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Abstract 

The objective of the thesis is to develop a novel data-based control method for linear 

single-input-single-output (SISO) systems with robust stability guarantees. Given a 

batch of open-loop data, obtained assuming that the measurement noise is bounded, 

set membership (SM) identification is performed to obtain an uncertainty set for the 

system parameters. Based on the previous set, a robust closed-loop stability condition 

is derived in the form of linear matrix inequalities. The desired performance is 

enforced through a virtual reference feedback tuning (VRFT) based cost function. The 

corresponding optimization problem contains only linear matrix inequality (LMI) 

constraints. 

In the first part of the thesis, the theoretical background is provided. In particular, 

VRFT, direct control design based on controller unfalsification with stability 

guarantees and SM identification are discussed. Secondly, by combining the SM and 

VRFT methodologies, a novel data-based control design technique for linear systems 

with stability guarantees is proposed in different configurations. Lastly, the proposed 

approach is tested on a simulation example and the results are compared with 

different state-of-the-art algorithms. 

Key-words: Virtual reference feedback tuning; Set Membership identification; data-

driven control 
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Abstract in lingua italiana 

L'obiettivo della tesi è quello di sviluppare un metodo di controllo innovativo basato 

sui dati per sistemi lineari a singolo ingresso e singola uscita (SISO) con garanzie di 

stabilità robuste. Dato un insieme di dati raccolti in anello aperto, in cui il rumore di 

misura è limitato, viene eseguita un'identificazione di tipo set membership (SM) per 

ottenere un insieme di incertezza per i parametri del sistema. Sulla base dell’insieme 

ottenuto viene derivata una condizione di stabilità robusta per il sistema ad anello 

chiuso. Le prestazioni desiderate vengono imposte attraverso una funzione di costo 

basata sulla tecnica del virtual reference feedback tuning (VRFT). Il corrispondente 

problema di ottimizzazione contiene solo vincoli con disuguaglianze matrıciali lineari 

(LMI). 

Nella prima parte della tesi viene fornito il background teorico. In particolare vengono 

trattati il VRFT, il progetto di controllo diretto con garanzie di stabilità basato sul 

metodo della non falsificazione del controllore e l’identificazione di tipo SM. In 

secondo luogo, combinando le metodologie di SM e VRFT, viene proposta una nuova 

tecnica di progettazione del controllore basata sui dati per sistemi lineari con garanzie 

di stabilità in tre diverse configurazioni. Infine, l'approccio proposto viene messo alla 

prova su un esempio di simulazione e i risultati vengono confrontati con quelli ottenuti 

applicando algoritmi da letteratura. 

Parole chiave: Virtual reference feedback tuning; identificazione Set Membership; 

controllo basato sui dati
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1. Introduction 

1.1 Data-based control design 

The design of controllers based on data is of great importance in practical applications 

because this approach allows to save from time-consuming and costly modelling 

processes. For this reason, many data-driven control methods have been recently 

developed. 

Data-driven control methods can be classified into two groups: direct methods such as 

iterative feedback tuning [27], virtual reference feedback tuning [17-21,25], correlation-

based tuning [26], and indirect methods which may rely on recurrent neural networks 

(RNN) [30], Hammerstein-Wiener models [28], AutoRegressive models with 

eXogenous (ARX) variables for the plant identification phase [29]. 

Among them, direct methods have a number of advantages, since they allow to 

prevent problems caused by unmodeled dynamics and overcome model-mismatch 

problems. Unlike the indirect methods, in direct methods an identification phase of 

the mathematical model of the plant is not required. Indeed, direct methods directly 

target the final aim of tuning the controller parameters.  

The focus of this thesis is VRFT, i.e., a non-iterative direct data-driven control design 

approach based on a set of input/output data. Since it is non-iterative, only one batch 

of experimental data is required for the tuning of the controller. VRFT has been first 

introduced in case of linear systems [20,21] but has been also extended to nonlinear 

systems [17,18]. Even if most of the work in the literature regarding VRFT focuses on 

SISO systems, some recent contributions are available for MIMO systems as well [19]. 

Even though VRFT is advantageous for several reasons, the resulting closed-loop 

system is not guaranteed to be stable. In the data-driven framework, in order to verify 

whether the controller guarantees the closed-loop stability or not, some approaches 

have been developed for the data-driven controller certification problem such as using 

𝜈-gap metric [23], using closed-loop data for the estimation of 𝐻∞-norm based on 

Markov parameters [22] or taking advantage of the unfalsified control theory in order 

to verify the controller iteratively [24]. 
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Among them, the latter approach is proposed in [1] for the tuning of an optimal direct 

data-driven controller with stability guarantees. However, the algorithm results in 

conservative solutions due to small gain arguments. In addition, the stability condition 

is not enforced directly in the controller tuning phase but is tested a posteriori. 

1.2 Contribution of the thesis 

In this thesis, we propose an alternative approach which provides the desired closed-

loop behavior as well as the closed-loop stability guarantees. In order to achieve this 

goal, set membership (SM) identification is used. SM method provides a set of 

candidate models based on a set of input/output data and these models are used to 

confer robust stability conditions in a VRFT-based linear matrix inequality-based 

optimization problem.  

1.3 Structure of the thesis 

The thesis is organized as follows: 

Chapter 2 introduces all the theoretical background. In particular VRFT, direct control 

design based on controller unfalsification with stability guarantees, and set 

membership identification are discussed. 

Chapter 3 introduces the proposed approach, i.e., the data-based control for linear 

systems with stability guarantees and three alternative possible control schemes are 

investigated. 

Chapter 4 is devoted to testing the proposed approach on an example consisting of 

three cascaded tanks. The simulation results are given and compared with the ones 

obtained with the direct control design based on controller unfalsification with 

stability guarantees. 

Chapter 5 provides conclusions and future developments for the thesis. 
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2. Theoretical background 

2.1 Virtual reference feedback tuning 

In this section we describe the VRFT algorithm proposed in [5], used to design data-

based controllers for discrete-time systems. 

2.1.1  Problem formulation 

In this section we introduce the problem addressed in [5]. 

We consider the following system   

𝑦(𝑡) = 𝑃(𝑑)𝑢(𝑡) + 𝑛(𝑡) (2.1) 

where 𝑦(𝑡) is the plant output corrupted by the noise 𝑛(𝑡), 𝑢(𝑡) is the input of the 

system, 𝑃(𝑑) is the unknown plant transfer function of the system and 𝑑 is the unit 

backward shift operator. Throughout this section, for the sake of simplicity, we neglect 

the effect of noise, i.e., 𝑛(𝑡) = 0. However, the algorithm in [5] can be extended to 

account for the effect of the noise.  

The discrete-time linear time-invariant (LTI) plant can be described by the following 

transfer function 

𝑃(𝑑) =
𝑛0 + 𝑛1𝑑 + ⋯+ 𝑛𝑛𝑛

𝑑𝑛𝑛

1 + 𝑚1𝑑 + ⋯+ 𝑚𝑛𝑚
𝑑𝑛𝑚

 (2.2) 

We will consider systems with one time step delay between the input and the output 

as stated in Assumption 2.1. 

Assumption 2.1. 

The input-output delay of the system is equal to 1. 

Since VRFT is a non-iterative direct approach, only one dataset 𝒟 of input-output pairs 

is required and 𝒟 is obtained from an open-loop experiment. 
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𝒟 = {𝑢(𝑡), 𝑦(𝑡) ∶  𝑡 = 0,… ,𝑁} (2.3) 

The problem addressed in this chapter consists of developing a suitable controller 

conferring to the system performances as similar as possible to the ones of a reference 

model directly from data. The reference model is selected by the user based on the 

desired closed-loop performance. The controller is denoted 𝐶(𝑑, 휃) and the problem 

consists of tuning the controller parameter vector 휃 by means of the available data set 

𝒟. 

2.1.2  Control scheme and controller family 

In this section we introduce the proposed control scheme and present the possible 

controller families. 

The proposed control scheme is represented in Figure 2.1, where 𝑒(𝑡) denotes the error 

signal, 𝑟(𝑡) is the reference signal and 𝐶(𝑑, 휃) is the controller parametrized by the 

vector 휃. 

 

Figure 2.1: The proposed control scheme 

The controller family 𝒞 consists of candidate controllers that are functions of the design 

parameter 휃. The general structure of the controller family parametrized with 휃 is the 

following 

𝒞 ≔ {𝐶(𝑑, 휃) = 𝛽𝑇(𝑑)휃} (2.4) 

where 휃 = [휃1 휃2 … 휃𝑛]𝑇 ∈ ℝ𝑛 is the vector of parameters to be tuned and 𝛽(𝑑) =

[𝛽1(𝑑) 𝛽2(𝑑) … 𝛽𝑛(𝑑)]𝑇 is a set of linear discrete-time transfer functions. 
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2.1.3  Reference model definition and discrepancy function 

In this section we discuss the choice of the reference model. Moreover, we show how 

to build the discrepancy function between the reference model and the closed-loop 

system. 

The reference model 𝑀 defines the desired closed-loop performance and provides the 

ideal linear transfer function from the reference 𝑟 to the output measurement 𝑦.  

The typical reference model representation of 𝑀 is the following 

𝑀(𝑑) =
𝑏1𝑑 + ⋯+ 𝑏𝑛𝑏

𝑑𝑛𝑏

1 + 𝑎1𝑑 + ⋯+ 𝑎𝑛𝑎
𝑑𝑛𝑎

 (2.5) 

The corresponding time domain representation can be obtained as 

𝑦(𝑡) = −𝑎1𝑦(𝑡 − 1) − ⋯− 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎) + 𝑏1𝑟(𝑡 − 1) + ⋯

+ 𝑏𝑛𝑏
𝑟(𝑡 − 𝑛𝑏) 

(2.6) 

Note that a delay of at least 1 step is required to 𝑀(𝑑) consistently with Assumption 

2.1. 

The control objective is to have a complementary sensitivity function as similar as 

possible to the reference one. In order to achieve this goal, the classical control scheme 

in Figure 1.1 is used and the problem becomes the tuning of the controller parameters. 

To do that, the following discrepancy function must be minimized: 

𝒥𝑀𝑅(휃) ≔ ‖(
𝑃(𝑑)𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
− 𝑀(𝑑))𝑊(𝑑)‖

2

 (2.7) 

where ‖∙‖ is the Euclidian norm and 𝑊(𝑑) is a user-defined weighting function. 

However, we cannot minimize in practice the discrepancy function in (2.7) since the 

plant transfer function 𝑃 is not known. The alternative cost function is described in 

Section 2.1.4. 

2.1.4  VRFT cost function 

In this section we show how it possible obtain an equivalent cost function to (2.7) 

which does not require any knowledge on the plant. 

The dataset 𝒟 in (2.3) is used. We define as �̃� and �̃� the vectors collecting the available 

input and output data, respectively. 
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We define the virtual reference signal �̃� as follows 

�̃� = 𝑀−1[�̃�] (2.8) 

The term “virtual”, in this framework, denotes that �̃� is not a real signal like the input 

and the output. Theoretically, if the virtual reference signal is forced as reference signal 

to the desired closed-loop system, i.e., 𝑀, it produces the 𝑢 and 𝑦 pairs. Moreover, if 

the controller family is rich and the reference signal is exciting enough, this aim may 

be achievable.  

As depicted in Figure 2.2, the virtual error in the closed-loop system is defined as 

follows 

�̃� = �̃� − �̃� (2.9) 

In order to have the virtual error different from 0, Assumption 2.2. must hold. 

Assumption 2.2. 

𝑀(𝑑) ≠ 1. 

 

Figure 2.2: The closed loop system and the virtual signals 

The objective is to design a control law 𝐶(𝑑, 휃) that confers the closest closed-loop 

behavior with the selected reference model 𝑀. An alternative 𝑃-free objective function 

equivalent to (2.7) can be written as follows 

𝒥𝑉𝑅𝐹𝑇
𝑁 (휃) ≔

1

𝑁
‖�̃�𝐿 − 𝐶(𝑑, 휃)�̃�𝐿‖

2 (2.10) 

where �̃�𝐿 and �̃�𝐿 denote pre-filtered signals with a suitable filter 𝐿(𝑑). These signals 

are defined as follows 
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�̃�𝐿 = 𝐿(𝑑)�̃� (2.11a) 

�̃�𝐿 = 𝐿(𝑑)�̃� (2.11b) 

 The filter 𝐿(𝑑) is required especially when the “ideal controller” does not belong to 

the chosen controller class. The “ideal controller” can be defined as the controller that 

leads to perfect matching with 𝑀 when it is interconnected in the closed-loop system. 

If the “ideal controller” exists, the minimization of 𝒥 and 𝒥𝑉𝑅𝐹𝑇
𝑁  coincide and it is 

possible to find a solution to original problem throughout the minimization of the 

alternative cost function (2.10). On the other hand, the filter 𝐿(𝑑) allows us to find a 

“nearly minimizer” of 𝒥 through 𝒥𝑉𝑅𝐹𝑇
𝑁  when the perfect matching cannot be provided. 

More details regarding the filter design and implementation are in [5].  

Finally, enforcing the linear structure of the controller, i.e., 𝐶(𝑑, 휃) = 𝛽𝑇(𝑑)휃, equation 

(2.10) can be rewritten as follows 

𝒥𝑉𝑅𝐹𝑇
𝑁 (휃) =

1

𝑁
∑(𝑢𝐿(𝑡) − 𝜑𝐿(𝑡)휃)2

𝑁

𝑡=1

 (2.12a) 

𝜑𝐿(𝑡) = 𝛽(𝑑)𝑒𝐿(𝑡) (2.12b) 

Note that the objective function in (2.12a) is a purely data-dependent cost. The 

corresponding optimal parameter vector 휃𝑁
∗  for the controller can be directly calculated 

as follows 

휃𝑁
∗ = argmin

𝜃
𝒥𝑉𝑅𝐹𝑇

𝑁 (휃) = [∑𝜑𝐿(𝑡)𝜑𝐿(𝑡)
𝑇

𝑁

𝑡=1

]

−1

∑𝜑𝐿(𝑡)𝑢𝐿(𝑡)

𝑁

𝑡=1

 (2.13) 

2.1.5  The algorithm 

The steps of the virtual reference feedback tuning algorithm are the following 

1. Collect a dataset 𝒟 with an open-loop experiment. Select the reference model 

𝑀, and the controller family 𝒞. 

2. Find the virtual reference �̃� and compute the corresponding virtual error �̃�. 

3. Pre-filter the measured data and obtain �̃�𝐿 and �̃�𝐿 as in equation (2.11). 

4. Compute 휃𝑁
∗ , i.e., the optimal parameter vector of the controller, as in (2.13). 
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2.2 Direct control design based on controller 

unfalsification with stability guarantees 

In this section we introduce a non-iterative direct data-driven control design method 

proposed in [1], i.e., the direct control design based on controller unfalsification with 

stability guarantees. 

As stated in [1], one of the main drawbacks of direct methods is the absence of a plant 

model. As the process to be controlled is not identified, a mechanism to validate/falsify 

the controller is necessary. This motivates the unfalsification method discussed here. 

Unlike other stability-oriented approaches, the proposed approach does not require to 

consider minimum phase plants or the knowledge of possible unstable zeros. 

Furthermore, even if having a stable plant is an assumption for the application of the 

algorithm, unstable plants can be also addressed just after a basic stabilization 

procedure with a simple cascade controller [1]. 

2.2.1  Problem formulation 

In this section we introduce the problem that is formulated and solved in [1]. The 

proposed approach is an alternative to classic VRFT [17-21] but, in addition, allows to 

guarantee closed-loop stability thanks to a suitable stability test. 

The method in [1] is a non-iterative direct approach. Thus, a single batch of 

experimental data (𝒟 see equation (2.3)) is required and is directly used for the 

controller identification.  

The following assumption is requested for consistency. 

Assumption 2.3. 

The input 𝑢(𝑡) is a stationary signal independent of the additive output disturbance 𝑛(𝑡). 

Recall that 𝑃(𝑑) is the unknown plant transfer function. Such unknown discrete-time 

LTI plant can also be expressed as  

𝑃(𝑑) =
𝐵(𝑑)

𝐴(𝑑)
 (2.14) 

The terms 𝐴(𝑑) and 𝐵(𝑑) are unknown polynomials of the form of 𝐴(𝑑) = 1 + 𝑎1𝑑 +

⋯+ 𝑎𝑛𝑎
𝑑𝑛𝑎 and 𝐵(𝑑) = 𝑏0 + 𝑏1𝑑 + ⋯+ 𝑏𝑛𝑏

𝑑𝑛𝑏. For the sake of simplicity, we will 

consider the assumption that 𝑃(𝑑) is stable, as stated in Assumption 2.4. The unstable 

plant case is discussed in [1]. 
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Assumption 2.4. 

The roots of 𝐴(𝑑) strictly lie in the unit circle. 

The addressed problem consists of providing both closed-loop stability and desired 

closed-loop performance.  

2.2.2  Proposed control scheme and controller family 

In this part, we introduce the proposed control scheme for the given problem 

formulation and the candidate controllers will be restricted to lie in a given controller 

family.  

The proposed control scheme is provided in Figure 2.3. 𝐶(𝑑, 휃) is the LTI controller to 

be tuned and 𝑟(𝑡) is the reference signal. 

 

Figure 2.3: The closed loop system configuration 

The controller family 𝒞 consists of candidate LTI controllers that are function of the 

design parameter 휃, i.e., 

𝒞 ≔ {𝐶(𝑑, 휃), 휃 ∈ Θ ⊂ ℝ𝑛𝜃} (2.15) 

where Θ is a compact set and 𝑛𝜃 is the number of parameters to be tuned. The 

candidate LTI controllers 𝐶(𝑑, 휃) must have the following transfer function form 

𝐶(𝑑, 휃) =
𝑆(𝑑, 휃)

𝑅(𝑑, 휃)
 (2.16) 

As discussed in [1], considering a parametric form of the controller family with some 

fixed parts (e.g., an integrator) helps to fulfill some tracking/rejection purposes. 

Therefore, it is possible to express both the denominator and the numerator as follows 
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𝐶(𝑑, 휃) =
𝑆̅(𝑑, 휃)𝑆∗(𝑑)

�̅�(𝑑, 휃)𝑅∗(𝑑)
 (2.17) 

Here, 𝑆∗(𝑑) and 𝑅∗(𝑑) have possibly unstable roots. They are fixed coprime 

polynomials and 𝑅∗(0) = 1. For example, to equip the controller with integral action, 

𝑅∗(𝑑) = 1 − 𝑑 is a typical choice. 

Moreover, the parameter vector can be constructed with coefficients of 𝑆̅(𝑑, 휃) =  𝑠0 +

𝑠1𝑑 + ⋯+ 𝑠𝑛𝑠
𝑑𝑛𝑠 and �̅�(𝑑, 휃) = 1 + 𝑟1𝑑 + ⋯+ 𝑟𝑛𝑟

𝑑𝑛𝑟. In this way, 

휃 = [𝑠0 … 𝑠𝑛𝑠
𝑟1 … 𝑟𝑛𝑟]𝑇 (2.18) 

 

2.2.3  Reference model definition and related discrepancy function 

In order to have both satisfactory performance and stabilization at the same time, the 

approach requires to define two reference models: 𝑄(𝑑) and 𝑊(𝑑). While 𝑄(𝑑) is the 

desired input sensitivity function and allows to enforce stability, 𝑊(𝑑) is the desired 

complementary sensitivity function and is responsible for the output performance.  

Note that 𝑄(𝑑) and 𝑊(𝑑) are a priori selected, consistently with Assumption 2.5. 

Assumption 2.5. 

a. 𝑊(𝑑) is strictly proper. 

b. 𝑄(𝑑) and 𝑊(𝑑) are stable. 

𝑄(𝑑) and 𝑊(𝑑) must be also consistent with the controller family 𝒞. Such consistency 

is an important requirement and will be used to provide a sound robust stability test 

in the next sections. To guarantee that consistency is fulfilled, Assumption 2.6. is 

introduced. 

Assumption 2.6. 

a. All roots of 𝑆∗(𝑑) are zeros of 𝑊(𝑑) 

b. All roots of 𝑅∗(𝑑) are zeros of 1 − 𝑊(𝑑) 

c. For stable and minimum phase �̅�(𝑑), 𝑄(𝑑) can be decomposed as 𝑄(𝑑) = 𝑆∗(𝑑)�̅�(𝑑) 

According to Figure 2.3, the following equations can be obtained 

𝑢(𝑡) =
𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
𝑟(𝑡) −

𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
𝑛(𝑡) (2.19a) 
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𝑦(𝑡) =
𝑃(𝑑)𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
𝑟(𝑡) +

1

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
𝑛(𝑡) (2.19b) 

Notably, the input sensitivity and complementary sensitivity functions are, 

respectively 

𝑄𝜃(𝑑) =
𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
 (2.20a) 

𝑊𝜃(𝑑) =
𝑃(𝑑)𝐶(𝑑, 휃)

1 + 𝑃(𝑑)𝐶(𝑑, 휃)
 (2.20b) 

The problem we address can be formulated by expressing the discrepancy between 

each reference model and related sensitivity function, separately 

𝐽(휃) = 𝐷(𝑄𝜃(𝑑), 𝑄(𝑑)) (2.21a) 

𝑉(휃) = 𝐷(𝑊𝜃(𝑑),𝑊(𝑑)) (2.21b) 

where 𝐷(𝑎, 𝑏) is a distance measure between 𝑎 and 𝑏.  

While the minimization of 𝑉(휃) is standard in VRFT or similar approaches and induces 

the desired closed-loop behavior, the minimization of 𝐽(휃) is used to foster the closed-

loop system stability, as discussed in [1]. In fact, consider the “ideal” controller, i.e., 

the one makes 𝑄𝜃(𝑑) = 𝑄(𝑑), denoted 𝐶𝑄(𝑑). 

We compute that 

𝐶𝑄(𝑑) =
𝑄(𝑑)

1 − 𝑄(𝑑)𝑃(𝑑)
 (2.22) 

In view of Assumption 2.4. (i.e., stability of the plant), 𝐶𝑄(𝑑) guarantees closed loop 

stability, as more detailly discussed in [1]. 

However, having two different reference models makes the design problem multi-

objective because, generally, it is not possible to guarantee the minimization of the two 

discrepancies at the same time. Furthermore, since 𝑃(𝑑) is unknown, the minimization 

of 𝐽(휃) and 𝑉(휃) is achieved by formulating alternative optimization problems, 

defined in Section 2.2.4. 
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2.2.4  Optimization problem 

Two reference models and the related cost functions have been already introduced in 

Section 2.2.3. In this section, we discuss how the two discrepancy functions, 𝐽(휃) and 

𝑉(휃), are redefined with the available experimental data and independently of the 

unknown plant transfer function. Finally, it is shown how they are collected in a 

unique cost function.  

In Figure 2.4, the fictitious signals that are obtained through reference models and 

their real (non-virtual) signal counterparts are shown. 

 

Figure 2.4: The closed-loop system and reference models 

Considering Figure 2.4, the fictitious reference is defined as follows 

𝑟𝜃(𝑡) = 𝐶(𝑑, 휃)−1𝑢(𝑡) + 𝑦(𝑡), 𝑡 = 0,… ,𝑁 (2.23) 

Consistently, the fictitious input and output can be obtained as follows 

𝑢𝜃
𝑜(𝑡) ≔ 𝑄(𝑑)𝑟𝜃(𝑡) (2.24a) 

𝑦𝜃
𝑜(𝑡) ≔ 𝑊(𝑑)𝑟𝜃(𝑡) (2.24b) 

𝐽(휃) and 𝑉(휃) can be minimized by minimizing the following cost functions 

 𝒥𝑁(휃) ≔ ‖(𝑢 − 𝑢𝜃
𝑜)|𝑁‖2 (2.25a) 

𝒱𝑁(휃) ≔ ‖(𝑦 − 𝑦𝜃
𝑜)|𝑁‖2 (2.25b) 
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respectively, where ‖𝑥|𝑁‖2 ≔ ∑ 𝑥(𝑡)2𝑁
𝑡=0 . Note that: 

𝑦(𝑡) − 𝑦𝜃
𝑜(𝑡)

= [1 − 𝑊(𝑑)]𝑃(𝑑)𝑢(𝑡) − 𝐶−1(𝑑, 휃)𝑊(𝑑)𝑢(𝑡) + [1
− 𝑊(𝑑)]𝑛(𝑡) 

(2.26a) 

𝑢(𝑡) − 𝑢𝜃
𝑜(𝑡)

= 𝑢(𝑡) − 𝑄(𝑑)𝑃(𝑑)𝑢(𝑡) − 𝐶−1(𝑑, 휃)𝑄(𝑑)𝑢(𝑡)
− 𝑄(𝑑)𝑛(𝑡) 

(2.26b) 

Under Assumption 2.3. and also considering that the disturbance term 𝑛(𝑡) does not 

depend on 휃, it can be concluded that, as 𝑁 goes to infinity, the solution tends to be 

independent of 𝑛(𝑡).  

In a multi-objective optimization problem of this type, where the two optimization 

objectives are possibly conflicting, the Pareto optimal solution is achieved by 

minimizing a cost function defined as a linear combination of the individual ones in 

(2.25a) and (2.25b). Namely, the selected cost is 

(1 − 𝛿) 𝒥𝑁(휃) + 𝛿𝒱𝑁(휃) (2.27) 

where 𝛿 ∈ [0,1] which can be used to trade the optimality (i.e., obtained with 𝛿 = 1) and 

the stability (i.e., with 𝛿 = 0). 

Before defining the optimal solution vector, we need to restrict the parameter vector 

in a suitable set Θ𝑆. Θ𝑆 is defined as a subset of Θ in which 𝐶−1(𝑑, 휃)𝑄(𝑑) is stable. The 

definition of such subset is needed because, whenever the stability of 𝐶−1(𝑑, 휃)𝑄(𝑑) is 

provided, the errors defined in equation (2.27) are numerically stable thanks to 

Assumption 2.6. The proof is shown in [1]. 

To conclude, the optimal parameter vector 휃𝑁
∗ (𝛿) = [𝑠0

∗ … 𝑠𝑛𝑠
∗ 𝑟1

∗ … 𝑟𝑛𝑟
∗]𝑇 is 

defined as a function of 𝛿 as follows 

휃𝑁
∗ (𝛿) = argmin

𝜃∈Θ𝑆

{(1 − 𝛿) 𝒥𝑁(휃) + 𝛿𝒱𝑁(휃)} (2.28) 

 

 

 



14 

 

 

2.2.5  Stability test via controller unfalsification 

In this section, we describe the test implemented to verify the stability of the closed-

loop system.  

According to [31], the term “unfalsification” is used to denote an approach that allows 

to discard iteratively controllers that do not satisfy certain requirements. In our case 

such requirement is closed-loop stability. 

Ideally, when we set 𝛿 = 0, then we can obtain, as a solution to (2.28), 𝐶(𝑑, 휃∗) = 𝐶𝑄(𝑑). 

This, as discussed in Section 2.2.3, guarantees the closed-loop stability. However, when 

𝐶𝑄(𝑑) cannot be fully achievable (for example when it does not lie in the controller 

family) or we also need to improve the performance through desired complementary 

sensitivity objective function 𝒱𝑁(휃), a tool for stability test is essential. 

 First, we start with studying the relation between closed-loop stability and input 

discrepancy 𝑢 − 𝑢𝜃
𝑜. The input discrepancy could be rewritten as follows 

𝑢(𝑡) − 𝑢𝜃
𝑜(𝑡) = Δ𝑄(휃, 𝑑)𝑄(𝑑)𝑢(𝑡) − 𝑄(𝑑)𝑛(𝑡) (2.29) 

where 

Δ𝑄(𝑑, 휃) = 𝐶𝑄
−1(𝑑) − 𝐶−1(𝑑, 휃) (2.30) 

Thanks to standard small gain arguments the following theorem could be proven. 

Theorem 2.1. 

Let 휃 ∈ Θ𝑆, then if 

‖𝑄(𝑑)Δ𝑄(𝑑, 휃)‖
∞

< 1 (2.31) 

then the controller 𝐶(𝑑, 휃)  internally stabilizes the unknown plant 𝑃.  

Thanks to the Theorem 2.1., we have finally a tool for closed-loop stability check. The 

𝐻∞ norm in (2.31) can be computed as follows 

‖𝑄(𝑑)Δ𝑄(𝑑, 휃)‖
∞

= sup
𝜔∈[−𝜋,𝜋]

|�̂�(𝜔) − �̂�𝜃
𝑜(𝜔)|

|�̂�(𝜔)|
 (2.32) 

where �̂�(𝜔) and �̂�𝜃
𝑜(𝜔) are the discrete Fourier transforms of 𝑢(𝑡) and 𝑢𝜃

𝑜(𝑡), 

respectively. The given relation is valid only when |�̂�(𝜔)| > 0 for all frequencies in the 

range and only in case of infinite-length data set. 
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In practice, after obtaining the input discrepancy 𝑢 − 𝑢𝜃
𝑜 with the help of the data set 

on hand, standard non-parametric identification techniques such as windowed 

Empirical Transfer Function Estimation (ETFE) can be implemented to have an 

estimation on ‖𝑄(𝑑)Δ𝑄(휃, 𝑑)‖
∞

for any parameter vector 휃. 

On the other hand, the finite data set length and ignoring the effect of the disturbance 

term 𝑛(𝑡) require to introduce scalar �̃� which creates more reliability to the inequality, 

the inequality becomes as follows 

‖𝑄(𝑑)Δ𝑄(𝑑, 휃)‖
∞

< 1 − �̃� (2.33) 

 

2.2.6 Tuning procedure and algorithm 

In this section the algorithm is presented step-by-step. Then, the results of the 

algorithm are discussed and the comparison with VRFT are shortly given. 

The steps to be followed for tuning the data-driven controller with stability test are 

listed below. 

1. Provide the data set 𝒟 with open-loop experimental input-output pairs, the 

input and complementary sensitivity reference models 𝑄(𝑑) and 𝑊(𝑑), the 

controller family 𝒞 and the scalar �̃� used in Section 2.2.5 

2. Set 𝛿 = 0. Solve (2.28) and obtain 휃𝑁
∗ (0). Estimate ‖𝑄(𝑑)Δ𝑄(𝑑, 휃𝑁

∗ (0))‖
∞

 

3. While ‖𝑄(𝑑)Δ𝑄(𝑑, 휃𝑁
∗ (0))‖

∞
< 1 − �̃� and 𝛿 ≤ 1 

• Increase 𝛿 (i.e., set 𝛿 = 𝛿 + ∆𝛿) 

• Solve (2.28) and obtain 휃𝑁
∗ (𝛿) 

• Estimate ‖𝑄(𝑑)Δ𝑄(𝑑, 휃𝑁
∗ (0))‖

∞
 

4. Set 𝛿∗ = 𝛿, i.e., the larger value of 𝛿 such that the stability can be verified 

Notice that, in case ‖𝑄(𝑑)Δ𝑄(𝑑, 휃𝑁
∗ (0))‖

∞
≥ 1, the controller family results unsuitable, 

or the data are not informative enough. Such problem can be handled by re-running 

the algorithm with a new extended controller family or re-performing an open-loop 

experiment more informative about the process dynamics. 

It is important to emphasize that even in case 𝛿 = 1, i.e., when only the output 

performance is considered, the proposed approach differs from the classic VRFT. In 

fact, in the unfalsified control framework, the fictitious reference is retrieved from the 

candidate controller term inversion 𝐶−1(𝑑, 휃). On the other hand, in VRFT the virtual 

reference is obtained by the reference model inversion 𝑊−1(𝑑). 
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2.3 Set membership identification 

According to [11], set membership (SM) methods have been largely investigated in the 

last 25 years. The SM approach, in general, can be used to estimate any generic function 

of a problem element with error-corrupted available data.  

SM methods rely upon the assumption of unknown but bounded (UBB) error. This is 

due to the fact that the more classical random additive noise assumption is not 

practical for some cases. On the other hand, the UBB error description is more realistic 

and less demanding compared to statistical error description. 

Set membership identification has been first introduced in case of linear systems [14-

16] but has been also extended to nonlinear systems [5,10,11] and piecewise affine 

models [4]. Some recent contributions use SM approaches to derive prediction and 

simulation models with guaranteed accuracy, e.g., [8,12]. Interestingly, SM is a 

framework that can be widely combined with control design methodologies such as 

adaptive model predictive control [9] and model predictive control [7]. 

In this work, set membership is used in view of the fact that, instead of identifying a 

unique model, it provides a set of candidate models based on a finite set data corrupted 

by UBB measurement noise. These models will be used in this thesis for providing 

robust stability guarantees for the real system and will be combined with VRFT to 

enforce desired dynamic performances to the control system. 

2.3.1 Problem formulation 

In this section we describe how SM identification can be used (see also [2] for details) 

to identify a set of models compatible with the UBB noise-corrupted available data. 

The linear time-invariant system 𝑃(𝑑) of order 𝑛 is assumed to generate the available 

data. It can be described by the following autoregressive exogenous (ARX) structure: 

 𝒮: {
𝑧(𝑘) = 휃𝑜𝑇𝜑(𝑘)

𝑦(𝑘) = 𝑧(𝑘) + 𝑑(𝑘)
 

(2.34a) 

(2.34b) 

where 𝑧(𝑘) ∈ ℝ is the output, 𝑦(𝑘) is the output measure, 𝑑(𝑘) is a bounded additive 

measurement noise,  휃0 ∈  ℝ𝑛𝑎+𝑛𝑏 is the system’s parameter and 𝜑(𝑘) ∈  ℝ𝑛𝑎+𝑛𝑏 is the 

regressor defined as: 
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𝜑(𝑘) =

[
 
 
 
 
 
𝑧(𝑘 − 1)

…
𝑧(𝑘 − 𝑛𝑎)

𝑢(𝑘 − 1)
…

𝑢(𝑘 − 𝑛𝑏)]
 
 
 
 
 

 (2.35) 

In Figure 2.5, the scheme of the system is provided. 

 

Figure 2.5: System scheme 

The goal of Set Membership Identification is to define the set of unknown parameters 

휃̂ of the predictor.  

 
�̂� ∶ �̂�(𝑘) = 휃̂𝑇�̂�(𝑘) (2.36) 

that are compliant with the available data, generated according to (2.34). Variable  �̂�(𝑘) 

denotes the one-step ahead predicted output, 휃̂° ∈  ℝ𝑛𝑎+𝑛𝑏  is the set of identified 

parameters and �̂�(𝑘) is the model regressor that includes past available data, i.e., 

 

�̂�(𝑘) =

[
 
 
 
 
 
𝑦(𝑘 − 1)

…
𝑦(𝑘 − 𝑛𝑎)

𝑢(𝑘 − 1)
…

𝑢(𝑘 − 𝑛𝑏)]
 
 
 
 
 

 (2.37) 

The assumptions stated below are commonly requested for consistent set membership 

identification. 

Assumption 2.7. 

a. The system 𝒮 is asymptotically stable 

b. 𝑢(𝑘)  ∈  𝕌 ⊂  ℝ, ∀𝑘 ∈ ℤ, where 𝕌 is compact 

c. |𝑑(𝑘)| < �̅� , ∀𝑘 ∈ ℤ, where �̅� > 0 is known 
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2.3.2 Dataset 

Some preliminary definitions are required before to dive into the details on the SM 

method. The set of all possible regressor vectors is defined as 𝜙, i.e., 

�̂�(𝑘) 𝜖 𝜙 ⊂  ℝ𝑛𝑎+𝑛𝑏 , ∀𝑘 ∈ 𝑍 (2.38) 

Set 𝜙 contains all possible regressor values. In view of Assumption 2.7.b (i.e., that 

𝑢(𝑘)  ∈  𝕌 for all 𝑘 ≥ 0) and Assumption 2.7.a (i.e., regarding the asymptotic stability 

of the system), such set is compact. Additionally, for any regressor value �̂�(𝑘), bearing 

in mind all possible noise realizations, there exists another compact set, denoted with 

𝑦(�̂�(𝑘)) that contains all possible 1-step ahead output measurements.      

�̂�(𝑘) 𝜖 𝜙 ⇒ 𝑦(�̂�(𝑘)) ⊂ ℝ (2.39) 

We are now in the position to define the following set 

𝒥 ∶= {[
�̂�
𝑦
] : 𝑦 𝜖 𝑦(�̂�) ∀�̂�  ∈ 𝜙}  ⊂  ℝ𝑛𝑎+𝑛𝑏+1 (2.40) 

The set 𝒥 cannot be finitely determined. For this reason, we now define its empirical 

counterpart �̃�𝑁, computed based on 𝑁 available pairs (𝑦(𝑘), �̂�(𝑘)). More specifically 

given the 𝑁 output measures 𝑦(𝑘) and regressor values �̂�(𝑘), we define: 

�̃�𝑁 ∶= {[
�̂�(𝑘)
𝑦(𝑘)

] , 𝑘 = 1,… , 𝑁}  ⊂  ℝ𝑛𝑎+𝑛𝑏+1 (2.41) 

The following assumption [2] will be required. 

Assumption 2.8.  

∀𝛽 > 0, ∃𝑁 < ∞ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑2(𝒥, 𝒥𝑁) ≤ 𝛽 where 𝑑2(𝒥, 𝒥𝑁) is Hausdorff distance 

between sets 𝒥 and 𝒥𝑁. 

Assumption 2.8. implies that, if more points are added to the dataset, �̃�𝑁 will 

increasingly approximate 𝒥. This implies that the results considering the set 𝒥 can be 

generalized also in case its empirical counterpart is considered. 

2.3.3 Optimal parameter set and optimal error bound 

Considering a given value of 휃̂ as a parameter of �̂�, the error between the true output 

and predicted one is: 
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휀 (휃̂, �̂�(𝑘)) = 𝑧(𝑘) − �̂�(𝑘) = 𝑧(𝑘) − 휃̂𝑇�̂�(𝑘) (2.42) 

where 휀 (휃̂, �̂�(𝑘)) accounts for both the output noise and fact that 휃̂ is in general differs 

from the ideal parameter vector 휃𝑜. In view of this, we can write the following 

𝑦(𝑘) = 𝑧(𝑘) + 𝑑(𝑘) = 휃̂𝑇�̂�(𝑘) + 𝑑(𝑘) + 휀 (휃̂, �̂�(𝑘)) (2.43) 

In the light of Assumption 2.7.c, equation (2.43) implies that 

|𝑦(𝑘) − 휃̂𝑇�̂�(𝑘)| ≤ �̅� + |휀 (휃̂, �̂�(𝑘))| (2.44) 

The term |휀(휃,̂ �̂�(𝑘))| can be replaced with 휀(̅휃̂), i.e., the global error bound with 

respect to all possible regressors and all feasible noise sequences. Such global error 

bound is defined ideally as 

휀(̅휃̂)  = min
𝜀∈ℝ

휀                  𝑠. 𝑡. |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 휀     ∀ [
�̂�
𝑦
] ∈ 𝒥 (2.45) 

The optimal parameter set Θ̅ is defined as the set of all parameters 휃̂ that minimize 

such global error bound. Assume, as a technical assumption, that we can define a 

compact possibly very large set Ω where Θ̅ surely lies, i.e.,  휃̂ ∈ Ω. Thanks to this, we 

define a set Θ̅ as follows: 

Θ̅ = {휃̂: 휃̂ =  argmin
𝜃∈Ω 

휀(̅휃)} (2.46) 

In view of this definition, we can define the optimum global error bound 휀̅ ∗ as follows: 

휀̅ ∗ = 휀(̅Θ̅) = min
𝜃∈Ω

휀̅ (휃) (2.47) 

Alternatively, the set Θ̅ can be defined as 

Θ̅ = {휃̂  ∈ Ω ∶  |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 휀̅ ∗     ∀ [
�̂�
𝑦
] ∈ 𝒥} (2.48) 

2.3.4 Estimation of the global error bound 

Since set  𝒥 is not finitely determined, it is not possible to apply the definitions 

provided in Section 2.3.3 and compute the optimal parameter set Θ̅ and the global error 
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bound 휀̅ ∗. For this reason, we compute experimentally 𝜆 ≃ 휀̅∗ by solving the following 

linear program (LP):  

𝜆 = min
𝜃∈Ω,𝜆∈𝑅+

𝜆              𝑠. 𝑡.     |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 𝜆     ∀ [
�̂�
𝑦
] ∈ �̃�𝑁 (2.49) 

where �̃�𝑁 is defined as in equation (2.41).  

To estimate an optimal error bound, recall that: 

   |𝑦 − 휃𝑇�̂�| ≤ �̅� + 𝜆  (2.50) 

is equivalent to impose at the same time 

𝑦 − 휃𝑇�̂� ≤ �̅� + 𝜆   ∧    휃𝑇�̂� − 𝑦 ≤ �̅� + 𝜆    (2.51) 

i.e., 

 (휃𝑇(−�̂�)) − 𝜆 ≤ �̅� − 𝑦   ∧    휃𝑇�̂� − 𝜆 ≤ �̅� + 𝑦    (2.52) 

Considering that the previous inequality is defined for all  [
�̂�
𝑦
] ∈ �̃�𝑁, (2.50) can be 

written in a compact way as 

�̅�휃𝜆 ≤ �̅� (2.53) 

where 

�̅� =

[
 
 
 
 
 

𝜑(1)𝑇

⋮
𝜑(𝑁)𝑇

−1
⋮

−1

−𝜑(1)𝑇

⋮
−𝜑(𝑁)𝑇

−1
⋮

−1]
 
 
 
 
 

, 휃𝜆 = [
휃
𝜆
] , �̅� =

[
 
 
 
 
 

𝑦(1) + �̅�
⋮

𝑦(𝑁) + �̅�

−𝑦(1) + �̅�
⋮

−𝑦(𝑁) + �̅�]
 
 
 
 
 

 (2.54) 

In view of this, the following optimization problem must be solved to compute 𝜆: 

𝜆 = min 𝜆       𝑠. 𝑡.   �̅�휃𝜆 ≤ �̅� (2.55) 

Under Assumptions 2.7. and 2.8., the following theorem can be stated [2]: 

Theorem 2.2.  

1. 𝜆 ≤ 휀̅∗ 
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2. ∀𝜌 𝜖 (0, 휀 ̅∗] ∃𝑁 < ∞ ∶  𝜆 ≥ 휀̅∗ − 𝜌  

Thanks to Theorem 2.2., we can conclude that, under suitable persistence of excitation 

conditions, 𝜆 → 휀̅∗ as the number of data points increases. A practical way to estimate 

휀̅∗ from 𝜆 consists of inflating 𝜆 with a multiplying factor 𝛼, i.e., 

휀̂ = 𝛼𝜆,   𝛼 > 1 (2.56) 

With a sufficiently large dataset and sufficiently exciting signals, it is expected that 𝛼 ≈

1. 

2.3.5    Feasible parameter set 

After obtaining an estimate 휀̂ of the global error bound 휀̅ ∗, the next step consists of 

computing Feasible Parameter Set (FPS). The FPS Θ̃ is constructed to contain all the 

parameter values consistent with the prior knowledge on the system and with the 

available data. One way to define the FPS is the following 

Θ̃ = {휃̂ ∈ Ω ∶  |𝑦 − 휃̂𝑇�̂�| ≤ �̅� + 휀̂      ∀ [
�̂�
𝑦
] ∈ �̃�𝑁} (2.57) 

Applying similar argument as the ones used in the Section 2.3.3 

|𝑦 − 휃𝑇�̂�| ≤ �̅� + 휀̂ (2.58) 

The FPS can be defined as the set of parameter values 휃 fulfilling the inequality 

𝐴∗휃 ≤ 𝑏∗ (2.59) 

where 

𝐴∗ =

[
 
 
 
 
 

�̂�(1)𝑇

…
�̂�(𝑁)𝑇

−�̂�(1)𝑇

…
−�̂�(1)𝑇]

 
 
 
 
 

, 𝑏∗ =

[
 
 
 
 
 
 𝑦(1) + �̅� + 휀̂

…

𝑦(𝑁) + �̅� + 휀̂

−𝑦(𝑁) + �̅� + 휀̂
…

−𝑦(𝑁) + �̅� + 휀̂]
 
 
 
 
 
 

 (2.60) 
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3. The proposed approach 

In this chapter we propose an approach for data-driven control design of unknown 

linear systems with robust closed-loop stability guarantees. The proposed approach is 

a data-based control design method. As a prerequisite, a batch of open-loop 

experimental data, corrupted by unknown but bounded (UBB) measurement noise is 

assumed to be available. The controller is obtained by minimizing a cost function that 

penalizes the deviation from the desired closed-loop behavior, as done in VRFT. 

However, the uncertainty of the system model may lead to control system instability. 

To cope with such problem, in our approach, first set membership identification is 

performed (using the same batch of data used for VRFT) and a set of system models, 

compatible with such data, is derived. Then, through suitable linear matrix 

inequalities, robust stability is enforced to all models in such set.  

3.1 Problem statement 

A linear time-invariant system with order 𝑛 is described by the autoregressive 

exogenous (ARX) structure (2.34), reported below for the sake of completeness. 

 𝒮: {
𝑧(𝑘) = 휃𝑜𝑇𝜑(𝑘)

𝑦(𝑘) = 𝑧(𝑘) + 𝑑(𝑘)
 

(3.1a) 

(3.1b) 

Variable 𝑧(𝑘) ∈ ℝ is the system’s output, 𝑦(𝑘) is the output measure, 𝑑(𝑘) is a bounded 

additive measurement noise,  휃𝑜 ∈  ℝ𝑛𝑎+𝑛𝑏 is the system’s parameter and 𝜑(𝑘) ∈

 ℝ𝑛𝑎+𝑛𝑏 is the regressor defined as in (2.35). Recall that the input variable 𝑢(𝑘) is 

included in the regressor matrix 𝜑(𝑘). 

The problem we address is the tuning of the controller based on the available 

experimental dataset. This controller should provide stability guarantees and the 

desired closed-loop performance when the system’s parameters are unknown. 

3.2 Feasible state-space models 

The main idea is to use set-membership to define a set of state-space models, i.e., of 

representations of given system 𝒮 compatible with the data. Stability for whole set of 

state-space models will be guaranteed using suitable LMIs. 
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Based on the results recalled in Section 2.3., system 𝒮 can be rewritten in the following 

form 

𝑦(𝑘) = 휃𝑜𝑇�̂�(𝑘) + 𝑤(𝑘) (3.2) 

where the regressor matrix has the following form 

�̂�(𝑘) =

[
 
 
 
 
 
𝑦(𝑘 − 1)

⋮
𝑦(𝑘 − 𝑛𝑎)

𝑢(𝑘 − 1)
⋮

𝑢(𝑘 − 𝑛𝑏)]
 
 
 
 
 

 (3.3) 

The term 𝑤(𝑘) accounts both for the measurement noise 𝑑(𝑘) and for the prediction 

error 휀(𝑘). 

Importantly, under Assumptions 2.7. and 2.8., the real parameter 휃𝑜, although 

unknown, is such that 휃𝑜 ∈ Θ̃, being Θ̃ the Feasible Parameter Set (FPS) defined in 

Section 2.3.5. Notably, if Θ̃ is bounded, it can be represented as the convex hull of 𝑁𝑣 

vertices 휃𝑖, 𝑖 = 1,… , 𝑁𝑉. More specifically, we can write any 휃𝑜 ∈ Θ̃ as follows 

휃𝑜 = ∑𝜆𝑖휃
𝑖

𝑁𝑉

𝑖=1

 (3.4a) 

where  

   ∑𝜆𝑖 = 1

𝑁𝑉

𝑖=1

 (3.4b) 

 

Model (3.2) can be rewritten as the following difference equation 

𝑦(𝑘) = 휃1
𝑜𝑦(𝑘 − 1) + 휃2

𝑜𝑦(𝑘 − 2) + …  + 휃𝑛𝑎

𝑜 𝑦(𝑘 − 𝑛𝑎)

+ 휃𝑛𝑎+1
𝑜 𝑢(𝑘 − 1) + 휃𝑛𝑎+2

𝑜 𝑢(𝑘 − 1)

+ 휃𝑛𝑎+2
𝑜 𝑢(𝑘 − 2)+  ..  +휃𝑛𝑎+𝑛𝑏

𝑜 𝑢(𝑘 − 𝑛𝑏) + 𝑤(𝑘) 

(3.5) 

which admits the following state-space realization: 
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𝒮: {
𝑥(𝑘 + 1) = 𝐹𝑜𝑥(𝑘) + 𝐺𝑜𝑢(𝑘) + 𝐺𝑤𝑤(𝑘)

𝑦(𝑘) = 𝐻𝑥(𝑘)
 (3.6) 

The state 𝑥(𝑘) is defined as 

𝑥(𝑘) =

[
 
 
 
 
 

𝑦(𝑘)
⋮

𝑦(𝑘 − 𝑛𝑎 + 1)

𝑢(𝑘 − 1)
⋮

𝑢(𝑘 − 𝑛𝑏 + 1)]
 
 
 
 
 

 (3.7) 

and the system, input and output matrices are 

𝐹𝑜 =

[
 
 
 
 
 
 
 
휃1

𝑜 휃2
𝑜 ⋯ 휃𝑛𝑎

0 휃𝑛𝑎+2
𝑜 휃𝑛𝑎+3

𝑜 ⋯ 휃𝑛𝑎+𝑛𝑏
𝑜

1 0 ⋯ 0 0 0 ⋯ 0
0 1 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 ]

 
 
 
 
 
 
 

(𝑛𝑎+𝑛𝑏−1)×(𝑛𝑎+𝑛𝑏−1)

 

𝐺𝑜 =

[
 
 
 
 
 
 
 
휃𝑛𝑎+1

𝑜

0
…
0
1
0
…
0 ]

 
 
 
 
 
 
 

(𝑛𝑎+𝑛𝑏−1)×1

, 𝐺𝑤 =

[
 
 
 
 
 
 
 
1
0
…
0
0
0
…
0]
 
 
 
 
 
 
 

(𝑛𝑎+𝑛𝑏−1)×1

 

𝐻 = [1 0 … 0]1×(𝑛𝑎+𝑛𝑏−1) 

 

 

 

 

 

 

 

 

(3.8) 

Recalling that, in view of equation (3.1a), we can write the unknown 휃𝑜 ∈ Θ̃ as  
휃𝑜 = ∑ 𝜆𝑖휃

𝑖𝑁𝑉
𝑖=1 , also the unknown matrices 𝐹𝑜 and 𝐺𝑜 can be expressed as convex 

combinations of known matrices 𝐹𝑖,𝐺𝑖 with 𝑖 = 1,… ,𝑁𝑉. 

More specifically, we can write 
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[𝐹𝑜 𝐺𝑜] = ∑𝜆𝑖  [𝐹𝑖 𝐺𝑖]

𝑁𝑉

𝑖=1

 (3.9) 

and where 𝐹𝑖 and 𝐺𝑖 are defined as follows 

𝐹𝑖 =

[
 
 
 
 
 
 
 
휃1

𝑖 휃2
𝑖 ⋯ 휃𝑛𝑎

𝑖 휃𝑛𝑎+2
𝑖 휃𝑛𝑎+3

𝑖 ⋯ 휃𝑛𝑎+𝑛𝑏

𝑖

1 0 ⋯ 0 0 0 ⋯ 0
0 1 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 ]

 
 
 
 
 
 
 

 

𝐺𝑖 =

[
 
 
 
 
 
 
 
휃𝑛𝑎+1

𝑖

0
…
0
1
0
…
0 ]

 
 
 
 
 
 
 

 

(3.10) 

3.3 State-feedback regulator: condition for robust 

stability 

In this section we introduce the conditions required for robust asymptotic stability for 

a simple state-feedback regulator. We consider a state-feedback controller of type 

𝑢(𝑘) = 𝐾𝑥(𝑘) (3.11) 

We study the conditions required to the gain 𝐾 ∈ ℝ1×(𝑛𝑎+𝑛𝑏−1) for the asymptotic 

stability of the control system to hold for all possible models (𝐹, 𝐺) compatible with 

the data. 

The closed-loop system dynamics is  

𝑥(𝑘 + 1) = (𝐹𝑜  + 𝐺𝑜𝐾)𝑥(𝑘) + 𝐺𝑤𝑤(𝑘) (3.12) 
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where, as shown in Section 3.2, 𝐹𝑜 and 𝐺𝑜 are uncertain but, according to SM 

identification, are convex combinations of matrices 𝐹𝑖,𝐺𝑖, known for all 𝑖 = 1,… ,𝑁𝑉 

and defined according to equation (3.9). 

According to [3], the Schur stability of 𝐹𝑜 + 𝐺𝑜𝐾 is guaranteed if (sufficient condition) 

∃𝑃 =  𝑃𝑇 > 0 and 𝐾 such that 

(𝐹𝑖 + 𝐺𝑖𝐾)𝑃(𝐹𝑖 + 𝐺𝑖𝐾)
𝑇

− 𝑃 < 0 , ∀𝑖 = 1,… , 𝑁𝑉 (3.13) 

Setting 𝐿 = 𝐾𝑃, the previous condition is equivalent to the existence of 𝑃 =  𝑃𝑇 > 0 and 

𝐿 such that 

𝐹𝑖𝑃𝐹𝑖𝑇 + 𝐹𝑖𝐿𝑇𝐺𝑖𝑇 + 𝐺𝑖𝐿𝐹𝑖𝑇 − 𝐺𝑖𝐿𝑃−1𝐿𝑇𝐺𝑖𝑇 − 𝑃 < 0 (3.14) 

In view of the Schur complement, equation (3.14) is equivalent to the following linear 

matrix inequality (LMI):  

[𝑃 − 𝐹𝑖𝑃𝐹𝑖𝑇 − 𝐹𝑖𝐿𝑇𝐺𝑖𝑇 − 𝐺𝑖𝐿𝐹𝑖𝑇 𝐺𝑖𝐿

𝐿𝑇𝐺𝑖𝑇 𝑃
] > 0 (3.15) 

Therefore, if such 𝑃,𝐿 exist, then 

𝐾 = 𝐿𝑃−1 (3.16) 

is guaranteed to provide asymptotic stability to the closed-loop system for all possible 

parametrizations of the model compatible with the available data.  

3.4 Control schemes for tracking refence signal 

In this section, we show the steps necessary to tune a controller for a system with 

unknown system parameters that, besides guaranteeing closed-loop stability, provides 

the desired control system performance. We investigate three alternative possible 

configurations in the following subsections 3.4.1, 3.4.2 and 3.4.3. 

The general form of such control system is displayed in Figure 3.1. 𝒮 is the LTI system 

described in Section 3.1, ℛ is the regulator to be tuned, 𝑥(𝑘) is the system state vector, 

𝑦(𝑘) is the measured output, 𝑑(𝑘) is additive measurement noise, 𝑦𝑜(𝑘) is the time 

varying reference signal and 𝑀(𝑧) is the reference model and 𝑧 is the unit forward shift 

operator. 
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 Figure 3.1: General form of tracking scheme  

We will combine VRFT and SM to offer both the desired closed-loop performance and 

closed-loop stability. Such multi-objective problem can be achieved by enforcing 

stability conditions for all FPS parametrizations, on the main closed-loop performance 

achievement problem. 

3.4.1  Case I: static state-feedback and known system gain 

In this part, the regulator with closed-loop stability guarantees and the desired closed-

loop performance is derived in the simplified case where the system gain is assumed 

to be known (or a-priori identified). Consistently, the following assumption is given. 

Assumption 3.1. 

The system gain 𝜇 is known. 

Specifically, Assumption 3.1. entails that we know the value of 𝜇 such that, in 

equilibrium conditions, 𝑧̅ = 𝜇�̅�, where 𝑧̅ and �̅� are constant input and output values. 

We define 𝜌 = 𝜇−1. 

3.4.1.1 Proposed control scheme 

Considering the general control scheme in Figure 3.1 and a model 𝒮 in equation (3.1), 

we consider the following control law  

𝑢(𝑘) = 𝜌𝑦𝑜(𝑘) + 𝐾(𝑥(𝑘) − 𝑥𝑜(𝑘))      (3.17) 
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where 𝜌 = 𝜇−1 is known (from Assumption 3.1.), 𝑦𝑜(𝑘) is the possibly time-varying 

reference and 𝑥𝑜(𝑘) can be defined as follows 

𝑥𝑜(𝑘) =

[
 
 
 
 
 
𝑦𝑜(𝑘)

⋮
𝑦𝑜(𝑘)

𝜌𝑦𝑜(𝑘)
⋮

𝜌𝑦𝑜(𝑘)]
 
 
 
 
 

=

[
 
 
 
 
 
1
⋮
1
𝜌
⋮
𝜌]
 
 
 
 
 

𝑦𝑜(𝑘) = 𝜇𝑟
𝑜𝑦𝑜(𝑘) (3.18) 

In the construction of 𝑥𝑜(𝑘), the first 𝑛𝑎 rows must be equal to 𝑦𝑜(𝑘) and the remaining 

𝑛𝑏 − 1 must be equal to 𝑢𝑜(𝑘) = 𝜌𝑦𝑜(𝑘). This is due to the fact that, at steady state, the 

first states in 𝑥(𝑘) correspond to output 𝑦(𝑘) and delayed version of it, while the last 

elements of 𝑥(𝑘) correspond to the delayed versions of input  𝑢(𝑘), whose desired 

steady state is 𝑢𝑜(𝑘) = 𝜌𝑦𝑜(𝑘). 

In Figure 3.2, the configuration obtained when the system gain is known, is shown. 

 

Figure 3.2: Block diagram in case the system gain is known 

 

3.4.1.2 Closed-loop model equations and the stability condition 

The control law (3.17) can be rewritten as 

𝑢(𝑘) = 𝜌𝑦𝑜(𝑘) + 𝐾(𝑥(𝑘) − 𝜇𝑟
𝑜𝑦𝑜(𝑘))      (3.19) 

and can be restated in the following way. 

𝑢(𝑘) = (𝜌 − 𝐾𝜇𝑟
𝑜)𝑦𝑜(𝑘) + 𝐾𝑥(𝑘) (3.20) 
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The latter equation allows to redefine the control system, see Figure 3.3. 

 

Figure 3.3: Equivalent system scheme when the gain is known 

The closed-loop dynamic equation for the state-feedback controller above is 

𝑥(𝑘 + 1) = 𝐹°𝑥(𝑘) + 𝐺°((𝜌 − 𝐾𝜇𝑟
𝑜)𝑦𝑜(𝑘) + 𝐾𝑥(𝑘)) + 𝐺𝑤𝑤(𝑘) (3.21) 

By means of simple computations, we obtain that 

𝑥(𝑘 + 1) = (𝐹° + 𝐺°𝐾)𝑥(𝑘) + 𝐺°(𝜌 − 𝐾𝜇𝑟
𝑜)𝑦𝑜(𝑘) + 𝐺𝑤𝑤(𝑘) (3.22) 

Notice that the closed loop Schur stability is guaranteed if ∃𝑃 =  𝑃𝑇 > 0 and 𝐾 such 

that (3.15) holds for all 𝑖 = 1, … ,𝑁𝑉. 

3.4.1.3 VRFT cost function 

As discussed, we assume that an open loop experiment with 𝑁-many data points (i.e., 

experimental data pair (𝑢(𝑘), 𝑦(𝑘))) is performed. The following VRFT cost function 

can be defined for any state-feedback controller parameter vector 𝐾 

𝐽1(𝐾) = ∑ (𝑢(𝑘) − 𝜌𝑦𝑜(𝑘) − (𝑥(𝑘) − 𝜇𝑟
𝑜𝑦𝑜(𝑘))𝑇𝐾𝑇)2

𝑁−𝑛𝑟

𝑘=1

 (3.23) 

where 𝑦𝑜(𝑘) can be derived from 𝑦(𝑘): according to system diagram in Figure 3.2, we 

should enforce 
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𝑦(𝑘) = 𝑀(𝑧)𝑦𝑜(𝑘) (3.24) 

In view of this, 𝑦𝑜(𝑘) is the virtual reference, obtained as 

𝑦𝑜(𝑘) = 𝑀−1(𝑧)𝑦(𝑘) (3.25) 

The VRFT cost function can be written in a more compact form as 

𝐽1(𝐾) = ‖𝕦1
° − 𝕩1

° 𝐾𝑇‖
2
 (3.26) 

where 

𝕦1
° = [

𝑢(1) − 𝜌𝑦𝑜(1)
⋮

𝑢(𝑁 − 𝑛𝑟) − 𝜌𝑦𝑜(𝑁 − 𝑛𝑟)
] 

𝕩1
° = [

𝑥(1) − 𝜇𝑟
𝑜𝑦𝑜(1)

⋮
𝑥(𝑁 − 𝑛𝑟) − 𝜇𝑟

𝑜𝑦𝑜(𝑁 − 𝑛𝑟)
] 

(3.27) 

Note that, in the unconstrained case, minimizing (3.26) leads to the following solution,  

𝐾𝑇 = 𝕩1
° +

𝕦1
°  (3.28) 

where 𝕩1
° +

 is the pseudo-inverse of 𝕩1
° . At this point, we define the following 

alternative cost function 𝐽12 compatible with a reformulation as an LMI optimization 

problem in variables 𝑃 and 𝐿 based on (3.26).  

𝐽12 = ‖𝕩1
° +

𝕦1
° − 𝐾𝑇‖

𝑃

2
 (3.29) 

where 

𝐾 = 𝐿𝑃−1 (3.30) 

The cost function 𝐽12 in equation (3.29) can be rewritten as 

𝐽12 = 𝕦1
° 𝑇

(𝕩1
° +

)𝑇𝑃𝕩1
° +

𝕦1
° + 𝐿𝑃−1𝐿𝑇 − 2𝕦1

° 𝑇
(𝕩°+)𝑇𝐿𝑇 (3.31) 

Note that, minimizing 𝐽12 is equivalent to minimizing a scalar 𝜎 such that 

𝜎 − 𝕦1
° 𝑇

(𝕩1
° +

)𝑇𝑃𝕩1
° +

𝕦1
° − 𝐿𝑃−1𝐿𝑇 + 2𝕦1

° 𝑇
(𝕩°+)𝑇𝐿𝑇 ≥ 0 (3.32) 
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The latter inequality can be rewritten, thanks to the Schur complement, as 

[𝜎 − 𝕦1
° 𝑇

(𝕩1
° +

)
𝑇
𝑃𝕩1

° +
𝕦1

° + 2𝕦1
° 𝑇

(𝕩°+)𝑇𝐿𝑇 𝐿

𝐿𝑇 𝑃
] ≥ 0 (3.33) 

 

3.4.1.4 VRFT-based optimization problem with stability guarantees 

Based on the results given in Section 3.4.1.2 and Section 3.4.1.3, we are now in the 

position to state the main optimization problem that allows to enforce VRFT-like 

performances and, at the same time, to guarantee robust stability of the closed loop 

system: 

min
𝜎,𝑃,𝐿

𝜎 (3.34a) 

s.t.  

[𝜎 − 𝕦1
° 𝑇

(𝕩1
° +

)
𝑇
𝑃𝕩1

° +
𝕦1

° + 2𝕦1
° 𝑇

(𝕩°+)𝑇𝐿𝑇 𝐿

𝐿𝑇 𝑃
] ≥ 0 

 

(3.34b) 

[𝑃 − 𝐹𝑖𝑃𝐹𝑖𝑇 − 𝐹𝑖𝐿𝑇𝐺𝑖𝑇 − 𝐺𝑖𝐿𝐹𝑖𝑇 𝐺𝑖𝐿

𝐿𝑇𝐺𝑖𝑇 𝑃
] > 0 

∀𝑖 = 1,… ,𝑁𝑉 

(3.34c) 

To sum up, if such 𝑃 and 𝐿 exist, then the control law (3.17) with 𝐾 = 𝐿𝑃−1 guarantees 

asymptotic stability to the closed-loop system for all possible parametrizations of the 

model compatible with the available data and similar closed-loop behavior with 

respect to reference model. 

3.4.1.5 Algorithm 

In this section, we present the algorithm used for the tuning of the regulator 

parameters. 

The steps of the algorithm for Case I are the following: 

1. Collect a dataset 𝒟 with an open-loop experiment, select the reference model 𝑀 

and the inflation parameter 𝛼, and provide the maximum value for the bounded 

additive noise �̅� 

2. Compute the global error bound estimation 휀̂ with 𝒟 and �̅� by following the 

procedure as discussed in Section 2.3.4. 
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3. Find the 𝑁𝑉 vertives of the feasible parameter set (FPS) Θ̃ as in Section 2.3.5 and 

construct the corresponding state-space models (𝐹𝑖,𝐺𝑖 pairs) according to 

Section 3.2 for 𝑖 = 1,… ,𝑁𝑉 

4. Compute 𝑦𝑜(𝑘), construct 𝕦1
°  and 𝕩1

° , and compute the pseudo inverse matrix 

𝕩1
° +

 
5. Solve the optimization problem in (3.34) 

6. Set the parameter vector 𝐾 = 𝐿𝑃−1 in case a feasible solution. 

3.4.2  Case II: state-feedback controller with unknown system gain 

In this part, the control design with closed-loop stability guarantees and desired 

closed-loop performance is derived when the system gain is unknown. 

3.4.2.1 Proposed control scheme 

The main objective in this part is coping with the unknown system gain. In order to 

achieve it, starting from the case considered in Section 3.4.1, a new control scheme is 

developed. The control law introduced in (3.17) can be restated as the following 

𝑢(𝑘) = 𝜌𝑦𝑜(𝑘) − 𝐾𝑥𝑜(𝑘) + 𝐾𝑥(𝑘) (3.35) 

Since the system gain 𝜌 is unknown, the control law can be restated as 

𝑢(𝑘) = 𝛾𝑦𝑜(𝑘) + 𝐾𝑥(𝑘) (3.36) 

where 𝛾 is the necessary additional scalar unknown parameter to be tuned for 

compensating for the unknown gain. 

The corresponding control system is depicted in Figure 3.4. 

 

Figure 3.4: Block diagram in case the system gain is unknown 
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3.4.2.2 Closed-Loop model equations and stability condition 

Considering the uncertain model 𝒮 in equation (3.1) and the state-feedback control law 

in (3.36), the closed-loop dynamic equation can be obtained as 

𝑥(𝑘 + 1) = 𝐹°𝑥(𝑘) + 𝐺°(𝛾𝑦𝑜(𝑘) + 𝐾𝑥(𝑘)) + 𝐺𝑤𝑤(𝑘) (3.37) 

By means of simple computations, it can be rewritten as follows 

𝑥(𝑘 + 1) = (𝐹° + 𝐺°𝐾)𝑥(𝑘) + 𝐺°𝛾𝑦𝑜(𝑘) + 𝐺𝑤𝑤(𝑘) (3.38) 

According to dynamic equation above, the closed-loop Schur stability is provided in 

case of ∃𝑃 =  𝑃𝑇 > 0 and 𝐾 such that (3.15) holds for all 𝑖 = 1,… ,𝑁𝑉. 

3.4.2.3 VRFT cost function 

The following VRFT cost function can be defined for any state-feedback controller 

parameter vector 𝐾 and scalar parameter 𝛾 

𝐽2(𝐾, 𝛾) = ∑ (𝑢(𝑘) − 𝜇𝑦𝑜(𝑘) − 𝐾𝑥(𝑘))2

𝑁−𝑛𝑟

𝑘=1

 (3.39) 

The VRFT cost function can be reorganized as follows 

𝐽2(𝐾, 𝛾) = ∑ (𝑢(𝑘) − [𝑦𝑜(𝑘) 𝑥𝑇(𝑘)] [
𝛾

𝐾𝑇])
2

𝑁−𝑛𝑟

𝑘=1

 (3.40) 

where 𝑦𝑜(𝑘) is the virtual reference and, according to Figure 3.4, we request to have 

the following relation 

𝑦𝑜(𝑘) = 𝑀−1(𝑧)𝑦(𝑘) (3.41) 

The VRFT cost function in (3.40) can be written as 

𝐽2(𝐾, 𝛾) = ‖𝕦2
° − 𝕩2

° [
𝛾

𝐾𝑇]‖
2

 (3.42) 

where 

𝕦2
° = [

𝑢(1)
⋮

𝑢(𝑁 − 𝑛𝑟)
] (3.43) 
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𝕩2
° = [

𝑦𝑜(1)
⋮

𝑦𝑜(𝑁 − 𝑛𝑟)

𝑥𝑇(1)
⋮

𝑥𝑇(𝑁 − 𝑛𝑟)
] 

Remarkably, in the unconstrained case the solution of (3.42) is the following 

[
𝛾

𝐾𝑇] = 𝕩2
° +

𝕦2
°  (3.44) 

Where 𝕩2
° +

 is the pseudo-inverse of 𝕩2
° . This expression motivates the alternative cost 

function, which allows us to have an optimization problem in the variables 𝑃 and 𝐿.  

𝐽22(𝛾, 𝑃, 𝐿) = ‖𝕩2
° +

𝕦2
° − [

𝛾

𝐾𝑇]‖
[
1 0
0 𝑃

]

2

 (3.45) 

where 

𝐾 = 𝐿𝑃−1 (3.46) 

We can obtain from (3.45) the following 

𝐽22(𝛾, 𝑃, 𝐿) = (𝕩2
° +

𝕦2
° )𝑇 [

1 0
0 𝑃

] 𝕩2
° +

𝕦2
° − (𝕩2

° +
𝕦2

° )
𝑇

[
1 0
0 𝑃

] [
𝛾

𝑃−1𝐿𝑇]

− [𝛾 𝐿𝑃−1] [
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° + [𝛾 𝐿] [

1 0
0 𝑃−1] [

𝛾

𝐿𝑇] 
(3.47) 

We can introduce a scalar 𝜎 that verify (3.47) in order to introduce an equivalent 

minimization problem to 𝐽22  

min
𝜎,𝛾,𝑃,𝐿

𝜎 (3.48a) 

s.t.  

𝜎 − (𝕩2
° +

𝕦2
° )

𝑇

[
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° + (𝕩2

° +
𝕦2

° )
𝑇

[
1 0
0 𝑃

] [
𝛾

𝑃−1𝐿𝑇]

+ [𝛾 𝐿𝑃−1] [
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° − [𝛾 𝐿] [

1 0
0 𝑃−1] [

𝛾

𝐿𝑇] ≥ 0 

 

(3.48b) 

The Schur complement of (3.48) is given as follows 

[
𝜎 − (𝕩2

° +
𝕦2

° )
𝑇

[
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° + 2(𝕩2

° +
𝕦2

° )
𝑇

[
𝛾

𝐿𝑇] [𝛾 𝐿]

[
𝛾

𝐿𝑇] [
1 0
0 𝑃

]
] ≥ 0 (3.49) 
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3.4.2.4 VRFT-based optimization problem with stability guarantees 

Based on the VRFT-based cost function in the Section 3.4.2.3 and the closed-loop 

stability condition which can be also stated in terms of LMIs as shown in Section 

3.4.2.2, we are now in the position to introduce the main optimization problem that 

allows to enforce VRFT-like performances and, at the same time, to guarantee robust 

stability of the closed loop system: 

min
𝜎,𝛾,𝑃,𝐿

𝜎 (3.50a) 

s.t.  

[
𝜎 − (𝕩2

° +
𝕦2

° )
𝑇
[
1 0
0 𝑃

] 𝕩2
° +

𝕦2
° + 2(𝕩2

° +
𝕦2

° )
𝑇
[
𝛾

𝐿𝑇] [𝛾 𝐿]

[
𝛾

𝐿𝑇] [
1 0
0 𝑃

]
] ≥ 0 

 

(3.50b) 

[𝑃 − 𝐹𝑖𝑃𝐹𝑖𝑇 − 𝐹𝑖𝐿𝑇𝐺𝑖𝑇 − 𝐺𝑖𝐿𝐹𝑖𝑇 𝐺𝑖𝐿

𝐿𝑇𝐺𝑖𝑇 𝑃
] > 0 

∀𝑖 = 1,… , 𝑁𝑉 

(3.50c) 

If such 𝑃 and 𝐿 exist, then the control law 𝐾 = 𝐿𝑃−1 guarantees the asymptotic stability 

of the closed-loop system for all possible parametrizations of the model compatible 

with the available data and a similar closed-loop behavior with respect to the reference 

model. 

Remarkably, to have better steady-state performance, a further additional step is 

required. In this step, we retune the scalar 𝛾 with the known 𝐾 vector obtained in (3.50). 

The corresponding additional step can be written as the following cost function 𝐽2
∗ 

where the new optimum scalar gain is denoted with 𝛾∗ 

𝛾∗ = argmin
�̃�

𝐽2
∗(�̃�) = ‖𝕩2

° +
𝕦2

° − [
�̃�
𝐾

]‖
2

 (3.51) 

3.4.2.5 Algorithm 

In this section, we derive the algorithm for the parameter tuning procedure. 

The steps of the algorithm for Case II are the following 
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1. Collect a dataset 𝒟 with an open-loop experiment, select the reference model 𝑀 

and the inflation parameter 𝛼, and provide the maximum value for the bounded 

additive noise �̅� 

2. Compute the global error bound estimation 휀̂ (with 𝒟 and �̅�) by following the 

procedure as discussed in Section 2.3.4. 

3. Find the 𝑁𝑉 vertices of the Feasible Parameter Set (FPS) Θ̃ as in Section 2.3.5 and 

construct the corresponding state-space models (𝐹𝑖,𝐺𝑖 pairs) according to 

Section 3.2 for 𝑖 = 1,… ,𝑁𝑉 

4. Compute 𝑦𝑜(𝑘), construct 𝕦2
°  and 𝕩2

° , and compute the pseudo-inverse matrix 

𝕩2
° +

 
5. Solve the optimization problem in (3.50) 

6. Set the parameter vector 𝐾 = 𝐿𝑃−1 in case a feasible solution. 

7. Set 𝛾 = 𝛾∗ after performing (3.51)  

3.4.3  Case III: integrator 

In this part, we investigate the regulator with closed-loop stability guarantees and 

desired closed-loop performance in case the controller is equipped with an explicit 

integrator. 

3.4.3.1 Proposed control scheme 

Considering the uncertain model 𝒮 in equation (3.1), we consider the control scheme 

depicted in Figure 3.5. 

 

Figure 3.5: Block diagram in case of controller equipped with explicit integrator 

According to Figure 3.5, the control law can be defined using the following state-space 

realization 
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{
휂(𝑘 + 1) = 휂(𝑘) + 𝑒(𝑘)

𝑢(𝑘) = 𝐾𝑥(𝑘)  + 𝑔(휂(𝑘) + 𝑒(𝑘)) 
 (3.52) 

3.4.3.2 Closed-loop model equations and the stability condition 

The closed-loop dynamic equation with the state-feedback controller (3.52) is 

𝑥(𝑘 + 1) = 𝐹°𝑥(𝑘) + 𝐺° (𝐾𝑥(𝑘) + 𝑔(휂(𝑘) − 𝐻𝑥(𝑘))) 

휂(𝑘 + 1) = 휂(𝑘) − 𝐻𝑥(𝑘) 
(3.53) 

where 𝑔 is the additional scalar parameter to be tuned together with vector 𝐾. Note 

that, since the reference signal 𝑦𝑜(𝑘) and the signal 𝑤(𝑘) do not affect the stability, 

they are neglected in (3.53). In the light of this fact, the error term in (3.53) can described 

by −𝑦(𝑘) = −𝐻𝑥(𝑘). 

The alternative closed-loop system dynamics can be rewritten as the following state-

space realization by defining the new state variable 휁(𝑘) = [𝑥(𝑘)𝑇 휂(𝑘)]𝑇 

휁(𝑘 + 1) = 𝐷𝑜휁(𝑘) (3.54) 

where  

𝐷𝑜 = [
𝐹𝑜 + 𝐺𝑜𝐾 − 𝑔𝐺𝑜𝐻 𝑔𝐺𝑜

−𝐻 1
] (3.55) 

𝐷𝑜 = 𝐴𝑜 + 𝐵𝑜𝐽 can be rewritten as the following  

𝐷𝑜 = [
𝐹𝑜 0(𝑛𝑎+𝑛𝑏−1)x1

−𝐻 1
] + [

𝐺𝑜

0
] [𝐾 − 𝑔𝐻 𝑔] (3.56) 

where 𝐴𝑜 = [
𝐹𝑜 0(𝑛𝑎+𝑛𝑏−1)x1

−𝐻 1
], 𝐵𝑜 = [

𝐺𝑜

0
] and 𝐽 = [𝐾 − 𝑔𝐻 𝑔]. Moreover, the 

following further decomposition is required in order to have parameters directly in 

one vector 

[𝐾 𝑔] = 𝐽𝐸−1 (3.57) 

where 

𝐸 = [
𝐼(𝑛𝑎+𝑛𝑏−1) 0(𝑛𝑎+𝑛𝑏−1)x1

−𝐻 1
] (3.58) 
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Notably, (3.9) is also valid for the pair 𝐴𝑜 and 𝐵𝑜 and the following relation is verified 

for 𝑖 = 1,… ,𝑁𝑉 

[𝐴𝑜 𝐵𝑜] = ∑𝜆𝑖  [𝐴𝑖 𝐵𝑖]

𝑁𝑉

𝑖=1

 (3.59) 

Note that, an alternative robust stability condition considered for Case III. The 

derivation of a condition for robust stability in terms of LMIs is shown step by step 

starting from verifying the Schur stability of the closed-loop system. 

Considering the closed-loop system given in (3.54), the Schur stability of 𝐷𝑜 is 

guaranteed if ∃𝑃 =  𝑃𝑇 > 0 and 𝑡 > 0 such that 

𝐷𝑜𝑇𝑃−1𝐷𝑜 − 𝑃−1 + 𝑡𝐼(𝑛𝑎+𝑛𝑏) ≤ 0 (3.60) 

Consistently, (3.60) holds if and only if ∃𝑃 =  𝑃𝑇 > 0 such that 

𝑃(𝐷𝑜𝑇𝑃−1𝐷𝑜 − 𝑃−1 + 𝑡𝐼(𝑛𝑎+𝑛𝑏))𝑃 ≤ 0 (3.61) 

After substituting 𝐷𝑜 = 𝐴𝑜 + 𝐵𝑜𝐽 and basic computations, (3.61) can be rewritten as 

follows 

𝑃 − [𝑃 (𝐴𝑜𝑃 + 𝐵𝑜𝐿)𝑇 ] [
𝑡𝐼(𝑛𝑎+𝑛𝑏) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏)

0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏) 𝑃−1 ] [
𝑃

𝐴𝑜𝑃 + 𝐵𝑜𝐿
] ≥ 0 (3.62) 

where 𝐿 = 𝐽𝑃. In view of the Schur complement, (3.62) is equivalent the following LMI 

[

𝑃 𝑃 (𝐴𝑜𝑃 + 𝐵𝑜𝐿)𝑇

𝑃 𝑡−1𝐼(𝑛𝑎+𝑛𝑏) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏)

(𝐴𝑜𝑃 + 𝐵𝑜𝐿) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏) 𝑃

] ≥ 0 (3.63) 

Considering (3.59), if ∃𝑃 = 𝑃𝑇 > 0 and 𝐿 such that for 𝑖 = 1,… ,𝑁𝑉 and 𝑡 > 0 (3.63) 

holds, then the closed-loop asymptotic stability for (3.54) is guaranteed for [𝐾 𝑔] =

𝐿𝑃−1𝐸−1. 

3.4.3.3 VRFT cost function 

The following VRFT cost function can be defined for any state-feedback controller 

parameter vector 𝐾 and scalar parameter 𝑔 
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𝐽3(𝐾, 𝑔) = ∑ (𝑢(𝑘) − [𝐾 𝑔] [
𝑥(𝑘)
�̅�(𝑘)

])
2

𝑁−𝑛𝑟

𝑘=1

 (3.64) 

where 𝑦𝑜(𝑘) is the virtual reference and �̅�(𝑘) the integrated virtual error. The virtual 

reference 𝑦𝑜(𝑘) can be derived from 𝑦(𝑘) according to Figure 3.5, by computing 

𝑦𝑜(𝑘) = 𝑀−1(𝑧)𝑦(𝑘) (3.65) 

On the other hand, after obtaining the virtual reference, the integrated error �̅�(𝑘) can 

be derived by computing recursively the equation set listed below 

�̅�(𝑘) = 𝑦𝑜(𝑘) − 𝑦(𝑘) (3.66a) 

�̅�(𝑘) = �̅�(𝑘 − 1) + �̅�(𝑘) (3.66b) 

The VRFT cost function in (3.64) can be written in a more compact form as 

𝐽3(𝐾, 𝑔) = ‖𝕦3
° − 𝕩3

° 𝐸−𝑇𝐽𝑇‖
2
 (3.67) 

where 

𝕦3
° = [

𝑢(1)
⋮

𝑢(𝑁 − 𝑛𝑟)
] 

𝕩3
° = [

𝑥𝑇(1) �̅�(1)
⋮ ⋮

𝑥𝑇(𝑁 − 𝑛𝑟) �̅�(𝑁 − 𝑛𝑟)
] 

(3.68) 

Note that, by considering (3.57), minimizing (3.67) leads to the following solution in 

the unconstrained case,  

[𝐾 𝑔]𝑇 = 𝕩3
° +

𝕦3
°  (3.69) 

where 𝕩3
° +

 is the pseudo-inverse of 𝕩3
° . At this point, we define the following 

alternative cost function 𝐽32 compatible with a reformulation as an LMI optimization 

problem in the variables 𝑃 and 𝐿 based on (3.67).  

𝐽32(𝐿, 𝑃) = ‖𝐸𝑇𝕩3
° +

𝕦3
° − 𝐽𝑇‖

𝑃

2
 (3.70) 
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where 

𝐿 = 𝐽𝑃 (3.71) 

The cost function 𝐽32 in equation (3.70) can be rewritten as 

𝐽32(𝐿, 𝑃) = 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)𝑇𝑃𝐸𝑇𝕩3
° +

𝕦3
° + 𝐿𝑃−1𝐿𝑇

− 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇
𝐿𝑇 − 𝐿𝐸𝑇𝕩3

° +
𝕦3

°  
(3.72) 

Note that, minimizing 𝐽32 is equivalent to minimizing a scalar 𝜎 such that 

𝜎 − 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)𝑇𝑃𝐸𝑇𝕩3
° +

𝕦3
° − 𝐿𝑃−1𝐿𝑇 + 2𝕦3

° 𝑇
(𝐸𝑇𝕩3

° +
)𝑇𝐿𝑇 ≥ 0 (3.73) 

The latter inequality can be rewritten, thanks to the Schur complement, as 

[𝜎 − 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇
𝑃𝐸𝑇𝕩3

° +
𝕦3

° + 2𝐿𝐸𝑇𝕩3
° +

𝕦3
° 𝐿

𝐿𝑇 𝑃
] ≥ 0 (3.74) 

 

3.4.3.4 VRFT-based optimization problem with stability guarantees 

We have a VRFT-based cost function which is stated in terms of LMI as shown in 

Section 3.4.3.3 and the closed-loop stability condition which can be also stated in terms 

of LMIs as shown in Section 3.4.3.2. This motivates the following optimization problem 

that allows to enforce VRFT-like performances and, at the same time, to guarantee 

robust stability of the closed-loop system: 

min
𝜎,𝑃,𝐿

𝜎 (3.75a) 

s.t.  

[𝜎 − 𝕦3
° 𝑇

(𝐸𝑇𝕩3
° +

)
𝑇
𝑃𝐸𝑇𝕩3

° +
𝕦3

° + 2𝐿𝐸𝑇𝕩3
° +

𝕦3
° 𝐿

𝐿𝑇 𝑃
] ≥ 0 

 

(3.75b) 

[

𝑃 𝑃 (𝐴𝑖𝑃 + 𝐵𝑖𝐿)𝑇

𝑃 𝑡−1𝐼(𝑛𝑎+𝑛𝑏) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏)

(𝐴𝑖𝑃 + 𝐵𝑖𝐿) 0(𝑛𝑎+𝑛𝑏)x(𝑛𝑎+𝑛𝑏) 𝑃

] ≥ 0 

∀𝑖 = 1,… ,𝑁𝑉, 𝑤𝑖𝑡ℎ 𝑡 > 0 

(3.75c) 
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To sum up, if such 𝑃 and 𝐿 exist, then the control law (3.52) with  
[𝐾 𝑔] = 𝐿𝑃−1𝐸−1 guarantees asymptotic stability for the closed-loop system for all 

possible parametrizations of the model compatible with the available data and similar 

closed-loop behavior with respect to reference model. 

3.4.3.5 Algorithm 

In this section, we present the algorithm for the parameter tuning.  

The steps of the algorithm for Case III are the following 

1. Collect a dataset 𝒟 with an open-loop experiment, select the reference model 𝑀 

and the inflation parameter 𝛼, and provide a positive scalar 𝑡 and the maximum 

value for the bounded additive noise �̅� 

2. Compute the global error bound estimation 휀̂ 

3.  with 𝒟 and �̅� by following the procedure as discussed in Section 2.3.4. 

4. Find the 𝑁𝑉 vertices of Feasible Parameter Set (FPS) Θ̃ as in Section 2.3.5 and the 

state-space models (𝐴𝑖,𝐵𝑖 pairs) according to (3.56) and (3.59) by using (3.10) for 
𝑖 = 1, … ,𝑁𝑉 

5. Compute 𝑦𝑜(𝑘) and �̅�(𝑘), construct 𝐸, 𝕦3
°  and 𝕩3

° , and compute the pseudo-

inverse matrix 𝕩3
° +

 

6. Solve the optimization problem (3.75) 

7. Set the parameter vector [𝐾 𝑔] = 𝐿𝑃−1𝐸−1 in case a feasible solution. 
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4. Simulation example 

In this chapter, the data-driven methods proposed in Chapter 3 for control of unknown 

linear systems with robust closed-loop stability guarantees are validated on a 

simulation example in the MATLAB/Simulink environment. 

4.1 Mathematical model 

We consider the system illustrated in Figure 4.1, consisting of a cascade 

interconnection of three tanks: 𝑢1 is the input flowrate, while ℎ𝑖  corresponds to the 

water level each reservoir, 𝑖 = 1,2,3. 

 

Figure 4.1: Three cascaded tanks system 

The corresponding linearized centralized model is the following 

{

𝑆ℎ1̇ = −𝑘ℎ1 + 𝑢1

𝑆ℎ2̇ = 𝑘ℎ1 − 𝑘ℎ2

𝑆ℎ3̇ = 𝑘ℎ2 − 𝑘ℎ3

 (4.1) 

where 𝑆 = 1 𝑚2 and 𝑘 = 1 𝑚
2

𝑠⁄ . Note that, since the model is linearized around a 

nominal condition, all the variables of the model should be regarded as differences 

with respect to the nominal values. We assume that all levels are measurable. Defining 
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�̂� = [ℎ1 ℎ2 ℎ3] 
𝑇 and 𝑢 = 𝑢1, the system dynamics is described by the following 

model 

�̇̂� = [
−1 0 0
1 −1 0
0 1 −1

] �̂� + [
1
0
0
] 𝑢 (4.2) 

 

4.2  Process implementation 

We define the plant considering 𝑢1 as input and ℎ3 as output. The plant transfer 

function can be written as follows 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑠 + 1)3
=

1

𝑠3 + 3𝑠2 + 3𝑠 + 1
 (4.3) 

The system is discretized with a sampling time 𝑇𝑠 of 0.5 s with the Zero Order Hold 

method and the corresponding discrete-time transfer function is  

𝑌(𝑧)

𝑈(𝑧)
=

0.01439𝑧−1 + 0.03973𝑧−2 + 0.006794𝑧−3

1 − 1.82𝑧−1 + 1.104𝑧−2 − 0.2231𝑧−3
 (4.4) 

In Figure 4.2, the open-loop step responses of the system can be observed. 

 

Figure 4.2: Open-loop step responses in discrete and continuous time 
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Note that, for a more realistic simulation, the output measurement is corrupted by an 

additional random noise. Therefore, the system in equation (4.4) can be rewritten as 

the following difference equation form, as done in (3.5) where 𝑤(𝑘) is responsible for 

the noise effect and prediction error 

𝑦(𝑘) = 1.82𝑦(𝑘 − 1) − 1.104𝑦(𝑘 − 2) + 0.2231𝑦(𝑘 − 3)
+ 0.01439𝑢(𝑘 − 1) + 0.03973𝑢(𝑘 − 2)
+ 0.006794𝑢(𝑘 − 3) + 𝑤(𝑘) 

(4.5) 

By taking into consideration the state-space realization in Chapter 3, the states can be 

defined as 

𝑥(𝑘) =

[
 
 
 
 

𝑦(𝑘)

𝑦(𝑘 − 1)

𝑦(𝑘 − 2)

𝑢(𝑘 − 1)
𝑢(𝑘 − 2)]

 
 
 
 

 (4.6) 

Furthermore, bearing in mind that 휃𝑜 is the real parameter vector and defined as 휃𝑜 =

[1.82 −1.104 0.2231 0.01439 0.03973 0.006794]𝑇, the state-space matrices for 

the real system 

{
𝑥(𝑘 + 1) = 𝐹𝑜𝑥(𝑘) + 𝐺𝑜𝑢(𝑘) + 𝐺𝑤𝑤(𝑘)

𝑦(𝑘) = 𝐻𝑥(𝑘)
 (4.7) 

where 

𝐹° =

[
 
 
 
 
1.82 −1.104 0.2231 0.03973 0.006794
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0 ]

 
 
 
 

5×5

 

𝐺𝑜 =

[
 
 
 
 
0.01439

0
0
1
0 ]

 
 
 
 

, 𝐺𝑤 =

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

 

𝐻 = [1 0 0 0 0] 

 

 

 

 

 

 

 

 

(4.8) 
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4.3 Data collection  

Since the proposed approach is a data-driven offline noniterative method, a batch of 

data is required. Moreover, the same dataset is used for the controller tuning 

procedure as well as for computation of the feasible parameter set (FPS). 

The batch of data consists of 10000 input-output pairs collected with an open-loop 

experiment on the simulated system. The system is fed by a multilevel pseudo-random 

signal (MPRS) in order to have a proper excitement on the system. The amplitude of 

the input signal is uniformly selected in the range [−1,1]. Furthermore, the first half of 

the dataset has switching period of 𝑇𝑠, i.e., 0.5 s and the other half has switching period 

of 50𝑇𝑠, i.e., 25 s. The choice of two different frequencies allows for a better 

identification for both the fast dynamics and slow ones. 

The output measurement is affected by a measurement noise which varies uniformly 

at each time step in the range [-0.005,0.005]. The corresponding signal to noise ratio 

(SNR) is 42.616 dB. The corresponding dataset is shown in Figure 4.3. 

 

Figure 4.3: Input and output measurements of the open-loop experiment 
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4.4 Feasible parameter set (FPS) 

According to equation (4.5), the regressor matrix can be obtained as follows 

 

𝜑(𝑘) =

[
 
 
 
 
 
 
𝑦(𝑘 − 1)

𝑦(𝑘 − 2)

𝑦(𝑘 − 3)

𝑢(𝑘 − 1)

𝑢(𝑘 − 2)
𝑢(𝑘 − 3)]

 
 
 
 
 
 

 (4.9) 

The next step concerns the estimation of the global error bound. Therefore, the 

computation, (2.56) is performed with an inflation parameter 𝛼 equal to 1.2. The 

corresponding global error bound estimation is found. 

Thanks to the function lcon2vert [32] in MATLAB, the feasible parameter set Θ̃ is 

obtained with 3469 vertices. Since the number of parameters to be identified is a vector 

of six elements, the FPS is in a six-dimensional space. For the sake of graphical 

representation, the projections of the FPS in three-dimensional spaces are represented 

in Figure 4.4. Note that the real parameters are included in the FPS. 

 

Figure 4.4: Feasible Parameter Set (blue spheres correspond to the real parameters) 
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4.5 Reference model 

A reference model is selected, i.e.,  

𝑀(𝑧) =
0.4𝑧−1

1 − 0.6𝑧−1
 (4.10) 

In Figure 4.5, the open-loop response of the system and the reference model response 

for a step experiment are depicted. The open-loop response takes 18-time steps while 

the reference model takes 10-time steps to reach 1% settling time. It means we are 

expecting a much faster response. 

 

 Figure 4.5: Step responses of open-loop system and reference model 

Starting from (4.10), the following difference equation can be obtained 

𝑦(𝑘) = 0.6𝑦(𝑘 − 1) + 0.4𝑟(𝑘 − 1) (4.11) 

In order to obtain the virtual reference, the following computation is required 

𝑟(𝑘) =
𝑦(𝑘 + 1) − 0.6𝑦(𝑘)

0.4
 (4.12) 

Since VRFT is solved offline, future output measurement values are available without 

any causality problem. 
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4.6  Validation 

To evaluate the performances, the closed-loop results are compared with the desired 

closed-loop counterparts. The following performance index will be used 

𝐹𝐼𝑇(%) = 100(1 −
‖𝑦 − �̂�‖

‖𝑦 − �̅�‖
) (4.13) 

where ‖∙‖ denotes the Euclidean norm, 𝑦 is the real system output vector, �̂� is the 

desired output vector and �̅� is the vector that has the same size with real system output 

vector and all elements of this vector are equal to the mean value of the real output 

vector. 

Notably, since we are considering closed-loop stability, we considered another 

validation performance index, i.e., the spectral radius of the closed-loop system. 

4.7  Simulation results 

In this section we evaluate the reference tracking performance for each control scheme 

proposed in Chapter 3. 

The validation phase of the closed-loop system is provided by a new experiment. In 

this experiment the reference signal used is specified for the following sections of the 

thesis in Table 4.1. 

Reference Interval 

0 [0,20) 

1 [20,40) 

-1 [40,60) 

2 [60,80) 

1 [80,...] 

Table 4.1: Reference input values 
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4.7.1 Case I 

In this part we investigate the simulation results of the case where the system gain is 

assumed to be known (or a-priori identified). 

Note that, by performing the algorithm discussed in Section 3.4.1.5, we can obtain the 

VRFT-based stability guarantees (SM-VRFT in Table 4.2). In order to compare the 

results with set membership approach (SM in Table 4.2) in which we only guarantee 

the closed-loop stability, we remove the terms (3.34a) and (3.34b). On the other hand, 

to obtain the solution to VRFT only (VRFT in Table 4.2) we perform (3.34) without 

(3.34c). However, it shouldn’t be forgotten that there isn’t any stability guarantee in 

the latter case. 

The problem consists of 3470 Linear Matrix Inequalities. These LMIs are solved by 

minimizing the cost thanks to YALMIP [33] and the MOSEK [34] solvers in MATLAB. 

Table 4.2 shows the spectral radius of the closed-loop systems and fit percentages 

computed as explained in Section 4.6. 

As it can be seen from Table 4.2, VRFT alone cannot provide stability guarantees and 

therefore it is not represented in Figures 4.6 and 4.8.  

 
Spectral Radius 

𝜌(𝐹)  

Fit Percentage  

𝐹𝐼𝑇(%) 

VRFT 1.0194 -35.8908 

SM 0.6214 70.2078 

SM-VRFT 0.8409 93.3384 

Table 4.2: The fit percentage and the spectral radius of closed-loop systems 

According to Figure 4.6, we can see that SM provides stability for all possible plant 

parametrizations, and one of them is the real parameter vector. However, when the 

reference model similarity is taken into consideration, we can clearly see the effect of 

VRFT-based cost function. It provides quite similar closed loop behavior with respect 

to the reference model. 
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Figure 4.6: Output Trajectories of reference model, SM and SM-VRFT in Case I 

Clearly, the trade-off for our case is between control effort and the desired 

performance. From Figure 4.7, the control variable for SM and SM-VRFT cases can be 

observed.  

 

Figure 4.7: Input trajectories of SM and SM-VRFT in Case I 
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4.7.2  Case II 

In this part we investigate the simulation results of the case where the system gain is 

unknown.  

The tuning parameter are the state feedback gain 𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5]
𝑇 and the 

static gain 𝜇. 

In MATLAB, MOSEK and YALMIP are used to solve VRFT-based stability guarantees 

optimization problem defined in Section 3.4.2.4. Yet, we consider three different cases 

as in the previous section. The spectral radius and fit percentages are presented in 

Table 4.3. 

 
Spectral Radius 

𝜌(𝐹)  

Fit Percentage  

𝐹𝐼𝑇(%) 

VRFT 1.0172 -2.0515 

SM 0.6214 69.3997 

SM-VRFT 0.8417 93.3437 

Table 4.3: The fit percentage and the spectral radius of closed-loop systems 

As it can be seen from Figure 4.8, SM alone cannot meet the correct steady-state 

position. However, SM-VRFT provides similar performances as in the previous case. 

VRFT cannot provide closed-loop stability. 

 

Figure 4.8: Output Trajectories of reference model, SM and SM-VRFT in Case II 
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According to Figure 4.9, we can observe that, similarly to Case I, to have desired 

closed-loop performance, a larger control effort is required. 

 

Figure 4.9: Input trajectories of SM and SM-VRFT in Case II 

4.7.3  Case III 

In this part, we investigate the simulation results in case an explicit integrator is 

embedded in the feedback system. 

The parameter set to be tuned in Case III consists of the state feedback gain 𝐾 =

[𝐾1 𝐾2 𝐾3 𝐾4 𝐾5]
𝑇 and the static integral gain 𝑔. Furthermore, we choose 𝑡 =

0.01 s to solve the VRFT-based optimization problem proposed in Section 3.4.3.4. 

According to Table 4.4, VRFT alone is not capable of providing closed-loop stability. 

On the other hand, SM-VRFT maintains closed-loop stability and has a better fit 

percentage. In Figure 4.10, the simulation results are shown. 

 
Spectral Radius 

𝜌(𝐹)  

Fit Percentage  

𝐹𝐼𝑇(%) 

VRFT 1.5147 -9.5e+33 

SM 0.7306 69.0891 

SM-VRFT 0.6935 76.0497 

Table 4.4: The fit percentage and the spectral radius of closed-loop systems 
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With respect to Case I and Case II, we can observe that the output response is quite 

slow in Case III. On the other hand, the control effort is significantly smaller for Case 

III. 

 

Figure 4.10: Output Trajectories of reference model, SM and SM-VRFT in Case III 

Figure 4.11 displays the input trajectories for both cases. We can observe that the noise 

on the measured output induces the high frequency components even at steady-state. 

 

Figure 4.11: Input trajectories of SM and SM-VRFT in Case III 
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4.8 Comparison with direct control design based on 

controller unfalsification with stability guarantees 

In this chapter, the results obtained applying the design methods proposed in Chapter 

3 are compared with the ones obtained with the direct control design method 

introduced in Section 2.2. Both the approaches have the goal of achieving closed-loop 

stability and minimizing a model reference criterion, simultaneously. Moreover, both 

are data-driven noniterative offline methods. 

In the following subsections they are compared different cases: when a first-order, a 

second-order reference model is considered. Also, we consider the case of a first-order 

reference model, but where experiments display a higher noise standard deviation, 

respectively. 

4.8.1 First-order reference model 

In this part we compare the approaches for the case with first-order reference model.  

The direct control design based on controller unfalsification with stability guarantees 

approach is designed with the same dataset borrowed from Section 4.3. 

The desired complementary sensitivity function 𝑊(𝑧) and the reference model 𝑀(𝑧) 

are expressed with the same first-order transfer function. The desired input sensitivity 

function 𝑄(𝑧) is chosen under the assumption that the system gain is known. 

𝑊(𝑧) = 𝑀(𝑧) =
0.4𝑧−1

1 − 0.6𝑧−1
 (4.14a) 

𝑄(𝑧) =
1

�̂�(1)

(1 − 0.02𝑧−1)

1 − 0.6𝑧−1

0.4

0.98
 

 

(4.14b) 

where �̂�(1) is the estimated system gain, with �̂�(1) = 1. 

The controller to be tuned for direct control design based on controller unfalsification 

with stability guarantees is parametrized as follows 

𝐶(𝑧, 휃) =
𝑆̅(𝑧, 휃)𝑆∗(𝑧)

�̅�(𝑧, 휃)𝑅∗(𝑧)
=

1

1 − 𝑧−1

𝑆̅(𝑧, 휃)

�̅�(𝑧, 휃)

=
1

1 − 𝑧−1

𝑠0 + 𝑠1𝑧
−1 + 𝑠2𝑧

−2 + 𝑠3𝑧
−3

1 + 𝑟1𝑧
−1 + 𝑟2𝑧

−2 + 𝑟3𝑧
−3

 

(4.15) 
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The simulation results are validated on reference-tracking experiment that has the 

consecutive steps listed in Table 4.5.  

Reference Interval 

0 [0,20) 

1 [20,40) 

-1 [40,60) 

2 [60,80) 

1 [80,...] 

Table 4.5: Reference input values 

4.8.1.1 Implementation of direct control design based on controller unfalsification with stability 
guarantees 

In this section we implement direct control design based on controller unfalsification 

with stability guarantees introduced in Section 2.2. 𝒟 is the same dataset used in 

Section 4.3, 𝑄(𝑧) and 𝑊(𝑧) are as in (3.14), the scalar �̃� = 0.2 is considered.  

The optimal controller parameter vector 휃𝑁 = [𝑠0 𝑠1 𝑠2 𝑠3 𝑟1 𝑟2 𝑟3] is found 

by minimizing the related cost function. The ga function in MATLAB allows to find 

the optimum solution for a specified 𝛿. 

As the algorithm states, the first step is the computation of the cost function for 𝛿 = 0 

and after verifying the presence of the stability for this case, the largest 𝛿 is found. 

According to Table 4.6, 𝛿 = 0.8 is the best solution since larger 𝛿 values fail on the 

algorithm. 

 ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖
∞

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎 0.8232 0.8452 76.0008 

𝜹 = 𝟎. 𝟖 0.9532 0.7616 78.5574 

𝜹 = 𝟎. 𝟖𝟓 1.0687 0.8350 - 

𝜹 = 𝟎. 𝟗 1.1023 0.9685 - 

𝜹 = 𝟏 1.4707 1.0718 - 

Table 4.6: The fit percentage, ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 and the spectral radius of 

closed-loop systems for different 𝛿 
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Figure 4.12: Bode diagram of ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 for 𝛿 = 0.8 while its 

smoothed version is in red 

The Empirical Transfer Function Estimation (ETFE) is obtained using the etfe function 

of MATLAB and each of the estimation is smoothed with a Hamming Window that 

yields frequency resolution of about 𝜋 200⁄ . In Figure 4.12, the Bode diagram of 

estimation and smoothed estimation is given in case 𝛿 = 0.8. 

 

Figure 4.13: Output Trajectories of desired output sensitivity function, 𝛿 = 0.8 and    

𝛿 = 0 cases 
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The output trajectories are depicted in Figure 4.13 for stability-guaranteed 𝛿 values. 

Moreover, in Figure 4.14, the input trajectories and the desired input sensitivity 

function response are shown. 

 

Figure 4.14: Input trajectories of desired input sensitivity function, 𝛿 = 0.8 and 𝛿 = 0 

cases 

4.8.1.2 Comparison with the proposed approach 

In this section, the results obtained in Section 4.8.1.1 are compared with those obtained 

using the data-driven methods proposed in Chapter 3 for control of unknown linear 

systems with closed-loop stability guarantees. 

Figure 4.15 and Figure 4.16 depict the input and output trajectories, respectively. 

Moreover, Table 4.7 displays the validation results. Case I and Case II display almost 

the same input and the output trajectories. They are more effective in following the 

reference model; however, this is done at the price of a more reactive control actions. 

On the other hand, Case III and the unfalsification method have smaller fit percentage, 

but the control effort required for these cases is smaller. 

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

Case I 0.8409 

0.8417 

0.6935 

93.3384 

Case II 93.3437 

Case III 76.0497 
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ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖

∞
 

Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎. 𝟖 0.9532 0.7616 78.5574 

Table 4.7: Performance indexes for validation 

 

Figure 4.15: Output trajectories of Reference Model, Case I, Case II, Case III and UF 

with 𝛿 = 0.8 

 

Figure 4.16: Input trajectories of Case I, Case II, Case III and UF with 𝛿 = 0.8 
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4.8.2 Second-order reference models 

In this part we compare the proposed approaches in case a second-order reference 

model choice is selected.  

The desired complementary sensitivity function 𝑊(𝑧) and the reference model 𝑀(𝑧) 

consist of the same second-order transfer function. The desired input sensitivity 

function 𝑄(𝑧) is also as a second-order transfer function sharing the denominator with 

others. Also note that by assuming that the estimated system gain is known, i.e.,  

�̂�(1) = 1, 𝑄(𝑧) is selected such that 𝑊(1)= 𝑄(1)�̂�(1). 

 The corresponding reference models are listed below 

𝑊(𝑧) = 𝑀(𝑧) =
0.3325𝑧−1 + 0.06481𝑧−2

1 − 0.6067𝑧−1 + 0.00404𝑧−2
 (4.16a) 

𝑄(𝑧) =
10.22 − 16.67𝑧−1 + 6.852𝑧−2

1 − 0.6067𝑧−1 + 0.00404𝑧−2
 

 

(4.16b) 

Notably, the desired output sensitivity function is quite similar to the one in (4.14a) 

but of second-order.  

We design the controllers with the dataset collected in Section 4.3. Due to the fact that 

the reference models are changed, even if the FPS is preserved for the same dataset, 

the fictitious references are changed. Therefore, we reperform the data-driven control 

design of unknown linear systems with robust closed-loop stability guarantees for 

Case I, Case II and Case III with the available dataset. 

4.8.2.1 Implementation of direct control design based on controller unfalsification with stability 
guarantees 

In this section we implement the direct control design method discussed in Section 2.2. 

Table 4.8 shows the validation performance indexes for three different values of 𝛿. 

Moreover, to see the effect of 𝛿, Figure 4.17 and Figure 4.18 are presented.  The latter 

figures display the input and output trajectories compared with the ones obtained with 

the desired sensitivity functions. 
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 ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖
∞

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎 0.8060 0.9934 75.9311 

𝜹 = 𝟎. 𝟗𝟗 0.7790 0.8079 91.0705 

𝜹 = 𝟏 1.4707 1.0718 -1.2919e+05 

Table 4.8: The fit percentage, ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 and the spectral radius of 

closed-loop systems for different 𝛿 

Considering Figure 4.17 and Figure 4.18, the case 𝛿 = 0 allows almost identical 

response with the input sensitivity function, but it has worse performance on the 

output trajectory. 

 

Figure 4.17: Output Trajectories of desired output sensitivity function, 𝛿 = 0 and       

𝛿 = 0.99 cases 

On the other hand, 𝛿 = 0.99 guarantees closer performance to the desired output 

sensitivity. Since also this case the stability test is verified for �̃� = 0.2, we use it for 

further comparisons. Note that, however, the case 𝛿 = 1 is falsified by the stability test. 
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Figure 4.18: Input trajectories of desired input sensitivity function, 𝛿 = 0 and 𝛿 =

0.99 cases 

While implementing the algorithm, each ETFE is smoothed using Hamming Window 

that yields frequency resolution of about 𝜋 200⁄  and the Bode diagram in case 𝛿 = 0.99 

for both smoothed and original cases is depicted in Figure 4.19. 

 

Figure 4.19: Bode diagram of ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 for 𝛿 = 0.99 while its 

smoothed version is in red 
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4.8.2.2 Comparison with the proposed approach 

In this section we show the results obtained with the data-driven methods proposed 

in Chapter 3 in case of second-order reference models and the results are compared 

with the results obtained in case 𝛿 = 0.99 from previous section. 

According to Table 4.9, all approaches allow to achieve good performances. 

Nevertheless, Case II has the highest 𝐹𝐼𝑇(%). However, the second-order reference 

model allows the most significant improvement on especially for the unfalsification 

method results. 

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

Case I 0.8409 

0.8417 

0.6935 

92.5904 

Case II 92.6040 

Case III 72.3468 

 
ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖

∞
 

Spectral Radius 

𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎. 𝟗𝟗 0.7790 0.8079 91.0705 

Table 4.9: Performance indexes for validation 

 

Figure 4.20: Output trajectories of Reference Model, Case I, Case II, Case III and UF 

with 𝛿 = 0.99 
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According to Figure 4.21, Case III draws attention with the smallest control effort on 

the system. While Case I, Case II and the unfalsification method require more effective 

control actions. 

 

Figure 4.21: Input trajectories of Case I, Case II, Case III and UF with 𝛿 = 0.99 

4.8.3 Increasing standard deviation of random noise 

In this part we compare the discussed data-driven methods when the reference models 

are first-order, but the data is “more noisy”. Remarkably, such change also affects the 

“Feasible Parameter Set” step of the proposed approach. Therefore, all steps are 

needed to be redone starting from the dataset collection. 

The new batch of data consists of 10000 input-output pairs is collected with an open-

loop experiment. The input is again a multilevel pseudo-random signal (MPRS) that 

uniformly selected between [−1,1] and has switching period of 𝑇𝑠, i.e., 0.5 s for first 

half of the data and has switching period of 50𝑇𝑠, i.e., 25 s for the other half. The output 

measurement is affected by a measurement noise which varies uniformly at each time 

step in the range [-0.01,0.01] (The limits of the range are doubled compared to Section 

4.8.1). The corresponding signal to noise ratio (SNR) is 37.1691 dB. The input and 

output measurements are shown in Figure 4.22. 
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Figure 4.22: Input and output measurements of the open-loop experiment 

In order to find the global error bound estimation, equation (2.55) is used with inflation 

parameter 𝛼 = 1.4 (in Section 4.8.1 it was 1.2). The corresponding feasible parameter 

set Θ̃ consists of 7872 vertices. From Figure 4.23, we can observe that the real parameter 

set is included in the FPS. Furthermore, the pairs 𝐹𝑖 and 𝐺𝑖 are also computed for all 

𝑖 = 1, … , 7872 for future steps. 

The desired complementary sensitivity function 𝑊(𝑧) and the reference model 𝑀(𝑧) 

and the desired input sensitivity function 𝑄(𝑧) are the same as in Section 4.8.1 and 

listed below 

𝑊(𝑧) = 𝑀(𝑧) =
0.4𝑧−1

1 − 0.6𝑧−1
 (4.17a) 

𝑄(𝑧) =
1

�̂�(1)

(1 − 0.02𝑧−1)

1 − 0.6𝑧−1

0.4

0.98
 

 

(4.17b) 

where �̂�(1) is the estimated system gain and accepted as 1. 
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Figure 4.23: Feasible Parameter Set (blue spheres correspond to the real parameters) 

4.8.3.1 Implementation of direct control design based on controller unfalsification with stability 
guarantees 

In this section we implement the direct control design method discussed in Section 2.2. 

According to Figure 4.24 and Table 4.10, the case 𝛿 = 0 provides poor performance, 

although it guarantees closed-loop stability. On the other hand, for increasing values 

of 𝛿, the output response is closer to the one corresponding with the desired output 

sensitivity function. If �̃� = 0.2 is considered, 𝛿 = 0.8 becomes the best solution. 

 ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖
∞

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎 0.5689 0.8636 57.9273 

𝜹 = 𝟎. 𝟕𝟓 0.9356 0.8146 77.4557 

𝜹 = 𝟎. 𝟖 0.9535 0.7936 78.5318 

𝜹 = 𝟎. 𝟖𝟓 1.0160 0.8200 80.9402 

Table 4.10: The fit percentage, ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 and the spectral radius of 

closed-loop systems for different 𝛿 values 
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Figure 4.24: Output Trajectories of desired output sensitivity function, 𝛿 = 0, 𝛿 =

0.75, 𝛿 = 0.8 and 𝛿 = 0.85 cases 

Note that, from Figure 4.25, it can be seen that, for decreasing values of 𝛿, the input is 

closer and closer with the one provided by the desired input sensitivity function. 

 

Figure 4.25: Input trajectories of desired input sensitivity function, 𝛿 = 0, 𝛿 = 0.75, 

𝛿 = 0.8 and 𝛿 = 0.85 cases 
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While implementing the algorithm, each ETFE is smoothed using Hamming Window 

that yields frequency resolution of about 𝜋 200⁄  and ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 , see 

Figure 4.26. 

 

Figure 4.26: Bode diagram of ETFE of ‖𝑄(𝑑)𝛥𝑄(휃, 𝑑)‖
∞

 for 𝛿 = 0.8 while smoothed 

version is in red 

4.8.3.2 Comparison with the proposed approach 

In this section the results obtained in case 𝛿 = 0.8 are compared with the ones obtained 

with the data-driven methods proposed in Chapter 3. 

From Table 4.11, we can see that all approaches meet the requirements. Indeed, if we 

compare Table 4.11 with Table 4.7, we can see that Case III and the unfalsification 

method are less affected by the increase on noise than Case I and Case II. We can 

interpret that the intrinsic integrator term, that both these methods have, induces the 

preservation of good performances. On the other hand, the decrease on 𝐹𝐼𝑇(%) can be 

observed for Case I and Case II. 

 
Spectral Radius 

 𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

Case I 0.7602 

0.7574 

0.8329 

91.1989 

Case II 91.1849 

Case III 81.7079 
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ETFE of ‖𝑸(𝒅)𝚫𝑸(𝜽, 𝒅)‖

∞
 

Spectral Radius 

𝜌(𝐹) 

Fit Percentage  

𝐹𝐼𝑇(%) 

𝜹 = 𝟎. 𝟖 0.9535 0.7936 78.5318 

Table 4.11: Performance indexes for validation 

Furthermore, according to Figure 4.28 and 4.27, Case I and Case II require more 

reactive control actions, however, they have better fitting with respect to the reference 

model. 

 

Figure 4.27: Output trajectories of Reference Model, Case I, Case II, Case III and         

UF with 𝛿 = 0.8 
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Figure 4.28: Input trajectories of Case I, Case II, Case III and UF with 𝛿 = 0.8 
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5. Conclusion and future development 

The purpose of the thesis was to develop a data-based control method for SISO 

systems with stability guarantees inspired by VRFT and SM. These two methodologies 

have been combined, allowing to enforce closed-loop stability under suitable 

conditions during the control design phase. 

Firstly, VRFT, direct control design based on controller unfalsification with stability 

guarantees and SM identification have been recalled from a theoretical point of view. 

Secondly, the proposed method has been applied in three cases.  

Lastly, the proposed approach has been validated on the simulation of a system with 

three cascaded tanks. All the simulation results have proven the effectiveness of the 

proposed approach. 

Future extensions will include the extension of the algorithm on more challenging 

scenarios such as time-varying, nonlinear, or multi-input-multi-output (MIMO) 

systems. The large control effort in Case I and Case II, and the high frequency 

components on control variable even in at steady-state in Case III will also be 

investigated. Also, the reference model optimization could be combined with the 

proposed approach.
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