmin, xmax), considering x ∈ (0, 25)
and t ∈ (0, 100). The topography, given by the Eq. (4.1) on page 62, is the
same one of the previous case except that in this instance the water height
is set to a value that makes some parts of the topography emerge.

Indeed, the initial conditions are:

{
h = max(0.1, z)− z m

q = 0 m2/s
(4.6)

and the boundary conditions are chosen as:

{
h = 0.1 m

q = 0 m2/s
(4.7)

As in the previous case, the problem involves ICs and BCs for h and
q, while the SWE are implemented holding as unknowns h and u. Once
again, the complication is worked out adding the definition of the flow as
a third, algebraic equation, to the PDE system (see Eq. (4.4) on page 62).



4. Results 65

0 5 10 15 20 25

x (m)

3.0

3.5

4.0

4.5

5.0

h
(m

)

×10−1 t = 0 s

Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 0

0 5 10 15 20 25

x (m)

3.0

3.5

4.0

4.5

5.0

h
(m

)

×10−1 t = 100 s

Exact
PINN

(b)
∥hex−hPINN∥L2
∥hex∥L2

= 2.431× 10−15

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s
Exact
PINN

(c) ∥uex − uPINN∥L2 = 2.415× 10−11

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 100 s
Exact
PINN

(d) ∥uex − uPINN∥L2 = 1.483× 10−10

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s
Exact
PINN

(e) ∥qex − qPINN∥L2 = 0

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 100 s
Exact
PINN

(f) ∥qex − qPINN∥L2 = 3.322× 10−10

Figure 4.3: Immersed bump. PINN solutions for (a)-(b) the water height, (c)-(d)
the velocity, (e)-(f) the flow. Errors computed in norm L2(Ω).



4. Results 66

The representation of the initial condition, that the numerical scheme is
tested to keep unchanged for a large time, is shown in Fig. 4.4.

0 5 10 15 20 25

x (m)

0.0

0.5

1.0

1.5

2.0

z
(m

)

×10−1

Free Surface
Topography

Figure 4.4: Emerged bump. Steady state condition.

Model setup. In order to make the learning as fast as possible, the
model is suitably scaled and hard constraints are imposed, where possible.
Specifically, the reference values for the scaling are set as:

• L = 1

• T = 100

• H = 1

• U = 1

Both the ICs for the water height and for the flow have been hard
constrained. Considering that the problem is stationary, and that the flow
must be null over the whole spatio-temporal domain, the relation between
the water velocity and the flow is used to build both IC and BC for the
velocity without alter the setup of the original problem.

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−3, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain, on the boundary and for the IC
are 4× 103, 2× 103 and 103, respectively, each one resampled every 100
iterations. The number of iterations is 6.5× 105.



4. Results 67

The loss function is made up of nine terms: (Lh
PDE, Lhu

PDE, Lq
equat, Lh

BC,
Lu

BC, Lq
BC Lh

IC, Lu
IC, Lq

IC), respectively generated by the residuals of the
mass conservation and of the momentum balance PDEs, the algebraic
equation for the flow, the BCs and the ICs for the variables h, u and
q. Every single term enters the loss function with an associated weight
set to 1:

L = 1Lh
PDE + 1Lhu

PDE + 1Lq
equat

+ 1Lh
BC + 1Lu

BC + 1Lq
BC + 1Lh

IC + 1Lu
IC + 1Lq

IC

(4.8)

The results of the learning of all the variables, h, u and q, provided with
the errors of the PINN’s approximations computed in norm L2(Ω), are
shown in Fig. 4.5 on page 68. The integral errors account for an excellent
numerical approximation, moreover, the qualitative analysis of the the
plots confirms that the characteristics of the problem are replicated pretty
well.

4.4 Subcritical flow

This case tests the ability of the PINN to catch steady states. Further-
more, the impulsive boundary terms treatment is analyzed. The problem
is defined in the domain Ω× (0, T) with Ω = (xmin, xmax), considering
x ∈ (0, 25) and t ∈ (0, 100). The topography, given by the Eq. (4.1) on
page 62, is the same one of the previous two cases. The water height is set
to a value that keeps every part of the topography completely immersed.

The initial conditions are:

{
h = 2− z m

q = 0 m2/s
(4.9)

and the boundary conditions are chosen as:{
upstream: q = 4.42 · step(t) m2/s

downstream: h = 2 m
(4.10)



4. Results 68

0 5 10 15 20 25

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

h
(m

)

×10−1 t = 0 s

Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 0

0 5 10 15 20 25

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

h
(m

)

×10−1 t = 100 s

Exact
PINN

(b)
∥hex−hPINN∥L2
∥hex∥L2

= 3.919× 10−12

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s
Exact
PINN

(c) ∥uex − uPINN∥L2 = 8.887× 10−12

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 100 s
Exact
PINN

(d) ∥uex − uPINN∥L2 = 7.958× 10−11

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s
Exact
PINN

(e) ∥qex − qPINN∥L2 = 0

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 100 s
Exact
PINN

(f) ∥qex − qPINN∥L2 = 2.702× 10−13

Figure 4.5: Emerged bump. PINN solutions for (a)-(b) the water height, (c)-(d)
the velocity, (e)-(f) the flow. Errors computed in norm L2(Ω).



4. Results 69

The representation of the initial condition, and of the solution at the
steady state that the numerical scheme is tested to catch, are shown in
Fig. 4.6.

0 5 10 15 20 25

x (m)

0.0

0.5

1.0

1.5

2.0

z
(m

)

t = 0 s

Free Surface
Critical Height
Topography

(a)

0 5 10 15 20 25

x (m)

0.0

0.5

1.0

1.5

2.0

z
(m

)

t = 100 s

Free Surface
Critical Height
Topography

(b)

Figure 4.6: Subcritical flow: (a) initial condition, (b) steady state solution.

The problem still involves ICs and BCs for h and q. Conversely to
the two previous problems, the SWE are here implemented holding as
unknowns h and q: 

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
q2

h
+

1
2

gh2
)
= ghS0x

(4.11)

Model setup. In order to make the learning as fast as possible, the
model is suitably scaled and hard constraints are imposed, where possible.
Specifically, the reference values for the scaling are set as:

• L = 1

• T = 100

• H = 1

• U = 1

Both the ICs for the water height and for the flow, and the upstream
BC for the flow as well, have been hard constrained.

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−3, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60



4. Results 70

neurons per layer. The training points in the domain, on the boundary
and for the IC are 4× 103, 2× 103 and 103, respectively, each one resampled
every 100 iterations. The number of iterations is 5× 105.

The loss function is made up of six terms: (Lh
PDE, Lq

PDE, Lh
BC, Lq

BC Lh
IC,

Lq
IC), respectively generated by the residuals of the mass conservation and

of the momentum balance equations, the BCs and the ICs for the variables
h and q. Every single term enters the loss function with an associated
weight set to 1:

L = 1Lh
PDE + 1Lq

PDE

+ 1Lh
BC + 1Lq

BC + 1Lh
IC + 1Lq

IC

(4.12)

The results of the learning of all the variables, h, u and q, provided
with the errors of the PINN’s approximations computed in norm L2(Ω),
are shown in Fig. 4.7 on page 71. Specifically, the results for the velocity
are built after the learning, applying the relation: u = q/h. Once again,
in spite of the complexity introduced, the PINN provides a very good
numerical approximation.

4.5 Dam break on a wet domain

This case is known as the Stoker’s solution [35]. It is a classical Rie-
mann problem. The problem is defined in the domain Ω× (0, T) with
Ω = (xmin, xmax), considering x ∈ (0, 10) and t ∈ (0, 6). The dam break is
instantaneous, the bottom is flat and there is no friction.

The initial conditions are:

h(x, 0) =

{
5× 10−3 m x ≤ 5 m

1× 10−3 m x > 5 m
(4.13)

and

u = 0 m/s (4.14)

whereas no boundary condition is required to be set.



4. Results 71

0 5 10 15 20 25

x (m)

1.70

1.75

1.80

1.85

1.90

1.95

2.00

h
(m

)

t = 0 s

Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 0

0 5 10 15 20 25

x (m)

1.70

1.75

1.80

1.85

1.90

1.95

2.00

h
(m

)

t = 100 s

Exact
PINN

(b)
∥hex−hPINN∥L2
∥hex∥L2

= 3.519× 10−6

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s
Exact
PINN

(c) ∥uex − uPINN∥L2 = 0

0 5 10 15 20 25

x (m)

2.2

2.3

2.4

2.5

2.6

u
(m

/
s)

t = 100 s
Exact
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 6.927× 10−6

0 5 10 15 20 25

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s
Exact
PINN

(e) ∥qex − qPINN∥L2 = 0

0 5 10 15 20 25

x (m)

3.42

3.92

4.42

4.92

5.42

q
(m

2 /
s)

t = 100 s
Exact
PINN

(f)
∥qex−qPINN∥L2
∥qex∥L2

= 8.242× 10−7

Figure 4.7: Subcritical flow. PINN solutions for (a)-(b) the water height, (c)-(d)
the velocity, (e)-(f) the flow. Errors computed in norm L2(Ω).



4. Results 72

The SWE are implemented holding as unknowns h and u, plus, two
supplementary inequalities are included in the system for the purpose of
making the learning faster. The complete system is given in Eq. (4.15).

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= 0

h ≥ 1× 10−3

u ≥ 0

(4.15)

Model setup. Considering that the initial data for water height belong
to the O(10−3) scale, the model has to be scaled at least for the water
height. Specifically, the reference values for the scaling are set as:

• L = 10

• T = 6

• H = 5× 10−3

• U = umax

where umax is the maximum value of the analytic solution for the water
velocity, provided by FullSWOF_1D.

Hyperparameters. For the training is used an Adam optimizer and a
fixed learning rate of 2× 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain and for the IC are 2× 104 and 500,
respectively. No training point is set on the boundary. The number of
iterations is 9× 105.

The loss function is made up of six terms: (Lh
PDE, Lhu

PDE, Lh
ineq, Lu

ineq

Lh
IC, Lu

IC), respectively generated by the residuals of the mass conservation
and of the momentum balance equations, the inequalities and the ICs for
the variables h and u. Every single term enters the loss function with an
associated weight that proved to work fine after a trial-and-error effort:



4. Results 73

L = 102Lh
PDE + 102Lhu

PDE

+ 105Lh
ineq + 105Lu

ineq

+ 105Lh
IC + 105Lu

IC

(4.16)

The results of the learning of all the variables, h, u and q, provided
with the errors of the PINN’s approximations computed in norm L2(Ω),
are shown in Fig. 4.8 on page 74. Specifically, the results for the flow are
built after the learning, applying the relation: q = hu. The integral errors
account for a good numerical approximation. Examining the plots, even
though the PINN’s predictions are a little bit smoother than the exact
solutions, the position of the shock seems to be identified pretty well.

4.6 Dam break on a wet domain with friction,
parametric

This case is built upon the previous one, analyzed in Section 4.5. The
problem is defined in the domain Ω× (0, T), this time with:

Ω = (xmin, xmax)× (ymin, ymax) (4.17)

considering x ∈ (0, 10), y ∈ (0, 1) and t ∈ (0, 6). The additional variable y
accounts for the parameter’s space. Still, the dam break is instantaneous
and the bottom is flat.

The initial conditions are:

h(x, y, 0) =

{
5× 10−3 m x ≤ 5 m

1× 10−3 m x > 5 m
(4.18)

and

u = 0 m/s (4.19)

whereas no boundary condition is required to be set.



4. Results 74

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 0 s
Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 3.054× 10−4

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s
Exact
PINN

(b)
∥hex−hPINN∥L2
∥hex∥L2

= 1.079× 10−3

0 2 4 6 8 10

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s
Exact
PINN

(c) ∥uex − uPINN∥L2 = 4.528× 10−2

0 2 4 6 8 10

x (m)

0.0

0.2

0.5

0.8

1.0

1.3

u
(m

/
s)

×10−1 t = 6 s
Exact
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 2.873× 10−2

0 2 4 6 8 10

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s
Exact
PINN

(e) ∥qex − qPINN∥L2 = 2.804× 10−7

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

q
(m

2 /
s)

×10−4 t = 6 s
Exact
PINN

(f)
∥qex−qPINN∥L2
∥qex∥L2

= 2.625× 10−2

Figure 4.8: Dam break on a wet domain. PINN solutions for (a)-(b) the water
height, (c)-(d) the velocity, (e)-(f) the flow. Errors computed in norm
L2(Ω).



4. Results 75

The additional parameter’s space is integrated in the mathematical
formulation by way of a linear transformation between the variable y and
the Chézy’s friction coefficient, C, actually entering the PDE:

C = 100y + 20 (4.20)

This technique is used with the purpose of keeping the parameter’s
space dimension unitary, while obtaining a Chézy’s friction coefficient
ranging extensively from the values 20 and 120.

The SWE are implemented holding as unknowns h and u, plus, two
supplementary inequalities are included in the system for the purpose of
making the learning faster. The complete system is given in Eq. (4.21).

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= −g

u|u|
C2

h ≥ 1× 10−3

u ≥ 0

(4.21)

Model setup. Just as occurred in the case analyzed in Section 4.5, the
initial data for water height belonging to the O(10−3) scale entails the
need of a suitable model scaling, at least for the water height. Specifically,
the reference values for the scaling are set as:

• L = 10

• T = 6

• H = 5× 10−3

• U = u120
max

where u120
max is the maximum value of the numerical solution for the water

velocity, considering C = 120, computed by FullSWOF_1D.

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer. The training points in the domain and for the IC are
4× 103 and 500, respectively. No training point is set on the boundary.
The number of iterations is 8.5× 105.



4. Results 76

The loss function is made up of six terms: (Lh
PDE, Lhu

PDE, Lh
ineq, Lu

ineq

Lh
IC, Lu

IC), respectively generated by the residuals of the mass conservation
and of the momentum balance equations, the inequalities and the ICs for
the variables h and u. Every single term enters the loss function with an
associated weight that proved to work fine after a trial-and-error effort:

L = 102Lh
PDE + 102Lhu

PDE

+ 105Lh
ineq + 105Lu

ineq

+ 105Lh
IC + 105Lu

IC

(4.22)

The results of the learning of all the variables, h, u and q, are shown
in Fig. 4.9, Fig. 4.10 and Fig. 4.11, respectively. Specifically, the results for
the flow are built after the learning, applying the relation: q = hu. No
error can be computed since no analytic solution is available. Examining
the plots, the PINN’s approximations are a little bit smoother than the
FullSWOF_1D ones. However, the features of this case study—particularly,
the positions of the shocks—appear to be identified pretty well over the
whole wide-ranging parameter’s space.

4.7 Dam break on a dry domain

This case is known as the Ritter’s solution [33]. It is a classical Rie-
mann problem. The problem is defined in the domain Ω× (0, T) with
Ω = (xmin, xmax), considering x ∈ (0, 10) and t ∈ (0, 6). The dam break is
instantaneous, the bottom is flat and there is no friction.

The initial condition for the water height is :

h(x, 0) =

{
5× 10−3 m x ≤ 5 m

0 m x > 5 m
(4.23)

while both the IC and the BC for the water velocity are:

u = 0 m/s (4.24)

No boundary condition is set for the water height.



4. Results 77

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 20
FullSWOF 1D
PINN

(a)

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 40
FullSWOF 1D
PINN

(b)

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 60
FullSWOF 1D
PINN

(c)

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 80
FullSWOF 1D
PINN

(d)

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 100
FullSWOF 1D
PINN

(e)

0 2 4 6 8 10

x (m)

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.9: Dam break on a wet domain with friction, parametric. PINN solu-
tions for the water height. The parameter, C, ranges over the entire
space. Comparison with the FullSWOF_1D results.



4. Results 78

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

u
(m

/
s)

×10−2 t = 6 s C = 20
FullSWOF 1D
PINN

(a)

0 2 4 6 8 10

x (m)

0.0

2.0

4.0

6.0

8.0

u
(m

/
s)

×10−2 t = 6 s C = 40
FullSWOF 1D
PINN

(b)

0 2 4 6 8 10

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

u
(m

/
s)

×10−1 t = 6 s C = 60
FullSWOF 1D
PINN

(c)

0 2 4 6 8 10

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

u
(m

/
s)

×10−1 t = 6 s C = 80
FullSWOF 1D
PINN

(d)

0 2 4 6 8 10

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

u
(m

/
s)

×10−1 t = 6 s C = 100
FullSWOF 1D
PINN

(e)

0 2 4 6 8 10

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
(m

/
s)

×10−1 t = 6 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.10: Dam break on a wet domain with friction, parametric. PINN
solutions for the water velocity. The parameter, C, ranges over the
entire space. Comparison with the FullSWOF_1D results.



4. Results 79

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

q
(m

2 /
s)

×10−4 t = 6 s C = 20
FullSWOF 1D
PINN

(a)

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

q
(m

2 /
s)

×10−4 t = 6 s C = 40
FullSWOF 1D
PINN

(b)

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

q
(m

2 /
s)

×10−4 t = 6 s C = 60
FullSWOF 1D
PINN

(c)

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
(m

2 /
s)

×10−4 t = 6 s C = 80
FullSWOF 1D
PINN

(d)

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
(m

2 /
s)

×10−4 t = 6 s C = 100
FullSWOF 1D
PINN

(e)

0 2 4 6 8 10

x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
(m

2 /
s)

×10−4 t = 6 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.11: Dam break on a wet domain with friction, parametric. PINN
solutions for the water flow. The parameter, C, ranges over the
entire space. Comparison with the FullSWOF_1D results.



4. Results 80

The SWE are implemented holding as unknowns h and u, plus, two
supplementary inequalities are included in the system for the purpose of
making the learning faster. The complete system is given in Eq. (4.25).

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= 0

h ≥ 0

u ≥ 0

(4.25)

Model setup. Just as occurred in the previous two cases, analyzed in
the Sections 4.5 and 4.6, the initial data for water height belonging to the
O(10−3) scale entails the need of a suitable model scaling, at least for the
water height. Specifically, the reference values for the scaling are set as:

• L = 10

• T = 6

• H = 5× 10−3

• U = umax

where umax is the maximum value of the analytic solution for the water
velocity, provided by FullSWOF_1D.

Hyperparameters. For the training is used an Adam optimizer and a
fixed learning rate of 2× 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain, on the boundary and for the IC are
104, 500 and 500, respectively. The number of iterations is 5× 105.

The loss function is made up of seven terms: (Lh
PDE, Lhu

PDE, Lh
ineq,

Lu
ineq Lh

IC, Lu
IC, Lu

BC), respectively generated by the residuals of the mass
conservation and of the momentum balance equations, the inequalities
and the ICs for the variables h and u, and the BC for the variable u. Every
single term enters the loss function with an associated weight that proved
to work fine after a trial-and-error effort:



4. Results 81

L = 102Lh
PDE + 102Lhu

PDE

+ 105Lh
ineq + 105Lu

ineq

+ 105Lh
IC + 105Lu

IC + 105Lu
BC

(4.26)

The results of the learning of all the variables, h, u and q, provided
with the errors of the PINN’s approximations computed in norm L2(Ω),
are shown in Fig. 4.12 on page 82. Specifically, the results for the flow are
built after the learning, applying the relation: q = hu.

The integral errors account for a good numerical approximation. Ex-
amining the plots, the PINN’s prediction looks to be comparable to the
exact—challenging—solution more than the FullSWOF_1D’s approxima-
tion does. Specifically, the position of the shock seems to be predicted
considerably better.

4.8 Dam break on a dry domain with friction

Several methods investigating this case may be found in the literature,
though each one comes with a limitation. For instance, the Dressler’s
approach [9] provides no information concerning the shape of the wave tip.
The problem is defined in the domain Ω× (0, T) with Ω = (xmin, xmax),
considering x ∈ (0, 2000) and t ∈ (0, 40). The dam break is instantaneous,
the bottom is flat and the Chézy’s friction coefficient is set to 40.

The initial conditions are:

h(x, 0) =

{
6 m x ≤ 1000 m

0 m x > 1000 m
(4.27)

and

u = 0 m/s (4.28)

whereas no boundary condition is required to be set.



4. Results 82

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 0 s
Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 2.181× 10−3

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

h
(m

)

×10−3 t = 6 s
Exact
FullSWOF 1D
PINN

(b)
∥hex−hPINN∥L2
∥hex∥L2

= 2.869× 10−5

0 2 4 6 8 10

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s
Exact
PINN

(c) ∥uex − uPINN∥L2 = 1.948× 10−4

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

4.0

u
(m

/
s)

×10−1 t = 6 s
Exact
FullSWOF 1D
PINN

(d)
∥uex−uPINN∥L2
∥uex∥L2

= 6.279× 10−2

0 2 4 6 8 10

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s
Exact
PINN

(e) ∥qex − qPINN∥L2 = 1.804× 10−9

0 2 4 6 8 10

x (m)

0.0

1.0

2.0

3.0

q
(m

2 /
s)

×10−4 t = 6 s
Exact
FullSWOF 1D
PINN

(f)
∥qex−qPINN∥L2
∥qex∥L2

= 4.887× 10−4

Figure 4.12: Dam break on a dry domain. PINN solutions for (a)-(b) the water
height, (c)-(d) the velocity, (e)-(f) the flow. Comparison with the
FullSWOF_1D results. Errors computed in norm L2(Ω).



4. Results 83

The SWE are implemented holding as unknowns h and u, plus, two
supplementary inequalities are included in the system for the purpose of
making the learning faster. The complete system is given in Eq. (4.29).

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= −g

u|u|
402

h ≥ 0

u ≥ 0

(4.29)

Model setup. Considering the large spatio-temporal domain, the
model has to be scaled. Specifically, the reference values for the scaling are
set as:

• L = 2000

• T = 40

• H = 6

• U = umax

where umax is the maximum value of the analytic solution for the water
velocity, provided by FullSWOF_1D.

Hyperparameters. For the training is used an Adam optimizer and a
fixed learning rate of 2× 10−5, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain and for the IC are 5× 103 and 500,
respectively. No training point is set on the boundary. The number of
iterations is 1.2× 106.

The loss function is made up of six terms: (Lh
PDE, Lhu

PDE, Lh
ineq, Lu

ineq

Lh
IC, Lu

IC), respectively generated by the residuals of the mass conservation
and of the momentum balance equations, the inequalities and the ICs for
the variables h and u. Every single term enters the loss function with an
associated weight that proved to work fine after a trial-and-error effort:



4. Results 84

L = 102Lh
PDE + 102Lhu

PDE

+ 105Lh
ineq + 105Lu

ineq

+ 105Lh
IC + 105Lu

IC

(4.30)

The results of the learning of all the variables, h, u and q, provided
with the errors of the PINN’s approximations computed in norm L2(Ω),
are shown in Fig. 4.13 on page 85. Specifically, the results for the flow are
built after the learning, applying the relation: q = hu.

The integral errors—obtainable only for the IC—account for a good
numerical approximation. Examining the plots, the PINN’s predictions
mainly fit the the FullSWOF_1D’s approximation. Moreover, the position
of the shock seems to be identified just about perfectly.

4.9 Dam break on a dry domain with friction,
parametric

This case is built upon the previous one, analyzed in Section 4.8. The
problem is defined in the domain Ω× (0, T), this time with:

Ω = (xmin, xmax)× (ymin, ymax) (4.31)

considering x ∈ (0, 2000), y ∈ (0, 1) and t ∈ (0, 40). The additional
variable y accounts for the parameter’s space. Still, the dam break is
instantaneous and the bottom is flat.

The initial conditions are:

h(x, y, 0) =

{
6 m x ≤ 1000 m

0 m x > 1000 m
(4.32)

and

u = 0 m/s (4.33)

whereas no boundary condition is required to be set.



4. Results 85

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 0 s C = 40
Exact
PINN

(a)
∥hex−hPINN∥L2
∥hex∥L2

= 9.404× 10−6

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 40
FullSWOF 1D
PINN

(b)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

-1.0

-0.5

0.0

0.5

1.0

u
(m

/
s)

t = 0 s C = 40
Exact
PINN

(c) ∥uex − uPINN∥L2 = 2.218× 10−3

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

u
(m

/
s)

t = 40 s C = 40
FullSWOF 1D
PINN

(d)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

-1.0

-0.5

0.0

0.5

1.0

q
(m

2 /
s)

t = 0 s C = 40
Exact
PINN

(e) ∥qex − qPINN∥L2 = 5.638× 10−3

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 40
FullSWOF 1D
PINN

(f)

Figure 4.13: Dam break on a dry domain with friction. PINN solutions for (a)-
(b) the water height, (c)-(d) the velocity, (e)-(f) the flow. Comparison
with the FullSWOF_1D results. Errors computed in norm L2(Ω).



4. Results 86

The additional parameter’s space is integrated in the mathematical
formulation by way of a linear transformation between the variable y and
the Chézy’s friction coefficient, C, actually entering the PDE:

C = 100y + 20 (4.34)

This technique, already used in Section 4.6, is used with the purpose
of keeping the parameter’s space dimension unitary, while obtaining a
Chézy’s friction coefficient ranging extensively from the values 20 and 120.

The SWE are implemented holding as unknowns h and u, plus, two
supplementary inequalities are included in the system for the purpose of
making the learning faster. The complete system is given in Eq. (4.35).

∂h
∂t

+
∂(hu)

∂x
= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
= −g

u|u|
C2

h ≥ 0

u ≥ 0

(4.35)

Model setup. Considering the large spatio-temporal domain, the
model has to be scaled. Specifically, the reference values for the scaling are
set as:

• L = 2000

• T = 40

• H = 6

• U = u120
max

where u120
max is the maximum value of the numerical solution for the water

velocity, considering C = 120, computed by FullSWOF_1D.

Hyperparameters. For the training is used an Adam optimizer and
a fixed learning rate of 10−4, the hyperbolic tangent is used as activation
function, and the network architecture is set to 4 hidden layers with 60
neurons per layer.

The training points in the domain and for the IC are 2× 104 and 103,
respectively. No training point is set on the boundary. The number of
iterations is 5× 105.



4. Results 87

The loss function is made up of six terms: (Lh
PDE, Lhu

PDE, Lh
ineq, Lu

ineq

Lh
IC, Lu

IC), respectively generated by the residuals of the mass conservation
and of the momentum balance equations, the inequalities and the ICs for
the variables h and u. Every single term enters the loss function with an
associated weight that proved to work fine after a trial-and-error effort:

L = 102Lh
PDE + 102Lhu

PDE + 105Lh
ineq

+ 105Lu
ineq + 105Lh

IC + 105Lu
IC

(4.36)

The results of the learning of all the variables, h, u and q, are shown
in Figures. 4.14, 4.15 and 4.16, respectively. Specifically, the results for the
flow are built after the learning, applying the relation: q = hu. No error
can be computed since no analytic solution is available.

Examining the plots, the PINN’s predictions are a little bit smoother
than the FullSWOF_1D approximation. However, the features of this case
study—particularly, the positions of the shocks—appear to be identified
almost perfectly over the whole wide-ranging parameter’s space.

4.10 Circular dam break

The problem is defined in the domain Ω× (0, T) with:

Ω = (xmin, xmax)× (ymin, ymax) (4.37)

considering x ∈ (−25, 25), y ∈ (−25, 25) and t ∈ (0, 0.69). The dam break
is instantaneous and the bottom is flat.

The initial conditions are:

h(x, y, 0) =

{
10 m |x| ≤

√
100− y2, |y| ≤

√
100− x2

1 m otherwise
(4.38)



4. Results 88

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 20
FullSWOF 1D
PINN

(a)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 40
FullSWOF 1D
PINN

(b)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 60
FullSWOF 1D
PINN

(c)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 80
FullSWOF 1D
PINN

(d)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 100
FullSWOF 1D
PINN

(e)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

h
(m

)

t = 40 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.14: Dam break on a dry domain with friction, parametric. PINN
solutions for the water height. The parameter, C, ranges over the
entire space. Comparison with the FullSWOF_1D results.



4. Results 89

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

u
(m

/
s)

t = 40 s C = 20
FullSWOF 1D
PINN

(a)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

1.0

2.0

3.0

4.0

5.0

u
(m

/
s)

t = 40 s C = 40
FullSWOF 1D
PINN

(b)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

2.0

4.0

6.0

u
(m

/
s)

t = 40 s C = 60
FullSWOF 1D
PINN

(c)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

2.0

4.0

6.0

u
(m

/
s)

t = 40 s C = 80
FullSWOF 1D
PINN

(d)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

2.0

4.0

6.0

8.0

u
(m

/
s)

t = 40 s C = 100
FullSWOF 1D
PINN

(e)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

2.0

4.0

6.0

8.0

u
(m

/
s)

t = 40 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.15: Dam break on a dry domain with friction, parametric. PINN
solutions for the water velocity. The parameter, C, ranges over the
entire space. Comparison with the FullSWOF_1D results.



4. Results 90

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

q
(m

2 /
s)

×101 t = 40 s C = 20
FullSWOF 1D
PINN

(a)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 40
FullSWOF 1D
PINN

(b)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.5

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 60
FullSWOF 1D
PINN

(c)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.5

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 80
FullSWOF 1D
PINN

(d)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.5

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 100
FullSWOF 1D
PINN

(e)

0 250 500 750 1000 1250 1500 1750 2000

x (m)

0.0

0.2

0.5

0.8

1.0

1.2

q
(m

2 /
s)

×101 t = 40 s C = 120
FullSWOF 1D
PINN

(f)

Figure 4.16: Dam break on a dry domain with friction, parametric. PINN
solutions for the water flow. The parameter, C, ranges over the
entire space. Comparison with the FullSWOF_1D results.



4. Results 91

and

u(x, y, 0) = 0 m/s (4.39)

v(x, y, 0) = 0 m/s (4.40)

while the boundary conditions are:

u(xmin, y, t) = 0 m/s (4.41)

u(xmax, y, t) = 0 m/s (4.42)

and

v(x, ymin, t) = 0 m/s (4.43)

v(x, ymax, t) = 0 m/s (4.44)

The representation of the initial condition is shown in Fig. 4.17.

x (m)

−20 −10 0 10 20 y (m
)

−20
−10

0
10

20

h
(x

, y
, t

)

2

4

6

8

10

t = 0 s

1

2

3

4

5

6

7

8

9

10

Figure 4.17: Circular dam break. Initial condition.

The SWE are implemented holding as unknowns h, u and v, plus, one
supplementary inequality is included in the system for the purpose of



4. Results 92

making the learning faster. The complete system is given in Eq. (4.45).

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 gh2)

∂x
+

∂(huv)
∂y

= 0

∂(hv)
∂t

+
∂(huv)

∂x
+

∂(hv2 + 1
2 gh2)

∂y
= 0

h ≥ 1

(4.45)

Remark. In spite of the large spatial domain, the model is not scaled.

Hyperparameters. For the training are used, sequentially, Adam and
L-BFGS [24] optimizers. The learning rate is fixed at 10−4, the hyperbolic
tangent is used as activation function, and the network architecture is set
to 4 hidden layers with 50 neurons per layer.

The training points in the domain, on the boundary and for the IC are
2.5× 104, 103 and 104, respectively. The number of iterations is 2× 105

with the Adam optimizer and 8× 104 with the L-BFGS.
The loss function is made up of eleven terms: (Lh

PDE, Lhu
PDE, Lhv

PDE, Lh
ineq,

Lh
IC, Lu

IC, Lv
IC, Lu

BCxmin
, Lu

BCxmax
, Lv

BCymin
, Lv

BCymax
), respectively generated by

the residuals of the mass conservation and of two momentum balance
equations, the inequality, the three ICs and the four BCs. Every term
enters the loss function with an associated weight set to 1:

L = 1Lh
PDE + 1Lhu

PDE + 1Lhv
PDE + 1Lh

ineq

+ 1Lh
IC + 1Lu

IC + 1Lv
IC

+ 1Lu
BCxmin

+ 1Lu
BCxmax

+ 1Lv
BCymin

+ 1Lv
BCymax

(4.46)

The results of the learning are shown in Figures. 4.18 and 4.19, on
page 93. Examining the plots, the features of this case study seem to be
replicated pretty well. Specifically, the symmetry of the problem is almost
totally preserved.



4. Results 93

−20 −10 0 10 20

x (m)

−20

−10

0

10

20
y

(m
)

t = 0 s

0.9

1.9

2.9

3.9

4.9

5.9

6.9

7.9

8.9

9.9

Figure 4.18: Circular dam break. PINN solution for the water height at time
t = 0 s.

Figure 4.19: Circular dam break. Solution for the water height at time t = 0.69 s:
comparison between the PINN solution (left), and the LSS scheme’s
[23] one (right).



4. Results 94

4.11 Circular dam break, parametric

This case is built upon the previous one, analyzed in Section 4.10. The
problem is defined in the domain Ω× (0, T), this time with:

Ω = (xmin, xmax)× (ymin, ymax)× (zmin, zmax) (4.47)

considering x ∈ (−25, 25), y ∈ (−25, 25), z ∈ (1, 20) and t ∈ (0, 1). The
additional variable z accounts for the parameter’s space. Still, the dam
break is instantaneous and the bottom is flat.

The initial conditions are:

h(x, y, z, 0) =

{
10 m |x| ≤

√
100− y2, |y| ≤

√
100− x2

1 m otherwise
(4.48)

and

u(x, y, z, 0) = 0 m/s (4.49)

v(x, y, z, 0) = 0 m/s (4.50)

while the boundary conditions are:

u(xmin, y, z, t) = 0 m/s (4.51)

u(xmax, y, z, t) = 0 m/s (4.52)

and

v(x, ymin, z, t) = 0 m/s (4.53)

v(x, ymax, z, t) = 0 m/s (4.54)

The representation of the initial condition is shown in Fig. 4.17 on
page 91.



4. Results 95

The SWE are implemented holding as unknowns h, u and v. The
gravitational acceleration, g, enters the PDE as a wide-ranging parameter
belonging to the third spatial axis of the problem, i.e., z. The complete
system is given in Eq. (4.55).



∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= 0

∂(hu)
∂t

+
∂(hu2 + 1

2 zh2)

∂x
+

∂(huv)
∂y

= 0

∂(hv)
∂t

+
∂(huv)

∂x
+

∂(hv2 + 1
2 zh2)

∂y
= 0

(4.55)

Remark. In spite of the large domain, the model is not scaled.

Hyperparameters. For the training are used, sequentially, Adam and
L-BFGS optimizers. The learning rate is fixed at 10−3, the hyperbolic
tangent is used as activation function, and the network architecture is set
to 4 hidden layers with 30 neurons per layer.

The training points in the domain, on the boundary and for the IC are
1.2× 104, 5× 103 and 1.2× 104, respectively. The number of iterations is
3× 105 with the Adam optimizer and 2× 105 with the L-BFGS.

The loss function is made up of ten terms: (Lh
PDE, Lhu

PDE, Lhv
PDE, Lh

IC,
Lu

IC, Lv
IC, Lu

BCxmin
, Lu

BCxmax
, Lv

BCymin
, Lv

BCymax
), respectively generated by the

residuals of the mass conservation and of two momentum balance equa-
tions, the three ICs and the four BCs. Every term enters the loss function
with an associated weight set to 1:

L = 1Lh
PDE + 1Lhu

PDE + 1Lhv
PDE

+ 1Lh
IC + 1Lu

IC + 1Lv
IC

+ 1Lu
BCxmin

+ 1Lu
BCxmax

+ 1Lv
BCymin

+ 1Lv
BCymax

(4.56)

The results of the learning are shown in Fig. 4.20 on page 96. Examining
the plots, the features of this case study seem to be replicated pretty well.
Specifically, the PINN predictions preserve the symmetry of the problem
over most of the wide-ranging parameter’s space.



4. Results 96

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 1

0.3

1.5

2.7

3.9

5.1

6.3

7.5

8.7

9.9

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 4

0.6

1.6

2.6

3.6

4.6

5.6

6.6

7.6

8.6

9.6

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 8

0.8

1.5

2.2

3.0

3.7

4.4

5.1

5.8

6.6

7.3

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 12

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

5.3

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 16

0.8

1.2

1.5

1.8

2.2

2.5

2.8

3.1

3.5

3.8

−20 −10 0 10 20

x (m)

−20

−10

0

10

20

y
(m

)

t = 1 g = 20

0.9

1.1

1.4

1.7

2.0

2.2

2.5

2.8

3.1

3.4

Figure 4.20: Circular dam break, parametric. PINN solutions for the water
height. The parameter, g, ranges over the entire space.



Conclusions

In this work the PINN technology was successfully applied to some
preliminary elliptic, parabolic and hyperbolic models, then, to a set of
hyperbolic partial differential equations: the inviscid Shallow Water Equa-
tions (SWE). The purpose of this thesis was to examine the degree to
which the PINN is actually a convenient tool to be used. Particularly, the
effectiveness of this technology when dealing with parametric problems
has been investigated.

Multiple points in favor of the PINN application have been identified.
First of all, the accuracy of the numerical solutions produced is solid: the
integral errors, as well as the qualitative inspection of the results, gave
evidence of an extremely accurate tool. The PINN is able to learn, with
considerable precision, analytic solutions known in the literature. More-
over, the method is totally agnostic to the presence of viscosity or shock
waves.

Dealing with parametric problems, the PINNs shown their suitability:
once that the network was trained over the needed parameter space, every
single recall of the model for the requested parameter value was immediate.
This happened in light of the fact that these recalls were only evaluations
of a trained network.

PINNs proved to work well when the dimensions of the problems
were increased. There is no mesh to be built. One more dimension for the
problem domain translates into one more input-layer neuron, one more
dimension for the problem solution translates into one more output-layer
neuron. Prospectively, this characteristic of the PINN could bypass the limit
of dimensionality of the traditional numerical discretization methods [29].

As would be expected, also some factors that could be counted against
the use of PINNs have been experienced. Unquestionably, the compu-
tational cost of the PINN’s training is considerably high: the average



Conclusions 98

time required for the training of every single model examined has been
of about four hours, running a NVIDIA® T4 GPU [39]. Plus, it’s hard
to overlook the fact that the onerous training phase comes only after a
first—even more demanding—step, where the choices of the hyperparam-
eters’ values, and of the proper scaling of the model, have to be made.
It’s a tough trial-and-error task, regularly way longer than the following
training phase.

Even taking into consideration only the simpler elliptic and parabolic
models, PINNs are currently not a believable alternative to Finite Element
Method (FEM), Finite Volume Method (FVM) or Finite Difference Method
(FDM): the computational cost—let alone the drawn out troubles to set
the fitting model’s hyperparameters values—of a PINN implementation
is so much higher than the three traditional methods’ one, that daring a
comparison today is not even fair.

But those traditional methods take advantage of a 50-years-long process
of development. Putting things in perspective, since research in the neural
network field is very active, great improvements are expected. In order to
reduce the computational cost of the training, the clustered residual points
distribution [26]—a smaller set of points placed were they matter the most,
without a priori knowledge of the solution—even for the parametric cases,
would definitely help. Concerning the design of the most effective neural
network architecture for the problem at hand, there’s still experience to be
accumulated before it ceases to be done empirically by the user.



Bibliography

[1] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Auto-
matic Differentiation in Machine Learning: a Survey, Journal of Machine
Learning Research, 18(153):1–43, 2018.

[2] A.L. Blum, R.L. Rivest, Training a 3-node neural network is NP-complete,
Neural Networks, 5(1):117–127, 1992.

[3] L. Bottou, O. Bousquet, The Tradeoffs of Large Scale Learning, Ad-
vances in Neural Information Processing Systems, 161–168, 2008.

[4] A. Burkov, The Hundred-Page Machine Learning Book, Andriy Burkov,
2019.

[5] O. Delestre, Simulation du ruissellement d’eau de pluie sur des surfaces
agricoles, PhD thesis, Université d’Orléans, 2010.

[6] O. Delestre, F. Darboux, F. James, C. Lucas, C. Laguerre, S.
Cordier, FullSWOF: Full Shallow-Water equations for Overland Flow,
Journal of Open Source Software, 2(20):448, 2017.

[7] O. Delestre, C. Lucas, P.A. Ksinant, F. Darboux, C. Laguerre,
T.N.T. Vo, F. James, S. Cordier, SWASHES: a compilation of Shallow
Water Analytic Solutions for Hydraulic and Environmental Studies, In-
ternational Journal for Numerical Methods in Fluids, 72(3):269–300,
2013.

[8] M. W. M. G. Dissanayake, N. Phan-Thien, Neural-network-based
approximations for solving partial differential equations, Communications
in Numerical Methods in Engineering, 10(3):195–201, 1994.



Bibliography 100

[9] R.F. Dressler, Hydraulic resistance effect upon the dam-break func-
tions, Journal of Research of the National Bureau of Standards,
49(3):217–225, 1952.

[10] S. Dutta, Reinforcement Learning with TensorFlow, Packt, 2018.

[11] D. Ferrarese, Metodi a volumi finiti centrati well balanced per la soluzione
delle equazioni delle Shallow Water, MSc thesis, Politecnico di Milano,
2010.

[12] Y. Goldberg, A Primer on Neural Network Models for Natural Lan-
guage Processing, Journal of Artificial Intelligence Research, 57:345–420,
2016.

[13] N. Goutal, F. Maurel, Proceedings of the 2nd workshop on dam-
break wave simulation, Electricité de France, Direction des études et
recherches, Technical Report HE-43/97/016/B, 1997.

[14] W.H. Green, G.A. Ampt, Studies on soil physics, The Journal of Agri-
cultural Science, 4(1):1–24 , 1911.

[15] E. Grimson, J. Guttag, A. Bell, 6.0002 Introduction to Computational
Thinking and Data Science, MIT OpenCourseWare, https://ocw.mit.
edu, 2016.

[16] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward net-
works are universal approximators, Neural Networks, 2(5):359–366, 1989.

[17] A. Karpatne, G. Atluri, J.H. Faghmous, M. Steinbach, A. Banerjee,
A. Ganguly, S. Shekhar, N. Samatova, V. Kumar, Theory-Guided
Data Science: A New Paradigm for Scientific Discovery from Data, Institute
of Electrical and Electronics Engineers, 29:2318–2331, 2017.

[18] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, Inter-
national Conference for Learning Representations, 2015.

[19] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with
deep convolutional neural networks, Advances in Neural Information
Processing Systems, 25:1097–1105, 2012.

https://ocw.mit.edu
https://ocw.mit.edu


Bibliography 101

[20] B.M. Lake, R. Salakhutdinov, J.B. Tenenbaum, Human-level concept
learning through probabilistic program induction, Science, 350:1332–1338,
2015.

[21] D. Lazer, R. Kennedy, G. King, A. Vespignani, The Parable of Google
Flu: Traps in Big Data Analysis, Science, 343:1203–1205, 2014.

[22] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521:436–444,
2015.

[23] G.F. Lin, J.S. Lai, W.D. Guo, Finite-volume component-wise TVD
schemes for 2D shallow water equations, Advances in Water Resources,
26(8):861–873, 2003.

[24] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large
scale optimization, Mathematical Programming, 45(1):503–528, 1989.

[25] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: A deep learning
library for solving differential equations, arXiv:1907.04502v2, 2020.

[26] Z. Mao, A.D. Jagtap, G.E. Karniadakis, Physics-informed neural net-
works for high-speed flows, Computer Methods in Applied Mechanics
and Engineering, 360:112789, 2020.

[27] G. Marcus, E. Davis, Eight (No, Nine!) Problems With Big Data, The
New York Times, sect. A, p. 23, Apr. 7, 2014.

[28] A. Pinkus, Approximation theory of the MLP model in neural networks,
Acta Numerica, 8:143–195, 1999.

[29] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and
when can deep-but not shallow-networks avoid the curse of dimensional-
ity: A review, International Journal of Automation and Computing,
14:503–519, 2017.

[30] K. Qian, A. Mohamed, C. Claudel, Physics Informed Data Driven
model for Flood Prediction: Application of Deep Learning in prediction of
urban flood development, arXiv, 2019.

[31] A. Quarteroni, Modellistica Numerica per Problemi Differenziali,
Springer, 2012.



Bibliography 102

[32] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, Journal of
Computational Physics, 378:686–707, 2019.

[33] A. Ritter, Die Fortpflanzung der Wasserwellen, Zeitschrift des Vereines
Deuscher Ingenieure, 36(33):947–954, 1892.

[34] S. Skansi, Introduction to Deep Learning, Springer International Pub-
lishing, 2018.

[35] J.J. Stoker, Water Waves: The Mathematical Theory with Applications,
Pure and Applied Mathematics, Volume 4, 1957.

[36] G. Strang, 18.065 Matrix Methods in Data Analysis, Signal Processing,
and Machine Learning, MIT OpenCourseWare, https://ocw.mit.edu,
2018.

[37] DeepXDE, Documentation, https://github.com/lululxvi/deepxde,
2022.

[38] Google Colab, Documentation, https://colab.research.google.com,
2022.

[39] NVIDIA® T4, Documentation, https://www.nvidia.com/T4, 2022.

[40] Project Jupyter, Documentation, https://docs.jupyter.org, 2022.

[41] TensorFlow, Documentation, https://www.tensorflow.org, 2022.

https://ocw.mit.edu
https://github.com/lululxvi/deepxde
https://colab.research.google.com
https://www.nvidia.com/T4
https://docs.jupyter.org
https://www.tensorflow.org


Appendix A

Source code

Every test case dealt with in this thesis is identified by its own Python
code, written in a Jupyter [40] notebook available in Google Colaboratory.
However, the main structure of all these codes is basically equivalent and
is applied, mutatis mutandis, to each test case.

In this appendix, the sections that make up these codes are presented
in sequential order. For the sake of clarity, the code is organized in cells,
just as it is in a Jupyter environment.

A.1 Preamble

This section of code is shared by every test case. The needed libraries
are made available to the Jupyter session, the double precision format is
set, the access to the free-of-charge Google’s computing resources that run
in the cloud is guaranteed.

1 pip install deepxde -q

1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 import matplotlib.pyplot as plt
6 import numpy as np
7 import deepxde as dde
8 import time as time



A. Source code 104

9 import matplotlib
10 import matplotlib.ticker as mtick
11

12 from matplotlib import cm
13 from matplotlib.ticker import ScalarFormatter
14 from deepxde.backend import tf
15 from google.colab import output
16 from scipy import interpolate
17 from scipy.interpolate import griddata
18 from numpy import savetxt
19 from deepxde.callbacks import EarlyStopping
20

21 from google.colab import files
22 from google.colab import drive

1 dde.config.real.set_float64()

1 device_name = tf.test.gpu_device_name()
2 if device_name != '/device:GPU:0':
3 raise SystemError('GPU device not found')
4 print('Found GPU at: {}'.format(device_name))

1 drive.mount('/content/drive')

A.2 Data import from FullSWOF_1D

Whether it is an analytic solution or a numerical one, the import
procedure of the FullSWOF_1D’s output is the same: the FullSWOF_1D’s
output—that comes in the form of a text file organized in columns—is
read and suitably stored in the Jupyter session. The code that follows is
taken from the case presented in Section 4.5.

1 with open('/content/drive/My Drive/Colab_IN/SWASHES_411','r') as fh:
2 read_data = fh.read().split()
3

4 num_colonne = 8



A. Source code 105

5 num_punti = 10000
6 num_total = np.int(num_colonne * num_punti)
7

8 swashes_x = np.zeros([num_punti,1],dtype=np.float64)
9 swashes_h = np.zeros([num_punti,1],dtype=np.float64)

10 swashes_u = np.zeros([num_punti,1],dtype=np.float64)
11 swashes_z = np.zeros([num_punti,1],dtype=np.float64)
12 swashes_q = np.zeros([num_punti,1],dtype=np.float64)
13 swashes_zh = np.zeros([num_punti,1],dtype=np.float64)
14 swashes_Fr = np.zeros([num_punti,1],dtype=np.float64)
15 swashes_zhc = np.zeros([num_punti,1],dtype=np.float64)
16

17 i = 1
18 j = 1
19

20 while i < num_total:
21 swashes_zhc[-j] = read_data[-i]
22 i = i + 1
23 swashes_Fr [-j] = read_data[-i]
24 i = i + 1
25 swashes_zh [-j] = read_data[-i]
26 i = i + 1
27 swashes_q [-j] = read_data[-i]
28 i = i + 1
29 swashes_z [-j] = read_data[-i]
30 i = i + 1
31 swashes_u [-j] = read_data[-i]
32 i = i + 1
33 swashes_h [-j] = read_data[-i]
34 i = i + 1
35 swashes_x [-j] = read_data[-i]
36 i = i + 1
37 j = j + 1



A. Source code 106

A.3 Parameters definition and scaling

This section of code is devoted to the test case’s parameters definition
and their, potential, scaling. The code that follows is taken from the case
presented in Section 4.6.

1 dim_input = 3
2 dim_output = 2

1 Time = 6
2

3 X_min = 0
4 X_max = 10
5 X_dam = 5
6

7 h_L = 5e-3
8 h_R = 1e-3
9

10 friction_MIN = 0
11 friction_MAX = 1
12

13 g_0 = 9.81

1 scale_L = 10
2 scale_T = 6
3 scale_U = np.max(swashes_u_120)
4 scale_H = 5e-3

1 Time = Time / scale_T
2

3 X_min = X_min / scale_L
4 X_max = X_max / scale_L
5 X_dam = X_dam / scale_L
6

7 h_L = h_L / scale_H
8 h_R = h_R / scale_H
9

10 g = g_0 * scale_H / (scale_U ** 2.0)



A. Source code 107

A.4 Functions definition and scaling

This section of code is devoted to the test case’s functions definition
and their, potential, scaling. The code that follows is taken from the case
presented in Section 4.11.

1 def on_initial(_, on_initial):
2 return on_initial

1 def boundary_x1 (x, on_boundary):
2 return on_boundary and np.isclose(x[0], X_min)
3

4 def boundary_x2 (x, on_boundary):
5 return on_boundary and np.isclose(x[0], X_max)
6

7 def boundary_y1 (x, on_boundary):
8 return on_boundary and np.isclose(x[1], Y_min)
9

10 def boundary_y2 (x, on_boundary):
11 return on_boundary and np.isclose(x[1], Y_max)

1 def func_IC_h(x):
2 return 10.0 * ((x[:, 0:1] - center_x) * (x[:, 0:1] - center_x) + \
3 (x[:, 1:2] - center_y) * (x[:, 1:2] - center_y) <= \
4 (radius*radius)) / scale_H + \
5 1.0 * ((x[:, 0:1] - center_x) * (x[:, 0:1] - center_x) + \
6 (x[:, 1:2] - center_y) * (x[:, 1:2] - center_y) > \
7 (radius*radius)) / scale_H
8

9 def func_IC_u(x):
10 return np.zeros([len(x), 1])
11

12 def func_IC_v(x):
13 return np.zeros([len(x), 1])
14

15 def func_BC_all(x):
16 return np.zeros([len(x), 1])



A. Source code 108

1 def pde(x, y):
2

3 g = x[:, 2:3] * scale_H / (scale_U ** 2.0)
4

5 h = y[:, 0:1]
6 u = y[:, 1:2]
7 v = y[:, 2:3]
8

9 U1 = h
10 U2 = h * u
11 U3 = h * v
12

13 E1 = h * u
14 E2 = h * u * u + 0.5 * h*h * g
15 E3 = h * u * v
16

17 G1 = h * v
18 G2 = h * v * u
19 G3 = h * v * v + 0.5 * h*h * g
20

21 E1_x = tf.gradients(E1, x)[0][:, 0:1]
22 E2_x = tf.gradients(E2, x)[0][:, 0:1]
23 E3_x = tf.gradients(E3, x)[0][:, 0:1]
24

25 G1_y = tf.gradients(G1, x)[0][:, 1:2]
26 G2_y = tf.gradients(G2, x)[0][:, 1:2]
27 G3_y = tf.gradients(G3, x)[0][:, 1:2]
28

29 U1_t = tf.gradients(U1, x)[0][:, 3:4] * scale_L/(scale_T*scale_U)
30 U2_t = tf.gradients(U2, x)[0][:, 3:4] * scale_L/(scale_T*scale_U)
31 U3_t = tf.gradients(U3, x)[0][:, 3:4] * scale_L/(scale_T*scale_U)
32

33 equaz_1 = U1_t + E1_x + G1_y
34 equaz_2 = U2_t + E2_x + G2_y
35 equaz_3 = U3_t + E3_x + G3_y
36

37 return [equaz_1, equaz_2, equaz_3]

1 geom = dde.geometry.Cuboid([X_min, Y_min, G_min],
2 [X_max, Y_max, G_max])
3 timedomain = dde.geometry.TimeDomain(0.0, Time)
4 geomtime = dde.geometry.GeometryXTime(geom, timedomain)



A. Source code 109

1 IC_h = dde.IC(geomtime, func_IC_h, on_initial, component = 0)
2 IC_u = dde.IC(geomtime, func_IC_u, on_initial, component = 1)
3 IC_v = dde.IC(geomtime, func_IC_v, on_initial, component = 2)
4

5 BC_u1 = dde.DirichletBC(geomtime, func_BC_all,
6 boundary_x1, component = 1)
7 BC_u2 = dde.DirichletBC(geomtime, func_BC_all,
8 boundary_x2, component = 1)
9 BC_v1 = dde.DirichletBC(geomtime, func_BC_all,

10 boundary_y1, component = 2)
11 BC_v2 = dde.DirichletBC(geomtime, func_BC_all,
12 boundary_y2, component = 2)
13

14 IC_BC = [IC_h, IC_u, IC_v, BC_u1, BC_u2, BC_v1, BC_v2]

A.5 Hard constraints

Whenever possible, it is massively convenient to enforce hard con-
straints for both the ICs and the BCs. The code that follows is taken from
the case presented in Section 4.4: the hard constraints for the two ICs,
and for one impulsive upstream BC, are all simultaneously defined. This
function will be used, later in the code, to modify the NN’s output.

1 def Strong_Conditions(X,Y):
2

3 x = X[:, 0:1]
4 t = X[:, 1:2]
5

6 h = Y[:, 0:1]
7 q = Y[:, 1:2]
8

9 c1 = tf.math.greater(x, 8.0)
10 c2 = tf.math.less (x, 12.0)
11 c3 = tf.math.logical_and(c1,c2)
12

13 f1 = 0.2 - 0.05 * (x - 10.0) ** 2.0
14 f2 = tf.zeros_like(f1)
15 f3 = tf.where(c3,f1,f2)
16

17 G = tf.math.greater(t, 0)



A. Source code 110

18 A = tf.zeros_like(t)
19 B = tf.ones_like(t)
20 C = tf.ones_like(t) * 4.42
21

22 D = tf.where(G, B, A)
23 E = tf.where(G, C, A)
24

25 h_new = h * t + 2 - f3
26 q_new = (q * x + E) * D
27

28 return tf.concat((h_new, q_new), axis=1)

A.6 NN building and training

After all the physics is defined, it’s time to define the training point,
to build the NN and train it. The code that follows is taken from the case
presented in Section 4.4. It includes both the resampling of the training
points and the hard constraints—obtained modifying the NN’s output.

1 data = dde.data.TimePDE(
2 geomtime, pde, IC_BC,
3 num_domain = 4000,
4 num_boundary = 2000,
5 num_initial = 1000)
6

7 net = dde.maps.FNN(
8 layer_sizes = [dim_input] + [60]*4 + [dim_output],
9 activation = "tanh",

10 kernel_initializer = "Glorot uniform")
11

12 net.apply_output_transform(lambda x, y: Strong_Conditions(x,y))
13

14 model = dde.Model(data, net)

1 my_path = "/content/drive/MyDrive/Colab_OUT/03_Bump_3/model.ckpt"
2 model.compile('adam', lr=0.001)
3 model.restore(my_path, verbose=1)
4

5 resampler = dde.callbacks.PDEResidualResampler(period=100)



A. Source code 111

6 checker = dde.callbacks.ModelCheckpoint(
7 "/content/drive/My Drive/Colab_OUT/03_Bump_3/model.ckpt",
8 verbose = 1,
9 save_better_only = True,

10 period = 1000)
11

12 model.train(epochs=1000000, callbacks=[resampler,checker]),
13 model_restore_path=my_path)

A.7 Output visualization

The final step is the visualization, and the save, of the results. In order
to better harmonize the figures with this document, LATEX and its fonts are
made available to the Jupyter session. The code that follows is taken from
the case presented in Section 4.6.

1 !apt install texlive-fonts-recommended texlive-fonts-extra cm-super
dvipng

1 matplotlib.rcParams['text.usetex'] = True
2 matplotlib.rcParams['font.family'] = "serif"
3 matplotlib.rcParams['font.serif'] = "Palatino"
4 matplotlib.rcParams['font.size'] = 13

1 tratto = '#ff00ff'
2 punto = '#00FF00'

1 NN_Time = Time
2 NN_Param = 120
3 NN_Param = (NN_Param - 20) / 100
4

5 x_sw = swashes_x_120
6 h_sw = swashes_h_120
7 u_sw = swashes_u_120
8 q_sw = swashes_q_120
9



A. Source code 112

10 N1 = 10000
11 N2 = 100
12

13 lw = 3

1 nPoints = N1
2

3 X_nn = swashes_x / scale_L
4 X_nn = np.reshape(X_nn, (len(X_nn), 1))
5 P_nn = np.ones_like(X_nn) * NN_Param
6 T_nn = np.ones_like(X_nn) * NN_Time
7 X = np.hstack((X_nn, P_nn, T_nn))
8

9 U_nn = model.predict(X)
10 h_nn = U_nn[:,0].reshape(nPoints,1) * scale_H
11 u_nn = U_nn[:,1].reshape(nPoints,1) * scale_U

1 class ScalarFormatterForceFormat(ScalarFormatter):
2 def _set_format(self):
3 self.format = "%1.1f"
4

5 yfmt_0 = ScalarFormatterForceFormat()
6 yfmt_1 = ScalarFormatterForceFormat()
7 yfmt_2 = ScalarFormatterForceFormat()
8 yfmt_3 = ScalarFormatterForceFormat()
9

10 fig_0 = plt.figure(0)
11 ax_0 = fig_0.add_subplot()
12 plt.title(r'$C = {:}$'.format(np.int(NN_Param * 100 + 20)), fontsize=18,

loc='right')
13 plt.title(r'$t = {:}$'.format(np.int(NN_Time*scale_T)) + ' ' +

r'$s$',fontsize=18, loc='center')
14 plt.xlabel(r'$x$' + ' ' + r'$(m)$',fontsize=18)
15 plt.ylabel(r'$h$' + ' ' + r'$(m)$',fontsize=18)
16 ax_0.yaxis.set_major_formatter(yfmt_0)
17 ax_0.ticklabel_format(axis='y', style='sci', scilimits=(0,0))



A. Source code 113

1 fig_1 = plt.figure(1)
2 ax_1 = fig_1.add_subplot()
3 plt.title(r'$C = {:}$'.format(np.int(NN_Param * 100 + 20)), fontsize=18,

loc='right')
4 plt.title(r'$t = {:}$'.format(np.int(NN_Time*scale_T)) + ' ' +

r'$s$',fontsize=18, loc='center')
5 plt.xlabel(r'$x$' + ' ' + r'$(m)$',fontsize=18)
6 plt.ylabel(r'$u$' + ' ' + r'$(m/s)$',fontsize=18)
7 ax_1.yaxis.set_major_formatter(yfmt_1)
8 ax_1.ticklabel_format(axis='y', style='sci', scilimits=(0,0))
9

10 fig_2 = plt.figure(2)
11 ax_2 = fig_2.add_subplot()
12 plt.title(r'$C = {:}$'.format(np.int(NN_Param * 100 + 20)), fontsize=18,

loc='right')
13 plt.title(r'$t = {:}$'.format(np.int(NN_Time*scale_T)) + ' ' +

r'$s$',fontsize=18, loc='center')
14 plt.xlabel(r'$x$' + ' ' + r'$(m)$',fontsize=18)
15 plt.ylabel(r'$q$' + ' ' + r'$(m^2/s)$',fontsize=18)
16 ax_2.yaxis.set_major_formatter(yfmt_2)
17 ax_2.ticklabel_format(axis='y', style='sci', scilimits=(0,0))
18

19 X_nn = swashes_x
20

21 plt.figure(0)
22 plt.plot(x_sw, h_sw, linewidth=lw, color=tratto)
23

24 plt.figure(1)
25 plt.plot(x_sw, u_sw, linewidth=lw, color=tratto)
26

27 plt.figure(2)
28 plt.plot(x_sw, q_sw, linewidth=lw, color=tratto)

1 nPoints = N2
2

3 lw = 3.
4

5 X_nn = np.linspace(X_min, X_max, nPoints)
6 X_nn = np.reshape(X_nn, (len(X_nn), 1))
7 P_nn = np.ones_like(X_nn) * NN_Param
8 T_nn = np.ones_like(X_nn) * NN_Time
9



A. Source code 114

10 X = np.hstack((X_nn, P_nn, T_nn))
11

12 U_nn = model.predict(X)
13 h_nn = U_nn[:,0].reshape(nPoints,1) * scale_H
14 u_nn = U_nn[:,1].reshape(nPoints,1) * scale_U
15 q_nn = h_nn * u_nn
16

17 X_nn = X_nn * scale_L
18

19

20 plt.figure(0)
21 plt.plot(X_nn, h_nn, linewidth = lw
22 , linestyle = ''
23 , marker = 'o'
24 , markersize = 9
25 , mfc = punto
26 , mec = 'k')
27

28 plt.figure(1)
29 plt.plot(X_nn, u_nn, linewidth = lw
30 , linestyle = ''
31 , marker = 'o'
32 , markersize = 9
33 , mfc = punto
34 , mec = 'k')
35

36 plt.figure(2)
37 plt.plot(X_nn, q_nn, linewidth = lw
38 , linestyle = ''
39 , marker = 'o'
40 , markersize = 9
41 , mfc = punto
42 , mec = 'k')

1 nPoints = N1
2

3 X_nn = swashes_x
4 X_nn = np.reshape(X_nn, (len(X_nn), 1))
5 P_nn = np.ones_like(X_nn) * NN_Param
6 T_nn = np.ones_like(X_nn) * NN_Time
7 X = np.hstack((X_nn, P_nn, T_nn))
8

9 U_nn = model.predict(X)



A. Source code 115

10 h_nn = U_nn[:,0].reshape(nPoints,1) * scale_H
11 u_nn = U_nn[:,1].reshape(nPoints,1) * scale_U
12 q_nn = h_nn * u_nn
13

14 plt.figure(0)
15 plt.plot(x_sw, h_sw, linewidth=lw, color=tratto, alpha=.6)
16 plt.legend(['FullSWOF\_1D', 'PINN'], loc='best', fontsize=12)
17 plt.tight_layout()
18 plt.grid(True)
19 plt.savefig('/content/drive/MyDrive/Colab_OUT/05_Dam_2/05_Dam_2_h_' +

str(np.int(NN_Time*scale_T)) + '_' + str(np.int(NN_Param * 100 + 20)) +
'.pdf', bbox_inches='tight')

20

21 plt.figure(1)
22 plt.plot(x_sw, u_sw, linewidth=lw, color=tratto , alpha=.6)
23 plt.legend(['FullSWOF\_1D', 'PINN'], loc='best', fontsize=12)
24 plt.tight_layout()
25 plt.grid(True)
26 plt.savefig('/content/drive/MyDrive/Colab_OUT/05_Dam_2/05_Dam_2_u_' +

str(np.int(NN_Time*scale_T)) + '_' + str(np.int(NN_Param * 100 + 20)) +
'.pdf', bbox_inches='tight')

27

28 plt.figure(2)
29 plt.plot(x_sw, q_sw, linewidth=lw, color=tratto, alpha=.6)
30 plt.legend(['FullSWOF\_1D', 'PINN'], loc='best', fontsize=12)
31 plt.tight_layout()
32 plt.grid(True)
33 plt.savefig('/content/drive/MyDrive/Colab_OUT/05_Dam_2/05_Dam_2_q_' +

str(np.int(NN_Time*scale_T)) + '_' + str(np.int(NN_Param * 100 + 20)) +
'.pdf', bbox_inches='tight')



List of Figures

1 Theory-based vs. Data Science Models (from Ref. [17]). . . . 9

1.1 2D SWE. Notation. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction. Comparison between approaches. . . . . . . . 21
2.2 Supervised learning. Labeled example. . . . . . . . . . . . . 22
2.3 Classification. Fitting issues, (a)-(b), good fit case, (c). . . . . 24
2.4 Example of deep neural network. . . . . . . . . . . . . . . . . 25
2.5 Neuron a(1)1 . Inner components, operations, input neurons. 26
2.6 Activation functions. Three popular functions, (a)-(b)-(c),

corresponding derivatives, (d)-(e)-(f). . . . . . . . . . . . . . 29
2.7 Gradient descent. Effect of the learning rate value on the

convergence to a local minimum. . . . . . . . . . . . . . . . . 34
2.8 Differentiation. Possible approaches (from Ref. [1]). . . . . . 38
2.9 Numerical differentiation. Error trend for the derivative of

the logistic map given in Eq. (2.26), for n = 4, at x0 = 0.2
(from Ref. [1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 PINN algorithm. 1D heat equation. (from Ref. [25]). . . . . . 52
3.2 Error analysis. Decomposition of the total error (from Ref.

[25]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Elliptic problem, parametric. Poisson equation. PINN so-

lutions for selected values of the parameter κ. Errors com-
puted in norm L2(Ω). . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Parabolic problem, parametric. Heat equation. PINN solu-
tions at four temporal snapshots, for selected values of the
parameter κ. Errors computed in norm L2(Ω). . . . . . . . . 58



List of Figures 117

3.5 Nonlinear hyperbolic problem. Burgers’ equation. PINN
solutions at four temporal snapshots. Errors computed in
norm L2(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 NVIDIA T4 Specifications (from Ref. [39]). . . . . . . . . . . 61
4.2 Immersed bump. Steady state condition. . . . . . . . . . . . 63
4.3 Immersed bump. PINN solutions for (a)-(b) the water

height, (c)-(d) the velocity, (e)-(f) the flow. Errors computed
in norm L2(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Emerged bump. Steady state condition. . . . . . . . . . . . . 66
4.5 Emerged bump. PINN solutions for (a)-(b) the water height,

(c)-(d) the velocity, (e)-(f) the flow. Errors computed in norm
L2(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Subcritical flow: (a) initial condition, (b) steady state solution. 69
4.7 Subcritical flow. PINN solutions for (a)-(b) the water height,

(c)-(d) the velocity, (e)-(f) the flow. Errors computed in norm
L2(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Dam break on a wet domain. PINN solutions for (a)-(b)
the water height, (c)-(d) the velocity, (e)-(f) the flow. Errors
computed in norm L2(Ω). . . . . . . . . . . . . . . . . . . . . 74

4.9 Dam break on a wet domain with friction, parametric. PINN
solutions for the water height. The parameter, C, ranges
over the entire space. Comparison with the FullSWOF_1D
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Dam break on a wet domain with friction, parametric. PINN
solutions for the water velocity. The parameter, C, ranges
over the entire space. Comparison with the FullSWOF_1D
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Dam break on a wet domain with friction, parametric. PINN
solutions for the water flow. The parameter, C, ranges over
the entire space. Comparison with the FullSWOF_1D results. 79

4.12 Dam break on a dry domain. PINN solutions for (a)-(b) the
water height, (c)-(d) the velocity, (e)-(f) the flow. Compar-
ison with the FullSWOF_1D results. Errors computed in
norm L2(Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures 118

4.13 Dam break on a dry domain with friction. PINN solutions
for (a)-(b) the water height, (c)-(d) the velocity, (e)-(f) the
flow. Comparison with the FullSWOF_1D results. Errors
computed in norm L2(Ω). . . . . . . . . . . . . . . . . . . . . 85

4.14 Dam break on a dry domain with friction, parametric. PINN
solutions for the water height. The parameter, C, ranges
over the entire space. Comparison with the FullSWOF_1D
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Dam break on a dry domain with friction, parametric. PINN
solutions for the water velocity. The parameter, C, ranges
over the entire space. Comparison with the FullSWOF_1D
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.16 Dam break on a dry domain with friction, parametric. PINN
solutions for the water flow. The parameter, C, ranges over
the entire space. Comparison with the FullSWOF_1D results. 90

4.17 Circular dam break. Initial condition. . . . . . . . . . . . . . 91
4.18 Circular dam break. PINN solution for the water height at

time t = 0 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.19 Circular dam break. Solution for the water height at time

t = 0.69 s: comparison between the PINN solution (left),
and the LSS scheme’s [23] one (right). . . . . . . . . . . . . 93

4.20 Circular dam break, parametric. PINN solutions for the
water height. The parameter, g, ranges over the entire space. 96



List of Tables

2.1 Symbolic differentiation. Expression swell, illustrated for
the derivatives of the logistic map. . . . . . . . . . . . . . . . 41

2.2 AD. Forward mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, intermediate variables. Right, partial derivatives with
respect to the input x1. . . . . . . . . . . . . . . . . . . . . . . 43

2.3 AD. Forward mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, intermediate variables. Right, partial derivatives with
respect to the input x2. . . . . . . . . . . . . . . . . . . . . . . 43

2.4 AD. Reverse mode iteration for the Eq. (2.27) at (x1, x2) = (4, 1).
Left, one forward pass computes the intermediate variables.
Right, one reverse pass computes the partial derivatives. . . 44


	Title
	Abstract
	Abstract in lingua italiana
	Quote
	Contents
	Introduction
	1 Mathematical model
	1.1 Introduction
	1.2 Shallow Water Equations (SWE)
	1.2.1 Boundary conditions

	1.3 Scaling of the SWE

	2 Machine Learning
	2.1 Introduction
	2.2 Supervised learning
	2.2.1 Classification

	2.3 Artificial neural networks
	2.3.1 Operation and representation
	2.3.2 Loss function
	2.3.3 Gradient descent
	2.3.4 Stochastic gradient descent
	2.3.5 Backpropagation

	2.4 Automatic differentiation
	2.4.1 Analytical derivative
	2.4.2 Numerical differentiation
	2.4.3 Symbolic differentiation
	2.4.4 Automatic differentiation

	2.5 Available libraries

	3 Physics-Informed Neural Networks
	3.1 Introduction
	3.2 Partial differential equations
	3.2.1 PDE families
	3.2.2 PDE solution

	3.3 The PINN algorithm
	3.4 Error analysis
	3.5 Code validation
	3.5.1 Elliptic problem, parametric
	3.5.2 Parabolic problem, parametric
	3.5.3 Nonlinear hyperbolic problem


	4 Results
	4.1 Introduction
	4.2 Lake at rest with an immersed bump
	4.3 Lake at rest with an emerged bump
	4.4 Subcritical flow
	4.5 Dam break on a wet domain
	4.6 Dam break on a wet domain with friction, parametric
	4.7 Dam break on a dry domain
	4.8 Dam break on a dry domain with friction
	4.9 Dam break on a dry domain with friction, parametric
	4.10 Circular dam break
	4.11 Circular dam break, parametric

	Conclusions
	Bibliography
	A Source code
	A.1 Preamble
	A.2 Data import from FullSWOF_1D
	A.3 Parameters definition and scaling
	A.4 Functions definition and scaling
	A.5 Hard constraints
	A.6 NN building and training
	A.7 Output visualization

	List of Figures
	List of Tables

